WO2015056626A1 - Hinge structure and keyboard instrument - Google Patents

Hinge structure and keyboard instrument Download PDF

Info

Publication number
WO2015056626A1
WO2015056626A1 PCT/JP2014/077079 JP2014077079W WO2015056626A1 WO 2015056626 A1 WO2015056626 A1 WO 2015056626A1 JP 2014077079 W JP2014077079 W JP 2014077079W WO 2015056626 A1 WO2015056626 A1 WO 2015056626A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft body
cylindrical
damper
shaft
hinge structure
Prior art date
Application number
PCT/JP2014/077079
Other languages
French (fr)
Japanese (ja)
Inventor
加藤 忠晴
寿郎 酒井
Original Assignee
ヤマハ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ株式会社 filed Critical ヤマハ株式会社
Publication of WO2015056626A1 publication Critical patent/WO2015056626A1/en

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10CPIANOS, HARPSICHORDS, SPINETS OR SIMILAR STRINGED MUSICAL INSTRUMENTS WITH ONE OR MORE KEYBOARDS
    • G10C3/00Details or accessories
    • G10C3/12Keyboards; Keys
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05FDEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05F3/00Closers or openers with braking devices, e.g. checks; Construction of pneumatic or liquid braking devices
    • E05F3/20Closers or openers with braking devices, e.g. checks; Construction of pneumatic or liquid braking devices in hinges
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10CPIANOS, HARPSICHORDS, SPINETS OR SIMILAR STRINGED MUSICAL INSTRUMENTS WITH ONE OR MORE KEYBOARDS
    • G10C3/00Details or accessories
    • G10C3/02Cases
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05FDEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05F5/00Braking devices, e.g. checks; Stops; Buffers
    • E05F5/02Braking devices, e.g. checks; Stops; Buffers specially for preventing the slamming of swinging wings during final closing movement, e.g. jamb stops

Definitions

  • the present invention relates to a hinge structure and a keyboard instrument having the hinge structure.
  • the main body (base portion) of the piano is connected to a keyboard lid (swing member) so as to be swingable by a hinge structure.
  • a wall portion (base portion) of the building is connected to a door (swing member) so as to be swingable by a hinge structure.
  • a damper is used as a braking device that applies a braking force that hinders the rotational movement of the swing member relative to the base portion. In these configurations, the rotation speed of the swinging member with respect to the base portion is prevented from increasing, and the keyboard lid and the door are prevented from being suddenly closed.
  • An example of an object of the present invention is to provide a hinge capable of preventing the appearance design of a structure in which a swinging member is attached to a base part from being damaged even if a damper is provided to prevent an increase in the rotational speed of the swinging member relative to the base part. Is to provide a structure.
  • a hinge structure is used to connect a swinging member to a base part so as to be swingable, and has a hole extending in an axial direction and is fixed to the base part.
  • a cylindrical member, a second cylindrical member having a hole extending in the axial direction and fixed to the swinging member, and inserted into the holes of the first and second cylindrical members, the first and second Are connected to each other so that the first and second tubular members move linearly in the axial direction with respect to the first and second tubular members, and the first and second tubular members are relative to each other.
  • a mechanism for linearly moving the shaft body in the axial direction in response to rotation, and a braking force that prevents movement of the shaft body due to relative rotation of the first and second cylindrical members A damper for applying to the shaft body.
  • the shaft body moves with relative rotation of the first and second cylindrical members.
  • the damper applies a braking force to the shaft body.
  • the relative rotational speed of the first and second cylindrical members is limited.
  • the shaft body that is the braking target of the damper is inserted into the hole of the cylindrical member.
  • a damper can be provided adjacent to the structure (structure containing a 1st and 2nd cylindrical member and a shaft body) which connects a base part and a rocking
  • the present invention it is possible to prevent an increase in the rotational speed of the swing member relative to the base portion due to the braking force of the damper, and it is possible to prevent the appearance design of the structure in which the swing member is attached to the base portion from being damaged.
  • FIG. 4 It is side sectional drawing which shows the principal part of the piano which provided the hinge structure which concerns on 1st, 2nd embodiment of this invention. It is a perspective view which shows the hinge structure of 1st embodiment in the state which opened the keyboard cover of the piano shown in FIG. It is a perspective view which shows the hinge structure of 1st embodiment in the state which closed the keyboard cover of the piano shown in FIG. 4 is a cross-sectional view showing a relationship between a second cylindrical portion and an engaging protrusion in the hinge structure shown in FIGS. It is sectional drawing which shows the hinge structure of 2nd embodiment in the state which opened the keyboard cover of the piano shown in FIG. It is sectional drawing which shows the hinge structure of 2nd embodiment in the state which closed the keyboard cover of the piano shown in FIG.
  • a hinge structure 10 according to this embodiment is provided in a piano (keyboard instrument) 1.
  • the piano 1 of this embodiment is an upright piano which is a kind of acoustic piano.
  • the piano 1 includes a main body (base portion) 2 and a keyboard lid (swing member) 3 that is swingably connected to the main body 2 by a hinge structure 10.
  • the main body 2 includes a housing 4 and a keyboard portion 5 provided on the front side of the housing 4.
  • the main body 2 also includes a general hammer, string, action mechanism (all not shown) and the like provided inside the housing 4.
  • the keyboard lid 3 covers the keyboard portion 5.
  • the keyboard lid 3 is provided so as to be swingable with respect to the main body 2 around the rotation axis L1 between a cover position CL that covers the keyboard section 5 and an open position OP that exposes the keyboard section 5 to the outside.
  • the hinge structure 10 includes a shaft body 11, a first cylindrical member 12, a second cylindrical member 13, and a damper 14.
  • the shaft body 11 is formed in a column shape.
  • the shaft body 11 is inserted into the first cylindrical member 12 and the second cylindrical member 13 described later, thereby connecting the pair of cylindrical members 12 and 13 to each other so as to be rotatable.
  • the axes of the shaft body 11 and the pair of cylindrical members 12 and 13 coincide with each other.
  • the axis of the shaft body 11 and the pair of cylindrical members 12 and 13 is referred to as a rotation axis L1.
  • the shaft body 11 is configured by integrally forming a ball screw portion 21, a spline shaft portion 22, and a support shaft portion 23.
  • the ball screw portion 21 is formed in a cylindrical shape.
  • a spiral groove (spiral groove 24) is formed on the outer peripheral surface of the ball screw portion 21.
  • a plurality (three in the illustrated example) of spiral grooves 24 are arranged at intervals in the axial direction of the ball screw portion 21.
  • the spline shaft portion 22 is provided at one end portion of the ball screw portion 21 in the axial direction.
  • the spline shaft portion 22 has a cylindrical shape having an outer peripheral surface having V-shaped grooves provided at regular intervals in the radial direction and extending in the axial direction.
  • the support shaft portion 23 is formed in a cylindrical shape.
  • the support shaft portion 23 is provided at the other end portion of the ball screw portion 21 in the axial direction.
  • the diameter dimensions of the spline shaft portion 22 and the support shaft portion 23 are set smaller than those of the ball screw portion 21, but the present invention is not limited to such a configuration.
  • the axes of the ball screw portion 21, the spline shaft portion 22, and the support shaft portion 23 are coincident with each other. These axes are the same as the rotation axis L ⁇ b> 1 of the shaft body 11.
  • the first cylindrical member 12 is fixed to the housing 4 (see FIG. 1) of the main body 2.
  • the first cylindrical member 12 has a hole extending in the axial direction.
  • the first cylindrical member 12 is configured by integrally forming a first cylindrical portion 31 and a first fixing plate portion 32.
  • the first cylindrical portion 31 is formed in a cylindrical shape.
  • the first fixing plate portion 32 extends radially outward from the first cylindrical portion 31.
  • the second cylindrical member 13 is fixed to the keyboard lid 3.
  • the second cylindrical member 13 has a hole extending in the axial direction.
  • the second cylindrical member 13 is configured by integrally forming a second cylindrical portion 41 and a second fixing plate portion 42.
  • the second cylindrical portion 41 is formed in a cylindrical shape.
  • the second fixing plate portion 42 extends radially outward from the second cylindrical portion 41.
  • Screw holes 33 and 43 penetrating in the thickness direction are formed in the fixing plate portions 32 and 42 of the respective cylindrical members 12 and 13.
  • the screw holes 33 and 43 are used for fixing the cylindrical members 12 and 13 to the casing 4 or the keyboard lid 3 of the main body 2 by screwing.
  • the first cylindrical portion 31 and the second cylindrical portion 41 are arranged side by side in the direction of the rotational axis L1 with these axes aligned with each other.
  • the first cylindrical portion 31 has a first insertion hole 34 into which the shaft body 11 is inserted.
  • the first insertion holes 34 are opened at both ends of the first cylindrical portion 31 in the direction of the rotation axis L1.
  • the first insertion hole 34 includes a first screw hole 35 and a spline shaft hole 36.
  • the first screw hole 35 is open at one end of the first cylindrical portion 31 located on the second cylindrical portion 41 side.
  • the ball screw portion 21 of the shaft body 11 is inserted into the first screw portion hole 35.
  • the spline shaft hole 36 opens at the other end of the first cylindrical portion 31.
  • the spline shaft portion 22 of the shaft body 11 is inserted into the spline shaft hole portion 36.
  • the inner diameter dimension of the spline shaft hole 36 is set to be smaller than that of the first screw hole 35, but the configuration is not limited to this.
  • the inner peripheral surface of the spline shaft hole portion 36 is formed in a shape corresponding to the outer peripheral surface of the spline shaft portion 22.
  • the second cylindrical portion 41 has a second insertion hole 44 into which the shaft body 11 is inserted.
  • the second insertion hole 44 is opened only at one end of the second cylindrical portion 41 in the direction of the rotation axis L1 located on the first cylindrical portion 31 side.
  • the second insertion hole 44 has a second screw hole 45 and a support shaft hole 46.
  • the second screw hole 45 is open at one end of the second tubular portion 41.
  • the ball screw portion 21 of the shaft body 11 is inserted into the second screw portion hole 45.
  • the support shaft hole 46 is formed so as to be connected to the other end side of the second cylindrical portion 41 with respect to the second screw hole 45.
  • the support shaft 23 of the shaft body 11 is inserted into the support shaft hole 46.
  • the inner diameter dimension of the support shaft hole 46 is set to be smaller than that of the second screw hole 45, but the configuration is not limited thereto.
  • the second cylindrical portion 41 is provided with an engaging projection 47 that protrudes from the inner peripheral surface of the second cylindrical portion 41 that forms the second screw hole 45. Yes.
  • the engaging protrusion 47 is inserted into the spiral groove 24 of the ball screw portion 21 in a state where the ball screw portion 21 is inserted into the second screw portion hole 45.
  • a plurality (three in the illustrated example) of the engaging protrusions 47 are arranged at intervals in the circumferential direction of the inner peripheral surface of the second cylindrical portion 41.
  • the number of engaging protrusions 47 corresponds to the number of spiral grooves 24 formed in the ball screw portion 21.
  • One engagement protrusion 47 is accommodated in each spiral groove 24.
  • the engagement protrusion 47 is formed separately from the second cylindrical portion 41 and is fixed to the second cylindrical portion 41. However, it is not limited to such a configuration.
  • the engagement protrusion 47 may be integrally formed on the inner peripheral surface of the second cylindrical portion 41.
  • the spline shaft portion 22 of the shaft body 11 is the spline shaft hole portion of the first tubular member 12. 36 is inserted. For this reason, when the pair of cylindrical members 12 and 13 are relatively rotated, the shaft body 11 rotates with respect to the second cylindrical member 13 together with the first cylindrical member 12. Further, the engaging protrusion 47 of the second cylindrical member 13 is inserted into the spiral groove 24 of the shaft body 11. For this reason, when the pair of cylindrical members 12 and 13 are relatively rotated, the engaging projection 47 moves in the longitudinal direction with respect to the spiral groove 24.
  • the shaft body 11 rotates relative to the second cylindrical member 13 and linearly moves in the direction of the rotation axis L1 relative to the pair of cylindrical members 12 and 13. That is, in this embodiment, the spline shaft portion 22 and the spiral groove 24 of the shaft body 11, the spline shaft hole portion 36 of the first tubular member 12, and the engagement protrusion 47 of the second tubular member 13 form a pair.
  • the movement conversion mechanism (mechanism) 15 is configured to convert the relative rotational movement of the cylindrical members 12 and 13 into linear movement of the shaft body 11 in the direction of the rotation axis L1. Furthermore, the movement conversion mechanism 15 of the present embodiment rotates the shaft body 11 together with the first cylindrical member 12 with respect to the second cylindrical member 13. That is, the movement conversion mechanism 15 moves the shaft body 11 in the direction of the rotation axis L1 in accordance with the relative rotation of the first and second cylindrical members 12 and 13.
  • the shaft body 11 is the second cylinder. It moves linearly in the direction (X1 direction) from the cylindrical member 13 toward the first cylindrical member 12. In this linear movement, as shown in FIGS. 2 and 3, the length of the spline shaft portion 22 protruding from the other end portion of the first cylindrical portion 31 (the open end of the spline shaft hole portion 36). Lengthens.
  • the damper 14 is a linear motion damper 14 that applies a braking force to the shaft body 11 that prevents linear movement of the shaft body 11 accompanying relative rotation of the pair of cylindrical members 12 and 13.
  • the linear motion damper 14 includes a cylinder 51 filled with oil and the like, and a piston portion 52 attached so as to move linearly with respect to the cylinder 51.
  • the linear motion damper 14 is disposed adjacent to the end of the shaft body 11 in the direction of the rotational axis L1 so that the moving direction of the piston portion 52 relative to the cylinder 51 coincides with the direction of the rotational axis L1 of the shaft body 11.
  • the tip end portion (piston head 53) of the piston portion 52 faces the end portion of the spline shaft portion 22.
  • the piston head 53 is in contact with the end of the spline shaft portion 22 regardless of the relative rotational positions of the pair of cylindrical members 12 and 13.
  • the piston head 53 and the spline shaft portion 22 may be fixed to each other by, for example, an adhesive.
  • the piston head 53 and the spline shaft portion 22 may not be fixed to each other.
  • the linear motion damper 14 is accommodated in a cylindrical accommodation case 54 having a bottom.
  • the opening end of the housing case 54 is connected to the other end of the first cylindrical portion 31 where the spline shaft hole 36 opens. Thereby, the position of the cylinder 51 with respect to a pair of cylindrical members 12 and 13 is being fixed.
  • the hinge structure 10 of the present embodiment is arranged so that the keyboard lid 3 is arranged at the open position OP (see FIG. 1) when the second cylindrical member 13 is at the first rotation position P1, and the second cylindrical shape.
  • the keyboard lid 3 is attached to the main body 2 and the keyboard portion 5 so as to be arranged at the cover position CL (see FIG. 1).
  • the first rotational position P1 indicates that the second cylindrical member 13 is located at the rotational position shown in FIG.
  • the second rotational position P2 indicates that the second cylindrical member 13 is located at the rotational position shown in FIG.
  • the second cylindrical member 13 is moved relative to the first cylindrical member 12 when the keyboard cover 3 is closed by rotating from the open position OP to the cover position CL. It rotates in the first rotation direction R1 from the one rotation position P1 to the second rotation position P2. At this time, the shaft body 11 moves linearly in the X1 direction and is pressed against the piston head 53. As a result, the braking force of the linear damper 14 is applied to the shaft body 11 that is about to move linearly. This braking force is applied to the second cylindrical member 13 to be rotated via the movement conversion mechanism 15. As a result, the relative rotational speed of the pair of cylindrical members 12 and 13 is limited. Therefore, it is possible to prevent the keyboard lid 3 from being rapidly closed by preventing the rotation speed of the keyboard lid 3 relative to the main body 2 from increasing.
  • the second cylindrical member 13 is moved from the second rotational position P2 to the first rotational position P1 with respect to the first cylindrical member 12. It rotates in two rotation directions R2 (the direction opposite to the first rotation direction R1).
  • the shaft body 11 moves linearly in the X2 direction (the direction opposite to the X1 direction) and moves away from the cylinder 51 of the linear motion damper 14.
  • the braking force of the linear motion damper 14 is applied to the linear movement of the shaft body 11, and the relative relationship between the pair of cylindrical members 12 and 13 is achieved. Rotational speed is limited.
  • the braking force of the linear motion damper 14 is applied to the keyboard lid 3 that has been opened.
  • the shaft body 11 is not fixed to the piston head 53, the braking force of the linear motion damper 14 is not applied to the shaft body 11 that attempts to move linearly in the X2 direction. Therefore, the keyboard lid 3 can be easily opened.
  • the hinge structure 10 of the present embodiment it is possible to prevent the keyboard lid 3 from being suddenly closed by preventing the rotation speed of the keyboard lid 3 from being increased with respect to the main body 2.
  • a shaft 11 that is a braking target of the damper 14 is provided inside the pair of cylindrical members 12 and 13.
  • the damper 14 can be provided adjacent to the structure (structure which consists of a pair of cylindrical members 12, 13 and the shaft body 11) which connects the main body 2 and the keyboard cover 3.
  • the damper 14 is a linear motion damper 14, and the diameter of the cylinder 51 or the piston head 53 is easily set to be equal to or less than the diameter of the tubular portions 31 and 41 of the tubular members 12 and 13. it can. Therefore, the hinge structure can be made compact so that the presence of the linear motion damper 14 is not noticeable.
  • the diameter of the cylinder of the linear motion damper 14 can be easily set to be equal to or less than the diameter of the cylindrical members 12 and 13. For this reason, the hinge structure 10 can be configured compactly so that the presence of the linear motion damper 14 is not easily noticeable. Further, in the linear motion damper 14, even if the performance of the linear motion damper 14 is improved so that the displacement amount (movement length range) of the piston portion 52 is increased by extending its axial length, the linear motion damper 14. The existence of is not conspicuous. From the above, it is possible to prevent the appearance design of the piano 1 (the structure in which the keyboard lid 3 is attached to the main body 2) from being damaged.
  • the ratio of the displacement amount of the piston part 52 with respect to the relative rotation angle of a pair of cylindrical members 12 and 13 can be adjusted only by changing the pitch of the spiral groove 24. . For this reason, even if the relative rotation angle of a pair of cylindrical members 12 and 13 is large, the displacement amount of the piston part 52 can be suppressed small. Therefore, the axial length of the linear motion damper 14 can be kept small, and the hinge structure 10 can be downsized.
  • the shaft body 11 includes the support shaft portion 23, but is not limited to such a configuration.
  • the shaft body 11 only needs to include at least the ball screw portion 21 and the spline shaft portion 22. That is, the shaft body 11 may not include the support shaft portion 23.
  • the 2nd insertion hole 44 of the 2nd cylindrical part 41 may be comprised only by the hole part 45 for 2nd thread parts, for example.
  • the second embodiment differs from the first embodiment only in the partial structure of the hinge structure.
  • Other components of the second embodiment are the same as those of the first embodiment.
  • the same reference numerals are given to the components of the second embodiment in the same way as in the first embodiment, and the description thereof is omitted.
  • the hinge structure 100 of the second embodiment is similar to the first embodiment in that the first cylindrical member 112, the second cylindrical member 113, the shaft body 111, and the damper are used. 114.
  • the first tubular member 112 is fixed to the main body 2 of the piano 1.
  • the second cylindrical member 113 is fixed to the keyboard lid 3.
  • the shaft body 111 is inserted into the pair of cylindrical members 112 and 113 (that is, the holes of the pair of cylindrical members 112 and 113).
  • the shaft body 111 couples a pair of cylindrical members 112 and 113 so as to be rotatable.
  • the damper 114 applies a braking force to the shaft body 111 to be moved.
  • the axis lines of the shaft body 111 and the pair of cylindrical members 112 and 113 coincide with each other. In the following description, these axes are referred to as the rotation axis L1.
  • the shaft body 111 includes the same ball screw portion 21 and spline shaft portions 122A and 122B as in the first embodiment.
  • the number of spiral grooves 24 formed in the ball screw portion 21 is two.
  • the number of spiral grooves 24 is not limited to two and may be any number.
  • Spline shaft portions 122A and 122B are provided at both ends of the ball screw portion 21 in the direction of the rotation axis L1.
  • the spline shaft portions 122A and 122B have a cylindrical shape having an outer peripheral surface having V-shaped grooves provided at regular intervals in the radial direction and extending in the axial direction.
  • Each cylindrical member 112, 113 is configured by integrally forming cylindrical portions 131, 141 similar to those of the first embodiment and fixing plate portions 32, 42.
  • the first cylindrical portion 131 has a first insertion hole 134 into which the shaft body 111 is inserted.
  • the first insertion holes 134 are open at both ends of the first cylindrical portion 131 in the direction of the rotation axis L1.
  • the first insertion hole 134 has a first screw hole 135 that opens at one end of the first cylindrical portion 131 located on the second cylindrical portion 141 side.
  • the first cylindrical portion 131 has an engagement protrusion 137 that protrudes from the inner peripheral surface of the first cylindrical portion 131 that forms the first screw hole portion 135 and is inserted into the spiral groove 24 of the ball screw portion 21. Is provided.
  • the engagement protrusion 137 is the same as the engagement protrusion 47 of the first embodiment.
  • a plurality (two in the illustrated example) of the engaging protrusions 137 are arranged at intervals in the circumferential direction of the inner peripheral surface of the first cylindrical portion 131.
  • the connecting member 116 is accommodated in the first insertion hole 134 on the other end side of the first cylindrical portion 131.
  • the connecting member 116 connects the shaft body 111 to the damper 114.
  • the connecting member 116 is formed in a cylindrical shape.
  • the connecting member 116 is held so as to be rotatable about the rotation axis L ⁇ b> 1 with respect to the first tubular portion 131.
  • the inner peripheral surface of the connecting member 116 is formed in the first cylindrical portion 131 in a shape corresponding to the outer peripheral surface of the first spline shaft portion 122A of the shaft body 111.
  • the second cylindrical portion 141 has a second insertion hole 144 into which the shaft body 111 is inserted.
  • the second insertion hole 144 is open at one end of the second cylindrical portion 141 located on the first cylindrical portion 131 side.
  • the second insertion hole 144 has a second screw hole 145 and a spline shaft hole 146.
  • the ball screw portion 21 is inserted into the second screw portion hole portion 145.
  • the spline shaft hole portion 146 is formed to be connected to the other end portion side of the second cylindrical portion 141 with respect to the second screw portion hole portion 145.
  • the spline shaft hole portion 146 is inserted into the second spline shaft portion 122B of the shaft body 111.
  • the inner peripheral surface of the spline shaft hole 146 is formed in a shape corresponding to the outer peripheral surface of the second spline shaft portion 122B.
  • the shaft 111 moves linearly in the direction of the rotation axis L1 with respect to the pair of cylindrical members 112 and 113. That is, in the second embodiment, the second spline shaft portion 122B and the spiral groove 24 of the shaft body 111, the engagement protrusion 137 of the first tubular member 112, and the spline shaft hole portion 146 of the second tubular member 113.
  • a movement conversion mechanism (mechanism) 115 that converts the relative rotational movement of the pair of cylindrical members 112 and 113 into a linear movement of the shaft body 111 in the direction of the rotation axis L1 is configured.
  • the movement conversion mechanism 115 of the second embodiment rotates the shaft 111 together with the second cylindrical member 113 with respect to the first cylindrical member 112. That is, the movement conversion mechanism 115 moves the shaft body 111 in the direction of the rotation axis L1 in accordance with the relative rotation of the first and second cylindrical members 112 and 113.
  • the damper 114 of the second embodiment is a rotary damper that applies a braking force to the rotational movement of the shaft body 111 accompanying the relative rotation of the pair of cylindrical members 112 and 113 (hereinafter, the damper 114 is referred to as the rotary damper 114). May be called).
  • the rotary damper 114 includes a case 151 in which oil or the like is enclosed, and a rotor portion 152 that is rotatably attached to the case 151.
  • the case 151 is fixed to the first cylindrical portion 131.
  • the rotor portion 152 is inserted into the connecting member 116 from the other end of the first cylindrical portion 131 and is fixed to the connecting member 116.
  • the first spline shaft portion 122 ⁇ / b> A of the shaft body 111 is disposed with a space from the connecting member 116.
  • the second tubular member 113 is rotationally moved in the first rotational direction R1 from the first rotational position P1 shown in FIG. 5 to the second rotational position P2 shown in FIG.
  • the shaft 111 moves linearly in a direction approaching the connecting member 116 (X1 direction).
  • the braking force of the rotary damper 114 is not applied to the shaft body 111 until the first spline shaft portion 122A is inserted into the connecting member 116.
  • the first spline shaft portion 122A is inserted into the connecting member 116 at an intermediate position (not shown) before the second cylindrical member 113 reaches the second rotational position P2.
  • the shaft body 111 is connected to the rotary damper 114 (rotor portion 152) via the connecting member 116.
  • the shaft 111 moves with respect to the first cylindrical portion 131 together with the second cylindrical member 113 and the rotor portion 152 until the second cylindrical member 113 reaches the second rotational position P2 from the midway position. Rotate and move.
  • the braking force of the rotary damper 114 is applied to the shaft body 111. That is, in the second embodiment, the shaft body 111 moves in the direction of the rotation axis L1.
  • the shaft body 111 (the tip of the shaft body 111) includes a free movement area FR in which the shaft body 111 is separated from the rotary damper 114 as shown in FIG. 5, and the shaft body 111 is rotated as shown in FIG. It moves in the braked area BR connected to the damper 114.
  • the rotary damper 114 does not apply a braking force to the shaft body 111.
  • the rotary damper 114 applies a braking force to the shaft body 111 in a state where the shaft body 111 is positioned in the braked region BR.
  • the keyboard cover 3 is in the open position OP (with the second cylindrical member 113 disposed at the first rotation position P1. As shown in FIG. 1 and in the state where the second cylindrical member 113 is arranged at the second rotational position P2 as shown in FIG. 6, the keyboard cover 3 is in the cover position CL (see FIG. 1). It is attached to the main body 2 and the keyboard part 5 so that it may be arranged.
  • the second cylindrical member 113 is rotated from the first rotation position P1 to the second rotation when the keyboard cover 3 is rotated and closed from the open position OP to the cover position CL. It rotates in the first rotation direction R1 toward the position P2.
  • the shaft body 111 is positioned in the free movement region FR. For this reason, the braking force of the rotary damper 114 does not act on the shaft body 111.
  • the shaft body 111 is connected to the rotary damper 114 by the movement of the shaft body 111 in the X1 direction, so that the braked region Enter BR.
  • the braking force of the rotary damper 114 is applied to the second cylindrical member 113 that is going to rotate through the movement conversion mechanism 115.
  • the relative rotational speed of the pair of cylindrical members 112 and 113 is limited. Therefore, it is possible to prevent the keyboard lid 3 from being rapidly closed by preventing the rotation speed of the keyboard lid 3 relative to the main body 2 from increasing.
  • the second cylindrical member 113 rotates in the second rotation direction R2 from the second rotation position P2 to the first rotation position P1.
  • the shaft body 111 is positioned in the braked region BR.
  • the braking force of the rotary damper 114 is applied to the rotational movement of the shaft body 111.
  • the relative rotational speed of the pair of cylindrical members 112 and 113 is limited.
  • the shaft body 111 and the rotary damper 114 are moved by the movement of the shaft body 111 in the X2 direction (the direction opposite to the X1 direction). And the shaft body 111 enters the free movement region FR. In this state, the keyboard cover 3 can be easily opened.
  • the braked region FR of the shaft body 111 on which the braking force of the rotary damper 114 acts is directed toward the cover position CL by the keyboard lid 3 due to its own weight. It is good to set it to the area which can be rotated. That is, the braked region FR of the shaft body 111 is preferably set to a region where the opening angle ⁇ (see FIG. 1) of the keyboard lid 3 with respect to the cover position CL is 0 degree or more and 90 degrees or less. Further, the braked region FR is preferably set to a region where the opening angle ⁇ of the keyboard lid 3 is 0 degree or more and 45 degrees or less, for example.
  • the same effect as that of the first embodiment can be obtained.
  • the rotary damper 114 can be disposed adjacent to the end of the shaft body 111 in the direction of the rotation axis L1. For this reason, the presence of the rotary damper 114 is not conspicuous, and the appearance design of the piano 1 can be prevented from being damaged.
  • the movement range of the shaft body 111 in the direction of the rotation axis L1 includes the free movement region FR in which the braking force of the rotary damper 114 does not act on the shaft body 111. For this reason, it can prevent that the relative rotation angle range of a pair of cylindrical members 112 and 113 is restrict
  • the present invention has been described in detail with two embodiments, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention.
  • the braked region where the shaft body 11 is connected to the linear motion damper 14 and the braking force of the linear motion damper 14 acts on the shaft body 11 as in the second embodiment.
  • the shaft body 11 may be configured to move in a free movement region where the shaft body 11 is separated from the linear motion damper 14 and the braking force of the linear motion damper 14 does not act on the shaft body 11.
  • the shaft body 11 may be arranged with a space in the direction of the rotation axis L ⁇ b> 1 with respect to the piston head 53.
  • the present invention is not limited to being applied to an upright piano as in the above embodiment, and may be applied to, for example, a grand piano.
  • the present invention is not limited to being applied to an acoustic piano that strikes a string with a hammer, such as an upright piano or a grand piano.
  • the present invention may be applied to an electronic piano having an appearance design similar to that of an acoustic piano.
  • the present invention is not limited to being applied to a keyboard instrument.
  • the present invention may be applied to, for example, a building structure in which a door (swinging member) is swingably connected to a wall portion (base portion) of a building.
  • a hinge structure is used to connect a swinging member to a base part so as to be swingable.
  • the hinge structure has a hole extending in an axial direction and is fixed to the base part.
  • a shaft body that connects the first and second cylindrical members rotatably and moves linearly in the axial direction with respect to the first and second cylindrical members, and the first and second cylinders A mechanism for linearly moving the shaft body in the axial direction in response to relative rotation of the cylindrical member, and movement of the shaft body with relative rotation of the first and second tubular members And a damper that applies a braking force to the shaft body.
  • the mechanism is provided with a spiral groove provided on an outer peripheral surface of the shaft body, and protruding from one inner peripheral surface of the first and second cylindrical members, and the groove An engaging projection inserted into the shaft, a spline shaft provided at the other end of the first and second tubular members, and the other of the first and second tubular members And a spline shaft hole that restricts rotation of the shaft relative to the other of the first and second cylindrical members by inserting the spline shaft.
  • the shaft body since the spline shaft portion is inserted into the spline shaft hole portion, when the first and second tubular members are relatively rotated, the shaft body is in the other tubular shape. Together with the member (the other of the first and second cylindrical members), it rotates relative to one cylindrical member.
  • an engaging protrusion provided on one cylindrical member is inserted into a groove provided on the shaft body. For this reason, when the first and second cylindrical members are relatively rotated, the engaging protrusion moves in the longitudinal direction of the groove.
  • the shaft body rotates relative to one of the first and second cylindrical members with the relative rotation of the first and second cylindrical members, and the first and second cylindrical members On the other hand, it moves linearly in the axial direction of the first cylindrical member. That is, the mechanism can move the shaft body linearly in the axial direction in accordance with the relative rotation of the first and second cylindrical members.
  • the shaft body linearly moves in the axial direction, whereby a braked region where the shaft body is connected to the damper and a free movement in which the shaft body is separated from the damper.
  • the damper applies a braking force to the shaft body, and in a state where the shaft body is located in the free movement region, the damper is A braking force may not be applied to the shaft body.
  • the braking force of the damper is applied to the shaft body in the movement range in the axial direction of the shaft body and the free movement region is included. For this reason, it can prevent that the relative rotation angle range of a 1st and 2nd cylindrical member is restrict
  • the damper may be a linear motion damper that applies a braking force to the shaft body to prevent linear movement of the shaft body.
  • the braking force of a linear motion damper is provided to the relative rotation of a 1st and 2nd cylindrical member via a mechanism. For this reason, the relative rotational speed of the first and second cylindrical members is limited. As a result, it is possible to prevent the first and second cylindrical members from relatively rotating at a high speed.
  • the linear motion damper may include a cylindrical cylinder and a piston portion that moves linearly in the axial direction with respect to the cylinder.
  • the linear motion damper is provided adjacent to the axial end of the shaft body so that the movement direction of the piston portion matches the linear movement direction (axial direction) of the shaft body. be able to.
  • the diameter dimension of the cylinder of a linear motion damper can be easily set below the diameter dimension of a cylindrical member. For this reason, it becomes possible to make the hinge structure compact so that the presence of the linear motion damper does not stand out easily.
  • the presence of the linear motion damper is conspicuous even when the performance of the linear motion damper is improved so that the displacement in the piston portion (moving length range) becomes longer by extending its axial length. There is nothing.
  • the mechanism rotates the shaft body with respect to the one cylindrical member together with the other cylindrical member, and the damper applies a braking force to the shaft body that prevents the shaft body from rotating. It may be a rotary damper.
  • the present invention may be applied to a hinge structure.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Pivots And Pivotal Connections (AREA)
  • Closing And Opening Devices For Wings, And Checks For Wings (AREA)

Abstract

 A hinge structure is provided with: a first tubular member used to slidably link a sliding member to a base part, the first tubular member having a hole extending in an axial direction and being secured to the base part; a second tubular member having a hole extending in the axial direction and being secured to the sliding member; a shaft body inserted through the holes of the first and second tubular members, the shaft body rotatably linking the first and second tubular members together and linearly moving in the axial direction relative to the first and second tubular members; a mechanism for linearly moving the shaft body in the axial direction in accordance with the relative rotation of the first and second tubular members; and a damper for applying braking power to the shaft body to prevent the shaft body from moving along with the relative rotation of the first and second tubular members.

Description

ヒンジ構造および鍵盤楽器Hinge structure and keyboard instrument

 本発明は、ヒンジ構造およびヒンジ構造を備える鍵盤楽器に関する。

 本願は、2013年10月15日に、日本に出願された特願2013-214963号に基づき優先権を主張し、その内容をここに援用する。

The present invention relates to a hinge structure and a keyboard instrument having the hinge structure.

This application claims priority based on Japanese Patent Application No. 2013-214963 filed in Japan on October 15, 2013, the contents of which are incorporated herein by reference.
 一般的なピアノにおいて、ピアノの本体(ベース部)は、鍵盤蓋(揺動部材)に対してヒンジ構造により揺動自在に連結されている。一般的な建屋において、建屋の壁部(ベース部)は、扉(揺動部材)に対してヒンジ構造により揺動自在に連結されている。従来の建築構造には、例えば特許文献1,2のように、ベース部に対する揺動部材の回転移動を妨げる制動力を付与する制動装置としてダンパーを採用した構造がある。これらの構成では、ベース部に対する揺動部材の回転速度が大きくなることを防止し、鍵盤蓋や扉が急激に閉じることを防いでいる。 In a general piano, the main body (base portion) of the piano is connected to a keyboard lid (swing member) so as to be swingable by a hinge structure. In a general building, a wall portion (base portion) of the building is connected to a door (swing member) so as to be swingable by a hinge structure. As a conventional building structure, for example, as disclosed in Patent Documents 1 and 2, there is a structure in which a damper is used as a braking device that applies a braking force that hinders the rotational movement of the swing member relative to the base portion. In these configurations, the rotation speed of the swinging member with respect to the base portion is prevented from increasing, and the keyboard lid and the door are prevented from being suddenly closed.
日本国特開2007-132509号公報Japanese Unexamined Patent Publication No. 2007-132509 日本国特開2009-79424号公報Japanese Unexamined Patent Publication No. 2009-79424
 しかしながら、上記従来の構成では、ダンパーがヒンジ構造と別個に設けられる。このため、揺動部材をベース部に取り付けた構造(ピアノや建築構造)の外観意匠が損なわれてしまう、という問題がある。 However, in the conventional configuration, the damper is provided separately from the hinge structure. For this reason, there exists a problem that the external design of the structure (piano or building structure) which attached the rocking | swiveling member to the base part will be impaired.
 本発明は、上述した事情に鑑みてなされた。本発明の目的の一例は、ベース部に対する揺動部材の回転速度が大きくなることを防ぐダンパーを設けても、揺動部材をベース部に取り付けた構造の外観意匠が損なわれることを防止できるヒンジ構造を提供することである。 The present invention has been made in view of the above-described circumstances. An example of an object of the present invention is to provide a hinge capable of preventing the appearance design of a structure in which a swinging member is attached to a base part from being damaged even if a damper is provided to prevent an increase in the rotational speed of the swinging member relative to the base part. Is to provide a structure.
 本発明の実施態様に係るヒンジ構造は、揺動部材をベース部に対して揺動自在に連結するために用いられ、軸線方向に伸びる孔を有し、前記ベース部に固定される第一筒状部材と、前記軸線方向に伸びる孔を有し、前記揺動部材に固定される第二筒状部材と、前記第一及び第二筒状部材の孔に挿入され、前記第一及び第二の筒状部材を相互に回転自在に連結し、前記第一及び第二の筒状部材に対して前記軸線方向に直線的に移動する軸体と、前記第一及び第二筒状部材が相対的に回転することに応じて、前記軸体を前記軸線方向へ直線的に移動させる機構と、前記第一及び第二筒状部材の相対的な回転に伴う前記軸体の移動を妨げる制動力を前記軸体に付与するダンパーと、を備える。 A hinge structure according to an embodiment of the present invention is used to connect a swinging member to a base part so as to be swingable, and has a hole extending in an axial direction and is fixed to the base part. A cylindrical member, a second cylindrical member having a hole extending in the axial direction and fixed to the swinging member, and inserted into the holes of the first and second cylindrical members, the first and second Are connected to each other so that the first and second tubular members move linearly in the axial direction with respect to the first and second tubular members, and the first and second tubular members are relative to each other. A mechanism for linearly moving the shaft body in the axial direction in response to rotation, and a braking force that prevents movement of the shaft body due to relative rotation of the first and second cylindrical members A damper for applying to the shaft body.
 上記のヒンジ構造では、軸体が、第一及び第二筒状部材の相対的な回転に伴って移動する。また、ダンパーが軸体に制動力を付与する。このため、第一及び第二筒状部材の相対的な回転速度が制限される。その結果、第一及び第二筒状部材が大きな速度で相対回転することを防止できる。すなわち、ベース部に対する揺動部材の回転速度が大きくなることを防止できる。 In the above hinge structure, the shaft body moves with relative rotation of the first and second cylindrical members. In addition, the damper applies a braking force to the shaft body. For this reason, the relative rotational speed of the first and second cylindrical members is limited. As a result, it is possible to prevent the first and second cylindrical members from relatively rotating at a high speed. That is, it is possible to prevent the rotation speed of the swing member relative to the base portion from increasing.
 また、上記のヒンジ構造によれば、ダンパーの制動対象である軸体が筒状部材の孔に挿入されている。このため、ダンパーを、ベース部及び揺動部材を連結する構造(第一及び第二筒状部材及び軸体を含む構造)に隣り合わせて設けることができる。したがって、上記のヒンジ構造により揺動部材をベース部に取り付けても、ダンパーの存在が目立たない。このため、揺動部材をベース部に取り付けた構造の外観意匠が損なわれることを防止できる。 Further, according to the above-described hinge structure, the shaft body that is the braking target of the damper is inserted into the hole of the cylindrical member. For this reason, a damper can be provided adjacent to the structure (structure containing a 1st and 2nd cylindrical member and a shaft body) which connects a base part and a rocking | swiveling member. Therefore, even if the swing member is attached to the base portion by the hinge structure, the presence of the damper is not noticeable. For this reason, it can prevent that the external appearance design of the structure which attached the rocking | swiveling member to the base part is impaired.
 本発明によれば、ダンパーの制動力によりベース部に対する揺動部材の回転速度が大きくなることを防止できると共に、揺動部材をベース部に取り付けた構造の外観意匠が損なわれることも防止できる。 According to the present invention, it is possible to prevent an increase in the rotational speed of the swing member relative to the base portion due to the braking force of the damper, and it is possible to prevent the appearance design of the structure in which the swing member is attached to the base portion from being damaged.
本発明の第一、第二実施形態に係るヒンジ構造を設けたピアノの要部を示す側断面図である。It is side sectional drawing which shows the principal part of the piano which provided the hinge structure which concerns on 1st, 2nd embodiment of this invention. 図1に示すピアノの鍵盤蓋を開いた状態における第一実施形態のヒンジ構造を示す斜視図である。It is a perspective view which shows the hinge structure of 1st embodiment in the state which opened the keyboard cover of the piano shown in FIG. 図1に示すピアノの鍵盤蓋を閉じた状態における第一実施形態のヒンジ構造を示す斜視図である。It is a perspective view which shows the hinge structure of 1st embodiment in the state which closed the keyboard cover of the piano shown in FIG. 図2,3に示すヒンジ構造において、第二筒状部と係合突起部との関係を示す断面図である。4 is a cross-sectional view showing a relationship between a second cylindrical portion and an engaging protrusion in the hinge structure shown in FIGS. 図1に示すピアノの鍵盤蓋を開いた状態における第二実施形態のヒンジ構造を示す断面図である。It is sectional drawing which shows the hinge structure of 2nd embodiment in the state which opened the keyboard cover of the piano shown in FIG. 図1に示すピアノの鍵盤蓋を閉じた状態における第二実施形態のヒンジ構造を示す断面図である。It is sectional drawing which shows the hinge structure of 2nd embodiment in the state which closed the keyboard cover of the piano shown in FIG.
 〔第一実施形態〕
 以下、図1~5を参照して本発明の第一実施形態について説明する。
 図1に示すように、この実施形態に係るヒンジ構造10は、ピアノ(鍵盤楽器)1に設けられている。本実施形態のピアノ1は、アコースティックピアノの一種であるアップライトピアノである。ピアノ1は、本体(ベース部)2と、ヒンジ構造10によって本体2に対して揺動自在に連結された鍵盤蓋(揺動部材)3と、を備える。
[First embodiment]
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS.
As shown in FIG. 1, a hinge structure 10 according to this embodiment is provided in a piano (keyboard instrument) 1. The piano 1 of this embodiment is an upright piano which is a kind of acoustic piano. The piano 1 includes a main body (base portion) 2 and a keyboard lid (swing member) 3 that is swingably connected to the main body 2 by a hinge structure 10.
 本体2は、筐体4、及び、筐体4の前面側に設けられる鍵盤部5を備える。また、本体2は、筐体4内部に設けられる一般的なハンマ、弦、アクション機構(いずれも不図示)等も備える。
 鍵盤蓋3は、鍵盤部5を覆う。鍵盤蓋3は、鍵盤部5を覆うカバー位置CLと、鍵盤部5を外部に露出させる開放位置OPとの間で、回転軸線L1を中心に本体2に対して揺動自在に設けられている。
 ヒンジ構造10は、図2,3に示すように、軸体11と、第一筒状部材12と、第二筒状部材13と、ダンパー14と、を備える。
The main body 2 includes a housing 4 and a keyboard portion 5 provided on the front side of the housing 4. The main body 2 also includes a general hammer, string, action mechanism (all not shown) and the like provided inside the housing 4.
The keyboard lid 3 covers the keyboard portion 5. The keyboard lid 3 is provided so as to be swingable with respect to the main body 2 around the rotation axis L1 between a cover position CL that covers the keyboard section 5 and an open position OP that exposes the keyboard section 5 to the outside. .
As shown in FIGS. 2 and 3, the hinge structure 10 includes a shaft body 11, a first cylindrical member 12, a second cylindrical member 13, and a damper 14.
 軸体11は、柱状に形成されている。軸体11は、後述する第一筒状部材12及び第二筒状部材13の内部に挿入されることで、これら一対の筒状部材12,13を相互に回転自在に連結する。軸体11を一対の筒状部材12,13の内部に挿入した状態では、軸体11及び一対の筒状部材12,13の軸線が互いに一致する。以下の説明では、軸体11、一対の筒状部材12,13の軸線を回転軸線L1と呼ぶ。 The shaft body 11 is formed in a column shape. The shaft body 11 is inserted into the first cylindrical member 12 and the second cylindrical member 13 described later, thereby connecting the pair of cylindrical members 12 and 13 to each other so as to be rotatable. In a state where the shaft body 11 is inserted into the pair of cylindrical members 12 and 13, the axes of the shaft body 11 and the pair of cylindrical members 12 and 13 coincide with each other. In the following description, the axis of the shaft body 11 and the pair of cylindrical members 12 and 13 is referred to as a rotation axis L1.
 軸体11は、ボールねじ部21、スプライン軸部22及び支持軸部23を一体に形成して構成されている。
 ボールねじ部21は、円柱状に形成されている。ボールねじ部21の外周面には、螺旋状の溝(螺旋溝24)が形成されている。本実施形態では、螺旋溝24がボールねじ部21の軸線方向に間隔をあけて複数(図示例では三つ)配列されている。
The shaft body 11 is configured by integrally forming a ball screw portion 21, a spline shaft portion 22, and a support shaft portion 23.
The ball screw portion 21 is formed in a cylindrical shape. A spiral groove (spiral groove 24) is formed on the outer peripheral surface of the ball screw portion 21. In the present embodiment, a plurality (three in the illustrated example) of spiral grooves 24 are arranged at intervals in the axial direction of the ball screw portion 21.
 スプライン軸部22は、軸線方向におけるボールねじ部21の一端部に設けられている。スプライン軸部22は、径方向に一定間隔ごとに設けられ軸線方向に伸びるV字状の溝を有する外周面を有する円筒形状を有する。支持軸部23は、円柱状に形成されている。支持軸部23は、ボールねじ部21の軸線方向の他端部に設けられている。図示例では、スプライン軸部22及び支持軸部23の径寸法がボールねじ部21よりも小さく設定されているが、このような構成に限られない。
 これらボールねじ部21、スプライン軸部22及び支持軸部23の軸線は互いに一致している。これらの軸線は、軸体11の回転軸線L1と同じである。
The spline shaft portion 22 is provided at one end portion of the ball screw portion 21 in the axial direction. The spline shaft portion 22 has a cylindrical shape having an outer peripheral surface having V-shaped grooves provided at regular intervals in the radial direction and extending in the axial direction. The support shaft portion 23 is formed in a cylindrical shape. The support shaft portion 23 is provided at the other end portion of the ball screw portion 21 in the axial direction. In the illustrated example, the diameter dimensions of the spline shaft portion 22 and the support shaft portion 23 are set smaller than those of the ball screw portion 21, but the present invention is not limited to such a configuration.
The axes of the ball screw portion 21, the spline shaft portion 22, and the support shaft portion 23 are coincident with each other. These axes are the same as the rotation axis L <b> 1 of the shaft body 11.
 第一筒状部材12は、本体2の筐体4(図1参照)に固定される。第一筒状部材12は、軸線方向に伸びる孔を有する。第一筒状部材12は、第一筒状部31と、第一固定用板部32とを一体に形成して構成されている。第一筒状部31は、円筒状に形成されている。第一固定用板部32は、第一筒状部31からその径方向外側に延びる。
 第二筒状部材13は、鍵盤蓋3に固定される。第二筒状部材13は、軸線方向に伸びる孔を有する。第二筒状部材13は、第二筒状部41と、第二固定用板部42とを一体に形成して構成されている。第二筒状部41は、円筒状に形成されている。第二固定用板部42は、第二筒状部41からその径方向外側に延びる。
 各筒状部材12,13の固定用板部32,42には、その厚さ方向に貫通するネジ孔33,43が形成されている。ネジ孔33,43は、各筒状部材12,13を本体2の筐体4あるいは鍵盤蓋3にネジ止めにより固定するために用いられる。
 第一筒状部31及び第二筒状部41は、これらの軸線を互いに一致させた状態で回転軸線L1方向に並べて配列されている。
The first cylindrical member 12 is fixed to the housing 4 (see FIG. 1) of the main body 2. The first cylindrical member 12 has a hole extending in the axial direction. The first cylindrical member 12 is configured by integrally forming a first cylindrical portion 31 and a first fixing plate portion 32. The first cylindrical portion 31 is formed in a cylindrical shape. The first fixing plate portion 32 extends radially outward from the first cylindrical portion 31.
The second cylindrical member 13 is fixed to the keyboard lid 3. The second cylindrical member 13 has a hole extending in the axial direction. The second cylindrical member 13 is configured by integrally forming a second cylindrical portion 41 and a second fixing plate portion 42. The second cylindrical portion 41 is formed in a cylindrical shape. The second fixing plate portion 42 extends radially outward from the second cylindrical portion 41.
Screw holes 33 and 43 penetrating in the thickness direction are formed in the fixing plate portions 32 and 42 of the respective cylindrical members 12 and 13. The screw holes 33 and 43 are used for fixing the cylindrical members 12 and 13 to the casing 4 or the keyboard lid 3 of the main body 2 by screwing.
The first cylindrical portion 31 and the second cylindrical portion 41 are arranged side by side in the direction of the rotational axis L1 with these axes aligned with each other.
 第一筒状部31は、軸体11が挿入される第一挿入孔34を有する。第一挿入孔34は、回転軸線L1方向における第一筒状部31の両端において開口している。第一挿入孔34は、第一ねじ部用孔部35と、スプライン軸用孔部36と、を有する。第一ねじ部用孔部35は、第二筒状部41側に位置する第一筒状部31の一方の端部において開口している。第一ねじ部用孔部35には、軸体11のボールねじ部21が挿入される。スプライン軸用孔部36は、第一筒状部31の他方の端部において開口している。スプライン軸用孔部36には、軸体11のスプライン軸部22が挿入される。図示例では、スプライン軸用孔部36の内径寸法が第一ねじ部用孔部35よりも小さく設定されているが、このような構成に限定されない。
 スプライン軸用孔部36の内周面は、スプライン軸部22の外周面に対応する形状に形成されている。これにより、軸体11を第一筒状部31に挿入した状態では、第一筒状部31に対する軸体11の回転移動がスプライン軸部22及びスプライン軸用孔部36によって規制される。その結果、軸体11は第一筒状部31に対して回転軸線L1方向への直線的な移動のみ可能となる。スプライン軸用孔部36の軸方向長さは、スプライン軸部22よりも短く設定されている。
The first cylindrical portion 31 has a first insertion hole 34 into which the shaft body 11 is inserted. The first insertion holes 34 are opened at both ends of the first cylindrical portion 31 in the direction of the rotation axis L1. The first insertion hole 34 includes a first screw hole 35 and a spline shaft hole 36. The first screw hole 35 is open at one end of the first cylindrical portion 31 located on the second cylindrical portion 41 side. The ball screw portion 21 of the shaft body 11 is inserted into the first screw portion hole 35. The spline shaft hole 36 opens at the other end of the first cylindrical portion 31. The spline shaft portion 22 of the shaft body 11 is inserted into the spline shaft hole portion 36. In the illustrated example, the inner diameter dimension of the spline shaft hole 36 is set to be smaller than that of the first screw hole 35, but the configuration is not limited to this.
The inner peripheral surface of the spline shaft hole portion 36 is formed in a shape corresponding to the outer peripheral surface of the spline shaft portion 22. As a result, in a state where the shaft body 11 is inserted into the first tubular portion 31, the rotational movement of the shaft body 11 with respect to the first tubular portion 31 is restricted by the spline shaft portion 22 and the spline shaft hole portion 36. As a result, the shaft body 11 can only move linearly in the direction of the rotation axis L <b> 1 with respect to the first cylindrical portion 31. The axial length of the spline shaft hole 36 is set to be shorter than the spline shaft portion 22.
 第二筒状部41は、軸体11が挿入される第二挿入孔44を有する。第二挿入孔44は、第一筒状部31側に位置する回転軸線L1方向における第二筒状部41の一方の端部においてのみ開口している。第二挿入孔44は、第二ねじ部用孔部45と、支持軸用孔部46と、を有する。第二ねじ部用孔部45は、第二筒状部41の一方の端部において開口している。第二ねじ部用孔部45には、軸体11のボールねじ部21が挿入される。支持軸用孔部46は、第二ねじ部用孔部45に対して第二筒状部41の他方の端部側に連ねて形成される。支持軸用孔部46には、軸体11の支持軸部23が挿入される。図示例では、支持軸用孔部46の内径寸法が第二ねじ部用孔部45よりも小さく設定されているが、このような構成に限定されない。 The second cylindrical portion 41 has a second insertion hole 44 into which the shaft body 11 is inserted. The second insertion hole 44 is opened only at one end of the second cylindrical portion 41 in the direction of the rotation axis L1 located on the first cylindrical portion 31 side. The second insertion hole 44 has a second screw hole 45 and a support shaft hole 46. The second screw hole 45 is open at one end of the second tubular portion 41. The ball screw portion 21 of the shaft body 11 is inserted into the second screw portion hole 45. The support shaft hole 46 is formed so as to be connected to the other end side of the second cylindrical portion 41 with respect to the second screw hole 45. The support shaft 23 of the shaft body 11 is inserted into the support shaft hole 46. In the illustrated example, the inner diameter dimension of the support shaft hole 46 is set to be smaller than that of the second screw hole 45, but the configuration is not limited thereto.
 第二筒状部41には、図2~4に示すように、第二ねじ部用孔部45を形成する第二筒状部41の内周面から突出する係合突起47が設けられている。係合突起47は、ボールねじ部21を第二ねじ部用孔部45に挿入した状態で、ボールねじ部21の螺旋溝24に挿入される。
 本実施形態では、係合突起47が第二筒状部41の内周面の周方向に間隔をあけて複数(図示例では三つ)配列されている。係合突起47の数は、ボールねじ部21に形成された螺旋溝24の数に対応する。各螺旋溝24に一つの係合突起47が収容されている。本実施形態では、図4に示すように、係合突起47が第二筒状部41とは別個に形成されて第二筒状部41に固定されている。しかしながら、このような構成に限定されない。例えば係合突起47が第二筒状部41の内周面に一体に形成されてもよい。
As shown in FIGS. 2 to 4, the second cylindrical portion 41 is provided with an engaging projection 47 that protrudes from the inner peripheral surface of the second cylindrical portion 41 that forms the second screw hole 45. Yes. The engaging protrusion 47 is inserted into the spiral groove 24 of the ball screw portion 21 in a state where the ball screw portion 21 is inserted into the second screw portion hole 45.
In the present embodiment, a plurality (three in the illustrated example) of the engaging protrusions 47 are arranged at intervals in the circumferential direction of the inner peripheral surface of the second cylindrical portion 41. The number of engaging protrusions 47 corresponds to the number of spiral grooves 24 formed in the ball screw portion 21. One engagement protrusion 47 is accommodated in each spiral groove 24. In the present embodiment, as shown in FIG. 4, the engagement protrusion 47 is formed separately from the second cylindrical portion 41 and is fixed to the second cylindrical portion 41. However, it is not limited to such a configuration. For example, the engagement protrusion 47 may be integrally formed on the inner peripheral surface of the second cylindrical portion 41.
 以上のように構成される一対の筒状部材12,13内部に、前述した軸体11を挿入した状態では、軸体11のスプライン軸部22が第一筒状部材12のスプライン軸用孔部36に挿入されている。このため、一対の筒状部材12,13を相対的に回転させた際には、軸体11が第一筒状部材12と共に第二筒状部材13に対して回転移動する。また、第二筒状部材13の係合突起47が軸体11の螺旋溝24に挿入される。このため、一対の筒状部材12,13を相対的に回転させた際には、係合突起47が螺旋溝24に対してその長手方向に移動する。これにより、軸体11は、第二筒状部材13に対して回転移動すると共に一対の筒状部材12,13に対して回転軸線L1方向に直線的に移動する。
 すなわち、本実施形態では、軸体11のスプライン軸部22及び螺旋溝24、第一筒状部材12のスプライン軸用孔部36、並びに、第二筒状部材13の係合突起47によって、一対の筒状部材12,13の相対的な回転移動を、軸体11の回転軸線L1方向への直線的な移動に変換する移動変換機構(機構)15が構成されている。さらに、本実施形態の移動変換機構15は、軸体11を第一筒状部材12と共に第二筒状部材13に対して回転移動させる。すなわち、移動変換機構15は、第1及び第2筒状部材12,13が相対的に回転することに応じて、軸体11を回転軸線L1方向に移動させる。
In a state where the shaft body 11 is inserted into the pair of cylindrical members 12 and 13 configured as described above, the spline shaft portion 22 of the shaft body 11 is the spline shaft hole portion of the first tubular member 12. 36 is inserted. For this reason, when the pair of cylindrical members 12 and 13 are relatively rotated, the shaft body 11 rotates with respect to the second cylindrical member 13 together with the first cylindrical member 12. Further, the engaging protrusion 47 of the second cylindrical member 13 is inserted into the spiral groove 24 of the shaft body 11. For this reason, when the pair of cylindrical members 12 and 13 are relatively rotated, the engaging projection 47 moves in the longitudinal direction with respect to the spiral groove 24. Thereby, the shaft body 11 rotates relative to the second cylindrical member 13 and linearly moves in the direction of the rotation axis L1 relative to the pair of cylindrical members 12 and 13.
That is, in this embodiment, the spline shaft portion 22 and the spiral groove 24 of the shaft body 11, the spline shaft hole portion 36 of the first tubular member 12, and the engagement protrusion 47 of the second tubular member 13 form a pair. The movement conversion mechanism (mechanism) 15 is configured to convert the relative rotational movement of the cylindrical members 12 and 13 into linear movement of the shaft body 11 in the direction of the rotation axis L1. Furthermore, the movement conversion mechanism 15 of the present embodiment rotates the shaft body 11 together with the first cylindrical member 12 with respect to the second cylindrical member 13. That is, the movement conversion mechanism 15 moves the shaft body 11 in the direction of the rotation axis L1 in accordance with the relative rotation of the first and second cylindrical members 12 and 13.
 本実施形態の構成では、例えば図2に示す状態において、第二筒状部材13を第一筒状部材12に対して第一回転方向R1に回転させた際に、軸体11が第二筒状部材13側から第一筒状部材12に向かう方向(X1方向)に直線的に移動する。この直線的な移動の際には、図2,3に示すように、第一筒状部31の他方の端部(スプライン軸用孔部36の開口端)から突出するスプライン軸部22の長さが長くなる。 In the configuration of the present embodiment, for example, in the state shown in FIG. 2, when the second cylindrical member 13 is rotated in the first rotation direction R <b> 1 with respect to the first cylindrical member 12, the shaft body 11 is the second cylinder. It moves linearly in the direction (X1 direction) from the cylindrical member 13 toward the first cylindrical member 12. In this linear movement, as shown in FIGS. 2 and 3, the length of the spline shaft portion 22 protruding from the other end portion of the first cylindrical portion 31 (the open end of the spline shaft hole portion 36). Lengthens.
 本実施形態のダンパー14は、一対の筒状部材12,13の相対的な回転に伴う軸体11の直線的な移動を妨げる制動力を軸体11に付与する直動ダンパー14である。直動ダンパー14は、オイル等を封入したシリンダ51と、シリンダ51に対して直線的に移動するように取り付けられたピストン部52と、を備える。
 直動ダンパー14は、シリンダ51に対するピストン部52の移動方向が軸体11の回転軸線L1方向に一致するように、軸体11の回転軸線L1方向の端部に隣り合せて配されている。ピストン部52の先端部(ピストンヘッド53)がスプライン軸部22の端部に対向している。本実施形態では、一対の筒状部材12,13の相対的な回転位置に関わらず、ピストンヘッド53がスプライン軸部22の端部に当接している。ピストンヘッド53及びスプライン軸部22は、例えば接着剤等により互いに固定されてもよい。ピストンヘッド53及びスプライン軸部22は、互いに固定されなくてもよい。
 また、本実施形態では、直動ダンパー14が、底を有する筒状の収容ケース54に収容されている。収容ケース54の開口端部は、スプライン軸用孔部36が開口する第一筒状部31の他方の端部に接続されている。これにより、一対の筒状部材12,13に対するシリンダ51の位置が固定されている。
The damper 14 according to the present embodiment is a linear motion damper 14 that applies a braking force to the shaft body 11 that prevents linear movement of the shaft body 11 accompanying relative rotation of the pair of cylindrical members 12 and 13. The linear motion damper 14 includes a cylinder 51 filled with oil and the like, and a piston portion 52 attached so as to move linearly with respect to the cylinder 51.
The linear motion damper 14 is disposed adjacent to the end of the shaft body 11 in the direction of the rotational axis L1 so that the moving direction of the piston portion 52 relative to the cylinder 51 coincides with the direction of the rotational axis L1 of the shaft body 11. The tip end portion (piston head 53) of the piston portion 52 faces the end portion of the spline shaft portion 22. In the present embodiment, the piston head 53 is in contact with the end of the spline shaft portion 22 regardless of the relative rotational positions of the pair of cylindrical members 12 and 13. The piston head 53 and the spline shaft portion 22 may be fixed to each other by, for example, an adhesive. The piston head 53 and the spline shaft portion 22 may not be fixed to each other.
In the present embodiment, the linear motion damper 14 is accommodated in a cylindrical accommodation case 54 having a bottom. The opening end of the housing case 54 is connected to the other end of the first cylindrical portion 31 where the spline shaft hole 36 opens. Thereby, the position of the cylinder 51 with respect to a pair of cylindrical members 12 and 13 is being fixed.
 本実施形態のヒンジ構造10は、第二筒状部材13が第一回転位置P1であるときに鍵盤蓋3が開放位置OP(図1参照)に配されるように、また、第二筒状部材13が第二回転位置P2であるときに鍵盤蓋3がカバー位置CL(図1参照)に配されるように、本体2及び鍵盤部5に取り付けられている。第一回転位置P1とは、第一筒状部材12に対して第二筒状部材13が図2に示す回転位置に位置することを示す。第二回転位置P2とは、第一筒状部材12に対して第二筒状部材13が図3に示す回転位置に位置することを示す。 The hinge structure 10 of the present embodiment is arranged so that the keyboard lid 3 is arranged at the open position OP (see FIG. 1) when the second cylindrical member 13 is at the first rotation position P1, and the second cylindrical shape. When the member 13 is at the second rotational position P2, the keyboard lid 3 is attached to the main body 2 and the keyboard portion 5 so as to be arranged at the cover position CL (see FIG. 1). The first rotational position P1 indicates that the second cylindrical member 13 is located at the rotational position shown in FIG. The second rotational position P2 indicates that the second cylindrical member 13 is located at the rotational position shown in FIG.
 本実施形態のヒンジ構造10を備えるピアノ1では、鍵盤蓋3を開放位置OPからカバー位置CLまで回転移動させて閉じる際に、第二筒状部材13が第一筒状部材12に対して第一回転位置P1から第二回転位置P2まで第一回転方向R1に回転する。この際には、軸体11がX1方向に直線的に移動して、ピストンヘッド53に押し付けられる。その結果、直動ダンパー14の制動力が直線的に移動しようとする軸体11に付与される。この制動力は回転しようとする第二筒状部材13に移動変換機構15を介して付与される。その結果、一対の筒状部材12,13の相対的な回転速度が制限される。したがって、本体2に対する鍵盤蓋3の回転速度が大きくなること防いで、鍵盤蓋3が急激に閉じることを防止できる。 In the piano 1 including the hinge structure 10 according to the present embodiment, the second cylindrical member 13 is moved relative to the first cylindrical member 12 when the keyboard cover 3 is closed by rotating from the open position OP to the cover position CL. It rotates in the first rotation direction R1 from the one rotation position P1 to the second rotation position P2. At this time, the shaft body 11 moves linearly in the X1 direction and is pressed against the piston head 53. As a result, the braking force of the linear damper 14 is applied to the shaft body 11 that is about to move linearly. This braking force is applied to the second cylindrical member 13 to be rotated via the movement conversion mechanism 15. As a result, the relative rotational speed of the pair of cylindrical members 12 and 13 is limited. Therefore, it is possible to prevent the keyboard lid 3 from being rapidly closed by preventing the rotation speed of the keyboard lid 3 relative to the main body 2 from increasing.
 鍵盤蓋3をカバー位置CLから開放位置OPまで回転移動させて開く際には、第二筒状部材13が第一筒状部材12に対して第二回転位置P2から第一回転位置P1まで第二回転方向R2(第一回転方向R1と逆方向)に回転する。この際には、軸体11がX2方向(X1方向と逆方向)に直線的に移動して、直動ダンパー14のシリンダ51から離れる。ここで、軸体11がピストンヘッド53に固定されている場合には、軸体11の直線的な移動に直動ダンパー14の制動力が付与され、一対の筒状部材12,13の相対的な回転速度が制限される。したがって、開く動作がなされている鍵盤蓋3に対して直動ダンパー14の制動力が付与される。一方、軸体11がピストンヘッド53に固定されていない場合には、X2方向へ直線的に移動しようとする軸体11に直動ダンパー14の制動力が付与されない。したがって、鍵盤蓋3を容易に開くことが可能となる。 When the keyboard cover 3 is rotated and moved from the cover position CL to the open position OP, the second cylindrical member 13 is moved from the second rotational position P2 to the first rotational position P1 with respect to the first cylindrical member 12. It rotates in two rotation directions R2 (the direction opposite to the first rotation direction R1). At this time, the shaft body 11 moves linearly in the X2 direction (the direction opposite to the X1 direction) and moves away from the cylinder 51 of the linear motion damper 14. Here, when the shaft body 11 is fixed to the piston head 53, the braking force of the linear motion damper 14 is applied to the linear movement of the shaft body 11, and the relative relationship between the pair of cylindrical members 12 and 13 is achieved. Rotational speed is limited. Therefore, the braking force of the linear motion damper 14 is applied to the keyboard lid 3 that has been opened. On the other hand, when the shaft body 11 is not fixed to the piston head 53, the braking force of the linear motion damper 14 is not applied to the shaft body 11 that attempts to move linearly in the X2 direction. Therefore, the keyboard lid 3 can be easily opened.
 以上説明したように、本実施形態のヒンジ構造10によれば、本体2に対する鍵盤蓋3の回転速度が大きくなること防いで、鍵盤蓋3が急激に閉じることを防止できる。
 また、ダンパー14の制動対象である軸体11が一対の筒状部材12,13の内部に設けられる。このため、ダンパー14を、本体2及び鍵盤蓋3を連結する構造(一対の筒状部材12,13及び軸体11からなる構造)に隣り合せて設けることができる。特に、本実施形態では、ダンパー14が直動ダンパー14であり、そのシリンダ51やピストンヘッド53の径寸法は、容易に筒状部材12,13の筒状部31,41の径寸法以下に設定できる。したがって、直動ダンパー14の存在が目立たないようにヒンジ構造をコンパクトに構成することが可能となる。
As described above, according to the hinge structure 10 of the present embodiment, it is possible to prevent the keyboard lid 3 from being suddenly closed by preventing the rotation speed of the keyboard lid 3 from being increased with respect to the main body 2.
In addition, a shaft 11 that is a braking target of the damper 14 is provided inside the pair of cylindrical members 12 and 13. For this reason, the damper 14 can be provided adjacent to the structure (structure which consists of a pair of cylindrical members 12, 13 and the shaft body 11) which connects the main body 2 and the keyboard cover 3. FIG. In particular, in the present embodiment, the damper 14 is a linear motion damper 14, and the diameter of the cylinder 51 or the piston head 53 is easily set to be equal to or less than the diameter of the tubular portions 31 and 41 of the tubular members 12 and 13. it can. Therefore, the hinge structure can be made compact so that the presence of the linear motion damper 14 is not noticeable.
 さらに、直動ダンパー14のシリンダの直径寸法は、容易に筒状部材12,13の直径寸法以下に設定できる。このため、容易に直動ダンパー14の存在が目立たないようにヒンジ構造10をコンパクトに構成することが可能となる。また、直動ダンパー14では、その軸方向長さを延長してピストン部52の変位量(移動長さ範囲)が長くなるように直動ダンパー14の性能を向上させても、直動ダンパー14の存在が目立つことはない。以上のことから、ピアノ1(鍵盤蓋3を本体2に取り付けた構造)の外観意匠が損なわれることを防止できる。 Furthermore, the diameter of the cylinder of the linear motion damper 14 can be easily set to be equal to or less than the diameter of the cylindrical members 12 and 13. For this reason, the hinge structure 10 can be configured compactly so that the presence of the linear motion damper 14 is not easily noticeable. Further, in the linear motion damper 14, even if the performance of the linear motion damper 14 is improved so that the displacement amount (movement length range) of the piston portion 52 is increased by extending its axial length, the linear motion damper 14. The existence of is not conspicuous. From the above, it is possible to prevent the appearance design of the piano 1 (the structure in which the keyboard lid 3 is attached to the main body 2) from being damaged.
 また、本実施形態のヒンジ構造10によれば、螺旋溝24のピッチを変更するだけで、一対の筒状部材12,13の相対的な回転角度に対するピストン部52の変位量の割合を調整できる。このため、一対の筒状部材12,13の相対的な回転角度が大きくても、ピストン部52の変位量を小さく抑えることができる。したがって、直動ダンパー14の軸方向長さを小さく抑えて、ヒンジ構造10の小型化を図ることも可能である。 Moreover, according to the hinge structure 10 of this embodiment, the ratio of the displacement amount of the piston part 52 with respect to the relative rotation angle of a pair of cylindrical members 12 and 13 can be adjusted only by changing the pitch of the spiral groove 24. . For this reason, even if the relative rotation angle of a pair of cylindrical members 12 and 13 is large, the displacement amount of the piston part 52 can be suppressed small. Therefore, the axial length of the linear motion damper 14 can be kept small, and the hinge structure 10 can be downsized.
 上記第一実施形態のヒンジ構造10においては、軸体11が支持軸部23を備えているがこのような構成に限定されない。軸体11は少なくともボールねじ部21及びスプライン軸部22を備えていればよい。すなわち、軸体11は支持軸部23を備えていなくてもよい。これに伴い、第二筒状部41の第二挿入孔44は、例えば第二ねじ部用孔部45のみによって構成されてもよい。 In the hinge structure 10 of the first embodiment described above, the shaft body 11 includes the support shaft portion 23, but is not limited to such a configuration. The shaft body 11 only needs to include at least the ball screw portion 21 and the spline shaft portion 22. That is, the shaft body 11 may not include the support shaft portion 23. In connection with this, the 2nd insertion hole 44 of the 2nd cylindrical part 41 may be comprised only by the hole part 45 for 2nd thread parts, for example.
 〔第二実施形態〕
 次に、図1、5,6を参照して本発明の第二実施形態について説明する。
 第二実施形態は、第一実施形態と比較して、ヒンジ構造の一部構造のみが異なっている。第二実施形態のその他の構成要素は第一実施形態と同様である。このため、以下において、第二実施形態の構成要素には、第一実施形態と同一の場合には同一符号を付し、その説明を省略する。
 図1,5,6に示すように、第二実施形態のヒンジ構造100は、第一実施形態と同様に、第一筒状部材112、第二筒状部材113、軸体111、及び、ダンパー114を備える。第一筒状部材112は、ピアノ1の本体2に固定される。第二筒状部材113は、鍵盤蓋3に固定される。軸体111は、一対の筒状部材112,113の内部(すなわち、一対の筒状部材112,113の孔)に挿入される。軸体111は、一対の筒状部材112,113を相互に回転自在に連結する。ダンパー114は、移動しようとする軸体111に制動力を付与する。軸体111、一対の筒状部材112,113の軸線は互いに一致している。以下の説明ではこれらの軸線を回転軸線L1と呼ぶ。
[Second Embodiment]
Next, a second embodiment of the present invention will be described with reference to FIGS.
The second embodiment differs from the first embodiment only in the partial structure of the hinge structure. Other components of the second embodiment are the same as those of the first embodiment. For this reason, in the following, the same reference numerals are given to the components of the second embodiment in the same way as in the first embodiment, and the description thereof is omitted.
As shown in FIGS. 1, 5, and 6, the hinge structure 100 of the second embodiment is similar to the first embodiment in that the first cylindrical member 112, the second cylindrical member 113, the shaft body 111, and the damper are used. 114. The first tubular member 112 is fixed to the main body 2 of the piano 1. The second cylindrical member 113 is fixed to the keyboard lid 3. The shaft body 111 is inserted into the pair of cylindrical members 112 and 113 (that is, the holes of the pair of cylindrical members 112 and 113). The shaft body 111 couples a pair of cylindrical members 112 and 113 so as to be rotatable. The damper 114 applies a braking force to the shaft body 111 to be moved. The axis lines of the shaft body 111 and the pair of cylindrical members 112 and 113 coincide with each other. In the following description, these axes are referred to as the rotation axis L1.
 軸体111は、第一実施形態と同様のボールねじ部21及びスプライン軸部122A,122Bを備える。第二実施形態では、ボールねじ部21に形成される螺旋溝24の数が二つとなっている。しかしながら、螺旋溝24の数は二つに限定されず、任意の数でよい。スプライン軸部122A,122Bが、回転軸線L1方向におけるボールねじ部21の両端部に設けられている。スプライン軸部122A,122Bは、径方向に一定間隔ごとに設けられ軸線方向に伸びるV字状の溝を有する外周面を有する円筒形状を有する。
 各筒状部材112,113は、第一実施形態と同様の筒状部131,141と、固定用板部32,42とを一体に形成して構成されている。
The shaft body 111 includes the same ball screw portion 21 and spline shaft portions 122A and 122B as in the first embodiment. In the second embodiment, the number of spiral grooves 24 formed in the ball screw portion 21 is two. However, the number of spiral grooves 24 is not limited to two and may be any number. Spline shaft portions 122A and 122B are provided at both ends of the ball screw portion 21 in the direction of the rotation axis L1. The spline shaft portions 122A and 122B have a cylindrical shape having an outer peripheral surface having V-shaped grooves provided at regular intervals in the radial direction and extending in the axial direction.
Each cylindrical member 112, 113 is configured by integrally forming cylindrical portions 131, 141 similar to those of the first embodiment and fixing plate portions 32, 42.
 第一筒状部131は、軸体111が挿入される第一挿入孔134を有する。第一挿入孔134は、回転軸線L1方向における第一筒状部131の両端において開口している。第一挿入孔134は、第二筒状部141側に位置する第一筒状部131の一方の端部において開口する第一ねじ部用孔部135を有する。
 第一筒状部131には、第一ねじ部用孔部135を形成する第一筒状部131の内周面から突出し、ボールねじ部21の螺旋溝24に挿入される係合突起137が設けられている。係合突起137は、第一実施形態の係合突起47と同様である。係合突起137は、第一筒状部131の内周面の周方向に間隔をあけて複数(図示例では二つ)配列されている。
The first cylindrical portion 131 has a first insertion hole 134 into which the shaft body 111 is inserted. The first insertion holes 134 are open at both ends of the first cylindrical portion 131 in the direction of the rotation axis L1. The first insertion hole 134 has a first screw hole 135 that opens at one end of the first cylindrical portion 131 located on the second cylindrical portion 141 side.
The first cylindrical portion 131 has an engagement protrusion 137 that protrudes from the inner peripheral surface of the first cylindrical portion 131 that forms the first screw hole portion 135 and is inserted into the spiral groove 24 of the ball screw portion 21. Is provided. The engagement protrusion 137 is the same as the engagement protrusion 47 of the first embodiment. A plurality (two in the illustrated example) of the engaging protrusions 137 are arranged at intervals in the circumferential direction of the inner peripheral surface of the first cylindrical portion 131.
 第一筒状部131の他方の端部側における第一挿入孔134には、連結部材116が収容されている。連結部材116は、軸体111をダンパー114に連結する。連結部材116は、円筒状に形成されている。連結部材116は、第一筒状部131に対して回転軸線L1を中心に回転自在に保持されている。連結部材116の内周面は、第一筒状部131内に軸体111の第一スプライン軸部122Aの外周面に対応する形状に形成されている。これにより、第一スプライン軸部122Aを連結部材116に挿入した状態では、軸体111が連結部材116と共に第一筒状部131に対して回転可能となる。 The connecting member 116 is accommodated in the first insertion hole 134 on the other end side of the first cylindrical portion 131. The connecting member 116 connects the shaft body 111 to the damper 114. The connecting member 116 is formed in a cylindrical shape. The connecting member 116 is held so as to be rotatable about the rotation axis L <b> 1 with respect to the first tubular portion 131. The inner peripheral surface of the connecting member 116 is formed in the first cylindrical portion 131 in a shape corresponding to the outer peripheral surface of the first spline shaft portion 122A of the shaft body 111. Thereby, in a state where the first spline shaft portion 122 </ b> A is inserted into the connecting member 116, the shaft body 111 can rotate with respect to the first tubular portion 131 together with the connecting member 116.
 第二筒状部141は、軸体111が挿入される第二挿入孔144を有する。第二挿入孔144は、第一筒状部131側に位置する第二筒状部141の一方の端部において開口している。第二挿入孔144は、第二ねじ部用孔部145と、スプライン軸用孔部146と、を有する。第二ねじ部用孔部145には、ボールねじ部21が挿入される。スプライン軸用孔部146は、第二ねじ部用孔部145に対して第二筒状部141の他方の端部側に連ねて形成される。スプライン軸用孔部146には、軸体111の第二スプライン軸部122Bに挿入される。スプライン軸用孔部146の内周面は、第二スプライン軸部122Bの外周面に対応する形状に形成されている。これにより、軸体111を第二筒状部141に挿入した状態では、第二筒状部141に対する軸体111の回転移動が第二スプライン軸部122B及びスプライン軸用孔部146によって規制される。その結果、軸体111は第二筒状部141に対して回転軸線L1方向への直線的な移動のみ可能となる。 The second cylindrical portion 141 has a second insertion hole 144 into which the shaft body 111 is inserted. The second insertion hole 144 is open at one end of the second cylindrical portion 141 located on the first cylindrical portion 131 side. The second insertion hole 144 has a second screw hole 145 and a spline shaft hole 146. The ball screw portion 21 is inserted into the second screw portion hole portion 145. The spline shaft hole portion 146 is formed to be connected to the other end portion side of the second cylindrical portion 141 with respect to the second screw portion hole portion 145. The spline shaft hole portion 146 is inserted into the second spline shaft portion 122B of the shaft body 111. The inner peripheral surface of the spline shaft hole 146 is formed in a shape corresponding to the outer peripheral surface of the second spline shaft portion 122B. Thereby, in a state where the shaft body 111 is inserted into the second cylindrical portion 141, the rotational movement of the shaft body 111 with respect to the second cylindrical portion 141 is restricted by the second spline shaft portion 122B and the spline shaft hole portion 146. . As a result, the shaft body 111 can only move linearly in the direction of the rotation axis L <b> 1 with respect to the second cylindrical portion 141.
 以上のように構成される一対の筒状部材112,113の内部に、前述した軸体111を挿入した状態では、軸体111の第二スプライン軸部122Bが第二筒状部材113のスプライン軸用孔部146に挿入されている。このため、一対の筒状部材12,13を相対的に回転させた際には、軸体111が第二筒状部材113と共に第一筒状部材112に対して回転移動する。また、第一筒状部材112の係合突起137が軸体111の螺旋溝24に挿入される。このため、一対の筒状部材112,113を相対的に回転させた際には、軸体111が第一筒状部材112に対して回転移動する。これともに、軸体111が一対の筒状部材112,113に対して回転軸線L1方向に直線的に移動する。
 すなわち、第二実施形態では、軸体111の第二スプライン軸部122B及び螺旋溝24、第一筒状部材112の係合突起137、並びに、第二筒状部材113のスプライン軸用孔部146によって、一対の筒状部材112,113の相対的な回転移動を、軸体111の回転軸線L1方向への直線的な移動に変換する移動変換機構(機構)115が構成されている。さらに、第二実施形態の移動変換機構115は、軸体111を第二筒状部材113と共に第一筒状部材112に対して回転移動させる。すなわち、移動変換機構115は、第1及び第2筒状部材112,113が相対的に回転することに応じて、軸体111を回転軸線L1方向に移動させる。
In a state where the shaft body 111 is inserted into the pair of cylindrical members 112 and 113 configured as described above, the second spline shaft portion 122B of the shaft body 111 is connected to the spline shaft of the second cylindrical member 113. The hole 146 is inserted. For this reason, when the pair of cylindrical members 12 and 13 are relatively rotated, the shaft body 111 rotates and moves with respect to the first cylindrical member 112 together with the second cylindrical member 113. Further, the engagement protrusion 137 of the first cylindrical member 112 is inserted into the spiral groove 24 of the shaft body 111. For this reason, when the pair of cylindrical members 112 and 113 are relatively rotated, the shaft body 111 rotates and moves relative to the first cylindrical member 112. In both cases, the shaft 111 moves linearly in the direction of the rotation axis L1 with respect to the pair of cylindrical members 112 and 113.
That is, in the second embodiment, the second spline shaft portion 122B and the spiral groove 24 of the shaft body 111, the engagement protrusion 137 of the first tubular member 112, and the spline shaft hole portion 146 of the second tubular member 113. Thus, a movement conversion mechanism (mechanism) 115 that converts the relative rotational movement of the pair of cylindrical members 112 and 113 into a linear movement of the shaft body 111 in the direction of the rotation axis L1 is configured. Furthermore, the movement conversion mechanism 115 of the second embodiment rotates the shaft 111 together with the second cylindrical member 113 with respect to the first cylindrical member 112. That is, the movement conversion mechanism 115 moves the shaft body 111 in the direction of the rotation axis L1 in accordance with the relative rotation of the first and second cylindrical members 112 and 113.
 第二実施形態のダンパー114は、一対の筒状部材112,113の相対的な回転に伴う軸体111の回転移動に制動力を付与するロータリーダンパーである(以下において、ダンパー114をロータリーダンパー114と称する場合がある)。ロータリーダンパー114は、オイル等を封入したケース151と、ケース151に対して回転自在に取り付けられたローター部152と、を備える。ケース151は、第一筒状部131に固定されている。ローター部152は、第一筒状部131の他方の端部から連結部材116に挿入され、連結部材116に固定されている。これにより、軸体111の第一スプライン軸部122Aが連結部材116に挿入された状態では、ロータリーダンパー114の制動力が第一筒状部131に対して回転しようとする軸体111に付与される。 The damper 114 of the second embodiment is a rotary damper that applies a braking force to the rotational movement of the shaft body 111 accompanying the relative rotation of the pair of cylindrical members 112 and 113 (hereinafter, the damper 114 is referred to as the rotary damper 114). May be called). The rotary damper 114 includes a case 151 in which oil or the like is enclosed, and a rotor portion 152 that is rotatably attached to the case 151. The case 151 is fixed to the first cylindrical portion 131. The rotor portion 152 is inserted into the connecting member 116 from the other end of the first cylindrical portion 131 and is fixed to the connecting member 116. Thus, in a state where the first spline shaft portion 122A of the shaft body 111 is inserted into the connecting member 116, the braking force of the rotary damper 114 is applied to the shaft body 111 that is about to rotate with respect to the first tubular portion 131. The
 第二実施形態のヒンジ構造100では、例えば図5に示す状態において、軸体111の第一スプライン軸部122Aが連結部材116に対して間隔をあけて配されている。この状態において、第二筒状部材113を第一筒状部材112に対して図5に示す第一回転位置P1から図6に示す第二回転位置P2まで第一回転方向R1に回転移動させた際には、軸体111が連結部材116に近づく方向(X1方向)に直線的に移動する。この場合において、第一スプライン軸部122Aが連結部材116に挿入されるまでは、軸体111にはロータリーダンパー114の制動力が付与されない。
 その後、第二筒状部材113が第二回転位置P2に至る前の途中位置(不図示)において、第一スプライン軸部122Aが連結部材116に挿入される。その結果、軸体111が連結部材116を介してロータリーダンパー114(ローター部152)に接続される。このため、第二筒状部材113が途中位置から第二回転位置P2に至るまでの間には、軸体111が第二筒状部材113及びローター部152と共に第一筒状部131に対して回転移動する。これと共に、軸体111にロータリーダンパー114の制動力が付与される。
 すなわち、第二実施形態では、軸体111が回転軸線L1方向に移動する。その結果、軸体111(軸体111の先端)は、図5に示すように軸体111がロータリーダンパー114から離間している自由移動領域FRと、図6に示すように軸体111がロータリーダンパー114に接続される被制動領域BRとを移動する。軸体111が自由移動領域FRに位置する状態において、ロータリーダンパー114は制動力を軸体111に付与しない。一方で、軸体111が被制動領域BRに位置する状態において、ロータリーダンパー114は制動力を軸体111に付与する。
In the hinge structure 100 of the second embodiment, for example, in the state shown in FIG. 5, the first spline shaft portion 122 </ b> A of the shaft body 111 is disposed with a space from the connecting member 116. In this state, the second tubular member 113 is rotationally moved in the first rotational direction R1 from the first rotational position P1 shown in FIG. 5 to the second rotational position P2 shown in FIG. In this case, the shaft 111 moves linearly in a direction approaching the connecting member 116 (X1 direction). In this case, the braking force of the rotary damper 114 is not applied to the shaft body 111 until the first spline shaft portion 122A is inserted into the connecting member 116.
Thereafter, the first spline shaft portion 122A is inserted into the connecting member 116 at an intermediate position (not shown) before the second cylindrical member 113 reaches the second rotational position P2. As a result, the shaft body 111 is connected to the rotary damper 114 (rotor portion 152) via the connecting member 116. For this reason, the shaft 111 moves with respect to the first cylindrical portion 131 together with the second cylindrical member 113 and the rotor portion 152 until the second cylindrical member 113 reaches the second rotational position P2 from the midway position. Rotate and move. At the same time, the braking force of the rotary damper 114 is applied to the shaft body 111.
That is, in the second embodiment, the shaft body 111 moves in the direction of the rotation axis L1. As a result, the shaft body 111 (the tip of the shaft body 111) includes a free movement area FR in which the shaft body 111 is separated from the rotary damper 114 as shown in FIG. 5, and the shaft body 111 is rotated as shown in FIG. It moves in the braked area BR connected to the damper 114. In a state where the shaft body 111 is positioned in the free movement region FR, the rotary damper 114 does not apply a braking force to the shaft body 111. On the other hand, the rotary damper 114 applies a braking force to the shaft body 111 in a state where the shaft body 111 is positioned in the braked region BR.
 以上のように構成される第二実施形態のヒンジ構造100は、図5に示すように第二筒状部材113が第一回転位置P1に配された状態で、鍵盤蓋3が開放位置OP(図1参照)に配されるように、また、図6に示すように第二筒状部材113が第二回転位置P2に配された状態で、鍵盤蓋3がカバー位置CL(図1参照)に配されるように、本体2及び鍵盤部5に取り付けられている。 In the hinge structure 100 of the second embodiment configured as described above, as shown in FIG. 5, the keyboard cover 3 is in the open position OP (with the second cylindrical member 113 disposed at the first rotation position P1. As shown in FIG. 1 and in the state where the second cylindrical member 113 is arranged at the second rotational position P2 as shown in FIG. 6, the keyboard cover 3 is in the cover position CL (see FIG. 1). It is attached to the main body 2 and the keyboard part 5 so that it may be arranged.
 第二実施形態のヒンジ構造100を備えるピアノ1では、鍵盤蓋3を開放位置OPからカバー位置CLまで回転移動させて閉じる際に、第二筒状部材113が第一回転位置P1から第二回転位置P2に向けて第一回転方向R1に回転する。第二筒状部材113の回転が開始された時点では、軸体111が自由移動領域FRに位置する。このため、ロータリーダンパー114の制動力は軸体111に作用しない。その後、第二筒状部材113が第一、第二回転位置P1,P2の途中位置に到達すると、軸体111のX1方向への移動によって軸体111がロータリーダンパー114に接続されて被制動領域BRに入り込む。これにより、ロータリーダンパー114の制動力が、回転移動しようとする第二筒状部材113に移動変換機構115を介して付与される。その結果、一対の筒状部材112,113の相対的な回転速度が制限される。したがって、本体2に対する鍵盤蓋3の回転速度が大きくなること防いで、鍵盤蓋3が急激に閉じることを防止できる。 In the piano 1 including the hinge structure 100 according to the second embodiment, the second cylindrical member 113 is rotated from the first rotation position P1 to the second rotation when the keyboard cover 3 is rotated and closed from the open position OP to the cover position CL. It rotates in the first rotation direction R1 toward the position P2. When the rotation of the second cylindrical member 113 is started, the shaft body 111 is positioned in the free movement region FR. For this reason, the braking force of the rotary damper 114 does not act on the shaft body 111. Thereafter, when the second cylindrical member 113 reaches a midway position between the first and second rotational positions P1 and P2, the shaft body 111 is connected to the rotary damper 114 by the movement of the shaft body 111 in the X1 direction, so that the braked region Enter BR. As a result, the braking force of the rotary damper 114 is applied to the second cylindrical member 113 that is going to rotate through the movement conversion mechanism 115. As a result, the relative rotational speed of the pair of cylindrical members 112 and 113 is limited. Therefore, it is possible to prevent the keyboard lid 3 from being rapidly closed by preventing the rotation speed of the keyboard lid 3 relative to the main body 2 from increasing.
 鍵盤蓋3をカバー位置CLから開放位置OPまで回転移動させて開く際には、第二筒状部材113が第二回転位置P2から第一回転位置P1まで第二回転方向R2に回転する。第二筒状部材113の回転が開始された時点では、軸体111が被制動領域BRに位置する。このため、軸体111の回転移動にロータリーダンパー114の制動力が付与される。その結果、一対の筒状部材112,113の相対的な回転速度が制限される。その後、第二筒状部材113が第一、第二回転位置P1,P2の途中位置に到達すると、軸体111のX2方向(X1方向と逆方向)への移動によって軸体111とロータリーダンパー114との接続が解除され、軸体111が自由移動領域FRに入り込む。この状態では、鍵盤蓋3を容易に開くことができる。 When the keyboard lid 3 is rotated and moved from the cover position CL to the open position OP, the second cylindrical member 113 rotates in the second rotation direction R2 from the second rotation position P2 to the first rotation position P1. When the rotation of the second cylindrical member 113 is started, the shaft body 111 is positioned in the braked region BR. For this reason, the braking force of the rotary damper 114 is applied to the rotational movement of the shaft body 111. As a result, the relative rotational speed of the pair of cylindrical members 112 and 113 is limited. Thereafter, when the second cylindrical member 113 reaches a midway position between the first and second rotational positions P1 and P2, the shaft body 111 and the rotary damper 114 are moved by the movement of the shaft body 111 in the X2 direction (the direction opposite to the X1 direction). And the shaft body 111 enters the free movement region FR. In this state, the keyboard cover 3 can be easily opened.
 以上のように鍵盤蓋3に作用する第二実施形態のヒンジ構造100において、ロータリーダンパー114の制動力が作用する軸体111の被制動領域FRは、鍵盤蓋3が自重によってカバー位置CLに向けて回転移動し得る領域に設定されるとよい。すなわち、軸体111の被制動領域FRは、例えば、カバー位置CLに対する鍵盤蓋3の開き角度θ(図1参照)が0度以上90度以下となる領域に設定されることが好ましい。また、被制動領域FRは、例えば鍵盤蓋3の開き角度θが0度以上45度以下となる領域に設定されることが好ましい。 In the hinge structure 100 according to the second embodiment that acts on the keyboard lid 3 as described above, the braked region FR of the shaft body 111 on which the braking force of the rotary damper 114 acts is directed toward the cover position CL by the keyboard lid 3 due to its own weight. It is good to set it to the area which can be rotated. That is, the braked region FR of the shaft body 111 is preferably set to a region where the opening angle θ (see FIG. 1) of the keyboard lid 3 with respect to the cover position CL is 0 degree or more and 90 degrees or less. Further, the braked region FR is preferably set to a region where the opening angle θ of the keyboard lid 3 is 0 degree or more and 45 degrees or less, for example.
 第二実施形態のヒンジ構造100によれば、第一実施形態と同様の効果を得ることができる。
 例えば、ロータリーダンパー114を軸体111の回転軸線L1方向の端部に隣り合せて配することができる。このため、ロータリーダンパー114の存在が目立たず、ピアノ1の外観意匠が損なわれることを防止できる。
According to the hinge structure 100 of the second embodiment, the same effect as that of the first embodiment can be obtained.
For example, the rotary damper 114 can be disposed adjacent to the end of the shaft body 111 in the direction of the rotation axis L1. For this reason, the presence of the rotary damper 114 is not conspicuous, and the appearance design of the piano 1 can be prevented from being damaged.
 さらに、第二実施形態のヒンジ構造100によれば、軸体111の回転軸線L1方向への移動範囲には、ロータリーダンパー114の制動力が軸体111に作用しない自由移動領域FRが含まれる。このため、一対の筒状部材112,113の相対的な回転角度範囲が、ロータリーダンパー114の性能(ローター部152の変位量(回転角度範囲))によって制限されることを防止できる。したがって、性能の低いロータリーダンパー114(ローター部152の変位量が小さいロータリーダンパー114)を使用しても、一対の筒状部材112,113の相対的な回転角度の範囲を大きく設定することが可能となる。すなわち、小型で安価なロータリーダンパー114を使用することが可能となる。その結果、ヒンジ構造100の小型化及び低コスト化を図ることができる。 Furthermore, according to the hinge structure 100 of the second embodiment, the movement range of the shaft body 111 in the direction of the rotation axis L1 includes the free movement region FR in which the braking force of the rotary damper 114 does not act on the shaft body 111. For this reason, it can prevent that the relative rotation angle range of a pair of cylindrical members 112 and 113 is restrict | limited by the performance of the rotary damper 114 (the displacement amount (rotation angle range) of the rotor part 152). Therefore, even if a low-performance rotary damper 114 (rotary damper 114 with a small displacement of the rotor portion 152) is used, the range of the relative rotation angle of the pair of cylindrical members 112 and 113 can be set large. It becomes. That is, it is possible to use a small and inexpensive rotary damper 114. As a result, the hinge structure 100 can be reduced in size and cost.
 以上、二つの実施形態により本発明について詳細に説明したが、本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
 例えば、第一実施形態のヒンジ構造10においても、第二実施形態と同様に、軸体11が直動ダンパー14に接続されて直動ダンパー14の制動力が軸体11に作用する被制動領域と、軸体11が直動ダンパー14から離間して直動ダンパー14の制動力が軸体11に作用しない自由移動領域とを軸体11が移動するように構成してもよい。このような構成を採用する場合、例えば、図2に示す状態において、軸体11がピストンヘッド53に対して回転軸線L1方向に間隔をあけて配してもよい。
Although the present invention has been described in detail with two embodiments, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention.
For example, also in the hinge structure 10 of the first embodiment, the braked region where the shaft body 11 is connected to the linear motion damper 14 and the braking force of the linear motion damper 14 acts on the shaft body 11 as in the second embodiment. Further, the shaft body 11 may be configured to move in a free movement region where the shaft body 11 is separated from the linear motion damper 14 and the braking force of the linear motion damper 14 does not act on the shaft body 11. When adopting such a configuration, for example, in the state shown in FIG. 2, the shaft body 11 may be arranged with a space in the direction of the rotation axis L <b> 1 with respect to the piston head 53.
 本発明は、上記実施形態のようなアップライトピアノに適用されることに限らず、例えばグランドピアノに適用してもよい。また、本発明は、アップライトピアノやグランドピアノ等のように弦をハンマにより打撃するアコースティックピアノに適用されることに限られない。例えば、本発明は、アコースティックピアノと同様の外観意匠を有する電子ピアノに適用してもよい。さらに、本発明は、鍵盤楽器に適用されることに限られない。本発明は、例えば建屋の壁部(ベース部)に対して扉(揺動部材)を揺動自在に連結する建築構造などに適用してもよい。 The present invention is not limited to being applied to an upright piano as in the above embodiment, and may be applied to, for example, a grand piano. The present invention is not limited to being applied to an acoustic piano that strikes a string with a hammer, such as an upright piano or a grand piano. For example, the present invention may be applied to an electronic piano having an appearance design similar to that of an acoustic piano. Furthermore, the present invention is not limited to being applied to a keyboard instrument. The present invention may be applied to, for example, a building structure in which a door (swinging member) is swingably connected to a wall portion (base portion) of a building.
 本発明の実施形態に係るヒンジ構造は、揺動部材をベース部に対して揺動自在に連結するために用いられ、ヒンジ構造は、軸線方向に伸びる孔を有し、前記ベース部に固定される第一筒状部材と、前記軸線方向に伸びる孔を有し、前記揺動部材に固定される第二筒状部材と、前記第一及び第二筒状部材の孔に挿入され、前記第一及び第二の筒状部材を相互に回転自在に連結し、前記第一及び第二の筒状部材に対して前記軸線方向に直線的に移動する軸体と、前記第一及び第二筒状部材が相対的に回転することに応じて、前記軸体を前記軸線方向へ直線的に移動させる機構と、前記第一及び第二筒状部材の相対的な回転に伴う前記軸体の移動を妨げる制動力を前記軸体に付与するダンパーと、を備える。
 上記のヒンジ構造において、前記機構が、前記軸体の外周面に設けられた螺旋形状を有する溝と、前記第一及び第二筒状部材の一方の内周面から突出して設けられ、前記溝に挿入される係合突起と、前記軸体の端部に設けられ、前記第一及び第二筒状部材の他方に挿入されるスプライン軸部と、前記第一及び第二筒状部材の他方に設けられ、前記スプライン軸部が挿入されることで、前記第一及び第二筒状部材の他方に対する前記軸体の回転を規制するスプライン軸用孔部と、を備えてもよい。
A hinge structure according to an embodiment of the present invention is used to connect a swinging member to a base part so as to be swingable. The hinge structure has a hole extending in an axial direction and is fixed to the base part. A first cylindrical member, a second cylindrical member having a hole extending in the axial direction and fixed to the swinging member, and inserted into the holes of the first and second cylindrical members, A shaft body that connects the first and second cylindrical members rotatably and moves linearly in the axial direction with respect to the first and second cylindrical members, and the first and second cylinders A mechanism for linearly moving the shaft body in the axial direction in response to relative rotation of the cylindrical member, and movement of the shaft body with relative rotation of the first and second tubular members And a damper that applies a braking force to the shaft body.
In the above hinge structure, the mechanism is provided with a spiral groove provided on an outer peripheral surface of the shaft body, and protruding from one inner peripheral surface of the first and second cylindrical members, and the groove An engaging projection inserted into the shaft, a spline shaft provided at the other end of the first and second tubular members, and the other of the first and second tubular members And a spline shaft hole that restricts rotation of the shaft relative to the other of the first and second cylindrical members by inserting the spline shaft.
 上記構成によれば、スプライン軸部がスプライン軸用孔部に挿入されていることで、第一及び第二筒状部材を相対的に回転させた際には、軸体が、他方の筒状部材(第一及び第二筒状部材の他方)と共に、一方の筒状部材に対して回転する。
 また、一方の筒状部材に設けられた係合突起が軸体に設けられた溝に挿入されている。このため、第一及び第二筒状部材を相対的に回転させた際には、係合突起が溝の長手方向に移動する。
 これにより、軸体は、第一及び第二筒状部材の相対的な回転に伴って、第一及び第二筒状部材の一方に対して回転すると共に、第一及び第二筒状部材に対して第一筒状部材の軸線方向に直線的に移動する。すなわち、機構は、第一及び第二筒状部材が相対的に回転することに応じて、軸体を軸線方向への直線的に移動させることができる。
According to the above configuration, since the spline shaft portion is inserted into the spline shaft hole portion, when the first and second tubular members are relatively rotated, the shaft body is in the other tubular shape. Together with the member (the other of the first and second cylindrical members), it rotates relative to one cylindrical member.
In addition, an engaging protrusion provided on one cylindrical member is inserted into a groove provided on the shaft body. For this reason, when the first and second cylindrical members are relatively rotated, the engaging protrusion moves in the longitudinal direction of the groove.
As a result, the shaft body rotates relative to one of the first and second cylindrical members with the relative rotation of the first and second cylindrical members, and the first and second cylindrical members On the other hand, it moves linearly in the axial direction of the first cylindrical member. That is, the mechanism can move the shaft body linearly in the axial direction in accordance with the relative rotation of the first and second cylindrical members.
 上記のヒンジ構造において、前記軸体は、前記軸線方向に直線的に移動することにより、前記軸体が前記ダンパーに接続される被制動領域と、前記軸体が前記ダンパーから離れている自由移動領域とを移動し、前記軸体が前記被制動領域に位置する状態において、前記ダンパーは制動力を前記軸体に付与し、前記軸体が前記自由移動領域に位置する状態において、前記ダンパーは制動力を前記軸体に付与しなくてもよい。 In the above-described hinge structure, the shaft body linearly moves in the axial direction, whereby a braked region where the shaft body is connected to the damper and a free movement in which the shaft body is separated from the damper. In a state where the shaft body is located in the braked region, the damper applies a braking force to the shaft body, and in a state where the shaft body is located in the free movement region, the damper is A braking force may not be applied to the shaft body.
 上記構成によれば、軸体の軸線方向への移動範囲に、ダンパーの制動力が軸体に付与され自由移動領域が含まれる。このため、第一及び第二筒状部材の相対的な回転角度範囲が、ダンパーの性能(ダンパーの変位量)によって制限されることを防止できる。したがって、性能の低いダンパー(変位量の小さいダンパー)を使用しても、第一及び第二筒状部材の相対的な回転角度の範囲を大きく設定することが可能となる。すなわち、小型で安価なダンパーを使用することが可能となる。その結果、ヒンジ構造の小型化及び低コスト化を図ることができる。 According to the above configuration, the braking force of the damper is applied to the shaft body in the movement range in the axial direction of the shaft body and the free movement region is included. For this reason, it can prevent that the relative rotation angle range of a 1st and 2nd cylindrical member is restrict | limited by the performance (displacement amount of a damper) of a damper. Therefore, even if a damper having a low performance (a damper having a small displacement) is used, the range of the relative rotation angle of the first and second cylindrical members can be set large. That is, a small and inexpensive damper can be used. As a result, the hinge structure can be reduced in size and cost.
 上記のヒンジ構造において、前記ダンパーが、前記軸体の直線的な移動を妨げる制動力を前記軸体に付与する直動ダンパーであってもよい。
 上記構成によれば、直動ダンパーの制動力が、機構を介して第一及び第二の筒状部材の相対的な回転に付与される。このため、第一及び第二の筒状部材の相対的な回転速度を制限される。その結果、第一及び第二の筒状部材が大きな速度で相対回転することを防止できる。
In the above-described hinge structure, the damper may be a linear motion damper that applies a braking force to the shaft body to prevent linear movement of the shaft body.
According to the said structure, the braking force of a linear motion damper is provided to the relative rotation of a 1st and 2nd cylindrical member via a mechanism. For this reason, the relative rotational speed of the first and second cylindrical members is limited. As a result, it is possible to prevent the first and second cylindrical members from relatively rotating at a high speed.
 直動ダンパーは、筒状のシリンダ、及び、シリンダに対してその軸方向に直線的に移動するピストン部を備えていてもよい。このような構成を採用する場合、ピストン部の移動方向が軸体の直線的な移動方向(軸線方向)に一致するように、直動ダンパーを軸体の軸線方向の端部に隣り合せて設けることができる。そして、直動ダンパーのシリンダの直径寸法は、容易に筒状部材の直径寸法以下に設定できる。このため、容易に直動ダンパーの存在が目立たないようにヒンジ構造をコンパクトに構成することが可能となる。また、直動ダンパーでは、その軸方向長さを延長してピストン部の変位量(移動長さ範囲)が長くなるように直動ダンパーの性能を向上させても、直動ダンパーの存在が目立つことはない。 The linear motion damper may include a cylindrical cylinder and a piston portion that moves linearly in the axial direction with respect to the cylinder. When adopting such a configuration, the linear motion damper is provided adjacent to the axial end of the shaft body so that the movement direction of the piston portion matches the linear movement direction (axial direction) of the shaft body. be able to. And the diameter dimension of the cylinder of a linear motion damper can be easily set below the diameter dimension of a cylindrical member. For this reason, it becomes possible to make the hinge structure compact so that the presence of the linear motion damper does not stand out easily. In addition, in the linear motion damper, the presence of the linear motion damper is conspicuous even when the performance of the linear motion damper is improved so that the displacement in the piston portion (moving length range) becomes longer by extending its axial length. There is nothing.
 上記のヒンジ構造においては、前記機構が、前記軸体を他方の筒状部材と共に一方の筒状部材に対して回転させ、前記ダンパーが、前記軸体の回転を妨げる制動力を前記軸体に付与するロータリーダンパーであってもよい。 In the above hinge structure, the mechanism rotates the shaft body with respect to the one cylindrical member together with the other cylindrical member, and the damper applies a braking force to the shaft body that prevents the shaft body from rotating. It may be a rotary damper.
 本発明は、ヒンジ構造に適用してもよい。 The present invention may be applied to a hinge structure.
1…ピアノ(鍵盤楽器)
2…本体(ベース部)
3…鍵盤蓋(揺動部材)
10,100…ヒンジ構造
11,111…軸体
12,112…第一筒状部材
13,113…第二筒状部材
14…直動ダンパー(ダンパー)
15,115…移動変換機構(機構)
22…スプライン軸部
24…螺旋溝(溝)
31,131…第一筒状部
36,146…スプライン軸用孔部
41,141…第二筒状部
47,137…係合突起
114…ロータリーダンパー(ダンパー)
122B…第二スプライン軸部
L1…回転軸線(軸線)
BR…被制動領域
FR…自由移動領域
1 ... Piano (keyboard instrument)
2 ... Main body (base part)
3 ... Keyboard cover (rocking member)
DESCRIPTION OF SYMBOLS 10,100 ... Hinge structure 11, 111 ... Shaft body 12, 112 ... 1st cylindrical member 13, 113 ... 2nd cylindrical member 14 ... Linear motion damper (damper)
15, 115 ... movement conversion mechanism (mechanism)
22 ... Spline shaft 24 ... Spiral groove (groove)
31, 131 ... first cylindrical parts 36, 146 ... spline shaft holes 41, 141 ... second cylindrical parts 47, 137 ... engagement protrusions 114 ... rotary damper (damper)
122B ... Second spline shaft L1 ... Rotation axis (axis)
BR: Braked area FR: Free movement area

Claims (6)

  1.  揺動部材をベース部に対して揺動自在に連結するためのヒンジ構造であって、
     軸線方向に伸びる孔を有し、前記ベース部に固定される第一筒状部材と、
     前記軸線方向に伸びる孔を有し、前記揺動部材に固定される第二筒状部材と、
     前記第一及び第二筒状部材の孔に挿入され、前記第一及び第二の筒状部材を相互に回転自在に連結し、前記第一及び第二の筒状部材に対して前記軸線方向に直線的に移動する軸体と、
     前記第一及び第二筒状部材が相対的に回転することに応じて、前記軸体を前記軸線方向へ直線的に移動させる機構と、
     前記第一及び第二筒状部材の相対的な回転に伴う前記軸体の移動を妨げる制動力を前記軸体に付与するダンパーと、
     を備えるヒンジ構造。
    A hinge structure for oscillatingly coupling the oscillating member to the base portion,
    A first cylindrical member having a hole extending in the axial direction and fixed to the base portion;
    A second cylindrical member having a hole extending in the axial direction and fixed to the swing member;
    Inserted into the holes of the first and second cylindrical members, the first and second cylindrical members are rotatably connected to each other, and the axial direction relative to the first and second cylindrical members A shaft that moves linearly,
    A mechanism for linearly moving the shaft body in the axial direction according to the relative rotation of the first and second tubular members;
    A damper for applying a braking force to the shaft body that prevents the shaft body from moving due to relative rotation of the first and second cylindrical members;
    A hinge structure comprising:
  2.  前記機構が、
     前記軸体の外周面に設けられた螺旋形状を有する溝と、
     前記第一及び第二筒状部材の一方の内周面から突出して設けられ、前記溝に挿入される係合突起と、
     前記軸体の端部に設けられ、前記第一及び第二筒状部材の他方に挿入されるスプライン軸部と、
     前記第一及び第二筒状部材の他方に設けられ、前記スプライン軸部が挿入されることで、前記第一及び第二筒状部材の他方に対する前記軸体の回転を規制するスプライン軸用孔部と、
     を備える請求項1に記載のヒンジ構造。
    The mechanism is
    A groove having a spiral shape provided on the outer peripheral surface of the shaft body;
    An engagement protrusion provided to protrude from one inner peripheral surface of the first and second tubular members, and inserted into the groove;
    A spline shaft provided at the end of the shaft and inserted into the other of the first and second tubular members;
    A spline shaft hole that is provided on the other of the first and second cylindrical members and restricts the rotation of the shaft relative to the other of the first and second cylindrical members by inserting the spline shaft portion. And
    The hinge structure according to claim 1, comprising:
  3.  前記軸体は、前記軸線方向に直線的に移動することにより、前記軸体が前記ダンパーに接続される被制動領域と、前記軸体が前記ダンパーから離れている自由移動領域とを移動し、
     前記軸体が前記被制動領域に位置する状態において、前記ダンパーは制動力を前記軸体に付与し、
     前記軸体が前記自由移動領域に位置する状態において、前記ダンパーは制動力を前記軸体に付与しない
     請求項1又は請求項2に記載のヒンジ構造。
    The shaft body moves linearly in the axial direction to move between a braked region where the shaft body is connected to the damper and a free movement region where the shaft body is separated from the damper,
    In a state where the shaft body is located in the braked region, the damper applies a braking force to the shaft body,
    The hinge structure according to claim 1 or 2, wherein the damper does not apply a braking force to the shaft body in a state where the shaft body is positioned in the free movement region.
  4.  前記ダンパーが、前記軸体の直線的な移動を妨げる制動力を前記軸体に付与する直動ダンパーである請求項1から請求項3のいずれか一項に記載のヒンジ構造。 The hinge structure according to any one of claims 1 to 3, wherein the damper is a linear motion damper that applies to the shaft body a braking force that prevents linear movement of the shaft body.
  5.  前記ダンパーは、前記軸体に制動力を付与することにより、前記第一及び第二筒状部材の相対的な回転を妨げる請求項1から請求項4のいずれか一項に記載のヒンジ構造。 The hinge structure according to any one of claims 1 to 4, wherein the damper prevents a relative rotation of the first and second cylindrical members by applying a braking force to the shaft body.
  6.  請求項1から請求項5のいずれか一項に記載のヒンジ構造を備える鍵盤楽器。 A keyboard instrument comprising the hinge structure according to any one of claims 1 to 5.
PCT/JP2014/077079 2013-10-15 2014-10-09 Hinge structure and keyboard instrument WO2015056626A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-214963 2013-10-15
JP2013214963A JP2015078723A (en) 2013-10-15 2013-10-15 Hinge structure

Publications (1)

Publication Number Publication Date
WO2015056626A1 true WO2015056626A1 (en) 2015-04-23

Family

ID=52828072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/077079 WO2015056626A1 (en) 2013-10-15 2014-10-09 Hinge structure and keyboard instrument

Country Status (2)

Country Link
JP (1) JP2015078723A (en)
WO (1) WO2015056626A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019210364A1 (en) * 2018-05-03 2019-11-07 Farrugia Nikolaus A dampened hinge assembly

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101916534B1 (en) 2016-11-08 2018-11-07 현대자동차주식회사 Door hinge for vehicle with door checker function
CN106522717B (en) * 2017-01-05 2018-03-30 江苏吉凯中科技有限公司 A kind of helicla flute damper hinge
CN109979416B (en) * 2019-05-14 2021-03-12 潍坊工程职业学院 Piano hinge structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02274216A (en) * 1989-04-17 1990-11-08 Nifco Inc Damper device and open/close device for seat using same damper device
JPH07197971A (en) * 1993-12-28 1995-08-01 Nhk Spring Co Ltd Slow moving device
JP2759828B2 (en) * 1989-10-13 1998-05-28 不二精器株式会社 Door hinge with damper
JP2003184859A (en) * 2001-12-13 2003-07-03 Sugatsune Ind Co Ltd Hinge device
JP2005064933A (en) * 2003-08-14 2005-03-10 Fujitsu Ltd Mobile wireless communication apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02274216A (en) * 1989-04-17 1990-11-08 Nifco Inc Damper device and open/close device for seat using same damper device
JP2759828B2 (en) * 1989-10-13 1998-05-28 不二精器株式会社 Door hinge with damper
JPH07197971A (en) * 1993-12-28 1995-08-01 Nhk Spring Co Ltd Slow moving device
JP2003184859A (en) * 2001-12-13 2003-07-03 Sugatsune Ind Co Ltd Hinge device
JP2005064933A (en) * 2003-08-14 2005-03-10 Fujitsu Ltd Mobile wireless communication apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019210364A1 (en) * 2018-05-03 2019-11-07 Farrugia Nikolaus A dampened hinge assembly
GB2584053A (en) * 2018-05-03 2020-11-18 Farrugia Nikolaus A dampened hinge assembly
GB2584053B (en) * 2018-05-03 2022-07-06 Farrugia Nikolaus A dampened hinge assembly
US11401744B2 (en) 2018-05-03 2022-08-02 Nikolaus Alexander Farrugia Dampened hinge assembly

Also Published As

Publication number Publication date
JP2015078723A (en) 2015-04-23

Similar Documents

Publication Publication Date Title
WO2015056626A1 (en) Hinge structure and keyboard instrument
JP4308254B2 (en) Hinge with damper
KR100348824B1 (en) tilt hinge
CN107407114B (en) Pivoting device and method for generating asymmetric friction torque
JP4440930B2 (en) Door opening and closing device
JP2004068592A (en) Hinge
JP5467187B2 (en) HINGE DEVICE AND ELECTRONIC DEVICE USING HINGE DEVICE
JP2016504536A (en) Drive device
KR100583628B1 (en) Pivot-Action Damper
JP7067149B2 (en) Vehicle door switchgear
KR200275886Y1 (en) Friction hinge device
JP2012007635A (en) Rotating inertial mass damper
JP2008185215A (en) Rotational damper
JP2003269437A (en) Friction hinge device
US20080173506A1 (en) Opening and closing mechanism with damper
JP4040428B2 (en) Hinge device
JP5355073B2 (en) Lens barrier device
US20200281397A1 (en) Damping device, cooker, and device having damping structure
US7025186B2 (en) Bicycle ratchet bushing
JP6193159B2 (en) Ventilation door opening and closing mechanism
JP2021014687A (en) Door closer and door
WO2022138091A1 (en) Hinge
JP7237129B1 (en) Combination of torque adjusting member and mechanical rotary damper
JP2015087708A (en) Buffer
JP3151134U (en) Handle and rotation operation device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14854203

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14854203

Country of ref document: EP

Kind code of ref document: A1