WO2015053272A1 - Lipophilic stacked body, production method therefor, and article - Google Patents

Lipophilic stacked body, production method therefor, and article Download PDF

Info

Publication number
WO2015053272A1
WO2015053272A1 PCT/JP2014/076823 JP2014076823W WO2015053272A1 WO 2015053272 A1 WO2015053272 A1 WO 2015053272A1 JP 2014076823 W JP2014076823 W JP 2014076823W WO 2015053272 A1 WO2015053272 A1 WO 2015053272A1
Authority
WO
WIPO (PCT)
Prior art keywords
lipophilic
resin layer
master
mass
laminate
Prior art date
Application number
PCT/JP2014/076823
Other languages
French (fr)
Japanese (ja)
Inventor
亮介 岩田
水野 幹久
忍 原
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Publication of WO2015053272A1 publication Critical patent/WO2015053272A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/16Layered products comprising a layer of synthetic resin specially treated, e.g. irradiated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/536Hardness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/208Touch screens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles

Definitions

  • the present invention relates to a lipophilic laminate, a method for producing the same, and an article using the lipophilic laminate.
  • the aesthetics of the article will be impaired. For example, if fingerprints adhere to the surfaces of pianos, luxury furniture, home appliances, automobile interior / exterior parts, etc., the aesthetics are impaired and it becomes unsightly.
  • the touch panel of an information display device such as a smartphone or a tablet PC equipped with a touch panel as a user interface (UI) has an advantage that the device can be intuitively operated by directly touching the display screen with a finger.
  • UI user interface
  • an antifouling layer designed so that a fluorine-based compound, a silicone-based compound, or the like appears on the outermost surface as a display surface of a touch panel or the like
  • the proposed technique has an effect of facilitating wiping with a cloth or the like by forming a water- and oil-repellent surface to weaken the adhesion of the oil and fat components constituting the fingerprint.
  • the fingerprint is wiped off with a cloth or the like, the oil and fat component is repelled on the surface of the layer, so that there is a problem that droplets are formed, light is scattered, and the fingerprint becomes conspicuous.
  • the surface of the article is required to have fingerprint resistance that is difficult to see even if fingerprints are attached.
  • a water-repellent lipophilic surface that does not repel oil and fat components has been proposed (see, for example, Patent Document 2).
  • the oil and fat component of the fingerprint adhering to the surface spreads and does not form droplets, making it difficult to see the fingerprint.
  • the laminate attached to the article is required to have excellent surface hardness and flexibility in addition to fingerprint resistance.
  • the present invention provides an oleophilic laminate capable of achieving both excellent surface hardness and excellent flexibility while having fingerprint resistance, a method for producing the same, and an article using the oleophilic laminate. For the purpose.
  • Means for solving the problems are as follows. That is, ⁇ 1> A resin base material and a lipophilic resin layer on the resin base material, The lipophilic resin layer has either a fine convex part or a concave part on the surface, The lipophilic resin layer contains 10% by mass to 55% by mass of inorganic oxide particles; The oleic acid contact angle on the surface of the lipophilic resin layer is 10 ° or less. ⁇ 2> The lipophilic laminate according to ⁇ 1>, wherein the inorganic oxide particles have an average particle diameter of 1 nm to 100 nm.
  • ⁇ 3> The lipophilic laminate according to any one of ⁇ 1> to ⁇ 2>, wherein the lipophilic resin layer contains 10% by mass to 45% by mass of inorganic oxide particles.
  • ⁇ 4> The lipophilic laminate according to any one of ⁇ 1> to ⁇ 3>, wherein the oleic acid contact angle on the surface of the lipophilic resin layer is 5.0 ° or less.
  • any one of the average height of the fine protrusions and the average depth of the fine recesses is 10 nm to 150 nm, and the average distance between the adjacent protrusions and the adjacent recesses
  • the lipophilic laminate according to any one of ⁇ 1> to ⁇ 4>, wherein any one of the average distances is 10 nm to 500 nm.
  • the resin base material is a polyethylene terephthalate (PET) film.
  • ⁇ 7> The method for producing a lipophilic laminate according to any one of ⁇ 1> to ⁇ 6>, An uncured resin layer forming step of forming an uncured resin layer by applying an active energy ray-curable resin composition on a resin substrate; Adhering a transfer master having either a fine convex part or a concave to the uncured resin layer, irradiating the uncured resin layer to which the transfer master is in contact with an active energy ray to cure the uncured resin layer And a lipophilic resin layer forming step of forming a lipophilic resin layer by transferring any one of the fine convex portions and concave portions.
  • ⁇ 8> The parent according to ⁇ 7>, wherein any one of the fine convex portion and the concave portion of the transfer master is formed by etching the surface of the transfer master using a photoresist having a predetermined pattern shape as a protective film. It is a manufacturing method of an oil-based laminated body.
  • ⁇ 9> The lipophilic laminate according to ⁇ 7>, wherein any one of the fine convex portion and the concave portion of the transfer master is formed by irradiating the surface of the transfer master with laser processing of the transfer master. It is a manufacturing method of a body.
  • the conventional problems can be solved, the object can be achieved, and the lipophilic laminate can achieve both excellent surface hardness and excellent flexibility while having fingerprint resistance, And the manufacturing method and the articles
  • FIG. 1A is an atomic force microscope (AFM) image showing an example of the surface of a lipophilic resin layer having convex portions.
  • FIG. 1B is a cross-sectional view taken along line aa in FIG. 1A.
  • FIG. 1C is an AFM image (three-dimensional image) of the lipophilic resin layer in FIG. 1A.
  • FIG. 1D is a scanning electron microscope image (SEM image) of the lipophilic resin layer of FIG. 1A.
  • FIG. 2A is an AFM image showing an example of the surface of a lipophilic resin layer having a recess.
  • FIG. 2B is a cross-sectional view taken along line aa in FIG. 2A.
  • FIG. 3A is a perspective view illustrating an example of a configuration of a roll master that is a transfer master.
  • 3B is an enlarged plan view showing a part of the roll master shown in FIG. 3A.
  • 3C is a cross-sectional view of the track T in FIG. 3B.
  • FIG. 4 is a schematic diagram showing an example of the configuration of a roll master exposure apparatus for producing a roll master.
  • FIG. 5A is a process diagram for explaining an example of a process for producing a roll master.
  • FIG. 5B is a process diagram for explaining an example of a process for producing a roll master.
  • FIG. 5C is a process diagram for explaining an example of a process for producing a roll master.
  • FIG. 5A is a process diagram for explaining an example of a process for producing a roll master.
  • FIG. 5B is a process diagram for explaining an example of a process for producing a roll master.
  • FIG. 5C is a process diagram for explaining an example of a
  • FIG. 5D is a process diagram for explaining an example of a process for producing a roll master.
  • FIG. 5E is a process diagram for explaining an example of a process for producing a roll master.
  • FIG. 6A is a process diagram for explaining an example of a process of transferring fine convex portions or concave portions by a roll master.
  • FIG. 6B is a process diagram for explaining an example of a process of transferring a fine convex portion or a concave portion with a roll master.
  • FIG. 6C is a process diagram for explaining an example of a process of transferring a fine convex portion or a concave portion with a roll master.
  • FIG. 6A is a process diagram for explaining an example of a process of transferring fine convex portions or concave portions by a roll master.
  • FIG. 6B is a process diagram for explaining an example of a process of transferring a fine convex portion or a concave portion with a roll master.
  • FIG. 7A is a plan view illustrating an example of a configuration of a plate-shaped master that is a transfer master.
  • FIG. 7B is a cross-sectional view along the line aa shown in FIG. 7A.
  • FIG. 7C is an enlarged cross-sectional view of a part of FIG. 7B.
  • FIG. 8 is a schematic diagram showing an example of the configuration of a laser processing apparatus for producing a plate-shaped master.
  • FIG. 9A is a process diagram for explaining an example of a process for producing a plate-shaped master.
  • FIG. 9B is a process diagram for explaining an example of a process for producing a plate-shaped master.
  • FIG. 9C is a process diagram for explaining an example of a process for producing a plate-shaped master.
  • FIG. 9A is a process diagram for explaining an example of a process for producing a plate-shaped master.
  • FIG. 9B is a process diagram for explaining an example of a process for producing a plate-shaped master.
  • FIG. 10A is a process diagram for explaining an example of a process of transferring fine convex portions or concave portions with a plate-shaped master.
  • FIG. 10B is a process diagram for explaining an example of a process of transferring fine convex portions or concave portions by a plate-shaped master.
  • FIG. 10C is a process diagram for explaining an example of a process of transferring a fine convex portion or a concave portion with a plate-shaped master.
  • FIG. 11 is a schematic sectional drawing of an example of the lipophilic laminated body manufactured by 4th Embodiment.
  • FIG. 12A is a process diagram for explaining an example of producing the article of the present invention by in-mold molding.
  • FIG. 12A is a process diagram for explaining an example of producing the article of the present invention by in-mold molding.
  • FIG. 12B is a process diagram for explaining an example of producing the article of the present invention by in-mold molding.
  • FIG. 12C is a process diagram for explaining an example of manufacturing the article of the present invention by in-mold molding.
  • FIG. 12D is a process diagram for explaining an example of manufacturing the article of the present invention by in-mold molding.
  • FIG. 12E is a process diagram for explaining an example of manufacturing the article of the present invention by in-mold molding.
  • FIG. 12F is a process diagram for explaining an example of manufacturing the article of the present invention by in-mold molding.
  • 13A is an AFM image of the surface of the lipophilic resin layer of the lipophilic laminate of Example 1.
  • FIG. 13B is a cross-sectional view taken along line aa in FIG. 13A.
  • FIG. 13C is an AFM image (three-dimensional image) of the lipophilic resin layer in FIG. 13A.
  • FIG. 13D is a scanning electron microscope image (SEM image) of the lipophilic resin layer in FIG. 13A.
  • 14A is an AFM image of the surface of the lipophilic resin layer of the lipophilic laminate of Example 2.
  • FIG. 14B is a cross-sectional view taken along line aa in FIG. 14A.
  • FIG. 14C is an AFM image (three-dimensional image) of the lipophilic resin layer in FIG. 14A.
  • FIG. 14D is a scanning electron microscope image (SEM image) of the lipophilic resin layer in FIG. 14A.
  • 15A is an AFM image of the surface of the lipophilic resin layer of the lipophilic laminate of Example 3.
  • FIG. 15B is a cross-sectional view taken along line aa in FIG. 15A.
  • FIG. 15C is an AFM image (three-dimensional image) of the lipophilic resin layer in FIG. 15A.
  • FIG. 15D is a scanning electron microscope image (SEM image) of the lipophilic resin layer in FIG. 15A.
  • FIG. 16A is an AFM image of the surface of the lipophilic resin layer of the lipophilic laminate of Example 4.
  • 16B is a cross-sectional view taken along line aa in FIG. 16A.
  • FIG. 16C is an AFM image (three-dimensional image) of the lipophilic resin layer in FIG. 16A.
  • FIG. 16D is a scanning electron microscope image (SEM image) of the lipophilic resin layer of FIG. 16A.
  • FIG. 17A is an AFM image of the surface of the lipophilic resin layer of the lipophilic laminate of Example 9.
  • FIG. 17B is a cross-sectional view taken along the line aa in FIG. 17A.
  • FIG. 17C is an AFM image (three-dimensional image) of the lipophilic resin layer in FIG. 17A.
  • 18A is an AFM image of the surface of the lipophilic resin layer of the lipophilic laminate of Example 10.
  • FIG. 18B is a cross-sectional view taken along the line aa in FIG. 18A.
  • FIG. 18C is an AFM image (three-dimensional image) of the lipophilic resin layer in FIG. 18A.
  • FIG. 19A is an AFM image of the surface of the lipophilic resin layer of the lipophilic laminate of Example 11.
  • FIG. 19B is a cross-sectional view taken along the line aa in FIG. 19A.
  • FIG. 19C is an AFM image (three-dimensional image) of the lipophilic resin layer in FIG. 19A.
  • 20A is an AFM image of the surface of the lipophilic resin layer of the lipophilic laminate of Example 12.
  • FIG. 20B is a cross-sectional view taken along the line aa in FIG. 20A.
  • FIG. 20C is an AFM image (three-dimensional image) of the lipophilic resin layer in FIG. 20A.
  • the lipophilic laminate of the present invention has at least a resin base material and a lipophilic resin layer, and further includes other members as necessary.
  • the said lipophilic resin layer has either a fine convex part and a recessed part on the surface.
  • the lipophilic resin layer contains 10% by mass to 55% by mass of inorganic oxide particles.
  • the oleic acid contact angle on the surface of the lipophilic resin layer is 10 ° or less.
  • the fingerprint resistance in the present invention means a characteristic that is difficult to see even if a fingerprint is attached.
  • a triacetyl cellulose TAC
  • polyester TPE
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PA polyamide
  • PA polyamide
  • PA polyamide
  • PA polyamide
  • PA polyamide
  • PE polyacrylate
  • PE polyether sulfone
  • PP polysulfone
  • PP polypropylene
  • PC polycarbonate
  • PC epoxy resin, urea resin, urethane resin, melamine resin, phenol resin, acrylonitrile-butadiene-styrene copolymer, cycloolefin polymer (COP), cycloolefin copolymer Mer (COC), PC / PMMA laminate, such as rubber
  • the resin base material preferably has transparency.
  • the average thickness of the resin substrate is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 5 ⁇ m to 1,000 ⁇ m, and preferably 50 ⁇ m to 500 ⁇ m. Is more preferable.
  • the resin substrate is preferably a triacetyl cellulose (TAC) film, a polyethylene terephthalate (PET) film, a polycarbonate (PC) film, a polymethyl methacrylate (PMMA) film, or a PC / PMMA laminate, and polyethylene terephthalate (PET).
  • TAC triacetyl cellulose
  • PET polyethylene terephthalate
  • PC polycarbonate
  • PMMA polymethyl methacrylate
  • PET polyethylene terephthalate
  • a film is more preferable.
  • a character, a pattern, an image, or the like may be printed on the surface of the resin base material.
  • a binder layer may be provided.
  • various adhesives can be used in addition to various binders such as acrylic, urethane, polyester, polyamide, ethylene butyl alcohol, and ethylene vinyl acetate copolymer systems.
  • Two or more binder layers may be provided.
  • the binder to be used one having heat sensitivity and pressure sensitivity suitable for the molding material can be selected.
  • the said lipophilic resin layer has either a fine convex part and a recessed part on the surface.
  • the oleic acid contact angle on the surface of the lipophilic resin layer is 10 ° or less.
  • the lipophilic resin layer is formed on the resin substrate.
  • the lipophilic resin layer contains inorganic oxide particles.
  • the content of the inorganic oxide particles in the lipophilic resin layer is 10% by mass to 55% by mass, preferably 10% by mass to 45% by mass, and more preferably 15% by mass to 35% by mass.
  • the content is less than 10% by mass, the surface hardness becomes insufficient.
  • the content exceeds 55% by mass, the flexibility becomes insufficient.
  • the content is within the more preferable range, it is possible to achieve both excellent surface strength and excellent flexibility.
  • the average particle size of the inorganic oxide particles is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1 nm to 100 nm, and more preferably 5 nm to 90 nm.
  • the average particle diameter is a primary average particle diameter, and can be measured by, for example, ALD-7500 nano (manufactured by Shimadzu Corporation).
  • the inorganic oxide particles are not exposed on the surface of the lipophilic resin layer.
  • the inorganic oxide particles are not particularly limited and may be appropriately selected depending on the purpose.
  • the surface of the inorganic oxide particles is preferably surface-treated with an organic dispersant having a functional group such as a (meth) acryl group, a vinyl group, or an epoxy group at the terminal.
  • an organic dispersant having a functional group such as a (meth) acryl group, a vinyl group, or an epoxy group at the terminal.
  • the silane coupling agent which has the said functional group at the terminal is preferable, for example.
  • the silane coupling agent having an acrylic group at the terminal include KBM-5103 manufactured by Shin-Etsu Chemical Co., Ltd.
  • Examples of the silane coupling agent having a methacryl group at the terminal include KBM-502, KBM-503, KBE-502, and KBE-503 manufactured by Shin-Etsu Chemical Co., Ltd.
  • silane coupling agent having a vinyl group at the terminal examples include KA-1003, KBM-1003, and KBE-1003 manufactured by Shin-Etsu Chemical Co., Ltd.
  • silane coupling agent having an epoxy group at the terminal examples include KBM-303, KBM-403, KBE-402, and KBE-403 manufactured by Shin-Etsu Chemical Co., Ltd.
  • an organic carboxylic acid may be used.
  • the lipophilic resin layer is not particularly limited and may be appropriately selected depending on the intended purpose, but preferably contains a cured product of an active energy ray-curable resin composition.
  • the said lipophilic resin layer has either a fine convex part and a recessed part on the surface. Either the fine convex part or the concave part is formed on the surface opposite to the resin base material side in the lipophilic resin layer.
  • a fine convex part means that the average distance of an adjacent convex part is 1,000 nm or less in the surface of the said lipophilic resin layer.
  • the fine recess means that the average distance between adjacent recesses is 1,000 nm or less on the surface of the lipophilic resin layer.
  • the shape of the convex portion and the concave portion is not particularly limited and can be appropriately selected depending on the purpose.
  • a partial shape of an ellipsoid for example, a semi-ellipsoidal shape
  • a polygonal shape for example, a sphere, a partial shape of an ellipsoid, and a polygonal shape.
  • These shapes need not be mathematically defined complete shapes, and may have some distortion.
  • the convex portions or the concave portions are two-dimensionally arranged on the surface of the lipophilic resin layer.
  • the arrangement may be a regular arrangement or a random arrangement.
  • the regular arrangement is preferably a close-packed structure from the viewpoint of the filling rate.
  • the average distance between the adjacent convex portions is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 5 nm to 1,000 nm, more preferably 10 nm to 800 nm, still more preferably 10 nm to 500 nm. 50 nm to 500 nm is particularly preferable.
  • the average distance between the adjacent concave portions is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 5 nm to 1,000 nm, more preferably 10 nm to 800 nm, still more preferably 10 nm to 500 nm, 50 nm to 500 nm is particularly preferred.
  • the average distance between the adjacent convex portions and the average distance between the adjacent concave portions are within the preferable range, the fingerprint component adhering to the lipophilic resin layer is effectively spread. In addition, the fingerprint wiping property is improved. When the average distance is within the particularly preferable range, the effect of spreading the fingerprint component and the effect of improving the fingerprint wiping property become remarkable.
  • the average height of the protrusions is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1 nm to 1,000 nm, more preferably 5 nm to 500 nm, still more preferably 10 nm to 300 nm, and even more preferably 10 nm. Particularly preferred is ⁇ 150 nm.
  • the average depth of the recess is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1 nm to 1,000 nm, more preferably 5 nm to 500 nm, still more preferably 10 nm to 300 nm, and more preferably 10 nm to 150 nm is particularly preferred.
  • the fingerprint component attached to the lipophilic resin layer effectively wets and spreads.
  • the fingerprint wiping property is improved.
  • the average height and the average depth are within the particularly preferable range, the effect of spreading the fingerprint component and the effect of improving the fingerprint wiping property become remarkable.
  • the average aspect ratio of the convex part (average height of the convex part / average distance of the adjacent convex part) and the average aspect ratio of the concave part (average depth of the concave part / average distance of the adjacent concave part)
  • it is preferably 0.001 to 1,000, more preferably 0.01 to 50, and particularly preferably 0.04 to 3.0.
  • the average aspect ratio of the convex portions and the average aspect ratio of the concave portions are within the preferable range, the fingerprint component attached to the lipophilic resin layer is effectively spread by wetting. In addition, the fingerprint wiping property is improved.
  • the aspect ratio is within the particularly preferable range, the effect of spreading the fingerprint component and the effect of improving the fingerprint wiping property become remarkable.
  • the average distance (Pm) of the convex part or the concave part, and the average height of the convex part or the average depth (Hm) of the concave part can be measured as follows. First, the surface S of the lipophilic resin layer having a convex portion or a concave portion is observed with an atomic force microscope (AFM), and the pitch of the convex portion or the concave portion and the height of the convex portion are determined from the cross-sectional profile of the AFM. Or the depth of a recessed part is calculated
  • AFM atomic force microscope
  • the pitch of the convex portions is a distance between the vertices of the convex portions.
  • the pitch of the recesses is the distance between the deepest portions of the recesses.
  • the height of the convex portion is the height of the convex portion based on the lowest point of the valley between the convex portions.
  • the depth of the recess is the depth of the recess based on the highest point of the peak between the recesses.
  • the pitch of the said convex part or a recessed part has in-plane anisotropy
  • the said Pm shall be calculated
  • the height of the convex portion or the depth of the concave portion has in-plane anisotropy
  • the height or depth in the direction in which the height or depth is maximum is used. Is to be sought.
  • the pitch of a short-axis direction is measured as said pitch.
  • the cross-sectional profile is a measurement target so that the convex vertex or concave base of the cross-sectional profile matches the vertex of the solid convex portion or the deepest portion of the concave portion. It cuts out so that it may become a cross section which passes through the top of a convex part of a solid shape, or the deepest part of a concave part of a solid shape.
  • the fine shape formed on the surface of the lipophilic resin layer is a convex portion or a concave portion.
  • the surface S of the lipophilic resin layer having a convex portion or a concave portion is observed with an atomic force microscope (AFM) to obtain a cross section and an AFM image of the surface S.
  • AFM image of the surface is a bright image on the outermost surface side and a dark image on the deep side
  • the bright image is formed in an island shape in the dark image
  • the surface has a convex portion.
  • Shall On the other hand, when a dark image is formed in an island shape in a bright image, the surface thereof has a recess.
  • the surface of the lipophilic resin layer having the AFM image of the surface and cross section shown in FIGS. 1A and 1B has a convex portion.
  • a three-dimensional image of the lipophilic resin layer having the AFM images of the surface and the cross section shown in FIGS. 1A and 1B is as shown in FIG. 1C.
  • the surface shown in FIGS. 2A and 2B and the surface having a cross-sectional AFM image have a recess.
  • the average separation distance is not particularly limited and may be appropriately selected depending on the intended purpose. It is preferably 1 nm to 999 nm, more preferably 5 nm to 795 nm, still more preferably 10 nm to 490 nm, 100 nm to 190 nm is particularly preferable.
  • the average separation distance is within the preferable range, the fingerprint component adhering to the lipophilic resin layer is effectively wetted and spread. In addition, the fingerprint wiping property is improved.
  • the average separation distance is within the particularly preferable range, the effect of spreading the fingerprint component and the effect of improving the fingerprint wiping property become remarkable.
  • the average separation distance (Dm) of the convex portions or the concave portions that are separated can be measured as follows. First, the surface S of the lipophilic resin layer is observed with a scanning electron microscope (SEM), and the distance between adjacent convex portions or concave portions is determined from the surface SEM image. The separation distance is the shortest distance between the outer edges of adjacent convex portions or concave portions when the surface S is viewed from above. The measurement is repeatedly performed at 10 points randomly selected from the surface of the lipophilic resin layer, and the separation distances D1, D2,. Next, these separation distances D1, D2,..., D10 are simply averaged (arithmetic average) to obtain the average separation distance (Dm) of the convex portions or concave portions.
  • SEM scanning electron microscope
  • FIG. 1D shows an SEM photograph of a lipophilic resin layer having AFM images of the surface and cross section shown in FIGS. 1A and 1B.
  • the pitch (P) of the convex portions is 310 nm
  • the separation distance (D) of the convex portions is 170 nm.
  • the oleic acid contact angle on the surface of the lipophilic resin layer is 10 ° or less, preferably 5.0 ° or less, and more preferably 3.0 ° or less.
  • the oleic acid contact angle can be measured under the following conditions using, for example, PCA-1 (manufactured by Kyowa Interface Chemical Co., Ltd.). Oleic acid is put in a plastic syringe, a Teflon-coated needle is attached to the tip, and the oleic acid is dropped on the evaluation surface.
  • Drip amount of oleic acid 1 ⁇ L Measurement temperature: 25 ° C
  • the contact angle after 100 seconds has elapsed after dropping oleic acid is measured at any 10 locations on the surface of the lipophilic resin layer, and the average value is taken as the oleic acid contact angle.
  • the oleic acid contact angle on the surface of the oleophilic resin layer is preferably reduced with time when the oleic acid contact angle is measured. Between 20 seconds and 100 seconds after dropping oleic acid, 1 More preferably, the angle is smaller than 0.0 °, and particularly preferably smaller than 2.0 °. By doing so, the wiping property of the attached fingerprint by a finger, tissue, cloth or the like is improved.
  • the active energy ray-curable resin composition is not particularly limited and may be appropriately selected depending on the intended purpose as long as the desired oleic acid contact angle can be achieved in the lipophilic resin layer formed after curing.
  • polyfunctional (meth) acrylic monomer examples include 1,3-butylene glycol diacrylate, diethylene glycol diacrylate, neopentyl glycol diacrylate, tripropylene glycol diacrylate, ethoxylated (3) bisphenol A diacrylate, and dipropylene.
  • examples of the polyfunctional (meth) acrylic monomer include bifunctional urethane (meth) acrylate, bifunctional epoxy (meth) acrylate, and bifunctional polyester (meth) acrylate.
  • the bifunctional urethane (meth) acrylate may be a commercially available product.
  • the commercially available products include CN940, CN963, CN963A80, CN963B80, CN963E75, CN963E80, CN982A75, CN982B88, CN983, CN985C, CN901, CN9711, CN97C, CN97C, C97
  • Examples include EBECRYL 284 manufactured by company, AT-600, UF-8001G manufactured by Kyoeisha Chemical Co., Ltd., and the like.
  • the bifunctional epoxy (meth) acrylate may be a commercially available product.
  • the commercially available products include CN104, CN104A80, CN104B80, CN104D80, CN115, CN117, CN120, CN120A75, CN120B60, CN120B80, CN120C60, CN120C80, CN120D80, CN120E50, CN120C50, E1201 UVE150 / 80, CN2100, EBECRYL 600, EBECRYL 605, EBECRYL 3700, EBECRYL 3701, EBECRYL 3702, EBECRYL 3703, Kyoeisha Chemical Co., Ltd. .
  • the bifunctional polyester (meth) acrylate may be a commercially available product.
  • Examples of the commercially available products include CN2203 and CN2272 manufactured by Sartomer.
  • glass transition temperature (Tg) of the said polyfunctional (meth) acryl monomer there is no restriction
  • the Tg is prepared by blending 5 parts by mass of the polymerization initiator with respect to 100 parts by mass of the polyfunctional (meth) acrylic monomer, and using a mercury lamp to irradiate ultraviolet rays with an irradiation amount of 1,000 mJ / cm 2.
  • the cured product obtained as described above can be used as a test piece, and can be obtained by a differential scanning calorimeter or a thermomechanical analyzer.
  • the content of the polyfunctional (meth) acrylic monomer in the active energy ray-curable resin composition is not particularly limited and may be appropriately selected depending on the intended purpose, but it is 15.0% by mass to 99.9%. % By mass is preferable, 50.0% by mass to 99.0% by mass is more preferable, and 75.0% by mass to 98.0% by mass is particularly preferable.
  • photopolymerization initiator examples include a photoradical polymerization initiator, a photoacid generator, a bisazide compound, hexamethoxymethylmelamine, and tetramethoxyglycolyl.
  • the radical photopolymerization initiator is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include ethoxyphenyl (2,4,6-trimethylbenzoyl) phosphine oxide, bis (2,6-dimethylbenzoyl).
  • the content of the photopolymerization initiator in the active energy ray-curable resin composition is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.1% by mass to 10% by mass, 0.5% by mass to 8% by mass is more preferable, and 1% by mass to 5% by mass is particularly preferable.
  • the active energy ray-curable resin composition can be diluted with an organic solvent when used.
  • organic solvent include aromatic solvents, alcohol solvents, ester solvents, ketone solvents, glycol ether solvents, glycol ether ester solvents, chlorine solvents, ether solvents, N-methylpyrrolidone, dimethyl
  • organic solvent include aromatic solvents, alcohol solvents, ester solvents, ketone solvents, glycol ether solvents, glycol ether ester solvents, chlorine solvents, ether solvents, N-methylpyrrolidone, dimethyl
  • formamide dimethyl sulfoxide, dimethylacetamide, and the like.
  • the active energy ray-curable resin composition is cured when irradiated with active energy rays.
  • active energy ray There is no restriction
  • the Martens hardness of the lipophilic resin layer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 220 N / mm 2 to 350 N / mm 2, and is preferably 230 N / mm 2 to 300 N / mm 2. more preferably, 230N / mm 2 ⁇ 280N / mm 2 is particularly preferred.
  • the lipophilic laminate is heated and pressurized at 290 ° C. and 200 MPa. At this time, either the fine convex part or the concave part on the surface of the lipophilic resin layer may be deformed.
  • Examples of the deformation include a decrease in the height of the fine convex portion and a decrease in the depth of the fine concave portion. Although it may be deformed as long as it does not affect the fingerprint resistance, if it is deformed too much, the contact angle of oleic acid is increased and the fingerprint resistance is lowered.
  • the Martens hardness is less than 50 N / mm 2
  • the lipophilic laminate is molded, one of the fine convex portions and concave portions on the surface of the lipophilic resin layer is excessively deformed, and olein The acid contact angle is increased and fingerprint resistance is reduced, and the lipophilic resin layer is subjected to surface cleaning during normal use, such as handling and surface cleaning when manufacturing or molding the lipophilic laminate.
  • the Martens hardness exceeds 300 N / mm 2 , cracks may occur in the lipophilic resin layer or the lipophilic resin layer may be peeled off during molding.
  • the lipophilic laminate can be variously three-dimensionally produced without reducing fingerprint resistance and without causing defects such as scratches, cracks, and peeling. This is advantageous in that it can be easily formed into a shape.
  • the Martens hardness of the lipophilic resin layer may be higher than before the molding process.
  • the Martens hardness can be measured by using, for example, PICODETOR HM500 (trade name; manufactured by Fisher Instruments).
  • the load is 1 mN / 20 s, a diamond cone is used as the needle, and the surface angle is 136 °.
  • the pencil hardness of the lipophilic resin layer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 3H to 4H.
  • the pencil hardness is less than 3H (softer than 3H)
  • the lipophilic resin layer is applied to the lipophilic resin layer by surface cleaning during normal use, such as handling or surface cleaning when manufacturing or molding the lipophilic laminate. Scratches easily.
  • any one of the fine protrusions and recesses on the surface of the lipophilic resin layer is deformed too much, resulting in a high oleic acid contact angle and a decrease in fingerprint resistance.
  • 3H softer than 3H
  • the lipophilic laminate can be variously three-dimensionally produced without reducing fingerprint resistance and without causing defects such as scratches, cracks, and peeling. This is advantageous in that it can be easily formed into a shape.
  • high temperature and high pressure are applied to the lipophilic resin layer in the injection molding process, so that the pencil hardness of the lipophilic resin layer may be higher than before the molding process.
  • the pencil hardness is measured according to JIS K 5600-5-4.
  • the average thickness of the lipophilic resin layer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1 ⁇ m to 100 ⁇ m, more preferably 1 ⁇ m to 50 ⁇ m, and particularly preferably 1 ⁇ m to 30 ⁇ m.
  • the anchor layer is a layer provided between the resin base material and the lipophilic resin layer.
  • the refractive index of the anchor layer is preferably close to the refractive index of the lipophilic resin layer in order to prevent interference unevenness. Therefore, the refractive index of the anchor layer is preferably within ⁇ 0.10 of the refractive index of the lipophilic resin layer, and more preferably within ⁇ 0.05. Or it is preferable that the refractive index of the said anchor layer is between the refractive index of the said lipophilic resin layer and the refractive index of the said resin-made base materials.
  • the anchor layer can be formed, for example, by applying an active energy ray-curable resin composition.
  • an active energy ray-curable resin composition for example, an active energy ray-curable resin composition containing at least urethane (meth) acrylate and a photopolymerization initiator, and further containing other components as necessary.
  • the active energy ray-curable resin composition for example, an active energy ray-curable resin composition containing at least urethane (meth) acrylate and a photopolymerization initiator, and further containing other components as necessary.
  • the urethane (meth) acrylate and the photopolymerization initiator include the bifunctional urethane (meth) acrylate and the photopolymerization initiator exemplified in the description of the lipophilic resin layer.
  • coating method there is no restriction
  • coating method For example, wire bar coating, blade coating, spin coating, reverse roll coating, die coating, spray coating, roll coating, gravure coating , Micro gravure coating, lip coating, air knife coating, curtain coating, comma coating method, dipping method and the like.
  • the average thickness of the anchor layer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.01 ⁇ m to 10 ⁇ m, more preferably 0.1 ⁇ m to 5 ⁇ m, and particularly preferably 0.3 ⁇ m to 3 ⁇ m. preferable.
  • the anchor layer may be provided with a function of reducing reflectivity or preventing charging.
  • the protective layer is not particularly limited as long as it is a layer that prevents the lipophilic resin layer from being damaged when the lipophilic laminate is formed or processed on the lipophilic resin layer. It can be appropriately selected depending on the purpose.
  • the protective layer is peeled off when the lipophilic laminate is used.
  • the pressure-sensitive adhesive layer and the adhesive layer are not particularly limited as long as they are layers formed on the resin base material and adhere the lipophilic laminate to a workpiece, an adherend, and the like. It can be appropriately selected depending on the case.
  • the elongation percentage of the lipophilic laminate is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 10% or more, more preferably 10% to 200%, and particularly preferably 40% to 150%. preferable. If the elongation is less than 10%, molding may be difficult. When the elongation percentage is within the particularly preferable range, it is advantageous in that the moldability is excellent.
  • the said elongation rate can be calculated
  • the lipophilic laminate is formed into a strip shape having a length of 10.5 cm and a width of 2.5 cm to obtain a measurement sample.
  • the lipophilic laminate preferably has a smaller difference in heat shrinkage between the X direction and the Y direction in the plane of the lipophilic laminate.
  • the X direction and the Y direction of the lipophilic laminate correspond to, for example, the longitudinal direction and the width direction of the roll when the lipophilic laminate has a roll shape.
  • the difference between the heat shrinkage rate in the X direction and the heat shrinkage rate in the Y direction in the lipophilic laminate is preferably within 5% at the heating temperature used in the heating step during molding. Outside this range, during the molding process, the lipophilic resin layer may be peeled or cracked, or the characters, patterns, images, etc. printed on the surface of the resin base material may be deformed or misaligned. This may cause the molding process to be difficult.
  • the lipophilic laminate is particularly suitable for in-mold molding films, insert molding films, and overlay molding films.
  • the second method is a method for producing an oleophilic resin body in which the oleophilic resin layer and the resin base material are integrated, and the present invention thus provides the oleophilic resin.
  • the layer and the resin base material may be integrated. That is, the lipophilic resin body has either a fine convex portion or a concave portion on the surface, and the oleic acid contact angle on the surface is 10 ° or less.
  • a resin base material having either a fine convex portion or a concave portion on the surface is prepared, and the surface having either the fine convex portion or the concave portion of the resin base material is formed on the surface.
  • This is a method of forming an oleophilic resin layer that follows either a fine convex portion or a concave portion.
  • a melt extrusion method, a transfer method, or the like can be used.
  • the melt extrusion method for example, immediately after the thermoplastic resin composition is discharged from a die into a film or the like, a resin base material that is a thermoplastic resin composition having a roll surface niped by two rolls.
  • the method of transferring to is mentioned.
  • the transfer method for example, the molding surface of the master is pressed by pressing the molding surface of the master having any one of the fine protrusions and recesses against the resin base material and heating it near or above its glass transition point.
  • a thermal transfer method in which the shape is transferred to the surface of the resin base material.
  • the said active energy ray curable resin composition for forming the lipophilic resin layer on the surface of the resin-made base materials which has either a fine convex part and a recessed part on the surface, the said active energy
  • an oleophilic resin layer that follows the shape of either the fine convex portion or the concave portion is formed.
  • the second method is a method for producing a lipophilic resin body in which the lipophilic resin layer and the resin base material are integrated.
  • a resin base material itself having a fine convex portion or a concave portion on the surface and produced by using the melt extrusion method, the transfer method or the like in the first method is used.
  • the method of using an oil-based resin body is mentioned.
  • the method for producing a lipophilic laminate of the present invention includes at least an uncured resin layer forming step and a lipophilic resin layer forming step, and further includes other steps as necessary.
  • the method for producing the lipophilic laminate is a method for producing the lipophilic laminate of the present invention.
  • the uncured resin layer forming step is not particularly limited as long as it is a step of forming an uncured resin layer by applying an active energy ray-curable resin composition on a resin substrate, and is appropriately performed depending on the purpose. You can choose.
  • the active energy ray-curable resin composition is not particularly limited and may be appropriately selected depending on the purpose.
  • the active energy ray-curable resin composition is exemplified in the description of the lipophilic resin layer of the lipophilic laminate of the present invention.
  • An active energy ray-curable resin composition is exemplified.
  • the uncured resin layer is formed by applying the active energy ray-curable resin composition on the resin substrate and drying it as necessary.
  • the uncured resin layer may be a solid film or a film having fluidity due to a low molecular weight curable component contained in the active energy ray curable resin composition.
  • coating method there is no restriction
  • coating method For example, wire bar coating, blade coating, spin coating, reverse roll coating, die coating, spray coating, roll coating, gravure coating , Micro gravure coating, lip coating, air knife coating, curtain coating, comma coating method, dipping method and the like.
  • the uncured resin layer is not cured because it is not irradiated with active energy rays.
  • the active energy ray-curable resin composition may be applied on the anchor layer of the resin base material on which the anchor layer is formed to form the uncured resin layer.
  • the anchor layer There is no restriction
  • a transfer master having either a fine convex portion or a concave portion is brought into close contact with the uncured resin layer, and active energy rays are irradiated to the uncured resin layer to which the transfer master is in close contact.
  • active energy rays are irradiated to the uncured resin layer to which the transfer master is in close contact.
  • the transfer master has either a fine convex part or a concave part.
  • the method for forming any of the fine convex portions and concave portions of the transfer master and it can be selected as appropriate according to the purpose.
  • the transfer using a photoresist having a predetermined pattern shape as a protective film is possible. It is preferably formed by etching the surface of the master. Further, it is preferable to form the transfer master by irradiating the surface of the transfer master with a laser.
  • the active energy ray is not particularly limited as long as it is an active energy ray that cures the uncured resin layer, and can be appropriately selected according to the purpose. For example, description of the lipophilic laminate of the present invention And the active energy rays exemplified in 1.
  • the oleophilic resin is formed by using a transfer master in which either a fine convex portion or a concave portion is formed by etching the surface of the transfer master using a photoresist having a predetermined pattern shape as a protective film. It is an example of a layer formation process.
  • FIG. 3A is a perspective view illustrating an example of a configuration of a roll master that is a transfer master.
  • 3B is an enlarged plan view showing a part of the roll master shown in FIG. 3A.
  • 3C is a cross-sectional view of the track T in FIG. 3B.
  • the roll master 231 is a transfer master for producing the lipophilic laminate having the above-described configuration, more specifically, a master for forming a plurality of convex portions or concave portions on the surface of the lipophilic resin layer. .
  • the roll master 231 has, for example, a columnar or cylindrical shape, and the columnar surface or cylindrical surface is a molding surface for molding a plurality of convex portions or concave portions on the surface of the lipophilic resin layer.
  • a plurality of structures 232 are two-dimensionally arranged on the molding surface.
  • the structure 232 has a concave shape with respect to the molding surface.
  • glass can be used, but it is not particularly limited to this material.
  • the plurality of structures 232 disposed on the molding surface of the roll master 231 and the plurality of protrusions or recesses disposed on the surface of the lipophilic resin layer have an inverted uneven relationship. That is, the arrangement, size, shape, arrangement pitch, height or depth, aspect ratio, and the like of the structures 232 of the roll master 231 are the same as the convex portions or concave portions of the lipophilic resin layer.
  • FIG. 4 is a schematic diagram showing an example of the configuration of a roll master exposure apparatus for producing a roll master. This roll master exposure apparatus is configured based on an optical disk recording apparatus.
  • the laser beam 234 emitted from the laser light source 241 travels straight as a parallel beam and enters an electro-optic element (EOM: Electro Optical Modulator) 242.
  • EOM Electro Optical Modulator
  • the mirror 243 is composed of a polarization beam splitter and has a function of reflecting one polarization component and transmitting the other polarization component.
  • the polarization component transmitted through the mirror 243 is received by the photodiode 244, and the electro-optic element 242 is controlled based on the received light signal to perform phase modulation of the laser beam 234.
  • the laser beam 234 is condensed by an condenser lens 246 onto an acousto-optic module (AOM) 247 made of glass (SiO 2 ) or the like.
  • AOM acousto-optic module
  • the laser beam 234 is intensity-modulated by the acousto-optic element 247 and diverges, and then converted into a parallel beam by the lens 248.
  • the laser beam 234 emitted from the modulation optical system 245 is reflected by the mirror 251 and guided horizontally and parallel on the moving optical table 252.
  • the moving optical table 252 includes a beam expander 253 and an objective lens 254.
  • the laser beam 234 guided to the moving optical table 252 is shaped into a desired beam shape by the beam expander 253 and then irradiated to the resist layer on the roll master 231 through the objective lens 254.
  • the roll master 231 is placed on a turntable 256 connected to a spindle motor 255. Then, while rotating the roll master 231 and moving the laser beam 234 in the height direction of the roll master 231, the laser light 234 is intermittently applied to the resist layer formed on the peripheral side surface of the roll master 231. Then, a resist layer exposure step is performed.
  • the formed latent image has a substantially elliptical shape having a major axis in the circumferential direction.
  • the laser beam 234 is moved by moving the moving optical table 252 in the arrow R direction.
  • the exposure apparatus includes a control mechanism 257 for forming a latent image corresponding to the two-dimensional pattern of the plurality of convex portions or concave portions described above on the resist layer.
  • the control mechanism 257 includes a formatter 249 and a driver 250.
  • the formatter 249 includes a polarity reversal unit, and this polarity reversal unit controls the irradiation timing of the laser beam 234 on the resist layer.
  • the driver 250 receives the output from the polarity inversion unit and controls the acoustooptic device 247.
  • a signal is generated by synchronizing the polarity inversion formatter signal and the rotation controller for each track so that the two-dimensional pattern is spatially linked, and the intensity is modulated by the acoustooptic device 247.
  • a two-dimensional pattern such as a hexagonal lattice pattern can be recorded by patterning with a constant angular velocity (CAV) and an appropriate rotational speed, an appropriate modulation frequency, and an appropriate feed pitch.
  • CAV constant angular velocity
  • a columnar or cylindrical roll master 231 is prepared.
  • the roll master 231 is, for example, a glass master.
  • a resist layer (for example, a photoresist) 233 is formed on the surface of the roll master 231.
  • the material for the resist layer 233 include organic resists and inorganic resists.
  • the organic resist include novolak resist and chemically amplified resist.
  • the inorganic resist include metal compounds.
  • the resist layer 233 formed on the surface of the roll master 231 is irradiated with laser light (exposure beam) 234.
  • the roll master 231 is placed on the turntable 256 of the roll master exposure apparatus shown in FIG. 4, the roll master 231 is rotated, and the resist layer 233 is irradiated with a laser beam (exposure beam) 234.
  • the laser beam 234 is intermittently irradiated while moving the laser beam 234 in the height direction of the roll master 231 (a direction parallel to the central axis of the columnar or cylindrical roll master 231).
  • Layer 233 is exposed over the entire surface.
  • a latent image 235 corresponding to the locus of the laser beam 234 is formed over the entire surface of the resist layer 233.
  • the latent image 235 is, for example, arranged so as to form a plurality of rows of tracks T on the surface of the roll master and is formed with a regular periodic pattern of a predetermined unit cell Uc.
  • the latent image 235 has, for example, a circular shape or an elliptical shape.
  • the elliptical shape preferably has a major axis direction in the extending direction of the track T.
  • the surface of the roll master 231 is etched using the pattern (resist pattern) of the resist layer 233 formed on the roll master 231 as a mask.
  • the structure (recessed part) 232 which has a cone shape can be obtained.
  • the cone shape is preferably, for example, an elliptical cone shape or an elliptical truncated cone shape having a major axis direction in the extending direction of the track T.
  • the etching for example, dry etching or wet etching can be used.
  • a pattern of the cone-shaped structure 232 can be formed.
  • the intended roll master 231 is obtained.
  • a resin base material 211 on which an uncured resin layer 236 as shown in the sectional view of FIG. 6A is formed is prepared.
  • the roll master 231 and the uncured resin layer 236 formed on the resin base material 211 are brought into close contact with each other, and the active energy ray 237 is irradiated to the uncured resin layer 236.
  • the uncured resin layer 236 is cured to transfer any of the fine convex portions and concave portions, thereby obtaining the lipophilic resin layer 212 in which any one of the fine convex portions and concave portions 212a is formed.
  • the obtained lipophilic resin layer 212 is peeled from the roll master 231 to obtain a lipophilic laminate (FIG. 6C).
  • the resin base material 211 is made of a material that does not transmit active energy rays such as ultraviolet rays
  • the roll master 231 is made of a material that can transmit active energy rays (for example, quartz). You may make it irradiate an active energy ray with respect to the uncured resin layer 236 from the inside of H.231.
  • the transfer master is not limited to the roll master 231 described above, and a flat master may be used. However, from the viewpoint of improving mass productivity, it is preferable to use the roll master 231 described above as the transfer master.
  • the lipophilic resin layer formation is performed using a transfer master in which either a fine convex portion or a concave portion is formed by irradiating the surface of the transfer master with a laser to laser-process the transfer master. It is an example of a process.
  • FIG. 7A is a plan view showing an example of the configuration of a plate-shaped master.
  • FIG. 7B is a cross-sectional view along the line aa shown in FIG. 7A.
  • FIG. 7C is an enlarged cross-sectional view of a part of FIG. 7B.
  • the plate-shaped master 331 is a master for producing the lipophilic laminate having the above-described configuration, more specifically, a master for molding a plurality of convex portions or concave portions on the surface of the lipophilic resin layer. is there.
  • the plate-shaped master 331 has, for example, a surface provided with a fine concavo-convex structure, and the surface is a molding surface for molding a plurality of convex portions or concave portions on the surface of the lipophilic resin layer.
  • a plurality of structures 332 are provided on the molding surface.
  • the structure 332 illustrated in FIG. 7C has a concave shape with respect to the molding surface.
  • a material of the plate-shaped master 331 for example, a metal material can be used.
  • the metal material for example, Ni, NiP, Cr, Cu, Al, Fe, and alloys thereof can be used.
  • the alloy is preferably stainless steel (SUS). Examples of the stainless steel (SUS) include, but are not limited to, SUS304, SUS420J2, and the like.
  • the plurality of structures 332 provided on the molding surface of the plate-shaped master 331 and the plurality of protrusions or recesses provided on the surface of the lipophilic resin layer have an inverted uneven relationship. That is, the arrangement, size, shape, arrangement pitch, height, depth, and the like of the structures 332 of the plate-like master 331 are the same as those of the protrusions or recesses of the lipophilic resin layer.
  • FIG. 8 is a schematic diagram showing an example of the configuration of a laser processing apparatus for producing a plate-shaped master.
  • the laser body 340 is, for example, IFRIT (trade name) manufactured by Cyber Laser Corporation.
  • the wavelength of the laser used for laser processing is, for example, 800 nm. However, the wavelength of the laser used for laser processing may be 400 nm or 266 nm.
  • the repetition frequency is preferably larger in consideration of the processing time and the narrow pitch of the concave portions or convex portions to be formed, and is preferably 1,000 Hz or more.
  • the pulse width of the laser is preferably shorter, and is preferably about 200 femtoseconds (10 ⁇ 15 seconds) to 1 picosecond (10 ⁇ 12 seconds).
  • the laser body 340 emits laser light linearly polarized in the vertical direction. Therefore, in this apparatus, linear polarization or circular polarization in a desired direction is obtained by rotating the polarization direction using a wave plate 341 (for example, a ⁇ / 2 wave plate). Further, in this apparatus, a part of the laser light is extracted using an aperture 342 having a square opening. This is because the intensity distribution of the laser beam is a Gaussian distribution, so that only the center vicinity is used to obtain a laser beam having a uniform in-plane intensity distribution. Further, in this apparatus, the laser beam is focused using two orthogonal cylindrical lenses 343 so that a desired beam size is obtained. When processing the plate-shaped master 331, the linear stage 344 is moved at a constant speed.
  • a wave plate 341 for example, a ⁇ / 2 wave plate.
  • the beam spot of the laser irradiated on the plate-shaped master 331 is preferably a square shape.
  • the beam spot can be shaped by using, for example, an aperture or a cylindrical lens.
  • the intensity distribution of the beam spot is preferably as uniform as possible. This is because it is preferable to make the in-plane distribution such as the depth of the unevenness formed in the mold as uniform as possible.
  • the size of the beam spot is smaller than the area to be processed, it is necessary to give an uneven shape to all the areas to be processed by scanning the beam.
  • the master (mold) used to form the surface of the lipophilic resin layer is, for example, a substrate such as a metal such as SUS, NiP, Cu, Al, or Fe, and a pulse width of 1 picosecond (10 ⁇ 12 seconds) or less. It is formed by drawing a pattern using an ultrashort pulse laser, so-called femtosecond laser.
  • the polarization of the laser light may be linearly polarized light, circularly polarized light, or elliptically polarized light.
  • a pattern having desired irregularities can be formed by appropriately setting the laser wavelength, repetition frequency, pulse width, beam spot shape, polarization, laser intensity applied to the sample, laser scanning speed, and the like.
  • the parameters that can be changed to obtain the desired shape include the following.
  • the fluence is an energy density (J / cm 2 ) per pulse, and is obtained by the following equation.
  • F P / (fREPT ⁇ S)
  • S Lx ⁇ Ly
  • F fluence
  • P laser power
  • fREPT laser repetition frequency
  • S area at the laser irradiation position
  • Lx ⁇ Ly beam size
  • N fREPT ⁇ Ly / v Ly: Beam size in laser scanning direction
  • v Laser scanning speed
  • the material of the plate-shaped master 331 may be changed in order to obtain a desired shape.
  • the shape of laser processing varies depending on the material of the plate-shaped master 331.
  • the surface of the master may be coated with a semiconductor material such as DLC (diamond-like carbon).
  • DLC diamond-like carbon
  • the method for coating the surface of the master with the semiconductor material include plasma CVD and sputtering.
  • DLC diamond-like carbon
  • the semiconductor material to be coated in addition to DLC, for example, DLC mixed with fluorine (F), titanium nitride, chromium nitride, or the like can be used.
  • the average thickness of the coating obtained by coating may be about 1 ⁇ m, for example.
  • a plate-shaped master 331 is prepared.
  • a surface 331A that is a surface to be processed of the plate-like master 331 is in a mirror state, for example.
  • the surface 331A may not be in a mirror state.
  • the surface 331A may have irregularities finer than the transfer pattern, or may be equivalent to the transfer pattern. Rougher irregularities may be formed.
  • the surface 331A of the plate-shaped master 331 is laser-processed as follows using the laser processing apparatus shown in FIG. First, a pattern is drawn on the surface 331A of the plate-shaped master 331 using an ultrashort pulse laser having a pulse width of 1 picosecond (10 ⁇ 12 seconds) or less, so-called femtosecond laser. For example, as shown in FIG. 9B, the surface 331A of the plate-shaped master 331 is irradiated with femtosecond laser light Lf, and the irradiation spot is scanned with respect to the surface 331A.
  • the laser wavelength, the repetition frequency, the pulse width, the beam spot shape, the polarization, the intensity of the laser applied to the surface 331A, the laser scanning speed, etc. are appropriately set, as shown in FIG. A plurality of structures 332 having the structure is formed.
  • a resin base material 311 having an uncured resin layer 333 as shown in the sectional view of FIG. 10A is prepared.
  • the plate-shaped master 331 and the uncured resin layer 333 formed on the resin base material 311 are brought into close contact with each other, and the active energy ray 334 is applied to the uncured resin layer 333.
  • the active energy ray 334 is applied to cure the uncured resin layer 333.
  • transfer any of the fine convex portions and concave portions of the plate-shaped master 331, and form the lipophilic resin layer 312 formed with either of the fine convex portions or concave portions. obtain.
  • the obtained lipophilic resin layer 312 is peeled from the plate-shaped master 331 to obtain a lipophilic laminate (FIG. 10C).
  • the resin base material 311 is made of a material that does not transmit active energy rays such as ultraviolet rays
  • the plate-shaped master 331 is made of a material that can transmit active energy rays (for example, quartz)
  • 3rd Embodiment is an example of the said lipophilic resin layer formation process performed using the transfer original disc formed by forming a porous alumina layer in an aluminum base material.
  • Examples of the aluminum base material processed into the transfer master include, for example, an aluminum film formed on a bulk aluminum, a glass base material, or a plastic base material through an underlayer or the like.
  • the shape of the aluminum substrate is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include a plate shape, a cylindrical shape, and a columnar shape.
  • the porous alumina layer is formed by, for example, anodic oxidation or wet etching.
  • the porous alumina layer has fine concave portions.
  • the arrangement of the fine recesses may or may not have periodicity.
  • a method for forming the porous alumina layer specifically, as disclosed in, for example, Japanese Patent Application Laid-Open No. 2005-156695, an aluminum base material is immersed in an acidic electrolytic solution or an alkaline electrolytic solution. Examples include a method of forming a porous alumina layer having a plurality of fine recesses by applying a voltage as the anode. This anodizing treatment and a hole diameter enlargement treatment by etching treatment may be appropriately combined.
  • Examples of the lipophilic resin layer forming step performed using the produced transfer master include the same methods as in the first embodiment and the second embodiment.
  • the lipophilicity is carried out using a transfer master having a macro uneven structure formed on the surface of an aluminum substrate and subsequently forming a fine recess (micro structure) in the macro uneven structure. It is an example of a resin layer formation process. Examples of the method for producing the transfer master include the method described in JP-T-2001-517319.
  • the anti-glare layer is formed on the lipophilic laminate obtained by using the transfer master by forming the macro uneven structure and the fine recesses (micro structure) on the transfer master. Functions can be added.
  • the macro uneven structure for imparting the antiglare function can be imparted to the surface of the aluminum substrate by, for example, blasting (sand blasting or bead blasting), etching using acid, or a combination thereof.
  • the fine recesses (microstructure) can be formed by anodic oxidation, wet etching, or the like.
  • Examples of the lipophilic resin layer forming step performed using the manufactured transfer master include the same methods as in the first embodiment and the second embodiment.
  • An example of the lipophilic laminate obtained using this transfer master is shown in FIG.
  • the lipophilic laminate shown in FIG. 11 has a resin base material 401 and a lipophilic resin layer 402 on the resin base material 401.
  • the article of the present invention has the lipophilic laminate of the present invention on the surface, and further includes other members as necessary.
  • the article is not particularly limited and can be appropriately selected according to the purpose.
  • a touch panel a smartphone, a tablet PC, a cosmetic container, accessories, a glass window, a refrigerated / frozen showcase, a car window, etc.
  • Examples include window materials, mirrors in bathrooms, mirrors such as car side mirrors, pianos, and building materials.
  • the article includes glasses, goggles, a helmet, a lens, a micro lens array, a headlight cover of an automobile, a front panel, a side panel, a rear panel, a door trim, an instrument panel, a center cluster / center console panel, a shift knob, a shift knob, It may be a steering emblem.
  • These are preferably formed by in-mold molding, insert molding, or overlay molding.
  • the lipophilic laminate may be formed on a part of the surface of the article or may be formed on the entire surface.
  • the method for manufacturing the article is not particularly limited and may be appropriately selected depending on the intended purpose. However, the method for manufacturing the article of the present invention described later is preferable.
  • the method for producing an article according to the present invention includes at least a heating step, a lipophilic laminate molding step, and an injection molding step, and further includes other steps as necessary.
  • the manufacturing method of the article is the manufacturing method of the article of the present invention.
  • the heating step is not particularly limited as long as it is a step of heating the lipophilic laminate, and can be appropriately selected according to the purpose.
  • the lipophilic laminate is the lipophilic laminate of the present invention.
  • heating there is no restriction
  • limiting in particular as the temperature of the said heating Although it can select suitably according to the objective, It is preferable that it is the glass transition temperature vicinity of the said resin-made base materials, or more than a glass transition temperature.
  • time of the said heating According to the objective, it can select suitably.
  • the lipophilic laminate molding step is not particularly limited as long as it is a step of molding the heated lipophilic laminate into a desired shape, and can be appropriately selected according to the purpose.
  • mold into a desired shape with an air pressure are mentioned.
  • the injection molding process is not particularly limited as long as it is a process for injecting a molding material onto the resin base material side of the lipophilic laminate molded into a desired shape and molding the molding material. It can be appropriately selected depending on the case.
  • Examples of the molding material include resin.
  • Examples of the resin include olefin resins, styrene resins, ABS resins (acrylonitrile-butadiene-styrene copolymers), AS resins (acrylonitrile-styrene copolymers), acrylic resins, urethane resins, unsaturated polyesters. Resin, epoxy resin, polyphenylene oxide / polystyrene resin, polycarbonate, polycarbonate modified polyphenylene ether, polyethylene terephthalate, polysulfone, polyphenylene sulfide, polyphenylene oxide, polyether imide, polyimide, liquid crystal polyester, polyallyl heat resistant resin, various composite resins, various modified resins Resin etc. are mentioned.
  • the injection method is not particularly limited and can be appropriately selected depending on the purpose.
  • the molten mold is formed on the resin base material side of the lipophilic laminate adhered to a predetermined mold.
  • the method of pouring material is mentioned.
  • the manufacturing method of the article is preferably performed using an in-mold molding apparatus, an insert molding apparatus, and an overlay molding apparatus.
  • This manufacturing method is a manufacturing method using an in-mold molding apparatus.
  • the lipophilic laminate 500 is heated. Heating is preferably infrared heating.
  • the heated lipophilic laminate 500 is disposed at a predetermined position between the first mold 501 and the second mold 502.
  • the resin base material of the lipophilic laminate 500 is arranged so that the first mold 501 faces and the lipophilic resin layer faces the second mold 502.
  • the first mold 501 is a fixed mold
  • the second mold 502 is a movable mold.
  • the lipophilic laminate 500 is disposed between the first mold 501 and the second mold 502, the first mold 501 and the second mold 502 are clamped. Subsequently, the lipophilic laminate 500 is sucked through the suction holes 504 opened in the cavity surface of the second mold 502, and the lipophilic laminate 500 is mounted on the cavity surface of the second mold 502. By doing so, the cavity surface is shaped with the lipophilic laminate 500. At this time, the outer periphery of the lipophilic laminate 500 may be fixed and positioned by a film pressing mechanism (not shown). Thereafter, unnecessary portions of the lipophilic laminate 500 are trimmed (FIG. 12B).
  • the pressure hole of the first mold 501 can be connected to the lipophilic laminate 500.
  • the lipophilic laminate 500 is attached to the cavity surface of the second mold 502.
  • the molten molding material 506 is injected from the gate 505 of the first mold 501 toward the resin base material of the lipophilic laminate 500, and the first mold 501 and the second mold 502 are clamped. Then, it is injected into the cavity formed (FIG. 12C). Thereby, the molten molding material 506 is filled in the cavity (FIG. 12D). Further, after the filling of the molten molding material 506 is completed, the molten molding material 506 is cooled to a predetermined temperature and solidified.
  • the second mold 502 is moved to open the first mold 501 and the second mold 502 (FIG. 12E). By doing so, an article 507 in which the lipophilic laminate 500 is formed on the surface of the molding material 506 and in-mold molded into a desired shape is obtained. Finally, the protruding pin 508 is pushed out from the first mold 501 and the obtained article 507 is taken out.
  • the average distance of the convex portions, the average distance of the concave portions, the average height of the convex portions, the average depth of the concave portions, and the average aspect ratio were determined as follows. First, the surface of the lipophilic resin layer having a convex portion or a concave portion is observed with an atomic force microscope (AFM), and the pitch of the convex portion or the concave portion, the height of the convex portion or the concave portion from the cross-sectional profile of the AFM. Sought the depth of.
  • AFM atomic force microscope
  • the pitch of the convex portions is a distance between the vertices of the convex portions.
  • the pitch of the recesses is the distance between the deepest portions of the recesses.
  • the height of the convex portion is the height of the convex portion based on the lowest point of the valley between the convex portions.
  • the depth of the recess is the depth of the recess based on the highest point of the peak between the recesses.
  • pitches P1, P2,..., P10 and the heights or depths H1, H2,..., H10 are simply averaged (arithmetic average), and the average distance between the convex portions or the concave portions is calculated.
  • Pm the average height of the convex portions or the average depth (Hm) of the concave portions were determined.
  • An average aspect ratio (Hm / Pm) was determined from the Pm and the Hm.
  • ⁇ Oleic acid contact angle> The oleic acid contact angle was measured using PCA-1 (manufactured by Kyowa Interface Chemical Co., Ltd.) under the following conditions. Oleic acid was placed in a plastic syringe, a Teflon-coated needle was attached to the tip, and the oleic acid was dropped onto the evaluation surface. Drip amount of oleic acid: 1 ⁇ L Measurement temperature: 25 ° C The contact angle after 100 seconds after dropping oleic acid was measured at any 10 locations on the surface of the lipophilic resin layer, and the average value was defined as the oleic acid contact angle.
  • Double-sided pressure-sensitive adhesive sheet manufactured by Nitto Denko Corporation, product
  • a black acrylic plate Mitsubishi Rayon Co., Ltd., trade name: Acrylite
  • the evaluation surface lipophilic resin layer surface facing up.
  • LUCIACS CS9621T LUCIACS CS9621T
  • ⁇ Tissue wipeability Fingerprints are attached to the surface of the oleophilic resin layer with the index finger 20 times, and after wiping the tissue 10 times with a tissue (Daiou Paper Co., Ltd., Erière) in a circle, the fluorescent light is reflected and the surface is visually observed. And evaluated according to the following criteria. ⁇ Evaluation criteria ⁇ A: Fingerprint stains were gone. ⁇ : Fingerprint stains remained slightly. X: Fingerprint stains remained clearly.
  • ⁇ Pencil hardness> The pencil hardness of the oleophilic resin layer was measured in accordance with JIS K 5600-5-4.
  • the Martens hardness of the lipophilic resin layer was measured using PICODERTOR HM500 (trade name; manufactured by Fisher Instruments).
  • the load was 1 mN / 20 s, a diamond cone was used as the needle, and the surface angle was 136 °.
  • Example 1 Preparation of transfer master (glass roll master) having either fine convex part or concave part>
  • a glass roll master having an outer diameter of 126 mm was prepared, and a resist layer was formed on the surface of the glass roll master as follows. That is, the photoresist was diluted to 1/10 by weight with a thinner, and this diluted resist was applied to the average thickness of about 70 nm on the cylindrical surface of the glass roll master by dipping, thereby forming a resist layer.
  • the glass roll master is transported to the roll master exposure apparatus shown in FIG. 4, and the resist layer is exposed to form a hexagonal lattice pattern between three adjacent tracks while being continuous in one spiral.
  • the latent image was patterned on the resist layer. Specifically, a hexagonal lattice-shaped exposure pattern was formed by irradiating a region where a hexagonal lattice-shaped exposure pattern was to be formed with 0.50 mW / m of laser light.
  • the resist layer on the glass roll master was subjected to development treatment, and the exposed resist layer was dissolved and developed.
  • an undeveloped glass roll master is placed on a turntable of a developing machine (not shown), and a developer is dropped on the surface of the glass roll master while rotating the entire turntable to develop the resist layer on the surface. did. Thereby, a resist glass master having a resist layer opened in a hexagonal lattice pattern was obtained.
  • an oleophilic laminate was produced by UV imprinting using the roll master obtained as described above. Specifically, it was performed as follows. U40 (average thickness 100 ⁇ m, polyethylene terephthalate (PET) film) manufactured by Toray Industries, Inc. was used as the resin substrate.
  • PET polyethylene terephthalate
  • the ultraviolet curable resin composition for a lipophilic resin layer having the following composition was applied onto the resin substrate so that the average thickness of the resulting lipophilic resin layer was 2.5 ⁇ m.
  • the base material coated with the ultraviolet curable resin composition for the lipophilic resin layer is brought into close contact with the roll master obtained as described above, and a dose of 1, from the resin base material side using a metal halide lamp.
  • the lipophilic resin layer was cured by irradiating with ultraviolet rays at 000 mJ / cm 2 . Thereafter, the lipophilic resin layer and the roll master were peeled off.
  • -UV curable resin composition for lipophilic resin layer- -CN9006 hexafunctional aliphatic urethane acrylate, manufactured by Sartomer
  • 31 parts by mass-C150 (produced by Evonik Degussa) 64 parts by mass (50 mass% silica nanoparticle trimethylolpropane triacrylate dispersion)
  • Lucirin TPO manufactured by BASF 5 parts by mass
  • FIG. 13A shows an AFM image of the surface of the lipophilic resin layer of the obtained lipophilic laminate.
  • FIG. 13B A cross-sectional view taken along line aa in FIG. 13A is shown in FIG. 13B.
  • FIG. 13C shows a three-dimensional AFM image.
  • FIG. 13D shows an SEM image.
  • the average distance (or average distance of a recessed part) (Pm), the average height (or average depth of a recessed part) (Hm), average aspect of a convex part The ratio (Hm / Pm), the oleic acid contact angle, the conspicuousness of the attached fingerprint, the tissue wiping property, the pencil hardness, the Martens hardness, and the flexibility were evaluated. The results are shown in Table 2.
  • Example 2 In Example 1, a lipophilic laminate was produced in the same manner as in Example 1, except that the exposure pattern of the resist layer when producing the glass roll master was changed.
  • FIG. 14A shows an AFM image of the surface of the lipophilic resin layer of the obtained lipophilic laminate.
  • FIG. 14B A cross-sectional view taken along line aa in FIG. 14A is shown in FIG. 14B.
  • FIG. 14C shows a three-dimensional AFM image.
  • FIG. 14D shows an SEM image. About the produced lipophilic laminated body, evaluation similar to Example 1 was performed. The results are shown in Table 2.
  • Example 3 In Example 1, a lipophilic laminate was produced in the same manner as in Example 1 except that the exposure pattern of the resist layer when the glass roll master was produced was changed.
  • FIG. 15A shows an AFM image of the surface of the lipophilic resin layer of the obtained lipophilic laminate.
  • FIG. 15B A cross-sectional view taken along line aa in FIG. 15A is shown in FIG. 15B.
  • FIG. 15C shows a three-dimensional AFM image.
  • FIG. 15D shows an SEM image. About the produced lipophilic laminated body, evaluation similar to Example 1 was performed. The results are shown in Table 2.
  • Example 4 In Example 1, a lipophilic laminate was produced in the same manner as in Example 1 except that the exposure pattern of the resist layer when the glass roll master was produced was changed.
  • An AFM image of the surface of the lipophilic resin layer of the obtained lipophilic laminate is shown in FIG. 16A.
  • a cross-sectional view taken along line aa of FIG. 16A is shown in FIG. 16B.
  • FIG. 16C shows a three-dimensional AFM image.
  • FIG. 16D shows an SEM image. About the produced lipophilic laminated body, evaluation similar to Example 1 was performed. The results are shown in Table 2.
  • Examples 5 to 8 lipophilic laminates were produced in the same manner as in Examples 1 to 4, respectively, except that the ultraviolet curable resin composition for the lipophilic resin layer was changed to the composition shown below.
  • -UV curable resin composition for lipophilic resin layer- -CN9006 hexafunctional aliphatic urethane acrylate, manufactured by Sartomer
  • 58 parts by mass-C150 produced by Evonik Degussa
  • 37 parts by mass (50% by mass silica nanoparticle trimethylolpropane triacrylate dispersion)
  • Lucirin TPO manufactured by BASF
  • Example 2 The same evaluation as Example 1 was performed about the produced lipophilic laminated body. The results are shown in Table 2.
  • Example 9 ⁇ Preparation of transfer master (plate-like master) having either fine convex part or concave part>
  • the apparatus shown in FIG. 8 was used.
  • the laser body 340 As the laser body 340, IFRIT (trade name) manufactured by Cyber Laser Co., Ltd. was used. The laser wavelength was 800 nm, the repetition frequency was 1,000 Hz, and the pulse width was 220 fs.
  • a master was prepared by coating DLC (diamond-like carbon) on the surface of a plate-like substrate (SUS) by a sputtering method.
  • fine concave portions were formed on the surface of the DLC film of the master using the laser processing apparatus.
  • laser processing was performed under the laser processing conditions shown in Table 1.
  • a plate-shaped master for shape transfer was obtained. Note that the size of the master was a rectangular shape of 2 cm ⁇ 2 cm.
  • FIG. 17A shows an AFM image of the surface of the lipophilic resin layer of the obtained lipophilic laminate.
  • FIG. 17B A cross-sectional view taken along line aa in FIG. 17A is shown in FIG. 17B.
  • FIG. 17C shows a three-dimensional AFM image.
  • evaluation similar to Example 1 was performed. The results are shown in Table 2.
  • Example 9 a lipophilic laminate was produced in the same manner as in Example 9 except that the conditions for producing the plate-shaped master were changed to the conditions shown in Table 1.
  • An AFM image of the surface of the lipophilic resin layer of the obtained lipophilic laminate of Example 10 is shown in FIG. 18A.
  • a cross-sectional view taken along line aa in FIG. 18A is shown in FIG. 18B.
  • FIG. 18C shows a three-dimensional AFM image.
  • FIG. 19A shows an AFM image of the surface of the lipophilic resin layer of the obtained lipophilic laminate of Example 11.
  • FIG. 19B A cross-sectional view taken along line aa in FIG. 19A is shown in FIG. 19B.
  • FIG. 19C shows a three-dimensional AFM image.
  • FIG. 20A An AFM image of the surface of the lipophilic resin layer of the obtained lipophilic laminate of Example 12 is shown in FIG. 20A.
  • FIG. 20B A cross-sectional view taken along line aa in FIG. 20A is shown in FIG. 20B.
  • FIG. 20C shows a three-dimensional AFM image.
  • Evaluation similar to Example 1 was performed. The results are shown in Table 2.
  • Example 13 In Example 2, a lipophilic laminate was produced in the same manner as in Example 2, except that the ultraviolet curable resin composition for the lipophilic resin layer was changed to the composition shown below. About the produced lipophilic laminated body, evaluation similar to Example 1 was performed. The results are shown in Table 2.
  • -UV curable resin composition for lipophilic resin layer- -CN9006 hexafunctional aliphatic urethane acrylate, manufactured by Sartomer
  • 80 parts by mass-C150 (produced by Evonik Degussa) 20 parts by mass (50 mass% silica nanoparticle trimethylolpropane triacrylate dispersion)
  • Lucirin TPO manufactured by BASF 5 parts by mass
  • Example 14 In Example 2, a lipophilic laminate was produced in the same manner as in Example 2, except that the ultraviolet curable resin composition for the lipophilic resin layer was changed to the composition shown below. About the produced lipophilic laminated body, evaluation similar to Example 1 was performed. The results are shown in Table 2.
  • -UV curable resin composition for lipophilic resin layer- CN9006 (hexafunctional aliphatic urethane acrylate, manufactured by Sartomer) 19 parts by mass C150 (produced by Evonik Degussa) 76 parts by mass (50% by mass silica nanoparticle trimethylolpropane triacrylate dispersion) ⁇ Lucirin TPO (manufactured by BASF) 5 parts by mass
  • Example 15 In Example 2, a lipophilic laminate was produced in the same manner as in Example 2, except that the ultraviolet curable resin composition for the lipophilic resin layer was changed to the composition shown below. About the produced lipophilic laminated body, evaluation similar to Example 1 was performed. The results are shown in Table 2.
  • -UV curable resin composition for lipophilic resin layer- CN9006 (hexafunctional aliphatic urethane acrylate, manufactured by Sartomer) 9 parts by mass C150 (produced by Evonik Degussa) 86 parts by mass (50% by mass silica nanoparticle trimethylolpropane triacrylate dispersion) ⁇ Lucirin TPO (manufactured by BASF) 5 parts by mass
  • Example 16 In Example 2, a lipophilic laminate was produced in the same manner as in Example 2, except that the ultraviolet curable resin composition for the lipophilic resin layer was changed to the composition shown below. About the produced lipophilic laminated body, evaluation similar to Example 1 was performed. The results are shown in Table 2.
  • -UV curable resin composition for lipophilic resin layer- -CN9006 hexafunctional aliphatic urethane acrylate, manufactured by Sartomer
  • 31 parts by mass-C150 (produced by Evonik Degussa) 64 parts by mass (50 mass% silica nanoparticle trimethylolpropane triacrylate dispersion)
  • Lucirin TPO manufactured by BASF 5 parts by mass
  • Example 17 In Example 2, a lipophilic laminate was produced in the same manner as in Example 2, except that the ultraviolet curable resin composition for the lipophilic resin layer was changed to the composition shown below. About the produced lipophilic laminated body, evaluation similar to Example 1 was performed. The results are shown in Table 2.
  • -UV curable resin composition for lipophilic resin layer- -CN9006 (hexafunctional aliphatic urethane acrylate, manufactured by Sartomer) 31 parts by mass-nanobyk-3601 (produced by Big Chemie Japan) 64 parts by mass (30 mass% alumina nanoparticle TPGDA dispersion) ⁇ Lucirin TPO (manufactured by BASF) 5 parts by mass
  • Example 18 In Example 2, a lipophilic laminate was produced in the same manner as in Example 2, except that the ultraviolet curable resin composition for the lipophilic resin layer was changed to the composition shown below. About the produced lipophilic laminated body, evaluation similar to Example 1 was performed. The results are shown in Table 2.
  • -UV curable resin composition for lipophilic resin layer- CN9006 (hexafunctional aliphatic urethane acrylate, manufactured by Sartomer) 31 parts by mass Titania dispersion 1 64 parts by mass (50% mass titania nanoparticle trimethylolpropane triacrylate dispersion) ⁇ Lucirin TPO (manufactured by BASF) 5 parts by mass
  • titanium oxide ST-01 manufactured by Ishihara Sangyo Co., Ltd. was used as titania.
  • TMPTA trimethylolpropane triacrylate
  • Example 19 In Example 2, a lipophilic laminate was produced in the same manner as in Example 2, except that the ultraviolet curable resin composition for the lipophilic resin layer was changed to the composition shown below. About the produced lipophilic laminated body, evaluation similar to Example 1 was performed. The results are shown in Table 2.
  • -UV curable resin composition for lipophilic resin layer- CN9006 (hexafunctional aliphatic urethane acrylate, manufactured by Sartomer) 31 parts by mass Titania dispersion 2 64 parts by mass (50% mass titania nanoparticle trimethylolpropane triacrylate dispersion) -Lucirin TPO (manufactured by BASF) 5 parts by mass Titanium used was Titanium Oxide F-1 manufactured by Showa Denko KK This was mixed with trimethylolpropane triacrylate (TMPTA) at a ratio of 1: 1 (mass ratio), and the beads were dispersed for 9 hours using zirconia beads having a diameter of 0.65 mm in a paint shaker to prepare titania dispersion 2. .
  • TMPTA trimethylolpropane triacrylate
  • Example 20 A lipophilic laminate was prepared in the same manner as in Example 2, except that the ultraviolet curable resin composition for the lipophilic resin layer was changed to the composition shown below. About the produced lipophilic laminated body, evaluation similar to Example 1 was performed. The results are shown in Table 2.
  • -UV curable resin composition for lipophilic resin layer- -CN9006 (hexafunctional aliphatic urethane acrylate, manufactured by Sartomer) 48 parts by mass-Trimethylolpropane triacrylate (manufactured by Nihon Gosei Co., Ltd.) 47 parts by mass-Lucirin TPO (manufactured by BASF) 5 parts by mass
  • -UV curable resin composition for lipophilic resin layer- -CN9006 (hexafunctional aliphatic urethane acrylate, manufactured by Sartomer) 48 parts by mass-Trimethylolpropane triacrylate (manufactured by Nihon Gosei Co., Ltd.) 47 parts by mass-Lucirin TPO (manufactured by BASF) 5 parts by mass
  • Example 2 the lipophilic laminated body was obtained like Example 2 except having changed the ultraviolet curable resin composition for lipophilic resin layers into the composition shown below. About the produced lipophilic laminated body, evaluation similar to Example 1 was performed. The results are shown in Table 2.
  • -CN9006 hexafunctional aliphatic urethane acrylate, manufactured by Sartomer 85 parts by mass-C150 (produced by Evonik Degussa) 10 parts by mass (50 mass% silica nanoparticle trimethylolpropane triacrylate dispersion)
  • Lucirin TPO manufactured by BASF 5 parts by mass
  • Example 10 (Comparative Example 10)
  • the lipophilic laminated body was obtained like Example 2 except having changed the ultraviolet curable resin composition for lipophilic resin layers into the composition shown below.
  • evaluation similar to Example 1 was performed. The results are shown in Table 2.
  • Example 11 In Example 2, the lipophilic laminated body was obtained like Example 2 except having changed the ultraviolet curable resin composition for lipophilic resin layers into the composition shown below. About the produced lipophilic laminated body, evaluation similar to Example 1 was performed. The results are shown in Table 2.
  • Trimethylolpropane triacrylate (manufactured by Nihon Gosei Co., Ltd.) 35 parts by mass ⁇ 90 G (manufactured by Evonik Degussa) 60 parts by mass (silica nanoparticle powder) -Lucirin TPO (manufactured by BASF) 5 parts by mass
  • the beads are dispersed in a paint shaker for 9 hours using zirconia beads having a diameter of 0.65 mm, and an ultraviolet curable resin composition for a lipophilic resin layer.
  • the additive particle size in Table 2 is the average particle size of the inorganic oxide particles contained in the lipophilic resin layer.
  • the average particle diameter is a primary average particle diameter.
  • Examples 1 to 20 have fingerprint resistance, pencil hardness of 3H or higher, Martens hardness of 220 N / mm 2 or higher, and excellent flexibility test.
  • the oil-based laminate had both excellent surface hardness and excellent flexibility while having fingerprint resistance.
  • the content of the inorganic oxide particles in the lipophilic resin layer is 10% by mass to 45% by mass, the balance between surface hardness and flexibility is very excellent, and 15% by mass to 35% by mass. In this case, the balance between surface hardness and flexibility was extremely excellent (for example, see Examples 1, 5, 13, 14, 15, and 20).
  • Comparative Examples 1 to 8 since the lipophilic resin layer did not contain inorganic oxide particles, the surface strength was insufficient. In Comparative Examples 9 to 10, the lipophilic resin layer contained inorganic oxide particles, but the surface strength was insufficient due to the small content. In Comparative Example 11, since the lipophilic resin layer contained inorganic oxide particles, the surface strength was sufficient, but because the content was too large, the flexibility was insufficient.
  • the lipophilic laminate of the present invention can be used by bonding to a touch panel, a smartphone, a smartphone cover, a tablet PC, a home appliance, a cosmetic container, accessories, and the like.
  • the lipophilic laminate of the present invention uses in-mold molding, insert molding, and overlay molding to provide automotive interior parts such as door trims, instrument panels, center cluster / center console panels, shift knobs, shift knobs, and steering emblems. It can be used on the surface of automobile exterior parts such as surfaces and door handles.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

This lipophilic stacked body is provided with a resin base material, and a lipophilic resin layer disposed upon the resin base material. The lipophilic resin layer has, provided to a surface thereof, either minute protrusions or minute recesses. The lipophilic resin layer includes 10-55 mass% of inorganic oxide particles. The oleic acid contact angle of the surface of the lipophilic resin layer is not more than 10˚.

Description

親油性積層体、及びその製造方法、並びに物品Lipophilic laminate, method for producing the same, and article
 本発明は、親油性積層体、及びその製造方法、並びに前記親油性積層体を用いた物品に関する。 The present invention relates to a lipophilic laminate, a method for producing the same, and an article using the lipophilic laminate.
 物品の表面に指紋が付着すると、物品の美観が損なわれる。例えば、ピアノ、高級家具、家電製品、自動車内外装部品などの表面に指紋が付着すると、美観が損なわれ見苦しくなる。 If fingerprints adhere to the surface of the article, the aesthetics of the article will be impaired. For example, if fingerprints adhere to the surfaces of pianos, luxury furniture, home appliances, automobile interior / exterior parts, etc., the aesthetics are impaired and it becomes unsightly.
 また、物品の表面に指紋が付着すると、視認性等の光学特性が低下する。例えば、タッチパネルをユーザインタフェース(UI)として搭載した、スマートフォン、タブレットPCなどの情報表示装置の前記タッチパネルは、表示画面を直接指で触ることで直感的に機器を操作できるという利点を持っている。しかし、前記タッチパネルに指紋が付着すると、画面の視認性が低下する。 Also, when fingerprints are attached to the surface of the article, the optical properties such as visibility deteriorate. For example, the touch panel of an information display device such as a smartphone or a tablet PC equipped with a touch panel as a user interface (UI) has an advantage that the device can be intuitively operated by directly touching the display screen with a finger. However, when a fingerprint is attached to the touch panel, the visibility of the screen is lowered.
 そこで、例えば、タッチパネルなどのディスプレイ表面として、フッ素系化合物やシリコーン系化合物などが最表面にでるように設計された防汚層が提案されている(例えば、特許文献1参照)。この提案の技術では、撥水撥油表面を形成することで指紋を構成している油脂成分の付着力を弱め、布などでの拭き取りを容易にするという効果がある。
 しかし、布などで指紋を拭き取らない限り、油脂成分が層表面ではじかれるために液滴ができ、光を散乱してしまい指紋が目立ってしまうという問題がある。
Therefore, for example, an antifouling layer designed so that a fluorine-based compound, a silicone-based compound, or the like appears on the outermost surface as a display surface of a touch panel or the like has been proposed (see, for example, Patent Document 1). The proposed technique has an effect of facilitating wiping with a cloth or the like by forming a water- and oil-repellent surface to weaken the adhesion of the oil and fat components constituting the fingerprint.
However, unless the fingerprint is wiped off with a cloth or the like, the oil and fat component is repelled on the surface of the layer, so that there is a problem that droplets are formed, light is scattered, and the fingerprint becomes conspicuous.
 そこで、物品の表面には、指紋が付着しても見えにくい耐指紋性が求められている。
 例えば、油脂成分をはじかない撥水親油表面が提案されている(例えば、特許文献2参照)。この提案の技術では、表面に付着した指紋の油脂成分は広がり、液滴を形成しないため、指紋が見え難くなる。
Therefore, the surface of the article is required to have fingerprint resistance that is difficult to see even if fingerprints are attached.
For example, a water-repellent lipophilic surface that does not repel oil and fat components has been proposed (see, for example, Patent Document 2). In this proposed technique, the oil and fat component of the fingerprint adhering to the surface spreads and does not form droplets, making it difficult to see the fingerprint.
 さらに物品は、様々な環境で使用されるため、物品に貼付される積層体には、耐指紋性以外にも表面硬度に優れること及び屈曲性に優れることが求められる。 Furthermore, since the article is used in various environments, the laminate attached to the article is required to have excellent surface hardness and flexibility in addition to fingerprint resistance.
 したがって、耐指紋性を有しつつ、優れた表面硬度と優れた屈曲性とを両立できる親油性積層体、及びその製造方法、並びに前記親油性積層体を用いた物品の提供が求められているのが現状である。 Therefore, there is a demand for the provision of an oleophilic laminate that can achieve both excellent surface hardness and excellent flexibility while having fingerprint resistance, a method for producing the same, and an article using the oleophilic laminate. is the current situation.
特許第4666667号公報Japanese Patent No. 4666667 特開2010-128363号公報JP 2010-128363 A
 本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、耐指紋性を有しつつ、優れた表面硬度と優れた屈曲性とを両立できる親油性積層体、及びその製造方法、並びに前記親油性積層体を用いた物品を提供することを目的とする。 This invention makes it a subject to solve the said various problems in the past and to achieve the following objectives. That is, the present invention provides an oleophilic laminate capable of achieving both excellent surface hardness and excellent flexibility while having fingerprint resistance, a method for producing the same, and an article using the oleophilic laminate. For the purpose.
 前記課題を解決するための手段としては、以下の通りである。即ち、
 <1> 樹脂製基材と、前記樹脂製基材上に親油性樹脂層とを有し、
 前記親油性樹脂層が、表面に微細な凸部及び凹部のいずれかを有し、
 前記親油性樹脂層が、無機酸化物粒子を10質量%~55質量%含有し、
 前記親油性樹脂層の表面のオレイン酸接触角が、10°以下であることを特徴とする親油性積層体である。
 <2> 無機酸化物粒子の平均粒子径が、1nm~100nmである前記<1>に記載の親油性積層体である。
 <3> 親油性樹脂層が、無機酸化物粒子を10質量%~45質量%含有する前記<1>から<2>のいずれかに記載の親油性積層体である。
 <4> 親油性樹脂層の表面のオレイン酸接触角が、5.0°以下である前記<1>から<3>のいずれかに記載の親油性積層体である。
 <5> 親油性樹脂層における、微細な凸部の平均高さ及び微細な凹部の平均深さのいずれかが、10nm~150nmであり、隣接する前記凸部の平均距離及び隣接する前記凹部の平均距離のいずれかが、10nm~500nmである前記<1>から<4>のいずれかに記載の親油性積層体である。
 <6> 樹脂製基材が、ポリエチレンテレフタレート(PET)フィルムである前記<1>から<5>のいずれかに記載の親油性積層体である。
 <7> 前記<1>から<6>のいずれかに記載の親油性積層体の製造方法であって、
 樹脂製基材上に活性エネルギー線硬化性樹脂組成物を塗布して未硬化樹脂層を形成する未硬化樹脂層形成工程と、
 前記未硬化樹脂層に微細な凸部及び凹部のいずれかを有する転写原盤を密着させ、前記転写原盤が密着した前記未硬化樹脂層に活性エネルギー線を照射し前記未硬化樹脂層を硬化させて前記微細な凸部及び凹部のいずれかを転写することにより、親油性樹脂層を形成する親油性樹脂層形成工程とを含むことを特徴とする親油性積層体の製造方法である。
 <8> 転写原盤の微細な凸部及び凹部のいずれかが、所定のパターン形状を有するフォトレジストを保護膜として前記転写原盤の表面をエッチングすることにより形成される前記<7>に記載の親油性積層体の製造方法である。
 <9> 転写原盤の微細な凸部及び凹部のいずれかが、レーザーを前記転写原盤の表面に照射して前記転写原盤をレーザー加工することにより形成される前記<7>に記載の親油性積層体の製造方法である。
 <10> 前記<1>から<6>のいずれかに記載の親油性積層体を表面に有することを特徴とする物品である。
Means for solving the problems are as follows. That is,
<1> A resin base material and a lipophilic resin layer on the resin base material,
The lipophilic resin layer has either a fine convex part or a concave part on the surface,
The lipophilic resin layer contains 10% by mass to 55% by mass of inorganic oxide particles;
The oleic acid contact angle on the surface of the lipophilic resin layer is 10 ° or less.
<2> The lipophilic laminate according to <1>, wherein the inorganic oxide particles have an average particle diameter of 1 nm to 100 nm.
<3> The lipophilic laminate according to any one of <1> to <2>, wherein the lipophilic resin layer contains 10% by mass to 45% by mass of inorganic oxide particles.
<4> The lipophilic laminate according to any one of <1> to <3>, wherein the oleic acid contact angle on the surface of the lipophilic resin layer is 5.0 ° or less.
<5> In the lipophilic resin layer, any one of the average height of the fine protrusions and the average depth of the fine recesses is 10 nm to 150 nm, and the average distance between the adjacent protrusions and the adjacent recesses The lipophilic laminate according to any one of <1> to <4>, wherein any one of the average distances is 10 nm to 500 nm.
<6> The lipophilic laminate according to any one of <1> to <5>, wherein the resin base material is a polyethylene terephthalate (PET) film.
<7> The method for producing a lipophilic laminate according to any one of <1> to <6>,
An uncured resin layer forming step of forming an uncured resin layer by applying an active energy ray-curable resin composition on a resin substrate;
Adhering a transfer master having either a fine convex part or a concave to the uncured resin layer, irradiating the uncured resin layer to which the transfer master is in contact with an active energy ray to cure the uncured resin layer And a lipophilic resin layer forming step of forming a lipophilic resin layer by transferring any one of the fine convex portions and concave portions.
<8> The parent according to <7>, wherein any one of the fine convex portion and the concave portion of the transfer master is formed by etching the surface of the transfer master using a photoresist having a predetermined pattern shape as a protective film. It is a manufacturing method of an oil-based laminated body.
<9> The lipophilic laminate according to <7>, wherein any one of the fine convex portion and the concave portion of the transfer master is formed by irradiating the surface of the transfer master with laser processing of the transfer master. It is a manufacturing method of a body.
<10> An article having the lipophilic laminate according to any one of <1> to <6> on a surface thereof.
 本発明によれば、従来における前記諸問題を解決し、前記目的を達成することができ、耐指紋性を有しつつ、優れた表面硬度と優れた屈曲性とを両立できる親油性積層体、及びその製造方法、並びに前記親油性積層体を用いた物品を提供することができる。 According to the present invention, the conventional problems can be solved, the object can be achieved, and the lipophilic laminate can achieve both excellent surface hardness and excellent flexibility while having fingerprint resistance, And the manufacturing method and the articles | goods using the said lipophilic laminated body can be provided.
図1Aは、凸部を有する親油性樹脂層の表面の一例を示す原子間力顕微鏡(AFM)像である。FIG. 1A is an atomic force microscope (AFM) image showing an example of the surface of a lipophilic resin layer having convex portions. 図1Bは、図1Aのa-a線に沿った断面図である。FIG. 1B is a cross-sectional view taken along line aa in FIG. 1A. 図1Cは、図1Aの親油性樹脂層のAFM像(3次元像)である。FIG. 1C is an AFM image (three-dimensional image) of the lipophilic resin layer in FIG. 1A. 図1Dは、図1Aの親油性樹脂層の走査型電子顕微鏡像(SEM像)である。FIG. 1D is a scanning electron microscope image (SEM image) of the lipophilic resin layer of FIG. 1A. 図2Aは、凹部を有する親油性樹脂層の表面の一例を示すAFM像である。FIG. 2A is an AFM image showing an example of the surface of a lipophilic resin layer having a recess. 図2Bは、図2Aのa-a線に沿った断面図である。FIG. 2B is a cross-sectional view taken along line aa in FIG. 2A. 図3Aは、転写原盤であるロール原盤の構成の一例を示す斜視図である。FIG. 3A is a perspective view illustrating an example of a configuration of a roll master that is a transfer master. 図3Bは、図3Aに示したロール原盤の一部を拡大して表す平面図である。3B is an enlarged plan view showing a part of the roll master shown in FIG. 3A. 図3Cは、図3BのトラックTにおける断面図である。3C is a cross-sectional view of the track T in FIG. 3B. 図4は、ロール原盤を作製するためのロール原盤露光装置の構成の一例を示す概略図である。FIG. 4 is a schematic diagram showing an example of the configuration of a roll master exposure apparatus for producing a roll master. 図5Aは、ロール原盤を作製する工程の一例を説明するための工程図である。FIG. 5A is a process diagram for explaining an example of a process for producing a roll master. 図5Bは、ロール原盤を作製する工程の一例を説明するための工程図である。FIG. 5B is a process diagram for explaining an example of a process for producing a roll master. 図5Cは、ロール原盤を作製する工程の一例を説明するための工程図である。FIG. 5C is a process diagram for explaining an example of a process for producing a roll master. 図5Dは、ロール原盤を作製する工程の一例を説明するための工程図である。FIG. 5D is a process diagram for explaining an example of a process for producing a roll master. 図5Eは、ロール原盤を作製する工程の一例を説明するための工程図である。FIG. 5E is a process diagram for explaining an example of a process for producing a roll master. 図6Aは、ロール原盤により微細な凸部又は凹部を転写する工程の一例を説明するための工程図である。FIG. 6A is a process diagram for explaining an example of a process of transferring fine convex portions or concave portions by a roll master. 図6Bは、ロール原盤により微細な凸部又は凹部を転写する工程の一例を説明するための工程図である。FIG. 6B is a process diagram for explaining an example of a process of transferring a fine convex portion or a concave portion with a roll master. 図6Cは、ロール原盤により微細な凸部又は凹部を転写する工程の一例を説明するための工程図である。FIG. 6C is a process diagram for explaining an example of a process of transferring a fine convex portion or a concave portion with a roll master. 図7Aは、転写原盤である板状の原盤の構成の一例を示す平面図である。FIG. 7A is a plan view illustrating an example of a configuration of a plate-shaped master that is a transfer master. 図7Bは、図7Aに示したa-a線に沿った断面図である。FIG. 7B is a cross-sectional view along the line aa shown in FIG. 7A. 図7Cは、図7Bの一部を拡大して表す断面図である。FIG. 7C is an enlarged cross-sectional view of a part of FIG. 7B. 図8は、板状の原盤を作製するためのレーザー加工装置の構成の一例を示す概略図である。FIG. 8 is a schematic diagram showing an example of the configuration of a laser processing apparatus for producing a plate-shaped master. 図9Aは、板状の原盤を作製する工程の一例を説明するための工程図である。FIG. 9A is a process diagram for explaining an example of a process for producing a plate-shaped master. 図9Bは、板状の原盤を作製する工程の一例を説明するための工程図である。FIG. 9B is a process diagram for explaining an example of a process for producing a plate-shaped master. 図9Cは、板状の原盤を作製する工程の一例を説明するための工程図である。FIG. 9C is a process diagram for explaining an example of a process for producing a plate-shaped master. 図10Aは、板状の原盤により微細な凸部又は凹部を転写する工程の一例を説明するための工程図である。FIG. 10A is a process diagram for explaining an example of a process of transferring fine convex portions or concave portions with a plate-shaped master. 図10Bは、板状の原盤により微細な凸部又は凹部を転写する工程の一例を説明するための工程図である。FIG. 10B is a process diagram for explaining an example of a process of transferring fine convex portions or concave portions by a plate-shaped master. 図10Cは、板状の原盤により微細な凸部又は凹部を転写する工程の一例を説明するための工程図である。FIG. 10C is a process diagram for explaining an example of a process of transferring a fine convex portion or a concave portion with a plate-shaped master. 図11は、第4の実施形態により製造された親油性積層体の一例の概略断面図である。FIG. 11: is a schematic sectional drawing of an example of the lipophilic laminated body manufactured by 4th Embodiment. 図12Aは、インモールド成形により本発明の物品を製造する一例を説明するための工程図である。FIG. 12A is a process diagram for explaining an example of producing the article of the present invention by in-mold molding. 図12Bは、インモールド成形により本発明の物品を製造する一例を説明するための工程図である。FIG. 12B is a process diagram for explaining an example of producing the article of the present invention by in-mold molding. 図12Cは、インモールド成形により本発明の物品を製造する一例を説明するための工程図である。FIG. 12C is a process diagram for explaining an example of manufacturing the article of the present invention by in-mold molding. 図12Dは、インモールド成形により本発明の物品を製造する一例を説明するための工程図である。FIG. 12D is a process diagram for explaining an example of manufacturing the article of the present invention by in-mold molding. 図12Eは、インモールド成形により本発明の物品を製造する一例を説明するための工程図である。FIG. 12E is a process diagram for explaining an example of manufacturing the article of the present invention by in-mold molding. 図12Fは、インモールド成形により本発明の物品を製造する一例を説明するための工程図である。FIG. 12F is a process diagram for explaining an example of manufacturing the article of the present invention by in-mold molding. 図13Aは、実施例1の親油性積層体の親油性樹脂層の表面のAFM像である。13A is an AFM image of the surface of the lipophilic resin layer of the lipophilic laminate of Example 1. FIG. 図13Bは、図13Aのa-a線に沿った断面図である。13B is a cross-sectional view taken along line aa in FIG. 13A. 図13Cは、図13Aの親油性樹脂層のAFM像(3次元像)である。FIG. 13C is an AFM image (three-dimensional image) of the lipophilic resin layer in FIG. 13A. 図13Dは、図13Aの親油性樹脂層の走査型電子顕微鏡像(SEM像)である。FIG. 13D is a scanning electron microscope image (SEM image) of the lipophilic resin layer in FIG. 13A. 図14Aは、実施例2の親油性積層体の親油性樹脂層の表面のAFM像である。14A is an AFM image of the surface of the lipophilic resin layer of the lipophilic laminate of Example 2. FIG. 図14Bは、図14Aのa-a線に沿った断面図である。14B is a cross-sectional view taken along line aa in FIG. 14A. 図14Cは、図14Aの親油性樹脂層のAFM像(3次元像)である。FIG. 14C is an AFM image (three-dimensional image) of the lipophilic resin layer in FIG. 14A. 図14Dは、図14Aの親油性樹脂層の走査型電子顕微鏡像(SEM像)である。FIG. 14D is a scanning electron microscope image (SEM image) of the lipophilic resin layer in FIG. 14A. 図15Aは、実施例3の親油性積層体の親油性樹脂層の表面のAFM像である。15A is an AFM image of the surface of the lipophilic resin layer of the lipophilic laminate of Example 3. FIG. 図15Bは、図15Aのa-a線に沿った断面図である。FIG. 15B is a cross-sectional view taken along line aa in FIG. 15A. 図15Cは、図15Aの親油性樹脂層のAFM像(3次元像)である。FIG. 15C is an AFM image (three-dimensional image) of the lipophilic resin layer in FIG. 15A. 図15Dは、図15Aの親油性樹脂層の走査型電子顕微鏡像(SEM像)である。FIG. 15D is a scanning electron microscope image (SEM image) of the lipophilic resin layer in FIG. 15A. 図16Aは、実施例4の親油性積層体の親油性樹脂層の表面のAFM像である。FIG. 16A is an AFM image of the surface of the lipophilic resin layer of the lipophilic laminate of Example 4. 図16Bは、図16Aのa-a線に沿った断面図である。16B is a cross-sectional view taken along line aa in FIG. 16A. 図16Cは、図16Aの親油性樹脂層のAFM像(3次元像)である。FIG. 16C is an AFM image (three-dimensional image) of the lipophilic resin layer in FIG. 16A. 図16Dは、図16Aの親油性樹脂層の走査型電子顕微鏡像(SEM像)である。FIG. 16D is a scanning electron microscope image (SEM image) of the lipophilic resin layer of FIG. 16A. 図17Aは、実施例9の親油性積層体の親油性樹脂層の表面のAFM像である。FIG. 17A is an AFM image of the surface of the lipophilic resin layer of the lipophilic laminate of Example 9. 図17Bは、図17Aのa-a線に沿った断面図である。FIG. 17B is a cross-sectional view taken along the line aa in FIG. 17A. 図17Cは、図17Aの親油性樹脂層のAFM像(3次元像)である。FIG. 17C is an AFM image (three-dimensional image) of the lipophilic resin layer in FIG. 17A. 図18Aは、実施例10の親油性積層体の親油性樹脂層の表面のAFM像である。18A is an AFM image of the surface of the lipophilic resin layer of the lipophilic laminate of Example 10. FIG. 図18Bは、図18Aのa-a線に沿った断面図である。18B is a cross-sectional view taken along the line aa in FIG. 18A. 図18Cは、図18Aの親油性樹脂層のAFM像(3次元像)である。FIG. 18C is an AFM image (three-dimensional image) of the lipophilic resin layer in FIG. 18A. 図19Aは、実施例11の親油性積層体の親油性樹脂層の表面のAFM像である。FIG. 19A is an AFM image of the surface of the lipophilic resin layer of the lipophilic laminate of Example 11. 図19Bは、図19Aのa-a線に沿った断面図である。FIG. 19B is a cross-sectional view taken along the line aa in FIG. 19A. 図19Cは、図19Aの親油性樹脂層のAFM像(3次元像)である。FIG. 19C is an AFM image (three-dimensional image) of the lipophilic resin layer in FIG. 19A. 図20Aは、実施例12の親油性積層体の親油性樹脂層の表面のAFM像である。20A is an AFM image of the surface of the lipophilic resin layer of the lipophilic laminate of Example 12. FIG. 図20Bは、図20Aのa-a線に沿った断面図である。20B is a cross-sectional view taken along the line aa in FIG. 20A. 図20Cは、図20Aの親油性樹脂層のAFM像(3次元像)である。FIG. 20C is an AFM image (three-dimensional image) of the lipophilic resin layer in FIG. 20A.
(親油性積層体)
 本発明の親油性積層体は、樹脂製基材と、親油性樹脂層とを少なくとも有し、更に必要に応じて、その他の部材を有する。
 前記親油性樹脂層は、表面に微細な凸部及び凹部のいずれかを有する。
 前記親油性樹脂層は、無機酸化物粒子を10質量%~55質量%含有する。
 前記親油性樹脂層の表面のオレイン酸接触角は、10°以下である。
(Lipophilic laminate)
The lipophilic laminate of the present invention has at least a resin base material and a lipophilic resin layer, and further includes other members as necessary.
The said lipophilic resin layer has either a fine convex part and a recessed part on the surface.
The lipophilic resin layer contains 10% by mass to 55% by mass of inorganic oxide particles.
The oleic acid contact angle on the surface of the lipophilic resin layer is 10 ° or less.
 本発明における耐指紋性とは、指紋が付着しても見えにくい特性を意味する。 The fingerprint resistance in the present invention means a characteristic that is difficult to see even if a fingerprint is attached.
<樹脂製基材>
 前記樹脂製基材の材質としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、トリアセチルセルロース(TAC)、ポリエステル(TPEE)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリイミド(PI)、ポリアミド(PA)、アラミド、ポリエチレン(PE)、ポリアクリレート、ポリエーテルスルフォン、ポリスルフォン、ポリプロピレン(PP)、ポリスチレン、ジアセチルセルロース、ポリ塩化ビニル、ポリメチルメタクリレート(PMMA)、ポリカーボネート(PC)、エポキシ樹脂、尿素樹脂、ウレタン樹脂、メラミン樹脂、フェノール樹脂、アクリロニトリル・ブタジエン・スチレン共重合体、シクロオレフィンポリマー(COP)、シクロオレフィンコポリマー(COC)、PC/PMMA積層体、ゴム添加PMMAなどが挙げられる。
<Resin base material>
There is no restriction | limiting in particular as a material of the said resin-made base materials, According to the objective, it can select suitably, For example, a triacetyl cellulose (TAC), polyester (TPEE), a polyethylene terephthalate (PET), a polyethylene naphthalate ( PEN), polyimide (PI), polyamide (PA), aramid, polyethylene (PE), polyacrylate, polyether sulfone, polysulfone, polypropylene (PP), polystyrene, diacetyl cellulose, polyvinyl chloride, polymethyl methacrylate (PMMA) , Polycarbonate (PC), epoxy resin, urea resin, urethane resin, melamine resin, phenol resin, acrylonitrile-butadiene-styrene copolymer, cycloolefin polymer (COP), cycloolefin copolymer Mer (COC), PC / PMMA laminate, such as rubber additives PMMA and the like.
 前記樹脂製基材は、透明性を有することが好ましい。 The resin base material preferably has transparency.
 前記樹脂製基材の形状としては、特に制限はなく、目的に応じて適宜選択することができるが、フィルム状であることが好ましい。
 前記樹脂製基材がフィルム状の場合、前記樹脂製基材の平均厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、5μm~1,000μmが好ましく、50μm~500μmがより好ましい。
There is no restriction | limiting in particular as a shape of the said resin-made base materials, Although it can select suitably according to the objective, It is preferable that it is a film form.
When the resin substrate is in the form of a film, the average thickness of the resin substrate is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 5 μm to 1,000 μm, and preferably 50 μm to 500 μm. Is more preferable.
 前記樹脂製基材としては、トリアセチルセルロース(TAC)フィルム、ポリエチレンテレフタレート(PET)フィルム、ポリカーボネート(PC)フィルム、ポリメチルメタクリレート(PMMA)フィルム、PC/PMMA積層体が好ましく、ポリエチレンテレフタレート(PET)フィルムがより好ましい。 The resin substrate is preferably a triacetyl cellulose (TAC) film, a polyethylene terephthalate (PET) film, a polycarbonate (PC) film, a polymethyl methacrylate (PMMA) film, or a PC / PMMA laminate, and polyethylene terephthalate (PET). A film is more preferable.
 前記樹脂製基材の表面には、文字、模様、画像などが印刷されていてもよい。 A character, a pattern, an image, or the like may be printed on the surface of the resin base material.
 前記樹脂製基材の表面には、前記親油性積層体を成形加工時、前記樹脂製基材と成形材料との密着性を高めるため、又は成形加工時の成形材料の流動圧から前記文字、前記模様、及び前記画像を保護するために、バインダー層を設けてもよい。前記バインダー層の材質としては、アクリル系、ウレタン系、ポリエステル系、ポリアミド系、エチレンブチルアルコール系、エチレン酢酸ビニル共重合体系等の各種バインダーの他、各種接着剤を用いることができる。なお、前記バインダー層は2層以上設けてもよい。使用するバインダーは、成形材料に適した感熱性、感圧性を有するものを選択できる。 On the surface of the resin base material, the letters, from the flow pressure of the molding material at the time of molding, in order to increase the adhesion between the resin base material and the molding material, during the molding process of the lipophilic laminate, In order to protect the pattern and the image, a binder layer may be provided. As the material of the binder layer, various adhesives can be used in addition to various binders such as acrylic, urethane, polyester, polyamide, ethylene butyl alcohol, and ethylene vinyl acetate copolymer systems. Two or more binder layers may be provided. As the binder to be used, one having heat sensitivity and pressure sensitivity suitable for the molding material can be selected.
<親油性樹脂層>
 前記親油性樹脂層は、表面に微細な凸部及び凹部のいずれかを有する。
 前記親油性樹脂層の表面のオレイン酸接触角は、10°以下である。
 前記親油性樹脂層は、前記樹脂製基材上に形成されている。
<Lipophilic resin layer>
The said lipophilic resin layer has either a fine convex part and a recessed part on the surface.
The oleic acid contact angle on the surface of the lipophilic resin layer is 10 ° or less.
The lipophilic resin layer is formed on the resin substrate.
-無機酸化物粒子-
 前記親油性樹脂層は、無機酸化物粒子を含有する。
 前記親油性樹脂層における前記無機酸化物粒子の含有量は、10質量%~55質量%であり、10質量%~45質量%が好ましく、15質量%~35質量%がより好ましい。前記含有量が、10質量%未満であると、表面硬度が不十分となる。前記含有量が、55質量%を超えると、屈曲性が不十分となる。前記含有量が、前記より好ましい範囲内であると、非常に優れた表面強度と、非常に優れた屈曲性とを両立できる。
-Inorganic oxide particles-
The lipophilic resin layer contains inorganic oxide particles.
The content of the inorganic oxide particles in the lipophilic resin layer is 10% by mass to 55% by mass, preferably 10% by mass to 45% by mass, and more preferably 15% by mass to 35% by mass. When the content is less than 10% by mass, the surface hardness becomes insufficient. When the content exceeds 55% by mass, the flexibility becomes insufficient. When the content is within the more preferable range, it is possible to achieve both excellent surface strength and excellent flexibility.
 前記無機酸化物粒子の平均粒子径としては、特に制限はなく、目的に応じて適宜選択することができるが、1nm~100nmが好ましく、5nm~90nmがより好ましい。
 ここで、前記平均粒子径は、一次平均粒子径であり、例えば、ALD-7500nano(株式会社島津製作所製)により測定できる。
The average particle size of the inorganic oxide particles is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1 nm to 100 nm, and more preferably 5 nm to 90 nm.
Here, the average particle diameter is a primary average particle diameter, and can be measured by, for example, ALD-7500 nano (manufactured by Shimadzu Corporation).
 前記無機酸化物粒子は、前記親油性樹脂層の表面に露出していないことが好ましい。 It is preferable that the inorganic oxide particles are not exposed on the surface of the lipophilic resin layer.
 前記無機酸化物粒子としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、シリカ、アルミナ、ジルコニア、酸化ニオブ、酸化チタン、酸化タングステン、五酸化アンチモン、酸化亜鉛、酸化錫、酸化インジウム錫(Indium Tin Oxide:ITO)、酸化インジウム、アンチモンドープ酸化錫(Antimony-doped tin oxide:ATO)、酸化アルミニウム亜鉛(Alminum Zinc Oxide:AZO)などが挙げられる。 The inorganic oxide particles are not particularly limited and may be appropriately selected depending on the purpose. For example, silica, alumina, zirconia, niobium oxide, titanium oxide, tungsten oxide, antimony pentoxide, zinc oxide, tin oxide Indium tin oxide (ITO), indium oxide, antimony-doped tin oxide (ATO), aluminum zinc oxide (Alminum Zinc Oxide: AZO), and the like.
 前記無機酸化物粒子の表面は、末端に(メタ)アクリル基、ビニル基、又はエポキシ基などの官能基を有する有機系分散剤で表面処理されていることが好ましい。前記有機系分散剤としては、例えば、前記官能基を末端に有するシランカップリング剤が好ましい。
 末端にアクリル基を有するシランカップリング剤としては、例えば、信越化学工業株式会社製のKBM-5103が挙げられる。末端にメタクリル基を有するシランカップリング剤としては、例えば、信越化学工業株式会社製のKBM-502、KBM-503、KBE-502、KBE-503などが挙げられる。末端にビニル基を有するシランカップリング剤としては、例えば、信越化学工業株式会社製のKA-1003、KBM-1003、KBE-1003などが挙げられる。末端にエポキシ基を有するシランカップリング剤としては、例えば、信越化学工業株式会社製のKBM-303、KBM-403、KBE-402、KBE-403などが挙げられる。シランカップリング剤の他、有機カルボン酸を用いるようにしてもよい。表面処理された無機酸化物粒子を用いることで、後述する親油性樹脂層形成工程において、無機酸化物粒子がその周囲にある(メタ)アクリルモノマー及び/又はオリゴマーなどのアクリレートと一体化し、得られる親油性樹脂層の硬度及び可撓性が向上する。
The surface of the inorganic oxide particles is preferably surface-treated with an organic dispersant having a functional group such as a (meth) acryl group, a vinyl group, or an epoxy group at the terminal. As said organic type dispersing agent, the silane coupling agent which has the said functional group at the terminal is preferable, for example.
Examples of the silane coupling agent having an acrylic group at the terminal include KBM-5103 manufactured by Shin-Etsu Chemical Co., Ltd. Examples of the silane coupling agent having a methacryl group at the terminal include KBM-502, KBM-503, KBE-502, and KBE-503 manufactured by Shin-Etsu Chemical Co., Ltd. Examples of the silane coupling agent having a vinyl group at the terminal include KA-1003, KBM-1003, and KBE-1003 manufactured by Shin-Etsu Chemical Co., Ltd. Examples of the silane coupling agent having an epoxy group at the terminal include KBM-303, KBM-403, KBE-402, and KBE-403 manufactured by Shin-Etsu Chemical Co., Ltd. In addition to the silane coupling agent, an organic carboxylic acid may be used. By using the surface-treated inorganic oxide particles, in the lipophilic resin layer forming step described later, the inorganic oxide particles are integrated with acrylates such as (meth) acrylic monomers and / or oligomers around the inorganic oxide particles. The hardness and flexibility of the lipophilic resin layer are improved.
 前記親油性樹脂層としては、特に制限はなく、目的に応じて適宜選択することができるが、活性エネルギー線硬化性樹脂組成物の硬化物を含有することが好ましい。 The lipophilic resin layer is not particularly limited and may be appropriately selected depending on the intended purpose, but preferably contains a cured product of an active energy ray-curable resin composition.
-微細な凸部、及び微細な凹部-
 前記親油性樹脂層は、その表面に微細な凸部及び凹部のいずれかを有している。
 前記微細な凸部及び凹部のいずれかは、前記親油性樹脂層において、前記樹脂製基材側と反対側の面に形成されている。
-Fine convex part and fine concave part-
The said lipophilic resin layer has either a fine convex part and a recessed part on the surface.
Either the fine convex part or the concave part is formed on the surface opposite to the resin base material side in the lipophilic resin layer.
 ここで、微細な凸部とは、前記親油性樹脂層の表面において、隣接する凸部の平均距離が、1,000nm以下であることをいう。
 ここで、微細な凹部とは、前記親油性樹脂層の表面において、隣接する凹部の平均距離が、1,000nm以下であることをいう。
Here, a fine convex part means that the average distance of an adjacent convex part is 1,000 nm or less in the surface of the said lipophilic resin layer.
Here, the fine recess means that the average distance between adjacent recesses is 1,000 nm or less on the surface of the lipophilic resin layer.
 前記凸部、及び前記凹部の形状としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、錐体状、柱状、針状、球体の一部の形状(例えば、半球体状)、楕円体の一部の形状(例えば、半楕円体状)、多角形状などが挙げられる。これらの形状は数学的に定義される完全な形状である必要はなく、多少の歪みがあってもよい。 The shape of the convex portion and the concave portion is not particularly limited and can be appropriately selected depending on the purpose. For example, a cone shape, a column shape, a needle shape, or a partial shape of a sphere (for example, a hemisphere) Shape), a partial shape of an ellipsoid (for example, a semi-ellipsoidal shape), and a polygonal shape. These shapes need not be mathematically defined complete shapes, and may have some distortion.
 前記凸部又は前記凹部は、前記親油性樹脂層の表面に2次元配列されている。その配列は、規則的な配列であってもよいし、ランダムな配列であってもよい。前記規則的な配列としては、充填率の点から、最密充填構造が好ましい。 The convex portions or the concave portions are two-dimensionally arranged on the surface of the lipophilic resin layer. The arrangement may be a regular arrangement or a random arrangement. The regular arrangement is preferably a close-packed structure from the viewpoint of the filling rate.
 隣接する前記凸部の平均距離としては、特に制限はなく、目的に応じて適宜選択することができるが、5nm~1,000nmが好ましく、10nm~800nmがより好ましく、10nm~500nmが更により好ましく、50nm~500nmが特に好ましい。
 隣接する前記凹部の平均距離としては、特に制限はなく、目的に応じて適宜選択することができるが、5nm~1,000nmが好ましく、10nm~800nmがより好ましく、10nm~500nmが更により好ましく、50nm~500nmが特に好ましい。
 隣接する前記凸部の平均距離及び隣接する前記凹部の平均距離が、前記好ましい範囲内であると、前記親油性樹脂層に付着した指紋成分が、効果的に濡れ広がる。また、指紋払拭性が高くなる。前記平均距離が、前記特に好ましい範囲内であると、指紋成分が濡れ広がる効果、及び指紋払拭性向上効果は顕著になる。
The average distance between the adjacent convex portions is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 5 nm to 1,000 nm, more preferably 10 nm to 800 nm, still more preferably 10 nm to 500 nm. 50 nm to 500 nm is particularly preferable.
The average distance between the adjacent concave portions is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 5 nm to 1,000 nm, more preferably 10 nm to 800 nm, still more preferably 10 nm to 500 nm, 50 nm to 500 nm is particularly preferred.
When the average distance between the adjacent convex portions and the average distance between the adjacent concave portions are within the preferable range, the fingerprint component adhering to the lipophilic resin layer is effectively spread. In addition, the fingerprint wiping property is improved. When the average distance is within the particularly preferable range, the effect of spreading the fingerprint component and the effect of improving the fingerprint wiping property become remarkable.
 前記凸部の平均高さとしては、特に制限はなく、目的に応じて適宜選択することができるが、1nm~1,000nmが好ましく、5nm~500nmがより好ましく、10nm~300nmが更に好ましく、10nm~150nmが特に好ましい。
 前記凹部の平均深さとしては、特に制限はなく、目的に応じて適宜選択することができるが、1nm~1,000nmが好ましく、5nm~500nmがより好ましく、10nm~300nmが更に好ましく、10nm~150nmが特に好ましい。
 前記凸部の平均高さ及び前記凹部の平均深さが、前記好ましい範囲内であると、前記親油性樹脂層に付着した指紋成分が、効果的に濡れ広がる。また、指紋払拭性が高くなる。
前記平均高さ及び前記平均深さが、前記特に好ましい範囲内であると、指紋成分が濡れ広がる効果、及び指紋払拭性向上効果は顕著になる。
The average height of the protrusions is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1 nm to 1,000 nm, more preferably 5 nm to 500 nm, still more preferably 10 nm to 300 nm, and even more preferably 10 nm. Particularly preferred is ˜150 nm.
The average depth of the recess is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1 nm to 1,000 nm, more preferably 5 nm to 500 nm, still more preferably 10 nm to 300 nm, and more preferably 10 nm to 150 nm is particularly preferred.
When the average height of the convex portions and the average depth of the concave portions are within the preferable range, the fingerprint component attached to the lipophilic resin layer effectively wets and spreads. In addition, the fingerprint wiping property is improved.
When the average height and the average depth are within the particularly preferable range, the effect of spreading the fingerprint component and the effect of improving the fingerprint wiping property become remarkable.
 前記凸部の平均アスペクト比(前記凸部の平均高さ/隣接する前記凸部の平均距離)及び前記凹部の平均アスペクト比(前記凹部の平均深さ/隣接する前記凹部の平均距離)としては、特に制限はなく、目的に応じて適宜選択することができるが、0.001~1,000が好ましく、0.01~50がより好ましく、0.04~3.0が特に好ましい。
 前記凸部の平均アスペクト比及び前記凹部の平均アスペクト比が、前記好ましい範囲内であると、前記親油性樹脂層に付着した指紋成分が、効果的に濡れ広がる。また、指紋払拭性が高くなる。前記アスペクト比が、前記特に好ましい範囲内であると、指紋成分が濡れ広がる効果、及び指紋払拭性向上効果は顕著になる。
As the average aspect ratio of the convex part (average height of the convex part / average distance of the adjacent convex part) and the average aspect ratio of the concave part (average depth of the concave part / average distance of the adjacent concave part) There is no particular limitation, and it can be appropriately selected according to the purpose. However, it is preferably 0.001 to 1,000, more preferably 0.01 to 50, and particularly preferably 0.04 to 3.0.
When the average aspect ratio of the convex portions and the average aspect ratio of the concave portions are within the preferable range, the fingerprint component attached to the lipophilic resin layer is effectively spread by wetting. In addition, the fingerprint wiping property is improved. When the aspect ratio is within the particularly preferable range, the effect of spreading the fingerprint component and the effect of improving the fingerprint wiping property become remarkable.
 ここで、凸部又は凹部の平均距離(Pm)、及び凸部の平均高さ又は凹部の平均深さ(Hm)は、以下のようにして測定できる。
 まず、凸部又は凹部を有する前記親油性樹脂層の表面Sを原子間力顕微鏡(AFM:Atomic Force Microscope)により観察し、AFMの断面プロファイルから凸部又は凹部のピッチ、及び凸部の高さ又は凹部の深さを求める。これを前記親油性樹脂層の表面から無作為に選び出された10箇所において繰り返し行い、ピッチP1、P2、・・・、P10と、高さ又は深さH1、H2、・・・、H10とを求める。
 ここで、前記凸部のピッチは、前記凸部の頂点間の距離である。前記凹部のピッチは、前記凹部の最深部間の距離である。前記凸部の高さは、前記凸部間の谷部の最低点を基準とした前記凸部の高さである。前記凹部の深さは、前記凹部間の山部の最高点を基準とした前記凹部の深さである。
 次に、これらのピッチP1、P2、・・・、P10、及び高さ又は深さH1、H2、・・・、H10をそれぞれ単純に平均(算術平均)して、凸部又は凹部の平均距離(Pm)、及び凸部の平均高さ又は凹部の平均深さ(Hm)を求める。
 なお、前記凸部又は凹部のピッチが面内異方性を有している場合には、ピッチが最大となる方向のピッチを用いて前記Pmを求めるものとする。また、前記凸部の高さ又は前記凹部の深さが面内異方性を有している場合には、高さ又は深さが最大となる方向の高さ又は深さを用いて前記Hmを求めるものとする。
 また、前記凸部又は凹部が棒状の場合には、短軸方向のピッチを、前記ピッチとして測定する。
 なお、前記AFM観察においては、断面プロファイルの凸の頂点、又は凹の底辺が、立体形状の凸部の頂点、又は凹部の最深部と一致するようにするため、断面プロファイルを、測定対象となる立体形状の凸部の頂点、又は立体形状の凹部の最深部を通る断面となるように、切り出している。
Here, the average distance (Pm) of the convex part or the concave part, and the average height of the convex part or the average depth (Hm) of the concave part can be measured as follows.
First, the surface S of the lipophilic resin layer having a convex portion or a concave portion is observed with an atomic force microscope (AFM), and the pitch of the convex portion or the concave portion and the height of the convex portion are determined from the cross-sectional profile of the AFM. Or the depth of a recessed part is calculated | required. This is repeated at 10 locations randomly selected from the surface of the lipophilic resin layer, and the pitches P1, P2,..., P10 and the heights or depths H1, H2,. Ask for.
Here, the pitch of the convex portions is a distance between the vertices of the convex portions. The pitch of the recesses is the distance between the deepest portions of the recesses. The height of the convex portion is the height of the convex portion based on the lowest point of the valley between the convex portions. The depth of the recess is the depth of the recess based on the highest point of the peak between the recesses.
Next, these pitches P1, P2,..., P10 and the heights or depths H1, H2,..., H10 are simply averaged (arithmetic average), and the average distance between the convex portions or the concave portions is calculated. (Pm) and the average height of the convex portions or the average depth (Hm) of the concave portions are obtained.
In addition, when the pitch of the said convex part or a recessed part has in-plane anisotropy, the said Pm shall be calculated | required using the pitch of the direction where a pitch becomes the maximum. Further, when the height of the convex portion or the depth of the concave portion has in-plane anisotropy, the height or depth in the direction in which the height or depth is maximum is used. Is to be sought.
Moreover, when the said convex part or a recessed part is rod-shaped, the pitch of a short-axis direction is measured as said pitch.
In the AFM observation, the cross-sectional profile is a measurement target so that the convex vertex or concave base of the cross-sectional profile matches the vertex of the solid convex portion or the deepest portion of the concave portion. It cuts out so that it may become a cross section which passes through the top of a convex part of a solid shape, or the deepest part of a concave part of a solid shape.
 ここで、前記親油性樹脂層の表面に形成されている微細な形状が、凸部であるか、凹部であるかは、以下のようにして判断することができる。
 凸部又は凹部を有する前記親油性樹脂層の表面Sを原子間力顕微鏡(AFM:Atomic Force Microscope)により観察し、断面及び前記表面SのAFM像を得る。
 そして、表面のAFM像を、最表面側を明るい像、深部側を暗い像にした場合、暗い像の中に、明るい像が島状に形成されている場合、その表面は、凸部を有するものとする。
 一方、明るい像の中に、暗い像が島状に形成されている場合、その表面は、凹部を有するものとする。
 例えば、図1A及び図1Bに示す表面及び断面のAFM像を有する親油性樹脂層の表面は、凸部を有している。図1A及び図1Bに示す表面及び断面のAFM像を有する親油性樹脂層の3次元像は、図1Cのようになる。図2A及び図2Bに示す表面及び断面のAFM像を有する表面は、凹部を有している。
Here, it can be determined as follows whether the fine shape formed on the surface of the lipophilic resin layer is a convex portion or a concave portion.
The surface S of the lipophilic resin layer having a convex portion or a concave portion is observed with an atomic force microscope (AFM) to obtain a cross section and an AFM image of the surface S.
When the AFM image of the surface is a bright image on the outermost surface side and a dark image on the deep side, when the bright image is formed in an island shape in the dark image, the surface has a convex portion. Shall.
On the other hand, when a dark image is formed in an island shape in a bright image, the surface thereof has a recess.
For example, the surface of the lipophilic resin layer having the AFM image of the surface and cross section shown in FIGS. 1A and 1B has a convex portion. A three-dimensional image of the lipophilic resin layer having the AFM images of the surface and the cross section shown in FIGS. 1A and 1B is as shown in FIG. 1C. The surface shown in FIGS. 2A and 2B and the surface having a cross-sectional AFM image have a recess.
 隣接する前記凸部又は前記凹部は、離間していることが好ましい。前記離間の平均距離(平均離間距離)としては、特に制限はなく、目的に応じて適宜選択することができるが、1nm~999nmが好ましく、5nm~795nmがより好ましく、10nm~490nmが更に好ましく、100nm~190nmが特に好ましい。前記平均離間距離が、前記好ましい範囲内であると、前記親油性樹脂層に付着した指紋成分が、効果的に濡れ広がる。また、指紋払拭性が高まる。前記平均離間距離が、前記特に好ましい範囲内であると、指紋成分が濡れ広がる効果、及び指紋払拭性向上効果は顕著になる。 It is preferable that the adjacent convex portions or the concave portions are separated from each other. The average separation distance (average separation distance) is not particularly limited and may be appropriately selected depending on the intended purpose. It is preferably 1 nm to 999 nm, more preferably 5 nm to 795 nm, still more preferably 10 nm to 490 nm, 100 nm to 190 nm is particularly preferable. When the average separation distance is within the preferable range, the fingerprint component adhering to the lipophilic resin layer is effectively wetted and spread. In addition, the fingerprint wiping property is improved. When the average separation distance is within the particularly preferable range, the effect of spreading the fingerprint component and the effect of improving the fingerprint wiping property become remarkable.
 ここで、離間する前記凸部又は前記凹部の平均離間距離(Dm)は、以下のようにして測定できる。
 まず、前記親油性樹脂層の表面Sを走査型電子顕微鏡(SEM:Scanning Electron Microscope)により観察し、表面SEM像から隣接する凸部又は凹部の離間距離を求める。前記離間距離は、前記表面Sを上面から見た場合の、隣接する凸部又は凹部の外縁間の最短距離である。前記親油性樹脂層の表面から無作為に選び出された10箇所において繰り返し測定を行い、離間距離D1、D2、・・・、D10を求める。
 次に、これらの離間距離D1、D2、・・・、D10を単純に平均(算術平均)して、凸部又は凹部の平均離間距離(Dm)を求める。
 例えば、図1A及び図1Bに示す表面及び断面のAFM像を有する親油性樹脂層のSEM写真を図1Dに示す。図1Dにおいて、凸部のピッチ(P)は、310nmであり、凸部の離間距離(D)は、170nmである。
Here, the average separation distance (Dm) of the convex portions or the concave portions that are separated can be measured as follows.
First, the surface S of the lipophilic resin layer is observed with a scanning electron microscope (SEM), and the distance between adjacent convex portions or concave portions is determined from the surface SEM image. The separation distance is the shortest distance between the outer edges of adjacent convex portions or concave portions when the surface S is viewed from above. The measurement is repeatedly performed at 10 points randomly selected from the surface of the lipophilic resin layer, and the separation distances D1, D2,.
Next, these separation distances D1, D2,..., D10 are simply averaged (arithmetic average) to obtain the average separation distance (Dm) of the convex portions or concave portions.
For example, FIG. 1D shows an SEM photograph of a lipophilic resin layer having AFM images of the surface and cross section shown in FIGS. 1A and 1B. In FIG. 1D, the pitch (P) of the convex portions is 310 nm, and the separation distance (D) of the convex portions is 170 nm.
-オレイン酸接触角-
 前記親油性樹脂層の表面のオレイン酸接触角は、10°以下であり、5.0°以下が好ましく、3.0°以下がより好ましい。前記オレイン酸接触角の下限値としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、1.0°などが挙げられる。
 前記オレイン酸接触角は、例えば、PCA-1(協和界面化学株式会社製)を用いて、下記条件で測定できる。
 オレイン酸をプラスチックシリンジに入れて、その先端にテフロンコート製の針を取り付けて評価面に滴下する。
 オレイン酸の滴下量:1μL
 測定温度:25℃
 オレイン酸を滴下して100秒経過後の接触角を、親油性樹脂層表面の任意の10か所で測定し、その平均値をオレイン酸接触角とする。
-Oleic acid contact angle-
The oleic acid contact angle on the surface of the lipophilic resin layer is 10 ° or less, preferably 5.0 ° or less, and more preferably 3.0 ° or less. There is no restriction | limiting in particular as a lower limit of the said oleic acid contact angle, According to the objective, it can select suitably, For example, 1.0 degree etc. are mentioned.
The oleic acid contact angle can be measured under the following conditions using, for example, PCA-1 (manufactured by Kyowa Interface Chemical Co., Ltd.).
Oleic acid is put in a plastic syringe, a Teflon-coated needle is attached to the tip, and the oleic acid is dropped on the evaluation surface.
Drip amount of oleic acid: 1 μL
Measurement temperature: 25 ° C
The contact angle after 100 seconds has elapsed after dropping oleic acid is measured at any 10 locations on the surface of the lipophilic resin layer, and the average value is taken as the oleic acid contact angle.
 前記親油性樹脂層の表面のオレイン酸接触角は、前記オレイン酸接触角の測定時に経時で小さくなることが好ましく、オレイン酸を滴下して20秒経過後から100秒経過後の間に、1.0°以上小さくなっていることがより好ましく、2.0°以上小さくなっていることが特に好ましい。そうすることにより、指、ティッシュ、布等による付着指紋の払拭性が良好となる。 The oleic acid contact angle on the surface of the oleophilic resin layer is preferably reduced with time when the oleic acid contact angle is measured. Between 20 seconds and 100 seconds after dropping oleic acid, 1 More preferably, the angle is smaller than 0.0 °, and particularly preferably smaller than 2.0 °. By doing so, the wiping property of the attached fingerprint by a finger, tissue, cloth or the like is improved.
-活性エネルギー線硬化性樹脂組成物-
 前記活性エネルギー線硬化性樹脂組成物としては、硬化後に形成される親油性樹脂層において、所望の前記オレイン酸接触角を達成できるものであれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、多官能(メタ)アクリルモノマーと、光重合開始剤と、前記無機酸化物粒子とを少なくとも含有し、更に必要に応じて、その他の成分を含有する活性エネルギー線硬化性樹脂組成物などが挙げられる。
-Active energy ray-curable resin composition-
The active energy ray-curable resin composition is not particularly limited and may be appropriately selected depending on the intended purpose as long as the desired oleic acid contact angle can be achieved in the lipophilic resin layer formed after curing. For example, an active energy ray-curable resin containing at least a polyfunctional (meth) acrylic monomer, a photopolymerization initiator, and the inorganic oxide particles, and further containing other components as necessary. Examples thereof include a composition.
--多官能(メタ)アクリルモノマー--
 前記多官能(メタ)アクリルモノマーとしては、例えば、1,3-ブチレングリコールジアクリレート、ジエチレングリコールジアクリレート、ネオペンチルグリコールジアクリレート、トリプロピレングリコールジアクリレート、エトキシ化(3)ビスフェノールAジアクリレート、ジプロピレングリコールジアクリレート、アクリレートエステル(ジオキサングリコールジアクリレート)、エトキシ化(4)ビスフェノールAジアクリレート、イソシアヌル酸EO変性ジアクリレート、トリシクロデカンジメタノールジアクリレート、エチレングリコールジメタクリレート、1,4-ブタンジオールジメタクリレート、ジエチレングリコールジメタクリレート、1,12-ドデカンジオールジメタクリレート、1,3-ブチレングリコールジメタクリレート、エトキシ化(4)ビスフェノールAジメタクリレート、エトキシ化(6)ビスフェノールAジメタクリレートなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
--- Polyfunctional (meth) acrylic monomer--
Examples of the polyfunctional (meth) acrylic monomer include 1,3-butylene glycol diacrylate, diethylene glycol diacrylate, neopentyl glycol diacrylate, tripropylene glycol diacrylate, ethoxylated (3) bisphenol A diacrylate, and dipropylene. Glycol diacrylate, acrylate ester (dioxane glycol diacrylate), ethoxylated (4) bisphenol A diacrylate, isocyanuric acid EO-modified diacrylate, tricyclodecane dimethanol diacrylate, ethylene glycol dimethacrylate, 1,4-butanediol di Methacrylate, diethylene glycol dimethacrylate, 1,12-dodecanediol dimethacrylate, 1,3-butyleneglycol Dimethacrylate, ethoxylated (4) bisphenol A dimethacrylate, and the like ethoxylated (6) bisphenol A dimethacrylate. These may be used individually by 1 type and may use 2 or more types together.
 また、前記多官能(メタ)アクリルモノマーとしては、例えば、二官能ウレタン(メタ)アクリレート、二官能エポキシ(メタ)アクリレート、二官能ポリエステル(メタ)アクリレートなどが挙げられる。 In addition, examples of the polyfunctional (meth) acrylic monomer include bifunctional urethane (meth) acrylate, bifunctional epoxy (meth) acrylate, and bifunctional polyester (meth) acrylate.
 前記二官能ウレタン(メタ)アクリレートは、市販品であってもよい。前記市販品としては、例えば、サートマー社製のCN940、CN963、CN963A80、CN963B80、CN963E75、CN963E80、CN982A75、CN982B88、CN983、CN985B88、CN9001、CN9011、CN902J75、CN977C70、CN999、CN1963、CN2920、ダイセル・サイテック株式会社製のEBECRYL 284、共栄社化学株式会社製のAT-600、UF-8001Gなどが挙げられる。 The bifunctional urethane (meth) acrylate may be a commercially available product. Examples of the commercially available products include CN940, CN963, CN963A80, CN963B80, CN963E75, CN963E80, CN982A75, CN982B88, CN983, CN985C, CN901, CN9711, CN97C, CN97C, C97 Examples include EBECRYL 284 manufactured by company, AT-600, UF-8001G manufactured by Kyoeisha Chemical Co., Ltd., and the like.
 前記二官能エポキシ(メタ)アクリレートは、市販品であってもよい。前記市販品としては、例えば、サートマー社製のCN104、CN104A80、CN104B80、CN104D80、CN115、CN117、CN120、CN120A75、CN120B60、CN120B80、CN120C60、CN120C80、CN120D80、CN120E50、CN120M50、CN136、CN151、CN UVE151、CN UVE150/80、CN2100、ダイセル・サイテック株式会社製のEBECRYL 600、 EBECRYL 605、 EBECRYL 3700、 EBECRYL 3701、 EBECRYL 3702、 EBECRYL 3703、共栄社化学株式会社製の70PA、200PA、80MFA、3002A、3000Aなどが挙げられる。 The bifunctional epoxy (meth) acrylate may be a commercially available product. Examples of the commercially available products include CN104, CN104A80, CN104B80, CN104D80, CN115, CN117, CN120, CN120A75, CN120B60, CN120B80, CN120C60, CN120C80, CN120D80, CN120E50, CN120C50, E1201 UVE150 / 80, CN2100, EBECRYL 600, EBECRYL 605, EBECRYL 3700, EBECRYL 3701, EBECRYL 3702, EBECRYL 3703, Kyoeisha Chemical Co., Ltd. .
 前記二官能ポリエステル(メタ)アクリレートは、市販品であってもよい。前記市販品としては、例えば、サートマー社製のCN2203、CN2272などが挙げられる。 The bifunctional polyester (meth) acrylate may be a commercially available product. Examples of the commercially available products include CN2203 and CN2272 manufactured by Sartomer.
 前記多官能(メタ)アクリルモノマーのガラス転移温度(Tg)としては、特に制限はなく、目的に応じて適宜選択することができるが、50℃以上であることが好ましい。前記Tgは、例えば、前記多官能(メタ)アクリルモノマー100質量部に対して前記重合開始剤を5質量部配合し、水銀ランプを用いて、照射量1,000mJ/cmの紫外線を照射して得た硬化物を試験片として用い、示差走査熱量測定装置や熱機械分析装置により求めることができる。 There is no restriction | limiting in particular as glass transition temperature (Tg) of the said polyfunctional (meth) acryl monomer, Although it can select suitably according to the objective, It is preferable that it is 50 degreeC or more. For example, the Tg is prepared by blending 5 parts by mass of the polymerization initiator with respect to 100 parts by mass of the polyfunctional (meth) acrylic monomer, and using a mercury lamp to irradiate ultraviolet rays with an irradiation amount of 1,000 mJ / cm 2. The cured product obtained as described above can be used as a test piece, and can be obtained by a differential scanning calorimeter or a thermomechanical analyzer.
 前記活性エネルギー線硬化性樹脂組成物における前記多官能(メタ)アクリルモノマーの含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、15.0質量%~99.9質量%が好ましく、50.0質量%~99.0質量%がより好ましく、75.0質量%~98.0質量%が特に好ましい。 The content of the polyfunctional (meth) acrylic monomer in the active energy ray-curable resin composition is not particularly limited and may be appropriately selected depending on the intended purpose, but it is 15.0% by mass to 99.9%. % By mass is preferable, 50.0% by mass to 99.0% by mass is more preferable, and 75.0% by mass to 98.0% by mass is particularly preferable.
--光重合開始剤--
 前記光重合開始剤としては、例えば、光ラジカル重合開始剤、光酸発生剤、ビスアジド化合物、ヘキサメトキシメチルメラミン、テトラメトキシグリコユリルなどが挙げられる。
 前記光ラジカル重合開始剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、エトキシフェニル(2,4,6-トリメチルベンゾイル)ホスフィンオキシド、ビス(2,6-ジメチルベンゾイル)-2,4,4-トリメチルペンチルフォスフィンオキシド、ビス(2,4,6-トリメチルベンゾイル)-2,4,4-トリメチルペンチルフォスフィンオキシド、ビス(2,6-ジクロルベンゾイル)-2,4,4-トリメチルペンチルフォスフィンオキシド、1-フェニル2-ヒドロキシ-2メチルプロパン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、1,2-ジフェニルエタンジオン、メチルフェニルグリオキシレートなどが挙げられる。
-Photoinitiator-
Examples of the photopolymerization initiator include a photoradical polymerization initiator, a photoacid generator, a bisazide compound, hexamethoxymethylmelamine, and tetramethoxyglycolyl.
The radical photopolymerization initiator is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include ethoxyphenyl (2,4,6-trimethylbenzoyl) phosphine oxide, bis (2,6-dimethylbenzoyl). ) -2,4,4-trimethylpentylphosphine oxide, bis (2,4,6-trimethylbenzoyl) -2,4,4-trimethylpentylphosphine oxide, bis (2,6-dichlorobenzoyl) -2 , 4,4-trimethylpentylphosphine oxide, 1-phenyl-2-hydroxy-2-methylpropan-1-one, 1-hydroxycyclohexyl phenyl ketone, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropane -1-one, 1,2-diphenylethanedione, methylphenylglycone Kishireto and the like.
 前記活性エネルギー線硬化性樹脂組成物における前記光重合開始剤の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、0.1質量%~10質量%が好ましく、0.5質量%~8質量%がより好ましく、1質量%~5質量%が特に好ましい。 The content of the photopolymerization initiator in the active energy ray-curable resin composition is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.1% by mass to 10% by mass, 0.5% by mass to 8% by mass is more preferable, and 1% by mass to 5% by mass is particularly preferable.
 前記活性エネルギー線硬化性樹脂組成物は、使用時には、有機溶剤を用いて希釈して用いることができる。前記有機溶剤としては、例えば、芳香族系溶媒、アルコール系溶媒、エステル系溶媒、ケトン系溶媒、グリコールエーテル系溶媒、グリコールエーテルエステル系溶媒、塩素系溶媒、エーテル系溶媒、N-メチルピロリドン、ジメチルホルムアミド、ジメチルスルホキシド、ジメチルアセトアミドなどが挙げられる。 The active energy ray-curable resin composition can be diluted with an organic solvent when used. Examples of the organic solvent include aromatic solvents, alcohol solvents, ester solvents, ketone solvents, glycol ether solvents, glycol ether ester solvents, chlorine solvents, ether solvents, N-methylpyrrolidone, dimethyl Examples include formamide, dimethyl sulfoxide, dimethylacetamide, and the like.
 前記活性エネルギー線硬化性樹脂組成物は、活性エネルギー線が照射されることにより硬化する。前記活性エネルギー線としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、電子線、紫外線、赤外線、レーザー光線、可視光線、電離放射線(X線、α線、β線、γ線等)、マイクロ波、高周波などが挙げられる。 The active energy ray-curable resin composition is cured when irradiated with active energy rays. There is no restriction | limiting in particular as said active energy ray, According to the objective, it can select suitably, For example, an electron beam, an ultraviolet-ray, infrared rays, a laser beam, visible light, ionizing radiation (X ray, alpha ray, beta ray, gamma) Wire, etc.), microwave, high frequency and the like.
 前記親油性樹脂層のマルテンス硬度としては、特に制限はなく、目的に応じて適宜選択することができるが、220N/mm~350N/mmが好ましく、230N/mm~300N/mmがより好ましく、230N/mm~280N/mmが特に好ましい。前記親油性積層体を成形加工する際、例えば、ポリカーボネートの射出成形時には、親油性積層体は、290℃、200MPaで加熱加圧される。このとき、前記親油性樹脂層の表面の微細な凸部及び凹部のいずれかは変形することがある。前記変形としては、例えば、微細な凸部の高さが低くなること、微細な凹部の深さが浅くなることなどがある。耐指紋性に影響がない範囲では変形してもよいが、変形しすぎるとオレイン酸接触角が高くなり耐指紋性が低下する。前記マルテンス硬度が、50N/mm未満であると、前記親油性積層体を成形加工する際に前記親油性樹脂層の表面の微細な凸部及び凹部のいずれかが変形しすぎてしまい、オレイン酸接触角が高くなり耐指紋性が低下すること、及び、前記親油性積層体を製造又は成形加工する際のハンドリング及び面清掃等の、通常使用時の面清掃などで前記親油性樹脂層に傷が入り易いことがある。前記マルテンス硬度が、300N/mmを超えると、成形加工時、前記親油性樹脂層にクラックが発生したり、前記親油性樹脂層が剥離することがある。前記マルテンス硬度が、前記特に好ましい範囲内であると、前記親油性積層体を、耐指紋性を低下させることなく、且つ傷付き、クラック、剥離等の不良を発生させることなく、様々な三次元形状に容易に成形加工できる点で有利である。
 なお、前記親油性積層体を成形加工後、前記親油性樹脂層には射出成形工程にて高温高圧が加わるため、成形加工前よりも前記親油性樹脂層のマルテンス硬度が高まることがある。
 前記マルテンス硬度は、例えば、PICODENTOR HM500(商品名;フィッシャー・インストルメンツ社製)を用いて測定できる。荷重1mN/20sとし、針としてダイアモンド錐体を用い、面角136°で測定する。
The Martens hardness of the lipophilic resin layer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 220 N / mm 2 to 350 N / mm 2, and is preferably 230 N / mm 2 to 300 N / mm 2. more preferably, 230N / mm 2 ~ 280N / mm 2 is particularly preferred. When molding the lipophilic laminate, for example, during the injection molding of polycarbonate, the lipophilic laminate is heated and pressurized at 290 ° C. and 200 MPa. At this time, either the fine convex part or the concave part on the surface of the lipophilic resin layer may be deformed. Examples of the deformation include a decrease in the height of the fine convex portion and a decrease in the depth of the fine concave portion. Although it may be deformed as long as it does not affect the fingerprint resistance, if it is deformed too much, the contact angle of oleic acid is increased and the fingerprint resistance is lowered. When the Martens hardness is less than 50 N / mm 2 , when the lipophilic laminate is molded, one of the fine convex portions and concave portions on the surface of the lipophilic resin layer is excessively deformed, and olein The acid contact angle is increased and fingerprint resistance is reduced, and the lipophilic resin layer is subjected to surface cleaning during normal use, such as handling and surface cleaning when manufacturing or molding the lipophilic laminate. Scratches can easily occur. When the Martens hardness exceeds 300 N / mm 2 , cracks may occur in the lipophilic resin layer or the lipophilic resin layer may be peeled off during molding. When the Martens hardness is within the particularly preferable range, the lipophilic laminate can be variously three-dimensionally produced without reducing fingerprint resistance and without causing defects such as scratches, cracks, and peeling. This is advantageous in that it can be easily formed into a shape.
In addition, since high temperature and high pressure are applied to the lipophilic resin layer in the injection molding process after molding the lipophilic laminate, the Martens hardness of the lipophilic resin layer may be higher than before the molding process.
The Martens hardness can be measured by using, for example, PICODETOR HM500 (trade name; manufactured by Fisher Instruments). The load is 1 mN / 20 s, a diamond cone is used as the needle, and the surface angle is 136 °.
 前記親油性樹脂層の鉛筆硬度としては、特に制限はなく、目的に応じて適宜選択することができるが、3H~4Hが好ましい。前記鉛筆硬度が、3H未満である(3Hより柔らかい)と、前記親油性積層体を製造又は成形加工する際のハンドリングや面清掃等の、通常使用時の面清掃などで前記親油性樹脂層に傷が入り易い。また、前記親油性積層体を成形加工する際に前記親油性樹脂層の表面の微細な凸部及び凹部のいずれかが変形しすぎてしまい、オレイン酸接触角が高くなり耐指紋性が低下することがある。前記鉛筆硬度が、4Hを超える(4Hより硬い)と、成形加工時、前記親油性樹脂層にクラックが発生したり、前記親油性樹脂層が剥離することがある。前記鉛筆硬度が、前記特に好ましい範囲内であると、前記親油性積層体を、耐指紋性を低下させることなく、且つ傷付き、クラック、剥離等の不良を発生させることなく、様々な三次元形状に容易に成形加工できる点で有利である。
 なお、前記親油性積層体を成形加工後、前記親油性樹脂層には射出成形工程にて高温高圧が加わるため、成形加工前よりも前記親油性樹脂層の鉛筆硬度が高まることがある。
 前記鉛筆硬度は、JIS K 5600-5-4に従って測定する。
The pencil hardness of the lipophilic resin layer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 3H to 4H. When the pencil hardness is less than 3H (softer than 3H), the lipophilic resin layer is applied to the lipophilic resin layer by surface cleaning during normal use, such as handling or surface cleaning when manufacturing or molding the lipophilic laminate. Scratches easily. In addition, when molding the lipophilic laminate, any one of the fine protrusions and recesses on the surface of the lipophilic resin layer is deformed too much, resulting in a high oleic acid contact angle and a decrease in fingerprint resistance. Sometimes. When the pencil hardness exceeds 4H (harder than 4H), cracks may occur in the lipophilic resin layer or the lipophilic resin layer may peel off during molding. When the pencil hardness is within the particularly preferred range, the lipophilic laminate can be variously three-dimensionally produced without reducing fingerprint resistance and without causing defects such as scratches, cracks, and peeling. This is advantageous in that it can be easily formed into a shape.
In addition, after molding the lipophilic laminate, high temperature and high pressure are applied to the lipophilic resin layer in the injection molding process, so that the pencil hardness of the lipophilic resin layer may be higher than before the molding process.
The pencil hardness is measured according to JIS K 5600-5-4.
 前記親油性樹脂層の平均厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、1μm~100μmが好ましく、1μm~50μmがより好ましく、1μm~30μmが特に好ましい。 The average thickness of the lipophilic resin layer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1 μm to 100 μm, more preferably 1 μm to 50 μm, and particularly preferably 1 μm to 30 μm.
<その他の部材>
 前記その他の部材としては、アンカー層、保護層、粘着層、接着層などが挙げられる。
<Other members>
Examples of the other members include an anchor layer, a protective layer, an adhesive layer, and an adhesive layer.
-アンカー層-
 前記アンカー層は、前記樹脂製基材と、前記親油性樹脂層との間に設けられる層である。
 前記親油性積層体に前記アンカー層を設けることにより、前記樹脂製基材と前記親油性樹脂層との接着性を向上できる。
 前記アンカー層の屈折率は、干渉ムラを防止するために、前記親油性樹脂層の屈折率と近いことが好ましい。そのため、前記アンカー層の屈折率は、前記親油性樹脂層の屈折率の±0.10以内が好ましく、±0.05以内がより好ましい。または、前記アンカー層の屈折率は、前記親油性樹脂層の屈折率と前記樹脂製基材の屈折率との間であることが好ましい。
-Anchor layer-
The anchor layer is a layer provided between the resin base material and the lipophilic resin layer.
By providing the anchor layer on the lipophilic laminate, the adhesion between the resin substrate and the lipophilic resin layer can be improved.
The refractive index of the anchor layer is preferably close to the refractive index of the lipophilic resin layer in order to prevent interference unevenness. Therefore, the refractive index of the anchor layer is preferably within ± 0.10 of the refractive index of the lipophilic resin layer, and more preferably within ± 0.05. Or it is preferable that the refractive index of the said anchor layer is between the refractive index of the said lipophilic resin layer and the refractive index of the said resin-made base materials.
 前記アンカー層は、例えば、活性エネルギー線硬化性樹脂組成物を塗布することにより形成できる。前記活性エネルギー線硬化性樹脂組成物としては、例えば、ウレタン(メタ)アクリレートと、光重合開始剤とを少なくとも含有し、更に必要に応じて、その他の成分を含有する活性エネルギー線硬化性樹脂組成物などが挙げられる。前記ウレタン(メタ)アクリレート、前記光重合開始剤としては、例えば、前記親油性樹脂層の説明において例示した前記二官能ウレタン(メタ)アクリレート、前記光重合開始剤がそれぞれ挙げられる。前記塗布の方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ワイヤーバーコーティング、ブレードコーティング、スピンコーティング、リバースロールコーティング、ダイコーティング、スプレーコーティング、ロールコーティング、グラビアコーティング、マイクログラビアコーティング、リップコーティング、エアーナイフコーティング、カーテンコーティング、コンマコート法、ディッピング法などが挙げられる。 The anchor layer can be formed, for example, by applying an active energy ray-curable resin composition. As the active energy ray-curable resin composition, for example, an active energy ray-curable resin composition containing at least urethane (meth) acrylate and a photopolymerization initiator, and further containing other components as necessary. Such as things. Examples of the urethane (meth) acrylate and the photopolymerization initiator include the bifunctional urethane (meth) acrylate and the photopolymerization initiator exemplified in the description of the lipophilic resin layer. There is no restriction | limiting in particular as said application | coating method, According to the objective, it can select suitably, For example, wire bar coating, blade coating, spin coating, reverse roll coating, die coating, spray coating, roll coating, gravure coating , Micro gravure coating, lip coating, air knife coating, curtain coating, comma coating method, dipping method and the like.
 前記アンカー層の平均厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、0.01μm~10μmが好ましく、0.1μm~5μmがより好ましく、0.3μm~3μmが特に好ましい。 The average thickness of the anchor layer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.01 μm to 10 μm, more preferably 0.1 μm to 5 μm, and particularly preferably 0.3 μm to 3 μm. preferable.
 なお、前記アンカー層には、反射率低減や帯電防止の機能を付与してもよい。 It should be noted that the anchor layer may be provided with a function of reducing reflectivity or preventing charging.
-保護層-
 前記保護層としては、前記親油性樹脂層上に形成された、前記親油性積層体を製造又は成形加工する際に、前記親油性樹脂層が傷付くのを防止する層であれば、特に制限はなく、目的に応じて適宜選択することができる。前記保護層は、前記親油性積層体を使用する際には、剥がされる。
-Protective layer-
The protective layer is not particularly limited as long as it is a layer that prevents the lipophilic resin layer from being damaged when the lipophilic laminate is formed or processed on the lipophilic resin layer. It can be appropriately selected depending on the purpose. The protective layer is peeled off when the lipophilic laminate is used.
-粘着層、接着層-
 前記粘着層及び前記接着層としては、前記樹脂製基材上に形成され、前記親油性積層体を、被加工物、被着体などに接着させる層であれば、特に制限はなく、目的に応じて適宜選択することができる。
-Adhesive layer, adhesive layer-
The pressure-sensitive adhesive layer and the adhesive layer are not particularly limited as long as they are layers formed on the resin base material and adhere the lipophilic laminate to a workpiece, an adherend, and the like. It can be appropriately selected depending on the case.
 前記親油性積層体の伸び率としては、特に制限はなく、目的に応じて適宜選択することができるが、10%以上が好ましく、10%~200%がより好ましく、40%~150%が特に好ましい。前記伸び率が、10%未満であると、成形加工が困難になることがある。前記伸び率が、前記特に好ましい範囲内であると、成形加工性に優れる点で有利である。
 前記伸び率は、例えば、以下の方法により求めることができる。
 前記親油性積層体を、長さ10.5cm×幅2.5cmの短冊状にして測定試料とする。得られた測定試料の引張り伸び率を引張り試験機(オートグラフAG-5kNXplus、株式会社島津製作所製)で測定(測定条件:引張り速度=100mm/min;チャック間距離=8cm)する。測定試料を目視で観察しながら測定を行い、親油性積層体にクラックが発生する直前の伸び率を求める。これをN=5個の測定試料で求め、それらの平均値を親油性積層体の伸び率とする。なお、前記伸び率の値は、室温(25℃)又は前記樹脂製基材の軟化点で測定した際に満たしていればよい。
The elongation percentage of the lipophilic laminate is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 10% or more, more preferably 10% to 200%, and particularly preferably 40% to 150%. preferable. If the elongation is less than 10%, molding may be difficult. When the elongation percentage is within the particularly preferable range, it is advantageous in that the moldability is excellent.
The said elongation rate can be calculated | required with the following method, for example.
The lipophilic laminate is formed into a strip shape having a length of 10.5 cm and a width of 2.5 cm to obtain a measurement sample. The tensile elongation of the obtained measurement sample is measured with a tensile tester (Autograph AG-5kNXplus, manufactured by Shimadzu Corporation) (measurement conditions: tensile speed = 100 mm / min; distance between chucks = 8 cm). The measurement is performed while visually observing the measurement sample, and the elongation rate immediately before the crack is generated in the lipophilic laminate is determined. This is obtained from N = 5 measurement samples, and the average value thereof is defined as the elongation ratio of the lipophilic laminate. In addition, the value of the said elongation rate should just satisfy | fill when it measures at room temperature (25 degreeC) or the softening point of the said resin-made base materials.
 前記親油性積層体は、前記親油性積層体の面内におけるX方向とY方向の加熱収縮率差が小さい方が好ましい。前記親油性積層体の前記X方向と前記Y方向とは、例えば、親油性積層体がロール形状の場合、ロールの長手方向と幅方向とに相当する。成形時の加熱工程に使用する加熱温度にて、親油性積層体におけるX方向の加熱収縮率とY方向の加熱収縮率との差は5%以内であることが好ましい。この範囲外であると、成形加工時に、前記親油性樹脂層に剥離やクラックが発生したり、樹脂製基材の表面に印刷された前記文字、前記模様、前記画像などが変形や位置ズレを起こしてしまい、成形加工が困難になることがある。 The lipophilic laminate preferably has a smaller difference in heat shrinkage between the X direction and the Y direction in the plane of the lipophilic laminate. The X direction and the Y direction of the lipophilic laminate correspond to, for example, the longitudinal direction and the width direction of the roll when the lipophilic laminate has a roll shape. The difference between the heat shrinkage rate in the X direction and the heat shrinkage rate in the Y direction in the lipophilic laminate is preferably within 5% at the heating temperature used in the heating step during molding. Outside this range, during the molding process, the lipophilic resin layer may be peeled or cracked, or the characters, patterns, images, etc. printed on the surface of the resin base material may be deformed or misaligned. This may cause the molding process to be difficult.
 前記親油性積層体は、インモールド成形用フィルム、インサート成形用フィルム、オーバーレイ成形用フィルムに特に適している。 The lipophilic laminate is particularly suitable for in-mold molding films, insert molding films, and overlay molding films.
 前記親油性積層体の製造方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、下記第1の方法、下記第2の方法、後述する本発明の親油性積層体の製造方法などが挙げられる。これらの中でも、後述する本発明の親油性積層体の製造方法が好ましい。なお、前記第2の方法は、前記親油性樹脂層と前記樹脂製基材とが一体となっている親油性樹脂体の製造方法であって、本発明は、このように、前記親油性樹脂層と前記樹脂製基材とが一体となっていてもよい。即ち、前記親油性樹脂体は、表面に微細な凸部及び凹部のいずれかを有し、前記表面のオレイン酸接触角が、10°以下である。 There is no restriction | limiting in particular as a manufacturing method of the said lipophilic laminated body, According to the objective, it can select suitably, For example, the following 1st method, the following 2nd method, the lipophilic laminated body of this invention mentioned later And the like. Among these, the manufacturing method of the lipophilic laminated body of this invention mentioned later is preferable. The second method is a method for producing an oleophilic resin body in which the oleophilic resin layer and the resin base material are integrated, and the present invention thus provides the oleophilic resin. The layer and the resin base material may be integrated. That is, the lipophilic resin body has either a fine convex portion or a concave portion on the surface, and the oleic acid contact angle on the surface is 10 ° or less.
〔第1の方法〕
 前記第1の方法は、表面に微細な凸部及び凹部のいずれかを有する樹脂製基材を作製し、前記樹脂製基材の微細な凸部及び凹部のいずれかを有する表面上に、前記微細な凸部及び凹部のいずれかに追従する親油性樹脂層を形成する方法である。
 具体的には、前記第1の方法では、例えば、溶融押し出し法、転写法などを用いることができる。前記溶融押し出し法としては、例えば、ダイから熱可塑性樹脂組成物をフィルム状などに吐出した直後に、2つのロールにてニップしてロール表面の形状を熱可塑性樹脂組成物である樹脂製基材に転写する方法が挙げられる。前記転写法としては、例えば、微細な凸部及び凹部のいずれかを有する原盤の成形面を樹脂製基材に押し当てそのガラス転移点付近又はそれ以上に加熱することにより、前記原盤の成形面の形状を前記樹脂製基材の表面に転写する熱転写方法が挙げられる。
 そして、表面に微細な凸部及び凹部のいずれかを有する樹脂製基材の表面上に、親油性樹脂層を形成するための前記活性エネルギー線硬化性樹脂組成物を塗布した後に、前記活性エネルギー線硬化性樹脂組成物に活性エネルギー線を照射して硬化させることで、前記微細な凸部及び凹部のいずれかの形状を追従した親油性樹脂層が形成される。
[First method]
In the first method, a resin base material having either a fine convex portion or a concave portion on the surface is prepared, and the surface having either the fine convex portion or the concave portion of the resin base material is formed on the surface. This is a method of forming an oleophilic resin layer that follows either a fine convex portion or a concave portion.
Specifically, in the first method, for example, a melt extrusion method, a transfer method, or the like can be used. As the melt extrusion method, for example, immediately after the thermoplastic resin composition is discharged from a die into a film or the like, a resin base material that is a thermoplastic resin composition having a roll surface niped by two rolls. The method of transferring to is mentioned. As the transfer method, for example, the molding surface of the master is pressed by pressing the molding surface of the master having any one of the fine protrusions and recesses against the resin base material and heating it near or above its glass transition point. There is a thermal transfer method in which the shape is transferred to the surface of the resin base material.
And after apply | coating the said active energy ray curable resin composition for forming the lipophilic resin layer on the surface of the resin-made base materials which has either a fine convex part and a recessed part on the surface, the said active energy By irradiating and curing an active energy ray on the linear curable resin composition, an oleophilic resin layer that follows the shape of either the fine convex portion or the concave portion is formed.
〔第2の方法〕
 前記第2の方法は、前記親油性樹脂層と前記樹脂製基材とが一体となっている親油性樹脂体の製造方法である。前記第2の方法としては、例えば、前記第1の方法における溶融押し出し法、転写法などを用いて作製した、表面に微細な凸部及び凹部のいずれかを有する樹脂製基材自体を、親油性樹脂体とする方法が挙げられる。
[Second method]
The second method is a method for producing a lipophilic resin body in which the lipophilic resin layer and the resin base material are integrated. As the second method, for example, a resin base material itself having a fine convex portion or a concave portion on the surface and produced by using the melt extrusion method, the transfer method or the like in the first method is used. The method of using an oil-based resin body is mentioned.
(親油性積層体の製造方法)
 本発明の親油性積層体の製造方法は、未硬化樹脂層形成工程と、親油性樹脂層形成工程とを少なくとも含み、更に必要に応じて、その他の工程を含む。
 前記親油性積層体の製造方法は、本発明の前記親油性積層体を製造する方法である。
(Lipophilic laminate production method)
The method for producing a lipophilic laminate of the present invention includes at least an uncured resin layer forming step and a lipophilic resin layer forming step, and further includes other steps as necessary.
The method for producing the lipophilic laminate is a method for producing the lipophilic laminate of the present invention.
<未硬化樹脂層形成工程>
 前記未硬化樹脂層形成工程としては、樹脂製基材上に活性エネルギー線硬化性樹脂組成物を塗布して未硬化樹脂層を形成する工程であれば、特に制限はなく、目的に応じて適宜選択することができる。
<Uncured resin layer forming step>
The uncured resin layer forming step is not particularly limited as long as it is a step of forming an uncured resin layer by applying an active energy ray-curable resin composition on a resin substrate, and is appropriately performed depending on the purpose. You can choose.
 前記樹脂製基材としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、本発明の前記親油性積層体の説明において例示した前記樹脂製基材などが挙げられる。
 前記活性エネルギー線硬化性樹脂組成物としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、本発明の前記親油性積層体の前記親油性樹脂層の説明において例示した前記活性エネルギー線硬化性樹脂組成物などが挙げられる。
There is no restriction | limiting in particular as said resin-made base material, According to the objective, it can select suitably, For example, the said resin-made base material etc. which were illustrated in description of the said lipophilic laminated body of this invention are mentioned.
The active energy ray-curable resin composition is not particularly limited and may be appropriately selected depending on the purpose. For example, the active energy ray-curable resin composition is exemplified in the description of the lipophilic resin layer of the lipophilic laminate of the present invention. An active energy ray-curable resin composition is exemplified.
 前記未硬化樹脂層は、前記樹脂製基材上に前記活性エネルギー線硬化性樹脂組成物を塗布して、必要に応じて乾燥を行うことにより形成される。前記未硬化樹脂層は、固体の膜であってもよいし、前記活性エネルギー線硬化性樹脂組成物に含有される低分子量の硬化性成分によって流動性を有した膜であってもよい。 The uncured resin layer is formed by applying the active energy ray-curable resin composition on the resin substrate and drying it as necessary. The uncured resin layer may be a solid film or a film having fluidity due to a low molecular weight curable component contained in the active energy ray curable resin composition.
 前記塗布の方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ワイヤーバーコーティング、ブレードコーティング、スピンコーティング、リバースロールコーティング、ダイコーティング、スプレーコーティング、ロールコーティング、グラビアコーティング、マイクログラビアコーティング、リップコーティング、エアーナイフコーティング、カーテンコーティング、コンマコート法、ディッピング法などが挙げられる。 There is no restriction | limiting in particular as said application | coating method, According to the objective, it can select suitably, For example, wire bar coating, blade coating, spin coating, reverse roll coating, die coating, spray coating, roll coating, gravure coating , Micro gravure coating, lip coating, air knife coating, curtain coating, comma coating method, dipping method and the like.
 前記未硬化樹脂層は、活性エネルギー線が照射されていないため、硬化していない。 The uncured resin layer is not cured because it is not irradiated with active energy rays.
 前記未硬化樹脂層形成工程においては、アンカー層が形成された前記樹脂製基材の前記アンカー層上に前記活性エネルギー線硬化性樹脂組成物を塗布して前記未硬化樹脂層を形成してもよい。
 前記アンカー層としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、本発明の前記親油性積層体の説明において例示した前記アンカー層などが挙げられる。
In the uncured resin layer forming step, the active energy ray-curable resin composition may be applied on the anchor layer of the resin base material on which the anchor layer is formed to form the uncured resin layer. Good.
There is no restriction | limiting in particular as said anchor layer, According to the objective, it can select suitably, For example, the said anchor layer etc. which were illustrated in description of the said lipophilic laminated body of this invention are mentioned.
<親油性樹脂層形成工程>
 前記親油性樹脂層形成工程としては、前記未硬化樹脂層に微細な凸部及び凹部のいずれかを有する転写原盤を密着させ、前記転写原盤が密着した前記未硬化樹脂層に活性エネルギー線を照射し前記未硬化樹脂層を硬化させて前記微細な凸部及び凹部のいずれかを転写することにより、親油性樹脂層を形成する工程であれば、特に制限はなく、目的に応じて適宜選択することができる。
<Lipophilic resin layer forming step>
In the lipophilic resin layer forming step, a transfer master having either a fine convex portion or a concave portion is brought into close contact with the uncured resin layer, and active energy rays are irradiated to the uncured resin layer to which the transfer master is in close contact. There is no particular limitation as long as it is a step of forming an oleophilic resin layer by curing the uncured resin layer and transferring either the fine convex portion or the concave portion, and it is appropriately selected according to the purpose. be able to.
-転写原盤-
 前記転写原盤は、微細な凸部及び凹部のいずれかを有する。
 前記転写原盤の材質、大きさ、構造としては、特に制限はなく、目的に応じて適宜選択することができる。
 前記転写原盤の微細な凸部及び凹部のいずれかの形成方法としては、特に制限はなく、目的に応じて適宜選択することができるが、所定のパターン形状を有するフォトレジストを保護膜として前記転写原盤の表面をエッチングすることにより形成することが好ましい。また、レーザーを前記転写原盤の表面に照射して前記転写原盤をレーザー加工することにより形成することが好ましい。
-Transcription master-
The transfer master has either a fine convex part or a concave part.
There is no restriction | limiting in particular as a material of the said transfer original disc, a magnitude | size, and a structure, According to the objective, it can select suitably.
There is no particular limitation on the method for forming any of the fine convex portions and concave portions of the transfer master, and it can be selected as appropriate according to the purpose. However, the transfer using a photoresist having a predetermined pattern shape as a protective film is possible. It is preferably formed by etching the surface of the master. Further, it is preferable to form the transfer master by irradiating the surface of the transfer master with a laser.
-活性エネルギー線-
 前記活性エネルギー線としては、前記未硬化樹脂層を硬化させる活性エネルギー線であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、本発明の前記親油性積層体の説明において例示した前記活性エネルギー線などが挙げられる。
-Active energy rays-
The active energy ray is not particularly limited as long as it is an active energy ray that cures the uncured resin layer, and can be appropriately selected according to the purpose. For example, description of the lipophilic laminate of the present invention And the active energy rays exemplified in 1.
 ここで、前記親油性樹脂層形成工程の具体例を、図を用いて説明する。 Here, a specific example of the lipophilic resin layer forming step will be described with reference to the drawings.
[第1の実施形態]
 第1の実施形態は、所定のパターン形状を有するフォトレジストを保護膜として転写原盤の表面をエッチングすることにより微細な凸部及び凹部のいずれかを形成した転写原盤を用いて行う前記親油性樹脂層形成工程の一例である。
[First Embodiment]
In the first embodiment, the oleophilic resin is formed by using a transfer master in which either a fine convex portion or a concave portion is formed by etching the surface of the transfer master using a photoresist having a predetermined pattern shape as a protective film. It is an example of a layer formation process.
 まず、転写原盤及びその製造方法について説明する。 First, the transfer master and its manufacturing method will be described.
〔転写原盤の構成〕
 図3Aは、転写原盤であるロール原盤の構成の一例を示す斜視図である。図3Bは、図3Aに示したロール原盤の一部を拡大して表す平面図である。図3Cは、図3BのトラックTにおける断面図である。ロール原盤231は、上述した構成を有する親油性積層体を作製するための転写原盤、より具体的には、前記親油性樹脂層の表面に複数の凸部又は凹部を成形するための原盤である。ロール原盤231は、例えば、円柱状又は円筒状の形状を有し、その円柱面又は円筒面が親油性樹脂層の表面に複数の凸部又は凹部を成形するための成形面とされる。この成形面には、例えば、複数の構造体232が2次元配列されている。図3Cにおいて、構造体232は、成形面に対して凹状を有している。ロール原盤231の材料としては、例えば、ガラスを用いることができるが、この材料に特に限定されるものではない。
[Configuration of the transfer master]
FIG. 3A is a perspective view illustrating an example of a configuration of a roll master that is a transfer master. 3B is an enlarged plan view showing a part of the roll master shown in FIG. 3A. 3C is a cross-sectional view of the track T in FIG. 3B. The roll master 231 is a transfer master for producing the lipophilic laminate having the above-described configuration, more specifically, a master for forming a plurality of convex portions or concave portions on the surface of the lipophilic resin layer. . The roll master 231 has, for example, a columnar or cylindrical shape, and the columnar surface or cylindrical surface is a molding surface for molding a plurality of convex portions or concave portions on the surface of the lipophilic resin layer. For example, a plurality of structures 232 are two-dimensionally arranged on the molding surface. In FIG. 3C, the structure 232 has a concave shape with respect to the molding surface. As a material of the roll master 231, for example, glass can be used, but it is not particularly limited to this material.
 ロール原盤231の成形面に配置された複数の構造体232と、前記親油性樹脂層の表面に配置された複数の凸部又は凹部とは、反転した凹凸関係にある。すなわち、ロール原盤231の構造体232の配列、大きさ、形状、配置ピッチ、高さ又は深さ、及びアスペクト比などは、前記親油性樹脂層の凸部又は凹部と同様である。 The plurality of structures 232 disposed on the molding surface of the roll master 231 and the plurality of protrusions or recesses disposed on the surface of the lipophilic resin layer have an inverted uneven relationship. That is, the arrangement, size, shape, arrangement pitch, height or depth, aspect ratio, and the like of the structures 232 of the roll master 231 are the same as the convex portions or concave portions of the lipophilic resin layer.
〔ロール原盤露光装置〕
 図4は、ロール原盤を作製するためのロール原盤露光装置の構成の一例を示す概略図である。このロール原盤露光装置は、光学ディスク記録装置をベースとして構成されている。
[Roll master exposure equipment]
FIG. 4 is a schematic diagram showing an example of the configuration of a roll master exposure apparatus for producing a roll master. This roll master exposure apparatus is configured based on an optical disk recording apparatus.
 レーザー光源241は、記録媒体としてのロール原盤231の表面に着膜されたレジストを露光するための光源であり、例えば、波長λ=266nmの記録用のレーザー光234を発振するものである。レーザー光源241から出射されたレーザー光234は、平行ビームのまま直進し、電気光学素子(EOM:Electro Optical Modulator)242へ入射する。電気光学素子242を透過したレーザー光234は、ミラー243で反射され、変調光学系245に導かれる。 The laser light source 241 is a light source for exposing a resist deposited on the surface of a roll master 231 as a recording medium, and oscillates a recording laser beam 234 having a wavelength λ = 266 nm, for example. The laser beam 234 emitted from the laser light source 241 travels straight as a parallel beam and enters an electro-optic element (EOM: Electro Optical Modulator) 242. The laser beam 234 that has passed through the electro-optical element 242 is reflected by the mirror 243 and guided to the modulation optical system 245.
 ミラー243は、偏光ビームスプリッタで構成されており、一方の偏光成分を反射し他方の偏光成分を透過する機能をもつ。ミラー243を透過した偏光成分はフォトダイオード244で受光され、その受光信号に基づいて電気光学素子242を制御してレーザー光234の位相変調を行う。 The mirror 243 is composed of a polarization beam splitter and has a function of reflecting one polarization component and transmitting the other polarization component. The polarization component transmitted through the mirror 243 is received by the photodiode 244, and the electro-optic element 242 is controlled based on the received light signal to perform phase modulation of the laser beam 234.
 変調光学系245において、レーザー光234は、集光レンズ246により、ガラス(SiO)などからなる音響光学素子(AOM:Acousto-Optic Modulator)247に集光される。レーザー光234は、音響光学素子247により強度変調され発散した後、レンズ248によって平行ビーム化される。変調光学系245から出射されたレーザー光234は、ミラー251によって反射され、移動光学テーブル252上に水平かつ平行に導かれる。 In the modulation optical system 245, the laser beam 234 is condensed by an condenser lens 246 onto an acousto-optic module (AOM) 247 made of glass (SiO 2 ) or the like. The laser beam 234 is intensity-modulated by the acousto-optic element 247 and diverges, and then converted into a parallel beam by the lens 248. The laser beam 234 emitted from the modulation optical system 245 is reflected by the mirror 251 and guided horizontally and parallel on the moving optical table 252.
 移動光学テーブル252は、ビームエキスパンダ253、及び対物レンズ254を備えている。移動光学テーブル252に導かれたレーザー光234は、ビームエキスパンダ253により所望のビーム形状に整形された後、対物レンズ254を介して、ロール原盤231上のレジスト層へ照射される。ロール原盤231は、スピンドルモータ255に接続されたターンテーブル256の上に載置されている。そして、ロール原盤231を回転させると共に、レーザー光234をロール原盤231の高さ方向に移動させながら、ロール原盤231の周側面に形成されたレジスト層へレーザー光234を間欠的に照射することにより、レジスト層の露光工程が行われる。形成された潜像は、円周方向に長軸を有する略楕円形になる。レーザー光234の移動は、移動光学テーブル252の矢印R方向への移動によって行われる。 The moving optical table 252 includes a beam expander 253 and an objective lens 254. The laser beam 234 guided to the moving optical table 252 is shaped into a desired beam shape by the beam expander 253 and then irradiated to the resist layer on the roll master 231 through the objective lens 254. The roll master 231 is placed on a turntable 256 connected to a spindle motor 255. Then, while rotating the roll master 231 and moving the laser beam 234 in the height direction of the roll master 231, the laser light 234 is intermittently applied to the resist layer formed on the peripheral side surface of the roll master 231. Then, a resist layer exposure step is performed. The formed latent image has a substantially elliptical shape having a major axis in the circumferential direction. The laser beam 234 is moved by moving the moving optical table 252 in the arrow R direction.
 露光装置は、上述した複数の凸部又は凹部の2次元パターンに対応する潜像をレジスト層に形成するための制御機構257を備えている。制御機構257は、フォーマッタ249とドライバ250とを備える。フォーマッタ249は、極性反転部を備え、この極性反転部が、レジスト層に対するレーザー光234の照射タイミングを制御する。ドライバ250は、極性反転部の出力を受けて、音響光学素子247を制御する。 The exposure apparatus includes a control mechanism 257 for forming a latent image corresponding to the two-dimensional pattern of the plurality of convex portions or concave portions described above on the resist layer. The control mechanism 257 includes a formatter 249 and a driver 250. The formatter 249 includes a polarity reversal unit, and this polarity reversal unit controls the irradiation timing of the laser beam 234 on the resist layer. The driver 250 receives the output from the polarity inversion unit and controls the acoustooptic device 247.
 このロール原盤露光装置では、2次元パターンが空間的にリンクするように1トラック毎に極性反転フォーマッタ信号と回転コントローラを同期させて信号を発生し、音響光学素子247により強度変調している。角速度一定(CAV)で適切な回転数と適切な変調周波数と適切な送りピッチでパターニングすることにより、六方格子パターンなどの2次元パターンを記録することができる。 In this roll master exposure apparatus, a signal is generated by synchronizing the polarity inversion formatter signal and the rotation controller for each track so that the two-dimensional pattern is spatially linked, and the intensity is modulated by the acoustooptic device 247. A two-dimensional pattern such as a hexagonal lattice pattern can be recorded by patterning with a constant angular velocity (CAV) and an appropriate rotational speed, an appropriate modulation frequency, and an appropriate feed pitch.
〔レジスト成膜工程〕
 まず、図5Aの断面図に示すように、円柱状又は円筒状のロール原盤231を準備する。このロール原盤231は、例えば、ガラス原盤である。次に、図5Bの断面図に示すように、ロール原盤231の表面にレジスト層(例えば、フォトレジスト)233を形成する。レジスト層233の材料としては、例えば、有機系レジスト、無機系レジストなどが挙げられる。前記有機系レジストとしては、例えば、ノボラック系レジスト、化学増幅型レジストなどが挙げられる。前記無機系レジストとしては、例えば、金属化合物などが挙げられる。
[Resist film formation process]
First, as shown in the cross-sectional view of FIG. 5A, a columnar or cylindrical roll master 231 is prepared. The roll master 231 is, for example, a glass master. Next, as shown in the cross-sectional view of FIG. 5B, a resist layer (for example, a photoresist) 233 is formed on the surface of the roll master 231. Examples of the material for the resist layer 233 include organic resists and inorganic resists. Examples of the organic resist include novolak resist and chemically amplified resist. Examples of the inorganic resist include metal compounds.
〔露光工程〕
 次に、図5Cの断面図に示すように、ロール原盤231の表面に形成されたレジスト層233に、レーザー光(露光ビーム)234を照射する。具体的には、図4に示したロール原盤露光装置のターンテーブル256上にロール原盤231を載置し、ロール原盤231を回転させると共に、レーザー光(露光ビーム)234をレジスト層233に照射する。このとき、レーザー光234をロール原盤231の高さ方向(円柱状又は円筒状のロール原盤231の中心軸に平行な方向)に移動させながら、レーザー光234を間欠的に照射することで、レジスト層233を全面にわたって露光する。これにより、レーザー光234の軌跡に応じた潜像235が、レジスト層233の全面にわたって形成される。
[Exposure process]
Next, as shown in the cross-sectional view of FIG. 5C, the resist layer 233 formed on the surface of the roll master 231 is irradiated with laser light (exposure beam) 234. Specifically, the roll master 231 is placed on the turntable 256 of the roll master exposure apparatus shown in FIG. 4, the roll master 231 is rotated, and the resist layer 233 is irradiated with a laser beam (exposure beam) 234. . At this time, the laser beam 234 is intermittently irradiated while moving the laser beam 234 in the height direction of the roll master 231 (a direction parallel to the central axis of the columnar or cylindrical roll master 231). Layer 233 is exposed over the entire surface. Thereby, a latent image 235 corresponding to the locus of the laser beam 234 is formed over the entire surface of the resist layer 233.
 潜像235は、例えば、ロール原盤表面において複数列のトラックTをなすように配置されると共に、所定の単位格子Ucの規則的な周期パターンで形成される。潜像235は、例えば、円形状又は楕円形状である。潜像235が楕円形状を有する場合には、その楕円形状は、トラックTの延在方向に長軸方向を有することが好ましい。 The latent image 235 is, for example, arranged so as to form a plurality of rows of tracks T on the surface of the roll master and is formed with a regular periodic pattern of a predetermined unit cell Uc. The latent image 235 has, for example, a circular shape or an elliptical shape. When the latent image 235 has an elliptical shape, the elliptical shape preferably has a major axis direction in the extending direction of the track T.
〔現像工程〕
 次に、例えば、ロール原盤231を回転させながら、レジスト層233上に現像液を滴下して、レジスト層233を現像処理する。これにより、図5Dの断面図に示すように、レジスト層233に複数の開口部が形成される。レジスト層233をポジ型のレジストにより形成した場合には、レーザー光234で露光した露光部は、非露光部と比較して現像液に対する溶解速度が増すので、図5Dの断面図に示すように、潜像(露光部)235に応じたパターンがレジスト層233に形成される。開口部のパターンは、例えば、所定の単位格子Ucの規則的な周期パターンである。
[Development process]
Next, for example, while rotating the roll master 231, a developing solution is dropped on the resist layer 233 to develop the resist layer 233. As a result, a plurality of openings are formed in the resist layer 233 as shown in the cross-sectional view of FIG. 5D. When the resist layer 233 is formed of a positive type resist, the exposed portion exposed with the laser beam 234 has a higher dissolution rate in the developer than the non-exposed portion, and as shown in the sectional view of FIG. 5D. A pattern corresponding to the latent image (exposed portion) 235 is formed on the resist layer 233. The pattern of the opening is, for example, a regular periodic pattern of a predetermined unit cell Uc.
〔エッチング工程〕
 次に、ロール原盤231の上に形成されたレジスト層233のパターン(レジストパターン)をマスクとして、ロール原盤231の表面をエッチング処理する。これにより、図5Eの断面図に示すように、錐体形状を有する構造体(凹部)232を得ることができる。錐体形状は、例えば、トラックTの延在方向に長軸方向をもつ楕円錐形状又は楕円錐台形状であることが好ましい。前記エッチングとしては、例えば、ドライエッチング、ウエットエッチングを用いることができる。このとき、エッチング処理とアッシング処理とを交互に行うことにより、例えば、錐体状の構造体232のパターンを形成することができる。以上により、目的とするロール原盤231が得られる。
[Etching process]
Next, the surface of the roll master 231 is etched using the pattern (resist pattern) of the resist layer 233 formed on the roll master 231 as a mask. Thereby, as shown to sectional drawing of FIG. 5E, the structure (recessed part) 232 which has a cone shape can be obtained. The cone shape is preferably, for example, an elliptical cone shape or an elliptical truncated cone shape having a major axis direction in the extending direction of the track T. As the etching, for example, dry etching or wet etching can be used. At this time, by alternately performing the etching process and the ashing process, for example, a pattern of the cone-shaped structure 232 can be formed. Thus, the intended roll master 231 is obtained.
〔転写処理〕
 図6Aの断面図に示すような未硬化樹脂層236が形成された樹脂製基材211を用意する。
 次に、図6Bの断面図に示すように、ロール原盤231と、樹脂製基材211上に形成された未硬化樹脂層236とを密着させ、未硬化樹脂層236に活性エネルギー線237を照射し未硬化樹脂層236を硬化させて微細な凸部及び凹部のいずれかを転写し、微細な凸部及び凹部のいずれか212aが形成された親油性樹脂層212を得る。
 最後に、ロール原盤231から、得られた親油性樹脂層212を剥離して、親油性積層体を得る(図6C)。
 なお、樹脂製基材211が紫外線などの活性エネルギー線を透過しない材料で構成されている場合には、活性エネルギー線を透過可能な材料(例えば、石英)でロール原盤231を構成し、ロール原盤231の内部から未硬化樹脂層236に対して活性エネルギー線を照射するようにしてもよい。なお、転写原盤は上述のロール原盤231に限定されるものではなく、平板状の原盤を用いるようにしてもよい。ただし、量産性向上の観点からすると、転写原盤として上述のロール原盤231を用いることが好ましい。
[Transfer processing]
A resin base material 211 on which an uncured resin layer 236 as shown in the sectional view of FIG. 6A is formed is prepared.
Next, as shown in the sectional view of FIG. 6B, the roll master 231 and the uncured resin layer 236 formed on the resin base material 211 are brought into close contact with each other, and the active energy ray 237 is irradiated to the uncured resin layer 236. Then, the uncured resin layer 236 is cured to transfer any of the fine convex portions and concave portions, thereby obtaining the lipophilic resin layer 212 in which any one of the fine convex portions and concave portions 212a is formed.
Finally, the obtained lipophilic resin layer 212 is peeled from the roll master 231 to obtain a lipophilic laminate (FIG. 6C).
When the resin base material 211 is made of a material that does not transmit active energy rays such as ultraviolet rays, the roll master 231 is made of a material that can transmit active energy rays (for example, quartz). You may make it irradiate an active energy ray with respect to the uncured resin layer 236 from the inside of H.231. The transfer master is not limited to the roll master 231 described above, and a flat master may be used. However, from the viewpoint of improving mass productivity, it is preferable to use the roll master 231 described above as the transfer master.
[第2の実施形態]
 第2の実施形態は、レーザーを転写原盤の表面に照射して前記転写原盤をレーザー加工することにより微細な凸部及び凹部のいずれかを形成した転写原盤を用いて行う前記親油性樹脂層形成工程の一例である。
[Second Embodiment]
In the second embodiment, the lipophilic resin layer formation is performed using a transfer master in which either a fine convex portion or a concave portion is formed by irradiating the surface of the transfer master with a laser to laser-process the transfer master. It is an example of a process.
 まず、転写原盤及びその製造方法について説明する。 First, the transfer master and its manufacturing method will be described.
〔転写原盤の構成〕
 図7Aは、板状の原盤の構成の一例を示す平面図である。図7Bは、図7Aに示したa-a線に沿った断面図である。図7Cは、図7Bの一部を拡大して表す断面図である。板状の原盤331は、上述した構成を有する親油性積層体を作製するための原盤、より具体的には、前記親油性樹脂層の表面に複数の凸部又は凹部を成形するための原盤である。板状の原盤331は、例えば、微細な凹凸構造が設けられた表面を有し、その表面が親油性樹脂層の表面に複数の凸部又は凹部を成形するための成形面とされる。この成形面には、例えば、複数の構造体332が設けられている。図7Cに示す構造体332は、成形面に対して凹状を有している。板状の原盤331の材料としては、例えば、金属材料を用いることができる。前記金属材料としては、例えば、Ni、NiP、Cr、Cu、Al、Fe、及びその合金を用いることができる。前記合金としては、ステンレス鋼(SUS)が好ましい。前記ステンレス鋼(SUS)としては、例えば、SUS304、SUS420J2などが挙げられるが、これらに限定されるものではない。
[Configuration of the transfer master]
FIG. 7A is a plan view showing an example of the configuration of a plate-shaped master. FIG. 7B is a cross-sectional view along the line aa shown in FIG. 7A. FIG. 7C is an enlarged cross-sectional view of a part of FIG. 7B. The plate-shaped master 331 is a master for producing the lipophilic laminate having the above-described configuration, more specifically, a master for molding a plurality of convex portions or concave portions on the surface of the lipophilic resin layer. is there. The plate-shaped master 331 has, for example, a surface provided with a fine concavo-convex structure, and the surface is a molding surface for molding a plurality of convex portions or concave portions on the surface of the lipophilic resin layer. For example, a plurality of structures 332 are provided on the molding surface. The structure 332 illustrated in FIG. 7C has a concave shape with respect to the molding surface. As a material of the plate-shaped master 331, for example, a metal material can be used. As the metal material, for example, Ni, NiP, Cr, Cu, Al, Fe, and alloys thereof can be used. The alloy is preferably stainless steel (SUS). Examples of the stainless steel (SUS) include, but are not limited to, SUS304, SUS420J2, and the like.
 板状の原盤331の成形面に設けられた複数の構造体332と、前記親油性樹脂層の表面に設けられた複数の凸部又は凹部とは、反転した凹凸関係にある。即ち、板状の原盤331の構造体332の配列、大きさ、形状、配置ピッチ、及び高さ又は深さなどは、前記親油性樹脂層の凸部又は凹部と同様である。 The plurality of structures 332 provided on the molding surface of the plate-shaped master 331 and the plurality of protrusions or recesses provided on the surface of the lipophilic resin layer have an inverted uneven relationship. That is, the arrangement, size, shape, arrangement pitch, height, depth, and the like of the structures 332 of the plate-like master 331 are the same as those of the protrusions or recesses of the lipophilic resin layer.
〔レーザー加工装置の構成〕
 図8は、板状の原盤を作製するためのレーザー加工装置の構成の一例を示す概略図である。レーザー本体340は、例えば、サイバーレーザー株式会社製のIFRIT(商品名)である。レーザー加工に用いるレーザーの波長は、例えば、800nmである。ただし、レーザー加工に用いるレーザーの波長は、400nmや266nmなどでもかまわない。繰り返し周波数は、加工時間と、形成される凹部又は凸部の狭ピッチ化とを考慮すると、大きいほうが好ましく、1,000Hz以上であることが好ましい。レーザーのパルス幅は短い方が好ましく、200フェムト秒(10-15秒)~1ピコ秒(10-12秒)程度であることが好ましい。
[Configuration of laser processing equipment]
FIG. 8 is a schematic diagram showing an example of the configuration of a laser processing apparatus for producing a plate-shaped master. The laser body 340 is, for example, IFRIT (trade name) manufactured by Cyber Laser Corporation. The wavelength of the laser used for laser processing is, for example, 800 nm. However, the wavelength of the laser used for laser processing may be 400 nm or 266 nm. The repetition frequency is preferably larger in consideration of the processing time and the narrow pitch of the concave portions or convex portions to be formed, and is preferably 1,000 Hz or more. The pulse width of the laser is preferably shorter, and is preferably about 200 femtoseconds (10 −15 seconds) to 1 picosecond (10 −12 seconds).
 レーザー本体340は、垂直方向に直線偏光したレーザー光を射出するようになっている。そのため、本装置では、波長板341(例えば、λ/2波長板)を用いて、偏光方向を回転などさせることで、所望の方向の直線偏光又は円偏光を得るようにしている。また、本装置では、四角形の開口を有するアパーチャー342を用いて、レーザー光の一部を取り出すようにしている。これは、レーザー光の強度分布がガウス分布となっているので、その中央付近のみを用いることで、面内強度分布の均一なレーザー光を得るようにしている。また、本装置では、直交させた2枚のシリンドリカルレンズ343を用いて、レーザー光を絞ることにより、所望のビームサイズになるようにしている。板状の原盤331を加工する際には、リニアステージ344を等速で移動させる。 The laser body 340 emits laser light linearly polarized in the vertical direction. Therefore, in this apparatus, linear polarization or circular polarization in a desired direction is obtained by rotating the polarization direction using a wave plate 341 (for example, a λ / 2 wave plate). Further, in this apparatus, a part of the laser light is extracted using an aperture 342 having a square opening. This is because the intensity distribution of the laser beam is a Gaussian distribution, so that only the center vicinity is used to obtain a laser beam having a uniform in-plane intensity distribution. Further, in this apparatus, the laser beam is focused using two orthogonal cylindrical lenses 343 so that a desired beam size is obtained. When processing the plate-shaped master 331, the linear stage 344 is moved at a constant speed.
 板状の原盤331へ照射されるレーザーのビームスポットは、四角形形状であることが好ましい。ビームスポットの整形は、例えば、アパーチャー、シリンドリカルレンズなどによって行うことができる。また、ビームスポットの強度分布は、なるべく均一であることが好ましい。これは、型に形成する凹凸の深さなどの面内分布をなるべく均一化することが好ましいためである。一般的には、ビームスポットのサイズは、加工を行いたい面積よりも小さいため、ビームを走査することで加工を行いたい面積全てに凸凹形状を付与する必要がある。 The beam spot of the laser irradiated on the plate-shaped master 331 is preferably a square shape. The beam spot can be shaped by using, for example, an aperture or a cylindrical lens. Further, the intensity distribution of the beam spot is preferably as uniform as possible. This is because it is preferable to make the in-plane distribution such as the depth of the unevenness formed in the mold as uniform as possible. In general, since the size of the beam spot is smaller than the area to be processed, it is necessary to give an uneven shape to all the areas to be processed by scanning the beam.
 前記親油性樹脂層の表面の形成に用いられる原盤(型)は、例えば、SUS、NiP、Cu、Al、Fe等の金属などの基板に、パルス幅が1ピコ秒(10-12秒)以下の超短パルスレーザー、いわゆるフェムト秒レーザーを用いてパターンを描画することにより形成される。また、レーザー光の偏光は、直線偏光であっても円偏光であっても楕円偏光であってもよい。このとき、レーザー波長、繰り返し周波数、パルス幅、ビームスポット形状、偏光、サンプルへ照射するレーザー強度、レーザーの走査速度などを適宜設定することにより、所望の凹凸を有するパターンを形成することができる。 The master (mold) used to form the surface of the lipophilic resin layer is, for example, a substrate such as a metal such as SUS, NiP, Cu, Al, or Fe, and a pulse width of 1 picosecond (10 −12 seconds) or less. It is formed by drawing a pattern using an ultrashort pulse laser, so-called femtosecond laser. The polarization of the laser light may be linearly polarized light, circularly polarized light, or elliptically polarized light. At this time, a pattern having desired irregularities can be formed by appropriately setting the laser wavelength, repetition frequency, pulse width, beam spot shape, polarization, laser intensity applied to the sample, laser scanning speed, and the like.
 所望の形状を得るために変化させることが可能なパラメーターには以下のようなものが挙げられる。フルエンスは、パルス1つあたりのエネルギー密度(J/cm)であり、以下の式で求められるものである。
 F=P/(fREPT×S)
 S=Lx×Ly
 F:フルエンス
 P:レーザーのパワー
 fREPT:レーザーの繰り返し周波数
 S:レーザーの照射位置での面積
 Lx×Ly:ビームサイズ
 なお、パルス数Nは、1箇所に照射されたパルスの数であり、以下の式で求められるものである。
 N=fREPT×Ly/v
 Ly:レーザーの走査方向のビームサイズ
 v:レーザーの走査速度
The parameters that can be changed to obtain the desired shape include the following. The fluence is an energy density (J / cm 2 ) per pulse, and is obtained by the following equation.
F = P / (fREPT × S)
S = Lx × Ly
F: fluence P: laser power fREPT: laser repetition frequency S: area at the laser irradiation position Lx × Ly: beam size Note that the number of pulses N is the number of pulses irradiated at one place, and It is calculated by the formula.
N = fREPT × Ly / v
Ly: Beam size in laser scanning direction v: Laser scanning speed
 また、所望の形状を得るために板状の原盤331の材質を変化させてもいい。板状の原盤331の材質によってレーザー加工される形状は変化する。SUS、NiP、Cu、Al、Fe等の金属などを用いるほかに、原盤表面に、例えば、DLC(ダイヤモンドライクカーボン)などの半導体材料を被覆してもよい。前記原盤表面に前記半導体材料を被覆する方法としては、例えば、プラズマCVD、スパッタリングなどが挙げられる。被覆する前記半導体材料としては、DLCのほかにも、例えば、フッ素(F)を混入したDLC、窒化チタン、窒化クロムなどを使用できる。被覆して得られる被膜の平均厚みは、例えば、1μm程度とすればよい。 Also, the material of the plate-shaped master 331 may be changed in order to obtain a desired shape. The shape of laser processing varies depending on the material of the plate-shaped master 331. In addition to using metals such as SUS, NiP, Cu, Al, and Fe, the surface of the master may be coated with a semiconductor material such as DLC (diamond-like carbon). Examples of the method for coating the surface of the master with the semiconductor material include plasma CVD and sputtering. As the semiconductor material to be coated, in addition to DLC, for example, DLC mixed with fluorine (F), titanium nitride, chromium nitride, or the like can be used. The average thickness of the coating obtained by coating may be about 1 μm, for example.
〔レーザー加工工程〕
 まず、図9Aに示すように、板状の原盤331を準備する。この板状の原盤331の被加工面である表面331Aは、例えば、鏡面状態となっている。なお、この表面331Aは、鏡面状態となっていなくてもよく、例えば、表面331Aに、転写用のパターンよりも細かな凹凸が形成されていてもよいし、転写用のパターンと同等か、それよりも粗い凹凸が形成されていてもよい。
[Laser processing process]
First, as shown in FIG. 9A, a plate-shaped master 331 is prepared. A surface 331A that is a surface to be processed of the plate-like master 331 is in a mirror state, for example. The surface 331A may not be in a mirror state. For example, the surface 331A may have irregularities finer than the transfer pattern, or may be equivalent to the transfer pattern. Rougher irregularities may be formed.
 次に、図8に示したレーザー加工装置を用いて、以下のようにして板状の原盤331の表面331Aをレーザー加工する。まず、板状の原盤331の表面331Aに対して、パルス幅が1ピコ秒(10-12秒)以下の超短パルスレーザー、いわゆるフェムト秒レーザーを用いてパターンを描画する。例えば、図9Bに示したように、板状の原盤331の表面331Aに対して、フェムト秒レーザー光Lfを照射すると共に、その照射スポットを表面331Aに対してスキャンさせる。 Next, the surface 331A of the plate-shaped master 331 is laser-processed as follows using the laser processing apparatus shown in FIG. First, a pattern is drawn on the surface 331A of the plate-shaped master 331 using an ultrashort pulse laser having a pulse width of 1 picosecond (10 −12 seconds) or less, so-called femtosecond laser. For example, as shown in FIG. 9B, the surface 331A of the plate-shaped master 331 is irradiated with femtosecond laser light Lf, and the irradiation spot is scanned with respect to the surface 331A.
 このとき、レーザー波長、繰り返し周波数、パルス幅、ビームスポット形状、偏光、表面331Aへ照射するレーザーの強度、レーザーの走査速度等が適宜設定されることにより、図9Cに示すように、所望の形状を有する複数の構造体332が形成される。 At this time, the laser wavelength, the repetition frequency, the pulse width, the beam spot shape, the polarization, the intensity of the laser applied to the surface 331A, the laser scanning speed, etc. are appropriately set, as shown in FIG. A plurality of structures 332 having the structure is formed.
〔転写処理〕
 図10Aの断面図に示すような未硬化樹脂層333が形成された樹脂製基材311を用意する。
 次に、図10Bの断面図に示すように、板状の原盤331と、樹脂製基材311上に形成された未硬化樹脂層333とを密着させ、未硬化樹脂層333に活性エネルギー線334を照射し未硬化樹脂層333を硬化させて板状の原盤331の微細な凸部及び凹部のいずれかを転写し、微細な凸部及び凹部のいずれかが形成された親油性樹脂層312を得る。
 最後に、板状の原盤331から、得られた親油性樹脂層312を剥離して、親油性積層体を得る(図10C)。
 なお、樹脂製基材311が紫外線などの活性エネルギー線を透過しない材料で構成されている場合には、活性エネルギー線を透過可能な材料(例えば、石英)で板状の原盤331を構成し、板状の原盤331の裏面(成形面とは反対側の面)から未硬化樹脂層333に対して活性エネルギー線を照射するようにしてもよい。
[Transfer processing]
A resin base material 311 having an uncured resin layer 333 as shown in the sectional view of FIG. 10A is prepared.
Next, as shown in the cross-sectional view of FIG. 10B, the plate-shaped master 331 and the uncured resin layer 333 formed on the resin base material 311 are brought into close contact with each other, and the active energy ray 334 is applied to the uncured resin layer 333. Is applied to cure the uncured resin layer 333, transfer any of the fine convex portions and concave portions of the plate-shaped master 331, and form the lipophilic resin layer 312 formed with either of the fine convex portions or concave portions. obtain.
Finally, the obtained lipophilic resin layer 312 is peeled from the plate-shaped master 331 to obtain a lipophilic laminate (FIG. 10C).
When the resin base material 311 is made of a material that does not transmit active energy rays such as ultraviolet rays, the plate-shaped master 331 is made of a material that can transmit active energy rays (for example, quartz), You may make it irradiate an active energy ray with respect to the uncured resin layer 333 from the back surface (surface on the opposite side to a shaping | molding surface) of the plate-shaped master 331. FIG.
[第3の実施形態]
 第3の実施形態は、アルミニウム基材にポーラスアルミナ層を形成してなる転写原盤を用いて行う前記親油性樹脂層形成工程の一例である。
[Third Embodiment]
3rd Embodiment is an example of the said lipophilic resin layer formation process performed using the transfer original disc formed by forming a porous alumina layer in an aluminum base material.
 まず、転写原盤及びその製造方法について説明する。 First, the transfer master and its manufacturing method will be described.
 転写原盤に加工される前記アルミニウム基材としては、例えば、バルク状のアルミニウム、ガラス基材又はプラスチック基材上に下地層等を介して形成されたアルミニウム膜などが挙げられる。 Examples of the aluminum base material processed into the transfer master include, for example, an aluminum film formed on a bulk aluminum, a glass base material, or a plastic base material through an underlayer or the like.
 前記アルミニウム基材の形状としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、板状、円筒状、円柱状などが挙げられる。 The shape of the aluminum substrate is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include a plate shape, a cylindrical shape, and a columnar shape.
 前記ポーラスアルミナ層は、例えば、陽極酸化、ウェットエッチング処理などによって形成される。
 前記ポーラスアルミナ層は、微細な凹部を有する。前記微細な凹部の配置は、周期性を有していてもよいし、有していなくてもよい。
 前記ポーラスアルミナ層の形成方法としては、具体的には、例えば、特開2005-156695号公報に開示されているように、酸性電解液又はアルカリ性電解液中にアルミニウム基材を浸漬し、これを陽極として電圧を印加することによって、複数の微細な凹部を有するポーラスアルミナ層を形成する方法などが挙げられる。この陽極酸化処理と、エッチング処理による孔径拡大処理を適宜組み合せてもよい。
The porous alumina layer is formed by, for example, anodic oxidation or wet etching.
The porous alumina layer has fine concave portions. The arrangement of the fine recesses may or may not have periodicity.
As a method for forming the porous alumina layer, specifically, as disclosed in, for example, Japanese Patent Application Laid-Open No. 2005-156695, an aluminum base material is immersed in an acidic electrolytic solution or an alkaline electrolytic solution. Examples include a method of forming a porous alumina layer having a plurality of fine recesses by applying a voltage as the anode. This anodizing treatment and a hole diameter enlargement treatment by etching treatment may be appropriately combined.
 製造された転写原盤を用いて行う前記親油性樹脂層形成工程は、例えば、前記第1の実施形態、前記第2の実施形態と同様の方法などが挙げられる。 Examples of the lipophilic resin layer forming step performed using the produced transfer master include the same methods as in the first embodiment and the second embodiment.
[第4の実施形態]
 第4の実施形態としては、アルミニウム基材表面にマクロ凹凸構造を形成し、続いて、前記マクロ凹凸構造に、微細な凹部(ミクロ構造)を形成してなる転写原盤を用いて行う前記親油性樹脂層形成工程の一例である。
 前記転写原盤の作製方法としては、例えば、特表2001-517319号公報に記載されている方法などが挙げられる。
 転写原盤に、前記マクロ凹凸構造と、前記微細な凹部(ミクロ構造)とを形成することで、前記転写原盤を用いて得られる前記親油性積層体には、耐指紋性に加えて、防眩機能を付与することができる。防眩機能を付与するためのマクロ凹凸構造は、例えば、ブラスト加工(サンドブラスト加工やビーズブラスト加工等)、酸を用いたエッチング加工、或いはこれらの組合せによって、アルミニウム基材表面に付与できる。前記微細な凹部(ミクロ構造)は、陽極酸化、ウェットエッチング処理などにより形成することができる。
[Fourth Embodiment]
As a fourth embodiment, the lipophilicity is carried out using a transfer master having a macro uneven structure formed on the surface of an aluminum substrate and subsequently forming a fine recess (micro structure) in the macro uneven structure. It is an example of a resin layer formation process.
Examples of the method for producing the transfer master include the method described in JP-T-2001-517319.
In addition to fingerprint resistance, the anti-glare layer is formed on the lipophilic laminate obtained by using the transfer master by forming the macro uneven structure and the fine recesses (micro structure) on the transfer master. Functions can be added. The macro uneven structure for imparting the antiglare function can be imparted to the surface of the aluminum substrate by, for example, blasting (sand blasting or bead blasting), etching using acid, or a combination thereof. The fine recesses (microstructure) can be formed by anodic oxidation, wet etching, or the like.
 製造された転写原盤を用いて行う前記親油性樹脂層形成工程は、例えば、前記第1の実施形態、前記第2の実施形態と同様の方法などが挙げられる。
 この転写原盤を用いて得られる前記親油性積層体の一例を図11に示す。図11に示す親油性積層体は、樹脂製基材401と、樹脂製基材401上に親油性樹脂層402とを有している。親油性樹脂層402の表面には、マクロ凹凸構造と、前記マクロ凹凸構造に形成された微細な凹部とが形成されている。
Examples of the lipophilic resin layer forming step performed using the manufactured transfer master include the same methods as in the first embodiment and the second embodiment.
An example of the lipophilic laminate obtained using this transfer master is shown in FIG. The lipophilic laminate shown in FIG. 11 has a resin base material 401 and a lipophilic resin layer 402 on the resin base material 401. On the surface of the lipophilic resin layer 402, a macro uneven structure and a fine recess formed in the macro uneven structure are formed.
(物品)
 本発明の物品は、本発明の前記親油性積層体を表面に有し、更に必要に応じて、その他の部材を有する。
 前記物品としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、タッチパネル、スマートフォン、タブレットPC、化粧品容器、アクセサリー類、ガラス窓、冷蔵・冷凍ショーケース、自動車のウインドウ等の窓材、浴室内の鏡、自動車サイドミラー等の鏡、ピアノ、建築資材などが挙げられる。
 また、前記物品は、眼鏡、ゴーグル、ヘルメット、レンズ、マイクロレンズアレイ、自動車のヘッドライトカバー、フロントパネル、サイドパネル、リアパネル、ドアトリム、インストルメントパネル、センタークラスター・センターコンソールパネル、シフトノブ、シフトノブ周り、ステアリングエンブレムなどであってもよい。これらは、インモールド成形、インサート成形、オーバーレイ成形により形成されることが好ましい。
(Goods)
The article of the present invention has the lipophilic laminate of the present invention on the surface, and further includes other members as necessary.
The article is not particularly limited and can be appropriately selected according to the purpose. For example, a touch panel, a smartphone, a tablet PC, a cosmetic container, accessories, a glass window, a refrigerated / frozen showcase, a car window, etc. Examples include window materials, mirrors in bathrooms, mirrors such as car side mirrors, pianos, and building materials.
In addition, the article includes glasses, goggles, a helmet, a lens, a micro lens array, a headlight cover of an automobile, a front panel, a side panel, a rear panel, a door trim, an instrument panel, a center cluster / center console panel, a shift knob, a shift knob, It may be a steering emblem. These are preferably formed by in-mold molding, insert molding, or overlay molding.
 前記親油性積層体は、前記物品の表面の一部に形成されていてもよいし、全面に形成されていてもよい。 The lipophilic laminate may be formed on a part of the surface of the article or may be formed on the entire surface.
 前記物品の製造方法としては、特に制限はなく、目的に応じて適宜選択することができるが、後述する本発明の物品の製造方法が好ましい。 The method for manufacturing the article is not particularly limited and may be appropriately selected depending on the intended purpose. However, the method for manufacturing the article of the present invention described later is preferable.
(物品の製造方法)
 本発明に関する物品の製造方法は、加熱工程と、親油性積層体成形工程と、射出成形工程とを少なくとも含み、更に必要に応じて、その他の工程を含む。
 前記物品の製造方法は、本発明の前記物品の製造方法である。
(Product manufacturing method)
The method for producing an article according to the present invention includes at least a heating step, a lipophilic laminate molding step, and an injection molding step, and further includes other steps as necessary.
The manufacturing method of the article is the manufacturing method of the article of the present invention.
<加熱工程>
 前記加熱工程としては、親油性積層体を加熱する工程であれば、特に制限はなく、目的に応じて適宜選択することができる。
 前記親油性積層体は、本発明の前記親油性積層体である。
<Heating process>
The heating step is not particularly limited as long as it is a step of heating the lipophilic laminate, and can be appropriately selected according to the purpose.
The lipophilic laminate is the lipophilic laminate of the present invention.
 前記加熱としては、特に制限はなく、目的に応じて適宜選択することができるが、赤外線加熱であることが好ましい。
 前記加熱の温度としては、特に制限はなく、目的に応じて適宜選択することができるが、前記樹脂製基材のガラス転移温度近傍若しくはガラス転移温度以上であることが好ましい。
 前記加熱の時間としては、特に制限はなく、目的に応じて適宜選択することができる。
There is no restriction | limiting in particular as said heating, Although it can select suitably according to the objective, It is preferable that it is infrared heating.
There is no restriction | limiting in particular as the temperature of the said heating, Although it can select suitably according to the objective, It is preferable that it is the glass transition temperature vicinity of the said resin-made base materials, or more than a glass transition temperature.
There is no restriction | limiting in particular as time of the said heating, According to the objective, it can select suitably.
<親油性積層体成形工程>
 前記親油性積層体成形工程としては、加熱された前記親油性積層体を所望の形状に成形する工程であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、所定の金型に密着させて、空気圧により、所望の形状に成形する工程などが挙げられる。
<Lipophilic laminate molding process>
The lipophilic laminate molding step is not particularly limited as long as it is a step of molding the heated lipophilic laminate into a desired shape, and can be appropriately selected according to the purpose. The process etc. which make it closely_contact | adhere to a metal mold | die and shape | mold into a desired shape with an air pressure are mentioned.
<射出成形工程>
 前記射出成形工程としては、所望の形状に成形された前記親油性積層体の樹脂製基材側に成形材料を射出し、前記成形材料を成形する工程であれば、特に制限はなく、目的に応じて適宜選択することができる。
<Injection molding process>
The injection molding process is not particularly limited as long as it is a process for injecting a molding material onto the resin base material side of the lipophilic laminate molded into a desired shape and molding the molding material. It can be appropriately selected depending on the case.
 前記成形材料としては、例えば、樹脂などが挙げられる。前記樹脂としては、例えば、オレフィン系樹脂、スチレン系樹脂、ABS樹脂(アクリロニトリル-ブタジエン-スチレン共重合体)、AS樹脂(アクリロニトリル-スチレン共重合体)、アクリル系樹脂、ウレタン系樹脂、不飽和ポリエステル樹脂、エポキシ樹脂、ポリフェニレンオキシド・ポリスチレン系樹脂、ポリカーボネート、ポリカーボネート変性ポリフェニレンエーテル、ポリエチレンテレフタレート、ポリスルホン、ポリフェニレンサルファイド、ポリフェニレンオキシド、ポリエーテルイミド、ポリイミド、液晶ポリエステル、ポリアリル系耐熱樹脂、各種複合樹脂、各種変性樹脂などが挙げられる。 Examples of the molding material include resin. Examples of the resin include olefin resins, styrene resins, ABS resins (acrylonitrile-butadiene-styrene copolymers), AS resins (acrylonitrile-styrene copolymers), acrylic resins, urethane resins, unsaturated polyesters. Resin, epoxy resin, polyphenylene oxide / polystyrene resin, polycarbonate, polycarbonate modified polyphenylene ether, polyethylene terephthalate, polysulfone, polyphenylene sulfide, polyphenylene oxide, polyether imide, polyimide, liquid crystal polyester, polyallyl heat resistant resin, various composite resins, various modified resins Resin etc. are mentioned.
 前記射出の方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、所定の金型に密着させた前記親油性積層体の樹脂製基材側に、溶融した前記成形材料を流し込む方法などが挙げられる。 The injection method is not particularly limited and can be appropriately selected depending on the purpose. For example, the molten mold is formed on the resin base material side of the lipophilic laminate adhered to a predetermined mold. The method of pouring material is mentioned.
 前記物品の製造方法は、インモールド成形装置、インサート成形装置、オーバーレイ成形装置を用いて行うことが好ましい。 The manufacturing method of the article is preferably performed using an in-mold molding apparatus, an insert molding apparatus, and an overlay molding apparatus.
 ここで、本発明の物品の製造方法の一例を、図を用いて説明する。この製造方法はインモールド成形装置を用いた製造方法である。
 まず、親油性積層体500を加熱する。加熱は赤外線加熱が好ましい。
 続いて、図12Aに示すように、加熱した親油性積層体500を、第1金型501と第2金型502との間の所定の位置に配置する。このとき、親油性積層体500の樹脂製基材が第1金型501を向き、親油性樹脂層が第2金型502を向くように配置する。図12Aにおいて、第1金型501は、固定型であり、第2金型502は、可動型である。
Here, an example of a method for manufacturing an article of the present invention will be described with reference to the drawings. This manufacturing method is a manufacturing method using an in-mold molding apparatus.
First, the lipophilic laminate 500 is heated. Heating is preferably infrared heating.
Subsequently, as shown in FIG. 12A, the heated lipophilic laminate 500 is disposed at a predetermined position between the first mold 501 and the second mold 502. At this time, the resin base material of the lipophilic laminate 500 is arranged so that the first mold 501 faces and the lipophilic resin layer faces the second mold 502. In FIG. 12A, the first mold 501 is a fixed mold, and the second mold 502 is a movable mold.
 第1金型501と第2金型502との間に親油性積層体500を配置した後、第1金型501と第2金型502とを型締めする。続いて、第2金型502のキャビティ面に開口されている吸引穴504で親油性積層体500を吸引して、第2金型502のキャビティ面に親油性積層体500を装着する。そうすることにより、キャビティ面が親油性積層体500で賦形される。また、このとき、図示されていないフィルム押さえ機構で親油性積層体500の外周を固定し位置決めしてもよい。その後、親油性積層体500の不要な部位をトリミングする(図12B)。
 なお、第2金型502が吸引穴504を有さず、第1金型501に圧空孔(図示せず)を有する場合には、第1金型501の圧空孔から親油性積層体500に圧空を送ることにより、第2金型502のキャビティ面に親油性積層体500を装着する。
After the lipophilic laminate 500 is disposed between the first mold 501 and the second mold 502, the first mold 501 and the second mold 502 are clamped. Subsequently, the lipophilic laminate 500 is sucked through the suction holes 504 opened in the cavity surface of the second mold 502, and the lipophilic laminate 500 is mounted on the cavity surface of the second mold 502. By doing so, the cavity surface is shaped with the lipophilic laminate 500. At this time, the outer periphery of the lipophilic laminate 500 may be fixed and positioned by a film pressing mechanism (not shown). Thereafter, unnecessary portions of the lipophilic laminate 500 are trimmed (FIG. 12B).
If the second mold 502 does not have the suction hole 504 and the first mold 501 has a pressure hole (not shown), the pressure hole of the first mold 501 can be connected to the lipophilic laminate 500. By sending the compressed air, the lipophilic laminate 500 is attached to the cavity surface of the second mold 502.
 続いて、親油性積層体500の樹脂製基材に向けて、第1金型501のゲート505から溶融した成形材料506を射出し、第1金型501と第2金型502を型締めして形成したキャビティ内に注入する(図12C)。これにより、溶融した成形材料506がキャビティ内に充填される(図12D)。更に、溶融した成形材料506の充填完了後、溶融した成形材料506を所定の温度まで冷却して固化する。 Subsequently, the molten molding material 506 is injected from the gate 505 of the first mold 501 toward the resin base material of the lipophilic laminate 500, and the first mold 501 and the second mold 502 are clamped. Then, it is injected into the cavity formed (FIG. 12C). Thereby, the molten molding material 506 is filled in the cavity (FIG. 12D). Further, after the filling of the molten molding material 506 is completed, the molten molding material 506 is cooled to a predetermined temperature and solidified.
 その後、第2金型502を動かして、第1金型501と第2金型502とを型開きする(図12E)。そうすることにより、成形材料506の表面に親油性積層体500が形成され、かつ所望の形状にインモールド成形された物品507が得られる。
 最後に、第1金型501から突き出しピン508を押し出して、得られた物品507を取り出す。
Thereafter, the second mold 502 is moved to open the first mold 501 and the second mold 502 (FIG. 12E). By doing so, an article 507 in which the lipophilic laminate 500 is formed on the surface of the molding material 506 and in-mold molded into a desired shape is obtained.
Finally, the protruding pin 508 is pushed out from the first mold 501 and the obtained article 507 is taken out.
 以下、本発明の実施例を説明するが、本発明は、これらの実施例に何ら限定されるものではない。 Examples of the present invention will be described below, but the present invention is not limited to these examples.
<凸部の平均距離、凹部の平均距離、凸部の平均高さ、凹部の平均深さ、平均アスペクト比>
 以下の実施例において、凸部の平均距離、凹部の平均距離、凸部の平均高さ、凹部の平均深さ、及び平均アスペクト比は、以下のようにして求めた。
 まず、凸部又は凹部を有する親油性樹脂層の表面を原子間力顕微鏡(AFM:Atomic Force Microscope)により観察し、AFMの断面プロファイルから凸部又は凹部のピッチ、及び凸部の高さ又は凹部の深さを求めた。これを前記親油性樹脂層の表面から無作為に選び出された10箇所において繰り返し行い、ピッチP1、P2、・・・、P10と、高さ又は深さH1、H2、・・・、H10とを求めた。
 ここで、前記凸部のピッチは、前記凸部の頂点間の距離である。前記凹部のピッチは、前記凹部の最深部間の距離である。前記凸部の高さは、前記凸部間の谷部の最低点を基準とした前記凸部の高さである。前記凹部の深さは、前記凹部間の山部の最高点を基準とした前記凹部の深さである。
 次に、これらのピッチP1、P2、・・・、P10、及び高さ又は深さH1、H2、・・・、H10をそれぞれ単純に平均(算術平均)して、凸部又は凹部の平均距離(Pm)、及び凸部の平均高さ又は凹部の平均深さ(Hm)を求めた。
 前記Pmと、前記Hmとから、平均アスペクト比(Hm/Pm)を求めた。
<Average distance of convex part, average distance of concave part, average height of convex part, average depth of concave part, average aspect ratio>
In the following examples, the average distance of the convex portions, the average distance of the concave portions, the average height of the convex portions, the average depth of the concave portions, and the average aspect ratio were determined as follows.
First, the surface of the lipophilic resin layer having a convex portion or a concave portion is observed with an atomic force microscope (AFM), and the pitch of the convex portion or the concave portion, the height of the convex portion or the concave portion from the cross-sectional profile of the AFM. Sought the depth of. This is repeated at 10 locations randomly selected from the surface of the lipophilic resin layer, and the pitches P1, P2,..., P10 and the heights or depths H1, H2,. Asked.
Here, the pitch of the convex portions is a distance between the vertices of the convex portions. The pitch of the recesses is the distance between the deepest portions of the recesses. The height of the convex portion is the height of the convex portion based on the lowest point of the valley between the convex portions. The depth of the recess is the depth of the recess based on the highest point of the peak between the recesses.
Next, these pitches P1, P2,..., P10 and the heights or depths H1, H2,..., H10 are simply averaged (arithmetic average), and the average distance between the convex portions or the concave portions is calculated. (Pm) and the average height of the convex portions or the average depth (Hm) of the concave portions were determined.
An average aspect ratio (Hm / Pm) was determined from the Pm and the Hm.
<オレイン酸接触角>
 オレイン酸接触角は、PCA-1(協和界面化学株式会社製)を用いて、下記条件で測定した。
 オレイン酸をプラスチックシリンジに入れて、その先端にテフロンコート製の針を取り付けて評価面に滴下した。
 オレイン酸の滴下量:1μL
 測定温度:25℃
 オレイン酸を滴下して100秒経過後の接触角を、親油性樹脂層表面の任意の10か所で測定し、その平均値をオレイン酸接触角とした。
<Oleic acid contact angle>
The oleic acid contact angle was measured using PCA-1 (manufactured by Kyowa Interface Chemical Co., Ltd.) under the following conditions.
Oleic acid was placed in a plastic syringe, a Teflon-coated needle was attached to the tip, and the oleic acid was dropped onto the evaluation surface.
Drip amount of oleic acid: 1 μL
Measurement temperature: 25 ° C
The contact angle after 100 seconds after dropping oleic acid was measured at any 10 locations on the surface of the lipophilic resin layer, and the average value was defined as the oleic acid contact angle.
<耐指紋性>
 親油性積層体を、その評価面(親油性樹脂層表面)が上になるように黒色アクリル板(三菱レイヨン株式会社製、商品名:アクリライト)に両面粘着シート(日東電工株式会社製、商品名:LUCIACS CS9621T)を用いて貼合した。次に、評価面に人差し指で指紋を付けて、下記方法に従って、付着指紋の目立ち難さ、ティッシュ払拭性を評価した。
<Fingerprint resistance>
Double-sided pressure-sensitive adhesive sheet (manufactured by Nitto Denko Corporation, product) on a black acrylic plate (Mitsubishi Rayon Co., Ltd., trade name: Acrylite) with the evaluation surface (lipophilic resin layer surface) facing up. Name: LUCIACS CS9621T). Next, a fingerprint was attached to the evaluation surface with an index finger, and the invisibility of the attached fingerprint and the tissue wiping property were evaluated according to the following methods.
<<付着指紋の目立ち難さ>>
 親油性樹脂層表面に人差し指で指紋を付着させ、1分間後に蛍光灯を映し込み、目視で表面を観察し、下記基準で評価した。
〔評価基準〕
 ◎:指紋が濡れ広がり、指紋が見え難くなっていた。
 ○:指紋は濡れ広がったが、指紋が付着した領域が視認できた。
 ×:指紋の濡れ広がりが不十分で、指紋がその模様まではっきり見えた。
<< Difficult to notice sticking fingerprints >>
A fingerprint was attached to the surface of the oleophilic resin layer with an index finger, a fluorescent lamp was projected after 1 minute, the surface was visually observed, and the following criteria were evaluated.
〔Evaluation criteria〕
A: The fingerprint spread wet and it was difficult to see the fingerprint.
○: The fingerprint spread wet, but the area where the fingerprint was attached was visible.
X: Insufficient wetting and spreading of the fingerprint, and the fingerprint was clearly visible to the pattern.
<<ティッシュ払拭性>
 親油性樹脂層表面に人差し指で20回指紋を付着させ、これをティッシュ(大王製紙株式会社製、エリエール)で10回、円を描くように払拭後に、蛍光灯を映し込み、目視で表面を観察し、下記基準で評価した。
〔評価基準〕
 ◎:指紋汚れがなくなっていた。
 ○:指紋汚れがわずかに残っていた。
 ×:指紋汚れがはっきりと残っていた。
<< Tissue wipeability >>
Fingerprints are attached to the surface of the oleophilic resin layer with the index finger 20 times, and after wiping the tissue 10 times with a tissue (Daiou Paper Co., Ltd., Erière) in a circle, the fluorescent light is reflected and the surface is visually observed. And evaluated according to the following criteria.
〔Evaluation criteria〕
A: Fingerprint stains were gone.
○: Fingerprint stains remained slightly.
X: Fingerprint stains remained clearly.
<鉛筆硬度>
 親油性樹脂層の鉛筆硬度は、JIS K 5600-5-4に従って測定した。
<Pencil hardness>
The pencil hardness of the oleophilic resin layer was measured in accordance with JIS K 5600-5-4.
<マルテンス硬度>
 親油性樹脂層のマルテンス硬度は、PICODENTOR HM500(商品名;フィッシャー・インストルメンツ社製)を用いて測定した。荷重1mN/20sとし、針としてダイアモンド錐体を用い、面角136°で測定した。
<Martens hardness>
The Martens hardness of the lipophilic resin layer was measured using PICODERTOR HM500 (trade name; manufactured by Fisher Instruments). The load was 1 mN / 20 s, a diamond cone was used as the needle, and the surface angle was 136 °.
<屈曲性試験>
 親油性積層体の屈曲性試験は、JIS K5600に従って行った。
 マンドレイルの直径が8mmである時の結果を、下記基準で評価した。
〔評価基準〕
 ◎:クラック0本
 〇:クラック5本以下
 △:クラック6本以上10本未満
 ×:クラック10本以上
<Flexibility test>
The flexibility test of the lipophilic laminate was performed according to JIS K5600.
The results when the mandrail diameter was 8 mm were evaluated according to the following criteria.
〔Evaluation criteria〕
◎: 0 cracks ○: 5 or less cracks △: 6 or more cracks and less than 10 ×: 10 or more cracks
(実施例1)
<微細な凸部及び凹部のいずれかを有する転写原盤(ガラスロール原盤)の作製>
 まず、外径126mmのガラスロール原盤を準備し、このガラスロール原盤の表面に以下のようにしてレジスト層を形成した。即ち、シンナーでフォトレジストを質量比で1/10に希釈し、この希釈レジストをディッピング法によりガラスロール原盤の円柱面上に平均厚み70nm程度に塗布することにより、レジスト層を形成した。次に、ガラスロール原盤を、図4に示したロール原盤露光装置に搬送し、レジスト層を露光することにより、1つの螺旋状に連なると共に、隣接する3列のトラック間において六方格子パターンをなす潜像がレジスト層にパターニングされた。具体的には、六方格子状の露光パターンが形成されるべき領域に対して、0.50mW/mのレーザー光を照射し六方格子状の露光パターンを形成した。
Example 1
<Preparation of transfer master (glass roll master) having either fine convex part or concave part>
First, a glass roll master having an outer diameter of 126 mm was prepared, and a resist layer was formed on the surface of the glass roll master as follows. That is, the photoresist was diluted to 1/10 by weight with a thinner, and this diluted resist was applied to the average thickness of about 70 nm on the cylindrical surface of the glass roll master by dipping, thereby forming a resist layer. Next, the glass roll master is transported to the roll master exposure apparatus shown in FIG. 4, and the resist layer is exposed to form a hexagonal lattice pattern between three adjacent tracks while being continuous in one spiral. The latent image was patterned on the resist layer. Specifically, a hexagonal lattice-shaped exposure pattern was formed by irradiating a region where a hexagonal lattice-shaped exposure pattern was to be formed with 0.50 mW / m of laser light.
 次に、ガラスロール原盤上のレジスト層に現像処理を施して、露光した部分のレジスト層を溶解させて現像を行った。具体的には、図示しない現像機のターンテーブル上に未現像のガラスロール原盤を載置し、ターンテーブルごと回転させつつガラスロール原盤の表面に現像液を滴下してその表面のレジスト層を現像した。これにより、レジスト層が六方格子パターンに開口しているレジストガラス原盤が得られた。 Next, the resist layer on the glass roll master was subjected to development treatment, and the exposed resist layer was dissolved and developed. Specifically, an undeveloped glass roll master is placed on a turntable of a developing machine (not shown), and a developer is dropped on the surface of the glass roll master while rotating the entire turntable to develop the resist layer on the surface. did. Thereby, a resist glass master having a resist layer opened in a hexagonal lattice pattern was obtained.
 次に、ロールエッチング装置を用い、CHFガス雰囲気中でのプラズマエッチングを行った。これにより、ガラスロール原盤の表面において、レジスト層から露出している六方格子パターンの部分のみエッチングが進行し、その他の領域はレジスト層がマスクとなりエッチングはされず、楕円錐形状の凹部がガラスロール原盤に形成された。この際、エッチング量(深さ)は、エッチング時間によって調整した。最後に、Oアッシングにより完全にレジスト層を除去することにより、凹形状の六方格子パターンを有するガラスロール原盤を得た。 Next, plasma etching was performed in a CHF 3 gas atmosphere using a roll etching apparatus. As a result, only the hexagonal lattice pattern exposed from the resist layer is etched on the surface of the glass roll master, and the resist layer is used as a mask for the other regions and etching is not performed. Formed on the master. At this time, the etching amount (depth) was adjusted by the etching time. Finally, the resist layer was completely removed by O 2 ashing to obtain a glass roll master having a concave hexagonal lattice pattern.
<親油性積層体の作製>
 次に、上述のようにして得られたロール原盤を用いて、UVインプリントにより親油性積層体を作製した。具体的には、以下のようにして行った。
 樹脂製基材として、東レ株式会社のU40(平均厚み100μm、ポリエチレンテレフタレート(PET)フィルム)を用いた。
<Production of lipophilic laminate>
Next, an oleophilic laminate was produced by UV imprinting using the roll master obtained as described above. Specifically, it was performed as follows.
U40 (average thickness 100 μm, polyethylene terephthalate (PET) film) manufactured by Toray Industries, Inc. was used as the resin substrate.
 下記組成の親油性樹脂層用紫外線硬化性樹脂組成物を、得られる親油性樹脂層の平均厚みが2.5μmとなるように、前記樹脂製基材上に塗布した。親油性樹脂層用紫外線硬化性樹脂組成物が塗布された基材と、上述のようにして得られたロール原盤とを密着させ、メタルハライドランプを用いて、樹脂製基材側から照射量1,000mJ/cmで紫外線を照射して、親油性樹脂層を硬化させた。その後、親油性樹脂層と、ロール原盤とを剥離した。 The ultraviolet curable resin composition for a lipophilic resin layer having the following composition was applied onto the resin substrate so that the average thickness of the resulting lipophilic resin layer was 2.5 μm. The base material coated with the ultraviolet curable resin composition for the lipophilic resin layer is brought into close contact with the roll master obtained as described above, and a dose of 1, from the resin base material side using a metal halide lamp. The lipophilic resin layer was cured by irradiating with ultraviolet rays at 000 mJ / cm 2 . Thereafter, the lipophilic resin layer and the roll master were peeled off.
-親油性樹脂層用紫外線硬化性樹脂組成物-
 ・CN9006(6官能脂肪族ウレタンアクリレート、サートマー社製) 31質量部
 ・C150(エボニックデグサ社製)                 64質量部
 (50質量%シリカナノ粒子トリメチロールプロパントリアクリレート分散品)
 ・Lucirin TPO(BASF社製)               5質量部
-UV curable resin composition for lipophilic resin layer-
-CN9006 (hexafunctional aliphatic urethane acrylate, manufactured by Sartomer) 31 parts by mass-C150 (produced by Evonik Degussa) 64 parts by mass (50 mass% silica nanoparticle trimethylolpropane triacrylate dispersion)
・ Lucirin TPO (manufactured by BASF) 5 parts by mass
 以上により、親油性樹脂層の表面に微細な凸部を有する親油性積層体を得た。得られた親油性積層体の親油性樹脂層の表面のAFM像を図13Aに示した。図13Aのa-a線に沿った断面図を図13Bに示した。図13Cに3次元AFM像を示した。図13DにSEM像を示した。 Thus, an oleophilic laminate having fine convex portions on the surface of the oleophilic resin layer was obtained. FIG. 13A shows an AFM image of the surface of the lipophilic resin layer of the obtained lipophilic laminate. A cross-sectional view taken along line aa in FIG. 13A is shown in FIG. 13B. FIG. 13C shows a three-dimensional AFM image. FIG. 13D shows an SEM image.
 得られた親油性積層体について、上述の方法により、凸部の平均距離(又は凹部の平均距離)(Pm)、凸部の平均高さ(又は凹部の平均深さ)(Hm)、平均アスペクト比(Hm/Pm)、オレイン酸接触角、付着指紋の目立ち難さ、ティッシュ払拭性、鉛筆硬度、マルテンス硬度、屈曲性を評価した。結果を表2に示した。 About the obtained lipophilic laminated body, by the above-mentioned method, the average distance (or average distance of a recessed part) (Pm), the average height (or average depth of a recessed part) (Hm), average aspect of a convex part The ratio (Hm / Pm), the oleic acid contact angle, the conspicuousness of the attached fingerprint, the tissue wiping property, the pencil hardness, the Martens hardness, and the flexibility were evaluated. The results are shown in Table 2.
(実施例2)
 実施例1において、ガラスロール原盤を作製する際のレジスト層の露光パターンを変更した以外は実施例1と同様にして、親油性積層体を作製した。
 得られた親油性積層体の親油性樹脂層の表面のAFM像を図14Aに示した。図14Aのa-a線に沿った断面図を図14Bに示した。図14Cに3次元AFM像を示した。図14DにSEM像を示した。
 作製した親油性積層体について、実施例1と同様の評価を行った。結果を、表2に示した。
(Example 2)
In Example 1, a lipophilic laminate was produced in the same manner as in Example 1, except that the exposure pattern of the resist layer when producing the glass roll master was changed.
FIG. 14A shows an AFM image of the surface of the lipophilic resin layer of the obtained lipophilic laminate. A cross-sectional view taken along line aa in FIG. 14A is shown in FIG. 14B. FIG. 14C shows a three-dimensional AFM image. FIG. 14D shows an SEM image.
About the produced lipophilic laminated body, evaluation similar to Example 1 was performed. The results are shown in Table 2.
(実施例3)
 実施例1において、ガラスロール原盤を作製する際のレジスト層の露光パターンを変更した以外は、実施例1と同様にして、親油性積層体を作製した。
 得られた親油性積層体の親油性樹脂層の表面のAFM像を図15Aに示した。図15Aのa-a線に沿った断面図を図15Bに示した。図15Cに3次元AFM像を示した。図15DにSEM像を示した。
 作製した親油性積層体について、実施例1と同様の評価を行った。結果を、表2に示した。
Example 3
In Example 1, a lipophilic laminate was produced in the same manner as in Example 1 except that the exposure pattern of the resist layer when the glass roll master was produced was changed.
FIG. 15A shows an AFM image of the surface of the lipophilic resin layer of the obtained lipophilic laminate. A cross-sectional view taken along line aa in FIG. 15A is shown in FIG. 15B. FIG. 15C shows a three-dimensional AFM image. FIG. 15D shows an SEM image.
About the produced lipophilic laminated body, evaluation similar to Example 1 was performed. The results are shown in Table 2.
(実施例4)
 実施例1において、ガラスロール原盤を作製する際のレジスト層の露光パターンを変更した以外は、実施例1と同様にして、親油性積層体を作製した。
 得られた親油性積層体の親油性樹脂層の表面のAFM像を図16Aに示した。図16Aのa-a線に沿った断面図を図16Bに示した。図16Cに3次元AFM像を示した。図16DにSEM像を示した。
 作製した親油性積層体について、実施例1と同様の評価を行った。結果を、表2に示した。
Example 4
In Example 1, a lipophilic laminate was produced in the same manner as in Example 1 except that the exposure pattern of the resist layer when the glass roll master was produced was changed.
An AFM image of the surface of the lipophilic resin layer of the obtained lipophilic laminate is shown in FIG. 16A. A cross-sectional view taken along line aa of FIG. 16A is shown in FIG. 16B. FIG. 16C shows a three-dimensional AFM image. FIG. 16D shows an SEM image.
About the produced lipophilic laminated body, evaluation similar to Example 1 was performed. The results are shown in Table 2.
(実施例5~8)
 実施例1~4において、親油性樹脂層用紫外線硬化性樹脂組成物を下記に示す組成に変更した以外は、実施例1~4とそれぞれ同様にして、親油性積層体を作製した。
(Examples 5 to 8)
In Examples 1 to 4, lipophilic laminates were produced in the same manner as in Examples 1 to 4, respectively, except that the ultraviolet curable resin composition for the lipophilic resin layer was changed to the composition shown below.
-親油性樹脂層用紫外線硬化性樹脂組成物-
 ・CN9006(6官能脂肪族ウレタンアクリレート、サートマー社製)58質量部
 ・C150(エボニックデグサ社製)                37質量部
  (50質量%シリカナノ粒子トリメチロールプロパントリアクリレート分散品)
 ・Lucirin TPO(BASF社製)              5質量部
-UV curable resin composition for lipophilic resin layer-
-CN9006 (hexafunctional aliphatic urethane acrylate, manufactured by Sartomer) 58 parts by mass-C150 (produced by Evonik Degussa) 37 parts by mass (50% by mass silica nanoparticle trimethylolpropane triacrylate dispersion)
・ Lucirin TPO (manufactured by BASF) 5 parts by mass
 作製した親油性積層体について、実施例1と同様の評価を行った。結果を、表2に示した。 The same evaluation as Example 1 was performed about the produced lipophilic laminated body. The results are shown in Table 2.
(実施例9)
<微細な凸部及び凹部のいずれかを有する転写原盤(板状の原盤)の作製>
 レーザー加工装置として、図8に示した装置を用いた。レーザー本体340としては、サイバーレーザー株式会社製のIFRIT(商品名)を用いた。レーザー波長は800nm、繰り返し周波数は1,000Hz、パルス幅は220fsとした。
 まず、板状の基材(SUS)の表面にDLC(ダイヤモンドライクカーボン)をスパッタリング法により被覆することにより、原盤を作製した。次に、この原盤のDLC膜の表面に対して、前記レーザー加工装置を用いて微細な凹部を形成した。この際、表1に示すレーザー加工条件にてレーザー加工を行った。以上により、形状転写用の板状の原盤を得た。なお、原盤のサイズは、2cm×2cmの矩形状とした。
Example 9
<Preparation of transfer master (plate-like master) having either fine convex part or concave part>
As the laser processing apparatus, the apparatus shown in FIG. 8 was used. As the laser body 340, IFRIT (trade name) manufactured by Cyber Laser Co., Ltd. was used. The laser wavelength was 800 nm, the repetition frequency was 1,000 Hz, and the pulse width was 220 fs.
First, a master was prepared by coating DLC (diamond-like carbon) on the surface of a plate-like substrate (SUS) by a sputtering method. Next, fine concave portions were formed on the surface of the DLC film of the master using the laser processing apparatus. At this time, laser processing was performed under the laser processing conditions shown in Table 1. Thus, a plate-shaped master for shape transfer was obtained. Note that the size of the master was a rectangular shape of 2 cm × 2 cm.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<親油性積層体の作製>
 次に、上述のようにして得られた板状の原盤を用いて、UVインプリントにより親油性積層体を作製した。具体的には、以下のようにして行った。
 実施例1の親油性積層体の作製において、ロール原盤を、上述のようにして得られた板状の原盤に代えた以外は、実施例1と同様にして、親油性積層体を作製した。
 得られた親油性積層体の親油性樹脂層の表面のAFM像を図17Aに示した。図17Aのa-a線に沿った断面図を図17Bに示した。図17Cに3次元AFM像を示した。
 作製した親油性積層体について、実施例1と同様の評価を行った。結果を、表2に示した。
<Production of lipophilic laminate>
Next, an oleophilic laminate was produced by UV imprinting using the plate-shaped master obtained as described above. Specifically, it was performed as follows.
In the production of the lipophilic laminate of Example 1, a lipophilic laminate was produced in the same manner as in Example 1 except that the roll master was replaced with the plate-like master obtained as described above.
FIG. 17A shows an AFM image of the surface of the lipophilic resin layer of the obtained lipophilic laminate. A cross-sectional view taken along line aa in FIG. 17A is shown in FIG. 17B. FIG. 17C shows a three-dimensional AFM image.
About the produced lipophilic laminated body, evaluation similar to Example 1 was performed. The results are shown in Table 2.
(実施例10~12)
 実施例9において、板状の原盤を作製する際の条件を、表1に示す条件に変更した以外は、実施例9と同様にして、親油性積層体を作製した。
 得られた実施例10の親油性積層体の親油性樹脂層の表面のAFM像を図18Aに示した。図18Aのa-a線に沿った断面図を図18Bに示した。図18Cに3次元AFM像を示した。
 得られた実施例11の親油性積層体の親油性樹脂層の表面のAFM像を図19Aに示した。図19Aのa-a線に沿った断面図を図19Bに示した。図19Cに3次元AFM像を示した。
 得られた実施例12の親油性積層体の親油性樹脂層の表面のAFM像を図20Aに示した。図20Aのa-a線に沿った断面図を図20Bに示した。図20Cに3次元AFM像を示した。
 作製した親油性積層体について、実施例1と同様の評価を行った。結果を、表2に示した。
(Examples 10 to 12)
In Example 9, a lipophilic laminate was produced in the same manner as in Example 9 except that the conditions for producing the plate-shaped master were changed to the conditions shown in Table 1.
An AFM image of the surface of the lipophilic resin layer of the obtained lipophilic laminate of Example 10 is shown in FIG. 18A. A cross-sectional view taken along line aa in FIG. 18A is shown in FIG. 18B. FIG. 18C shows a three-dimensional AFM image.
FIG. 19A shows an AFM image of the surface of the lipophilic resin layer of the obtained lipophilic laminate of Example 11. A cross-sectional view taken along line aa in FIG. 19A is shown in FIG. 19B. FIG. 19C shows a three-dimensional AFM image.
An AFM image of the surface of the lipophilic resin layer of the obtained lipophilic laminate of Example 12 is shown in FIG. 20A. A cross-sectional view taken along line aa in FIG. 20A is shown in FIG. 20B. FIG. 20C shows a three-dimensional AFM image.
About the produced lipophilic laminated body, evaluation similar to Example 1 was performed. The results are shown in Table 2.
(実施例13)
 実施例2において、親油性樹脂層用紫外線硬化性樹脂組成物を下記に示す組成に変更した以外は、実施例2と同様にして、親油性積層体を作製した。
 作製した親油性積層体について、実施例1と同様の評価を行った。結果を、表2に示した。
(Example 13)
In Example 2, a lipophilic laminate was produced in the same manner as in Example 2, except that the ultraviolet curable resin composition for the lipophilic resin layer was changed to the composition shown below.
About the produced lipophilic laminated body, evaluation similar to Example 1 was performed. The results are shown in Table 2.
-親油性樹脂層用紫外線硬化性樹脂組成物-
 ・CN9006(6官能脂肪族ウレタンアクリレート、サートマー社製) 80質量部
 ・C150(エボニックデグサ社製)                 20質量部
  (50質量%シリカナノ粒子トリメチロールプロパントリアクリレート分散品)
 ・Lucirin TPO(BASF社製)               5質量部
-UV curable resin composition for lipophilic resin layer-
-CN9006 (hexafunctional aliphatic urethane acrylate, manufactured by Sartomer) 80 parts by mass-C150 (produced by Evonik Degussa) 20 parts by mass (50 mass% silica nanoparticle trimethylolpropane triacrylate dispersion)
・ Lucirin TPO (manufactured by BASF) 5 parts by mass
(実施例14)
 実施例2において、親油性樹脂層用紫外線硬化性樹脂組成物を下記に示す組成に変更した以外は、実施例2と同様にして、親油性積層体を作製した。
 作製した親油性積層体について、実施例1と同様の評価を行った。結果を、表2に示した。
(Example 14)
In Example 2, a lipophilic laminate was produced in the same manner as in Example 2, except that the ultraviolet curable resin composition for the lipophilic resin layer was changed to the composition shown below.
About the produced lipophilic laminated body, evaluation similar to Example 1 was performed. The results are shown in Table 2.
-親油性樹脂層用紫外線硬化性樹脂組成物-
 ・CN9006(6官能脂肪族ウレタンアクリレート、サートマー社製) 19質量部
 ・C150(エボニックデグサ社製)                 76質量部
  (50質量%シリカナノ粒子トリメチロールプロパントリアクリレート分散品)
 ・Lucirin TPO(BASF社製)               5質量部
-UV curable resin composition for lipophilic resin layer-
CN9006 (hexafunctional aliphatic urethane acrylate, manufactured by Sartomer) 19 parts by mass C150 (produced by Evonik Degussa) 76 parts by mass (50% by mass silica nanoparticle trimethylolpropane triacrylate dispersion)
・ Lucirin TPO (manufactured by BASF) 5 parts by mass
(実施例15)
 実施例2において、親油性樹脂層用紫外線硬化性樹脂組成物を下記に示す組成に変更した以外は、実施例2と同様にして、親油性積層体を作製した。
 作製した親油性積層体について、実施例1と同様の評価を行った。結果を、表2に示した。
(Example 15)
In Example 2, a lipophilic laminate was produced in the same manner as in Example 2, except that the ultraviolet curable resin composition for the lipophilic resin layer was changed to the composition shown below.
About the produced lipophilic laminated body, evaluation similar to Example 1 was performed. The results are shown in Table 2.
-親油性樹脂層用紫外線硬化性樹脂組成物-
 ・CN9006(6官能脂肪族ウレタンアクリレート、サートマー社製)  9質量部
 ・C150(エボニックデグサ社製)                 86質量部
  (50質量%シリカナノ粒子トリメチロールプロパントリアクリレート分散品)
 ・Lucirin TPO(BASF社製)               5質量部
-UV curable resin composition for lipophilic resin layer-
CN9006 (hexafunctional aliphatic urethane acrylate, manufactured by Sartomer) 9 parts by mass C150 (produced by Evonik Degussa) 86 parts by mass (50% by mass silica nanoparticle trimethylolpropane triacrylate dispersion)
・ Lucirin TPO (manufactured by BASF) 5 parts by mass
(実施例16)
 実施例2において、親油性樹脂層用紫外線硬化性樹脂組成物を下記に示す組成に変更した以外は、実施例2と同様にして、親油性積層体を作製した。
 作製した親油性積層体について、実施例1と同様の評価を行った。結果を、表2に示した。
(Example 16)
In Example 2, a lipophilic laminate was produced in the same manner as in Example 2, except that the ultraviolet curable resin composition for the lipophilic resin layer was changed to the composition shown below.
About the produced lipophilic laminated body, evaluation similar to Example 1 was performed. The results are shown in Table 2.
-親油性樹脂層用紫外線硬化性樹脂組成物-
 ・CN9006(6官能脂肪族ウレタンアクリレート、サートマー社製) 31質量部
 ・C150(エボニックデグサ社製)                 64質量部
  (50質量%シリカナノ粒子トリメチロールプロパントリアクリレート分散品)
 ・Lucirin TPO(BASF社製)               5質量部
-UV curable resin composition for lipophilic resin layer-
-CN9006 (hexafunctional aliphatic urethane acrylate, manufactured by Sartomer) 31 parts by mass-C150 (produced by Evonik Degussa) 64 parts by mass (50 mass% silica nanoparticle trimethylolpropane triacrylate dispersion)
・ Lucirin TPO (manufactured by BASF) 5 parts by mass
(実施例17)
 実施例2において、親油性樹脂層用紫外線硬化性樹脂組成物を下記に示す組成に変更した以外は、実施例2と同様にして、親油性積層体を作製した。
 作製した親油性積層体について、実施例1と同様の評価を行った。結果を、表2に示した。
(Example 17)
In Example 2, a lipophilic laminate was produced in the same manner as in Example 2, except that the ultraviolet curable resin composition for the lipophilic resin layer was changed to the composition shown below.
About the produced lipophilic laminated body, evaluation similar to Example 1 was performed. The results are shown in Table 2.
-親油性樹脂層用紫外線硬化性樹脂組成物-
 ・CN9006(6官能脂肪族ウレタンアクリレート、サートマー社製) 31質量部
 ・nanobyk-3601(ビックケミージャパン社製)       64質量部
  (30質量%アルミナナノ粒子TPGDA分散品)
 ・Lucirin TPO(BASF社製)               5質量部
-UV curable resin composition for lipophilic resin layer-
-CN9006 (hexafunctional aliphatic urethane acrylate, manufactured by Sartomer) 31 parts by mass-nanobyk-3601 (produced by Big Chemie Japan) 64 parts by mass (30 mass% alumina nanoparticle TPGDA dispersion)
・ Lucirin TPO (manufactured by BASF) 5 parts by mass
(実施例18)
 実施例2において、親油性樹脂層用紫外線硬化性樹脂組成物を下記に示す組成に変更した以外は、実施例2と同様にして、親油性積層体を作製した。
 作製した親油性積層体について、実施例1と同様の評価を行った。結果を、表2に示した。
(Example 18)
In Example 2, a lipophilic laminate was produced in the same manner as in Example 2, except that the ultraviolet curable resin composition for the lipophilic resin layer was changed to the composition shown below.
About the produced lipophilic laminated body, evaluation similar to Example 1 was performed. The results are shown in Table 2.
-親油性樹脂層用紫外線硬化性樹脂組成物-
 ・CN9006(6官能脂肪族ウレタンアクリレート、サートマー社製) 31質量部
 ・チタニア分散液1                         64質量部
  (50%質量チタニアナノ粒子トリメチロールプロパントリアクリレート分散液)
 ・Lucirin TPO(BASF社製)               5質量部
 なお、チタニアは、石原産業株式会社製の酸化チタンST-01を使用した。これとトリメチロールプロパントリアクリレート(TMPTA)を1:1(質量比)で混合し、ペイントシェーカーにて直径0.65mmのジルコニアビーズを用いて9時間ビーズ分散処理し、チタニア分散液1を調製した。
-UV curable resin composition for lipophilic resin layer-
CN9006 (hexafunctional aliphatic urethane acrylate, manufactured by Sartomer) 31 parts by mass Titania dispersion 1 64 parts by mass (50% mass titania nanoparticle trimethylolpropane triacrylate dispersion)
・ Lucirin TPO (manufactured by BASF) 5 parts by mass In addition, titanium oxide ST-01 manufactured by Ishihara Sangyo Co., Ltd. was used as titania. This and trimethylolpropane triacrylate (TMPTA) were mixed at 1: 1 (mass ratio), and the beads were dispersed for 9 hours using a zirconia bead having a diameter of 0.65 mm in a paint shaker to prepare titania dispersion 1. .
(実施例19)
 実施例2において、親油性樹脂層用紫外線硬化性樹脂組成物を下記に示す組成に変更した以外は、実施例2と同様にして、親油性積層体を作製した。
 作製した親油性積層体について、実施例1と同様の評価を行った。結果を、表2に示した。
(Example 19)
In Example 2, a lipophilic laminate was produced in the same manner as in Example 2, except that the ultraviolet curable resin composition for the lipophilic resin layer was changed to the composition shown below.
About the produced lipophilic laminated body, evaluation similar to Example 1 was performed. The results are shown in Table 2.
-親油性樹脂層用紫外線硬化性樹脂組成物-
 ・CN9006(6官能脂肪族ウレタンアクリレート、サートマー社製) 31質量部
 ・チタニア分散液2                         64質量部
  (50%質量チタニアナノ粒子トリメチロールプロパントリアクリレート分散液)
 ・Lucirin TPO(BASF社製)               5質量部
 なお、チタニアは、昭和電工株式会社製の酸化チタンF-1を使用した。これとトリメチロールプロパントリアクリレート(TMPTA)を1:1(質量比)で混合し、ペイントシェーカーにて直径0.65mmのジルコニアビーズを用いて9時間ビーズ分散処理し、チタニア分散液2を調製した。
-UV curable resin composition for lipophilic resin layer-
CN9006 (hexafunctional aliphatic urethane acrylate, manufactured by Sartomer) 31 parts by mass Titania dispersion 2 64 parts by mass (50% mass titania nanoparticle trimethylolpropane triacrylate dispersion)
-Lucirin TPO (manufactured by BASF) 5 parts by mass Titanium used was Titanium Oxide F-1 manufactured by Showa Denko KK This was mixed with trimethylolpropane triacrylate (TMPTA) at a ratio of 1: 1 (mass ratio), and the beads were dispersed for 9 hours using zirconia beads having a diameter of 0.65 mm in a paint shaker to prepare titania dispersion 2. .
(実施例20)
 実施例2において、親油性樹脂層用紫外線硬化性樹脂組成物を下記に示す組成に変更した以外は同様にして親油性積層体を作製した。
 作製した親油性積層体について、実施例1と同様の評価を行った。結果を、表2に示した。
(Example 20)
A lipophilic laminate was prepared in the same manner as in Example 2, except that the ultraviolet curable resin composition for the lipophilic resin layer was changed to the composition shown below.
About the produced lipophilic laminated body, evaluation similar to Example 1 was performed. The results are shown in Table 2.
 ・C150(エボニックデグサ社製)                 95質量部
  (50質量%シリカナノ粒子トリメチロールプロパントリアクリレート分散品)
 ・Lucirin TPO(BASF社製)               5質量部
C95 (Evonik Degussa) 95 parts by mass (50% by mass silica nanoparticle trimethylolpropane triacrylate dispersion)
・ Lucirin TPO (manufactured by BASF) 5 parts by mass
(比較例1~4)
 実施例1~4において、親油性樹脂層用紫外線硬化性樹脂組成物を下記に示す組成に変更した以外は、実施例1~4それぞれと同様にして、親油性積層体を得た。
 作製した親油性積層体について、実施例1と同様の評価を行った。結果を、表2に示した。
(Comparative Examples 1 to 4)
In Examples 1 to 4, lipophilic laminates were obtained in the same manner as in Examples 1 to 4, except that the ultraviolet curable resin composition for the lipophilic resin layer was changed to the composition shown below.
About the produced lipophilic laminated body, evaluation similar to Example 1 was performed. The results are shown in Table 2.
-親油性樹脂層用紫外線硬化性樹脂組成物-
 ・CN9006(6官能脂肪族ウレタンアクリレート、サートマー社製) 48質量部
 ・トリメチロールプロパントリアクリレート(日本合成株式会社製)   47質量部
 ・Lucirin TPO(BASF社製)               5質量部
-UV curable resin composition for lipophilic resin layer-
-CN9006 (hexafunctional aliphatic urethane acrylate, manufactured by Sartomer) 48 parts by mass-Trimethylolpropane triacrylate (manufactured by Nihon Gosei Co., Ltd.) 47 parts by mass-Lucirin TPO (manufactured by BASF) 5 parts by mass
(比較例5~8)
 実施例9~12において、親油性樹脂層用紫外線硬化性樹脂組成物を下記に示す組成に変更した以外は、実施例9~12それぞれと同様にして、親油性積層体を得た。
 作製した親油性積層体について、実施例1と同様の評価を行った。結果を、表2に示した。
(Comparative Examples 5 to 8)
In Examples 9 to 12, lipophilic laminates were obtained in the same manner as in Examples 9 to 12, except that the ultraviolet curable resin composition for the lipophilic resin layer was changed to the composition shown below.
About the produced lipophilic laminated body, evaluation similar to Example 1 was performed. The results are shown in Table 2.
-親油性樹脂層用紫外線硬化性樹脂組成物-
 ・CN9006(6官能脂肪族ウレタンアクリレート、サートマー社製)48質量部
 ・トリメチロールプロパントリアクリレート(日本合成株式会社製)  47質量部
 ・Lucirin TPO(BASF社製)              5質量部
-UV curable resin composition for lipophilic resin layer-
-CN9006 (hexafunctional aliphatic urethane acrylate, manufactured by Sartomer) 48 parts by mass-Trimethylolpropane triacrylate (manufactured by Nihon Gosei Co., Ltd.) 47 parts by mass-Lucirin TPO (manufactured by BASF) 5 parts by mass
(比較例9)
 実施例2において、親油性樹脂層用紫外線硬化性樹脂組成物を下記に示す組成に変更した以外は、実施例2と同様にして、親油性積層体を得た。
 作製した親油性積層体について、実施例1と同様の評価を行った。結果を、表2に示した。
(Comparative Example 9)
In Example 2, the lipophilic laminated body was obtained like Example 2 except having changed the ultraviolet curable resin composition for lipophilic resin layers into the composition shown below.
About the produced lipophilic laminated body, evaluation similar to Example 1 was performed. The results are shown in Table 2.
 ・CN9006(6官能脂肪族ウレタンアクリレート、サートマー社製)85質量部
 ・C150(エボニックデグサ社製)                10質量部
  (50質量%シリカナノ粒子トリメチロールプロパントリアクリレート分散品)
 ・Lucirin TPO(BASF社製)              5質量部
-CN9006 (hexafunctional aliphatic urethane acrylate, manufactured by Sartomer) 85 parts by mass-C150 (produced by Evonik Degussa) 10 parts by mass (50 mass% silica nanoparticle trimethylolpropane triacrylate dispersion)
・ Lucirin TPO (manufactured by BASF) 5 parts by mass
(比較例10)
 実施例2において、親油性樹脂層用紫外線硬化性樹脂組成物を下記に示す組成に変更した以外は、実施例2と同様にして、親油性積層体を得た。
 作製した親油性積層体について、実施例1と同様の評価を行った。結果を、表2に示した。
(Comparative Example 10)
In Example 2, the lipophilic laminated body was obtained like Example 2 except having changed the ultraviolet curable resin composition for lipophilic resin layers into the composition shown below.
About the produced lipophilic laminated body, evaluation similar to Example 1 was performed. The results are shown in Table 2.
 ・CN9006(6官能脂肪族ウレタンアクリレート、サートマー社製) 79質量部
 ・C150(エボニックデグサ社製)                 16質量部
  (50質量%シリカナノ粒子トリメチロールプロパントリアクリレート分散品)
 ・Lucirin TPO(BASF社製)               5質量部
-CN9006 (hexafunctional aliphatic urethane acrylate, manufactured by Sartomer) 79 parts by mass-C150 (produced by Evonik Degussa) 16 parts by mass (50 mass% silica nanoparticle trimethylolpropane triacrylate dispersion)
・ Lucirin TPO (manufactured by BASF) 5 parts by mass
(比較例11)
 実施例2において、親油性樹脂層用紫外線硬化性樹脂組成物を下記に示す組成に変更した以外は、実施例2と同様にして、親油性積層体を得た。
 作製した親油性積層体について、実施例1と同様の評価を行った。結果を、表2に示した。
(Comparative Example 11)
In Example 2, the lipophilic laminated body was obtained like Example 2 except having changed the ultraviolet curable resin composition for lipophilic resin layers into the composition shown below.
About the produced lipophilic laminated body, evaluation similar to Example 1 was performed. The results are shown in Table 2.
 ・トリメチロールプロパントリアクリレート(日本合成株式会社製)   35質量部
 ・90G(エボニックデグサ社製)                  60質量部
  (シリカナノ粒子紛体)
 ・Lucirin TPO(BASF社製)               5質量部
 上記組成物を混合後、ペイントシェーカーにて直径0.65mmのジルコニアビーズを用いて9時間ビーズ分散処理し、親油性樹脂層用紫外線硬化性樹脂組成物を調製した。
・ Trimethylolpropane triacrylate (manufactured by Nihon Gosei Co., Ltd.) 35 parts by mass ・ 90 G (manufactured by Evonik Degussa) 60 parts by mass (silica nanoparticle powder)
-Lucirin TPO (manufactured by BASF) 5 parts by mass After the above composition is mixed, the beads are dispersed in a paint shaker for 9 hours using zirconia beads having a diameter of 0.65 mm, and an ultraviolet curable resin composition for a lipophilic resin layer. Was prepared.
Figure JPOXMLDOC01-appb-T000002
 表2中の添加粒子径は、親油性樹脂層が含有する無機酸化物粒子の平均粒子径である。前記平均粒子径は、1次平均粒子径である。
Figure JPOXMLDOC01-appb-T000002
The additive particle size in Table 2 is the average particle size of the inorganic oxide particles contained in the lipophilic resin layer. The average particle diameter is a primary average particle diameter.
 実施例1~20では、耐指紋性を有しつつ、鉛筆硬度が3H以上かつマルテンス硬度が220N/mm以上であり、さらに屈曲性試験も優れていることから、実施例1~20の親油性積層体は、耐指紋性を有しつつ、優れた表面硬度と優れた屈曲性とを両立できていた。特に、親油性樹脂層における無機酸化物粒子の含有量が、10質量%~45質量%の場合には、表面硬度と屈曲性とのバランスが非常に優れており、15質量%~35質量%の場合には、表面硬度と屈曲性とのバランスが極めて優れていた(例えば、実施例1、5、13、14、15、20参照)。 Examples 1 to 20 have fingerprint resistance, pencil hardness of 3H or higher, Martens hardness of 220 N / mm 2 or higher, and excellent flexibility test. The oil-based laminate had both excellent surface hardness and excellent flexibility while having fingerprint resistance. In particular, when the content of the inorganic oxide particles in the lipophilic resin layer is 10% by mass to 45% by mass, the balance between surface hardness and flexibility is very excellent, and 15% by mass to 35% by mass. In this case, the balance between surface hardness and flexibility was extremely excellent (for example, see Examples 1, 5, 13, 14, 15, and 20).
 一方、比較例1~8では、親油性樹脂層が無機酸化物粒子を含有しないために、表面強度が不十分であった。
 比較例9~10では、親油性樹脂層が無機酸化物粒子を含有しているが、その含有量が少ないために、表面強度が不十分であった。
 比較例11では、親油性樹脂層が無機酸化物粒子を含有しているため、表面強度は十分であったが、含有量が多すぎるために、屈曲性が不十分であった。
On the other hand, in Comparative Examples 1 to 8, since the lipophilic resin layer did not contain inorganic oxide particles, the surface strength was insufficient.
In Comparative Examples 9 to 10, the lipophilic resin layer contained inorganic oxide particles, but the surface strength was insufficient due to the small content.
In Comparative Example 11, since the lipophilic resin layer contained inorganic oxide particles, the surface strength was sufficient, but because the content was too large, the flexibility was insufficient.
 本発明の親油性積層体は、タッチパネル、スマートフォン、スマートフォンカバー、タブレットPC、家電製品、化粧品容器、アクセサリー類などへ貼り合わせて用いることができる。また、本発明の親油性積層体は、インモールド成形、インサート成形、オーバーレイ成形を利用して、ドアトリム、インストルメントパネル、センタークラスター・センターコンソールパネル、シフトノブ、シフトノブ周り、ステアリングエンブレム等の自動車内装部品表面、ドアハンドル等の自動車外装部品表面などに用いることができる。 The lipophilic laminate of the present invention can be used by bonding to a touch panel, a smartphone, a smartphone cover, a tablet PC, a home appliance, a cosmetic container, accessories, and the like. In addition, the lipophilic laminate of the present invention uses in-mold molding, insert molding, and overlay molding to provide automotive interior parts such as door trims, instrument panels, center cluster / center console panels, shift knobs, shift knobs, and steering emblems. It can be used on the surface of automobile exterior parts such as surfaces and door handles.
 211  樹脂性基材
 212  親油性樹脂層
 231  ロール原盤
 232  構造体
 236  未硬化樹脂層
 237  活性エネルギー線
 311  樹脂製基材
 312  親油性樹脂層
 331  板状の原盤
 332  構造体
 333  未硬化樹脂層
 334  活性エネルギー線
211 resinous base material 212 lipophilic resin layer 231 roll master 232 structure 236 uncured resin layer 237 active energy ray 311 resin base material 312 lipophilic resin layer 331 plate master 332 structure 333 uncured resin layer 334 active Energy rays

Claims (10)

  1.  樹脂製基材と、前記樹脂製基材上に親油性樹脂層とを有し、
     前記親油性樹脂層が、表面に微細な凸部及び凹部のいずれかを有し、
     前記親油性樹脂層が、無機酸化物粒子を10質量%~55質量%含有し、
     前記親油性樹脂層の表面のオレイン酸接触角が、10°以下であることを特徴とする親油性積層体。
    Having a resin base material and a lipophilic resin layer on the resin base material,
    The lipophilic resin layer has either a fine convex part or a concave part on the surface,
    The lipophilic resin layer contains 10% by mass to 55% by mass of inorganic oxide particles;
    The oleic acid contact angle on the surface of the lipophilic resin layer is 10 ° or less.
  2.  無機酸化物粒子の平均粒子径が、1nm~100nmである請求項1に記載の親油性積層体。 2. The lipophilic laminate according to claim 1, wherein the average particle diameter of the inorganic oxide particles is 1 nm to 100 nm.
  3.  親油性樹脂層が、無機酸化物粒子を10質量%~45質量%含有する請求項1から2のいずれかに記載の親油性積層体。 The lipophilic laminate according to claim 1, wherein the lipophilic resin layer contains 10% by mass to 45% by mass of inorganic oxide particles.
  4.  親油性樹脂層の表面のオレイン酸接触角が、5.0°以下である請求項1から3のいずれかに記載の親油性積層体。 The lipophilic laminate according to any one of claims 1 to 3, wherein an oleic acid contact angle on the surface of the lipophilic resin layer is 5.0 ° or less.
  5.  親油性樹脂層における、微細な凸部の平均高さ及び微細な凹部の平均深さのいずれかが、10nm~150nmであり、隣接する前記凸部の平均距離及び隣接する前記凹部の平均距離のいずれかが、10nm~500nmである請求項1から4のいずれかに記載の親油性積層体。 Either the average height of the fine protrusions or the average depth of the fine recesses in the lipophilic resin layer is 10 nm to 150 nm, and the average distance between the adjacent protrusions and the average distance between the adjacent recesses is The lipophilic laminate according to any one of claims 1 to 4, wherein any of them is 10 nm to 500 nm.
  6.  樹脂製基材が、ポリエチレンテレフタレート(PET)フィルムである請求項1から5のいずれかに記載の親油性積層体。 The lipophilic laminate according to any one of claims 1 to 5, wherein the resin base material is a polyethylene terephthalate (PET) film.
  7.  請求項1から6のいずれかに記載の親油性積層体の製造方法であって、
     樹脂製基材上に活性エネルギー線硬化性樹脂組成物を塗布して未硬化樹脂層を形成する未硬化樹脂層形成工程と、
     前記未硬化樹脂層に微細な凸部及び凹部のいずれかを有する転写原盤を密着させ、前記転写原盤が密着した前記未硬化樹脂層に活性エネルギー線を照射し前記未硬化樹脂層を硬化させて前記微細な凸部及び凹部のいずれかを転写することにより、親油性樹脂層を形成する親油性樹脂層形成工程とを含むことを特徴とする親油性積層体の製造方法。
    It is a manufacturing method of the lipophilic laminated body in any one of Claim 1 to 6,
    An uncured resin layer forming step of forming an uncured resin layer by applying an active energy ray-curable resin composition on a resin substrate;
    Adhering a transfer master having either a fine convex part or a concave to the uncured resin layer, irradiating the uncured resin layer to which the transfer master is in contact with an active energy ray to cure the uncured resin layer And a lipophilic resin layer forming step of forming a lipophilic resin layer by transferring any one of the fine protrusions and recesses.
  8.  転写原盤の微細な凸部及び凹部のいずれかが、所定のパターン形状を有するフォトレジストを保護膜として前記転写原盤の表面をエッチングすることにより形成される請求項7に記載の親油性積層体の製造方法。 The oleophilic laminate according to claim 7, wherein any one of the fine convex portion and the concave portion of the transfer master is formed by etching the surface of the transfer master using a photoresist having a predetermined pattern shape as a protective film. Production method.
  9.  転写原盤の微細な凸部及び凹部のいずれかが、レーザーを前記転写原盤の表面に照射して前記転写原盤をレーザー加工することにより形成される請求項7に記載の親油性積層体の製造方法。 The method for producing an oleophilic laminate according to claim 7, wherein any one of the fine convex portion and the concave portion of the transfer master is formed by irradiating the surface of the transfer master with a laser to process the transfer master. .
  10.  請求項1から6のいずれかに記載の親油性積層体を表面に有することを特徴とする物品。
     
    An article having the lipophilic laminate according to any one of claims 1 to 6 on its surface.
PCT/JP2014/076823 2013-10-08 2014-10-07 Lipophilic stacked body, production method therefor, and article WO2015053272A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013210883A JP2015074137A (en) 2013-10-08 2013-10-08 Lipophilic laminate and method for producing the same, and article
JP2013-210883 2013-10-08

Publications (1)

Publication Number Publication Date
WO2015053272A1 true WO2015053272A1 (en) 2015-04-16

Family

ID=52813088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/076823 WO2015053272A1 (en) 2013-10-08 2014-10-07 Lipophilic stacked body, production method therefor, and article

Country Status (2)

Country Link
JP (1) JP2015074137A (en)
WO (1) WO2015053272A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015170546A1 (en) * 2014-05-09 2015-11-12 デクセリアルズ株式会社 Lipophilic laminate, manufacturing method therefor, and article
EP4108445A4 (en) * 2020-02-17 2024-03-20 Mitsubishi Chem Corp Laminate and method for manufacturing laminate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6509976B2 (en) * 2017-08-24 2019-05-08 リソテック ジャパン株式会社 Resin sheet and tube

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005186568A (en) * 2003-12-26 2005-07-14 Fuji Photo Film Co Ltd Antireflection film, polarizing plate and liquid crystal display
JP2007011323A (en) * 2005-06-03 2007-01-18 Bridgestone Corp Antireflection film, antireflective light-transmitting window material having the antireflection film, and display filter having the antireflective light-transmitting window material
JP2008238417A (en) * 2007-03-24 2008-10-09 Daicel Chem Ind Ltd Photocurable resin composition for nano-imprint
WO2009025292A1 (en) * 2007-08-21 2009-02-26 Sony Chemical & Information Device Corporation Antireflection film
JP2013018910A (en) * 2011-07-13 2013-01-31 Asahi Kasei E-Materials Corp Resin cured product
JP2013175733A (en) * 2011-01-12 2013-09-05 Mitsubishi Rayon Co Ltd Active energy ray curable resin composition, fine concavo-convex structure and manufacturing method of fine concavo-convex structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005186568A (en) * 2003-12-26 2005-07-14 Fuji Photo Film Co Ltd Antireflection film, polarizing plate and liquid crystal display
JP2007011323A (en) * 2005-06-03 2007-01-18 Bridgestone Corp Antireflection film, antireflective light-transmitting window material having the antireflection film, and display filter having the antireflective light-transmitting window material
JP2008238417A (en) * 2007-03-24 2008-10-09 Daicel Chem Ind Ltd Photocurable resin composition for nano-imprint
WO2009025292A1 (en) * 2007-08-21 2009-02-26 Sony Chemical & Information Device Corporation Antireflection film
JP2013175733A (en) * 2011-01-12 2013-09-05 Mitsubishi Rayon Co Ltd Active energy ray curable resin composition, fine concavo-convex structure and manufacturing method of fine concavo-convex structure
JP2013018910A (en) * 2011-07-13 2013-01-31 Asahi Kasei E-Materials Corp Resin cured product

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015170546A1 (en) * 2014-05-09 2015-11-12 デクセリアルズ株式会社 Lipophilic laminate, manufacturing method therefor, and article
US10464255B2 (en) 2014-05-09 2019-11-05 Dexerials Corporation Lipophilic laminate, manufacturing method therefor, and article
EP4108445A4 (en) * 2020-02-17 2024-03-20 Mitsubishi Chem Corp Laminate and method for manufacturing laminate

Also Published As

Publication number Publication date
JP2015074137A (en) 2015-04-20

Similar Documents

Publication Publication Date Title
JP6071696B2 (en) Lipophilic laminate, method for producing the same, article, and method for producing the same
JP5629025B2 (en) Hydrophilic laminate, and production method thereof, antifouling laminate, article, production method thereof, and antifouling method
WO2016143522A1 (en) Anti-fogging and anti-fouling laminate and method for producing same, article and method for producing same, and anti-fouling method
JP6375360B2 (en) Active energy ray-curable resin composition, antifogging and antifouling laminate, article, method for producing the same, and antifouling method
WO2016017391A1 (en) Transparent laminate
WO2015170546A1 (en) Lipophilic laminate, manufacturing method therefor, and article
WO2014034629A1 (en) Antifouling body, display device, input device, electronic equipment and antifouling article
WO2014038616A1 (en) Antifouling body, display device, input device, and electronic device
JP7192927B2 (en) Micro uneven structure and joined body
WO2015053272A1 (en) Lipophilic stacked body, production method therefor, and article
JP6393479B2 (en) Hydrophilic laminate, method for producing the same, article, and method for producing the same
JP2015157875A (en) Curable composition, fine rugged structure, decorative sheet, decorative resin molded article, and production method of decorative resin molded article
JP2013195579A (en) Laminate and method for manufacturing the same, transparent base material, display device, input device and electronic apparatus
WO2015053275A1 (en) Lipophilic laminate, method for manufacturing same, and article
JP5837970B2 (en) Method for producing hydrophilic laminate, method for producing article, and antifouling method
JP5354668B2 (en) Method for producing antiglare film, method for producing antiglare film and mold
JP6343224B2 (en) Goggles and manufacturing method thereof
JP2017080992A (en) Antifogging antifouling laminate, article, method for producing the same and antifouling method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14853004

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14853004

Country of ref document: EP

Kind code of ref document: A1