WO2015055153A1 - 压电陶瓷平面电机及其驱动方法 - Google Patents

压电陶瓷平面电机及其驱动方法 Download PDF

Info

Publication number
WO2015055153A1
WO2015055153A1 PCT/CN2014/088909 CN2014088909W WO2015055153A1 WO 2015055153 A1 WO2015055153 A1 WO 2015055153A1 CN 2014088909 W CN2014088909 W CN 2014088909W WO 2015055153 A1 WO2015055153 A1 WO 2015055153A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric ceramic
planar
freedom
mover
degree
Prior art date
Application number
PCT/CN2014/088909
Other languages
English (en)
French (fr)
Inventor
张峻彬
黄佩森
Original Assignee
上海交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海交通大学 filed Critical 上海交通大学
Priority to US15/030,221 priority Critical patent/US10491140B2/en
Priority to CN201480057304.XA priority patent/CN105723608B/zh
Publication of WO2015055153A1 publication Critical patent/WO2015055153A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/347Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using displacement encoding scales
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • H02N2/028Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors along multiple or arbitrary translation directions, e.g. XYZ stages
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/347Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using displacement encoding scales
    • G01D5/34707Scales; Discs, e.g. fixation, fabrication, compensation
    • G01D5/34715Scale reading or illumination devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/0095Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing combined linear and rotary motion, e.g. multi-direction positioners
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • H02N2/021Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors using intermittent driving, e.g. step motors, piezoleg motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • H02N2/06Drive circuits; Control arrangements or methods

Definitions

  • the invention relates to the field of planar motors, and is particularly suitable for piezoelectric ceramic planar motors and driving methods thereof.
  • the conventional planar motor has the characteristics of two-dimensional direct drive, and has been widely concerned as a planar positioning device capable of realizing high precision and high frequency response.
  • the demand for nano-positioning motion platforms is growing rapidly in the fields of modern industry and scientific research, especially semiconductor production and micro-nano processing. These application areas usually require high positioning resolution and positioning accuracy of the nanopositioning platform, and also require a large motion range of the platform.
  • various driving methods adopted by various nanopositioning platforms include electromagnetic planar motors, ultrasonic planar motors, piezoelectric walking platforms, and piezoelectric stick-slip platforms.
  • electromagnetic planar motors require complex motion control
  • ultrasonic motors require complex dynamic analysis of the resonators, and expensive friction materials are required
  • piezoelectric walking platform motion speeds Smaller the piezoelectric stick-slip platform has less driving force and wear due to sliding friction.
  • the piezoelectric ceramic planar motor of the invention can effectively solve the problem of the appealing nanopositioning platform, and overcomes the defects of the traditional piezoelectric ceramic moving platform with small moving range and slow speed.
  • a piezoelectric ceramic planar motor comprising a planar substrate and a mover mounted on the planar substrate, wherein the piezoelectric ceramic planar motor further comprises: at least A piezoelectric ceramic driving leg is disposed on the mover for driving the mover to perform planar omnidirectional movement on the planar substrate.
  • the planar motor further includes a suspension device that suspends the mover on the planar substrate.
  • the suspension device is a magnetic suspension device or an air suspension device.
  • the air suspension device is at least one air bearing.
  • the planar motor further includes a pretensioning mechanism that generates a preload between the mover and the planar substrate.
  • the pretensioning mechanism is a vacuum pretensioning mechanism or a magnetic pretensioning mechanism.
  • the piezoelectric ceramic drive leg includes at least one multi-degree-of-freedom drive leg disposed on the mover, the contact head of the multi-degree-of-freedom drive leg providing at least two degrees of freedom of motion.
  • the piezoelectric ceramic driving leg further comprises at least one single degree of freedom driving leg disposed on the mover, the single degree of freedom driving the contact head of the leg to provide a degree of freedom of movement.
  • the piezoelectric ceramic drive leg comprises two multi-degree-of-freedom drive legs and two single-degree-of-freedom drive legs.
  • the piezoelectric ceramic drive leg comprises three multi-degree-of-freedom drive legs and three single-degree-of-freedom drive legs.
  • the piezoelectric ceramic planar motor comprises six multi-degree-of-freedom drive legs.
  • the multi-degree-of-freedom driving leg is formed by superposing a shear-deformed piezoelectric ceramic and a telescopically deformed piezoelectric ceramic.
  • the multi-degree-of-freedom driving leg comprises at least two first piezoelectric ceramics, the at least two first piezoelectric ceramics being combined with one another to provide multiple degrees of freedom of motion.
  • the single degree of freedom drive leg passes through a second piezoceramic, the second piezoceramic providing a single degree of freedom motion.
  • the motion control mode of the piezoelectric ceramic planar motor includes a sliding mode in which the piezoelectric ceramic driving leg is in a state of not contacting the planar substrate.
  • the motion control mode of the piezoelectric ceramic planar motor includes a sliding mode in which the piezoelectric ceramic driving leg is in a state of not contacting the planar substrate, and the mover is in a floating state.
  • the motion control mode of the piezoelectric ceramic planar motor includes a walking mode in which at least one of the piezoelectric ceramic driving legs is in contact with the planar substrate at each moment.
  • the motion control mode of the piezoelectric ceramic planar motor includes a fine adjustment mode in which a plurality of the piezoelectric ceramic driving legs and the planar substrate pass through a contact point unchanged.
  • the piezoelectric ceramic driving legs are adjusted to achieve fine adjustment of the position of the mover.
  • the piezoelectric ceramic planar motor further includes a position feedback system.
  • the position feedback system employs a planar encoder or a laser interferometer.
  • the planar encoder comprises a read head and a planar reference component, the planar reference component being mounted on the planar substrate;
  • the read head is mounted on the mover and moves together with the mover, the read head is used for a collection
  • the plane refers to the information of the component to obtain the position of the mover on the planar substrate.
  • the planar encoder comprises a read head and a plane reference component, the planar reference component is mounted on the mover, moves together with the mover, and the read head is mounted on the planar substrate;
  • the read head is configured to acquire position information of the planar reference component to obtain a position of the mover on the planar substrate when the mover moves.
  • the planar reference component of the planar encoder employs a grating, a display device or a substrate having a periodic pattern.
  • the present invention also provides a driving method of a piezoelectric ceramic planar motor, characterized in that the piezoelectric ceramic planar motor is as described above, and the driving method drives the mover by using at least one piezoelectric ceramic driving leg.
  • the planar omnidirectional movement is performed on the planar substrate.
  • the driving method further comprises: suspending the mover on the planar substrate using a suspension device.
  • the driving method further comprises: using a pretensioning mechanism to generate a preload between the mover and the planar substrate.
  • the driving method includes a motion control mode: a coasting mode, a walking mode, or a fine tuning mode.
  • the driving method automatically selects a motion control mode by the system according to a distance between the current position and the target position and a mover positioning accuracy requirement.
  • the driving method comprises an open loop control method or a closed loop control method using the position feedback system.
  • the positive progressive effect of the present invention is that the present invention provides a piezoelectric ceramic planar motor for nanopositioning, which can effectively overcome some of the defects of the conventional nanopositioning platform.
  • the piezoelectric ceramic planar motor is driven by a piezoelectric ceramic driving leg, and realizes three motion control modes, namely, a sliding mode, a walking mode, and a fine adjustment mode.
  • the sliding mode has the fastest moving speed
  • the walking mode has a relatively slow moving speed, but the positioning accuracy is higher, and the high-precision trajectory tracking capability is provided
  • the fine-tuning mode is used for the adjustment of the planar motor in the final position, which has the highest positioning accuracy.
  • the piezoelectric ceramic planar motor has the following characteristics: three degrees of freedom (XY ⁇ z) can be realized (where ⁇ z represents a rotation angle in the Z direction), a large stroke (the stroke is limited to the size of the substrate), and a large rotation angle (can be 360) ° Rotation) and omnidirectional motion control with nano-level positioning resolution, multiple motion modes (including high-speed mode and high-precision mode), six-degree-of-freedom position fine-tuning, and high steady-state stiffness and positioning stability.
  • XY ⁇ z degrees of freedom
  • ⁇ z represents a rotation angle in the Z direction
  • a large stroke the stroke is limited to the size of the substrate
  • a large rotation angle can be 360) ° Rotation
  • omnidirectional motion control with nano-level positioning resolution
  • multiple motion modes including high-speed mode and high-precision mode
  • six-degree-of-freedom position fine-tuning and high steady-state stiffness and positioning stability.
  • FIG. 1 is a schematic view showing the overall structure of a piezoelectric ceramic planar motor of the present invention.
  • FIG. 2 is an exploded view of a piezoelectric ceramic planar motor of the present invention.
  • FIG 3 is a first schematic view showing the arrangement of an air bearing in a piezoelectric ceramic planar motor according to the present invention.
  • FIG 4 is a second schematic view showing the arrangement of an air bearing in a piezoelectric ceramic planar motor according to the present invention.
  • Fig. 5 is a third schematic view showing the arrangement of the air bearing in the piezoelectric ceramic plane motor of the present invention.
  • Fig. 6 is a first schematic view showing the arrangement of a three-degree-of-freedom driving leg and a single-degree-of-freedom driving leg in the piezoelectric ceramic planar motor of the present invention.
  • Fig. 7 is a second schematic view showing the arrangement of a three-degree-of-freedom driving leg and a single-degree-of-freedom driving leg in the piezoelectric ceramic planar motor of the present invention.
  • Figure 8 is a schematic view showing the arrangement of three-degree-of-freedom driving legs in a piezoelectric ceramic planar motor of the present invention.
  • Figure 9 is a schematic view showing the arrangement of two-degree-of-freedom driving legs in the piezoelectric ceramic planar motor of the present invention.
  • Figure 10 is an exploded view of a three-degree-of-freedom driving leg of a piezoelectric ceramic planar motor of the present invention.
  • Figure 11 is a schematic view showing the overall structure of a three-degree-of-freedom driving leg in a piezoelectric ceramic planar motor of the present invention.
  • FIG. 12 is a schematic view showing the structure of a three-degree-of-freedom shear-deformed piezoelectric ceramic in a three-degree-of-freedom driving leg of a piezoelectric ceramic planar motor according to the present invention.
  • Figure 13 is a schematic view showing the principle of the shear-deformed piezoelectric ceramic of Figure 12.
  • Figure 14 is an exploded view of a single degree of freedom driven leg of a piezoelectric ceramic planar motor of the present invention.
  • Figure 15 is a schematic view showing the overall structure of a single-degree-of-freedom driving leg in a piezoelectric ceramic planar motor of the present invention.
  • Figure 16a is a schematic view showing the movement of the piezoelectric ceramic planar motor in the sliding mode of the present invention.
  • Figure 16b is a schematic view showing the movement of the piezoelectric ceramic planar motor in the sliding mode according to the present invention.
  • Fig. 16c is a schematic view showing the movement of the piezoelectric ceramic planar motor in the sliding mode according to the present invention.
  • Figure 16d is a schematic view showing the movement of the piezoelectric ceramic planar motor in the sliding mode of the present invention.
  • Figure 17a is a schematic view showing the movement of the piezoelectric ceramic planar motor in a walking mode according to the present invention.
  • Figure 17b is a schematic view showing the movement of the piezoelectric ceramic planar motor in the walking mode of the present invention.
  • Figure 17c is a schematic view showing the movement of the piezoelectric ceramic planar motor in the walking mode of the present invention.
  • Figure 17d is a schematic view showing the movement of the piezoelectric ceramic planar motor in the walking mode of the present invention.
  • Fig. 18a is a schematic view showing the movement of the piezoelectric ceramic planar motor in the fine adjustment mode of the present invention.
  • Figure 18b is a schematic view showing the movement of the piezoelectric ceramic planar motor in the fine adjustment mode of the present invention.
  • Figure 18c is a schematic view showing the movement of the piezoelectric ceramic planar motor in the fine adjustment mode of the present invention.
  • Figure 18d is a schematic view showing the movement of the piezoelectric ceramic planar motor in the fine tuning mode of the present invention.
  • Figure 19 is a schematic view showing the structure of a position sensor using a planar encoder in a piezoelectric ceramic planar motor according to the present invention.
  • FIG. 20 is a second structural diagram of a position sensor using a planar encoder in a piezoelectric ceramic planar motor according to the present invention.
  • Figure 21 is a schematic view showing the definition of coordinates of a piezoelectric ceramic planar motor of the present invention.
  • Figure 22 is a schematic diagram 1 showing the definition of parameters of a three-degree-of-freedom driving leg in a piezoelectric ceramic planar motor of the present invention.
  • Figure 23 is a second schematic diagram showing the definition of the parameters of the three-degree-of-freedom driving leg in the piezoelectric ceramic planar motor of the present invention.
  • the piezoelectric ceramic planar motor of the present invention comprises a planar substrate and a mover mounted on the planar substrate, the piezoelectric ceramic planar motor further comprising at least one piezoelectric ceramic drive leg, the piezoelectric ceramic drive leg being disposed on the mover, And used to drive the mover to perform planar omnidirectional movement on the planar substrate.
  • the following embodiments are by way of example only, and the number and form of piezoelectric ceramic drive legs are not limited by the embodiments.
  • the piezoelectric ceramic drive leg includes at least one multi-degree of freedom drive leg disposed on the mover, the contact head of the multi-degree of freedom drive leg providing at least two degrees of freedom of motion. Further preferably, the piezoelectric ceramic drive leg further includes at least one single degree of freedom drive leg disposed on the mover, the single degree of freedom driving the contact head of the leg providing a degree of freedom of motion.
  • the multi-degree-of-freedom driving leg drives the leg in three degrees of freedom as an example, but this is not limited by the embodiment, and the multi-degree-of-freedom driving leg can also drive the leg or four degrees of freedom with two degrees of freedom.
  • the driving leg or the like having a plurality of degrees of freedom can realize the solution of the present invention.
  • the piezoelectric ceramic planar motor includes a planar substrate 10 and a mover 30 mounted on the planar substrate 10.
  • a suspension device is provided at the center of the mover 30 so that the mover 30 slides on the flat substrate 10.
  • At least two three degree of freedom drive legs 40 are disposed on the mover 30, and the contact head of each three degree of freedom drive leg 40 provides three degrees of freedom of motion.
  • the piezoelectric ceramic planar motor further includes at least two single degree of freedom drive legs 50 disposed on the mover 30, each contact of the single degree of freedom drive leg 50 providing a degree of freedom of motion.
  • the suspension device is at least one air bearing 20.
  • the air bearing 20 can provide vacuum preloading, and provides a vacuum adsorption force in the middle position of the bearing to achieve dynamic balance with the buoyancy of the air bearing, so that the air bearing 20 can move the mover with high rigidity and stability.
  • 30 is suspended above the planar substrate 10.
  • the air bearing 20 is mounted on the mover 30.
  • the air bearing 20 is coupled to the mover 30 by a flexible hinge 21, and a plurality of fine adjustment screws 31 are uniformly disposed around the flexible hinge 21 for adjusting the pitch angle, the roll angle, and the height position of the mover 30.
  • FIG. 3 is a first schematic view of the arrangement of the air bearing in the piezoelectric ceramic planar motor of the present invention.
  • 4 is a second schematic view showing the arrangement of an air bearing in a piezoelectric ceramic planar motor according to the present invention.
  • Fig. 5 is a third schematic view showing the arrangement of the air bearing in the piezoelectric ceramic plane motor of the present invention.
  • the suspension device uses an air bearing 20 to arrange the air bearing 20 at the center of the mover 30.
  • FIG. 3 is a first schematic view of the arrangement of the air bearing in the piezoelectric ceramic planar motor of the present invention.
  • 4 is a second schematic view showing the arrangement of an air bearing in a piezoelectric ceramic planar motor according to the present invention.
  • Fig. 5 is a third schematic view showing the arrangement of the air bearing in the piezoelectric ceramic plane motor of the present invention.
  • the suspension device uses an air bearing 20 to arrange the air bearing 20 at the center of the mover 30.
  • FIG. 3 is a
  • the levitation device selects three air bearings 20, and these air bearings 20 are arranged on the mover 30, and can be formed in various arrangement forms, such as the triangular shape shown in FIG. As shown in FIG. 5, the suspension device selects four air bearings 20, and these air bearings 20 are arranged on the mover 30, such as at respective corners of the mover 30.
  • the number and arrangement of the air bearings 20 mentioned above are not limited to the above examples, and other similar manners can achieve the technical solution of the present invention.
  • the suspension device may also employ a magnetic levitation mechanism that generates a levitation force to suspend the mover 30 above the planar substrate 10 to achieve omnidirectional movement of the mover 30.
  • Fig. 6 is a first schematic view showing the arrangement of a three-degree-of-freedom driving leg and a single-degree-of-freedom driving leg in the piezoelectric ceramic planar motor of the present invention.
  • the piezoelectric ceramic planar motor includes two three-degree-of-freedom driving legs 40 and two single-degree-of-freedom driving legs 50, two three-degree-of-freedom driving legs 40 and two single-degree-of-freedom driving legs 50 respectively It is arranged on the mover 30.
  • two three degree of freedom drive legs 40 are mounted at a set of diagonal positions of the mover 30, and two single degree of freedom drive legs 50 are mounted at another set of diagonal positions of the mover 30.
  • the four drive legs are respectively arranged at four diagonal positions of the planar motor to provide a driving force for the movement of the planar motor.
  • the two piezoelectric ceramic drive legs work together to provide the mover 30 with the ability to planar omnidirectional motion and six degrees of freedom spatial fine adjustment capability at the dwell position. This arrangement requires less piezoelectric ceramics and therefore lower manufacturing costs.
  • Fig. 7 is a second schematic view showing the arrangement of a three-degree-of-freedom driving leg and a single-degree-of-freedom driving leg in the piezoelectric ceramic planar motor of the present invention.
  • the piezoelectric ceramic planar motor includes three three-degree-of-freedom driving legs 40 and three single-degree-of-freedom driving legs 50, and three-degree-of-freedom driving legs 40 and single-degree-of-freedom driving legs 50 are formed in one-to-one correspondence to form three groups.
  • the combination of the single degree of freedom drive leg 50 and the three degree of freedom drive leg 40 is disposed on the mover 30, respectively.
  • three sets of driving legs are respectively mounted on the mover 30 Two adjacent diagonal positions and a center position of the side away from the diagonal position.
  • This arrangement eliminates the use of air bearings or magnetic levitation mechanisms and directly uses a magnet to attract the planar motor to the flat base.
  • the electromagnetic attraction provides the preload force required to provide friction for the drive leg, without the advantages of air bearing or magnetic levitation mechanism. It is possible to greatly simplify the design of the system.
  • This arrangement can also use air bearings or magnetic suspension mechanisms to make the movement smoother.
  • FIG. 8 is a schematic view showing the arrangement of three-degree-of-freedom driving legs in the piezoelectric ceramic planar motor of the present invention.
  • the piezoelectric ceramic planar motor includes six three-degree-of-freedom driving legs 40, and the three-degree-of-freedom driving legs 40 are disposed on the mover 30 in two groups.
  • the three-degree-of-freedom driving legs 40 are mounted in groups of two adjacent diagonal positions of the mover 30 and a center position of the side away from the diagonal position.
  • the advantage of this arrangement is that the number of drive legs is large, making the motor run more smoothly. This arrangement may choose not to use air float or maglev, and the speed is also faster because the three degree of freedom drive leg 40 can alternately drive the mover 30 without stopping.
  • the three degree of freedom drive leg 40 of the present invention can also be replaced with a two degree of freedom drive leg.
  • 9 is one of the arrangement schemes of the piezoelectric ceramic planar motor of the present invention when the leg is driven by two degrees of freedom.
  • the solution uses three two degrees of freedom to drive the leg 400, which can realize the plane omnidirectional movement of the mover, wherein two degrees of freedom
  • the two degrees of freedom of the driving leg are the oscillating direction in the direction indicated by the arrow in the figure and the stretching in the direction perpendicular to the plane substrate.
  • the number and arrangement of the three-degree-of-freedom driving leg 40, the single-degree-of-freedom driving leg 50, and the two-degree-of-freedom driving leg 400 in the above structure are not limited to the above examples, and other similar manners can implement the technical solution of the present invention.
  • FIGS. 10 and 11 are schematic views showing the overall structure of a three-degree-of-freedom driving leg in a piezoelectric ceramic planar motor of the present invention.
  • each of the three-degree-of-freedom driving legs 40 includes a first base 41, a first outer casing 42, and three first piezoelectric ceramics 43 for providing three degrees of freedom.
  • the bottom of each of the first piezoelectric ceramics 43 is uniformly circumferentially fixed to the first base 41 by a spacer 431.
  • the spacer 431 here may be adhered to the first base 41 by glue or other auxiliary tools.
  • the spacer 431 functions to protect the first piezoelectric ceramic 43 when the first piezoelectric ceramic 43 is removed. Since the force can be directly applied to the spacer 431 to cleave the first piezoelectric ceramic 43 when the first piezoelectric ceramic 43 is detached, instead of applying a detaching force to the first piezoelectric ceramic 43,
  • a top end of each of the first piezoceramics 43 may also be provided with a first rounded tip 44, where the first rounded tip 44 has a hemispherical tip such that force can be passed along the first rounded tip 44 Applying an axial direction to the first piezoelectric ceramic 43 In addition to tangential forces and moments that may damage the first piezoceramic 43.
  • the three-degree-of-freedom driving leg 40 further includes a three-degree-of-freedom moving head 47, a flexible mechanism, a first elastic member 48, and a pressing screw cover 49.
  • the pressing screw cap 49 presses the three-degree-of-freedom moving head 47 and the flexible mechanism against the three first piezoelectric ceramics 43 through the first elastic member 48.
  • the flexible mechanism may adopt a flexible deformation disk or a flexible metal member.
  • the lower surface of the three-degree-of-freedom moving head 47 is bonded to the upper surface of the flexible disk 46, and is pressed against the first rounded tip 44 by the first elastic member 48.
  • the three-degree-of-freedom driving leg 40 may further include an adjustment nut 481 for adjusting the pre-tightening force of the first elastic member 48, and the adjustment nut 481 is mounted on the three-degree-of-freedom movement head 47.
  • a guide disk 45 it is more preferable to provide a guide disk 45 here.
  • three precision-machined cylindrical grooves 451 are disposed on the guide plate 45 such that the first round-tip tips 44 are respectively embedded in the cylindrical grooves 451 for providing an accurate movement position of the first round-tipped tip 44. .
  • the pressing screw cap 49 is then engaged with the adjusting nut 481 to press the edge of the flexible disk 46 together with the guide disk 45 together with the first piezoelectric ceramic 43 in the first outer casing 42.
  • the three-degree-of-freedom motion head 47 herein is made of a lightweight material whose lower surface and the upper surface of the flexible disk 46 are glued.
  • the first resilient member 48 is preferably two superimposed butterfly springs through which the three degree of freedom moving head 47 is pressed against the three first rounded tips 44.
  • the flexible disk 46 is machined from a metal sheet using an electric spark. The special construction on the metal sheet allows the flexible disk 46 to have greater deformability in a particular dimension and greater stiffness in other dimensions.
  • the flexible disk 46 shown in Fig. 2 allows the three-degree-of-freedom moving head 47 to have a large deformability in the elongation and the two swing directions.
  • the three first piezoelectric ceramics 43 when the three first piezoelectric ceramics 43 perform the telescopic movement, the three first round-tipped tips 44 will move the linear motion of the three first piezoelectric ceramics 43 against the flexible disk 46 and the three-degree-of-freedom moving head 47. Converted to the elongation of the three-degree-of-freedom motion head 47 and the two oscillating motions. Since the first piezoelectric ceramic 43 has a small elongation range, a mechanical motion amplification design is required, and the positions of the three first round heads 44 and the length of the three-degree-of-freedom motion head 47 along the central axis are determined. The motion amplification effect of the first piezoelectric ceramic 43.
  • the adjusting nut 481 is mainly used to adjust the pre-tightening force of the first elastic member 48, and the first piezoelectric ceramic 43 needs to have a high pressing force to have good dynamic performance.
  • a contact head 471 is mounted on the top end of the three-degree-of-freedom movement head 47, and the contact head 471 is made of an anti-wear material to reduce wear and facilitate replacement at a later stage.
  • the three-degree-of-freedom driving leg 40 may also be replaced by a three-degree-of-freedom shear-deformed piezoelectric ceramic instead of the above-described structural design.
  • FIG. 12 is a three-degree-of-freedom shearing leg of a three-degree-of-freedom driving leg in a piezoelectric ceramic planar motor of the present invention; Schematic diagram of the structure of a piezoelectric ceramic.
  • Figure 13 is a schematic view showing the principle of the shear-deformed piezoelectric ceramic of Figure 12. As shown in Figures 12 and 13, the three-degree-of-freedom driving leg can be directly replaced with a three-degree-of-freedom shear-deformed piezoelectric ceramic. When a voltage is applied to the piezoelectric ceramic, the piezoelectric ceramic produces lateral displacement.
  • two shear-deformed piezoelectric ceramics 70 and one telescopically deformed piezoelectric ceramic 80 can be superposed.
  • two of the shear-deformed piezoelectric ceramics 70 are bonded using glue and the directions of deformation of the two are perpendicular.
  • a voltage is applied to the two piezoelectric ceramics, two plane movements of X and Y perpendicular to each other can be achieved.
  • the telescopic movement in the Z direction is provided using a telescopically deformed piezoelectric ceramic 80 to achieve elongation and shortening of the driving leg.
  • the top end of the three-degree-of-freedom driving leg is mounted in contact with the planar substrate using a contact head 471 made of an anti-wear material.
  • a contact head 471 made of an anti-wear material.
  • FIG. 14 is an exploded view of a single degree of freedom driven leg of a piezoelectric ceramic planar motor of the present invention.
  • Figure 15 is a schematic view showing the overall structure of a single-degree-of-freedom driving leg in a piezoelectric ceramic planar motor of the present invention.
  • each single-degree-of-freedom driving leg 50 includes a second base 51, a second outer casing 52, and a second piezoelectric ceramic 53, and the second piezoelectric ceramic 53 is used to provide a Degree of freedom.
  • the bottom of the second piezoelectric ceramic 53 is mounted on the second base 51.
  • the single degree of freedom drive leg 50 further includes a single degree of freedom motion head 56, a second resilient member 57, and an adjustment nut 58.
  • the adjusting nut 58 presses the single-degree-of-freedom moving head 56 together with the second piezoelectric ceramic 53 in the second outer casing 52 through the second elastic member 57.
  • a second round tip 5 can also be disposed on the top of the second piezoelectric ceramic 53, wherein the single degree of freedom moving head 56 is disposed on the tip of the round head, and the function of the second round head 54 is the first round head described above
  • the top 44 is the same.
  • the second elastic member 57 is preferably two superimposed butterfly springs, by which the single-degree-of-freedom moving head 56 is pressed, so that a pressing force acts on the second piezoelectric ceramic 53.
  • the second piezoelectric ceramic 53 When the second piezoelectric ceramic 53 is elongated, it transmits motion to the single-degree-of-freedom motion head 56.
  • the adjustment nut 58 is mounted on the second outer casing 52 of the single degree of freedom drive leg 50 for adjusting the preload force applied by the spring so that the second piezoelectric ceramic 53 has better dynamic performance.
  • the single degree of freedom drive leg 50 provides only the extended motion of the single degree of freedom motion head 56.
  • the piezoelectric ceramic planar motor of the present invention has three motion control modes: a sliding mode , walking mode and fine tuning mode.
  • the sliding mode has a fast moving speed
  • the walking mode has a relatively slow moving speed, but the positioning accuracy is higher, and the trajectory tracking capability is high-precision
  • the fine-tuning mode can fine-tune the mover near the target position, and its positioning control accuracy The highest, as explained in further detail below.
  • Figure 16a is a schematic view showing the movement of the piezoelectric ceramic planar motor in the sliding mode of the present invention.
  • Figure 16b is a schematic view showing the movement of the piezoelectric ceramic planar motor in the sliding mode according to the present invention.
  • Fig. 16c is a schematic view showing the movement of the piezoelectric ceramic planar motor in the sliding mode according to the present invention.
  • Figure 16d is a schematic view showing the movement of the piezoelectric ceramic planar motor in the sliding mode of the present invention.
  • the two single-degree-of-freedom driving legs 50 are always in the raised state, and the two three-degree-of-freedom driving legs 40 drive the mover 30 by the high-speed swing.
  • the mover 30 can slide at a high speed on the flat substrate 10 like a ski.
  • the contact head of the three-degree-of-freedom driving leg 40 and the planar substrate 10 may have sliding friction, which may cause more serious wear. Therefore, in order to reduce the sliding friction phenomenon, the acceleration of the mover 30 is controlled to a certain range to ensure that the driving force is smaller than the maximum static friction force. This mode of motion enables the mover 30 to reach the target position at the fastest speed.
  • Figure 17a is a schematic view showing the movement of the piezoelectric ceramic planar motor in a walking mode according to the present invention.
  • Figure 17b is a schematic view showing the movement of the piezoelectric ceramic planar motor in the walking mode of the present invention.
  • Figure 17c is a schematic view showing the movement of the piezoelectric ceramic planar motor in the walking mode of the present invention.
  • Figure 17d is a schematic view showing the movement of the piezoelectric ceramic planar motor in the walking mode of the present invention.
  • the mover 30 performs a stepping motion as shown in Figures 17a-17d.
  • the single degree of freedom drive leg 50 is in contact with the planar substrate 10 to provide a braking force, and the three degrees of freedom drive leg 40 is toggled on the planar substrate 10 to provide a driving force.
  • Figures 17b and 17c when two three degree of freedom drive legs 40 push the mover 30, the two single degree of freedom drive legs 50 are lifted.
  • Figures 17a and 17d when two three degree of freedom drive legs 40 are raised for the next drive, the two single degree of freedom drive legs 50 are extended to lock the mover 30 to the planar substrate 10.
  • This mode of motion can maintain at least one of the drive legs in contact with the planar substrate 10 at each moment to prevent external interfering forces from moving the mover 30.
  • the walking mode can have strong anti-interference ability and high-precision positioning and trajectory following ability.
  • Fig. 18a is a schematic view showing the movement of the piezoelectric ceramic planar motor in the fine adjustment mode of the present invention.
  • Figure 18b is a schematic view showing the movement of the piezoelectric ceramic planar motor in the fine adjustment mode of the present invention.
  • Figure 18c is a schematic view showing the movement of the piezoelectric ceramic planar motor in the fine adjustment mode of the present invention.
  • Figure 18d is a schematic view showing the movement of the piezoelectric ceramic planar motor in the fine tuning mode of the present invention.
  • two three-degree-of-freedom driving legs 40 and two single-degree-of-freedom driving legs 50 adjust the six degrees of freedom of the mover 30 through the respective first piezoelectric ceramics 43 and second piezoelectric ceramics 53.
  • the three-degree-of-freedom drive leg 40 initially expands and locks the mover 30, fine-tuning the swing of the three-degree-of-freedom motion head by the higher displacement resolution of the first piezoceramic 43. Angle, thereby adjusting the position of the mover 30.
  • the two single degree of freedom drive legs 50 also cooperate to fine tune the pitch angle, roll angle and height position of the mover 30.
  • the mover 30 can maintain optimum stability.
  • the fine-tuning mode here is mainly used to fine-tune the mover 30 to the target position, which has the highest positioning accuracy, and is particularly suitable for high-precision position control, such as lithographic mask alignment for semiconductor processing.
  • the basic structure of another piezoelectric ceramic planar motor provided by the present invention is basically the same as that of the piezoelectric ceramic planar motor described above, except that the planar motor in the piezoelectric ceramic planar motor of the embodiment does not use a floating device. Instead, a pretensioning mechanism is mounted, and the pretensioning mechanism is mounted on the mover to generate a preload between the mover and the planar substrate.
  • the pretensioning mechanism is a vacuum pretensioning mechanism or a magnetic pretensioning mechanism (not shown), such that the plane motor is realized on the planar substrate by the attraction between the pretensioning mechanism and the planar substrate. The plane moves omnidirectionally.
  • the piezoelectric ceramic planar motor of this structure is suitable for the case where the driving leg of the piezoelectric ceramic planar motor comprises three three-degree-of-freedom driving legs and three single-degree-of-freedom driving legs, the three-degree-of-freedom driving legs and The single-degree-of-freedom driving legs are arranged in a one-to-one correspondence on the planar motor; or the driving legs of the piezoelectric ceramic planar motor include six three-degree-of-freedom driving legs, and the three-degree-of-freedom driving legs are two-two A group is arranged on the planar motor.
  • the piezoelectric ceramic planar motor further includes a position feedback system, and the position feedback system may employ a planar encoder or a laser interferometer.
  • the position feedback system may employ a planar encoder or a laser interferometer.
  • FIG. 20 is a schematic structural view of a position sensor using a planar encoder in a piezoelectric ceramic planar motor according to the present invention. As shown in FIG.
  • the position feedback system provided in the piezoelectric ceramic planar motor employs a planar encoder 90, wherein the planar encoder 90 includes a read head 92 and a plane reference member 91, and the planar reference member 91 is mounted on the planar substrate 10. Above, the mover 30 is moved on the plane reference member 91. The read head 92 is mounted on the mover 30 to move together with the mover 30, and the information of the plane reference member 91 is acquired by the read head 92, thereby acquiring the position of the mover 30 on the planar substrate 10.
  • the planar reference member 91 of the planar encoder 90 used herein is preferably a grating, a display device, or a substrate having a periodic pattern. Further preferably, a protective layer (not shown) may be added to the planar reference member 91.
  • FIG. 21 is a second structural diagram of a position sensor using a planar encoder in a piezoelectric ceramic planar motor according to the present invention.
  • the position feedback system provided in the piezoelectric ceramic planar motor employs a planar encoder 90 including a read head 92 and a plane reference member 91, and the planar reference member 91 is mounted on the mover 30 (as shown in FIG. 21).
  • the display plane reference member 91 is provided at the lower end of the mover 30, opposite to the read head 92, and moves together with the mover 30.
  • the read head 92 is mounted on the planar substrate 30 so as to face the plane reference member 91.
  • the planar reference member 91 of the planar encoder 90 used herein is preferably a grating, a display device, or a substrate having a periodic pattern.
  • the read head 92 acquires the positional information of the planar reference member 91 to acquire the position of the mover 30 on the planar substrate 10.
  • the present invention also provides a driving method of a piezoelectric ceramic planar motor, as described above, the driving method drives the mover on the planar substrate by using at least one piezoelectric ceramic driving leg Plane omnidirectional movement.
  • the driving method further comprises: suspending the mover on the planar substrate using a suspension device.
  • the driving method further comprises: using a pretensioning mechanism to generate a preload between the mover and the planar substrate.
  • the driving method includes the following motion control modes: a coasting mode, a walking mode, or a fine tuning mode.
  • the motion control mode may be selected by the user, or may be automatically selected by the system according to the distance between the current position and the target position and the position accuracy of the mover.
  • the driving method further includes an open loop control method or a closed loop control method using the position feedback system.
  • the mover 30 reads the current position of the mover 30 through the position sensor (not shown) when starting the operation, and compares with the preset target position to obtain the distance to be moved. If the motion control mode is selected by the user, the system will drive the mover to the target position in the motion control mode selected by the user. If the motion control mode is automatically selected by the system, the system selects the motion control mode based on the distance from the target position and the accuracy of the motion. If the mover 30 is far from the target position, the system will select the coast mode to approach the target position as quickly as possible. When the mover 30 reaches a certain range near the target position, the system selects the walking mode to approach the target with higher precision. Finally, when the mover 30 is within the range of the fine-tuning mode, the system selects the fine-tuning mode to fine tune the motor to the most accurate target position.
  • the processor (not shown) generates a piezoelectric ceramic voltage control signal based on the control algorithm for each operating mode.
  • the voltage control signals of the first piezoelectric ceramics 43 and the second piezoelectric ceramics 53 are amplified by a power amplifier to drive the movement of the mover 30.
  • the system will re-determine whether the mover 30 has reached the target position. If the distance from the target position is within the satisfied range, the system prompts that the plane motor has reached the ideal position, otherwise the control loop is restarted.
  • FIG. 22 is a schematic view showing the definition of coordinates of a piezoelectric ceramic planar motor of the present invention. As shown in FIG. 22, four coordinate systems O b , O m , O leg_1 , and O leg_2 are respectively fixed to the planar substrate, the mover 30, and the three-degree-of-freedom driving leg 40.
  • O b , O m , O leg_1 , and O leg_2 are respectively fixed to the planar substrate, the mover 30, and the three-degree-of-freedom driving leg 40.
  • Figure 23 is a first schematic diagram showing the definition of parameters of a three-degree-of-freedom driving leg in a piezoelectric ceramic planar motor of the present invention.
  • Figure 24 is a second schematic diagram showing the definition of the parameters of the three-degree-of-freedom driving leg in the piezoelectric ceramic planar motor of the present invention.
  • the head of the i-th three-degree-of-freedom driving leg has three degrees of freedom ( ⁇ i , ⁇ i , Z i ), which are driven by the expansion and contraction of the three first piezoelectric ceramics.
  • the definition of the three degrees of freedom variables shown in Figures 23 and 24 is shown.
  • the angle ⁇ i defines the plane in which the three-degree-of-freedom motion head moves, called the motion plane, and this variable also defines the driving direction of the driving leg.
  • the value of the angle ⁇ i is obtained by the above formula (2) Calculated.
  • the head swing angle ⁇ i of the i-th three-degree-of-freedom drive leg and the vertical head extension Z i of the head determine the position of the head moving in the plane of motion.
  • r in FIG. 22 is the uniform radius of the three first piezoelectric ceramics
  • the displacement length of the jth first piezoelectric ceramic inside the i-th three-degree-of-freedom driving leg can be obtained by the following formula (4). :
  • the contact head of the three-degree-of-freedom driving leg 40 can drive the mover 30 along an elliptical trajectory 60 driven by the three first piezoelectric ceramics 43.
  • the plane in which the elliptical trajectory 60 is located is the plane of motion, determined by the variable ⁇ i and changes as the direction of motion changes.
  • the driving speed of the first piezoelectric ceramic 43 can be as high as several hundred hertz, so that the mover 30 can slide at a high speed on the planar substrate.
  • the motion control equation of the jth piezoelectric ceramic inside the i-th three-degree-of-freedom driving leg is as shown in the following equations (5)-(7):
  • a z_i and A ⁇ _i define the major axis and the minor axis of the elliptical trajectory 60, respectively, that is, the height and sliding step of the three-degree-of-freedom driving leg 40 raised every step.
  • the height of each step can be adjusted to adjust the contact piezoelectricity of the three-degree-of-freedom driving leg 40 to the planar substrate, and the sliding step can adjust the sliding speed of the mover 30.
  • the driving frequency of the driving leg is represented by f, and the frequency can also be used to control the sliding speed of the planar motor.
  • the control algorithm for the walking mode of the three-degree-of-freedom driving leg 40 is the same as the control algorithm in the sliding mode, with the difference that the walking algorithm uses a lower driving frequency f (generally less than 100 Hz).
  • the control equation of the single-degree-of-freedom driving leg 50 is relatively simple, and the control equation only needs to be satisfied when the three-degree-of-freedom driving leg 40 is driven to prepare for the next driving, and the single-degree-of-freedom driving leg 50 is extended to press the flat substrate for braking. .
  • the i-th single-degree-of-freedom driving leg is controlled by the following formula (8):
  • two three degree of freedom drive legs 40 and two single degree of freedom drive legs 50 cooperate to fine tune the position of the mover 30 in space six degrees of freedom.
  • the adjustment vector of six degrees of freedom is with Then, the governing equations employed in the first piezoelectric ceramic and the second piezoelectric ceramic in the three-degree-of-freedom driving leg 40 and the single-degree-of-freedom driving leg 50 are as shown in the following formulas (9)-(15):
  • the present invention proposes a novel piezoelectric ceramic planar motor for large-stroke nanopositioning.
  • the piezoelectric ceramic planar motor utilizes a vacuum preloaded air bearing to reduce motion resistance while ensuring a high stiffness of the motor.
  • a number of piezoelectric ceramic drive legs are used to drive the planar motor to achieve nanometer-level positioning resolution.
  • the piezoelectric ceramic planar motor has three operating modes: a coasting mode, a walking mode, and a fine tuning mode. In the gliding mode, the planar motor can move quickly and is suitable for long distance movement.
  • the plane motor In the walking mode, the plane motor is stepped, and the step can be adjusted.
  • the moving speed is relatively slow, but the positioning accuracy is higher, and the track following ability is high.
  • the fine adjustment mode the driving leg is stretched to press the substrate, and the final position of the mover is finely adjusted by adjusting the swing angle of the moving head.
  • the planar motor in the fine-tuning mode has the most stable control and the highest positioning accuracy. The above three modes of operation can be combined to achieve the advantages of high speed and high positioning accuracy at the same time.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

一种压电陶瓷平面电机,其包括平面基板和安装在所述平面基板上的动子,所述压电陶瓷平面电机还包括:至少一条压电陶瓷驱动腿,所述压电陶瓷驱动腿设置在所述动子上,用来驱动所述动子在所述平面基板上进行平面全向移动。还提供了一种用压电陶瓷驱动腿驱动平面电机的方法,实现了三种运动模式,即滑行模式、步行模式和微调模式。上述压电陶瓷平面电机及驱动方法可以有效地克服传统纳米定位平台运动范围小、速度慢的缺陷。

Description

压电陶瓷平面电机及其驱动方法 技术领域
本发明涉及平面电机领域,特别适用于压电陶瓷平面电机及其驱动方法。
背景技术
常规的平面电机具有二维直接驱动的特点,作为可以实现高精度、高频响的平面定位装置,近年来受到广泛关注。随着科技的进步,在现代工业和科学研究领域,尤其是半导体生产和微纳米加工方向,对纳米定位运动平台的需求正飞速增长。这些应用领域通常要求纳米定位平台具有很高的定位分辨率和定位精度,同时还要求平台有较大的运动行程。
在现有技术中,多种已经被开发的纳米定位平台采用的典型驱动方法包括电磁式平面电机、超声波平面电机、压电步行式平台,以及压电粘滑式平台。然而,上述的驱动方法都各自有一些缺点,例如电磁式平面电机需要复杂的运动控制;超声电机需要对共振体进行复杂的动力学分析,以及需要昂贵的摩擦材料;压电步行式平台运动速度较小;压电粘滑式平台的驱动力较小,而且有滑动摩擦导致的磨损。
发明内容
本发明的压电陶瓷平面电机可以有效地解决上诉纳米定位平台的问题,并克服了传统压电陶瓷运动平台运动范围小、速度慢的缺陷。
本发明是通过下述技术方案来实现:一种压电陶瓷平面电机,其包括平面基板和安装在所述平面基板上的动子,其特点在于,所述压电陶瓷平面电机还包括:至少一条压电陶瓷驱动腿,所述压电陶瓷驱动腿设置在所述动子上,用来驱动所述动子在所述平面基板上进行平面全向移动。
较佳地,所述平面电机还包括悬浮装置,所述悬浮装置使所述动子悬浮在所述平面基板上。
较佳地,所述悬浮装置为磁悬浮装置或空气悬浮装置。
较佳地,所述空气悬浮装置为至少一个空气轴承。
较佳地,所述平面电机还包括预紧机构,所述预紧机构使所述动子与所述平面基板之间产生预紧力。
较佳地,所述预紧机构为真空预紧机构或磁力预紧机构。
较佳地,所述压电陶瓷驱动腿包括至少一条多自由度驱动腿,布置在所述动子上,所述多自由度驱动腿的接触头提供至少两个自由度的运动。
较佳地,所述压电陶瓷驱动腿还包括至少一条单自由度驱动腿,布置在所述动子上,所述单自由度驱动腿的接触头提供一个自由度的运动。
较佳地,所述压电陶瓷驱动腿包括两条多自由度驱动腿和两条单自由度驱动腿。
较佳地,所述压电陶瓷驱动腿包括三条多自由度驱动腿和三条单自由度驱动腿。
较佳地,所述压电陶瓷平面电机包括六条多自由度驱动腿。
较佳地,所述多自由度驱动腿由剪切变形压电陶瓷和伸缩变形的压电陶瓷叠加而成。
较佳地,所述多自由度驱动腿包括至少两个第一压电陶瓷,所述至少两个第一压电陶瓷相互组合提供多自由度的运动。
较佳地,所述单自由度驱动腿通过一个第二压电陶瓷,所述第二压电陶瓷提供单自由度运动。
较佳地,所述压电陶瓷平面电机的运动控制模式包括滑行模式,在所述滑行模式中,存在所述压电陶瓷驱动腿与所述平面基板不接触的状态。
较佳地,压电陶瓷平面电机的运动控制模式包括滑行模式,在所述滑行模式中,存在所述压电陶瓷驱动腿与所述平面基板不接触的状态,所述动子处于悬浮状态。
较佳地,所述压电陶瓷平面电机的运动控制模式包括步行模式,在所述步行模式中,每一时刻至少有一条所述压电陶瓷驱动腿与所述平面基板接触。
较佳地,所述压电陶瓷平面电机的运动控制模式包括微调模式,在所述微调模式中,多条所述压电陶瓷驱动腿与所述平面基板在接触点不变的情况下,通过调整所述压电陶瓷驱动腿来实现动子位置的微调。
较佳地,所述压电陶瓷平面电机还包括位置反馈***。
较佳地,所述位置反馈***采用平面编码器或激光干涉仪。
较佳地,所述平面编码器包括读头和平面参照部件,所述平面参照部件安装在所述平面基板上;
所述读头安装在所述动子上,与所述动子一起移动,所述读头用于采集所 述平面参照部件的信息,以获取所述动子在所述平面基板上的位置。
较佳地,所述平面编码器包括读头和平面参照部件,所述平面参照部件安装在所述动子上,与所述动子一起运动,所述读头安装在所述平面基板上;
当所述动子移动时,所述读头用于采集所述平面参照部件的位置信息,以获取所述动子在所述平面基板上的位置。
较佳地,所述平面编码器的所述平面参照部件采用光栅、显示装置或具有周期图案的基板。
本发明还提供了一种压电陶瓷平面电机的驱动方法,其特点在于,所述压电陶瓷平面电机如上所述,所述驱动方法通过使用至少一条压电陶瓷驱动腿驱动所述动子在所述平面基板上进行平面全向移动。
较佳地,所述驱动方法进一步包括:使用悬浮装置将所述动子悬浮在所述平面基板上。
较佳地,所述驱动方法进一步包括:使用预紧机构使所述动子与所述平面基板之间产生预紧力。
较佳地,所述驱动方法包括如下运动控制模式:滑行模式、步行模式或微调模式。
较佳地,所述驱动方法由***根据当前位置和目标位置之间的距离和动子定位精度要求来自动选择运动控制模式。
较佳地,所述驱动方法包括开环控制方法或采用所述位置反馈***的闭环控制方法。
本发明的积极进步效果在于:本发明提供了一种压电陶瓷平面电机,用以纳米定位,可以有效地克服传统纳米定位平台的一些缺陷。所述压电陶瓷平面电机采用压电陶瓷驱动腿进行驱动,实现了三种运动控制模式,即滑行模式、步行模式和微调模式。滑行模式的运动速度最快,步行模式运动速度相对较慢,但定位精度更高,拥有高精度的轨迹跟踪能力,而微调模式用于平面电机在最终位置的调整,其具有最高的定位精度。
所述压电陶瓷平面电机具有如下特点:可以实现三自由度(XYθz)(此处θz表示Z方向上的旋转角度)、大行程(行程仅局限于基板的大小)、大旋转角(可以360°旋转)及全向运动控制,并具有纳米级定位分辨率、多种运动模式(包括高速模式和高精度模式)、六自由度位置微调功能以及较高的稳态刚度和定位稳定性。
附图说明
图1为本发明压电陶瓷平面电机的整体结构示意图。
图2为本发明压电陶瓷平面电机的***图。
图3为本发明压电陶瓷平面电机中空气轴承的布置示意图一。
图4为本发明压电陶瓷平面电机中空气轴承的布置示意图二。
图5为本发明压电陶瓷平面电机中空气轴承的布置示意图三。
图6为本发明压电陶瓷平面电机中三自由度驱动腿和单自由度驱动腿的布置示意图一。
图7为本发明压电陶瓷平面电机中三自由度驱动腿和单自由度驱动腿的布置示意图二。
图8为本发明压电陶瓷平面电机中三自由度驱动腿的布置示意图。
图9为本发明压电陶瓷平面电机中二自由度驱动腿的布置示意图。
图10为本发明压电陶瓷平面电机中三自由度驱动腿的***图。
图11为本发明压电陶瓷平面电机中三自由度驱动腿的整体结构示意图。
图12为本发明压电陶瓷平面电机中三自由度驱动腿采用三自由度剪切变形压电陶瓷的结构示意图。
图13为图12中剪切变形压电陶瓷的原理示意图。
图14为本发明压电陶瓷平面电机中单自由度驱动腿的***图。
图15为本发明压电陶瓷平面电机中单自由度驱动腿的整体结构示意图。
图16a为本发明压电陶瓷平面电机处于滑行模式中的运动示意图一。
图16b为本发明压电陶瓷平面电机处于滑行模式中的运动示意图二。
图16c为本发明压电陶瓷平面电机处于滑行模式中的运动示意图三。
图16d为本发明压电陶瓷平面电机处于滑行模式中的运动示意图四。
图17a为本发明压电陶瓷平面电机处于步行模式中的运动示意图一。
图17b为本发明压电陶瓷平面电机处于步行模式中的运动示意图二。
图17c为本发明压电陶瓷平面电机处于步行模式中的运动示意图三。
图17d为本发明压电陶瓷平面电机处于步行模式中的运动示意图四。
图18a为本发明压电陶瓷平面电机处于微调模式中的运动示意图一。
图18b为本发明压电陶瓷平面电机处于微调模式中的运动示意图二。
图18c为本发明压电陶瓷平面电机处于微调模式中的运动示意图三。
图18d为本发明压电陶瓷平面电机处于微调模式中的运动示意图四。
图19为本发明压电陶瓷平面电机中位置传感器采用平面编码器的结构示意图一。
图20为本发明压电陶瓷平面电机中位置传感器采用平面编码器的结构示意图二。
图21为本发明压电陶瓷平面电机的坐标定义示意图。
图22为本发明压电陶瓷平面电机中三自由度驱动腿的参数定义示意图一。
图23为本发明压电陶瓷平面电机中三自由度驱动腿的参数定义示意图二。
具体实施方式
下面结合附图给出本发明的较佳实施例,以详细说明本发明的技术方案。
本发明压电陶瓷平面电机包括平面基板和安装在平面基板上的动子,所述压电陶瓷平面电机还包括至少一条压电陶瓷驱动腿,所述压电陶瓷驱动腿设置在动子上,用来驱动所述动子在所述平面基板上进行平面全向移动。以下实施例仅以举例,压电陶瓷驱动腿的数目、形式并不受实施例的限制。
此外,所述压电陶瓷驱动腿包括至少一条多自由度驱动腿,布置在所述动子上,所述多自由度驱动腿的接触头提供至少两个自由度的运动。进一步优选地,所述压电陶瓷驱动腿还包括至少一条单自由度驱动腿,布置在所述动子上,所述单自由度驱动腿的接触头提供一个自由度的运动。
在以下实施例中所述多自由度驱动腿以三自由度驱动腿作为举例,但这并不受到实施例的限制,所述多自由度驱动腿还可以采用二自由度驱动腿或四自由度驱动腿等具有多个自由度的驱动腿,均可实现本发明的方案。
图1为本发明压电陶瓷平面电机的整体结构示意图。图2为本发明压电陶瓷平面电机的***图。如图1和图2所示,所述压电陶瓷平面电机包括平面基板10和安装在平面基板10上的动子30。在动子30的中心位置设有悬浮装置,使得动子30在平面基板10上滑行。至少两条三自由度驱动腿40,布置在动子30上,每一条三自由度驱动腿40的接触头提供三个自由度的运动。
特别地,所述压电陶瓷平面电机还包括至少两条单自由度驱动腿50,布置在动子30上,每一条单自由度驱动腿50的接触头提供一个自由度的运动。
优选地,如图1和图2所示,所述悬浮装置为至少一个空气轴承20。空气轴承20可以提供真空预紧,通过在轴承的中间位置提供真空吸附力,与空气轴承的浮力达到动态平衡,使得空气轴承20能以较高的刚度和稳定性将动子 30悬浮于平面基板10之上。空气轴承20装在动子30上。例如,空气轴承20通过柔性铰链21与动子30连接,并且在柔性铰链21的周围均匀布置若干微调螺丝31,用于调整动子30的俯仰角、翻滚角和高度位置。
其中,上述空气轴承20在动子30上的布置方式有多种。例如,图3为本发明压电陶瓷平面电机中空气轴承的布置示意图一。图4为本发明压电陶瓷平面电机中空气轴承的布置示意图二。图5为本发明压电陶瓷平面电机中空气轴承的布置示意图三。如图3所示,所述悬浮装置选用一个空气轴承20,将空气轴承20布置在动子30的中心位置。如图4所示,所述悬浮装置选用三个空气轴承20,将这些空气轴承20布置在动子30上,可以形成各种排布形式,例如图4所示的三角形式等等。如图5所示,所述悬浮装置选用四个空气轴承20,将这些空气轴承20布置在动子30上,如布置在动子30的各个顶角处。上述提到的空气轴承20的数量和排布方式并不局限于上述举例,其他类似的方式均可以实现本发明的技术方案。
另外,所述悬浮装置还可以采用磁悬浮机构,所述磁悬浮机构产生悬浮力将动子30悬浮于平面基板10之上,实现动子30的平面全向移动。
此处,对于三自由度驱动腿40和单自由度驱动腿50的布置方式有多种。图6为本发明压电陶瓷平面电机中三自由度驱动腿和单自由度驱动腿的布置示意图一。如图6所示,所述压电陶瓷平面电机包括两条三自由度驱动腿40和两条单自由度驱动腿50,两条三自由度驱动腿40和两条单自由度驱动腿50分别布置在动子30上。具体地说,两条三自由度驱动腿40安装在动子30的一组对角位置,两条单自由度驱动腿50安装在动子30的另一组对角位置。四个驱动腿分别布置在平面电机的四个对角位置,给平面电机的运动提供驱动力。在不同的运动模式下,这两种压电陶瓷驱动腿会协同工作使得动子30具有平面全向运动的能力和在停留位置的六自由度空间微调能力。这种布置方式需要较少的压电陶瓷,因此制造成本较低。
除上述图6所示的布置方式之外,三自由度驱动腿40和单自由度驱动腿50还可以有其他布置方式。图7为本发明压电陶瓷平面电机中三自由度驱动腿和单自由度驱动腿的布置示意图二。如图7所示,所述压电陶瓷平面电机包括三条三自由度驱动腿40和三条单自由度驱动腿50,将三自由度驱动腿40和单自由度驱动腿50一一对应形成三组单自由度驱动腿50和三自由度驱动腿40的组合,分别布置在动子30上。具体地说,三组驱动腿分别安装在动子30的 两个相邻对角位置和远离所述对角位置的侧边的中心位置。这种布置方式可以不使用空气轴承或者磁悬浮机构,直接使用磁铁将平面电机吸紧在平面基座上,电磁吸引力为驱动腿提供摩擦需要的预紧力,不使用空气轴承或者磁悬浮机构的优点是可以大幅简化***的设计。这种布置方式也可以使用空气轴承或磁悬浮机构,使得运动更加顺畅。
图8为本发明压电陶瓷平面电机中三自由度驱动腿布置示意图。如图8所示,所述压电陶瓷平面电机包括六条三自由度驱动腿40,三自由度驱动腿40两两一组地分别布置在动子30上。具体地说,三自由度驱动腿40两两一组地安装在动子30的两个相邻对角位置和远离所述对角位置的侧边的中心位置。这种布置方式的优点是驱动腿的数目多,使得电机运行起来更加顺畅。这种布置方式可以选择不使用气浮或磁浮,而且速度也较快,因为三自由度驱动腿40可以交替驱动动子30而无需停留。
本发明中的三自由度驱动腿40还可以用二自由度驱动腿来替换。图9为本发明压电陶瓷平面电机采用二自由度驱动腿时的布置方案之一,所述方案采用三个二自由度驱动腿400,可以实现动子的平面全向移动,其中二自由度驱动腿的两个自由度分别为沿图中箭头所示方向的摆动和垂直于平面基板方向的伸缩。
上述结构中三自由度驱动腿40、单自由度驱动腿50及二自由度驱动腿400的数量和排布方式并不局限于上述举例,其他类似的方式均可以实现本发明的技术方案。
图10为本发明压电陶瓷平面电机中三自由度驱动腿的***图。图11为本发明压电陶瓷平面电机中三自由度驱动腿的整体结构示意图。如图10和图11所示,根据上述结构,每一条三自由度驱动腿40包括第一底座41、第一外壳42,以及用于提供三个自由度的三个第一压电陶瓷43。每一个第一压电陶瓷43的底部通过垫片431均匀圆周地固定至第一底座41上。这里的垫片431可以通过胶水或其他辅助工具粘在第一底座41上。垫片431的作用是在拆除第一压电陶瓷43时,起到保护第一压电陶瓷43的作用。因为在拆卸第一压电陶瓷43时,可以将力直接施加在垫片431上撬开第一压电陶瓷43,而不是将拆除力施加在第一压电陶瓷43上。优选地,每一个第一压电陶瓷43的顶部还可以设置第一圆头顶尖44,此处的第一圆头顶尖44具有一个半球形的顶头,这样力通过第一圆头顶尖44可以沿着轴向方向施加到第一压电陶瓷43上,以消 除可能破坏第一压电陶瓷43的切向力和力矩。
同时,三自由度驱动腿40还包括三自由度运动头47、柔性机构、第一弹性部件48及压紧螺盖49。压紧螺盖49通过第一弹性部件48将三自由度运动头47和所述柔性机构压紧在三个第一压电陶瓷43上。其中,所述柔性机构可以采用柔性变形盘或柔性金属件。优选地,三自由度运动头47的下表面和柔性盘46的上表面粘合,通过第一弹性部件48压紧在第一圆头顶尖44上。三自由度驱动腿40还可以包括调整螺帽481用于调整第一弹性部件48的预紧力,调整螺帽481安装在三自由度运动头47上。当然,更优选地这里还可以加设导向盘45。具体地,在导向盘45上设置有三个经过精密加工的圆柱槽451,使得第一圆头顶尖44分别对应嵌设在圆柱槽451内,用于给第一圆头顶尖44提供准确的运动位置。再由压紧螺盖49与调整螺帽481配合将柔性盘46的边缘和导向盘45一起连同第一压电陶瓷43压紧在第一外壳42内。
此处的三自由度运动头47使用轻质材料制成,其下表面和柔性盘46的上表面用胶水粘合。第一弹性部件48优选为两个叠加起来的蝶型弹簧,三自由度运动头47通过所述蝶形弹簧压紧在三个第一圆头顶尖44上。柔性盘46是使用电火花在金属片上加工而成。金属片上特殊的结构使得柔性盘46可以在特定的维度内拥有较大的变形能力,而在其他维度上具有较大的刚度。图2中所示的柔性盘46使得三自由度运动头47在伸长和两个摆动方向有较大的变形能力。因此,当三个第一压电陶瓷43作伸缩运动时,三个第一圆头顶尖44会顶着柔性盘46和三自由度运动头47,将三个第一压电陶瓷43的直线运动转换为三自由度运动头47的伸长和两个摆动运动。由于第一压电陶瓷43的伸长范围较小,因此需要有机械的运动放大设计,并且三个第一圆头顶尖44的摆放位置和三自由度运动头47沿中心轴线的长度决定了第一压电陶瓷43的运动放大效果。如果三个第一圆头顶尖44分布的圆周半径较小,且三自由度运动头47沿着轴线方向的长度较长,就会有较大的运动放大的效果,反之效果较小。调整螺帽481主要用来调整第一弹性部件48的预紧力,第一压电陶瓷43需要在很高的压紧力下才能有很好的动态性能。特别地,在三自由度运动头47的顶端安装有接触头471,接触头471由防磨损材料制成,以减少磨损和后期方便更换。另外,三自由度驱动腿40也可以不采用上述结构设计,而是直接采用三自由度的剪切变形压电陶瓷来代替。
图12为本发明压电陶瓷平面电机中三自由度驱动腿采用三自由度剪切变 形压电陶瓷的结构示意图。图13为图12中剪切变形压电陶瓷的原理示意图。如图12和图13所示,所述三自由度驱动腿可以直接采用三自由度的剪切变形压电陶瓷来代替。当在压电陶瓷施加电压时,压电陶瓷会产生横向位移。所以在设计三自由度驱动腿时可以采用两个剪切变形压电陶瓷70和一个伸缩变形的压电陶瓷80叠加而成。如图12所示,其中两个剪切变形压电陶瓷70使用胶水粘合起来,并使得两者的变形方向相垂直。当电压施加到这两个压电陶瓷上时,就可以实现X和Y两个相互垂直方向的平面运动。Z方向的伸缩运动使用一个伸缩变形的压电陶瓷80来提供,以实现驱动腿的伸长和缩短。所述三自由度驱动腿的顶端安装使用防磨损材料做成的接触头471与平面基板的接触。当三个压电陶瓷同时变形时,就可以实现驱动腿三个自由度的运动。这种结构可以使得三自由度驱动腿的设计更加的简洁和方便。
图14为本发明压电陶瓷平面电机中单自由度驱动腿的***图。图15为本发明压电陶瓷平面电机中单自由度驱动腿的整体结构示意图。如图14和图15所示,根据上述结构,每一条单自由度驱动腿50包括第二底座51、第二外壳52,以及第二压电陶瓷53,第二压电陶瓷53用于提供一个自由度。第二压电陶瓷53的底部安装在第二底座51上。此外,单自由度驱动腿50还包括单自由度运动头56、第二弹性部件57及调节螺帽58。调节螺帽58通过第二弹性部件57将单自由度运动头56连同第二压电陶瓷53压紧在第二外壳52内。优选地,在第二压电陶瓷53的顶部还可以设置第二圆头顶尖5,其中单自由度运动头56设置在圆头顶尖上,第二圆头顶尖54的功能与上述第一圆头顶尖44相同。当然,更优选地这里还可以加设导向套55,导向套55套设在单自由度运动头56外部,并安装在第二外壳52的内部,使得单自由度运动头50能够沿着导向套55滑动。此处第二弹性部件57优选为两个叠加的蝶形弹簧,通过所述蝶形弹簧将单自由度运动头56压紧,使得压紧力作用在第二压电陶瓷53上。
当第二压电陶瓷53伸长时,其将运动传递到单自由度运动头56上。调整螺帽58安装在单自由度驱动腿50的第二外壳52上,用来调整弹簧施加的预紧力,使得第二压电陶瓷53有更好的动态性能。单自由度驱动腿50只提供单自由度运动头56的伸长运动。当第二压电陶瓷53驱动时,单自由度运动头56的头部与平面基板10接触,使得动子30产生制动的效果。
根据上述结构,本发明压电陶瓷平面电机具有三种运动控制模式:滑行模 式、步行模式和微调模式。总的来说,滑行模式运动速度快;步行模式运动速度相对较慢,但定位精度更高,拥有高精度的轨迹跟踪能力;微调模式能对动子在目标位置附近进行微调,其定位控制精度最高,下文将进一步详细说明。
图16a为本发明压电陶瓷平面电机处于滑行模式中的运动示意图一。图16b为本发明压电陶瓷平面电机处于滑行模式中的运动示意图二。图16c为本发明压电陶瓷平面电机处于滑行模式中的运动示意图三。图16d为本发明压电陶瓷平面电机处于滑行模式中的运动示意图四。在滑行模式中,两个单自由度驱动腿50一直处于抬起状态,两个三自由度驱动腿40通过高速摆动来驱动动子30。在这种状态下,空气轴承20的阻力非常小,所以动子30可以像滑雪一样在平面基板10上高速滑行。所述滑动模式中三自由度驱动腿40的接触头与平面基板10可能会有滑动摩擦存在,这样会产生较严重的磨损。因此,为了降低滑动摩擦现象,动子30的加速度会被控制在一定的范围,以保证驱动力小于最大静摩擦力。这种运动模式能够使动子30以最快的速度到达目标位置。
图17a为本发明压电陶瓷平面电机处于步行模式中的运动示意图一。图17b为本发明压电陶瓷平面电机处于步行模式中的运动示意图二。图17c为本发明压电陶瓷平面电机处于步行模式中的运动示意图三。图17d为本发明压电陶瓷平面电机处于步行模式中的运动示意图四。在步行模式中,动子30如图17a-17d所示进行步进运动。单自由度驱动腿50与平面基板10接触以提供制动力,三自由度驱动腿40在平面基板10上拨动以提供驱动力。如图17b和图17c所示,当两个三自由度驱动腿40推动动子30时,两个单自由度驱动腿50会被抬起。如图17a和图17d所示,当两个三自由度驱动腿40抬起准备下一次驱动时,两个单自由度驱动腿50伸长将动子30锁停在平面基板10上。这种运动模式可以保持每一时刻至少有一条驱动腿与平面基板10接触,以防止外部的干扰力移动动子30。相比上述滑行模式,步行模式可以有很强的抗干扰能力和高精度的定位与轨迹跟随能力。
图18a为本发明压电陶瓷平面电机处于微调模式中的运动示意图一。图18b为本发明压电陶瓷平面电机处于微调模式中的运动示意图二。图18c为本发明压电陶瓷平面电机处于微调模式中的运动示意图三。图18d为本发明压电陶瓷平面电机处于微调模式中的运动示意图四。在微调模式中,两条三自由度驱动腿40和两条单自由度驱动腿50通过各自内部的第一压电陶瓷43和第二压电陶瓷53来调整动子30的六个自由度的空间位置。由于第一压电陶瓷43和第 二压电陶瓷53的行程较短,所以微调模式的调整范围也较小。如图18a-18d所示,三自由度驱动腿40在开始时伸长并锁住动子30,通过第一压电陶瓷43具有的较高的位移分辨率来微调三自由度运动头的摆动角,从而调整动子30的位置。两个单自由度驱动腿50也会配合一起微调动子30的俯仰角,翻滚角和高度位置。由于两条三自由度驱动腿40和两条单自由度驱动腿50都能同时接触平面基板10,所以动子30可以保持最佳的稳定性。这里的微调模式主要用来微调动子30至目标位置,其拥有最高的定位精度,特别适用于高精度位置控制,例如半导体加工的光刻掩模对准。
本发明提供的另一种压电陶瓷平面电机的基本结构与上述压电陶瓷平面电机基本一致,其不同之处仅在于,本实施例压电陶瓷平面电机中的所述平面电机不采用悬浮装置,而是采用预紧机构,所述预紧机构安装在所述动子上,使所述动子与所述平面基板之间产生预紧力。所述预紧机构为真空预紧机构或磁力预紧机构(图中未示),使得所述平面电机通过所述预紧机构与所述平面基板之间的吸引力实现在所述平面基板上的平面全向移动。这种结构的压电陶瓷平面电机适用于以下两种情况:即所述压电陶瓷平面电机的驱动腿包括三条三自由度驱动腿和三条单自由度驱动腿,所述三自由度驱动腿和所述单自由度驱动腿一一对应为一组,布置在所述平面电机上;或者所述压电陶瓷平面电机的驱动腿包括六条三自由度驱动腿,所述三自由度驱动腿两两一组地布置在所述平面电机上。
当然,上述结构中三自由度驱动腿、单自由度驱动腿的数量和排布方式并不局限于上述举例,其他类似的方式均可以实现本发明的技术方案。进一步地,所述压电陶瓷平面电机还包括位置反馈***,所述位置反馈***可以采用平面编码器或激光干涉仪。以平面编码器为例,图20为本发明压电陶瓷平面电机中位置传感器采用平面编码器的结构示意图一。如图20所示,所述压电陶瓷平面电机中设置的位置反馈***采用平面编码器90,其中平面编码器90包括读头92和平面参照部件91,将平面参照部件91安装在平面基板10上,使得动子30在平面参照部件91上运动。读头92安装在动子30上与动子30一起移动,通过读头92采集平面参照部件91的信息,从而获取动子30在平面基板10上的位置。这里使用的平面编码器90的平面参照部件91优选为光栅、显示装置或者具有周期图案的基板。进一步优选地,在平面参照部件91上还可以增加保护层(图中未示)。
图21为本发明压电陶瓷平面电机中位置传感器采用平面编码器的结构示意图二。如图21所示,所述压电陶瓷平面电机中设置的位置反馈***采用平面编码器90包括读头92和平面参照部件91,将平面参照部件91安装在动子30上(如图21所示平面参照部件91设在动子30的下端,与读头92相对)与动子30一起运动,读头92安装在平面基板30上,与平面参照部件91相对。这里使用的平面编码器90的平面参照部件91优选为光栅、显示装置或者具有周期图案的基板。当动子30移动时,读头92采集平面参照部件91的位置信息从而获取动子30在平面基板10上的位置。
本发明还提供了一种压电陶瓷平面电机的驱动方法,所述压电陶瓷平面电机如上所述,所述驱动方法通过使用至少一条压电陶瓷驱动腿驱动所述动子在所述平面基板上进行平面全向移动。
优选地,所述驱动方法进一步包括:使用悬浮装置将所述动子悬浮在所述平面基板上。优选地,所述驱动方法进一步包括:使用预紧机构使所述动子与所述平面基板之间产生预紧力。
此外,所述驱动方法包括如下运动控制模式:滑行模式、步行模式或微调模式。所述运动控制模式可以由用户选择,也可以由***根据当前位置和目标位置之间的距离和动子定位精度要求来自动选择。所述驱动方法还包括开环控制方法或采用所述位置反馈***的闭环控制方法。
如采用闭环控制方法,则动子30在开始运行时会通过位置传感器(图中未示)读取动子30的当前位置,再与预设的目标位置相比较得出需要移动的距离。如果运动控制模式由用户选择,***将以用户选择的运动控制模式将动子驱动至目标位置。如果运动控制模式由***自动选择,则***会根据距离目标位置的远近和运动精度的要求来选择运动控制模式。如果动子30距离目标位置较远,则***会选择滑行模式以最快的速度接近目标位置。当动子30达到目标位置附近一定范围以内时,***会选择步行模式来以更高的精度趋近目标。最后当动子30在微调模式的运动范围内时,***会选择微调模式将电机微调至最精确的目标位置。
一旦***确定了运行模式之后,处理器(图中未示)会根据各个运行模式的控制算法来生成压电陶瓷的电压控制信号。第一压电陶瓷43和第二压电陶瓷53的电压控制信号通过功率放大器进行放大,从而驱动动子30的运动。在动子30移动一段距离后,***会重新判断动子30是否已经达到距离目标位置。 如果距离目标位置的距离在满足的范围之内,则***提示平面电机已经达到理想位置,反之则重新开始控制回路。
此外,上述运动控制方法中涉及了各个运动模式的控制算法。图22为本发明压电陶瓷平面电机的坐标定义示意图。如图22所示,四个坐标系Ob,Om,Oleg_1,Oleg_2分别固定在平面基板、动子30和三自由度驱动腿40上。首先,假设平面电机相对于平面基板的坐标系的速度根据下述公式(1)得到:
Figure PCTCN2014088909-appb-000001
则第i个三自由度驱动腿的速度在各自的坐标系下应该如下述公式(2)所示:
Figure PCTCN2014088909-appb-000002
其中雅克比矩阵如下述公式(3)所示:
Figure PCTCN2014088909-appb-000003
图23为本发明压电陶瓷平面电机中三自由度驱动腿的参数定义示意图一。图24为本发明压电陶瓷平面电机中三自由度驱动腿的参数定义示意图二。如图23和图24所示,第i个三自由度驱动腿的运动头拥有三个自由度(δi、Φi、Zi),是通过三个第一压电陶瓷的伸缩来驱动。如图23和图24示出的三个自由度变量的定义方式。其中角度δi定义了三自由度运动头运动所在的平面,称之为运动平面,同时这个变量也定义了驱动腿的驱动方向。角度δi的数值是通过上述公式(2)中的
Figure PCTCN2014088909-appb-000004
算出。第i个三自由度驱动腿的运动头摆动角Φi和运动头垂直伸长量Zi确定了所述运动头在运动平面内移动的位置。如图22中的r是三个第一压电陶瓷的均布半径,则第i个三自由度驱动腿内部的第j个第一压电陶瓷的位移长度可以通过下述公式(4)获得:
dji_3DOF=-Zi-rcos[120°(j-1)+δii j=1,2,3 i=1,2   (4)
特别地,在滑行模式中,三自由度驱动腿40的接触头可以在三个第一压电陶瓷43的驱动下沿着一个椭圆轨迹60来驱动动子30。椭圆轨迹60所在的平面为运动平面,通过变量δi决定并随着运动方向的改变而改变。这里的第一压电陶瓷43的驱动速度可以高达几百赫兹,使得动子30能在平面基板上高速 滑动。第i个三自由度驱动腿内部的第j个压电陶瓷的运动控制方程如下公式(5)-(7)所示:
dji_3DOF=Ajicos(2πft+θji) j=1,2,3 i=1,2   (5)
Figure PCTCN2014088909-appb-000005
Figure PCTCN2014088909-appb-000006
其中,Az_i和AΦ_i分别定义了椭圆轨迹60的长轴和短轴,即三自由度驱动腿40每步抬起的高度和滑动步距。每一步抬起的高度可以调整三自由度驱动腿40与平面基板的接触压电,滑行步距可以调整动子30的滑行速度。驱动腿的驱动频率用f来表示,频率也可以用来控制平面电机的滑行速度。通过合理地调整各个变量,从而得到对三自由度驱动腿内部第一压电陶瓷的运动控制。
在步行模式中,两个三自由度驱动腿40和两个单自由度驱动腿50一起工作来驱动动子30逐步前进。三自由度驱动腿40的步行模式的控制算法与滑行模式中控制算法相同,其区别是步行算法使用了更低的驱动频率f(一般小于100Hz)。单自由度驱动腿50的控制方程较为简单,其控制方程只需要满足当三自由度驱动腿40在抬起迈步准备下一次驱动时,单自由度驱动腿50伸长压紧平面基板进行制动。第i个单自由度驱动腿通过如下公式(8)实现控制:
Figure PCTCN2014088909-appb-000007
在微调模式中,两个三自由度驱动腿40和两个单自由度驱动腿50一起配合起来微调动子30在空间中六个自由度的位置。假设六个自由度的调整向量为
Figure PCTCN2014088909-appb-000008
Figure PCTCN2014088909-appb-000009
那么在三自由度驱动腿40和单自由度驱动腿50内部的第一压电陶瓷和第二压电陶瓷采用的控制方程如下公式(9)-(15)所示:
Figure PCTCN2014088909-appb-000010
dji_3DOF=-Zi-rcos[120°(j-1)+δi]ΔΦi j=1,2,3 i=1,2   (10)
其中:
Figure PCTCN2014088909-appb-000011
Figure PCTCN2014088909-appb-000012
Figure PCTCN2014088909-appb-000013
Figure PCTCN2014088909-appb-000014
Figure PCTCN2014088909-appb-000015
综上所述,本发明提出了一种新型的用于大行程纳米定位的压电陶瓷平面电机。所述压电陶瓷平面电机利用了真空预压的空气轴承来降低运动阻力,同时保证了电机具有较高的刚度。另外还利用了多条压电陶瓷驱动腿(包括三自由度驱动腿和单自由度驱动腿,或全部为三自由度驱动腿)来驱动平面电机,从而达到纳米级的定位分辨率。此外,所述压电陶瓷平面电机具有三种工作模式:滑行模式,步行模式和微调模式。在滑行模式中,平面电机可以快速运动,适用于长距离的移动。在步行模式中,平面电机作步进运动,且步距可以调整,其运动速度相对较慢,但定位精度更高,拥有高精度的轨迹跟随能力。在微调模式中,驱动腿伸长压紧基板,并通过调整运动头的摆动角对动子的最终位置进行微调。微调模式下的平面电机的控制最稳定,定位精度也最高。上述三种工作模式可以结合起来,从而同时获得高速和高定位精度的优点。
虽然以上描述了本发明的具体实施方式,但是本领域的技术人员应当理解,这些仅是举例说明,本发明的保护范围是由所附权利要求书限定的。本领域的技术人员在不背离本发明的原理和实质的前提下,可以对这些实施方式作出多种变更或修改,但这些变更和修改均落入本发明的保护范围。

Claims (29)

  1. 一种压电陶瓷平面电机,其包括平面基板和安装在所述平面基板上的动子,其特征在于,所述压电陶瓷平面电机还包括:至少一条压电陶瓷驱动腿,所述压电陶瓷驱动腿设置在所述动子上,用来驱动所述动子在所述平面基板上进行平面全向移动。
  2. 如权利要求1所述的压电陶瓷平面电机,其特征在于,所述平面电机还包括悬浮装置,所述悬浮装置使所述动子悬浮在所述平面基板上。
  3. 如权利要求2所述的压电陶瓷平面电机,其特征在于,所述悬浮装置为磁悬浮装置或空气悬浮装置。
  4. 如权利要求3所述的压电陶瓷平面电机,其特征在于,所述空气悬浮装置为至少一个空气轴承。
  5. 如权利要求1所述的压电陶瓷平面电机,其特征在于,所述平面电机还包括预紧机构,所述预紧机构使所述动子与所述平面基板之间产生预紧力。
  6. 如权利要求5所述的压电陶瓷平面电机,其特征在于,所述预紧机构为真空预紧机构或磁力预紧机构。
  7. 如权利要求1-6任意一项所述的压电陶瓷平面电机,其特征在于,所述压电陶瓷驱动腿包括至少一条多自由度驱动腿,布置在所述动子上,所述多自由度驱动腿的接触头提供至少两个自由度的运动。
  8. 如权利要求1-6任意一项所述的压电陶瓷平面电机,其特征在于,所述压电陶瓷驱动腿还包括至少一条单自由度驱动腿,布置在所述动子上,所述单自由度驱动腿的接触头提供一个自由度的运动。
  9. 如权利要求8所述的压电陶瓷平面电机,其特征在于,所述压电陶瓷驱 动腿包括两条多自由度驱动腿和两条单自由度驱动腿。
  10. 如权利要求8所述的压电陶瓷平面电机,其特征在于,所述压电陶瓷驱动腿包括三条多自由度驱动腿和三条单自由度驱动腿。
  11. 如权利要求7所述的压电陶瓷平面电机,其特征在于,所述压电陶瓷平面电机包括六条多自由度驱动腿。
  12. 如权利要求1-11任意一项所述的压电陶瓷平面电机,其特征在于,所述多自由度驱动腿由剪切变形压电陶瓷和伸缩变形的压电陶瓷叠加而成。
  13. 如权利要求1-11任意一项所述的压电陶瓷平面电机,其特征在于,所述多自由度驱动腿包括至少两个第一压电陶瓷,所述至少两个第一压电陶瓷相互组合提供多自由度的运动。
  14. 如权利要求1-11任意一项所述的压电陶瓷平面电机,其特征在于,所述单自由度驱动腿通过一个第二压电陶瓷,所述第二压电陶瓷提供单自由度运动。
  15. 如权利要求1所述的压电陶瓷平面电机,其特征在于,所述压电陶瓷平面电机的运动控制模式包括滑行模式,在所述滑行模式中,存在所述压电陶瓷驱动腿与所述平面基板不接触的状态。
  16. 如权利要求2所述的压电陶瓷平面电机,其特征在于,压电陶瓷平面电机的运动控制模式包括滑行模式,在所述滑行模式中,存在所述压电陶瓷驱动腿与所述平面基板不接触的状态,所述动子处于悬浮状态。
  17. 如权利要求1所述的压电陶瓷平面电机,其特征在于,所述压电陶瓷平面电机的运动控制模式包括步行模式,在所述步行模式中,每一时刻至少有一条所述压电陶瓷驱动腿与所述平面基板接触。
  18. 如权利要求1所述的压电陶瓷平面电机,其特征在于,所述压电陶瓷平面电机的运动控制模式包括微调模式,在所述微调模式中,多条所述压电陶瓷驱动腿与所述平面基板在接触点不变的情况下,通过调整所述压电陶瓷驱动腿来实现动子位置的微调。
  19. 如权利要求1所述的压电陶瓷平面电机,其特征在于,所述压电陶瓷平面电机还包括位置反馈***。
  20. 如权利要求19所述的压电陶瓷平面电机,其特征在于,所述位置反馈***采用平面编码器或激光干涉仪。
  21. 如权利要求20所述的压电陶瓷平面电机,其特征在于,所述平面编码器包括读头和平面参照部件,所述平面参照部件安装在所述平面基板上;
    所述读头安装在所述动子上,与所述动子一起移动,所述读头用于采集所述平面参照部件的信息,以获取所述动子在所述平面基板上的位置。
  22. 如权利要求20所述的压电陶瓷平面电机,其特征在于,所述平面编码器包括读头和平面参照部件,所述平面参照部件安装在所述动子上,与所述动子一起运动,所述读头安装在所述平面基板上;
    当所述动子移动时,所述读头用于采集所述平面参照部件的位置信息,以获取所述动子在所述平面基板上的位置。
  23. 如权利要求21或22所述的压电陶瓷平面电机,其特征在于,所述平面编码器的所述平面参照部件采用光栅、显示装置或具有周期图案的基板。
  24. 一种压电陶瓷平面电机的驱动方法,其特征在于,所述压电陶瓷平面电机如权利要求1-23任意一项所述,所述驱动方法通过使用至少一条压电陶瓷驱动腿驱动所述动子在所述平面基板上进行平面全向移动。
  25. 如权利要求24所述的驱动方法,其特征在于,所述驱动方法进一步包括:使用悬浮装置将所述动子悬浮在所述平面基板上。
  26. 如权利要求24所述的驱动方法,其特征在于,所述驱动方法进一步包括:使用预紧机构使所述动子与所述平面基板之间产生预紧力。
  27. 如权利要求24所述的驱动方法,其特征在于,所述驱动方法包括如下运动控制模式:滑行模式、步行模式或微调模式。
  28. 如权利要求27所述的驱动方法,其特征在于,所述驱动方法由***根据当前位置和目标位置之间的距离和动子定位精度要求来自动选择运动控制模式。
  29. 如权利要求24-28任意一项所述的驱动方法,其特征在于,所述驱动方法包括开环控制方法或采用所述位置反馈***的闭环控制方法。
PCT/CN2014/088909 2013-10-18 2014-10-20 压电陶瓷平面电机及其驱动方法 WO2015055153A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/030,221 US10491140B2 (en) 2013-10-18 2014-10-20 Piezo ceramic planar motor and driving method thereof
CN201480057304.XA CN105723608B (zh) 2013-10-18 2014-10-20 压电陶瓷平面电机及其驱动方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2013085487 2013-10-18
CNPCT/CN2013/085487 2013-10-18

Publications (1)

Publication Number Publication Date
WO2015055153A1 true WO2015055153A1 (zh) 2015-04-23

Family

ID=52827684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/088909 WO2015055153A1 (zh) 2013-10-18 2014-10-20 压电陶瓷平面电机及其驱动方法

Country Status (3)

Country Link
US (1) US10491140B2 (zh)
CN (1) CN105723608B (zh)
WO (1) WO2015055153A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110336485A (zh) * 2019-07-10 2019-10-15 合肥工业大学 一种压电冲击驱动二维并联跨尺度精密定位平台
CN112067850A (zh) * 2020-08-27 2020-12-11 华中科技大学 一种二维纳米定位平台

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106527292B (zh) * 2016-12-26 2023-07-28 中国工程物理研究院总体工程研究所 多压电陶瓷激振器并联组合***的控制方法及控制装置
CN108776239A (zh) * 2018-03-30 2018-11-09 天津大学 一种两自由度探针进给机构
EP3611770A1 (en) * 2018-08-16 2020-02-19 ASML Netherlands B.V. Piezoelectric actuator, actuator system, substrate support and lithographic apparatus including the actuator
CN109491201B (zh) * 2018-12-26 2024-01-19 仪晟科学仪器(嘉兴)有限公司 一种掩膜版用高精度二维运动机构
CN110474562B (zh) * 2019-09-06 2024-03-12 仪晟科学仪器(嘉兴)有限公司 超高真空用精密压电陶瓷摆动台
CN111030504B (zh) * 2019-12-24 2023-12-29 上海交通大学 一种双端固定安装的压电陶瓷复合驱动执行器
CN111490700B (zh) * 2020-04-23 2023-09-19 中国科学院光电技术研究所 一种多模式混合驱动二维并联运动平台及其控制方法
CN113315412B (zh) * 2021-06-01 2022-12-06 上海隐冠半导体技术有限公司 压电陶瓷致动器
CN113315411B (zh) * 2021-06-01 2022-09-20 上海隐冠半导体技术有限公司 平台移动装置
CN116954038B (zh) * 2023-09-19 2023-12-08 上海隐冠半导体技术有限公司 一种活动连接组件及宏微结合的垂向定位装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101527484A (zh) * 2009-04-10 2009-09-09 东南大学 水平行程易扩展的气磁混合悬浮平面电机

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6459088B1 (en) * 1998-01-16 2002-10-01 Canon Kabushiki Kaisha Drive stage and scanning probe microscope and information recording/reproducing apparatus using the same
WO2007137372A2 (en) * 2006-05-25 2007-12-06 Katholieke Universiteit Leuven Positioning motor and apparatus
US7823382B2 (en) * 2006-08-09 2010-11-02 Gm Global Technology Operations, Inc. Active material actuator with modulated movement
JP4209464B2 (ja) * 2007-03-16 2009-01-14 パナソニック株式会社 超音波アクチュエータ装置
CN101488371B (zh) * 2009-03-04 2010-12-29 上海微电子装备有限公司 六自由度精密定位平台
KR101623099B1 (ko) * 2010-12-24 2016-05-20 가부시키가이샤 무라타 세이사쿠쇼 탄성파 장치 및 그 제조 방법
JP6308801B2 (ja) * 2013-04-12 2018-04-11 キヤノン株式会社 駆動装置、画像振れ補正装置、交換レンズ、撮像装置、及び自動ステージ

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101527484A (zh) * 2009-04-10 2009-09-09 东南大学 水平行程易扩展的气磁混合悬浮平面电机

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AKIHIDE, KIMURA ET AL.: "Design and Construction of a Two-degree-of-freedom Linear Encoder for Nanometric Measurement of Stage Position and Straightness", PRECISION ENGINEERING, vol. 34, no. 1, 31 January 2010 (2010-01-31), pages 145, XP026708763, DOI: doi:10.1016/j.precisioneng.2009.05.008 *
SHUICHI, DEJIMA ET AL.: "Precision Positioning of a Five Degree-of-freedom Planar Motion Stage", MECHATRONICS, vol. 15, no. 8, 31 October 2005 (2005-10-31) *
SHUICHI, DEJIMA ET AL.: "Precision Positioning of a Five Degree-of-freedom Planar Motion Stage", MECHATRONICS, vol. 15, no. 8, 31 October 2005 (2005-10-31), pages 970 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110336485A (zh) * 2019-07-10 2019-10-15 合肥工业大学 一种压电冲击驱动二维并联跨尺度精密定位平台
CN110336485B (zh) * 2019-07-10 2020-12-11 合肥工业大学 一种压电冲击驱动二维并联跨尺度精密定位平台
CN112067850A (zh) * 2020-08-27 2020-12-11 华中科技大学 一种二维纳米定位平台
CN112067850B (zh) * 2020-08-27 2022-05-24 华中科技大学 一种二维纳米定位平台

Also Published As

Publication number Publication date
US10491140B2 (en) 2019-11-26
CN105723608A (zh) 2016-06-29
US20160373029A1 (en) 2016-12-22
CN105723608B (zh) 2019-04-19

Similar Documents

Publication Publication Date Title
WO2015055153A1 (zh) 压电陶瓷平面电机及其驱动方法
Cheng et al. A novel trapezoid-type stick–slip piezoelectric linear actuator using right circular flexure hinge mechanism
Wang et al. A review of recent studies on non-resonant piezoelectric actuators
Xu et al. Development of a nonresonant piezoelectric motor with nanometer resolution driving ability
Zhang et al. Piezoelectric friction–inertia actuator—A critical review and future perspective
Zhang et al. Development of a novel two-DOF pointing mechanism using a bending–bending hybrid piezoelectric actuator
Kim et al. Design and precision construction of novel magnetic-levitation-based multi-axis nanoscale positioning systems
JP2706534B2 (ja) ピエゾ電気駆動装置及び方法
Deng et al. Development of a nanopositioning platform with large travel range based on bionic quadruped piezoelectric actuator
Wang et al. A flexure-based kinematically decoupled micropositioning stage with a centimeter range dedicated to micro/nano manufacturing
US11342864B2 (en) Three-degrees-of-freedom angle adjustment device driven by piezoelectric ceramics and adjusting method thereof
CN104467525A (zh) 可调预紧力式惯性粘滑驱动跨尺度精密定位平台
Ma et al. A simplified inchworm rotary piezoelectric actuator inspired by finger twist: design, modeling, and experimental evaluation
Shi et al. Simple new ultrasonic piezoelectric actuator for precision linear positioning
Pan et al. A review of stick–slip nanopositioning actuators
Yu et al. A 3-DOF piezoelectric robot with continuous walking gait aiming at cross-scale smooth motion
CN107171589B (zh) 一种钹型两自由度压电驱动器及采用该驱动器实现的两自由度运动的激励方法
CN102522916A (zh) 基于摩擦力变化的纳米马达
Peng et al. A micro-stage for linear-rotary positioning
Ma et al. Recent trends in bionic stepping piezoelectric actuators for precision positioning: a review
Higuchi et al. Micro robot arm utilizing rapid deformations of piezoelectric elements
CN204231227U (zh) 可调预紧力式惯性粘滑驱动跨尺度精密定位平台
Wang et al. Design and experimental performance of a piezoelectric wheelbarrow applicable to the stick-slip motion study
Van Brussel et al. A fast, high-stiffness and high-resolution piezoelectric motor with integrated bearing and driving functionality
JP2002210626A (ja) 位置決め装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14854226

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15030221

Country of ref document: US

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08.09.2016)

122 Ep: pct application non-entry in european phase

Ref document number: 14854226

Country of ref document: EP

Kind code of ref document: A1