WO2015056322A1 - Magnetic cooling and heating device - Google Patents

Magnetic cooling and heating device Download PDF

Info

Publication number
WO2015056322A1
WO2015056322A1 PCT/JP2013/078176 JP2013078176W WO2015056322A1 WO 2015056322 A1 WO2015056322 A1 WO 2015056322A1 JP 2013078176 W JP2013078176 W JP 2013078176W WO 2015056322 A1 WO2015056322 A1 WO 2015056322A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
liquid metal
refrigerant passage
voltage
refrigerant
Prior art date
Application number
PCT/JP2013/078176
Other languages
French (fr)
Japanese (ja)
Inventor
田崎 豊
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to PCT/JP2013/078176 priority Critical patent/WO2015056322A1/en
Priority to JP2015542449A priority patent/JP6107961B2/en
Publication of WO2015056322A1 publication Critical patent/WO2015056322A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/002Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects
    • F25B2321/0022Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects with a rotating or otherwise moving magnet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Definitions

  • the present invention relates to a magnetic air conditioner.
  • MCM magnetocaloric material
  • Patent Document 1 a technology is used in which a microchannel is formed between the magnetocaloric materials and a refrigerant is flowed in the microchannel to transfer the heat generated by the magnetocaloric material.
  • Microchannels are said to be the preferred form for increasing the contact area between such magnetocaloric materials and refrigerants.
  • an object of the present invention is to provide a magnetic air conditioner capable of efficiently moving a refrigerant in a refrigerant passage formed between magnetocaloric materials.
  • a magnetic air-conditioning apparatus comprises a magnetocaloric material that changes temperature by applying and removing magnetism, a magnetism generating device that applies and removes magnetism to the magnetocaloric material, and a magnetocaloric material. And a liquid metal disposed movably in the refrigerant passage. Further, a first electrode which is provided in the refrigerant passage so as to be exposed in the refrigerant passage and can be electrically connected to the liquid metal, and is provided in the refrigerant passage via a dielectric so that the liquid metal is electrically connected to the liquid metal. A second electrode that is electrically insulated. The liquid metal is moved in the refrigerant passage by an electrowetting action by applying or not applying a voltage between the first electrode and the second electrode.
  • the liquid metal is arranged in the refrigerant passage provided along the magnetocaloric material, and the liquid metal is directly moved by the electrowetting action. did. For this reason, since the pressure loss which arises when moving a refrigerant
  • FIG. 1 It is a schematic perspective view which shows the principal part of the magnetic air conditioning apparatus in embodiment to which this invention is applied. It is a schematic sectional drawing for demonstrating the structure of a magnetic air conditioning apparatus. It is sectional drawing for demonstrating the detail and operation
  • FIG. 1 is a schematic perspective view (partial perspective view) showing a main part of a magnetic air conditioner in an embodiment to which the present invention is applied.
  • FIG. 2 is a schematic cross-sectional view for explaining the configuration of the magnetic air conditioner.
  • a plurality of refrigerant passages 20 are formed in the magnetocaloric material 10.
  • a permanent magnet 30 (not shown in FIG. 1) is arranged so as to sandwich the magnetocaloric material 10 at the upper and lower positions in the figure.
  • a low temperature side heat exchanger 41 is provided at one end of the magnetic air conditioner, and a high temperature side heat exchanger 42 is provided at the other end.
  • the magnetocaloric material 10 may be an integral material or may be laminated with materials separated at the refrigerant passage portion.
  • the structure of the magnetocaloric material 10 and the refrigerant passage 20 is not particularly limited as long as it is manufactured in the same manner as in the prior art.
  • the permanent magnet 30 is a magnetism generator and is used for applying magnetism to the magnetocaloric material 10 and moves so as to be close to and away from the magnetocaloric material 10. Therefore, as shown in FIG. 2A, magnetism is applied when the permanent magnet 30 is positioned immediately above and below the magnetocaloric material 10 (the magnetocaloric material 10 is formed by the permanent magnet 30. In a magnetic field). On the other hand, as shown in FIG. 2B, the magnetism is removed when the permanent magnet 30 is not directly above or below the magnetocaloric material 10 (in the magnetic field formed by the permanent magnet 30). Not in the state).
  • each refrigerant passage 20 a liquid metal 18 serving as a refrigerant is movably disposed.
  • the liquid metal 18 moves as a refrigerant in the refrigerant passage 20 by electrowetting action, so that heat is transferred from the low temperature side heat exchanger 41 to the high temperature side heat exchanger 42.
  • the structure in the refrigerant passage 20, the liquid metal 18, and the electrowetting action will be described later.
  • magnetism is applied when the permanent magnet 30 is at a position immediately above and below the magnetocaloric material 10.
  • the magnetocaloric material 10 generates heat when magnetism is applied.
  • the refrigerant is warmed by the heat generated by the magnetocaloric material 10 and moved to the high temperature side heat exchanger 42.
  • the temperature of the side heat exchanger 42 rises.
  • the magnetism is removed when the permanent magnet 30 is not located directly above or directly below the magnetocaloric material 10.
  • the magnetocaloric material 10 cools when the magnetism is removed.
  • the refrigerant is cooled by heat absorption of the magnetocaloric material 10 and moved to the low temperature side heat exchanger 41.
  • the temperature of the side heat exchanger 41 decreases.
  • Heat generated by the magnetocaloric material 10 is transmitted from the low temperature side heat exchanger 41 to the high temperature side heat exchanger 42 by repeatedly moving the refrigerant in accordance with the heat generation and heat absorption of the magnetocaloric material 10. .
  • FIG. 3 is a cross-sectional view for explaining the details and operation inside the refrigerant passage 20 of the magnetic air conditioner. Although one refrigerant passage portion is shown in FIG. 3, the other refrigerant passages 20 have the same configuration.
  • the refrigerant passage 20 includes a first electrode 12, a second electrode 13, and position sensors 15a to 15e.
  • the first electrode 12 is exposed in the refrigerant passage 20 so as to be in electrical contact with the liquid metal 18.
  • the second electrode 13 is provided on the wall surface via a dielectric 14. Therefore, the second electrode 13 is exposed in the refrigerant passage 20 and insulated from the liquid metal 18.
  • one first electrode 12 exists on each side. This is because the second electrode 13 is always first and the first electrode 12 is always rearward with respect to the traveling direction of the liquid metal 18 (details will be described later).
  • the first electrode 12 and the second electrode 13 constitute an electric circuit with the first electrode 12 located behind the second electrode 13 with respect to the traveling direction of the liquid metal 18. That is, as shown in FIGS. 3A to 3C, when the traveling direction of the liquid metal 18 is the right direction in the figure (the arrow direction in the figure), the first electrode 12 and the second electrode as shown in the figure. 13 constitutes a pair of electric circuits 101a to 101d connected to a DC power source.
  • a pair of first electrodes 12 located behind 13 constitutes electric circuits 102a to 102d connected to a DC power source.
  • Position sensors 15a to 15e are used to know the current position of the liquid metal 18. This position sensor is also an electrode, and the presence or absence of the liquid metal 18 is determined by measuring a resistance value between the position sensor and the first electrode 12. That is, if the resistance value between the position sensors 15a to 15e and the first electrode 12 is low (conductive state), it can be seen that the liquid metal 18 exists between them. On the other hand, if the resistance value between the position sensors 15a to 15e and the first electrode 12 is high (non-conductive state), it can be seen that the liquid metal 18 does not exist between them.
  • the first electrode 12, the second electrode 13, and the position sensors 15a to 15e are made of copper, aluminum, gold or the like (or an alloy or plated product thereof), or a conductive semiconductor (for example, an impurity imparting conductivity). Any material may be used as long as it is electrically conductive.
  • the dielectric 14 can be made of an insulating material such as silicon oxide or silicon nitride. In addition, a material having a high dielectric constant may be used.
  • a liquid metal 18 (sometimes referred to as a conductive fluid) is movably disposed.
  • the liquid metal 18 is separated into two parts in the refrigerant passage 20 (shown as 18a and 18b in FIGS. 3 and 4). 18). By separating the liquid metals 18a and 18b into two, they can be moved efficiently.
  • a space for accommodating the liquid metal 18 is provided in the low temperature side heat exchanger 41 and the high temperature side heat exchanger 42.
  • the volume of the space is such that a part of the liquid metal 18 remains in the refrigerant passage 20 even when the liquid metal 18 has completely moved to the low temperature side or the high temperature side.
  • the liquid metal 18 is applied to both the first electrode 12 and the second electrode 13 at both ends (see FIGS. 3A and 3C). This is because the movement of the liquid metal 18 cannot be started from the principle of electrowetting (described later) unless the liquid metal 18 is applied to both the first electrode 12 and the second electrode 13.
  • air holes are provided in the spaces provided in the low temperature side heat exchanger 41 and the high temperature side heat exchanger 42. This air hole is for the air in the space to escape or take in when the liquid metal 18 enters or exits the space. Note that the air holes are arranged in a size and position where the liquid metal does not leak when the liquid metal 18 enters and exits the space.
  • the vicinity of each of the low temperature side heat exchanger 41 and the high temperature side heat exchanger 42 is the surface of the first electrode 12 or the dielectric 14.
  • the surface energy is increased so that the contact angle ( ⁇ ) with the liquid metal 18 (the contact angle will be described later) is less than 90 ° (that is, ⁇ ⁇ 90 °) with no voltage applied to the end including part. Processing has been done.
  • High surface energy treatment is a treatment that results in a so-called lyophilic state.
  • the wall surface in the refrigerant passage 20 other than the EL part has a low surface energy so that the refrigerant contact angle ( ⁇ ) is 90 ° or more (that is, ⁇ ⁇ 90 °). Processing has been done.
  • the low surface energy treatment is a so-called lyophobic state.
  • the liquid metal 18 is a liquid metal at least in a temperature range in which the magnetic air conditioner is used.
  • galinstan which is a eutectic alloy of gallium, indium and tin can be used.
  • Galinstan is a metal that is liquid at room temperature and has a different melting point depending on the composition of gallium, indium, and tin.
  • a galinstan of 68.5% gallium, 21.5% indium and 10% tin has a melting point: ⁇ 19 ° C., a boiling point: 1300 ° C.
  • a specific gravity 6.44 g / cm 3
  • a viscosity 0.0024 Pa ⁇ s ( at 20 ° C.) and thermal conductivity: 16.5 W / (m ⁇ K).
  • various known liquid metals may be used, and those having a high heat transfer coefficient are preferable.
  • FIG. 5 is an explanatory diagram for explaining electrowetting.
  • the movement of the liquid metal 18 by electrowetting is known per se and is disclosed in, for example, Japanese Patent Application Laid-Open No. 2007-103363. Therefore, the principle necessary for understanding the present embodiment will be described here.
  • Electrowetting is performed by placing a liquid metal 18 (shown as a droplet here) on the surface of a dielectric 501 provided on the electrode plate 500 and applying a voltage between the electrode plate 500 and the liquid metal 18. This is a technique for controlling wettability with the liquid metal 18 on the dielectric surface.
  • a capacitor is formed between the electrode plate 500 and the liquid metal 18 via a dielectric 501.
  • the electrostatic energy of the capacitor changes (increases), and the surface energy of the liquid metal 18 corresponding thereto changes.
  • the surface tension of the liquid metal 18 is reduced.
  • the contact angle ⁇ is an angle between the surface of the dielectric 501 on which the liquid metal 18 is placed and the surface of the liquid metal.
  • the contact angle ⁇ varies in the range of 0 ° to 180 ° depending on the surface tension of the liquid metal 18.
  • the contact angle ⁇ exceeds 90 ° and is 180 ° or less. This is a state of poor wettability, and if the surface is lyophobic (also called lyophobic), it becomes a droplet sphere as shown.
  • the contact angle ⁇ is 0 ° to 90 °.
  • the tip that becomes lyophilic at the end of the droplet comes into contact with the surface one after another.
  • a force to contact the surface works.
  • the liquid metal 18 can be moved.
  • the liquid metal 18 tries to return from the state shown in FIG. 5B to the state shown in FIG. That is, a force is applied to return the shape to the state of the droplet.
  • the force at this time is a force in the direction opposite to that in the case of FIGS.
  • the entire liquid metal 18 is placed on one electrode plate 500 with a dielectric 501 interposed therebetween. For this reason, even if a force for changing the shape of the droplet is applied, the force is applied evenly to the whole, so that it does not move. However, if only the tip of a part of the droplet is positioned on the electrode plate via the dielectric 14, the electrowetting action works only on that part, and only the shape of that part changes. As a result, the liquid droplet 18 (liquid metal 18) can be moved because a force in a specific direction is applied.
  • the electric circuit 101a is turned on while the liquid metal 18a is detected by the position sensor 15a. Others are off. As a result, the contact angle ⁇ of the tip of the liquid metal 18a with the wall surface (dielectric surface) of the coolant passage 20 becomes 90 ° or less at the second electrode portion where the liquid metal 18a has reached. For this reason, the liquid metal 18a is driven to generate a driving force in the right direction in the figure and starts to advance.
  • the electric circuits 101c and 101d where the liquid metal 18b ahead of the moving direction is located are off. Therefore, since no capacitor component is generated between the rear end side of the liquid metal 18b existing in this portion and the second electrode 13, the contact angle ⁇ with the wall surface (dielectric surface) becomes 90 ° or more. For this reason, a force to return the liquid metal 18b to the shape of the droplet acts. This force is a force for moving the rear end of the liquid metal 18b in the right direction in the figure. For this reason, the liquid metal 18b is pushed through the air in between when the liquid metal 18b moves to the right, and also moves to the right by the force generated on the rear end side.
  • the liquid metal 18a has a driving force that moves in the right direction when a voltage is applied, and a voltage that is applied to the rear end of the liquid metal 18b also has a driving force that moves in the right direction.
  • both the liquid metals 18a and 18b move to the right.
  • the function of the position sensor will be explained.
  • the liquid metal 18 is separated into two. For this reason, if the hair is simply conducted between the position sensor and the first electrode 12, it cannot be determined whether the hair is the liquid metal 18a or 18b. Therefore, by switching from the non-conductive state to the conductive state between the position sensor and the first electrode 12, it is determined that the tip of the liquid metal 18 has reached the position sensor with respect to the traveling direction of the liquid metal 18. Therefore, in FIG. 3B, it can be understood that the liquid metal 18a has reached the position sensor 15b when the position sensor 15b is switched from the non-conductive state to the conductive state.
  • the electric circuit 101b When it is detected by the position sensor 15b that the liquid metal 18a has come, the electric circuit 101b is turned on. At this point, the other electrical circuits are turned off. At this time, in the second electrode portion of the electric circuit 101b to which the liquid metal 18a has reached, the contact angle ⁇ with the wall surface of the tip of the liquid metal 18a is 90 ° or less, and further, a driving force is generated in the right direction in the figure and proceeds. Go. The rear end of the liquid metal 18b also moves to the right.
  • FIG. 4 is an explanatory diagram when the liquid metal 18 is moved from the right to the left in the drawing.
  • the electric circuit 102a is turned on while the liquid metal 18b is detected by the position sensor 15e. Others are off.
  • the contact angle ⁇ between the tip of the liquid metal 18b and the wall surface (dielectric surface) of the refrigerant passage 20 becomes 90 ° or less.
  • the liquid metal 18b is driven to generate a driving force in the left direction in the figure (in the direction of the arrow in the figure) and starts to advance.
  • the liquid metal 18b is switched by turning on and off the electric circuits 102b to 102d in the order in which the liquid metal 18b is detected by the position sensors 15d to 15a. And 18a are moved from right to left.
  • FIG. 6 is a graph for explaining the positional relationship between the position sensor and the liquid metal 18.
  • This graph is a three-dimensional graph in which the x-axis direction is time elapsed, the y-axis direction is the position sensor on (ON) and off (OFF) state, and the z-axis direction is the position of the liquid metal 18.
  • This graph shows the state of movement described in FIGS. 3A to 3C described above.
  • the electric circuit 101a is turned on. Thereafter, the on state continues while the position sensor 15a detects the liquid metal 18a.
  • the electric circuit 101a is turned off and at the same time the electric circuit 101b is turned on.
  • the position sensor 15c detects the liquid metal 18a, all the electric circuits 101a to 101d are turned off so as not to move further.
  • FIG. 7 is a graph for explaining the position of the liquid metal 18 and the application state of the voltage between the first electrode and the second electrode by the electric circuit.
  • This graph shows that the x-axis direction is time elapsed, the y-axis direction is the application state of the voltage between the first electrode and the second electrode (eV is applied and 0V is not applied), and the z-axis direction is the liquid metal 18. It is the three-dimensional graph made into the position. Also this graph. The movement states described in FIGS. 3A to 3C are shown.
  • FIG. 8 is a flowchart showing a control procedure for moving the liquid metal in the magnetic air conditioner.
  • the current high temperature side and low temperature side temperatures are input together with the required cooling / heating capacity (S1).
  • the required cooling / heating capacity is input of a set temperature in the case of an air conditioner or the like, whether it is simply a cooling operation or a heating operation. This is an input from the user of the air conditioning apparatus.
  • the present high temperature side and low temperature side temperature receive the temperature of each of the current high temperature side heat exchanger 42 and the low temperature side heat exchanger 41 from temperature sensors provided in them.
  • an operation condition is derived from the required capacity and temperature input with reference to a map obtained in advance (S2).
  • the map is determined in advance under what conditions should be operated in order to obtain the required capacity from the input required capacity and the current temperature.
  • the operating conditions are, for example, a frequency for applying / removing magnetism to / from the magnetocaloric material 10 and a frequency and amplitude for moving the refrigerant (here, the liquid metal 18). For example, if the difference between the required temperature and the current temperature is large, the magnetic application / removal frequency is increased in order to cool (or warm) quickly (of course, there is an upper limit on the frequency depending on the performance of the apparatus).
  • the frequency of applying / removing the magnetism is lowered without cooling (or warming) quickly, and the operation is focused on operational stability and energy efficiency.
  • the amplitude at which the refrigerant is moved determines where the refrigerant (liquid metal 18) is moved and reversed between the low temperature side heat exchanger 41 and the high temperature side heat exchanger 42.
  • the temperature moved by the refrigerant that is, the temperature of the magnetocaloric material 10
  • a map for setting such operating conditions is obtained in advance by experiments, simulations, numerical calculations, or the like.
  • the moving speed of the magnet is derived from the frequency of magnetic application / removal, and the current position of the refrigerant is measured (S3).
  • the moving speed of the magnet is obtained from the frequency derived in S2.
  • the current position of the refrigerant is detected by the position sensors 15a to 15e.
  • the refrigerant set speed V0 is derived with reference to a map obtained in advance as in S2 (S4).
  • the map here is obtained in advance in the same manner as in S2, and defines the moving speed of the refrigerant relative to the moving speed of the magnet to determine whether heat can be transferred efficiently. is there.
  • the moving speed obtained here is stored as V0.
  • the current refrigerant speed V1 is obtained (S5).
  • the current speed V1 of the refrigerant is obtained from the interval (distance) between the position sensors 15a to 15d and the time detected by the position sensors 15a to 15d.
  • the current refrigerant velocity V1 is the velocity at the interface of the tip of the liquid metal 18.
  • the predetermined value is an arbitrarily set value. If the predetermined value is small, the refrigerant speed can be finely controlled. However, if the predetermined value is too small, the refrigerant speed always fluctuates, and there is a possibility that the liquid metal 18 that is the refrigerant cannot be stably moved. It is preferable to obtain a value that can stably change the speed of the liquid metal 18.
  • S8 and S9 it is the first electrode 12 and the second electrode 13 that make up the electric circuit that is turned on that changes the voltage and application time.
  • whether to change the voltage or change the application time is determined according to the speed difference at that time. For example, when the speed difference is large, both the voltage and the application time are changed. If the speed difference is not so large, either voltage or application time may be used. It is preferable to change the voltage. If this is a change in voltage, the speed of the refrigerant (liquid metal 18) can be changed regardless of the electrode length. However, when changing the application time, if the length of the second electrode 13 is not sufficient, the liquid metal 18 passes through the electrode surface until the refrigerant speed changes following the change of the application time. This is because there is a case where the change cannot be made (this may occur particularly when the set speed of the refrigerant is high).
  • the heat of the magnetocaloric material 10 can be transferred using the liquid metal 18 as a refrigerant.
  • the liquid metal 18 is disposed in the refrigerant passage 20 provided along the magnetocaloric material 10, and the liquid metal 18 is directly moved by the electrowetting action. For this reason, there is no pressure loss generated when the refrigerant is moved by a conventional pump or the like. For this reason, the liquid metal 18 used as a refrigerant can be moved at high speed to move the heat.
  • the energy for driving the pump or the like becomes zero, and as a result, the COP is improved.
  • the frequency of driving the refrigerant can be increased, and the output density can be increased (that is, the apparatus can be easily miniaturized with the same cooling / heating capacity).
  • one electric circuit is configured by a pair of one first electrode 12 and one second electrode 13 arranged in the refrigerant passage 20.
  • a plurality of pairs of the first electrode 12 and the second electrode 13 are provided in the refrigerant passage 20.
  • the surface of the refrigerant passage including a part of the dielectric surface on the first electrode 12 and the second electrode 13 provided at positions closest to both ends of the refrigerant passage is subjected to high surface energy treatment.
  • the high surface energy treatment is a treatment in which the contact angle with the liquid metal 18 is less than 90 ° when no voltage is applied (see FIG. 5).
  • the liquid metal 18 becomes lyophilic in relation to the wall surface at the end of the refrigerant passage 20, so that the liquid metal 18 is likely to stick to both end portions (regardless of whether the voltage is applied or not). .
  • it can prevent that the liquid metal 18 moves too much and leaves
  • the inner wall surface of the refrigerant passage that has not been subjected to the high surface energy treatment is subjected to the low surface energy treatment.
  • the low surface energy treatment is a treatment in which the contact angle with the liquid metal 18 is 90 ° or more when no voltage is applied (see FIG. 5).
  • the shape of the liquid metal interface changes significantly when a voltage is applied and when a voltage is not applied. Therefore, when the voltage is applied, the liquid metal 18 becomes lyophilic and the liquid metal 18 moves, and when no voltage is applied, the liquid metal 18 becomes lyophobic and can be stopped.
  • a position sensor that detects the position of the liquid metal 18 is provided in the refrigerant passage 20. Thereby, the current position of the liquid metal 18 in the refrigerant passage 20 can be grasped.
  • the velocity of the liquid metal 18 is calculated from the position of the liquid metal 18 detected by the position sensor. By this. The moving speed can be obtained together with the current position of the liquid metal 18.
  • the present embodiment compares the set speed for moving the liquid metal 18 with the current speed obtained from the current position of the liquid metal 18 obtained by the position sensor, and the current speed is slower than the set speed. In this case, the voltage applied between the first electrode 12 and the second electrode 13 is increased and / or the application time is lengthened. On the other hand, if the current speed is faster than the set speed as a result of the comparison, the voltage applied between the first electrode 12 and the second electrode 13 is lowered and / or the application time is shortened.
  • the moving speed of the liquid metal 18 serving as a refrigerant can be controlled so as to match the set speed.
  • the present invention is not limited to such an embodiment.
  • the first electrode 12 and the second electrode 13 are both installed on one wall surface in the refrigerant passage 20. is doing.
  • the present invention is not limited to this, and the first electrode 12 and the second electrode 13 may be located anywhere on the wall surface in the refrigerant passage 20.
  • the first electrode 12 and the second electrode 13 may be provided on opposing wall surfaces. In this case, it is not necessary to switch the pair of the first electrode 12 and the second electrode 13 that are paired according to the traveling direction of the liquid metal 18. Furthermore, you may provide so that it may become adjacent wall surfaces.
  • the first electrode 12 may be in a position where the first metal 12 is in direct contact with the liquid metal 18 to pass electricity, while the second electrode 13 is in a position where the capacitor 14 can be formed with the dielectric 14 sandwiched between the liquid metal 18. It's good.
  • the refrigerant passage 20 is provided between the plurality of laminated magnetocaloric materials 10. That is, the magnetocaloric material 10 is present on both sides of the refrigerant passage 20 depending on how it is viewed. Not only this but the structure which only provides the refrigerant path 20 along one surface of the magnetocaloric material 10, for example may be sufficient. Moreover, there is no restriction
  • the liquid metal 18 is divided into two parts in the refrigerant passage 20.
  • the present invention is not limited to this.
  • the liquid metal 18 may be used in the refrigerant passage 20 as a lump of liquid metal 18.
  • tip and rear end of the liquid metal 18 exist in the refrigerant path 20, and it is easy to obtain a driving force.
  • a driving force can be obtained, so that the liquid metal 18 can be moved to become a refrigerant. .
  • the position sensor for detecting the position of the liquid metal 18 is provided in the refrigerant passage 20.
  • the present invention is not limited thereto, and the position of the liquid metal 18 is predicted without providing the position sensor.
  • the liquid metal 18 may be moved by sequentially switching on and off.
  • the magnet generator using the permanent magnet 30 is provided.
  • the present invention is not limited to this, and magnetism may be generated using other means such as a magnetic fluid or a coil.
  • the present invention is constituted by the configurations described in the claims, and is not limited to the embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

[Problem] To provide a magnetic cooling and heating device that can efficiently move a refrigerant which is inside a refrigerant passage formed between magnetocaloric materials. [Solution] In the present invention, a magnetic cooling and heating device comprises the following: a magnetocaloric material (10); a magnet (30) that applies and removes magnetism with respect to the magnetocaloric material (10); a refrigerant passage (20) provided along the magnetocaloric material (10); liquid metals (18a, 18b) disposed inside the refrigerant passage so as to be movable; first electrodes (12) that are exposed to the inside of the refrigerant passage (20) and are capable of electrically connecting to the liquid metals (18a, 18b); and second electrodes (13) provided inside the refrigerant passage (20) via dielectrics (14) and electrically insulated from the liquid metals (18a, 18b). By applying, and not applying, a voltage between the first electrodes (12) and the second electrodes (13), the liquid metals (18a, 18b) are caused to move within the refrigerant passage (20) according to the electrowetting effect.

Description

磁気冷暖房装置Magnetic air conditioner
 本発明は、磁気冷暖房装置に関する。 The present invention relates to a magnetic air conditioner.
 従来用いられている室温域の冷凍装置、たとえば、冷蔵庫、冷凍庫、エアコンなどの冷凍装置の大半は、フロンガスや代替フロンガスなどの気体冷媒の熱伝達を利用している。最近では、フロンガスの排出に伴うオゾン層破壊の問題が露呈し、さらに、代替フロンガスの排出に伴う地球温暖化への影響も懸念されている。このため、フロンガスや代替フロンガスなどの気体冷媒を用いた冷凍装置に代わる、クリーンでかつ熱輸送能力の高い、革新的な冷凍装置の開発が強く望まれている。 Most of the refrigeration devices conventionally used at room temperature, for example, refrigerators, freezers, air conditioners, etc., use heat transfer of gaseous refrigerants such as chlorofluorocarbon gas and chlorofluorocarbon alternative gas. Recently, the problem of ozone depletion due to the emission of chlorofluorocarbons has been exposed, and there is also concern about the impact on global warming caused by the emission of alternative chlorofluorocarbons. For this reason, there is a strong demand for the development of an innovative refrigeration apparatus that is clean and has a high heat transport capability, replacing the refrigeration apparatus that uses a gaseous refrigerant such as chlorofluorocarbon gas or alternative chlorofluorocarbon gas.
 このような背景から、最近になって注目されるようになった冷凍技術が磁気冷凍技術である。磁性体の中には、その磁性体に印加する磁界の大きさが変化すると、その変化に応じて自身の温度を変化させる、いわゆる磁気熱量効果を発現するものがある。このような磁性体を磁気熱量材料(MCM)と称している。 From this background, the refrigeration technology that has recently attracted attention is the magnetic refrigeration technology. Some magnetic materials exhibit a so-called magnetocaloric effect that changes their temperature according to the change of the magnitude of the magnetic field applied to the magnetic material. Such a magnetic body is called a magnetocaloric material (MCM).
 この磁気熱量材料を利用した磁気冷凍技術としては、たとえば、磁気熱量材料の間にマイクロチャネルを形成し、このマイクロチャネル内に冷媒を流すことで、磁気熱量材料によって発生させた熱を移動させる技術がある(特許文献1)。 As a magnetic refrigeration technology using the magnetocaloric material, for example, a technology is used in which a microchannel is formed between the magnetocaloric materials and a refrigerant is flowed in the microchannel to transfer the heat generated by the magnetocaloric material. (Patent Document 1).
 この従来技術によれば、磁気熱量材料と冷媒との熱交換を容易にするためには、磁気熱量材料と冷媒との接触面積を大きくすることであるとされています。そしてマイクロチャンネルはこのような磁気熱量材料と冷媒との接触面積を大きくするために好まし形態であるとされています。 According to this conventional technology, in order to facilitate heat exchange between the magnetocaloric material and the refrigerant, it is said to increase the contact area between the magnetocaloric material and the refrigerant. Microchannels are said to be the preferred form for increasing the contact area between such magnetocaloric materials and refrigerants.
特開2012-057823号公報JP 2012-057823 A
 従来のようにマイクロチャネル内に冷媒を移動させる場合、冷媒通路が狭隘であるため磁気熱量材料から冷媒へ熱は伝わりやすくなる。しかし、このように冷媒通路が狭隘であるとポンプによって冷媒を移動させる際にどうしても圧力損失が大きくなって冷媒を高速移動させるのが難しくなる。これは、ポンプ駆動エネルギーが増大することとなって、その結果として成績係数(COP)の低下を招くことにもなってしまう。 When the refrigerant is moved into the microchannel as in the prior art, heat is easily transferred from the magnetocaloric material to the refrigerant because the refrigerant passage is narrow. However, when the refrigerant passage is narrow as described above, the pressure loss inevitably increases when the refrigerant is moved by the pump, and it becomes difficult to move the refrigerant at high speed. This increases the pump drive energy, resulting in a decrease in the coefficient of performance (COP).
 そこで本発明の目的は、磁気熱量材料の間に形成した冷媒通路内の冷媒の移動を効率よく行い得る磁気冷暖房装置を提供することである。 Therefore, an object of the present invention is to provide a magnetic air conditioner capable of efficiently moving a refrigerant in a refrigerant passage formed between magnetocaloric materials.
 上記目的を達成するための本発明に係る磁気冷暖房装置は、磁気の印加および除去により温度変化する磁気熱量材料と、磁気熱量材料に磁気を印加および除去する磁気発生装置と、磁気熱量材料に沿って設けられた冷媒通路と、冷媒通路内に移動自在に配置された液体金属とを有する。さらに冷媒通路内には、冷媒通路内に露出して設けられ、液体金属と電気的に接続することができる第1電極と、冷媒通路内に誘電体を介して設けられることで液体金属と電気的に絶縁される第2電極と、を有する。そして第1電極と第2電極との間に電圧の印加、非印加を行うことでエレクトロウェッティング作用により液体金属を冷媒通路内で移動させることを特徴とする。 In order to achieve the above object, a magnetic air-conditioning apparatus according to the present invention comprises a magnetocaloric material that changes temperature by applying and removing magnetism, a magnetism generating device that applies and removes magnetism to the magnetocaloric material, and a magnetocaloric material. And a liquid metal disposed movably in the refrigerant passage. Further, a first electrode which is provided in the refrigerant passage so as to be exposed in the refrigerant passage and can be electrically connected to the liquid metal, and is provided in the refrigerant passage via a dielectric so that the liquid metal is electrically connected to the liquid metal. A second electrode that is electrically insulated. The liquid metal is moved in the refrigerant passage by an electrowetting action by applying or not applying a voltage between the first electrode and the second electrode.
 以上のように構成された本発明に係る磁気冷暖房装置によれば、磁気熱量材料に沿って設けた冷媒通路内に液体金属を配置し、この液体金属をエレクトロウェッティング作用によって直接移動させるようにした。このため従来ポンプなどで冷媒を移動させる際に生じる圧損がなくなるので、高速に冷媒となる液体金属を移動させることができるので、高周波化することができる。 According to the magnetic air conditioner according to the present invention configured as described above, the liquid metal is arranged in the refrigerant passage provided along the magnetocaloric material, and the liquid metal is directly moved by the electrowetting action. did. For this reason, since the pressure loss which arises when moving a refrigerant | coolant with a conventional pump etc. is lose | eliminated, the liquid metal used as a refrigerant | coolant can be moved at high speed, Therefore A high frequency can be achieved.
本発明を適用した実施形態における磁気冷暖房装置の要部を示す概略斜視図である。It is a schematic perspective view which shows the principal part of the magnetic air conditioning apparatus in embodiment to which this invention is applied. 磁気冷暖房装置の構成を説明するための概略断面図である。It is a schematic sectional drawing for demonstrating the structure of a magnetic air conditioning apparatus. 磁気冷暖房装置の冷媒通路内部の詳細と動作を説明するための断面図である。It is sectional drawing for demonstrating the detail and operation | movement inside the refrigerant path of a magnetic air conditioning apparatus. 液体金属を図示右から左に移動させる場合の説明図である。It is explanatory drawing in the case of moving a liquid metal from the illustration right to the left. エレクトロウェッティングを説明するための説明図である。It is explanatory drawing for demonstrating electrowetting. ポジションセンサーと液体金属の位置関係を説明するためのグラフである。It is a graph for demonstrating the positional relationship of a position sensor and a liquid metal. 液体金属の位置と、電気回路による第1電極-第2電極間電圧の印加状態を説明するためのグラフである。It is a graph for demonstrating the position of a liquid metal, and the application state of the voltage between the 1st electrode-2nd electrodes by an electric circuit. 磁気冷暖房装置において液体金属を移動させる制御手順を示すフローチャートである。It is a flowchart which shows the control procedure which moves a liquid metal in a magnetic air conditioning apparatus.
 以下、添付した図面を参照して、本発明の実施形態を説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted. In addition, the dimensional ratios in the drawings are exaggerated for convenience of explanation, and may be different from the actual ratios.
 図1は本発明を適用した実施形態における磁気冷暖房装置の要部を示す概略斜視図(部分透視図)である。また、図2はこの磁気冷暖房装置の構成を説明するための概略断面図である。 FIG. 1 is a schematic perspective view (partial perspective view) showing a main part of a magnetic air conditioner in an embodiment to which the present invention is applied. FIG. 2 is a schematic cross-sectional view for explaining the configuration of the magnetic air conditioner.
 本実施形態の磁気冷暖房装置は、磁気熱量材料10のなかに、複数の冷媒通路20が形成されている。そして磁気熱量材料10を図示上下の位置で挟むようにして永久磁石30(図1では省略)が配置されている。また、冷媒通路20を通じて、磁気冷暖房装置の一端には低温側熱交換器41、他端には高温側熱交換器42が設けられている。 In the magnetic air conditioner of this embodiment, a plurality of refrigerant passages 20 are formed in the magnetocaloric material 10. A permanent magnet 30 (not shown in FIG. 1) is arranged so as to sandwich the magnetocaloric material 10 at the upper and lower positions in the figure. Further, through the refrigerant passage 20, a low temperature side heat exchanger 41 is provided at one end of the magnetic air conditioner, and a high temperature side heat exchanger 42 is provided at the other end.
 磁気熱量材料10は、一体物でもよいし、冷媒通路部分で分離されているものを積層してもよい。このような磁気熱量材料10と冷媒通路20の構造は、従来技術と同様に製造すればよく特に限定されない。 The magnetocaloric material 10 may be an integral material or may be laminated with materials separated at the refrigerant passage portion. The structure of the magnetocaloric material 10 and the refrigerant passage 20 is not particularly limited as long as it is manufactured in the same manner as in the prior art.
 永久磁石30は磁気発生装置であり、磁気熱量材料10に対して磁気の印加を行うためのもので、磁気熱量材料10に対して近接離間するように移動する。したがって、図2(a)に示したように永久磁石30が磁気熱量材料10の直上および直下の位置に来ているときに、磁気が印加される(磁気熱量材料10が永久磁石30によって形成される磁界内に入っている状態)。一方、図2(b)に示したように永久磁石30が磁気熱量材料10の直上および直下の位置にないときは磁気が除去される(磁気熱量材料10が永久磁石30によって形成される磁界内に無い状態)。 The permanent magnet 30 is a magnetism generator and is used for applying magnetism to the magnetocaloric material 10 and moves so as to be close to and away from the magnetocaloric material 10. Therefore, as shown in FIG. 2A, magnetism is applied when the permanent magnet 30 is positioned immediately above and below the magnetocaloric material 10 (the magnetocaloric material 10 is formed by the permanent magnet 30. In a magnetic field). On the other hand, as shown in FIG. 2B, the magnetism is removed when the permanent magnet 30 is not directly above or below the magnetocaloric material 10 (in the magnetic field formed by the permanent magnet 30). Not in the state).
 各冷媒通路20内には、冷媒となる液体金属18が移動自在に配置されている。本実施形態では液体金属18が冷媒としてエレクトロウェッティング作用により冷媒通路20内を移動することで低温側熱交換器41から高温側熱交換器42に熱を伝達している。冷媒通路20内の構造、液体金属18、およびエレクトロウェッティング作用については後述する。 In each refrigerant passage 20, a liquid metal 18 serving as a refrigerant is movably disposed. In this embodiment, the liquid metal 18 moves as a refrigerant in the refrigerant passage 20 by electrowetting action, so that heat is transferred from the low temperature side heat exchanger 41 to the high temperature side heat exchanger 42. The structure in the refrigerant passage 20, the liquid metal 18, and the electrowetting action will be described later.
 ここでこの磁気冷暖房装置の基本的な動作を説明する。ここでは、たとえば磁気を印加すると発熱し、磁気を除去すると吸熱する正の磁気熱量材料10を用いるものとして説明する。 Here, the basic operation of this magnetic air conditioner will be explained. Here, for example, it is assumed that a positive magnetocaloric material 10 that generates heat when applying magnetism and absorbs heat when removing magnetism is used.
 図2(a)に示したように永久磁石30が磁気熱量材料10の直上および直下の位置に来ているときに磁気が印加される。磁気が印加されるときに磁気熱量材料10は発熱する。このとき冷媒を低温側熱交換器41から高温側熱交換器42へ移動させることで、磁気熱量材料10の発熱により冷媒が温められて高温側熱交換器42へ移動することになるので、高温側熱交換器42の温度が上昇する。 As shown in FIG. 2A, magnetism is applied when the permanent magnet 30 is at a position immediately above and below the magnetocaloric material 10. The magnetocaloric material 10 generates heat when magnetism is applied. At this time, by moving the refrigerant from the low temperature side heat exchanger 41 to the high temperature side heat exchanger 42, the refrigerant is warmed by the heat generated by the magnetocaloric material 10 and moved to the high temperature side heat exchanger 42. The temperature of the side heat exchanger 42 rises.
 逆に図2(b)に示したように永久磁石30が磁気熱量材料10の直上および直下の位置にないときは磁気が除去される。磁気が除去されるときに磁気熱量材料10は冷える。このとき冷媒を高温側熱交換器42から低温側熱交換器41へ移動させることで、磁気熱量材料10の吸熱により冷媒が冷やされて低温側熱交換器41へ移動することになるので、低温側熱交換器41の温度が低下する。 Conversely, as shown in FIG. 2B, the magnetism is removed when the permanent magnet 30 is not located directly above or directly below the magnetocaloric material 10. The magnetocaloric material 10 cools when the magnetism is removed. At this time, by moving the refrigerant from the high temperature side heat exchanger 42 to the low temperature side heat exchanger 41, the refrigerant is cooled by heat absorption of the magnetocaloric material 10 and moved to the low temperature side heat exchanger 41. The temperature of the side heat exchanger 41 decreases.
 このような磁気熱量材料10の発熱、吸熱に合わせて冷媒の移動を繰り返すことで、低温側熱交換器41から高温側熱交換器42に磁気熱量材料10により発生した熱が伝達されるのである。 Heat generated by the magnetocaloric material 10 is transmitted from the low temperature side heat exchanger 41 to the high temperature side heat exchanger 42 by repeatedly moving the refrigerant in accordance with the heat generation and heat absorption of the magnetocaloric material 10. .
 図3は磁気冷暖房装置の冷媒通路20内部の詳細と動作を説明するための断面図である。図3においては、1つ分の冷媒通路部分を示したが、他の冷媒通路20も同様の構成である。 FIG. 3 is a cross-sectional view for explaining the details and operation inside the refrigerant passage 20 of the magnetic air conditioner. Although one refrigerant passage portion is shown in FIG. 3, the other refrigerant passages 20 have the same configuration.
 まず、冷媒通路20内の構造を説明する。 First, the structure in the refrigerant passage 20 will be described.
 図3に示すように、冷媒通路20内には、第1電極12、第2電極13、ポジションセンサー15a~15eを有する。第1電極12は冷媒通路20内に露出しており液体金属18と電気的に接触することができるようになっている。第2電極13は壁面側に誘電体14を介して設けられている。このため第2電極13は冷媒通路20内に露出しておらす、液体金属18とは絶縁されている。 As shown in FIG. 3, the refrigerant passage 20 includes a first electrode 12, a second electrode 13, and position sensors 15a to 15e. The first electrode 12 is exposed in the refrigerant passage 20 so as to be in electrical contact with the liquid metal 18. The second electrode 13 is provided on the wall surface via a dielectric 14. Therefore, the second electrode 13 is exposed in the refrigerant passage 20 and insulated from the liquid metal 18.
 第1電極12は、一つの第2電極13に着目すると、その両側に一つずつ存在する。これは、液体金属18の進行方向に対して、常に第2電極13が先にあり、第1電極12が後ろにあるようにするためである(詳細後述)。そして、第1電極12と第2電極13は液体金属18の進行方向に対して第2電極13の後方に位置する第1電極12との間で電気回路を構成することになる。すなわち、図3(a)~(c)に示したように、液体金属18の進行方向が図示右方向(図中矢印方向)の場合には、図示するように第1電極12と第2電極13が一対となって直流電源に接続された電気回路101a~101dを構成する。 Referring to one second electrode 13, one first electrode 12 exists on each side. This is because the second electrode 13 is always first and the first electrode 12 is always rearward with respect to the traveling direction of the liquid metal 18 (details will be described later). The first electrode 12 and the second electrode 13 constitute an electric circuit with the first electrode 12 located behind the second electrode 13 with respect to the traveling direction of the liquid metal 18. That is, as shown in FIGS. 3A to 3C, when the traveling direction of the liquid metal 18 is the right direction in the figure (the arrow direction in the figure), the first electrode 12 and the second electrode as shown in the figure. 13 constitutes a pair of electric circuits 101a to 101d connected to a DC power source.
 一方、進行方向が図3の逆になる場合、すなわち後述する図4に示したように、図示左方向(図4中矢印方向)の場合は、液体金属18の進行方向に対して第2電極13の後方に位置する第1電極12が一対となって直流電源に接続された電気回路102a~102dを構成することになる。 On the other hand, when the traveling direction is opposite to that in FIG. 3, that is, as shown in FIG. Thus, a pair of first electrodes 12 located behind 13 constitutes electric circuits 102a to 102d connected to a DC power source.
 ポシションセンサー15a~15eは、液体金属18の現在位置を知るためのものである。このポジションセンサーもまた電極であり、第1電極12との間の抵抗値を計ることで液体金属18の有無を判断している。すなわち、ポジションセンサー15a~15eと第1電極12間の抵抗値が低ければ(導通状態)、液体金属18がそれらの間に存在することがわかる。一方、ポジションセンサー15a~15eと第1電極12間の抵抗値が高ければ(非導通状態)、液体金属18がそれらの間に存在しないことがわかる。 Position sensors 15a to 15e are used to know the current position of the liquid metal 18. This position sensor is also an electrode, and the presence or absence of the liquid metal 18 is determined by measuring a resistance value between the position sensor and the first electrode 12. That is, if the resistance value between the position sensors 15a to 15e and the first electrode 12 is low (conductive state), it can be seen that the liquid metal 18 exists between them. On the other hand, if the resistance value between the position sensors 15a to 15e and the first electrode 12 is high (non-conductive state), it can be seen that the liquid metal 18 does not exist between them.
 第1電極12、第2電極13、およびポシションセンサー15a~15eは、銅、アルミニウム、金など(あるいはこれらの合金やメッキ品など)、また、導電性を有する半導体(たとえば導電性を付与する不純物をドープしたポリシリコン)など導電性のあるものであればよい。 The first electrode 12, the second electrode 13, and the position sensors 15a to 15e are made of copper, aluminum, gold or the like (or an alloy or plated product thereof), or a conductive semiconductor (for example, an impurity imparting conductivity). Any material may be used as long as it is electrically conductive.
 誘電体14は、たとえば酸化シリコンや窒化シリコンなど、絶縁性のある材料を用いることができる。そのほか誘電率の高い材料などを用いてもよい。 The dielectric 14 can be made of an insulating material such as silicon oxide or silicon nitride. In addition, a material having a high dielectric constant may be used.
 そして冷媒通路20内には、液体金属18(導電性流体と称されることもある)が移動自在に配置されている。本実施形態では、液体金属18は冷媒通路20内で2つに分離させて配置している(図3および図4では18aおよび18bとして示した。ただし、これらを区別なく総称する場合は単に符号18と記載する)。液体金属18aおよび18bをとして2つに分離することで効率よく移動させることができる。 In the refrigerant passage 20, a liquid metal 18 (sometimes referred to as a conductive fluid) is movably disposed. In this embodiment, the liquid metal 18 is separated into two parts in the refrigerant passage 20 (shown as 18a and 18b in FIGS. 3 and 4). 18). By separating the liquid metals 18a and 18b into two, they can be moved efficiently.
 低温側熱交換器41および高温側熱交換器42には、液体金属18を収容するための空間が設けられている。そしてこの空間の容積は液体金属18が低温側または高温側に完全に移動したときでも、液体金属18の一部が冷媒通路20内に残る大きさとなるようにしている。液体金属18が残る部分は、両端部にある第1電極12と第2電極13の両方に液体金属18がかかるようにする(図3(a)および(c)参照)。液体金属18が第1電極12と第2電極13の両方にかかっていないと、エレクトロウェッティングの原理(後述)から液体金属18の移動を開始できないからである。 A space for accommodating the liquid metal 18 is provided in the low temperature side heat exchanger 41 and the high temperature side heat exchanger 42. The volume of the space is such that a part of the liquid metal 18 remains in the refrigerant passage 20 even when the liquid metal 18 has completely moved to the low temperature side or the high temperature side. In the portion where the liquid metal 18 remains, the liquid metal 18 is applied to both the first electrode 12 and the second electrode 13 at both ends (see FIGS. 3A and 3C). This is because the movement of the liquid metal 18 cannot be started from the principle of electrowetting (described later) unless the liquid metal 18 is applied to both the first electrode 12 and the second electrode 13.
 また、低温側熱交換器41および高温側熱交換器42に設けた空間には、図示しない空気孔が設けられている。この空気孔は液体金属18がこの空間に出入りする際に空間内の空気を逃がしたり取り入れたりするためである。なお、空気孔は液体金属18が空間内を出入りする際に液体金属が漏れ出ない大きさや位置に配置しておく。 Further, air holes (not shown) are provided in the spaces provided in the low temperature side heat exchanger 41 and the high temperature side heat exchanger 42. This air hole is for the air in the space to escape or take in when the liquid metal 18 enters or exits the space. Note that the air holes are arranged in a size and position where the liquid metal does not leak when the liquid metal 18 enters and exits the space.
 冷媒通路20内の壁面のうち、低温側熱交換器41および高温側熱交換器42のそれぞれの近傍(図3(a)中のEH部分)は、第1電極12や誘電体14の表面の一部を含め端部まで電圧を印加しない状態で液体金属18との接触角(θ)(接触角については後述する)が90°未満(すなわちθ<90°)となるように高表面エネルギー化処理がなされている。高表面エネルギー化処理とは、いわゆる親液性の状態となる処理である。これにより液体金属18が低温側熱交換器41および高温側熱交換器42に全て移動したときでも、液体金属18が冷媒通路20の端にへばりついて残りやすくなる。一方、上記EL部分以外の冷媒通路20内の壁面(図3(a)中のEL部分)は、冷媒の接触角(θ)が90°以上(すなわちθ≧90°)となる低表面エネルギー化処理がなされている。低表面エネルギー化処理とは、いわゆる疎液性の状態である。これにより液体金属18が冷媒通路20内で電圧の印加/非印加による液体金属18の形状変化を起こしやすくしている(形状変化については後述する)。なお、図3中EHおよびELの範囲は図3(a)にのみ示し他の図については省略した。 Among the wall surfaces in the refrigerant passage 20, the vicinity of each of the low temperature side heat exchanger 41 and the high temperature side heat exchanger 42 (EH portion in FIG. 3A) is the surface of the first electrode 12 or the dielectric 14. The surface energy is increased so that the contact angle (θ) with the liquid metal 18 (the contact angle will be described later) is less than 90 ° (that is, θ <90 °) with no voltage applied to the end including part. Processing has been done. High surface energy treatment is a treatment that results in a so-called lyophilic state. As a result, even when the liquid metal 18 has all moved to the low temperature side heat exchanger 41 and the high temperature side heat exchanger 42, the liquid metal 18 sticks to the end of the refrigerant passage 20 and tends to remain. On the other hand, the wall surface in the refrigerant passage 20 other than the EL part (EL part in FIG. 3A) has a low surface energy so that the refrigerant contact angle (θ) is 90 ° or more (that is, θ ≧ 90 °). Processing has been done. The low surface energy treatment is a so-called lyophobic state. This makes it easy for the liquid metal 18 to cause a change in the shape of the liquid metal 18 due to the application / non-application of a voltage in the refrigerant passage 20 (the shape change will be described later). In FIG. 3, the ranges of EH and EL are shown only in FIG. 3 (a), and other figures are omitted.
 液体金属18は、少なくともこの磁気冷暖房装置が使用される温度範囲において液体の金属である。たとえば、ガリウム、インジウム、スズの共晶合金であるガリンスタンを用いることができる。ガリンスタンは、常温で液体の金属であり、ガリウム、インジウム、スズの組成よって融点が異なる。たとえば、ガリウム68.5%、インジウム21.5%、スズ10%のガリンスタンは、融点:-19℃、沸点:1300℃以上、比重:6.44g/cm、粘度:0.0024Pa・s(at20℃)、熱伝導率:16.5W/(m・K)である。そのほかにも、周知の様々な液体金属を用いてもよく、熱伝達率が高いものが好ましい。 The liquid metal 18 is a liquid metal at least in a temperature range in which the magnetic air conditioner is used. For example, galinstan which is a eutectic alloy of gallium, indium and tin can be used. Galinstan is a metal that is liquid at room temperature and has a different melting point depending on the composition of gallium, indium, and tin. For example, a galinstan of 68.5% gallium, 21.5% indium and 10% tin has a melting point: −19 ° C., a boiling point: 1300 ° C. or more, a specific gravity: 6.44 g / cm 3 , and a viscosity: 0.0024 Pa · s ( at 20 ° C.) and thermal conductivity: 16.5 W / (m · K). In addition, various known liquid metals may be used, and those having a high heat transfer coefficient are preferable.
 ここで、エレクトロウェッティングについて説明する。図5は、エレクトロウェッティングを説明するための説明図である。エレクトロウェッティングによる液体金属18の移動自体には、公知であり、たとえば、特開2007-103363号公報などに開示されるので、ここでは本実施形態の理解のために必要な原理について説明する。 Here, we will explain electrowetting. FIG. 5 is an explanatory diagram for explaining electrowetting. The movement of the liquid metal 18 by electrowetting is known per se and is disclosed in, for example, Japanese Patent Application Laid-Open No. 2007-103363. Therefore, the principle necessary for understanding the present embodiment will be described here.
 エレクトロウェッティングは、電極板500上に設けられた誘電体501の表面に液体金属18(ここでは液滴として示した)を乗せ、電極板500と液体金属18の間に電圧を印加することで、誘電体表面における液体金属18との濡れ性を制御する技術である。 Electrowetting is performed by placing a liquid metal 18 (shown as a droplet here) on the surface of a dielectric 501 provided on the electrode plate 500 and applying a voltage between the electrode plate 500 and the liquid metal 18. This is a technique for controlling wettability with the liquid metal 18 on the dielectric surface.
 電極板500と液体金属18との間は誘電体501を介してキャパシターが形成されている。図5(a)に示すように、電極板500と液体金属18との間に電圧を印加すると、このキャパシターの静電エネルギーが変化(増加)して、それに相当する液体金属18の表面エネルギーが減少し、液体金属18の表面張力が低下する。これにより液体金属18の表面に対する接触角θが変化する。ここで接触角θとは、液体金属18が乗っている誘電体501の表面における液体金属表面とのなす角をいう。この接触角θは、液体金属18の表面張力に応じて0°~180°の範囲で変化する。 A capacitor is formed between the electrode plate 500 and the liquid metal 18 via a dielectric 501. As shown in FIG. 5A, when a voltage is applied between the electrode plate 500 and the liquid metal 18, the electrostatic energy of the capacitor changes (increases), and the surface energy of the liquid metal 18 corresponding thereto changes. The surface tension of the liquid metal 18 is reduced. As a result, the contact angle θ with respect to the surface of the liquid metal 18 changes. Here, the contact angle θ is an angle between the surface of the dielectric 501 on which the liquid metal 18 is placed and the surface of the liquid metal. The contact angle θ varies in the range of 0 ° to 180 ° depending on the surface tension of the liquid metal 18.
 図5(a)に示すように、電圧非印加時に、接触角θは、90°を超えて180°以下となっている。これが濡れ性の悪い状態であり、表面が疎液性(撥液性ともいう)であれば図示するように液滴の球になる。 As shown in FIG. 5A, when no voltage is applied, the contact angle θ exceeds 90 ° and is 180 ° or less. This is a state of poor wettability, and if the surface is lyophobic (also called lyophobic), it becomes a droplet sphere as shown.
 一方、図5(b)に示すように、電圧印加時には、接触角θは、0°から90°までとなる。これが液体金属18に対する表面の濡れ性が良い状態、すなわち親液性のある状態になる。図5(a)の液滴の状態から図5(b)の状態になる際に、液滴の端では親液性となった先端が、次々に表面と接触するようになる。このとき液滴の先端を見ると表面と接触しようとする力が働くのである。この力を利用することで、液体金属18を移動させることが可能となる。逆に電圧が印加された状態から電圧を切ることで、液体金属18は図5(b)の状態から図5(a)の状態に戻ろうとする。つまり、液滴の状態にその形状が戻ろうとする力が働くのである。これもまた、液体金属18を移動する力となる。このときの力は、図5(a)から(b)の場合と逆方向の力になる。 On the other hand, as shown in FIG. 5B, when a voltage is applied, the contact angle θ is 0 ° to 90 °. This is a state where the wettability of the surface with respect to the liquid metal 18 is good, that is, a lyophilic state. When the state of the droplet in FIG. 5A is changed to the state in FIG. 5B, the tip that becomes lyophilic at the end of the droplet comes into contact with the surface one after another. At this time, when looking at the tip of the droplet, a force to contact the surface works. By utilizing this force, the liquid metal 18 can be moved. Conversely, by cutting the voltage from the state where the voltage is applied, the liquid metal 18 tries to return from the state shown in FIG. 5B to the state shown in FIG. That is, a force is applied to return the shape to the state of the droplet. This is also a force for moving the liquid metal 18. The force at this time is a force in the direction opposite to that in the case of FIGS.
 図5においては、液体金属18の全体が誘電体501を介した一つの電極板500上に載っている。このため液滴の形状が変化しようとする力が働いても、その力は全体に均等に加わるため、移動することはない。しかし、液滴の一部の先端のみを誘電体14を介した電極板上に位置させると、その一部分でのみエレクトロウェッティングの作用が働いて、その部分の形状のみが変化するようになる。これによりその液滴(液体金属18)には特定の方向への力が働くようになるため移動させることができるのである。 In FIG. 5, the entire liquid metal 18 is placed on one electrode plate 500 with a dielectric 501 interposed therebetween. For this reason, even if a force for changing the shape of the droplet is applied, the force is applied evenly to the whole, so that it does not move. However, if only the tip of a part of the droplet is positioned on the electrode plate via the dielectric 14, the electrowetting action works only on that part, and only the shape of that part changes. As a result, the liquid droplet 18 (liquid metal 18) can be moved because a force in a specific direction is applied.
 図3へ戻り、冷媒通路20内における液体金属18の移動について説明する。ここでは図中左から右に液体金属18が移動する場合を例に、基本的な動作について説明する。 3, the movement of the liquid metal 18 in the refrigerant passage 20 will be described. Here, the basic operation will be described by taking as an example the case where the liquid metal 18 moves from left to right in the figure.
 まず、図3(a)示すように、液体金属18aがポジションセンサー15aにより検出されている状態で、電気回路101aをオンにする。その他はオフである。これにより液体金属18aが到達している第2電極部分では液体金属18a先端は、冷媒通路20の壁面(誘電体表面)との接触角θが90°以下になる。このため液体金属18aは図示右方向に駆動力が生じて進行を開始することになる。 First, as shown in FIG. 3A, the electric circuit 101a is turned on while the liquid metal 18a is detected by the position sensor 15a. Others are off. As a result, the contact angle θ of the tip of the liquid metal 18a with the wall surface (dielectric surface) of the coolant passage 20 becomes 90 ° or less at the second electrode portion where the liquid metal 18a has reached. For this reason, the liquid metal 18a is driven to generate a driving force in the right direction in the figure and starts to advance.
 このとき、移動方向の先にある液体金属18bが位置している電気回路101cおよび101dはオフである。したがって、この部分に存在する液体金属18bの後端側は第2電極13との間でキャパシター成分が生じていないため、壁面(誘電体表面)との接触角θが90°以上になる。このため液体金属18bの後端は液滴の形状に戻ろうとする力が働くことになる。この力は液体金属18bの後端を図示右方向へ移動させる力となる。このため、液体金属18bは、液体金属18bが右へ移動することにより、間にある空気を介して押されるとともに、自らもその後端側で発生した力によって右方向へ移動することになる。 At this time, the electric circuits 101c and 101d where the liquid metal 18b ahead of the moving direction is located are off. Therefore, since no capacitor component is generated between the rear end side of the liquid metal 18b existing in this portion and the second electrode 13, the contact angle θ with the wall surface (dielectric surface) becomes 90 ° or more. For this reason, a force to return the liquid metal 18b to the shape of the droplet acts. This force is a force for moving the rear end of the liquid metal 18b in the right direction in the figure. For this reason, the liquid metal 18b is pushed through the air in between when the liquid metal 18b moves to the right, and also moves to the right by the force generated on the rear end side.
 このように液体金属18aは電圧の印加により右方向へ移動する駆動力が働き、また液体金属18bの後端も電圧が印加されないことで、右方向へ移動する駆動力が働くことになる。これにより液体金属18aおよび18bはいずれも右方向へ移動してゆくのである。 Thus, the liquid metal 18a has a driving force that moves in the right direction when a voltage is applied, and a voltage that is applied to the rear end of the liquid metal 18b also has a driving force that moves in the right direction. As a result, both the liquid metals 18a and 18b move to the right.
 その後、図3(b)の状態になるまで液体金属18aが移動すると、電気回路101b手前のポジションセンサー15bにより液体金属18aが来たことが検出される。 Thereafter, when the liquid metal 18a moves until the state shown in FIG. 3B is reached, it is detected by the position sensor 15b in front of the electric circuit 101b that the liquid metal 18a has come.
 ここで、ポジションセンサーの働きを説明する。本実施形態では、液体金属18が2つに分離している。このため単純にポジションセンサーと第1電極12との間で導通したことが毛では、それが液体金属18aなのか18bなのか判別できない。そこでポジションセンサーと第1電極12との間で非導通状態から導通状態に切り換わることで、液体金属18の進行方向に対して液体金属18の先端がポジションセンサーに到達したと判別するのである。したがって、図3(b)においては、ポジションセンサー15bが非導通状態から導通状態に切り換われば液体金属18aがポジションセンサー15bに到達したものとわかることになる。 Here, the function of the position sensor will be explained. In the present embodiment, the liquid metal 18 is separated into two. For this reason, if the hair is simply conducted between the position sensor and the first electrode 12, it cannot be determined whether the hair is the liquid metal 18a or 18b. Therefore, by switching from the non-conductive state to the conductive state between the position sensor and the first electrode 12, it is determined that the tip of the liquid metal 18 has reached the position sensor with respect to the traveling direction of the liquid metal 18. Therefore, in FIG. 3B, it can be understood that the liquid metal 18a has reached the position sensor 15b when the position sensor 15b is switched from the non-conductive state to the conductive state.
 一方、ポジションセンサーと第1電極12との間で導通状態から非導通状態に切り換わることで、液体金属18の進行方向に対して液体金属18の後端がポジションセンサーを通過したことがわかる。したがって、図3(b)においては、ポジションセンサー15cが導通状態から非導通状態に切り換われば液体金属18bがポジションセンサー15cを通過したとわかるのである。 On the other hand, by switching from the conductive state to the non-conductive state between the position sensor and the first electrode 12, it can be seen that the rear end of the liquid metal 18 has passed through the position sensor with respect to the traveling direction of the liquid metal 18. Therefore, in FIG. 3B, it can be understood that the liquid metal 18b has passed through the position sensor 15c when the position sensor 15c is switched from the conductive state to the non-conductive state.
 ポジションセンサー15bにより液体金属18aが来たことが検出されれば、電気回路101bをオンにする。この時点で、その他の電気回路はオフにする。このとき液体金属18aが到達している電気回路101bの第2電極部分では液体金属18a先端は、壁面との接触角θが90°以下になり、さらに図示右方向に駆動力が生じて進行してゆく。また液体金属18bの後端も右方向へ移動してゆく。 When it is detected by the position sensor 15b that the liquid metal 18a has come, the electric circuit 101b is turned on. At this point, the other electrical circuits are turned off. At this time, in the second electrode portion of the electric circuit 101b to which the liquid metal 18a has reached, the contact angle θ with the wall surface of the tip of the liquid metal 18a is 90 ° or less, and further, a driving force is generated in the right direction in the figure and proceeds. Go. The rear end of the liquid metal 18b also moves to the right.
 さらに液体金属18が移動を続け、図3(c)の状態にまで液体金属18aが移動すると、ポジションセンサー15dにより検出される。このとき、液体金属18bは、これ以上右へ移動することができない位置まで到達することになる。このため液体金属18aがポジションセンサー15dにより検出された時点で、すべての電気回路をオフにする。これにより液体金属18aも18bも停止することになる。 Further, when the liquid metal 18 continues to move and the liquid metal 18a moves to the state shown in FIG. 3C, it is detected by the position sensor 15d. At this time, the liquid metal 18b reaches a position where it can no longer move to the right. For this reason, when the liquid metal 18a is detected by the position sensor 15d, all electric circuits are turned off. This stops both the liquid metal 18a and 18b.
 このようにして、ポジションセンサー15a~15dにより液体金属18aが検出された順に、電気回路101a~101dを構成している第1電極12および第2電極13の間に電圧を印加してゆくことで、液体金属18aおよび18bを一方向に移動させることができる。 In this way, a voltage is applied between the first electrode 12 and the second electrode 13 constituting the electric circuits 101a to 101d in the order in which the liquid metal 18a is detected by the position sensors 15a to 15d. The liquid metals 18a and 18b can be moved in one direction.
 次に、液体金属18aおよび18bを図示右から左に移動させる場合について説明する。基本的な動作は図3を用いて説明したものと同様であるので、ここでは説明の一部を省略する。図4は液体金属18を図示右から左に移動させる場合の説明図である。 Next, a case where the liquid metals 18a and 18b are moved from the right to the left in the drawing will be described. Since the basic operation is the same as that described with reference to FIG. 3, a part of the description is omitted here. FIG. 4 is an explanatory diagram when the liquid metal 18 is moved from the right to the left in the drawing.
 液体金属18aおよび18bを図示右から左に移動させる場合は、液体金属18の進行方向に対して、第2電極13より後方の第1電極12が一対となる電気回路102a~102dが構成されるようにする。 When the liquid metals 18a and 18b are moved from the right to the left in the figure, electric circuits 102a to 102d in which the first electrode 12 behind the second electrode 13 is paired with respect to the traveling direction of the liquid metal 18 are configured. Like that.
 そして、液体金属18bがポジションセンサー15eにより検出されている状態で、電気回路102aをオンにする。その他はオフである。これにより液体金属18bが到達している第2電極13部分では液体金属18b先端は、冷媒通路20の壁面(誘電体表面)との接触角θが90°以下になる。このため液体金属18bは図示左方向(図中矢印方向)に駆動力が生じて進行を開始することになる。 Then, the electric circuit 102a is turned on while the liquid metal 18b is detected by the position sensor 15e. Others are off. As a result, in the second electrode 13 portion where the liquid metal 18b has reached, the contact angle θ between the tip of the liquid metal 18b and the wall surface (dielectric surface) of the refrigerant passage 20 becomes 90 ° or less. For this reason, the liquid metal 18b is driven to generate a driving force in the left direction in the figure (in the direction of the arrow in the figure) and starts to advance.
 以降、図3の場合と同様(進行方向が逆)に、ポジションセンサー15d~15aにより液体金属18bが検出される順に、電気回路102b~102dをオン、オフを切り換えてゆくことで、液体金属18bと18aを右から左へ移動させるのである。 Thereafter, as in the case of FIG. 3 (the traveling direction is reversed), the liquid metal 18b is switched by turning on and off the electric circuits 102b to 102d in the order in which the liquid metal 18b is detected by the position sensors 15d to 15a. And 18a are moved from right to left.
 図6は、ポジションセンサーと液体金属18の位置関係を説明するためのグラフである。このグラフは、x軸方向を時間経過、y軸方向をポジションセンサーのオン(ON)、オフ(OFF)の状態、z軸方向を液体金属18の位置とした3次元グラフである。なお、このグラフは上述した図3(a)~(c)で説明した移動の状態を示している。 FIG. 6 is a graph for explaining the positional relationship between the position sensor and the liquid metal 18. This graph is a three-dimensional graph in which the x-axis direction is time elapsed, the y-axis direction is the position sensor on (ON) and off (OFF) state, and the z-axis direction is the position of the liquid metal 18. This graph shows the state of movement described in FIGS. 3A to 3C described above.
 図示するように、液体金属18aが移動して、ポジションセンサー15aに到達した時点で電気回路101aをオンする。その後、ポジションセンサー15aが液体金属18aを検出している間、オン状態が継続する。そして液体金属18aを次のポジションセンサー15bが検出した時点で電気回路101aをオフすると同時に電気回路101bをオンする。そしてポジションセンサー15cが液体金属18aを検出すると、それ以上移動させないために、すべての電気回路101a~101dをオフする。 As shown in the drawing, when the liquid metal 18a moves and reaches the position sensor 15a, the electric circuit 101a is turned on. Thereafter, the on state continues while the position sensor 15a detects the liquid metal 18a. When the next position sensor 15b detects the liquid metal 18a, the electric circuit 101a is turned off and at the same time the electric circuit 101b is turned on. When the position sensor 15c detects the liquid metal 18a, all the electric circuits 101a to 101d are turned off so as not to move further.
 図7は、液体金属18の位置と、電気回路による第1電極-第2電極間電圧の印加状態を説明するためのグラフである。このグラフは、x軸方向を時間経過、y軸方向を第1電極-第2電極間電圧の印加状態(印加時をeV、0Vを非印加時とした)、z軸方向を液体金属18の位置とした3次元グラフである。なお、このグラフも。上述した図3(a)~(c)で説明した移動の状態を示している。 FIG. 7 is a graph for explaining the position of the liquid metal 18 and the application state of the voltage between the first electrode and the second electrode by the electric circuit. This graph shows that the x-axis direction is time elapsed, the y-axis direction is the application state of the voltage between the first electrode and the second electrode (eV is applied and 0V is not applied), and the z-axis direction is the liquid metal 18. It is the three-dimensional graph made into the position. Also this graph. The movement states described in FIGS. 3A to 3C are shown.
 図示するように、液体金属18aが移動して、ポジションセンサー15aに到達した時点で電気回路にeVの電圧が印加される。その後、次のポジションセンサー15bが液体金属18aを検出するまでの間、電圧印加が継続する。そしてすでに説明したように、次々と液体金属18aがポジションセンサーで検出されるごとに電気回路のオンオフが切り換えられて、液体金属18aおよび18bが移動するのである。 As shown in the figure, when the liquid metal 18a moves and reaches the position sensor 15a, a voltage of eV is applied to the electric circuit. Thereafter, voltage application continues until the next position sensor 15b detects the liquid metal 18a. As described above, each time the liquid metal 18a is detected by the position sensor, the electrical circuit is switched on and off, and the liquid metals 18a and 18b move.
 図8は、磁気冷暖房装置において液体金属を移動させる制御手順を示すフローチャートである。 FIG. 8 is a flowchart showing a control procedure for moving the liquid metal in the magnetic air conditioner.
 まず、要求冷暖房能力とともに現在の高温側および低温側温度を入力する(S1)。要求冷暖房能力とは、エアコンなどの場合の設定温度の入力や単純に冷房運転とするか暖房運転とするかの別などである。これは、本冷暖房装置の使用者からの入力となる。また、現在の高温側および低温側温度とは、現在の高温側熱交換器42および低温側熱交換器41のそれぞれの温度をそれらに設けられている温度センサーから入力を受ける。 First, the current high temperature side and low temperature side temperatures are input together with the required cooling / heating capacity (S1). The required cooling / heating capacity is input of a set temperature in the case of an air conditioner or the like, whether it is simply a cooling operation or a heating operation. This is an input from the user of the air conditioning apparatus. Moreover, the present high temperature side and low temperature side temperature receive the temperature of each of the current high temperature side heat exchanger 42 and the low temperature side heat exchanger 41 from temperature sensors provided in them.
 次に、あらかじめ求めておいたマップを参照して入力された要求能力及び温度から運転条件を導出する(S2)。ここでマップとは、入力された要求能力及び現在温度から要求能力にするためには、どのような条件で運転すればよいかをあらかじめ決めたものである。運転条件はたとえば、磁気熱量材料10に対して磁気を印加/除去する周波数や冷媒(ここでは液体金属18)を移動させる周波数と振幅である。たとえば要求温度と現在温度の差が大きければ、早く冷やす(または温める)ために、磁気の印加/除去の周波数を高くすることになる(もちろん装置性能によって周波数には上限がある)。また、たとえば要求温度と現在温度の差があまり大きくなければ、早く冷やす(または温める)ことなく、磁気の印加/除去の周波数を低くして、動作の安定性やエネルギー効率を重視する運転とするなどである。一方、冷媒を移動させる振幅は低温側熱交換器41から高温側熱交換器42までの間で、何処まで冷媒(液体金属18)を移動させて反転させるかを決めるものである。これは、冷媒により移動させる温度(すなわち磁気熱量材料10の温度)によっては、冷媒を端から針まで移動させるよりも、移動距離を短くして細かく(周波数を高く)した方が効率よく熱を移動させることが出えきるためである。このような運転条件を設定するためのマップはあらかじめ実験やシミュレーション、あるいは数値演算などにより求めておくことになる。 Next, an operation condition is derived from the required capacity and temperature input with reference to a map obtained in advance (S2). Here, the map is determined in advance under what conditions should be operated in order to obtain the required capacity from the input required capacity and the current temperature. The operating conditions are, for example, a frequency for applying / removing magnetism to / from the magnetocaloric material 10 and a frequency and amplitude for moving the refrigerant (here, the liquid metal 18). For example, if the difference between the required temperature and the current temperature is large, the magnetic application / removal frequency is increased in order to cool (or warm) quickly (of course, there is an upper limit on the frequency depending on the performance of the apparatus). For example, if the difference between the required temperature and the current temperature is not so great, the frequency of applying / removing the magnetism is lowered without cooling (or warming) quickly, and the operation is focused on operational stability and energy efficiency. Etc. On the other hand, the amplitude at which the refrigerant is moved determines where the refrigerant (liquid metal 18) is moved and reversed between the low temperature side heat exchanger 41 and the high temperature side heat exchanger 42. Depending on the temperature moved by the refrigerant (that is, the temperature of the magnetocaloric material 10), it is more efficient to make the moving distance shorter and finer (higher frequency) than to move the refrigerant from the end to the needle. This is because it can be moved. A map for setting such operating conditions is obtained in advance by experiments, simulations, numerical calculations, or the like.
 次に、磁気の印加/除去の周波数から磁石の移動速度を導き、冷媒の現在位置を計測する(S3)。磁石の移動速度は、S2で導出された周波数から求める。一方、冷媒の現在位置はポジションセンサー15a~15eにより検出する。 Next, the moving speed of the magnet is derived from the frequency of magnetic application / removal, and the current position of the refrigerant is measured (S3). The moving speed of the magnet is obtained from the frequency derived in S2. On the other hand, the current position of the refrigerant is detected by the position sensors 15a to 15e.
 次に、S2同様にあらかじめ求めておいたマップを参照して冷媒の設定速度V0を導出する(S4)。ここでのマップは、S2と同様にあらかじめ求めたものであり、磁石の移動速度に対してどのような移動速度で冷媒を移動させれば効率的に熱の移動ができるかを定めたものである。そして、ここで求めた移動速度をV0として記憶しておく。 Next, the refrigerant set speed V0 is derived with reference to a map obtained in advance as in S2 (S4). The map here is obtained in advance in the same manner as in S2, and defines the moving speed of the refrigerant relative to the moving speed of the magnet to determine whether heat can be transferred efficiently. is there. The moving speed obtained here is stored as V0.
 次に、現在の冷媒速度V1を求める(S5)。冷媒の現在の速度V1は、ポジションセンサー15a~15dの間隔(距離)と、ポジションセンサー15a~15dで検出された時間により求められる。なお、ここで現在の冷媒速度V1とは、液体金属18先端の界面における速度となる。 Next, the current refrigerant speed V1 is obtained (S5). The current speed V1 of the refrigerant is obtained from the interval (distance) between the position sensors 15a to 15d and the time detected by the position sensors 15a to 15d. Here, the current refrigerant velocity V1 is the velocity at the interface of the tip of the liquid metal 18.
 そして冷媒速度V1と設定速度V0との差の絶対値が所定値以下か否かを判断する(S6)。ここで所定値は任意に設定された値であり、この所定値が小さければ、冷媒速度を細かく制御できるようになる。ただし、あまり所定値を小さくしすぎると、常に冷媒速度が変動することになって、冷媒である液体金属18を安定的に移動できなくなるおそれがあるこのため、この所定値はたとえばあらかじめ実験などに安定的に液体金属18の速度を変化させることのできる値となるように求めておくことが好ましい。 Then, it is determined whether or not the absolute value of the difference between the refrigerant speed V1 and the set speed V0 is equal to or less than a predetermined value (S6). Here, the predetermined value is an arbitrarily set value. If the predetermined value is small, the refrigerant speed can be finely controlled. However, if the predetermined value is too small, the refrigerant speed always fluctuates, and there is a possibility that the liquid metal 18 that is the refrigerant cannot be stably moved. It is preferable to obtain a value that can stably change the speed of the liquid metal 18.
 S6において、冷媒速度V1と設定速度V0との差の絶対値が所定値未満でなければ、S4へ戻り、以降の処理を継続することになる。 In S6, if the absolute value of the difference between the refrigerant speed V1 and the set speed V0 is not less than the predetermined value, the process returns to S4 and the subsequent processing is continued.
 S6において、冷媒速度V1と設定速度V0との差の絶対値が所定値以下である場合(S6:YES)、現在の冷媒速度V1が設定速度V0より速いか否かを判断する(S7)。 In S6, when the absolute value of the difference between the refrigerant speed V1 and the set speed V0 is equal to or less than a predetermined value (S6: YES), it is determined whether or not the current refrigerant speed V1 is faster than the set speed V0 (S7).
 S7で、冷媒速度V1が設定速度V0より速い場合は(S7:YES)、第1電極12と第2電極13の間にかけている電圧を下げるか、および/または印加時間を短くする(S8)。これにより現在の冷媒速度が遅くなる。一方、冷媒速度V1が設定速度V0より速くない場合は(S7:NO、すなわち冷媒速度V1が設定速度V0より遅い場合)、第1電極12と第2電極13の間にかけている電圧を上げるか、および/または印加時間を長くする(S9)。これにより現在の冷媒速度が速くなる。 In S7, when the refrigerant speed V1 is faster than the set speed V0 (S7: YES), the voltage applied between the first electrode 12 and the second electrode 13 is lowered and / or the application time is shortened (S8). This slows down the current refrigerant speed. On the other hand, when the refrigerant speed V1 is not faster than the set speed V0 (S7: NO, that is, when the refrigerant speed V1 is slower than the set speed V0), increase the voltage applied between the first electrode 12 and the second electrode 13, or And / or the application time is lengthened (S9). This increases the current refrigerant speed.
 なお、S8およびS9において、電圧や印加時間を変更するのはオンになっている電気回路を構成する第1電極12と第2電極13である。 In S8 and S9, it is the first electrode 12 and the second electrode 13 that make up the electric circuit that is turned on that changes the voltage and application time.
 ここで、S8およびS9において、電圧を変更するか印加時間を変えるかは、その時の速度差に応じて決定することになる。たとえば速度差が大きい場合は電圧と印加時間の両方を変更する。速度差があまり大きくなければ、電圧または印加時間のいずれか一方だけでもよい。好ましくは電圧を変更する方がよい。これは電圧の変更であれば、電極長さにかかわらず冷媒(液体金属18)の速度を変えることができる。しかし印加時間を変更する場合、第2電極13の長さが十分にないと、印加時間を変更してもそれに追従して冷媒の速度が変わるまでの間に液体金属18が電極面を通り過ぎてしまうため変更できないことがあるためである(特に冷媒の設定速度が速い場合に生じる可能性がある)。 Here, in S8 and S9, whether to change the voltage or change the application time is determined according to the speed difference at that time. For example, when the speed difference is large, both the voltage and the application time are changed. If the speed difference is not so large, either voltage or application time may be used. It is preferable to change the voltage. If this is a change in voltage, the speed of the refrigerant (liquid metal 18) can be changed regardless of the electrode length. However, when changing the application time, if the length of the second electrode 13 is not sufficient, the liquid metal 18 passes through the electrode surface until the refrigerant speed changes following the change of the application time. This is because there is a case where the change cannot be made (this may occur particularly when the set speed of the refrigerant is high).
 以上のようにして、液体金属18を冷媒に使用して磁気熱量材料10の熱を移動することができる。 As described above, the heat of the magnetocaloric material 10 can be transferred using the liquid metal 18 as a refrigerant.
 以上説明した本実施形態の効果を説明する。 The effect of this embodiment described above will be described.
 (1)本実施形態は、磁気熱量材料10に沿って設けた冷媒通路20内に液体金属18を配置し、この液体金属18をエレクトロウェッティング作用によって直接移動させるようにした。このため従来ポンプなどで冷媒を移動させる際に生じる圧損がない。このため、高速に冷媒となる液体金属18を移動させて熱を移動させることができる。 (1) In the present embodiment, the liquid metal 18 is disposed in the refrigerant passage 20 provided along the magnetocaloric material 10, and the liquid metal 18 is directly moved by the electrowetting action. For this reason, there is no pressure loss generated when the refrigerant is moved by a conventional pump or the like. For this reason, the liquid metal 18 used as a refrigerant can be moved at high speed to move the heat.
 また、ポンプなどが不要であるため、ポンプなどを駆動するエネルギーがゼロになるので、その結果としてCOPが向上する。また、冷媒の高速移動が可能となるので冷媒駆動の高周波化することができ、高出力密度化が可能となる(すなわち同じ冷暖房能力であれば装置を小型化しやすくなる)。 Also, since a pump or the like is unnecessary, the energy for driving the pump or the like becomes zero, and as a result, the COP is improved. Further, since the refrigerant can be moved at high speed, the frequency of driving the refrigerant can be increased, and the output density can be increased (that is, the apparatus can be easily miniaturized with the same cooling / heating capacity).
 (2)本実施形態は、冷媒通路20内に配置した一つの第1電極12と一つの第2電極13が一対となって一つの電気回路を構成するようにしている。この一対となった第1電極12および第2電極13を冷媒通路20内に複数設けている。そして、冷媒通路両端部もっとも近い位置に設けられている第1電極12および第2電極13上の誘電体表面の一部を含む冷媒通路壁面を高表面エネルギー化処理している。高表面エネルギー化処理とは電圧の非印加時に液体金属18との接触角が90°未満となる処理である(図5参照)。これにより冷媒通路20の端部において、液体金属18は壁面との関係では親液性となるので、常に(電圧の印加/非印加にかかわらず)液体金属18が両端部分にへばりつきやすい状態となる。このため液体金属18が移動し過ぎて、停止時に第1電極12および第2電極13から離れてしまうようなことを防止することができる。このため、次回移動を開始するとき(または往復移動させる時)に確実に液体金属18の移動を開始することができる。 (2) In the present embodiment, one electric circuit is configured by a pair of one first electrode 12 and one second electrode 13 arranged in the refrigerant passage 20. A plurality of pairs of the first electrode 12 and the second electrode 13 are provided in the refrigerant passage 20. Then, the surface of the refrigerant passage including a part of the dielectric surface on the first electrode 12 and the second electrode 13 provided at positions closest to both ends of the refrigerant passage is subjected to high surface energy treatment. The high surface energy treatment is a treatment in which the contact angle with the liquid metal 18 is less than 90 ° when no voltage is applied (see FIG. 5). As a result, the liquid metal 18 becomes lyophilic in relation to the wall surface at the end of the refrigerant passage 20, so that the liquid metal 18 is likely to stick to both end portions (regardless of whether the voltage is applied or not). . For this reason, it can prevent that the liquid metal 18 moves too much and leaves | separates from the 1st electrode 12 and the 2nd electrode 13 at the time of a stop. For this reason, the movement of the liquid metal 18 can be surely started when the next movement is started (or when reciprocating).
 (3)本実施形態はまた、高表面エネルギー化処理が施されていない冷媒通路内壁面は、低表面エネルギー化処理としている。低表面エネルギー化処理とは電圧の非印加時に液体金属18との接触角が90°以上となる処理である(図5参照)。これにより電圧印加時と非印加時における液体金属界面の形状変化が顕著に起こるようになる。したがって電圧印加時には親液性となって液体金属18が移動し、電圧非印加時には疎液性となって液体金属18を停止させることができる。 (3) In the present embodiment, the inner wall surface of the refrigerant passage that has not been subjected to the high surface energy treatment is subjected to the low surface energy treatment. The low surface energy treatment is a treatment in which the contact angle with the liquid metal 18 is 90 ° or more when no voltage is applied (see FIG. 5). As a result, the shape of the liquid metal interface changes significantly when a voltage is applied and when a voltage is not applied. Therefore, when the voltage is applied, the liquid metal 18 becomes lyophilic and the liquid metal 18 moves, and when no voltage is applied, the liquid metal 18 becomes lyophobic and can be stopped.
 (4)本実施形態は、冷媒通路20内に液体金属18の位置を検出するポジションセンサーを設けた。これにより、冷媒通路20内における液体金属18の現在位置を把握することができる。 (4) In the present embodiment, a position sensor that detects the position of the liquid metal 18 is provided in the refrigerant passage 20. Thereby, the current position of the liquid metal 18 in the refrigerant passage 20 can be grasped.
 (5)本実施形態は、ポジションセンサーによって検出した液体金属18の位置から液体金属18の速度を算出した。これにより。現在の液体金属18の位置と共にその移動速度を得ることができる。 (5) In this embodiment, the velocity of the liquid metal 18 is calculated from the position of the liquid metal 18 detected by the position sensor. By this. The moving speed can be obtained together with the current position of the liquid metal 18.
 (6)本実施形態は、液体金属18を移動させる設定速度と、ポジションセンサーにより得られた液体金属18の現在位置から得られた現在の速度を比較して、現在の速度が設定速度より遅い場合は、第1電極12と第2電極13との間に印加する電圧を上げるか、および/または印加時間を長くする。一方、比較の結果、現在の速度が設定速度より速い場合は、第1電極12と第2電極13との間に印加する電圧を下げるか、および/または印加時間を短くする。 (6) The present embodiment compares the set speed for moving the liquid metal 18 with the current speed obtained from the current position of the liquid metal 18 obtained by the position sensor, and the current speed is slower than the set speed. In this case, the voltage applied between the first electrode 12 and the second electrode 13 is increased and / or the application time is lengthened. On the other hand, if the current speed is faster than the set speed as a result of the comparison, the voltage applied between the first electrode 12 and the second electrode 13 is lowered and / or the application time is shortened.
 このようにすることで、設定速度に合うように冷媒となる液体金属18の移動速度を制御することができる。 In this way, the moving speed of the liquid metal 18 serving as a refrigerant can be controlled so as to match the set speed.
 (7)本実施形態は、第1電極12と第2電極13との間に電圧を印加することで、液体金属18の移動方向先端の形状を親液性となるようにしている。これによりエレクトロウェッティング作用によって液体金属18の先端で進行方向へ移動させる駆動力を得ることができる。 (7) In this embodiment, by applying a voltage between the first electrode 12 and the second electrode 13, the shape of the tip of the liquid metal 18 in the moving direction is made lyophilic. As a result, a driving force for moving in the traveling direction at the tip of the liquid metal 18 can be obtained by the electrowetting action.
 (8)本実施形態は、第1電極12と第2電極13との間に電圧を印加しないことで、液体金属18の移動方向後端の形状を疎液性となるようにしている。これによりエレクトロウェッティング作用によって液体金属18の後端で進行方向へ移動させる駆動力を得ることができる。 (8) In this embodiment, by applying no voltage between the first electrode 12 and the second electrode 13, the shape of the rear end in the moving direction of the liquid metal 18 is made lyophobic. As a result, a driving force for moving in the traveling direction at the rear end of the liquid metal 18 can be obtained by the electrowetting action.
 以上実施形態を説明したが、本発明は、このような実施形態に限定されるものではない、たとえば、第1電極12と第2電極13は、いずれも冷媒通路20内の一方の壁面に設置している。しかしこれに限らず第1電極12と第2電極13は、冷媒通路20内の壁面のどこにあってもよい。 Although the embodiment has been described above, the present invention is not limited to such an embodiment. For example, the first electrode 12 and the second electrode 13 are both installed on one wall surface in the refrigerant passage 20. is doing. However, the present invention is not limited to this, and the first electrode 12 and the second electrode 13 may be located anywhere on the wall surface in the refrigerant passage 20.
 たとえば第1電極12と第2電極13を対向する壁面に設けてもよい。この場合、液体金属18の進行方向に応じて一対となる第1電極12と第2電極13のペアを切り換える必要がない。さらに、隣接する壁面同士となるように設けてもよい。 For example, the first electrode 12 and the second electrode 13 may be provided on opposing wall surfaces. In this case, it is not necessary to switch the pair of the first electrode 12 and the second electrode 13 that are paired according to the traveling direction of the liquid metal 18. Furthermore, you may provide so that it may become adjacent wall surfaces.
 つまり、第1電極12は液体金属18に直接接して電気を流す位置にあればよく、一方、第2電極13を液体金属18に対して誘電体14を挟んでキャパシターを形成できる位置にあればよいのである。 That is, the first electrode 12 may be in a position where the first metal 12 is in direct contact with the liquid metal 18 to pass electricity, while the second electrode 13 is in a position where the capacitor 14 can be formed with the dielectric 14 sandwiched between the liquid metal 18. It's good.
 また、上述した実施形態では複数積層した磁気熱量材料10の間に冷媒通路20を設けている。すなわち見方によっては冷媒通路20の両側に磁気熱量材料10が存在することになっている。これに限らず、たとえば磁気熱量材料10の一面に沿って冷媒通路20を設けるだけの構造であってもよい。また、冷媒通路20についての大きさの制限はなく、液体金属18が移動可能な大きさであればどのような大きさであってもよい。したがって冷媒通路20の大きさは従来品(特許文献1のマイクロチャネル相当の大きさ)と同様であってもよいし、異なる大きさであってもよい。 In the above-described embodiment, the refrigerant passage 20 is provided between the plurality of laminated magnetocaloric materials 10. That is, the magnetocaloric material 10 is present on both sides of the refrigerant passage 20 depending on how it is viewed. Not only this but the structure which only provides the refrigerant path 20 along one surface of the magnetocaloric material 10, for example may be sufficient. Moreover, there is no restriction | limiting of the magnitude | size about the refrigerant path 20, and what kind of magnitude | size may be sufficient if the liquid metal 18 is a magnitude | size which can move. Therefore, the size of the refrigerant passage 20 may be the same as that of the conventional product (the size corresponding to the microchannel of Patent Document 1) or may be a different size.
 また、上述した実施形態では冷媒通路20内に液体金属18を2分割して設けているが、これに限らず、たとえば冷媒通路20内に一塊の液体金属18として使用してもよい。これについては、実施形態のように2分割したほうが液体金属18の先端と後端が冷媒通路20内に存在することになって駆動力を得やすい。しかし、一塊であっても液体金属18の先端または後端のいずれかが冷媒通路20内に位置してさえいれば、駆動力は得られるので液体金属18を移動させて冷媒とすることができる。 In the above-described embodiment, the liquid metal 18 is divided into two parts in the refrigerant passage 20. However, the present invention is not limited to this. For example, the liquid metal 18 may be used in the refrigerant passage 20 as a lump of liquid metal 18. About this, when dividing into 2 like embodiment, the front-end | tip and rear end of the liquid metal 18 exist in the refrigerant path 20, and it is easy to obtain a driving force. However, as long as either the front end or the rear end of the liquid metal 18 is located in the refrigerant passage 20 even if it is a single block, a driving force can be obtained, so that the liquid metal 18 can be moved to become a refrigerant. .
 また、上述した実施形態では冷媒通路20内に液体金属18の位置を検出するポジションセンサーを設けたが、これに限らず、ポジションセンサーを設けることなく、液体金属18の位置を予測して電気回路のオン、オフを順次切り換えることで液体金属18を移動させるようにしてもよい。 In the above-described embodiment, the position sensor for detecting the position of the liquid metal 18 is provided in the refrigerant passage 20. However, the present invention is not limited thereto, and the position of the liquid metal 18 is predicted without providing the position sensor. The liquid metal 18 may be moved by sequentially switching on and off.
 また、上述した実施形態では永久磁石30による磁気発生装置を設けたが、これに限らず、磁性流体やコイル等の他の手段を用いて磁気を発生させるようにしてもよい。 In the above-described embodiment, the magnet generator using the permanent magnet 30 is provided. However, the present invention is not limited to this, and magnetism may be generated using other means such as a magnetic fluid or a coil.
 そのほか本発明は特許請求の範囲に記載された構成によってなるものであり、実施形態に限定されるものではない。 In addition, the present invention is constituted by the configurations described in the claims, and is not limited to the embodiments.
10 磁気熱量材料、
12 第1電極、
13 第2電極、
14 誘電体、
18、18a、18b 液体金属、
20 冷媒通路、
30 永久磁石、
41 低温側熱交換器、
42 高温側熱交換器。
10 magnetocaloric material,
12 first electrode,
13 Second electrode,
14 dielectric,
18, 18a, 18b liquid metal,
20 refrigerant passage,
30 permanent magnets,
41 Low temperature side heat exchanger,
42 High temperature side heat exchanger.

Claims (8)

  1.  磁気の印加および除去により温度変化する磁気熱量材料と、
     前記磁気熱量材料に磁気を印加および除去する磁気発生装置と、
     前記磁気熱量材料に沿って設けられた冷媒通路と、
     前記冷媒通路内に移動自在に配置された液体金属と、
     前記冷媒通路内に露出して設けられ、前記液体金属と電気的に接続することができる第1電極と、
     前記冷媒通路内に、誘電体を介して設けられ前記液体金属と電気的に絶縁される第2電極と、
     を有し、
     前記第1電極と前記第2電極との間に電圧の印加、非印加を行うことでエレクトロウェッティング作用により前記液体金属を前記冷媒通路内で移動させることを特徴とする磁気冷暖房装置。
    A magnetocaloric material that changes temperature by applying and removing magnetism;
    A magnetic generator for applying and removing magnetism to the magnetocaloric material;
    A refrigerant passage provided along the magnetocaloric material;
    A liquid metal movably disposed in the refrigerant passage;
    A first electrode that is exposed in the refrigerant passage and can be electrically connected to the liquid metal;
    A second electrode provided in the refrigerant passage via a dielectric and electrically insulated from the liquid metal;
    Have
    A magnetic air conditioner that moves the liquid metal in the refrigerant passage by an electrowetting action by applying or not applying a voltage between the first electrode and the second electrode.
  2.  前記第1電極および第2電極が一対となって一つの電気回路を構成しており、前記冷媒通路内には前記一対となった前記第1電極および第2電極が複数設けられていて、
     前記冷媒通路の両端部のもっとも近い位置に設けられている前記第1電極および前記第2電極上の前記誘電体表面の一部を含む前記冷媒通路の壁面は、前記電圧の非印加時に前記液体金属との接触角が90°未満となる高表面エネルギー化処理が施されていることを特徴とする請求項1に記載の磁気冷暖房装置。
    The first electrode and the second electrode are paired to form one electric circuit, and the pair of the first electrode and the second electrode are provided in the refrigerant passage,
    The wall surface of the refrigerant passage including a part of the surface of the dielectric on the first electrode and the second electrode provided at a position closest to both ends of the refrigerant passage is configured so that the liquid is not applied when the voltage is not applied. The magnetic air conditioner according to claim 1, wherein a surface energy increasing process is performed so that a contact angle with a metal is less than 90 °.
  3.  前記高表面エネルギー化処理が施されていない前記冷媒通路内の壁面は、前記電圧の非印加時に前記液体金属との接触角が90°以上となる低表面エネルギー化処理が施されていることを特徴とする請求項2に記載の磁気冷暖房装置。 The wall surface in the refrigerant passage that has not been subjected to the high surface energy treatment is subjected to a low surface energy treatment that has a contact angle of 90 ° or more with the liquid metal when the voltage is not applied. The magnetic air conditioner according to claim 2, wherein
  4.  前記冷媒通路内には、前記液体金属の位置を検出するポジションセンサーが設けられていることを特徴とする請求項1~3のいずれか一つに記載の磁気冷暖房装置。 The magnetic air conditioner according to any one of claims 1 to 3, wherein a position sensor for detecting a position of the liquid metal is provided in the refrigerant passage.
  5.  前記ポジションセンサーによって検出した液体金属の位置から前記液体金属の速度を算出ことを特徴とする請求項4に記載の磁気冷暖房装置。 The magnetic air conditioner according to claim 4, wherein the speed of the liquid metal is calculated from the position of the liquid metal detected by the position sensor.
  6.  あらかじめ決定された前記液体金属を移動させる設定速度と、前記ポジションセンサーにより得られた前記液体金属の現在位置から得られた現在の速度を比較して、
     現在の速度が設定速度より遅い場合は、前記第1電極と第2電極との間に印加する電圧を上げるか、および/または前記第1電極と第2電極との間に電圧を印加する時間を長くし、
     現在の速度が設定速度より速い場合は、前記第1電極と第2電極との間に印加する電圧を下げるか、および/または前記第1電極と第2電極との間に電圧を印加する時間を短くすることを特徴とする請求項5に記載の磁気冷暖房装置。
    Comparing the preset speed for moving the liquid metal determined in advance with the current speed obtained from the current position of the liquid metal obtained by the position sensor,
    When the current speed is slower than the set speed, the time to increase the voltage applied between the first electrode and the second electrode and / or to apply the voltage between the first electrode and the second electrode Lengthen the
    When the current speed is higher than the set speed, the time to apply the voltage between the first electrode and the second electrode is lowered and / or the voltage applied between the first electrode and the second electrode is lowered. The magnetic air conditioner according to claim 5, wherein
  7.  前記第1電極と第2電極との間に電圧を印加することで、前記液体金属の移動方向先端の形状を親液性となるようにすることを特徴とする請求項1~6のいずれか一つに記載の磁気冷暖房装置。 The liquid metal moving direction tip shape is made lyophilic by applying a voltage between the first electrode and the second electrode. The magnetic air conditioning apparatus as described in one.
  8.  前記前記第1電極と第2電極との間に電圧を印加しないことで、前記液体金属の移動方向後端の形状を疎液性となるようにすることを特徴とする請求項1~7のいずれか一つに記載の磁気冷暖房装置。 The shape of the rear end in the movement direction of the liquid metal is made lyophobic by not applying a voltage between the first electrode and the second electrode. The magnetic air conditioning apparatus as described in any one.
PCT/JP2013/078176 2013-10-17 2013-10-17 Magnetic cooling and heating device WO2015056322A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2013/078176 WO2015056322A1 (en) 2013-10-17 2013-10-17 Magnetic cooling and heating device
JP2015542449A JP6107961B2 (en) 2013-10-17 2013-10-17 Magnetic air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/078176 WO2015056322A1 (en) 2013-10-17 2013-10-17 Magnetic cooling and heating device

Publications (1)

Publication Number Publication Date
WO2015056322A1 true WO2015056322A1 (en) 2015-04-23

Family

ID=52827795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/078176 WO2015056322A1 (en) 2013-10-17 2013-10-17 Magnetic cooling and heating device

Country Status (2)

Country Link
JP (1) JP6107961B2 (en)
WO (1) WO2015056322A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018112359A (en) * 2017-01-12 2018-07-19 株式会社デンソー Magnetocaloric effect type heat pump system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007147209A (en) * 2005-11-30 2007-06-14 Toshiba Corp Magnetic refrigerating machine
US20110067415A1 (en) * 2009-09-24 2011-03-24 Mao Tze-Chern Magnetic component compiling structure and magnetic refrigerator adapting magnetic component compiling structure thereof
WO2013133206A1 (en) * 2012-03-09 2013-09-12 日産自動車株式会社 Magnetic cooling and heating device
JP2013185796A (en) * 2012-03-09 2013-09-19 Nissan Motor Co Ltd Magnetic air-conditioner

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2472029C (en) * 2001-11-26 2014-04-15 Keck Graduate Institute Method, apparatus and article for microfluidic control via electrowetting, for chemical, biochemical and biological assays and the like
US7271688B1 (en) * 2005-09-30 2007-09-18 Agilent Technologies, Inc. Three-stage liquid metal switch
US8453466B2 (en) * 2009-08-31 2013-06-04 Delta Electronics, Inc. Heat-power conversion magnetism device and system for converting energy thereby
TWI506238B (en) * 2009-12-29 2015-11-01 Foxconn Tech Co Ltd Micro liquid cooling device
JP5902426B2 (en) * 2011-09-22 2016-04-13 シャープ株式会社 Liquid feeding device and liquid feeding method
JP6000814B2 (en) * 2012-11-13 2016-10-05 株式会社東芝 Magnetic refrigeration device and magnetic refrigeration system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007147209A (en) * 2005-11-30 2007-06-14 Toshiba Corp Magnetic refrigerating machine
US20110067415A1 (en) * 2009-09-24 2011-03-24 Mao Tze-Chern Magnetic component compiling structure and magnetic refrigerator adapting magnetic component compiling structure thereof
WO2013133206A1 (en) * 2012-03-09 2013-09-12 日産自動車株式会社 Magnetic cooling and heating device
JP2013185796A (en) * 2012-03-09 2013-09-19 Nissan Motor Co Ltd Magnetic air-conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018112359A (en) * 2017-01-12 2018-07-19 株式会社デンソー Magnetocaloric effect type heat pump system

Also Published As

Publication number Publication date
JPWO2015056322A1 (en) 2017-03-09
JP6107961B2 (en) 2017-04-05

Similar Documents

Publication Publication Date Title
KR101147603B1 (en) Battery systems, battery modules, and method for cooling a battery module
JP6019212B2 (en) Battery system and cooling method thereof
US9222708B2 (en) Magnetic refrigeration device and magnetic refrigeration system
EP3027980B1 (en) Method for electrocaloric energy conversion
WO2013038996A1 (en) Magnetic structure and magnetic air-conditioning and heating device using same
US20130255279A1 (en) Magnetic refrigeration device and magnetic refrigeration system
JP5756236B2 (en) Heat pump device and temperature control device using electric calorie effect
US20080101022A1 (en) Micro-fluidic cooling apparatus with phase change
Rodrigues et al. A magnetically-activated thermal switch without moving parts
JP2015092101A (en) Thermal switch
JP6107961B2 (en) Magnetic air conditioner
EP3106781B1 (en) Magnetocaloric device
JP2016023878A (en) Air conditioner
CN107795446A (en) A kind of cooling device and cooling means of high-power electric propulsion device electrode
Esarte et al. Nanofluid as advanced cooling technology. Success stories
JP2020004715A (en) Technique for heating traction energy storage unit
CN110914613B (en) Ferroic response by application of a conjugated field
EP3995759A1 (en) Peltier air-conditioning device
WO2020162544A1 (en) Heat transport medium and heat transport system
JP2016023839A (en) Air conditioner
KR20170070521A (en) Conduction-cooled Heat Switch using High-temperature Superconductor Persistent Current Switch
CN111094872A (en) Ferroic response by application of a conjugate field
Ambreen et al. Active cooling techniques for battery thermal management
KR200309419Y1 (en) Thermoelectric-pulse tube refrigerator
KR101818729B1 (en) Method and apparatus for sterilizing heat sink of thermoelectric device assembly

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13895492

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015542449

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13895492

Country of ref document: EP

Kind code of ref document: A1