WO2015056426A1 - データ記憶制御装置 - Google Patents

データ記憶制御装置 Download PDF

Info

Publication number
WO2015056426A1
WO2015056426A1 PCT/JP2014/005117 JP2014005117W WO2015056426A1 WO 2015056426 A1 WO2015056426 A1 WO 2015056426A1 JP 2014005117 W JP2014005117 W JP 2014005117W WO 2015056426 A1 WO2015056426 A1 WO 2015056426A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
memory card
power supply
input terminal
terminal
Prior art date
Application number
PCT/JP2014/005117
Other languages
English (en)
French (fr)
Inventor
貴雄 國井
貴巨 長谷川
渡邉 聡
林 宏樹
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2015056426A1 publication Critical patent/WO2015056426A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/30Means for acting in the event of power-supply failure or interruption, e.g. power-supply fluctuations
    • G06F1/305Means for acting in the event of power-supply failure or interruption, e.g. power-supply fluctuations in the event of power-supply fluctuations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/16Error detection or correction of the data by redundancy in hardware
    • G06F11/20Error detection or correction of the data by redundancy in hardware using active fault-masking, e.g. by switching out faulty elements or by switching in spare elements
    • G06F11/2015Redundant power supplies

Definitions

  • the present disclosure relates to a data storage control device that stores data in a memory card.
  • a backup power source provided with a large-capacity capacitor (hereinafter referred to as a backup capacitor) when power supply is cut off is known (for example, see Patent Document 1). reference).
  • the memory card When the memory card is installed in the vehicle, a situation occurs where the voltage of the in-vehicle battery is not stable due to cranking or the like. In such a situation, there is a possibility that the host device does not stop outputting the clock signal immediately after the power supply from the in-vehicle battery is cut off. If the output of the clock signal is not stopped immediately after the power supply is cut off, the memory card may not be able to finish the normal termination process during the backup time.
  • the present disclosure has been made in view of such problems, and an object thereof is to provide a data storage control device capable of avoiding destruction of data stored in a memory card.
  • the data storage control device includes a control device, a power interruption determination unit, a clock signal stop unit, and a backup power source.
  • the control device operates by receiving power supply from the outside and controls the memory card by outputting at least a clock signal to a memory card that operates in synchronization with a clock signal input from the outside.
  • the power interruption determination unit determines whether or not a predetermined power interruption determination condition indicating that power supply from at least the main power supply that supplies power to the memory card and the control device is cut off is satisfied.
  • the clock signal stop unit stops the output of the clock signal by the control device when the power interruption determination unit determines that the power interruption determination condition is satisfied.
  • the backup power supply continuously supplies power to the memory card after the power supply from the main power supply is interrupted until at least the preset backup time has elapsed.
  • the clock signal stop unit stops the output of the clock signal by the control device.
  • the memory card executes the process when the power supply from the main power supply is cut off when the input of the clock signal is stopped, the memory card has a time for executing this process. As a result, it is possible to secure a backup time in which power is supplied from the backup power supply, and to avoid the destruction of data stored in the memory card.
  • FIG. 3 is a circuit diagram showing a configuration of a memory card power supply circuit 7 of the data storage control device 1.
  • FIG. 3 is a timing chart showing the operation of the data storage control device 1.
  • 3 is a first timing chart showing operations of a shutdown signal control unit 24 and a shutdown signal output unit 25 of the data storage control device 1.
  • 6 is a second timing chart showing operations of the shutdown signal control unit 24 and the shutdown signal output unit 25.
  • 10 is a third timing chart showing the operations of the shutdown signal control unit 24 and the shutdown signal output unit 25.
  • FIG. 10 is a fourth timing chart showing operations of the shutdown signal control unit 24 and the shutdown signal output unit 25.
  • a data storage control device 1 to which the present disclosure is applied is mounted on a vehicle, and as shown in FIG. 1, a regulator 2, a main microcomputer 3, a sub-microcomputer 4, a memory card 5, a card slot 6, a memory card power supply circuit 7, A power supply interruption detection circuit 8 is provided.
  • the regulator 2 receives a power supply voltage from a battery (not shown) mounted on the vehicle via a main relay (not shown), and from this power supply voltage, a drive voltage (this embodiment) for operating the data storage control device 1 In the form, 5V, 3.3V, etc.) are generated and output.
  • a drive voltage this embodiment
  • the voltage supplied from the battery to the data storage control device 1 via the main relay is referred to as + B voltage.
  • the main microcomputer 3 executes various processes for controlling the control target (memory card 5 in this embodiment).
  • the sub-microcomputer 4 executes various processes for controlling the controlled object (the regulator 2 in this embodiment). Note that the main microcomputer 3 and the sub-microcomputer 4 are connected to each other so that data communication is possible.
  • the memory card 5 includes a card body formed in a rectangular plate shape, a data rewritable nonvolatile memory, and a card controller that controls writing and reading of data to and from the nonvolatile memory.
  • the memory card 5 is configured by housing a nonvolatile memory and a card controller in the card body.
  • the memory card 5 is an SD card (registered trademark) in this embodiment.
  • the card slot 6 has a mounting portion for mounting the memory card 5 in a removable manner. Furthermore, the card slot 6 includes a power supply terminal, a clock terminal, a command terminal, a data terminal, and a card detection terminal.
  • the power supply terminal is for inputting a voltage for operating the memory card 5 (hereinafter referred to as a card operating voltage VDD) from the memory card power supply circuit 7.
  • a card operating voltage VDD a voltage for operating the memory card 5
  • the clock terminal is for inputting a clock signal for operating the memory card 5 from the main microcomputer 3.
  • the memory card 5 is configured to perform internal measures for avoiding data destruction until the backup time (for example, 250 ms in the present embodiment) elapses after the clock signal input stops.
  • the command terminal is for inputting / outputting a command signal for controlling the memory card 5 to / from the main microcomputer 3.
  • the data terminal is for inputting / outputting data signals to / from the memory card 5 to / from the main microcomputer 3.
  • the card detection terminal is for outputting a card detection signal indicating whether or not the memory card 5 is inserted in the card slot 6.
  • the card detection signal of the present embodiment is a signal that is at a low level when the memory card 5 is inserted in the card slot 6 and is at a high level when the memory card 5 is not inserted.
  • the memory card power supply circuit 7 receives the drive voltage from the regulator 2, and generates and outputs a card operating voltage VDD (for example, 3.3 V in the present embodiment) from the drive voltage.
  • VDD card operating voltage
  • the power supply interruption detection circuit 8 receives the + B voltage, detects whether or not the + B voltage instantaneous interruption has occurred, and detects that the + B voltage instantaneous interruption has been detected. Is output to the sub-microcomputer 4. Note that the instantaneous power interruption detection circuit 8 of the present embodiment determines that an instantaneous interruption of the + B voltage has occurred when the + B voltage is equal to or less than a preset instantaneous interruption determination value (for example, 4.5 V).
  • a preset instantaneous interruption determination value for example, 4.5 V.
  • the main microcomputer 3 when the sub-microcomputer 4 inputs the instantaneous power interruption detection signal from the power supply interruption detection circuit 8, the main microcomputer 3 is turned off and the main microcomputer 3 is forcibly shut down. As a result, the main microcomputer 3 stops outputting the clock signal.
  • the memory card power supply circuit 7 includes a 5V voltage input terminal 11, a 3.3V voltage input terminal 12, a ground terminal 13, a main control signal input terminal 14, a sub control signal input terminal 15, and a card detection input terminal. 16, a card voltage output terminal 17, and an ON notification output terminal 18.
  • 5V drive voltage of 5V is input from the regulator 2 to the 5V voltage input terminal 11.
  • a 3.3 V drive voltage is input from the regulator 2 to the 3.3 V voltage input terminal 12.
  • the ground terminal 13 is connected to the ground.
  • the main-side card control signal for controlling the output of the card operating voltage VDD is input from the main microcomputer 3 to the main control signal input terminal 14.
  • the sub-control signal input terminal 15 receives a sub-side card control signal for controlling the output of the card operating voltage VDD from the sub-microcomputer 4.
  • a card detection signal is input from the card slot 6 to the card detection input terminal 16.
  • the memory card power supply circuit 7 includes a capacitor charging IC 21, a backup capacitor 22, a DC / DC converter 23, a shutdown signal control unit 24, a shutdown signal output unit 25, and a power-on determination unit 26.
  • the capacitor charging IC 21 has a voltage input terminal Vin and a voltage output terminal Vout.
  • the capacitor charging IC 21 inputs a driving voltage of 5 V to the voltage input terminal Vin, and generates a charging voltage (for example, 4 V in the present embodiment) for charging the backup capacitor 22 from the driving voltage, This charging voltage is output from the voltage output terminal Vout.
  • the backup capacitor 22 is a backup power supply for the memory card 5, and the memory card power supply circuit 7 supplies the card operating voltage VDD for at least the backup time (for example, 250 ms in this embodiment) after the supply of the + B voltage is stopped. Capacitance that can be set.
  • the positive electrode of the backup capacitor 22 is connected to the voltage output terminal Vout of the capacitor charging IC 21, and the negative electrode of the backup capacitor 22 is grounded.
  • the DC / DC converter 23 has a voltage input terminal Vin, a voltage output terminal Vout, and a shutdown terminal SHDN.
  • the DC / DC converter 23 inputs the charging voltage from the capacitor charging IC 21 to the voltage input terminal Vin, generates a card operating voltage VDD from the charging voltage, and uses the card operating voltage VDD as a voltage output terminal. Output from Vout.
  • the DC / DC converter 23 outputs the card operating voltage VDD when the shutdown signal input to the shutdown terminal SHDN is at a high level, while the card operating voltage VDD is output when the shutdown signal is at a low level. Stop output.
  • the shutdown signal control unit 24 includes a transistor 31, resistors 32, 33, 34, 35, 36, 37 and diodes 38, 39.
  • the transistor 31 is an NPN type transistor, and has a collector, a base, and an emitter.
  • the collector of the transistor 31 is connected to the 3.3V voltage input terminal 12 through the resistor 32.
  • the base of the transistor 31 is connected to the main control signal input terminal 14 via the resistor 33.
  • the emitter of the transistor 31 is connected to the ground terminal 13.
  • the resistor 34 has one end connected to the base of the transistor 31 and the other end grounded.
  • the resistor 35 has one end connected to the main control signal input terminal 14 and the other end connected to one end of the resistor 36.
  • the other end of the resistor 36 is connected to the shutdown signal output unit 25.
  • the resistor 37 has one end connected to the voltage output terminal Vout of the DC / DC converter 23 and the other end connected to the shutdown signal output unit 25.
  • the diode 38 has an anode connected to a connection point between the resistor 32 and the collector of the transistor 31 and a cathode connected to the sub-control signal input terminal 15.
  • the diode 39 has an anode connected to a connection point between the resistor 35 and the resistor 36, and a cathode connected to the sub control signal input terminal 15.
  • the shutdown signal output unit 25 includes an OR circuit 41, a transistor 42, resistors 43 and 44, and diodes 45 and 46.
  • the OR circuit 41 has a first input terminal, a second input terminal, an output terminal, and a power supply voltage terminal.
  • the OR circuit 41 performs an OR operation on signals input to the first input terminal and the second input terminal, and indicates the operation result.
  • the signal is output from the output terminal.
  • the first input terminal is connected to the voltage output terminal Vout of the DC / DC converter 23 via the resistor 37 of the shutdown signal control unit 24.
  • the second input terminal is connected to the collector of the transistor 31 in the shutdown signal control unit 24.
  • the output terminal is connected to the shutdown terminal SHDN of the DC / DC converter 23 via the resistor 43.
  • the transistor 42 is an NPN type transistor and has a collector, a base, and an emitter.
  • the collector of the transistor 42 is connected to the shutdown terminal SHDN of the DC / DC converter 23.
  • the base of the transistor 42 is connected to the main control signal input terminal 14 via the resistors 35 and 36 of the shutdown signal control unit 24.
  • the emitter of the transistor 42 is connected to the ground terminal 13.
  • the resistor 44 has one end connected to the base of the transistor 42 and the other end grounded. Then, when the main-side card control signal from the main microcomputer 3 is at a high level, the resistors 35, 36, 36, 36, A resistance value of 44 is set.
  • the diode 45 has an anode connected to the voltage output terminal Vout of the DC / DC converter 23 and a cathode connected to the power supply voltage terminal of the OR circuit 41.
  • the diode 46 has an anode connected to the voltage output terminal Vout of the capacitor charging IC 21 and a cathode connected to the power supply voltage terminal of the OR circuit 41.
  • the power-on determination unit 26 includes a negative OR circuit 51, transistors 52 and 53, and resistors 54, 55, 56, 57, 58, and 59.
  • the negative OR circuit 51 has a first input terminal, a second input terminal, an output terminal, and a power supply voltage terminal, performs a negative OR operation on signals input to the first input terminal and the second input terminal, and obtains an operation result. Is output from the output terminal.
  • the first input terminal is connected to the collector of the transistor 52.
  • the second input terminal is connected to the card detection input terminal 16.
  • the output terminal is connected to the base of the transistor 53 via the resistor 54.
  • the transistor 52 is an NPN type transistor, and has a collector, a base, and an emitter.
  • the collector of the transistor 52 is connected to the 3.3V voltage input terminal 12 through the resistor 55.
  • the base of the transistor 52 is connected to the voltage output terminal Vout of the capacitor charging IC 21 via the resistor 56.
  • the emitter of the transistor 52 is connected to the ground terminal 13.
  • the resistor 57 has one end connected to the base of the transistor 52 and the other end grounded.
  • the voltage of the backup capacitor 22 is equal to or higher than the backup possible voltage (eg, 1.3 V in this embodiment)
  • the divided voltage of the resistor 57 by the resistors 56 and 57 is set higher than the ON voltage of the transistor 52.
  • the resistance values of the resistors 56 and 57 are set.
  • the backup-capable voltage is a voltage at which the backup capacitor 22 can accumulate a charge amount for the backup time.
  • the transistor 53 is an NPN type transistor, and has a collector, a base, and an emitter.
  • the collector of the transistor 53 is connected to the ON notification output terminal 18 and is connected to the main microcomputer 3.
  • the transistor 53 is provided so as to match the input voltage on the main microcomputer 3 side, and the ON notification output terminal 18 needs to be pulled up by the input voltage of the microcomputer (not shown).
  • the base of the transistor 53 is connected to the output terminal of the NOR circuit 51 through the resistor 54.
  • the emitter of the transistor 53 is connected to the ground terminal 13.
  • the resistor 58 has one end connected to the base of the transistor 53 and the other end grounded.
  • the resistance values of the resistors 54 and 58 are set so that the divided voltage of the resistor 58 by the resistors 54 and 58 is higher than the ON voltage of the transistor 53. Is set.
  • the resistor 59 has one end connected to the 3.3V voltage input terminal 12 and the other end connected to the card detection input terminal 16.
  • the transistor 52 when the voltage of the backup capacitor 22 rises due to the charging of the backup capacitor 22, the transistor 52 is turned on, and the first input terminal of the negative OR circuit 51 is at the low level. It becomes. Further, when the card detection input terminal 16 is at a low level, the second input terminal of the NOR circuit 51 is at a low level.
  • the output terminal of the NOR circuit 51 becomes high level when the backup capacitor 22 is charged and the memory card 5 is inserted in the card slot 6, and becomes low level in other cases. .
  • the transistor 53 When the output terminal of the negative OR circuit 51 is at a high level, the transistor 53 is turned on and the on notification output terminal 18 is at a low level.
  • the regulator 2 starts to operate, and a drive voltage of 5 V is output from the regulator 2. Is done. As a result, a drive voltage of 5 V is input to the voltage input terminal Vin of the capacitor charging IC 21 and the capacitor charging IC 21 starts operating. As a result, the voltage at the voltage output terminal Vout of the capacitor charging IC 21 becomes the charging voltage (4 V in this embodiment), and the voltage of the backup capacitor 22 and the voltage of the voltage input terminal Vin of the DC / DC converter 23 are reduced. The voltage gradually increases until the charging voltage (4 V) is reached.
  • the memory card power supply circuit 7 sets the voltage of the ON notification output terminal 18 to a low level, thereby reducing the low level.
  • An ON-enabled notification is output (see arrow AL1).
  • the main microcomputer 3 is turned on when a drive voltage of 5 V is supplied from the regulator 2. Thereafter, in the main microcomputer 3, the port setting is completed at time t02 during initialization, and the main control signal input terminal 14 is logically fixed to the high level (see arrow AL2). Thereafter, at time t03, the sub microcomputer 4 sets the sub control signal input terminal 15 to the high level.
  • the sub-microcomputer 4 sets the sub-control signal input terminal 15 to the high level after 250 ms or more has elapsed since the main microcomputer 3 was turned on. This is because a power holding time of 250 ms is required when the clocks from the main microcomputer 3 are stopped due to a hard reset of the main microcomputer 3, and the power holding time of 250 ms is protected in any state.
  • the main microcomputer 3 sets the main control signal input terminal 14 to the low level.
  • the shutdown terminal SHDN of the DC / DC converter 23 becomes high level
  • the DC / DC converter 23 starts to operate
  • the card operating voltage VDD is output from the voltage output terminal Vout of the DC / DC converter 23.
  • the main microcomputer 3 sets the main control signal input terminal 14 to a low level after a discharge time (for example, 10 ms in the present embodiment) has elapsed since the sub control signal input terminal 15 has become a high level.
  • This discharge time is a time required for reliably dropping the voltage of the power supply (DC / DC converter 23) of the memory card 5.
  • the main microcomputer 3 when the ON notification output terminal 18 is at the high level when the charging period ends, the main microcomputer 3 does not set the main control signal input terminal 14 to the low level. Thereby, the operation of the DC / DC converter 23 is prohibited and the memory card 5 can be prevented from being turned on.
  • the DC / DC converter 23 outputs the card operating voltage VDD from the voltage output terminal Vout for at least 250 ms (refer to the backup period (time t05 to t06) in the figure).
  • the voltage of the backup capacitor 22 becomes lower than the operable voltage of the DC / DC converter 23, the power supply to the OR circuit 41 is stopped, and the shutdown terminal SHDN of the DC / DC converter 23 becomes low level.
  • the output of the card operating voltage VDD from the DC / DC converter 23 is stopped at time t06.
  • the charging period starts, and the operation is performed up to time t08 in the same manner as the charging period from time t01 to time t02.
  • the operation shifts to normal operation, and the same operation as normal operation from time t04 to time t05 is performed.
  • the delayed ACC is a process executed after the ACC power supply is turned off in order to terminate the main microcomputer 3 safely.
  • the main microcomputer 3 sets the main control signal input terminal 14 to the high level.
  • the shutdown terminal SHDN of the DC / DC converter 23 becomes low level, and the output of the card operating voltage VDD from the DC / DC converter 23 is stopped.
  • the sub-microcomputer 4 sets the sub-control signal input terminal 15 to the low level at time t11 when the discharge time (for example, 10 ms in the present embodiment) has elapsed since the output stop of the DC / DC converter 23. Thereafter, at time t12, the main microcomputer 3 is turned off (see arrow AL3), and the system is shut down.
  • the discharge time for example, 10 ms in the present embodiment
  • FIG. 4 is a timing chart showing the operations of the shutdown signal control unit 24 and the shutdown signal output unit 25 when the ACC power supply is turned on in a state where the voltage of the backup capacitor 22 is 0V.
  • the main microcomputer 3 is turned on (see arrow AL21), and the main control signal input terminal 14 is logically fixed to the high level. Accordingly, an on-voltage is applied to the base of the transistor 31, and the transistor 31 is turned on. Since the sub control signal input terminal 15 is at a low level before the transistor 31 is turned on, the voltage level of the second input terminal of the OR circuit 41 does not change before and after the transistor 31 is turned on. , Remain at low level.
  • the sub control signal input terminal 15 at this time is at a low level, the on-voltage is not applied to the base of the transistor 42, and the transistor 42 is in the off state.
  • the sub-microcomputer 4 sets the sub-control signal input terminal 15 to the high level at time t24.
  • the sub-microcomputer 4 sets the sub-control signal input terminal 15 to the high level after 250 ms or more has elapsed since the main microcomputer 3 was turned on.
  • the main microcomputer 3 sets the main control signal input terminal 14 to low level. As a result, the transistor 31 is turned off, and the second input terminal of the OR circuit 41 becomes high level. For this reason, the output terminal of the OR circuit 41 becomes high level. Further, when the transistor 42 is turned off, the shutdown terminal SHDN of the DC / DC converter 23 becomes high level, and the DC / DC converter 23 starts to operate. As a result, the first input terminal of the OR circuit 41 becomes high level.
  • FIG. 5 is a timing chart showing the operation of the shutdown signal control unit 24 and the shutdown signal output unit 25 when an instantaneous interruption of the + B voltage occurs.
  • the power supply interruption detection circuit 8 outputs an instantaneous interruption detection signal to the sub-microcomputer 4. Then, when the instantaneous interruption detection signal is input, the sub microcomputer 4 sets the sub control signal input terminal 15 to the low level. As a result, the second input terminal of the OR circuit 41 becomes low level.
  • the main microcomputer 3 is reset (see arrow AL31), so that the main control signal input terminal 14 becomes high level. Accordingly, an on-voltage is applied to the base of the transistor 31, and the transistor 31 is turned on. Further, at time t33, the main microcomputer 3 is turned off (see arrow AL32), the voltage level of the main control signal input terminal 14 becomes indefinite, and the transistor 31 is turned off.
  • the drive voltages of 5V and 3.3V start to decrease.
  • the voltage of the voltage output terminal Vout of the capacitor charging IC 21 decreases due to the decrease of the driving voltage of 5 V, and the voltage input terminal Vin of the DC / DC converter 23 and the power supply voltage of the OR circuit 41 follow this.
  • the terminal voltage drops.
  • the card operating voltage VDD (3.3 V) is input from the DC / DC converter 23 to the power supply voltage terminal of the OR circuit 41 through the diode 45.
  • the voltage drop at the power supply voltage terminal of the OR circuit 41 is temporarily stopped when the card operation voltage VDD (3.3 V) is reached, and the voltage at the power supply voltage terminal of the OR circuit 41 is reduced to the card operation voltage VDD. Held at (3.3V).
  • FIG. 6 is a timing chart showing operations of the shutdown signal control unit 24 and the shutdown signal output unit 25 when the ACC power supply is turned off.
  • the system shifts to delayed ACC.
  • the main microcomputer 3 sets the main control signal input terminal 14 to the high level.
  • the sub control signal input terminal 15 is at a high level, an on-voltage is applied to the bases of the transistors 31 and 42, and the transistors 31 and 42 are turned on.
  • the second input terminal of the OR circuit 41 and the shutdown terminal SHDN of the DC / DC converter 23 change from the high level to the low level.
  • the shutdown terminal SHDN of the DC / DC converter 23 becomes low level, the output of the card operating voltage VDD from the DC / DC converter 23 is stopped.
  • the sub microcomputer 4 sets the sub control signal input terminal 15 to the low level. Thereafter, at time t43, the main microcomputer 3 is turned off.
  • FIG. 7 is a timing chart showing operations of the shutdown signal control unit 24 and the shutdown signal output unit 25 when the main microcomputer 3 is reset.
  • the sub microcomputer 4 changes the sub control signal input terminal 15 from the high level to the low level.
  • the second input terminal of the OR circuit 41 changes from the high level to the low level.
  • the main microcomputer 3 is reset (see arrow AL51), so that the main control signal input terminal 14 becomes high level. Accordingly, the transistor 31 is turned on.
  • the sub-microcomputer 4 sets the sub-control signal input terminal 15 to the high level at time t53.
  • the sub-microcomputer 4 sets the sub-control signal input terminal 15 to the high level after 250 ms or more has elapsed since the main microcomputer 3 was turned on. Thereby, the transistor 42 is turned on, and the shutdown terminal SHDN of the DC / DC converter 23 is changed from the high level to the low level.
  • the shutdown terminal SHDN of the DC / DC converter 23 becomes low level, the output of the card operating voltage VDD from the DC / DC converter 23 is stopped.
  • the main microcomputer 3 sets the main control signal input terminal 14 to low level at time t54 when the discharge time has elapsed since the sub control signal input terminal 15 became high level. Thereby, the transistors 31 and 42 are turned off. First, when the transistor 31 is turned off, the second input terminal of the OR circuit 41 is changed from low level to high level, and thereby the output terminal of the OR circuit 41 is changed from low level to high level. Further, when the transistor 42 is turned off, the shutdown terminal SHDN of the DC / DC converter 23 is changed from the low level to the high level. As a result, the output of the card operating voltage VDD from the DC / DC converter 23 is resumed.
  • the data storage control device 1 configured as described above includes a main microcomputer 3, a power supply interruption detection circuit 8, a sub-microcomputer 4, and a backup capacitor 22.
  • the main microcomputer 3 operates with power supplied from the outside and controls the memory card 5 by outputting at least a clock signal to the memory card 5 operating in synchronization with a clock signal input from the outside.
  • the power supply interruption detection circuit 8 determines that the + B voltage instantaneous interruption has occurred when the + B voltage is equal to or less than a predetermined instantaneous interruption determination value (for example, 4.5 V).
  • the sub-microcomputer 4 turns off the main microcomputer 3 and forcibly shuts down the main microcomputer 3 when the power supply interruption detection circuit 8 determines that an instantaneous interruption of the + B voltage has occurred.
  • the output of the clock signal by is stopped.
  • the backup capacitor 22 continuously supplies power to the memory card 5 after the + B voltage is cut off until at least a preset backup time (for example, 250 ms) elapses.
  • the sub-microcomputer 4 stops the output of the clock signal from the main microcomputer 3 when the power supply interruption detection circuit 8 determines that the + B voltage instantaneous interruption has occurred.
  • the memory card 5 executes the process when the + B voltage is cut off when the input of the clock signal is stopped, the memory card 5 sets the time for executing this process as A backup time during which power is supplied by the backup capacitor 22 can be secured, and destruction of data stored in the memory card 5 can be avoided.
  • the main microcomputer 3 corresponds to the control device
  • the + B voltage corresponds to the main power supply
  • the power supply interruption detection circuit 8 corresponds to the interruption determination part
  • the sub microcomputer 4 corresponds to the clock signal stop part
  • the backup capacitor 22 corresponds to the backup power supply.
  • this indication is not limited to the above-mentioned embodiment, and can take various forms, as long as it belongs to the technical scope of this indication.
  • an SD card is used as a memory card.
  • the present invention is not limited to the SD card, and when the power supply is cut off, destruction of already stored data is avoided. Any storage medium provided with a function for performing the processing for this purpose may be used.
  • the main microcomputer 3 when the instantaneous interruption detection signal is input to the sub-microcomputer 4, the main microcomputer 3 is turned off and the main microcomputer 3 is forcibly shut down.
  • the method of stopping the output of the clock signal by the main microcomputer 3 is not limited to this.
  • a signal stop signal may be output to the main microcomputer 3.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Techniques For Improving Reliability Of Storages (AREA)
  • Power Sources (AREA)

Abstract

 データ記憶制御装置(1)では、メインマイコン(3)が、外部から電源供給を受けて動作するとともに外部から入力するクロック信号に同期して動作するメモリカード(5)へ、少なくともクロック信号を出力することによりメモリカード(5)を制御する。電源瞬断検出回路(8)は、+B電圧が瞬断判定値以下である場合に、+B電圧の瞬断が発生したと判断する。サブマイコン(4)は、+B電圧の瞬断が発生した判断した場合に、メインマイコン(3)の電源を切ってメインマイコン(3)を強制的にシャットダウンさせることにより、メインマイコン(3)によるクロック信号の出力を停止させる。バックアップ用コンデンサ(22)は、+B電圧が断たれてから、少なくともバックアップ時間が経過するまで継続してメモリカード(5)へ電源を供給する。これにより、メモリカードに記憶されているデータの破壊を回避することができる。

Description

データ記憶制御装置 関連出願の相互参照
 本出願は、2013年月10月18日に出願された日本出願番号2013-217393号に基づくもので、ここにその記載内容を援用する。
 本開示は、メモリカードにデータを記憶するデータ記憶制御装置に関する。
 データ書き換え可能な不揮発性メモリを搭載するメモリカードへのアクセス(データ読込、データ書込、データ消去)中に突然、メモリカードへの電源供給が断たれると、上記メモリカードに既に記憶されているデータまで破壊されるおそれがある。なお、ユーザアクセス時以外にもメモリカード内部のコントローラ制御によっては上記現象が発生する可能性がある。このようなデータ破壊を抑制するために、電源供給が断たれたときのバックアップ電源として大容量のコンデンサ(以下、バックアップ用コンデンサという)を設けたものが知られている(例えば、特許文献1を参照)。
 バックアップ用コンデンサを設けることにより、メモリカードへの電源供給が断たれた場合であっても、バックアップ用コンデンサに充電されている電荷量に応じたバックアップ時間継続してメモリカードへ電源を供給することができる。そして、このバックアップ時間中に、メモリカード自身が正常終了処理を実行することで、メモリカードに既に記憶されているデータの破壊を回避することができる。
特開平8-249244号公報
 しかし、メモリカード自身が正常終了処理を開始するための条件を、「メモリカードへのアクセスを制御するホスト機器からのクロック信号の入力が停止すること」とした場合に、以下の問題が発生することが懸念される。
 メモリカードが車両に搭載されている場合には、車載バッテリの電圧がクランキング等により安定しない状況が発生する。このような状況では、車載バッテリからの電源供給が断たれた直後にホスト機器がクロック信号の出力を停止しない可能性がある。そして、電源供給が断たれた直後にクロック信号の出力を停止しなかった場合には、メモリカードが上記正常終了処理を上記バックアップ時間中に終了させることができなくなるおそれがある。
 本開示は、こうした問題に鑑みてなされたものであり、メモリカードに記憶されているデータの破壊を回避することができるデータ記憶制御装置を提供することを目的とする。
 本開示の一態様によれば、データ記憶制御装置は、制御装置と、電断判断部と、クロック信号停止部と、バックアップ電源とを備える。
 制御装置は、外部から電源供給を受けて動作するとともに外部から入力するクロック信号に同期して動作するメモリカードへ、少なくともクロック信号を出力することによりメモリカードを制御する。
 また電断判断部は、少なくともメモリカードと制御装置への電源供給を行う主電源からの電源供給が断たれることを示す予め設定された電断判断条件が成立したか否かを判断する。そしてクロック信号停止部は、電断判断条件が成立したと電断判断部が判断した場合に、制御装置によるクロック信号の出力を停止させる。
 またバックアップ電源は、主電源からの電源供給が断たれてから、少なくとも予め設定されたバックアップ時間が経過するまで継続してメモリカードへ電源を供給する。
 このように構成されたデータ記憶制御装置では、電断判断部が、主電源からの電源供給が断たれると判断した場合に、クロック信号停止部が、制御装置によるクロック信号の出力を停止させる。
 これにより、メモリカードが、クロック信号の入力が停止したことを契機として、主電源からの電源供給が断たれたときの処理を実行する場合において、メモリカードは、この処理を実行するための時間として、バックアップ電源により電源が供給されるバックアップ時間を確保することができ、メモリカードに記憶されているデータの破壊を回避することができる。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。
本開示の一実施形態にかかるデータ記憶制御装置1の構成を示すブロック図である。 データ記憶制御装置1のメモリカード電源回路7の構成を示す回路図である。 データ記憶制御装置1の動作を示すタイミングチャートである。 データ記憶制御装置1のシャットダウン信号制御部24およびシャットダウン信号出力部25の動作を示す第1のタイミングチャートである。 シャットダウン信号制御部24およびシャットダウン信号出力部25の動作を示す第2のタイミングチャートである。 シャットダウン信号制御部24およびシャットダウン信号出力部25の動作を示す第3のタイミングチャートである。 シャットダウン信号制御部24およびシャットダウン信号出力部25の動作を示す第4のタイミングチャートである。
 以下に本開示の実施形態について図面とともに説明する。
 本開示が適用されたデータ記憶制御装置1は、車両に搭載され、図1に示すように、レギュレータ2とメインマイコン3とサブマイコン4とメモリカード5とカードスロット6とメモリカード電源回路7と電源瞬断検出回路8を備える。
 レギュレータ2は、車両に搭載されたバッテリ(不図示)からメインリレー(不図示)を介して電源電圧を入力し、この電源電圧から、データ記憶制御装置1が動作するための駆動電圧(本実施形態では5V、3.3V等)を生成して出力する。以下、バッテリからメインリレーを介してデータ記憶制御装置1に供給される電圧を+B電圧という。
 メインマイコン3は、制御対象(本実施形態ではメモリカード5)を制御するための各種処理を実行する。サブマイコン4は、制御対象(本実施形態ではレギュレータ2)を制御するための各種処理を実行する。なお、メインマイコン3とサブマイコン4は、互いにデータ通信可能に接続されている。
 メモリカード5は、矩形板状に形成されているカード本体と、データ書き換え可能な不揮発性メモリと、不揮発性メモリに対するデータの書き込みと読み出しを制御するカードコントローラとを備えている。そしてメモリカード5は、カード本体内に不揮発性メモリとカードコントローラを収納して構成されている。なおメモリカード5は、本実施形態ではSDカード(登録商標)である。
 カードスロット6は、メモリカード5を着脱可能に装着する装着部を備えている。さらにカードスロット6は、電源端子、クロック端子、コマンド端子、データ端子およびカード検出端子を備える。
 電源端子は、メモリカード5を動作させるための電圧(以下、カード動作電圧VDDという)をメモリカード電源回路7から入力するためのものである。
 クロック端子は、メモリカード5を動作させるためのクロック信号をメインマイコン3から入力するためのものである。なおメモリカード5は、クロック信号の入力が停止すると、その時点からバックアップ時間(本実施形態では例えば250ms)が経過するまでに、データ破壊回避のための内部処置を行うように構成されている。
 コマンド端子は、メインマイコン3との間で、メモリカード5を制御するためのコマンド信号を入出力するためのものである。データ端子は、メインマイコン3との間で、メモリカード5に対するデータの書き込みと読み出しのためのデータ信号を入出力するためのものである。
 カード検出端子は、メモリカード5がカードスロット6に装着されているか否かを示すカード検出信号を出力するためのものである。本実施形態のカード検出信号は、メモリカード5がカードスロット6に装着されているときにローレベルとなり、装着されていないときにハイレベルとなる信号である。
 メモリカード電源回路7は、レギュレータ2から駆動電圧を入力して、この駆動電圧から、カード動作電圧VDD(本実施形態では例えば3.3V)を生成して出力する。
 電源瞬断検出回路8は、+B電圧を入力して、+B電圧の瞬断が発生したか否かを検出し、+B電圧の瞬断を検出した場合に、+B電圧の瞬断を検出した旨を示す瞬断検出信号をサブマイコン4へ出力する。なお、本実施形態の電源瞬断検出回路8は、+B電圧が予め設定された瞬断判定値(例えば4.5V)以下である場合に、+B電圧の瞬断が発生したと判断する。
 またサブマイコン4は、電源瞬断検出回路8から瞬断検出信号を入力すると、メインマイコン3の電源を切ってメインマイコン3を強制的にシャットダウンさせる。これによりメインマイコン3は、クロック信号の出力を停止する。
 メモリカード電源回路7は、図2に示すように、5V電圧入力端子11と3.3V電圧入力端子12と接地端子13とメイン制御信号入力端子14とサブ制御信号入力端子15とカード検出入力端子16とカード電圧出力端子17とオン通知出力端子18を備える。
 5V電圧入力端子11には、レギュレータ2から5Vの駆動電圧が入力する。3.3V電圧入力端子12には、レギュレータ2から3.3Vの駆動電圧が入力する。接地端子13はグランドに接続される。
 メイン制御信号入力端子14には、メインマイコン3から、カード動作電圧VDDの出力を制御するためのメイン側カード制御信号が入力する。サブ制御信号入力端子15には、サブマイコン4から、カード動作電圧VDDの出力を制御するためのサブ側カード制御信号が入力する。カード検出入力端子16には、カードスロット6からカード検出信号が入力する。
 またメモリカード電源回路7は、コンデンサ充電用IC21とバックアップ用コンデンサ22とDC/DCコンバータ23とシャットダウン信号制御部24とシャットダウン信号出力部25と電源オン判定部26を備える。
 コンデンサ充電用IC21は、電圧入力端子Vinと電圧出力端子Voutを有している。そしてコンデンサ充電用IC21は、5Vの駆動電圧を電圧入力端子Vinに入力して、この駆動電圧から、バックアップ用コンデンサ22を充電するための充電用電圧(本実施形態では例えば4V)を生成し、この充電用電圧を電圧出力端子Voutから出力する。
 バックアップ用コンデンサ22は、メモリカード5のバックアップ電源であり、+B電圧の供給停止から、少なくとも上記バックアップ時間(本実施形態では例えば250ms)継続してメモリカード電源回路7がカード動作電圧VDDを供給することができる静電容量に設定されている。そして、バックアップ用コンデンサ22の正極がコンデンサ充電用IC21の電圧出力端子Voutに接続されるとともに、バックアップ用コンデンサ22の負極が接地される。
 DC/DCコンバータ23は、電圧入力端子Vinと電圧出力端子Voutとシャットダウン端子SHDNを有している。そしてDC/DCコンバータ23は、コンデンサ充電用IC21からの充電用電圧を電圧入力端子Vinに入力して、この充電用電圧から、カード動作電圧VDDを生成し、このカード動作電圧VDDを電圧出力端子Voutから出力する。またDC/DCコンバータ23は、シャットダウン端子SHDNに入力するシャットダウン信号がハイレベルである場合には、カード動作電圧VDDを出力する一方、シャットダウン信号がローレベルである場合には、カード動作電圧VDDの出力を停止する。
 シャットダウン信号制御部24は、トランジスタ31と抵抗32,33,34,35,36,37とダイオード38,39を備える。
 トランジスタ31は、NPN型のトランジスタであり、コレクタ、ベースおよびエミッタを有する。トランジスタ31のコレクタは、抵抗32を介して3.3V電圧入力端子12に接続される。トランジスタ31のベースは、抵抗33を介してメイン制御信号入力端子14に接続される。トランジスタ31のエミッタは接地端子13に接続される。なお抵抗34は、一端がトランジスタ31のベースに接続され、他端が接地される。そして、メインマイコン3からのメイン側カード制御信号がハイレベルである場合において、抵抗33,34による抵抗34の分圧電圧がトランジスタ31のオン電圧より高くなるように、抵抗33,34の抵抗値が設定されている。
 抵抗35は、一端がメイン制御信号入力端子14に接続されるとともに、他端が抵抗36の一端に接続される。そして、抵抗36の他端はシャットダウン信号出力部25に接続される。抵抗37は、一端がDC/DCコンバータ23の電圧出力端子Voutに接続されるとともに、他端がシャットダウン信号出力部25に接続される。
 ダイオード38は、アノードが抵抗32とトランジスタ31のコレクタとの接続点に接続されるとともに、カソードがサブ制御信号入力端子15に接続される。ダイオード39は、アノードが抵抗35と抵抗36との接続点に接続されるとともに、カソードがサブ制御信号入力端子15に接続される。
 シャットダウン信号出力部25は、論理和回路41とトランジスタ42と抵抗43,44とダイオード45,46を備える。
 論理和回路41は、第1入力端子と第2入力端子と出力端子と電源電圧端子を有し、第1入力端子と第2入力端子に入力した信号の論理和演算を行い、演算結果を示す信号を出力端子から出力する。第1入力端子は、シャットダウン信号制御部24の抵抗37を介してDC/DCコンバータ23の電圧出力端子Voutに接続される。第2入力端子は、シャットダウン信号制御部24におけるトランジスタ31のコレクタに接続される。出力端子は、抵抗43を介してDC/DCコンバータ23のシャットダウン端子SHDNに接続される。
 トランジスタ42は、NPN型のトランジスタであり、コレクタ、ベースおよびエミッタを有する。トランジスタ42のコレクタは、DC/DCコンバータ23のシャットダウン端子SHDNに接続される。トランジスタ42のベースは、シャットダウン信号制御部24の抵抗35,36を介してメイン制御信号入力端子14に接続される。トランジスタ42のエミッタは接地端子13に接続される。なお抵抗44は、一端がトランジスタ42のベースに接続され、他端が接地される。そして、メインマイコン3からのメイン側カード制御信号がハイレベルである場合において、抵抗35,36,44による抵抗44の分圧電圧がトランジスタ42のオン電圧より高くなるように、抵抗35,36,44の抵抗値が設定されている。
 ダイオード45は、アノードがDC/DCコンバータ23の電圧出力端子Voutに接続されるとともに、カソードが論理和回路41の電源電圧端子にされる。ダイオード46は、アノードがコンデンサ充電用IC21の電圧出力端子Voutに接続されるとともに、カソードが論理和回路41の電源電圧端子にされる。
 電源オン判定部26は、否定論理和回路51とトランジスタ52,53と抵抗54,55,56,57,58,59を備える。
 否定論理和回路51は、第1入力端子と第2入力端子と出力端子と電源電圧端子を有し、第1入力端子と第2入力端子に入力した信号の否定論理和演算を行い、演算結果を示す信号を出力端子から出力する。第1入力端子は、トランジスタ52のコレクタに接続される。第2入力端子は、カード検出入力端子16に接続される。出力端子は、抵抗54を介してトランジスタ53のベースに接続される。
 トランジスタ52は、NPN型のトランジスタであり、コレクタ、ベースおよびエミッタを有する。トランジスタ52のコレクタは、抵抗55を介して3.3V電圧入力端子12に接続される。トランジスタ52のベースは、抵抗56を介してコンデンサ充電用IC21の電圧出力端子Voutに接続される。トランジスタ52のエミッタは接地端子13に接続される。なお抵抗57は、一端がトランジスタ52のベースに接続され、他端が接地される。そして、バックアップ用コンデンサ22の電圧がバックアップ可能電圧(本実施形態では例えば1.3V)以上である場合において、抵抗56,57による抵抗57の分圧電圧がトランジスタ52のオン電圧より高くなるように、抵抗56,57の抵抗値が設定されている。なおバックアップ可能電圧は、バックアップ用コンデンサ22がバックアップ時間分の電荷量を蓄積することができる電圧である。
 トランジスタ53は、NPN型のトランジスタであり、コレクタ、ベースおよびエミッタを有する。トランジスタ53のコレクタは、オン通知出力端子18に接続され、メインマイコン3に接続されている。なお、トランジスタ53はメインマイコン3側の入力電圧に合わせられるように設けており、オン通知出力端子18はマイコンの入力電圧でプルアップされている必要がある(図示せず)。トランジスタ53のベースは、抵抗54を介して否定論理和回路51の出力端子に接続される。トランジスタ53のエミッタは接地端子13に接続される。なお抵抗58は、一端がトランジスタ53のベースに接続され、他端が接地される。そして、否定論理和回路51からの出力信号がハイレベルである場合において、抵抗54,58による抵抗58の分圧電圧がトランジスタ53のオン電圧より高くなるように、抵抗54,58の抵抗値が設定されている。
 抵抗59は、一端が3.3V電圧入力端子12に接続されるとともに、他端がカード検出入力端子16に接続される。
 このように構成された電源オン判定部26では、バックアップ用コンデンサ22の充電によりバックアップ用コンデンサ22の電圧が上昇すると、トランジスタ52がオン状態となり、否定論理和回路51の第1入力端子がローレベルとなる。また、カード検出入力端子16がローレベルである場合に、否定論理和回路51の第2入力端子がローレベルとなる。
 すなわち、否定論理和回路51の出力端子は、バックアップ用コンデンサ22が充電されており且つメモリカード5がカードスロット6に装着されている場合にハイレベルになり、それ以外の場合にローレベルになる。
 そして、否定論理和回路51の出力端子がハイレベルのときに、トランジスタ53がオン状態となり、オン通知出力端子18がローレベルになる。
 次に、このように構成されたデータ記憶制御装置1の動作の具体例を説明する。
 図3に示すように、まず、時刻t01でデータ記憶制御装置1の電源がオンになると(時刻t01における+B電圧を参照)、レギュレータ2が動作を開始し、レギュレータ2から5Vの駆動電圧が出力される。これにより、コンデンサ充電用IC21の電圧入力端子Vinに5Vの駆動電圧が入力し、コンデンサ充電用IC21が動作を開始する。これにより、コンデンサ充電用IC21の電圧出力端子Voutの電圧が、充電用電圧(本実施形態では4V)になり、バックアップ用コンデンサ22の電圧と、DC/DCコンバータ23の電圧入力端子Vinの電圧が、充電用電圧(4V)になるまで徐々に上昇する。
 また、バックアップ用コンデンサ22の電圧がバックアップ可能電圧(本実施形態では例えば1.3V)になると、メモリカード電源回路7は、オン通知出力端子18の電圧をローレベルにすることにより、ローレベルのオン可能通知を出力する(矢印AL1を参照)。メインマイコン3は、レギュレータ2から5Vの駆動電圧の供給されることにより電源がオンになる。その後、メインマイコン3では、初期化中の時刻t02でポート設定が終了し、メイン制御信号入力端子14がハイレベルに論理固定される(矢印AL2を参照)。その後、時刻t03で、サブマイコン4は、サブ制御信号入力端子15をハイレベルにする。なおサブマイコン4は、メインマイコン3の電源がオンになってから250ms以上経過した後に、サブ制御信号入力端子15をハイレベルにする。これは、メインマイコン3のハードリセット時などでメインマイコン3からのクロック類が止まった場合に250msの電源保持時間が必要となり、いかなる状態でも250msの電源保持時間を守るためである。
 時刻t04で充電期間が終わり、このときに、オン通知出力端子18がローレベルである場合に、メインマイコン3は、メイン制御信号入力端子14をローレベルにする。これにより、DC/DCコンバータ23のシャットダウン端子SHDNがハイレベルになり、DC/DCコンバータ23が動作を開始し、DC/DCコンバータ23の電圧出力端子Voutからカード動作電圧VDDを出力する。なおメインマイコン3は、サブ制御信号入力端子15がハイレベルになってから放電時間(本実施形態では例えば10ms)経過した後に、メイン制御信号入力端子14をローレベルにする。この放電時間は、メモリカード5の電源(DC/DCコンバータ23)の電圧を確実に落としておくために必要とする時間である。一方、充電期間が終わったときにオン通知出力端子18がハイレベルである場合には、メインマイコン3は、メイン制御信号入力端子14をローレベルにしない。これにより、DC/DCコンバータ23の動作が禁止され、メモリカード5の電源が入らないようにできる。
 時刻t05で、例えば+B電圧の瞬断により、5V駆動電圧の供給が停止すると、バックアップ用コンデンサ22からDC/DCコンバータ23へ電源が供給される。これにより、少なくとも250msの間(図中のバックアップ期間(時刻t05~t06)を参照)、DC/DCコンバータ23は電圧出力端子Voutからカード動作電圧VDDを出力する。
 その後、バックアップ用コンデンサ22の電圧がDC/DCコンバータ23の動作可能電圧より低くなったり、論理和回路41への電源供給が停止してDC/DCコンバータ23のシャットダウン端子SHDNがローレベルになったりすることにより、時刻t06で、DC/DCコンバータ23からのカード動作電圧VDDの出力が停止する。
 その後、時刻t07で+B電圧が回復すると、充電期間となり、時刻t08まで、時刻t01から時刻t02までの充電期間と同様に動作する。次に時刻t08で、通常動作に移行し、時刻t04から時刻t05までの通常動作と同様に動作する。
 その後、時刻t09で、ACC電源がオフになると、ディレイドACCに移行する。ディレイドACCは、メインマイコン3を安全に終了させるために、ACC電源のオフ後に実行する処理である。そして、時刻t10でディレイドACCが完了すると、メインマイコン3は、メイン制御信号入力端子14をハイレベルにする。これにより、DC/DCコンバータ23のシャットダウン端子SHDNがローレベルになり、DC/DCコンバータ23からのカード動作電圧VDDの出力が停止する。
 DC/DCコンバータ23の出力停止から放電時間(本実施形態では例えば10ms)が経過した時刻t11で、サブマイコン4は、サブ制御信号入力端子15をローレベルにする。その後、時刻t12で、メインマイコン3の電源をオフにし(矢印AL3を参照)、システムシャットダウンを行う。
 次に、シャットダウン信号制御部24およびシャットダウン信号出力部25の動作の具体例を説明する。
 図4は、バックアップ用コンデンサ22の電圧が0Vである状態でACC電源がオンになる場合のシャットダウン信号制御部24およびシャットダウン信号出力部25の動作を示すタイミングチャートである。
 図4に示すように、ACC電源がオンになると、+B電圧がデータ記憶制御装置1に入力することにより(時刻t21における+B電圧を参照)、レギュレータ2が動作を開始し、レギュレータ2から5Vと3.3Vの駆動電圧が出力される(時刻t22における5V駆動電圧および3.3V駆動電圧を参照)。これにより、コンデンサ充電用IC21の電圧入力端子Vinに5Vの駆動電圧が入力し、コンデンサ充電用IC21が動作を開始する。これにより、バックアップ用コンデンサ22の電圧と、DC/DCコンバータ23の電圧入力端子Vinの電圧が、充電用電圧(4V)になるまで徐々に上昇する。
 その後、時刻t23でメインマイコン3の電源がオンになり(矢印AL21を参照)、メイン制御信号入力端子14がハイレベルに論理固定される。これにより、トランジスタ31のベースにオン電圧が印加され、トランジスタ31がオン状態となる。なお、トランジスタ31がオン状態となる前にサブ制御信号入力端子15がローレベルであるため、トランジスタ31がオン状態となる前後で、論理和回路41の第2入力端子の電圧レベルは変化せず、ローレベルのままである。
 また、このときのサブ制御信号入力端子15はローレベルであるため、トランジスタ42のベースにはオン電圧が印加されず、トランジスタ42はオフ状態である。
 その後、メインマイコン3の初期化が完了すると(矢印AL22を参照)、時刻t24で、サブマイコン4は、サブ制御信号入力端子15をハイレベルにする。なおサブマイコン4は、メインマイコン3の電源がオンになってから250ms以上経過した後に、サブ制御信号入力端子15をハイレベルにする。
 そして、サブ制御信号入力端子15をハイレベルにすることにより、トランジスタ42のベースにオン電圧が印加され、トランジスタ42がオン状態となる。
 次に、サブ制御信号入力端子15がハイレベルになってから放電時間(10ms)が経過した時刻t25で、メインマイコン3は、メイン制御信号入力端子14をローレベルにする。これにより、トランジスタ31がオフ状態となり、論理和回路41の第2入力端子がハイレベルになる。このため、論理和回路41の出力端子がハイレベルになる。さらに、トランジスタ42がオフ状態となることにより、DC/DCコンバータ23のシャットダウン端子SHDNがハイレベルになり、DC/DCコンバータ23が動作を開始する。これにより、論理和回路41の第1入力端子がハイレベルになる。
 図5は、+B電圧の瞬断が発生する場合のシャットダウン信号制御部24およびシャットダウン信号出力部25の動作を示すタイミングチャートである。
 図5に示すように、時刻t31で、+B電圧の瞬断が発生すると、電源瞬断検出回路8はサブマイコン4へ瞬断検出信号を出力する。そしてサブマイコン4は、瞬断検出信号が入力すると、サブ制御信号入力端子15をローレベルにする。これにより、論理和回路41の第2入力端子がローレベルになる。
 その後、時刻t32で、メインマイコン3がリセットされることで(矢印AL31を参照)、メイン制御信号入力端子14がハイレベルになる。これにより、トランジスタ31のベースにオン電圧が印加され、トランジスタ31がオン状態となる。さらに、時刻t33で、メインマイコン3の電源がオフになることで(矢印AL32を参照)、メイン制御信号入力端子14の電圧レベルが不定になり、トランジスタ31がオフ状態となる。
 その後、時刻t34で、5Vと3.3Vの駆動電圧が低下し始める。ここで、5Vの駆動電圧の低下により、コンデンサ充電用IC21の電圧出力端子Voutの電圧が低下し、これに追従して、DC/DCコンバータ23の電圧入力端子Vinと論理和回路41の電源電圧端子の電圧が低下する。但し、論理和回路41の電源電圧端子には、ダイオード45を介してDC/DCコンバータ23からカード動作電圧VDD(3.3V)が入力する。このため、論理和回路41の電源電圧端子における電圧低下は、カード動作電圧VDD(3.3V)になった時点で一旦終了し、論理和回路41の電源電圧端子の電圧は、カード動作電圧VDD(3.3V)に保持される。
 そして時刻t35で、DC/DCコンバータ23の電圧入力端子Vinの電圧が、DC/DCコンバータ23の動作可能電圧を下回ると、DC/DCコンバータ23からのカード動作電圧VDDの出力が停止される。このため、論理和回路41の第1入力端子と電源電圧端子の電圧がカード動作電圧VDD(3.3V)から低下し始め、DC/DCコンバータ23の放電時間で0Vになる。これにより、論理和回路41の出力端子がハイレベルからローレベルになり、これに追従して、DC/DCコンバータ23のシャットダウン端子SHDNがハイレベルからローレベルになる。
 図6は、ACC電源をオフにした場合のシャットダウン信号制御部24およびシャットダウン信号出力部25の動作を示すタイミングチャートである。
 ACC電源がオフになると、ディレイドACCに移行する。そして、図6に示すように、時刻t41でディレイドACCが完了すると(矢印AL41を参照)、メインマイコン3は、メイン制御信号入力端子14をハイレベルにする。このときにサブ制御信号入力端子15がハイレベルであるため、トランジスタ31,42のベースにオン電圧が印加され、トランジスタ31,42がオン状態となる。これにより、論理和回路41の第2入力端子とDC/DCコンバータ23のシャットダウン端子SHDNがハイレベルからローレベルになる。そして、DC/DCコンバータ23のシャットダウン端子SHDNがローレベルになることにより、DC/DCコンバータ23からのカード動作電圧VDDの出力が停止する。
 さらに、DC/DCコンバータ23の出力停止から放電時間が経過した時刻t42で、サブマイコン4は、サブ制御信号入力端子15をローレベルにする。その後、時刻t43で、メインマイコン3の電源をオフにする。
 図7は、メインマイコン3がリセットされる場合のシャットダウン信号制御部24およびシャットダウン信号出力部25の動作を示すタイミングチャートである。
 図7に示すように、メインマイコン3が暴走してリセットをかける前の時刻t51で、サブマイコン4は、サブ制御信号入力端子15をハイレベルからローレベルにする。これにより、論理和回路41の第2入力端子がハイレベルからローレベルになる。
 その後、時刻t52で、メインマイコン3がリセットされることで(矢印AL51を参照)、メイン制御信号入力端子14がハイレベルになる。これにより、トランジスタ31がオン状態となる。
 その後、メインマイコン3の初期化が完了すると(矢印AL52を参照)、時刻t53で、サブマイコン4は、サブ制御信号入力端子15をハイレベルにする。なおサブマイコン4は、メインマイコン3の電源がオンになってから250ms以上経過した後に、サブ制御信号入力端子15をハイレベルにする。これにより、トランジスタ42がオン状態となり、DC/DCコンバータ23のシャットダウン端子SHDNがハイレベルからローレベルになる。DC/DCコンバータ23のシャットダウン端子SHDNがローレベルになることにより、DC/DCコンバータ23からのカード動作電圧VDDの出力が停止する。
 サブ制御信号入力端子15がハイレベルになってから放電時間が経過した時刻t54で、メインマイコン3は、メイン制御信号入力端子14をローレベルにする。これにより、トランジスタ31,42がオフ状態となる。まず、トランジスタ31がオフ状態となることにより、論理和回路41の第2入力端子がローレベルからハイレベルになり、これにより、論理和回路41の出力端子がローレベルからハイレベルになる。また、トランジスタ42がオフ状態となることにより、DC/DCコンバータ23のシャットダウン端子SHDNがローレベルからハイレベルになる。これにより、DC/DCコンバータ23からのカード動作電圧VDDの出力が再開される。
 このように構成されたデータ記憶制御装置1は、メインマイコン3と、電源瞬断検出回路8と、サブマイコン4と、バックアップ用コンデンサ22とを備える。
 メインマイコン3は、外部から電源供給を受けて動作するとともに外部から入力するクロック信号に同期して動作するメモリカード5へ、少なくともクロック信号を出力することによりメモリカード5を制御する。
 また電源瞬断検出回路8は、+B電圧が予め設定された瞬断判定値(例えば4.5V)以下である場合に、+B電圧の瞬断が発生したと判断する。そしてサブマイコン4は、+B電圧の瞬断が発生したと電源瞬断検出回路8が判断した場合に、メインマイコン3の電源を切ってメインマイコン3を強制的にシャットダウンさせることにより、メインマイコン3によるクロック信号の出力を停止させる。
 またバックアップ用コンデンサ22は、+B電圧が断たれてから、少なくとも予め設定されたバックアップ時間(例えば250ms)が経過するまで継続してメモリカード5へ電源を供給する。
 このように構成されたデータ記憶制御装置1では、電源瞬断検出回路8が、+B電圧の瞬断が発生したと判断した場合に、サブマイコン4が、メインマイコン3によるクロック信号の出力を停止させる。
 これにより、メモリカード5が、クロック信号の入力が停止したことを契機として、+B電圧が断たれたときの処理を実行する場合において、メモリカード5は、この処理を実行するための時間として、バックアップ用コンデンサ22により電源が供給されるバックアップ時間を確保することができ、メモリカード5に記憶されているデータの破壊を回避することができる。
 以上説明した実施形態において、メインマイコン3は制御装置、+B電圧は主電源、電源瞬断検出回路8は電断判断部、サブマイコン4はクロック信号停止部、バックアップ用コンデンサ22はバックアップ電源に相当する。
 以上、本開示の一実施形態について説明したが、本開示は上記実施形態に限定されるものではなく、本開示の技術的範囲に属する限り種々の形態を採ることができる。
 例えば上記実施形態では、メモリカードとしてSDカードを用いたものを示したが、SDカードに限定されるものではなく、電源供給が断たれたときに、既に記憶されているデータの破壊を回避するための処理を行う機能を備えた記憶媒体であればよい。
 また上記実施形態では、サブマイコン4に瞬断検出信号が入力すると、メインマイコン3の電源を切ってメインマイコン3を強制的にシャットダウンさせるものを示した。しかし、メインマイコン3によるクロック信号の出力を停止させる方法はこれに限定されるものではなく、例えば、サブマイコン4に瞬断検出信号が入力すると、クロック信号の出力を停止することを指示するクロック信号停止信号をメインマイコン3へ出力するようにしてもよい。

Claims (1)

  1.  外部から電源供給を受けて動作するとともに外部から入力するクロック信号に同期して動作するメモリカード(5)へ、少なくとも前記クロック信号を出力することにより前記メモリカードを制御する制御装置(3)と、
     少なくとも前記メモリカードと前記制御装置への電源供給を行う主電源からの電源供給が断たれることを示す予め設定された電断判断条件が成立したか否かを判断する電断判断部(8)と、
     前記電断判断条件が成立したと電断判断部が判断した場合に、前記制御装置による前記クロック信号の出力を停止させるクロック信号停止部(4)と、
     前記主電源からの電源供給が断たれてから、少なくとも予め設定されたバックアップ時間が経過するまで継続して前記メモリカードへ電源を供給するバックアップ電源(22)と、を備えるデータ記憶制御装置。
PCT/JP2014/005117 2013-10-18 2014-10-08 データ記憶制御装置 WO2015056426A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-217393 2013-10-18
JP2013217393A JP2015079428A (ja) 2013-10-18 2013-10-18 データ記憶制御装置

Publications (1)

Publication Number Publication Date
WO2015056426A1 true WO2015056426A1 (ja) 2015-04-23

Family

ID=52827885

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/005117 WO2015056426A1 (ja) 2013-10-18 2014-10-08 データ記憶制御装置

Country Status (2)

Country Link
JP (1) JP2015079428A (ja)
WO (1) WO2015056426A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107346129A (zh) * 2016-05-06 2017-11-14 大陆汽车电子(长春)有限公司 一种车身控制器及其断电应急处理方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004145584A (ja) * 2002-10-24 2004-05-20 Nec Engineering Ltd ディスクアレイ装置
JP2004157861A (ja) * 2002-11-07 2004-06-03 Sony Corp メモリカードへのコマンド転送方法、電子機器
JP2013214221A (ja) * 2012-04-03 2013-10-17 Renesas Electronics Corp ホスト装置、半導体装置、及びメモリカードシステム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004145584A (ja) * 2002-10-24 2004-05-20 Nec Engineering Ltd ディスクアレイ装置
JP2004157861A (ja) * 2002-11-07 2004-06-03 Sony Corp メモリカードへのコマンド転送方法、電子機器
JP2013214221A (ja) * 2012-04-03 2013-10-17 Renesas Electronics Corp ホスト装置、半導体装置、及びメモリカードシステム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107346129A (zh) * 2016-05-06 2017-11-14 大陆汽车电子(长春)有限公司 一种车身控制器及其断电应急处理方法

Also Published As

Publication number Publication date
JP2015079428A (ja) 2015-04-23

Similar Documents

Publication Publication Date Title
US8090988B2 (en) Saving information to flash memory during power failure
EP3742257B1 (en) System and method of power mode management for a processor
US8760130B2 (en) Electronic apparatus and power supply device that switch between on-state and off-state
US20150362987A1 (en) Power mode management of processor context
JP5820779B2 (ja) 車載用電源装置
JP2007104827A (ja) 電気自動車の電源制御装置
WO2015056426A1 (ja) データ記憶制御装置
JP2005327210A (ja) 電子装置
US8874278B2 (en) Power supply control device, image forming apparatus, and method of controlling power supply
JP6213138B2 (ja) データ記憶制御装置
JP6146255B2 (ja) データ記憶制御装置
JP6171832B2 (ja) データ記憶制御装置
US11658589B2 (en) Electrically commutated motor driving device and control method thereof
US20070096684A1 (en) Apparatus for controlling electric power for electric vehicle
US9966143B2 (en) Solid state drive with improved power efficiency
CN107408828B (zh) 控制车辆的电路的电力供应的包含电池和相关组件的设备
JP7500273B2 (ja) 電動作業機
JP6231752B2 (ja) デバイス制御装置およびデバイス制御方法
JP6008794B2 (ja) 電源供給装置及び映像表示装置
US20220348213A1 (en) Apparatus and method for controlling power of vehicle
WO2022038857A1 (ja) 端末装置
JP5759774B2 (ja) 電子機器および画像形成装置
CN113391690B (zh) Flash异常掉电保护电路、装置及方法
JP2018117475A (ja) 電源制御装置、電源制御システム、および電源制御方法
JP2013025471A (ja) リセット回路及びマイコン搭載装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14854201

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14854201

Country of ref document: EP

Kind code of ref document: A1