WO2015047048A1 - Method for controlling bulk density of carbon nanotube agglomerate - Google Patents

Method for controlling bulk density of carbon nanotube agglomerate Download PDF

Info

Publication number
WO2015047048A1
WO2015047048A1 PCT/KR2014/009231 KR2014009231W WO2015047048A1 WO 2015047048 A1 WO2015047048 A1 WO 2015047048A1 KR 2014009231 W KR2014009231 W KR 2014009231W WO 2015047048 A1 WO2015047048 A1 WO 2015047048A1
Authority
WO
WIPO (PCT)
Prior art keywords
bulk density
carbon nanotube
catalyst
nanotube aggregate
firing temperature
Prior art date
Application number
PCT/KR2014/009231
Other languages
French (fr)
Korean (ko)
Inventor
김성진
손승용
조동현
강경연
차진명
우지희
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR20140129449A external-priority patent/KR101508101B1/en
Priority claimed from KR1020140129411A external-priority patent/KR101620194B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201480004965.6A priority Critical patent/CN104918881B/en
Priority to US14/438,816 priority patent/US9809458B2/en
Priority to JP2015545398A priority patent/JP6083624B2/en
Priority to EP14849633.4A priority patent/EP3053880B1/en
Publication of WO2015047048A1 publication Critical patent/WO2015047048A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • B01J21/185Carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/847Vanadium, niobium or tantalum or polonium
    • B01J23/8472Vanadium
    • B01J35/31
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/28Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8877Vanadium, tantalum, niobium or polonium

Definitions

  • the present invention relates to a method for producing a carbon nanotube aggregate, in particular a method for producing a bundle-type carbon nanotube aggregate having a bulk density controlled.
  • Carbon nanostructures refers to nanoscale carbon nanostructures having various shapes such as nanotubes, nanohairs, fullerenes, nanocones, nanohorns, and nanorods. High utilization in the technical field.
  • carbon nanotubes are materials in which carbon atoms arranged in a hexagonal shape are formed in a tube shape and have a diameter of about 1 to 100 nm.
  • Such carbon nanotubes exhibit non-conductor, conductor or semiconducting properties according to their unique chirality, and the carbon atoms are connected by strong covalent bonds, so that the tensile strength is about 100 times greater than steel, and flexibility and elasticity It has excellent chemical stability.
  • the carbon nanotubes include a single-walled carbon nanotube (SW carbon nanotube) composed of one layer and a diameter of about 1 nm, and composed of two layers and a diameter of about 1.4 to 3 nm.
  • SW carbon nanotube single-walled carbon nanotube
  • DW carbon nanotubes Double-walled carbon nanotubes
  • MW carbon nanotubes multi-walled carbon nanotubes
  • carbon nanotubes Due to its characteristics such as chemical stability, excellent flexibility and elasticity, carbon nanotubes are being commercialized and applied in various fields, such as aerospace, fuel cells, composites, biotechnology, medicine, electrical and electronics, and semiconductors. have. However, the primary structure of carbon nanotubes has a limit to directly control the diameter and length of the carbon nanotubes to actual specifications for industrial applications. Constraints follow.
  • the carbon nanotubes are generally manufactured by arc discharge, laser ablation, chemical vapor deposition, or the like.
  • the arc discharge method and the laser evaporation method are difficult to mass-produce, and excessive arc production cost or laser equipment purchase cost is a problem.
  • the chemical vapor deposition method has a problem that the synthesis rate is very slow in the case of using a gas phase dispersion catalyst and the particles of the carbon nanotubes synthesized are too small.
  • the space utilization efficiency in the reactor is greatly reduced.
  • the catalyst may be a supported catalyst, a co-precipitation catalyst, etc., in which the catalytically active component mainly has an oxide form, a partially or completely reduced form, or a hydroxide form, and which can be commonly used for the production of carbon nanotubes. It is preferable to use a double supported catalyst, which, when used, has a higher bulk density of the catalyst itself than the coprecipitation catalyst, and unlike the coprecipitation catalyst, there is less fineness of less than 10 microns, which prevents attrition that may occur during fluidization. This is because the possibility of fine powder generation can be reduced, and the mechanical strength of the catalyst itself is also excellent, which can stabilize the reactor operation.
  • the bulk density of the produced carbon nanotubes is advantageously at a certain level.
  • the problem to be solved by the present invention is a method for producing a carbon nanotube assembly that can provide a carbon nanotube having a bundle-type structure that can be dispersed and mixed well when compounding with a high yield while adjusting the bulk density To provide.
  • Another problem to be solved by the present invention is to provide a composite material including the carbon nanotube aggregate produced by the above method.
  • the present invention to solve the above problems,
  • the aluminum hydroxide is calcined at a first firing temperature of 100 ° C. or higher and 500 ° C. or lower to form a support.
  • It provides a method for producing a carbon nanotube aggregate having a bulk density of 10 kg / m 3 or more by adjusting the first firing temperature, the second firing temperature, the catalyst loading amount or the reaction time.
  • the present invention provides a carbon nanotube aggregate produced by the above method.
  • the present invention also provides a composite material comprising the carbon nanotube aggregate produced by the above method.
  • the method according to the present invention can adjust the bulk density of the carbon nanotube aggregate having a bundle form that can be well dispersed and mixed, it is possible to improve the physical properties of the composite material containing the carbon nanotubes.
  • the carbon nanotube aggregate produced by the method according to the present invention can be usefully used in various fields such as energy materials, functional composites, medicines, batteries, semiconductors, display devices, and manufacturing methods thereof.
  • 1 and 2 are graphs showing the relationship between the catalyst metal content and the bulk density value of the carbon nanotube aggregate prepared according to the embodiment of the present invention.
  • 3 and 4 are graphs showing the relationship between the bulk density value according to the number of moles of the catalyst metal to 1 mole of the organic acid of the carbon nanotube aggregate prepared according to the embodiment of the present invention.
  • FIG. 5 is an SEM image of the CNT aggregate obtained in Example 1.
  • Figure 6 is a graph showing the bulk density change of the CNT aggregate with the firing temperature in Example 2.
  • FIG 11 is a graph showing a bulk density change according to the catalyst metal content compared to the organic acid in Example 5
  • Figure 12 is an SEM image of the bundle-type carbon nanotube aggregate obtained in Example 5.
  • FIG. 13 is a graph showing the results of measuring surface resistance of polymer compounds containing carbon nanotube aggregates obtained in Example 6.
  • a supported catalyst obtained by firing aluminum hydroxide at a first firing temperature of 100 to 500 ° C. to form a support, carrying a catalyst metal precursor on the support, and then firing at a second firing temperature of 100 to 800 ° C.
  • a method for producing a carbon nanotube aggregate by contact reaction with a carbon-containing compound under heating the bulk density of 10 kg / m 3 or more by adjusting the first firing temperature, the second firing temperature, the catalyst loading amount, or the reaction time
  • a method for producing a carbon nanotube aggregate having is provided.
  • the bulk density of the carbon nanotube aggregate may be 100kg / m 3 or less.
  • At least a portion of the carbon nanotube aggregate may be bundled.
  • the second firing temperature may be 200 to 400 °C higher than the first firing temperature.
  • the first firing temperature is 300 to 500 °C
  • the second firing temperature may be that of 550 to 800 °C.
  • the catalyst metal may be one containing Fe, Co, Mo, V or a combination of two or more thereof.
  • the bulk density of the carbon nanotube aggregate increases as the second firing temperature is increased in the section of the second firing temperature is lower than 675 °C, the second firing in the section of the second firing temperature is higher than 675 °C As the temperature increases, the bulk density of the carbon nanotube aggregate may decrease.
  • the content of the catalyst metal may be 5 to 30% by weight based on the total weight of the catalyst.
  • the content of the catalyst metal (x 1 ) and the bulk density (y) of the carbon nanotube aggregate may satisfy the relationship of the following equation (1):
  • y is the bulk density (kg / m 3 )
  • x 1 is the catalyst metal content based on the total weight of the catalyst 10 to 30 (wt%)
  • a 1 is a constant of 4 to 6.5 determined by the reaction time
  • b 1 is a constant of -15 to -40 determined by the reaction time.
  • the bulk density of the carbon nanotube aggregate may be increased 1.2 to 1.5 times in proportion to the reaction time (hr) with the carbon-containing compound.
  • the preparation of the supported catalyst may include adding an organic acid to a catalyst metal in a molar ratio of 5: 1 to 30: 1, and adjusting the amount of organic acid to control the bulk density of the carbon nanotube aggregate.
  • the number of moles of catalyst metal (x 1 ) and the bulk density (y) of the carbon nanotube aggregate with respect to 1 mole of the organic acid may satisfy the relationship of Equation 2 below:
  • y is the bulk density (kg / m 3 )
  • x 2 is the number of moles of catalyst metal relative to 1 mole of the organic acid
  • a 2 is a constant of 1 to 1.5
  • b 2 is a constant of 20 to 40.
  • the reaction with the carbon-containing compound may be carried out in a fluidized bed reactor.
  • the present invention also provides a carbon nanotube aggregate produced by the method described above.
  • the present invention also provides a composite material comprising the carbon nanotube aggregate.
  • the composite material may have a conductivity satisfying the following relationship:
  • x 3 represents the bulk density of the carbon nanotube aggregate (kg / m 3 ), and R represents the surface resistance value (ohm / sq) of the composite material.
  • the present invention relates to a method that can control the bulk density in preparing a carbon nanotube aggregate.
  • the method according to the present invention is obtained by calcining aluminum hydroxide at a first firing temperature of 100 to 500 ° C. to form a support, carrying a catalyst metal precursor on the support, and then firing at a second firing temperature of 100 to 800 ° C.
  • the method for producing a carbon nanotube aggregate by a catalytic reaction of the supported catalyst with a carbon-containing compound under heating the bulk density of 10kg / m 3 or more by adjusting the first firing temperature, the second firing temperature, the catalyst loading amount or the reaction time It provides a method for producing a carbon nanotube aggregate having.
  • the bulk density of the carbon nanotube aggregates is changed by adjusting the first firing temperature, which is the support firing temperature, the second firing temperature, which is the catalyst firing temperature, the catalyst loading amount, and the reaction time.
  • the bulk density can be adjusted while preparing a bundle-type carbon nanotube aggregate, which is particularly advantageous in the dispersion of polymer composite materials.
  • the support precursor used to prepare the supported catalyst is a metal It supports a catalyst, and as the support precursor, an aluminum-based support precursor, for example, aluminum hydroxide (aluminum-tri-hydroxide, ATH) can be used.
  • the support precursor may be subjected to a pretreatment process, for example, drying at about 50 ° C. to about 150 ° C. for about 1 hour to about 24 hours.
  • the support precursor is first calcined to form a support.
  • the first firing temperature may be, for example, a range of 500 ° C. or lower, much lower than 800 ° C., which is known to convert aluminum hydroxide to alumina. That is, the support formed by the above process, for example, an aluminum-based support, preferably contains 30 wt% or more of AlO (OH) converted from Al (OH) 3 and does not include Al 2 O 3 . More specifically, the first firing process may include a heat treatment process performed at about 100 to 500 ° C, or at about 300 ° C to about 500 ° C.
  • the aluminum-based support when using an aluminum-based support as a support, may further include one or more selected from the group consisting of metal oxides, for example ZrO 2 , MgO and SiO 2 .
  • the aluminum-based support may have various shapes such as spherical or potato shape, and may have a porous structure, a molecular sieve structure, a honeycomb structure, and another suitable structure to have a relatively high surface area per unit mass or unit volume. There is no particular limitation on the same form.
  • the support precursor may have a particle diameter of about 20 to about 200 ⁇ m, porosity of about 0.1 to about 1.0 cm 3 / g, specific surface area less than about 1 m 2 / g.
  • the first firing process of forming the support from the support precursor may be performed for about 0.5 hours to about 10 hours, for example, about 1 hour to about 5 hours, but is not limited thereto.
  • the graphitized metal catalyst supported on the support serves to help the carbon components present in the gaseous carbon source combine with each other to form a hexagonal ring structure.
  • Such a graphitized metal catalyst may be used alone or as a main catalyst-catalyst complex catalyst.
  • the main catalyst may include iron (Fe) or cobalt (Co), and as the cocatalyst, one or more of molybdenum (Mo) and vanadium (V) may be used, and the content thereof is about 10 moles of the main catalyst. From 0.1 mole to about 10 moles, or from about 0.5 mole to about 5 moles.
  • the complex catalyst include at least one of FeCo, CoMo, CoV, FeCoMo, FeMoV, FeV and FeCoMoV.
  • the graphitization catalyst is supported on the support in the form of various precursors such as metal salts, metal oxides, or metal compounds.
  • various precursors such as metal salts, metal oxides, or metal compounds.
  • Fe salt, Fe oxide, Fe compound, Co salt, Co oxide, Co compound, Mo oxide, Mo compound, Mo salt, V oxide, V compound, V salt etc. can be illustrated.
  • Fe (NO 3 ) 2 ⁇ 6H 2 O, Fe (NO 3 ) 2 ⁇ 9H 2 O, Fe (NO 3 ) 3 , Fe (OAc) 2 , Co (NO 3 ) 2 ⁇ 6H 2 O, Co 2 (CO) 8 , [Co 2 (CO) 6 (t-BuC CH)], Co (OAc) 2 , (NH 4 ) 6 Mo 7 O 24 4H 2 O, Mo (CO) 6 , ( NH 4 ) MoS 4 , NH 4 VO 3 and the like can be used.
  • the precursor of the graphitization catalyst When the precursor of the graphitization catalyst is supported on the support in the form of a solution, and then undergoes a second firing process, it is mainly supported in the form of a metal oxide to form a supported catalyst.
  • a paste obtained by mixing the support solution obtained through the first firing process for example, a granular aluminum support with a precursor aqueous solution of a graphitization catalyst, is dried, and after drying the paste, a second firing temperature, for example, The second firing may be performed at about 100 ° C. to about 800 ° C. to obtain a supported catalyst obtained by impregnating and coating the graphite catalyst component on the surface and pores of the support.
  • the drying may be carried out by rotary evaporation of the mixture of the precursor aqueous solution and the support of the graphitization catalyst in a vacuum of about 40 to about 100 °C within a range of about 30 minutes to about 12 hours.
  • the method may comprise the step of aging the mixture by rotation or stirring at about 45 to about 80 °C before drying. For example, it may be performed for up to 5 hours, 20 minutes to 5 hours, or 1 to 4 hours.
  • the second firing process for forming the supported catalyst may be performed at a temperature of about 100 ° C to about 800 ° C, for example, about 200 ° C to about 800 ° C or 550 ° C to about 800 ° C. It is preferable that the temperature of a 2nd baking process is 200-400 degreeC higher than the temperature of a 1st baking process.
  • the bulk density of the carbon nanotube aggregate increases as the second firing temperature increases, and in a section in which the second firing temperature is higher than 675 ° C. It can be seen that the bulk density of the carbon nanotube aggregate decreases as the second firing temperature increases. It is also possible to control the bulk density using this feature.
  • the particulate matter obtained by vacuum drying the paste in the process is about 30 ⁇ m to about 150 ⁇ m, and the primary particle diameter of the granular support and the graphitization catalyst is about 10 nm to about 50 nm. It may be spherical or potato.
  • the spherical or potato shape refers to a three-dimensional shape such as a spherical and ellipsoidal shape having an aspect ratio of 1.2 or less.
  • the supported catalyst may include, for example, about 5 to about 30% by weight of the graphite catalyst based on the total weight of the supported catalyst, but is not limited thereto.
  • the bulk density of the resulting carbon nanotube aggregate increases as the supported amount of the graphitization catalyst increases.
  • the content (x 1 ) of the catalyst metal and the bulk density (y) of the carbon nanotube aggregate may satisfy the relationship of Equation 1 below:
  • y is the bulk density (kg / m 3 )
  • x 1 is the catalyst metal content based on the total weight of the catalyst 10 to 30 (wt%)
  • a 1 is a constant of 4 to 7 determined by the reaction time
  • b 1 is a constant of -15 to -40 determined by the reaction time.
  • 1 and 2 is a graph showing the bulk density according to the catalyst metal content for the carbon nanotube aggregate prepared according to an embodiment of the present invention. 1 is the same as the other conditions but the reaction time was 1 hour, Figure 2 is the case of 2 hours. As can be seen in the figure, since the catalyst metal content of the bulk density satisfies the linear proportional relationship, it is easy to control the bulk density of the resulting carbon nanotube aggregate.
  • the bulk density of the carbon nanotube aggregates also tends to increase. According to the experiments of the present inventors, the bulk density increases by 1.2 to 1.5 times as the reaction time increases by 1 hour.
  • the graphitization catalyst may have a structure in which one or more layers are coated on the surface and pores of the granular support, preferably the aluminum-based support.
  • a supported catalyst using an impregnation method, in which the bulk density of the catalyst itself is higher than that of the coprecipitation catalyst and less than 10 microns, unlike the coprecipitation catalyst, when the supported catalyst is used. It is possible to reduce the possibility of fine powder due to attrition, which can occur during fluidization process because of the small amount of fine powder. Also, the mechanical strength of the catalyst itself is excellent, which makes it possible to stabilize the reactor operation.
  • the organic acid when preparing a supported catalyst, it is possible to add the organic acid to the catalyst metal in a molar ratio of 5: 1 to 30: 1, it is also possible to control the bulk density of the carbon nanotube aggregate by adjusting the amount of the organic acid added.
  • the number of moles of catalyst metal (x 2 ) and the bulk density (y) of the carbon nanotube aggregates with respect to one mole of the organic acid may satisfy the relationship of Equation 2 below.
  • y is the bulk density (kg / m 3 )
  • x 2 is the number of moles of catalyst metal relative to 1 mole of the organic acid
  • a 2 is a constant of 1 to 1.5
  • b 2 is a constant of 20 to 40.
  • FIG. 3 and 4 are graphs showing the relationship between the bulk density according to the number of moles of the catalyst metal compared to 1 mole of the organic acid for the carbon nanotube assembly prepared in the embodiment of the present invention.
  • Figure 3 is the same condition but the reaction for 1 hour
  • Figure 4 is the result of the reaction for 2 hours.
  • the bulk density of the resulting carbon nanotube aggregates increases linearly as the number of moles of the catalyst metal increases relative to the organic acid. Using this feature, the bulk density of the result can be easily adjusted.
  • the graphitized catalyst-containing supported catalyst obtained according to the above process is contacted with a gaseous carbon source under heating conditions to form a carbon nanotube aggregate.
  • the carbon nanotube growth process will be described in more detail.
  • the carbonaceous material which is a gaseous carbon source
  • the carbonaceous material is thermally decomposed on the graphite catalyst surface.
  • Carbon nanotubes generated from the decomposed carbon-containing gas are infiltrated into the graphite catalyst and dissolved therein, and the carbon nanotubes when the penetration content exceeds the solubility limit, which is an inherent characteristic of the graphite catalyst, The nucleation of the furnace occurs to grow into carbon nanotubes.
  • the carbon nanotubes grown using the supported catalyst may have a bundle structure.
  • Such bundle-type carbon nanotubes correspond to a structure that can be dispersed and mixed well when compounding with a polymer.
  • 'bundle type' used in the present invention refers to a bundle or rope type secondary shape in which a plurality of carbon nanotubes are arranged or intertwined side by side, unless otherwise stated. do.
  • 'Non-bundle or entangled type' means a shape without a certain shape, such as a bundle or a rope shape.
  • Carbon nanotube aggregate according to the present invention obtained using the supported catalyst as described above has a bulk density of 10kg / m 3 or more, or 20 to 100 kg / m 3 , or 20 to 90 kg / m 3 , or 20 to 80 kg It may have a range of / m 3 .
  • the supported catalyst may be prepared by second firing at a temperature of 100 ° C. to 800 ° C., and the supported catalyst may be contacted with a gaseous carbon source to produce bundled carbon nanotubes.
  • Carbon nanotubes may be prepared by growing carbon nanotubes by chemical vapor phase synthesis through decomposition of a carbon source using the supported catalyst as described above.
  • the carbon nanotubes are grown on the supported catalyst by supplying a gaseous carbon source under the conditions of atmospheric pressure and high temperature Carbon nanotube aggregates can be prepared.
  • the growth of carbon nanotubes is carried out by the process of infiltrating and saturating the pyrolyzed hydrocarbons by applying high temperature heat to the graphitization catalyst as described above, and depositing carbons from the saturated graphitization catalyst to form a hexagonal ring structure. Can be.
  • the chemical vapor phase synthesis method comprises adding the supported catalyst to a horizontal fixed bed reactor or a fluidized bed reactor, the thermal decomposition temperature of the gaseous carbon source up to the melting point of the graphitization catalyst, for example from about 500 °C to about 900
  • At least one carbon source selected from saturated or unsaturated hydrocarbons having 1 to 6 carbon atoms at a temperature of about 600 ° C. to about 750 ° C., or about 660 ° C. to about 690 ° C., or the carbon source and a reducing gas (eg, It may be carried out by injecting a mixed gas of hydrogen) and a carrier gas (for example, nitrogen). Injecting a carbon source into the supported catalyst to grow the carbon nanotubes may be performed for 30 minutes to 8 hours. More preferably, a fluidized bed reactor can be used.
  • induction heating radiant heat, laser, IR, microwave, plasma, UV, surface plasmon heating, etc. can be used without limitation.
  • the carbon source used in the chemical vapor phase synthesis method may supply carbon, and any material that may exist in the gas phase at a temperature of 300 ° C. or higher may be used without particular limitation.
  • a gaseous carbonaceous substance any compound containing carbon may be used, and a compound having 6 or less carbon atoms is preferable, and more preferably a compound having 4 or less carbon atoms.
  • one or more selected from the group consisting of carbon monoxide, methane, ethane, ethylene, ethanol, acetylene, propane, propylene, butane, butadiene, pentane, pentene, cyclopentadiene, hexane, cyclohexane, benzene and toluene can be used. It is not limited.
  • the mixed gas of hydrogen and nitrogen transports a carbon source, prevents carbon nanotubes from burning at high temperatures, and helps to decompose the carbon source.
  • Such gaseous carbon source, hydrogen and nitrogen can be used in various volume ratios, for example, the volume ratio of nitrogen: gaseous carbon source: hydrogen is 1: 0.1 to 10: 0 to 10, or 1: 0.5 to 1.5: 0.5 to 1.5 Can be used in the range of.
  • the flow rate of the reaction gas may be suitably used in the range of about 100 sccm or more and about 10,000 sccm or less.
  • the carbon nanotubes are grown by a high temperature heat treatment process as described above, the carbon nanotubes are subjected to a cooling process.
  • the carbon nanotubes may be arranged more regularly by the cooling process.
  • Such cooling process may be natural cooling (removal of heat source), or cooling at a rate of about 5 ° C. to about 30 ° C. per minute.
  • a BET specific surface area of about 150 m 2 / g or more, preferably about 200 m 2 / g to about 500 m 2 / g can be obtained a bundle type carbon nanotubes.
  • the specific surface area can be measured by a conventional BET method.
  • the production method is able to obtain a carbon nanotube aggregate in a high yield, for example, it is possible to achieve a yield of about 5 times to 50 times, or about 10 times to 40 times.
  • the yield can be obtained by synthesizing the synthesized carbon nanotube aggregate at room temperature using an electronic balance.
  • the reaction yield can be calculated based on the weight of the supported catalyst used and the weight increase after the reaction based on the following formula.
  • Yield (times) of carbon nanotube aggregate (total weight g after reaction-weight g of supported catalyst used) / weight of supported catalyst used g
  • the carbon nanotube aggregate may be a bundle having a flatness of about 0.9 to about 1, and as the BET specific surface area increases, each strand diameter of the carbon nanotubes is about 2 nm to about 20 nm, preferably about 3 nm to about 8 nm low diameter.
  • the flatness may be defined by the following equation.
  • the carbon nanotube aggregate has a large BET specific surface area, that is, a low diameter, and has a bundle shape, so that it is well dispersed and mixed in another material, for example, a polymer, thereby improving physical properties when forming a composite material. Will be.
  • the composite material including the carbon nanotube aggregate according to the present invention may have a conductivity that decreases as the bulk density of the carbon nanotube aggregate increases.
  • the log density (Log R) of the bulk density (kg / m 3 ) of the carbon nanotubes and the surface resistance (ohm / sq) of the composite material may satisfy the following relationship.
  • x 3 represents the bulk density (kg / m 3 ) of the CNT aggregate
  • R represents the surface resistance (ohm / sq) of the composite material.
  • Electrode structures such as solar cells, fuel cells, lithium batteries and supercapacitors; Functional composite materials; Energy material; medicine; It can be usefully used for semiconductors such as FETs.
  • Fe metal catalyst was prepared as a graphitization catalyst. 2,424 g of Fe (NO 3 ) 2 .6H 2 O was added to 2,000 g of water as a precursor material of Fe. The prepared aqueous metal solution was observed as a clear solution without precipitation.
  • Flask A solution was added to Flask B such that 2,000 g of the support obtained by the first firing at 300 to 500 ° C. for 4 hours was converted to 30 moles of Fe in terms of 100 moles.
  • the graphitized catalyst metal precursor was aged by stirring in a 60 ° C. thermostat for 5 minutes to sufficiently support the ATH400. This was rotated at 80 rpm while maintaining the temperature, and dried after vacuum drying to measure the weight after drying to determine the water removal amount (about 14.1%).
  • the supported catalyst was prepared by second baking at 550 to 700 ° C. for 4 hours.
  • Carbon nanotube synthesis was carried out in a laboratory-scale fixed bed reactor using the prepared carbon nanotube supported catalyst prepared above.
  • the supported catalyst for synthesizing carbon nanotubes prepared in C was mounted at the center of a quartz tube having an inner diameter of 55 mm, and then heated up to 670 ° C. in a nitrogen atmosphere, and maintained therein, nitrogen, hydrogen, and ethylene gas.
  • the volume mixing ratio of was synthesized for 1 hour while flowing 180ml per minute in the same ratio to synthesize a predetermined amount of carbon nanotube aggregate.
  • FIG. 5 is an SEM image of the carbon nanotube aggregate.
  • a carbon nanotube aggregate was synthesized using the same catalyst as in Example 2 except that the first firing temperature was 400 ° C. and the second firing temperature was 675 ° C.
  • the reaction time is 1 hour and 2 hours
  • the yield and bulk density of the carbon nanotube aggregate according to the cobalt content change are as follows.
  • FIG. 7 is a graph showing the results of Table 3
  • FIG. 8 is SEM images of the prepared carbon nanotube aggregates.
  • a carbon nanotube aggregate was synthesized using the catalyst prepared in the same manner as in Example 3, except that Co content was set to 5.8 moles relative to 1 mole of citric acid.
  • the reaction time is 1 hour and 2 hours, the yield and bulk density of the carbon nanotube aggregate according to the cobalt content change are as follows.
  • FIG. 9 is a graph showing the results of Table 4, and FIG. 10 is an SEM image of the bulk density 81 of the prepared carbon nanotube aggregates.
  • y is the bulk density (kg / m 3 )
  • x 1 is the catalyst metal content based on the total weight of the catalyst 10 to 30 (wt%)
  • a 1 is a constant of 4 to 7 determined by the reaction time
  • b 1 is a constant of -15 to -40 determined by the reaction time.
  • FIG. 12 is an SEM image of the aggregates with bulk densities 51 and 73. From the above results, as the cobalt content was increased compared to the organic acid, the bulk density was increased, and it was confirmed that the bundle was well formed.
  • the bulk density according to the cobalt content compared to the organic acid satisfies the relationship of FIGS. 3 and 4. 3 is a result of a 1 hour reaction, and FIG. 4 is a result of a 2 hour reaction.
  • y is the bulk density (kg / m 3 )
  • x 2 is the number of moles of catalyst metal relative to 1 mole of the organic acid
  • a 2 is a constant of 1 to 1.5
  • b 2 is a constant of 20 to 40.
  • CNT aggregates were prepared by using a catalyst and reacting with a nitrogen: ethylene: hydrogen ratio of 5.5: 1: 1 for 2 hours on a laboratory scale fluidized bed reactor.
  • the catalyst for synthesizing CNTs was maintained in a quartz tube reactor having an internal diameter of 58 mm and a length of 1200 mm, heated up to 675 ° C. in a nitrogen atmosphere, and maintained a volume mixing ratio of nitrogen, hydrogen, and ethylene gas at 5.5: 1: 1.
  • a total amount of CNT aggregates were synthesized by synthesizing for 2 hours with a flow of 4000 ml per minute.
  • the yield and bulk density of the CNT aggregates are also shown.
  • x 3 represents the bulk density of the carbon nanotube aggregate (kg / m 3 ), and R represents the surface resistance value (ohm / sq) of the composite material.
  • carbon nanotube aggregates having a certain level of bulk density can be manufactured by changing process conditions such as catalyst content, reaction time, firing temperature, and the like.
  • process conditions such as catalyst content, reaction time, firing temperature, and the like.
  • bulk density it is possible to control physical properties such as conductivity of the carbon nanotube composite.
  • the method according to the present invention can adjust the bulk density of the carbon nanotube aggregate having a bundle form that can be well dispersed and mixed, it is possible to improve the physical properties of the composite material containing the carbon nanotubes.
  • the carbon nanotube aggregate produced by the method according to the present invention can be usefully used in various fields such as energy materials, functional composites, medicines, batteries, semiconductors, display devices, and manufacturing methods thereof.

Abstract

Provided is a method allowing the bulk density to be controlled in the production of carbon nanotube agglomerates. The bulk density of bundle-type carbon nanotube agglomerates can be easily controlled according to the present invention, and thus can be effectively utilized in a variety of fields.

Description

탄소나노튜브 집합체의 벌크 밀도 조절 방법Bulk density control method of carbon nanotube aggregate
본 발명은 탄소나노튜브 집합체 제조방법, 특히 벌크밀도가 조절된 번들형 탄소나노튜브 집합체를 제조할 수 있는 방법에 관한 것이다.The present invention relates to a method for producing a carbon nanotube aggregate, in particular a method for producing a bundle-type carbon nanotube aggregate having a bulk density controlled.
탄소나노구조체(carbon nanostructures, CNS)는 나노튜브, 나노헤어, 풀러렌, 나노콘, 나노호른, 나노로드 등 다양한 형상을 갖는 나노크기의 탄소나노구조체를 지칭하며, 여러 가지 우수한 성질을 보유하기 때문에 다양한 기술분야에서 활용도가 높다. Carbon nanostructures (CNS) refers to nanoscale carbon nanostructures having various shapes such as nanotubes, nanohairs, fullerenes, nanocones, nanohorns, and nanorods. High utilization in the technical field.
그 중에서도 특히 탄소나노튜브(carbon nanotube, 탄소나노튜브)는 6각형으로 배열된 탄소원자들이 튜브 형태를 이루고 있는 물질로, 직경이 대략 1 내지 100 nm로 이루어진다. 이와 같은 탄소나노튜브는 특유의 나선성(chirality)에 따라 부도체, 전도체 또는 반도체 성질을 나타내며, 탄소 원자들이 강력한 공유결합으로 연결되어 있어 인장강도가 강철보다 대략 100 배 이상 크고, 유연성과 탄성 등이 뛰어나며, 화학적으로도 안정한 특성을 가진다.In particular, carbon nanotubes (carbon nanotubes) are materials in which carbon atoms arranged in a hexagonal shape are formed in a tube shape and have a diameter of about 1 to 100 nm. Such carbon nanotubes exhibit non-conductor, conductor or semiconducting properties according to their unique chirality, and the carbon atoms are connected by strong covalent bonds, so that the tensile strength is about 100 times greater than steel, and flexibility and elasticity It has excellent chemical stability.
상기 탄소나노튜브의 종류에는, 한 겹으로 구성되고 직경이 약 1 nm인 단일벽 탄소나노튜브 (single-walled carbon nanotube, SW탄소나노튜브), 두 겹으로 구성되고 직경이 약 1.4 내지 3 nm인 이중벽 탄소나노튜브 (double-walled carbon nanotube, DW 탄소나노튜브) 및 셋 이상의 복수의 겹으로 구성되고 직경이 약 5 내지 100 nm인 다중벽 탄소나노튜브 (multi-walled carbon nanotube, MW 탄소나노튜브)가 있다.The carbon nanotubes include a single-walled carbon nanotube (SW carbon nanotube) composed of one layer and a diameter of about 1 nm, and composed of two layers and a diameter of about 1.4 to 3 nm. Double-walled carbon nanotubes (DW carbon nanotubes) and multi-walled carbon nanotubes (MW carbon nanotubes) consisting of three or more layers and having a diameter of about 5 to 100 nm. There is.
화학적 안정성, 우수한 유연성과 탄성 등과 같은 특징으로 인해, 탄소나노튜브는 다양한 분야, 예를 들어 우주항공, 연료전지, 복합재료, 생명공학, 의약, 전기전자, 반도체 등에서 그 제품화 및 응용 연구가 진행되고 있다. 하지만, 탄소나노튜브의 1차 구조는 그 직경이나 길이를 산업적인 응용이 가능한 실제의 규격에 이르도록 직접적으로 조절하는데 한계가 있어, 탄소나노튜브의 뛰어난 물성에도 불구하고 산업상 응용이나 적용에 많은 제약이 따른다.Due to its characteristics such as chemical stability, excellent flexibility and elasticity, carbon nanotubes are being commercialized and applied in various fields, such as aerospace, fuel cells, composites, biotechnology, medicine, electrical and electronics, and semiconductors. have. However, the primary structure of carbon nanotubes has a limit to directly control the diameter and length of the carbon nanotubes to actual specifications for industrial applications. Constraints follow.
상기 탄소나노튜브는 일반적으로 아크 방전법(arc discharge), 레이저 증발법(laser ablation), 화학 기상 증착법(chemical vapor deposition) 등에 의하여 제조된다. 그러나 상기 아크 방전법 및 레이저 증발법은 대량 생산이 어렵고, 과다한 아크 생산비용 또는 레이저 장비 구입비용이 문제된다. 또한 상기 화학 기상 증착법은 기상 분산 촉매를 사용하는 방법인 경우 합성속도가 매우 더디고 합성되는 탄소나노튜브의 입자가 너무 작은 문제가 있으며, 담지 촉매를 사용하는 방법인 경우 반응기 내의 공간 이용 효율이 크게 떨어져 탄소나노튜브의 대량 생산에 한계가 있다. 따라서, 화학 기상 증착법에 있어서 탄소나노튜브의 수율을 높이기 위하여 촉매, 반응 조건 등에 대한 연구가 계속되고 있다.The carbon nanotubes are generally manufactured by arc discharge, laser ablation, chemical vapor deposition, or the like. However, the arc discharge method and the laser evaporation method are difficult to mass-produce, and excessive arc production cost or laser equipment purchase cost is a problem. In addition, the chemical vapor deposition method has a problem that the synthesis rate is very slow in the case of using a gas phase dispersion catalyst and the particles of the carbon nanotubes synthesized are too small. In the case of using the supported catalyst, the space utilization efficiency in the reactor is greatly reduced. There is a limit to mass production of carbon nanotubes. Therefore, in order to increase the yield of carbon nanotubes in the chemical vapor deposition method, studies on catalysts, reaction conditions, and the like continue.
상기 촉매는 주로 촉매활성적인 성분이 산화물 형태, 부분 또는 완전 환원된 형태, 또는 수산화물 형태를 갖고, 통상적으로 탄소나노튜브 제조에 사용될 수 있는 담지 촉매, 공침 촉매 등일 수 있다. 이중 담지 촉매를 사용하는 것이 바람직한데, 이는 담지 촉매가 사용되는 경우 촉매 자체의 벌크 밀도가 공침 촉매에 비해 높고 공침 촉매와 달리 10 마이크론 이하의 미분이 적어 유동화 과정에서 발생할 수 있는 마모(attrition)에 의한 미분발생 가능성을 줄일 수 있으며, 촉매 자체의 기계적 강도도 우수하여 반응기 운전을 안정하게 할 수 있는 효과를 갖기 때문이다. The catalyst may be a supported catalyst, a co-precipitation catalyst, etc., in which the catalytically active component mainly has an oxide form, a partially or completely reduced form, or a hydroxide form, and which can be commonly used for the production of carbon nanotubes. It is preferable to use a double supported catalyst, which, when used, has a higher bulk density of the catalyst itself than the coprecipitation catalyst, and unlike the coprecipitation catalyst, there is less fineness of less than 10 microns, which prevents attrition that may occur during fluidization. This is because the possibility of fine powder generation can be reduced, and the mechanical strength of the catalyst itself is also excellent, which can stabilize the reactor operation.
특히 유동층 반응기를 이용하여 탄소나노튜브를 제조하는 공정에서는 생성되는 탄소나노튜브의 벌크밀도가 일정 수준인 것이 유리하다. In particular, in the process of producing carbon nanotubes using a fluidized bed reactor, the bulk density of the produced carbon nanotubes is advantageously at a certain level.
또한, 한편 탄소나노튜브를 고분자와 컴파운딩하여 얻어지는 복합소재의 물성을 개선하기 위해서는 직경이 작고, 컴파운딩시 분산 및 혼합이 잘 될 수 있는 번들형 탄소나노튜브가 요구된다.In addition, in order to improve the physical properties of the composite material obtained by compounding carbon nanotubes with a polymer, a bundle-type carbon nanotube having a small diameter and which can be well dispersed and mixed during compounding is required.
본 발명이 해결하고자 하는 과제는, 고분자와 컴파운딩시 분산 및 혼합이 잘 이루어질 수 있는 번들형 구조를 갖는 탄소나노튜브를 벌크밀도를 조절하면서 높은 수율로 제공할 수 있는 탄소나노튜브 집합체 제조방법을 제공하는 것이다.The problem to be solved by the present invention is a method for producing a carbon nanotube assembly that can provide a carbon nanotube having a bundle-type structure that can be dispersed and mixed well when compounding with a high yield while adjusting the bulk density To provide.
본 발명이 해결하고자 하는 또 다른 과제는 상기 방법에 의해 제조된 탄소나노튜브 집합체를 포함하는 복합 소재를 제공하는 것이다.Another problem to be solved by the present invention is to provide a composite material including the carbon nanotube aggregate produced by the above method.
상기 과제를 해결하기 위하여 본 발명은,The present invention to solve the above problems,
수산화알루미늄을 100℃ 이상 500℃ 이하의 제1 소성온도에서 소성하여 지지체를 형성하고, The aluminum hydroxide is calcined at a first firing temperature of 100 ° C. or higher and 500 ° C. or lower to form a support.
상기 지지체에 촉매 금속 전구체를 담지시킨 후 100℃ 이상 800℃ 이하의 제2 소성온도에서 소성하여 얻은 담지 촉매를 탄소 함유 화합물과 가열 하에 접촉 반응시켜 탄소나노튜브 집합체를 제조하는 방법에 있어서, In the method of preparing a carbon nanotube aggregate by carrying out a catalytic reaction of the catalyst metal precursor on the support and then carried by contacting the supported catalyst obtained by firing at a second firing temperature of 100 ° C or more and 800 ° C or less under heating with a carbon-containing compound,
상기 제1 소성온도, 제2 소성온도, 촉매 담지량 또는 반응시간을 조절하여 10 kg/m3 이상의 벌크 밀도를 갖는 탄소나노튜브 집합체를 제조하는 방법을 제공한다. It provides a method for producing a carbon nanotube aggregate having a bulk density of 10 kg / m 3 or more by adjusting the first firing temperature, the second firing temperature, the catalyst loading amount or the reaction time.
또한, 본 발명은 상기 방법에 의해 제조된 탄소나노튜브 집합체를 제공한다.In addition, the present invention provides a carbon nanotube aggregate produced by the above method.
또한, 본 발명은 상기 방법에 의해 제조된 탄소나노튜브 집합체를 포함하는 복합소재를 제공한다.The present invention also provides a composite material comprising the carbon nanotube aggregate produced by the above method.
본 발명에 따른 방법은 분산 및 혼합이 잘 될 수 있는 번들형태를 가진 탄소나노튜브 집합체의 벌크밀도를 조절할 수 있으므로, 상기 탄소나노튜브를 포함하는 복합소재의 물성을 개선하는 것이 가능해진다. 그 결과 본 발명에 따른 방법으로 제조된 탄소나노튜브 집합체는 에너지 소재, 기능성 복합재, 의약, 전지, 반도체, 표시소자 및 이들의 제조방법 등 다양한 분야에 유용하게 사용할 수 있다.The method according to the present invention can adjust the bulk density of the carbon nanotube aggregate having a bundle form that can be well dispersed and mixed, it is possible to improve the physical properties of the composite material containing the carbon nanotubes. As a result, the carbon nanotube aggregate produced by the method according to the present invention can be usefully used in various fields such as energy materials, functional composites, medicines, batteries, semiconductors, display devices, and manufacturing methods thereof.
도 1 및 도 2는 본 발명의 실시예에 따라 제조된 탄소나노튜브 집합체의 촉매금속 함량과 벌크밀도 값의 관계를 나타내는 그래프이다. 1 and 2 are graphs showing the relationship between the catalyst metal content and the bulk density value of the carbon nanotube aggregate prepared according to the embodiment of the present invention.
도 3 및 도 4는 본 발명의 실시예에 따라 제조된 탄소나노튜브 집합체의 유기산 1몰 대비 촉매금속 몰수에 따른 벌크밀도 값의 관계를 나타내는 그래프이다.3 and 4 are graphs showing the relationship between the bulk density value according to the number of moles of the catalyst metal to 1 mole of the organic acid of the carbon nanotube aggregate prepared according to the embodiment of the present invention.
도 5는 실시예 1에서 얻은 CNT 집합체의 SEM 이미지이다. 5 is an SEM image of the CNT aggregate obtained in Example 1. FIG.
도 6은 실시예 2에서 소성온도에 따른 CNT 집합체의 벌크밀도 변화를 나타내는 그래프이다. Figure 6 is a graph showing the bulk density change of the CNT aggregate with the firing temperature in Example 2.
도 7 및 도 9는 각각 실시예 3 및 실시예 4에서 촉매 금속 함량에 따른 벌크밀도 변화를 나타내는 그래프이다. 7 and 9 are graphs showing bulk density changes according to catalyst metal contents in Examples 3 and 4, respectively.
도 8 및 도 10은 각각 실시예 3 및 실시예 4에서 얻은 CNT 집합체의 SEM 이미지이다. 8 and 10 are SEM images of the CNT aggregates obtained in Examples 3 and 4, respectively.
도 11은 실시예 5에서 유기산 대비 촉매금속 함량에 따른 벌크밀도 변화를 나타내는 그래프이고, 도 12는 실시예 5에서 얻어진 번들형 탄소나노튜브 집합체의 SEM 이미지이다. 11 is a graph showing a bulk density change according to the catalyst metal content compared to the organic acid in Example 5, Figure 12 is an SEM image of the bundle-type carbon nanotube aggregate obtained in Example 5.
도 13은 실시예 6에서 얻어진 탄소나노튜브 집합체를 함유하는 고분자 컴파운드의 표면저항을 측정한 결과를 나타내는 그래프이다.FIG. 13 is a graph showing the results of measuring surface resistance of polymer compounds containing carbon nanotube aggregates obtained in Example 6. FIG.
이하 본 발명을 구체적으로 설명한다.Hereinafter, the present invention will be described in detail.
본 발명에 따르면, 수산화알루미늄을 100 내지 500℃의 제1 소성온도에서 소성하여 지지체를 형성하고, 상기 지지체에 촉매 금속 전구체를 담지시킨 후 100 내지 800℃의 제2 소성온도에서 소성하여 얻은 담지 촉매를 탄소 함유 화합물과 가열 하에 접촉 반응시켜 탄소나노튜브 집합체를 제조하는 방법에 있어서, 상기 제1 소성온도, 제2 소성온도, 촉매 담지량, 또는 반응시간을 조절하여 10 kg/m3 이상의 벌크 밀도를 갖는 탄소나노튜브 집합체를 제조하는 방법이 제공된다. According to the present invention, a supported catalyst obtained by firing aluminum hydroxide at a first firing temperature of 100 to 500 ° C. to form a support, carrying a catalyst metal precursor on the support, and then firing at a second firing temperature of 100 to 800 ° C. In a method for producing a carbon nanotube aggregate by contact reaction with a carbon-containing compound under heating, the bulk density of 10 kg / m 3 or more by adjusting the first firing temperature, the second firing temperature, the catalyst loading amount, or the reaction time A method for producing a carbon nanotube aggregate having is provided.
일 구현예에 따르면, 상기 탄소나노튜브 집합체의 벌크 밀도는 100kg/m3 이하일 수 있다.According to one embodiment, the bulk density of the carbon nanotube aggregate may be 100kg / m 3 or less.
일 구현예에 따르면, 상기 탄소나노튜브 집합체의 적어도 일부가 번들형일 수 있다. According to one embodiment, at least a portion of the carbon nanotube aggregate may be bundled.
일 구현예에 따르면, 상기 제2 소성온도는 상기 제1 소성온도보다 200 내지 400℃ 높은 것일 수 있다.According to one embodiment, the second firing temperature may be 200 to 400 ℃ higher than the first firing temperature.
일 구현예에 따르면, 상기 제1 소성온도는 300 내지 500℃ 이고, 상기 제2 소성온도는 550 내지 800℃ 인 것일 수 있다.  According to one embodiment, the first firing temperature is 300 to 500 ℃, the second firing temperature may be that of 550 to 800 ℃.
일 구현예에 따르면, 상기 촉매 금속이 Fe, Co, Mo, V 또는 이들 중 둘 이상의 조합을 포함하는 것일 수 있다. According to one embodiment, the catalyst metal may be one containing Fe, Co, Mo, V or a combination of two or more thereof.
일 구현예에 따르면, 상기 제2 소성온도가 675℃ 보다 낮은 구간에서는 제2 소성온도가 높아질수록 탄소나노튜브 집합체의 벌크밀도가 증가하고, 제2 소성온도가 675℃ 보다 높은 구간에서는 제2 소성온도가 증가함에 따라 탄소나노튜브 집합체의 벌크밀도가 감소하는 것일 수 있다. According to one embodiment, the bulk density of the carbon nanotube aggregate increases as the second firing temperature is increased in the section of the second firing temperature is lower than 675 ℃, the second firing in the section of the second firing temperature is higher than 675 ℃ As the temperature increases, the bulk density of the carbon nanotube aggregate may decrease.
일 구현예에 따르면, 상기 촉매 금속의 함량이 촉매 총 중량을 기준으로 5 내지 30중량%인 것일 수 있다. According to one embodiment, the content of the catalyst metal may be 5 to 30% by weight based on the total weight of the catalyst.
일 구현예에 따르면, 상기 촉매 금속의 함량(x1)와 탄소나노튜브 집합체의 벌크밀도(y)가 하기 수학식 1의 관계를 만족하는 것일 수 있다: According to one embodiment, the content of the catalyst metal (x 1 ) and the bulk density (y) of the carbon nanotube aggregate may satisfy the relationship of the following equation (1):
[수학식 1][Equation 1]
y = a1x1 + b1 y = a 1 x 1 + b 1
상기 식 중, y는 벌크밀도(kg/m3), x1은 촉매 총중량을 기준으로 한 촉매금속 함량으로서 10 내지 30(wt%), a1은 반응시간에 따라 결정되는 4 내지 6.5의 상수, b1은 반응시간에 따라 결정되는 -15 내지 -40 의 상수임. In the above formula, y is the bulk density (kg / m 3 ), x 1 is the catalyst metal content based on the total weight of the catalyst 10 to 30 (wt%), a 1 is a constant of 4 to 6.5 determined by the reaction time , b 1 is a constant of -15 to -40 determined by the reaction time.
일 구현예에 따르면, 상기 탄소 함유 화합물과의 반응시간(hr)에 비례하여 탄소나노튜브 집합체의 벌크밀도가 1.2 내지 1.5배 증가하는 것일 수 있다. According to one embodiment, the bulk density of the carbon nanotube aggregate may be increased 1.2 to 1.5 times in proportion to the reaction time (hr) with the carbon-containing compound.
일 구현예에 따르면, 상기 담지 촉매 제조시, 촉매 금속 대비 유기산을 5:1 내지 30:1의 몰비로 첨가하며, 유기산 첨가량을 조절하여 탄소나노튜브 집합체의 벌크밀도를 조절하는 것을 포함할 수 있다. According to one embodiment, the preparation of the supported catalyst may include adding an organic acid to a catalyst metal in a molar ratio of 5: 1 to 30: 1, and adjusting the amount of organic acid to control the bulk density of the carbon nanotube aggregate. .
일 구현예에 따르면, 유기산 1몰 대비 촉매 금속 몰수(x1)와 탄소나노튜브 집합체의 벌크밀도(y)가 하기 수학식 2의 관계를 만족하는 것일 수 있다: According to one embodiment, the number of moles of catalyst metal (x 1 ) and the bulk density (y) of the carbon nanotube aggregate with respect to 1 mole of the organic acid may satisfy the relationship of Equation 2 below:
[수학식 2][Equation 2]
y = a2x2 + b2 y = a 2 x 2 + b 2
상기 식 중, y는 벌크밀도(kg/m3), x2는 유기산 1몰 대비 촉매 금속 몰수, a2는 1 내지 1.5의 상수, b2는 20 내지 40의 상수임.Wherein y is the bulk density (kg / m 3 ), x 2 is the number of moles of catalyst metal relative to 1 mole of the organic acid, a 2 is a constant of 1 to 1.5, and b 2 is a constant of 20 to 40.
일 구현예에 따르면, 상기 탄소 함유 화합물과의 반응은 유동층 반응기에서 실시되는 것일 수 있다.According to one embodiment, the reaction with the carbon-containing compound may be carried out in a fluidized bed reactor.
본 발명은 또한 전술한 방법에 의해 제조되는 탄소나노튜브 집합체를 제공한다. The present invention also provides a carbon nanotube aggregate produced by the method described above.
본 발명은 또한 상기 탄소나노튜브 집합체를 포함하는 복합소재를 제공한다.The present invention also provides a composite material comprising the carbon nanotube aggregate.
상기 복합소재는 하기 관계식을 만족하는 전도성을 가질 수 있다: The composite material may have a conductivity satisfying the following relationship:
[수학식 3][Equation 3]
0.1x3 + 1≤ Log R ≤ 0.1x3 + 40.1x 3 + 1≤ Log R ≤ 0.1x 3 + 4
상기 식에서 x3는 탄소나노튜브 집합체의 벌크밀도(kg/m3), R은 복합소재의 표면저항값(ohm/sq)을 나타낸다. In the above formula, x 3 represents the bulk density of the carbon nanotube aggregate (kg / m 3 ), and R represents the surface resistance value (ohm / sq) of the composite material.
이하 본 발명의 구현예들을 보다 상세히 설명한다.Hereinafter, embodiments of the present invention will be described in more detail.
본 발명은 탄소나노튜브 집합체를 제조함에 있어서 벌크밀도를 조절할 수 있는 방법에 관한 것이다. The present invention relates to a method that can control the bulk density in preparing a carbon nanotube aggregate.
본 발명에 따른 방법은, 수산화알루미늄을 100 내지 500℃의 제1 소성온도에서 소성하여 지지체를 형성하고, 상기 지지체에 촉매 금속 전구체를 담지시킨 후 100 내지 800℃의 제2 소성온도에서 소성하여 얻은 담지 촉매를 탄소 함유 화합물과 가열 하에 접촉 반응시켜 탄소나노튜브 집합체를 제조하는 방법에 있어서, 상기 제1 소성온도, 제2 소성온도, 촉매 담지량 또는 반응시간을 조절하여 10kg/m3 이상의 벌크 밀도를 갖는 탄소나노튜브 집합체를 제조하는 방법을 제공한다. The method according to the present invention is obtained by calcining aluminum hydroxide at a first firing temperature of 100 to 500 ° C. to form a support, carrying a catalyst metal precursor on the support, and then firing at a second firing temperature of 100 to 800 ° C. In the method for producing a carbon nanotube aggregate by a catalytic reaction of the supported catalyst with a carbon-containing compound under heating, the bulk density of 10kg / m 3 or more by adjusting the first firing temperature, the second firing temperature, the catalyst loading amount or the reaction time It provides a method for producing a carbon nanotube aggregate having.
본 발명자들의 연구에 따르면, 지지체 소성 온도인 제1 소성 온도, 촉매 소성온도인 제2 소성온도, 촉매 담지량, 반응시간 등을 조절하면 탄소나노튜브 집합체의 벌크 밀도가 달라지는 것을 알 수 있었다. 본 발명에 의한 방법은 특히 고분자 복합소재 제조시 분산에 유리한 번들형 탄소나노튜브 집합체를 제조하면서 벌크밀도를 조절할 수 있다. According to the study of the present inventors, it was found that the bulk density of the carbon nanotube aggregates is changed by adjusting the first firing temperature, which is the support firing temperature, the second firing temperature, which is the catalyst firing temperature, the catalyst loading amount, and the reaction time. According to the method of the present invention, the bulk density can be adjusted while preparing a bundle-type carbon nanotube aggregate, which is particularly advantageous in the dispersion of polymer composite materials.
상기 담지 촉매 제조에 사용되는 지지체 전구체는 금속 촉매를 담지하는 역할을 수행하며, 이와 같은 지지체 전구체로서는 알루미늄계 지지체 전구체, 예를 들어 수산화알루미늄 (aluminum-tri-hydroxide, ATH)을 사용할 수 있다. 상기 지지체 전구체는 예를 들어 약 50℃ 내지 약 150℃에서 약 1 시간 내지 약 24 시간 동안 건조시키는 전처리 공정을 거칠 수 있다.The support precursor used to prepare the supported catalyst is a metal It supports a catalyst, and as the support precursor, an aluminum-based support precursor, for example, aluminum hydroxide (aluminum-tri-hydroxide, ATH) can be used. The support precursor may be subjected to a pretreatment process, for example, drying at about 50 ° C. to about 150 ° C. for about 1 hour to about 24 hours.
상기 지지체 전구체를 제1 소성하여 지지체를 형성하게 되는 바, 이때 제1 소성 온도로서는 예를 들어 수산화알루미늄이 알루미나로 전환되는 것으로 알려진 800℃ 보다 훨씬 낮은 500℃ 이하의 범위를 사용할 수 있다. 즉 상기와 같은 공정에 의해 형성되는 지지체, 예를 들어 알루미늄계 지지체는 Al(OH)3에서 전환된 AlO(OH)를 30 중량% 이상 포함하고, Al2O3는 포함하지 않는 것이 바람직하다. 보다 구체적으로 상기 제1 소성 공정은 약 100 내지 500℃, 또는 약 300℃ 내지 약 500℃에서 수행하는 열처리 공정을 포함할 수 있다. The support precursor is first calcined to form a support. In this case, the first firing temperature may be, for example, a range of 500 ° C. or lower, much lower than 800 ° C., which is known to convert aluminum hydroxide to alumina. That is, the support formed by the above process, for example, an aluminum-based support, preferably contains 30 wt% or more of AlO (OH) converted from Al (OH) 3 and does not include Al 2 O 3 . More specifically, the first firing process may include a heat treatment process performed at about 100 to 500 ° C, or at about 300 ° C to about 500 ° C.
한편, 지지체로서 알루미늄계 지지체를 사용하는 경우, 알루미늄계 지지체에 금속 산화물, 예를 들어 ZrO2, MgO 및 SiO2로 이루어지는 그룹에서 선택되는 하나 이상을 추가로 포함시킬 수 있다. 상기 알루미늄계 지지체는 구형 또는 포테이토형의 형상 등의 다양한 형태를 가질 수 있으며, 단위 질량 또는 단위 부피당 비교적 높은 표면적을 갖도록 다공성 구조, 분자체 구조, 벌집 구조, 또 다른 적합한 구조를 가질 수 있으며, 이와 같은 형태에 특별한 한정은 없다.On the other hand, when using an aluminum-based support as a support, the aluminum-based support may further include one or more selected from the group consisting of metal oxides, for example ZrO 2 , MgO and SiO 2 . The aluminum-based support may have various shapes such as spherical or potato shape, and may have a porous structure, a molecular sieve structure, a honeycomb structure, and another suitable structure to have a relatively high surface area per unit mass or unit volume. There is no particular limitation on the same form.
일 구현예에 따르면, 상기 지지체 전구체는 입경 약 20 내지 약 200 ㎛, 기공율 약 0.1 내지 약 1.0 cm3/g, 비표면적 약 1 m2/g 미만인 것일 수 있다.According to one embodiment, the support precursor may have a particle diameter of about 20 to about 200 ㎛, porosity of about 0.1 to about 1.0 cm 3 / g, specific surface area less than about 1 m 2 / g.
지지체 전구체로부터 지지체를 형성하는 상기 제1 소성 공정은 약 0.5 시간 내지 약 10 시간, 예를 들어 약 1시간 내지 약 5시간 동안 수행할 수 있으나, 이에 한정되는 것은 아니다.The first firing process of forming the support from the support precursor may be performed for about 0.5 hours to about 10 hours, for example, about 1 hour to about 5 hours, but is not limited thereto.
상기 지지체에 담지되는 그래파이트화 금속 촉매는 기상 탄소공급원에 존재하는 탄소성분들이 서로 결합하여 6각형의 고리 구조를 형성하도록 도와주는 역할을 수행하게 된다.The graphitized metal catalyst supported on the support serves to help the carbon components present in the gaseous carbon source combine with each other to form a hexagonal ring structure.
이와 같은 그래파이트화 금속 촉매는 주촉매 단독으로 사용하거나, 혹은 주촉매-조촉매의 복합 촉매를 사용할 수 있다. 상기 주촉매로서는 철(Fe) 또는 코발트(Co)를 포함할 수 있으며, 상기 조촉매로서는 몰리브덴(Mo) 및 바나듐(V) 중 하나 이상을 사용할 수 있으며, 그 함량은 주촉매 10몰에 대하여 약 0.1몰 내지 약 10몰, 또는 약 0.5몰 내지 약 5몰 범위를 사용할 수 있다. 상기 복합촉매의 예로서는 FeCo, CoMo, CoV, FeCoMo, FeMoV, FeV 및 FeCoMoV 중 하나 이상을 예로 들 수 있다.Such a graphitized metal catalyst may be used alone or as a main catalyst-catalyst complex catalyst. The main catalyst may include iron (Fe) or cobalt (Co), and as the cocatalyst, one or more of molybdenum (Mo) and vanadium (V) may be used, and the content thereof is about 10 moles of the main catalyst. From 0.1 mole to about 10 moles, or from about 0.5 mole to about 5 moles. Examples of the complex catalyst include at least one of FeCo, CoMo, CoV, FeCoMo, FeMoV, FeV and FeCoMoV.
상기 그래파이트화 촉매는 금속염, 금속산화물, 또는 금속화합물 등의 다양한 전구체 형태로 상기 지지체에 담지된다. 예를 들어, 상기 그래파이트화 촉매의 전구체로서는 물에 용해될 수 있는 Fe염, Fe산화물, Fe화합물, Co염, Co산화물, Co화합물, Mo산화물, Mo화합물, Mo염, V산화물, V화합물, V염 등을 예시할 수 있다. 또 다른 일례로 Fe(NO3)2·6H2O, Fe(NO3)2·9H2O, Fe(NO3)3, Fe(OAc)2, Co(NO3)2·6H2O, Co2(CO)8, [Co2(CO)6(t-BuC=CH)], Co(OAc)2, (NH4)6Mo7O24·4H2O, Mo(CO)6, (NH4)MoS4, NH4VO3 등을 사용할 수 있다.The graphitization catalyst is supported on the support in the form of various precursors such as metal salts, metal oxides, or metal compounds. For example, as the precursor of the graphitization catalyst, Fe salt, Fe oxide, Fe compound, Co salt, Co oxide, Co compound, Mo oxide, Mo compound, Mo salt, V oxide, V compound, V salt etc. can be illustrated. Another example is Fe (NO 3 ) 2 · 6H 2 O, Fe (NO 3 ) 2 · 9H 2 O, Fe (NO 3 ) 3 , Fe (OAc) 2 , Co (NO 3 ) 2 · 6H 2 O, Co 2 (CO) 8 , [Co 2 (CO) 6 (t-BuC = CH)], Co (OAc) 2 , (NH 4 ) 6 Mo 7 O 24 4H 2 O, Mo (CO) 6 , ( NH 4 ) MoS 4 , NH 4 VO 3 and the like can be used.
상기 그래파이트화 촉매의 전구체가 용액의 형태로 상기 지지체에 담지된 후, 제2 소성 공정을 거치게 되면, 주로 금속 산화물의 형태로 담지되어 담지 촉매를 형성할 수 있게 된다.When the precursor of the graphitization catalyst is supported on the support in the form of a solution, and then undergoes a second firing process, it is mainly supported in the form of a metal oxide to form a supported catalyst.
예를 들어, 그래파이트화 촉매의 전구체 수용액에 상기 제1 소성 공정을 통해 얻어진 지지체, 예를 들어 입상의 알루미늄계 지지체를 혼합하여 페이스트를 형성하고, 이 페이스트를 건조한 후 제2 소성 온도, 예를 들어 약 100℃ 내지 약 800℃ 하에 제2 소성시켜, 상기 지지체의 표면 및 세공에 상기 그래파이트화 촉매 성분을 함침 코팅시킨 담지 촉매를 수득할 수 있다.For example, a paste obtained by mixing the support solution obtained through the first firing process, for example, a granular aluminum support with a precursor aqueous solution of a graphitization catalyst, is dried, and after drying the paste, a second firing temperature, for example, The second firing may be performed at about 100 ° C. to about 800 ° C. to obtain a supported catalyst obtained by impregnating and coating the graphite catalyst component on the surface and pores of the support.
일 구현예에 따르면, 상기 건조는 상기 그래파이트화 촉매의 전구체 수용액 및 지지체의 혼합물을 약 40 내지 약 100℃ 온도 범위의 진공 하에 약 30분 내지 약 12시간 범위 내에서 회전 증발시켜 수행될 수 있다.According to one embodiment, the drying may be carried out by rotary evaporation of the mixture of the precursor aqueous solution and the support of the graphitization catalyst in a vacuum of about 40 to about 100 ℃ within a range of about 30 minutes to about 12 hours.
일 구현예에 따르면, 상기 건조 전 약 45 내지 약 80℃ 하에 회전 또는 교반에 의해 상기 혼합물을 숙성시키는 단계를 포함할 수 있다. 일례로 최대 5시간, 20분 내지 5시간, 혹은 1 내지 4시간 동안 수행할 수 있다. According to one embodiment, the method may comprise the step of aging the mixture by rotation or stirring at about 45 to about 80 ℃ before drying. For example, it may be performed for up to 5 hours, 20 minutes to 5 hours, or 1 to 4 hours.
상기 담지 촉매를 형성하는 제2 소성 공정은 약 100℃ 내지 약 800℃, 예를 들어 약 200℃ 내지 약 800℃ 또는 550℃ 내지 약 800℃의 온도에서 수행될 수 있다. 제2 소성 공정의 온도는 제1 소성공정의 온도보다 200 내지 400℃ 높은 것이 바람직하다. The second firing process for forming the supported catalyst may be performed at a temperature of about 100 ° C to about 800 ° C, for example, about 200 ° C to about 800 ° C or 550 ° C to about 800 ° C. It is preferable that the temperature of a 2nd baking process is 200-400 degreeC higher than the temperature of a 1st baking process.
본 발명의 일 실시예에 따르면, 상기 제2 소성온도가 675℃ 보다 낮은 구간에서는 제2 소성온도가 높아질수록 탄소나노튜브 집합체의 벌크밀도가 증가하고, 제2 소성온도가 675℃ 보다 높은 구간에서는 제2 소성온도가 증가함에 따라 탄소나노튜브 집합체의 벌크밀도가 감소하는 것을 알 수 있는바, 이러한 특징을 이용하여 벌크밀도를 조절하는 것도 가능하다. According to an embodiment of the present invention, in a section in which the second firing temperature is lower than 675 ° C., the bulk density of the carbon nanotube aggregate increases as the second firing temperature increases, and in a section in which the second firing temperature is higher than 675 ° C. It can be seen that the bulk density of the carbon nanotube aggregate decreases as the second firing temperature increases. It is also possible to control the bulk density using this feature.
상기 공정에서 상기 페이스트를 진공 건조하여 얻어진 입자상 물질, 즉 제2 소성 전 측정한 입경 혹은 평균입경은 약 30㎛ 내지 약 150㎛이고, 상기 입상 지지체 및 그래파이트화 촉매의 일차 입경은 약 10nm 내지 약 50nm인 구형 또는 포테이토형일 수 있다. 여기서 구형 또는 포테이토 형상이란 종횡비(aspect ratio) 1.2 이하의 구형, 타원체형과 같은 3차원 형상을 지칭한다.The particulate matter obtained by vacuum drying the paste in the process, that is, the particle size or average particle diameter measured before the second firing is about 30 μm to about 150 μm, and the primary particle diameter of the granular support and the graphitization catalyst is about 10 nm to about 50 nm. It may be spherical or potato. Here, the spherical or potato shape refers to a three-dimensional shape such as a spherical and ellipsoidal shape having an aspect ratio of 1.2 or less.
일 구현예에 따르면, 상기 담지 촉매는 예를 들어 담지 촉매 총중량을 기준으로 상기 그래파이트화 촉매를 약 5 내지 약 30 중량%의 범위로 포함할 수 있으나, 이에 한정되는 것은 아니다.According to one embodiment, the supported catalyst may include, for example, about 5 to about 30% by weight of the graphite catalyst based on the total weight of the supported catalyst, but is not limited thereto.
본 발명의 일 실시예에 따르면, 상기 그래파이트화 촉매의 담지량이 증가할수록 결과적으로 제조되는 탄소나노튜브 집합체의 벌크밀도가 증가하는 것을 알 수 있다. According to one embodiment of the present invention, it can be seen that the bulk density of the resulting carbon nanotube aggregate increases as the supported amount of the graphitization catalyst increases.
구체적으로, 상기 촉매 금속의 함량(x1)과 탄소나노튜브 집합체의 벌크밀도(y)가 하기 수학식 1의 관계를 만족하는 것일 수 있다: Specifically, the content (x 1 ) of the catalyst metal and the bulk density (y) of the carbon nanotube aggregate may satisfy the relationship of Equation 1 below:
[수학식 1][Equation 1]
y = a1x1 + b1 y = a 1 x 1 + b 1
상기 식 중, y는 벌크밀도(kg/m3), x1은 촉매 총중량을 기준으로 한 촉매금속 함량으로서 10 내지 30(wt%), a1 은 반응시간에 따라 결정되는 4 내지 7의 상수, b1 은 반응시간에 따라 결정되는 -15 내지 -40 의 상수임. In the above formula, y is the bulk density (kg / m 3 ), x 1 is the catalyst metal content based on the total weight of the catalyst 10 to 30 (wt%), a 1 is a constant of 4 to 7 determined by the reaction time , b 1 is a constant of -15 to -40 determined by the reaction time.
도 1 및 도 2는 본 발명의 실시예에 따라 제조된 탄소나노튜브 집합체에 대해 촉매 금속 함량에 따른 벌크밀도를 나타낸 그래프이다. 도 1은 다른 조건을 동일하게 하되 반응시간은 1시간으로 하였고, 도 2는 2시간으로 한 경우이다. 도면에서 알 수 있는 바와 같이 벌크밀도의 촉매금속 함량이 선형적 비례관계를 충족하므로 결과적으로 제조되는 탄소나노튜브 집합체의 벌크밀도를 조절하기가 용이하다.1 and 2 is a graph showing the bulk density according to the catalyst metal content for the carbon nanotube aggregate prepared according to an embodiment of the present invention. 1 is the same as the other conditions but the reaction time was 1 hour, Figure 2 is the case of 2 hours. As can be seen in the figure, since the catalyst metal content of the bulk density satisfies the linear proportional relationship, it is easy to control the bulk density of the resulting carbon nanotube aggregate.
반응시간이 증가함에 따라 탄소나노튜브 집합체의 벌크밀도도 증가하는 경향을 나타내는데, 본 발명자들의 실험에 따르면 반응시간이 1시간 증가함에 따라 벌크밀도는 1.2 내지 1.5 배 증가하는 것을 알 수 있었다. As the reaction time increases, the bulk density of the carbon nanotube aggregates also tends to increase. According to the experiments of the present inventors, the bulk density increases by 1.2 to 1.5 times as the reaction time increases by 1 hour.
일 구현예에 따르면, 상기 그래파이트화 촉매는 입상 지지체, 바람직하게는 알루미늄계 지지체 표면 및 세공에 일층 혹은 다층 코팅된 구조를 가질 수 있다.According to one embodiment, the graphitization catalyst may have a structure in which one or more layers are coated on the surface and pores of the granular support, preferably the aluminum-based support.
상기 담지 촉매 제조과정에 있어서, 함침법을 이용한 담지 촉매를 사용하는 것이 바람직한데, 이는 담지 촉매가 사용되는 경우 촉매 자체의 벌크 밀도(bulk density)가 공침 촉매에 비해 높고 공침 촉매와 달리 10 마이크론 이하의 미분이 적어 유동화 과정에서 발생할 수 있는 마모(attrition)에 의한 미분발생 가능성을 줄일 수 있으며, 촉매 자체의 기계적 강도도 우수하여 반응기 운전을 안정하게 할 수 있는 효과를 갖기 때문이다.In the process of preparing the supported catalyst, it is preferable to use a supported catalyst using an impregnation method, in which the bulk density of the catalyst itself is higher than that of the coprecipitation catalyst and less than 10 microns, unlike the coprecipitation catalyst, when the supported catalyst is used. It is possible to reduce the possibility of fine powder due to attrition, which can occur during fluidization process because of the small amount of fine powder. Also, the mechanical strength of the catalyst itself is excellent, which makes it possible to stabilize the reactor operation.
일 구현예에 따르면, 담지 촉매 제조시, 촉매 금속 대비 유기산을 5:1 내지 30:1의 몰비로 첨가할 수 있으며, 유기산 첨가량을 조절하여 탄소나노튜브 집합체의 벌크밀도를 조절하는 것도 가능하다. According to one embodiment, when preparing a supported catalyst, it is possible to add the organic acid to the catalyst metal in a molar ratio of 5: 1 to 30: 1, it is also possible to control the bulk density of the carbon nanotube aggregate by adjusting the amount of the organic acid added.
구체적으로, 유기산 1몰 대비 촉매 금속 몰수(x2)와 탄소나노튜브 집합체의 벌크밀도(y)가 하기 수학식 2의 관계를 만족할 수 있다. Specifically, the number of moles of catalyst metal (x 2 ) and the bulk density (y) of the carbon nanotube aggregates with respect to one mole of the organic acid may satisfy the relationship of Equation 2 below.
[수학식 2] [Equation 2]
y = a2x2 + b2 y = a 2 x 2 + b 2
상기 식 중, y는 벌크밀도(kg/m3), x2는 유기산 1몰 대비 촉매 금속 몰수, a2는 1 내지 1.5의 상수, b2는 20 내지 40의 상수임.Wherein y is the bulk density (kg / m 3 ), x 2 is the number of moles of catalyst metal relative to 1 mole of the organic acid, a 2 is a constant of 1 to 1.5, and b 2 is a constant of 20 to 40.
도 3 및 도 4는 본 발명의 실시예에서 제조된 탄소나노튜브 집합체에 대하여 유기산 1몰 대비 촉매금속 몰수에 따른 벌크밀도의 관계를 그래프로 나타낸 것이다. 도 3은 다른 조건은 동일하게 하되 1시간 반응, 도 4는 2시간 반응의 결과이다. 도면으로부터 알 수 있는 바와 같이, 유기산 대비 촉매금속의 몰수가 증가할수록 결과적으로 제조되는 탄소나노튜브 집합체의 벌크밀도가 선형적으로 증가하는 것을 알 수 있다. 이러한 특징을 이용하면 결과물의 벌크밀도를 용이하게 조절할 수 있다. 3 and 4 are graphs showing the relationship between the bulk density according to the number of moles of the catalyst metal compared to 1 mole of the organic acid for the carbon nanotube assembly prepared in the embodiment of the present invention. Figure 3 is the same condition but the reaction for 1 hour, Figure 4 is the result of the reaction for 2 hours. As can be seen from the figure, it can be seen that the bulk density of the resulting carbon nanotube aggregates increases linearly as the number of moles of the catalyst metal increases relative to the organic acid. Using this feature, the bulk density of the result can be easily adjusted.
상기 공정에 따라 얻어지는 그래파이트화 촉매 함유 담지 촉매를 가열 조건에서 기상 탄소공급원과 접촉시키면 탄소나노튜브 집합체를 형성할 수 있다. 이와 같은 탄소나노튜브의 성장 과정을 보다 구체적으로 설명하면, 기상 탄소공급원인 탄소계 물질을 상기 담지촉매 내에 담지된 그래파이트화 촉매와 접촉시킨 후 이를 열처리하면 상기 탄소계 물질이 그래파이트화 촉매 표면에서 열분해되며, 분해된 탄소 함유 가스로부터 생성되는 탄소원자가 상기 그래파이트화 촉매 내부로 침투하여 고용된 후, 그 침투 함량이 상기 그래파이트화 촉매의 고유 특성인 고용 한계(solubility limit)를 초과하는 경우, 탄소나노튜브로의 핵생성이 일어나 탄소나노튜브로 성장하게 된다.The graphitized catalyst-containing supported catalyst obtained according to the above process is contacted with a gaseous carbon source under heating conditions to form a carbon nanotube aggregate. The carbon nanotube growth process will be described in more detail. When the carbonaceous material, which is a gaseous carbon source, is contacted with a graphite catalyst supported in the supported catalyst and then heat treated, the carbonaceous material is thermally decomposed on the graphite catalyst surface. Carbon nanotubes generated from the decomposed carbon-containing gas are infiltrated into the graphite catalyst and dissolved therein, and the carbon nanotubes when the penetration content exceeds the solubility limit, which is an inherent characteristic of the graphite catalyst, The nucleation of the furnace occurs to grow into carbon nanotubes.
일구현예에 따르면, 상기 담지촉매를 사용하여 성장된 탄소나노튜브는 번들형 구조를 가질 수 있다. 이와 같은 번들형 탄소나노튜브는 고분자와 컴파운딩시 분산 및 혼합이 잘 될 수 있는 구조에 해당한다.According to one embodiment, the carbon nanotubes grown using the supported catalyst may have a bundle structure. Such bundle-type carbon nanotubes correspond to a structure that can be dispersed and mixed well when compounding with a polymer.
본 발명에서 사용하는 용어 '번들형 (bundle type)'이란 달리 언급되지 않는 한, 복수개의 탄소나노튜브가 나란하게 배열 또는 뒤엉켜있는, 다발(bundle) 혹은 로프(rope) 형태의 2차 형상을 지칭한다. '비번들형(non-bundle 또는 entangled type)'이란 다발 혹은 로프 형태와 같은 일정한 형상이 없는 형태를 의미한다.The term 'bundle type' used in the present invention refers to a bundle or rope type secondary shape in which a plurality of carbon nanotubes are arranged or intertwined side by side, unless otherwise stated. do. 'Non-bundle or entangled type' means a shape without a certain shape, such as a bundle or a rope shape.
상기와 같이 담지 촉매를 사용하여 얻어지는 본 발명에 따른 탄소나노튜브 집합체는 벌크 밀도가 10kg/m3 이상, 혹은 20 내지 100 kg/m3, 혹은 20 내지 90 kg/m3, 혹은 20 내지 80 kg/m3 의 범위를 가질 수 있다.Carbon nanotube aggregate according to the present invention obtained using the supported catalyst as described above has a bulk density of 10kg / m 3 or more, or 20 to 100 kg / m 3 , or 20 to 90 kg / m 3 , or 20 to 80 kg It may have a range of / m 3 .
본 발명의 일구현예에 따르면, 지지체 전구체를 제1 소성온도, 예를 들어 100℃ 내지 500℃의 온도에서 제1 소성하여 얻어진 지지체에 철 함유 그래파이트화 촉매를 담지시켜 촉매 함유 지지체를 제조한 후, 이를 100℃ 내지 800℃의 온도에서 제2 소성하여 담지 촉매를 제조할 수 있으며, 이 담지 촉매를 기상 탄소공급원과 접촉시켜 번들형 탄소나노튜브를 제조할 수 있다.According to one embodiment of the present invention, after the support precursor obtained by first firing at a first firing temperature, for example, a temperature of 100 ℃ to 500 ℃ supported iron-containing graphitization catalyst to prepare a catalyst-containing support In addition, the supported catalyst may be prepared by second firing at a temperature of 100 ° C. to 800 ° C., and the supported catalyst may be contacted with a gaseous carbon source to produce bundled carbon nanotubes.
상술한 바와 같은 담지 촉매를 이용하여 탄소공급원의 분해를 통한 화학적 기상 합성법으로 탄소나노튜브를 성장시켜 탄소나노튜브를 제조할 수 있다.Carbon nanotubes may be prepared by growing carbon nanotubes by chemical vapor phase synthesis through decomposition of a carbon source using the supported catalyst as described above.
상기 화학적 기상 합성법에 따른 탄소나노튜브 집합체의 제조방법에 있어서, 철 함유 그래파이트화 촉매를 반응기 내에 장입시킨 후, 상압 및 고온의 조건하에서 기상 탄소공급원을 공급하여 상기 담지 촉매 상에서 탄소나노튜브가 성장된 탄소나노튜브 집합체를 제조할 수 있다. 탄소나노튜브의 성장은 상술한 바와 같이 고온의 열이 가해져 열분해된 탄화수소가 그래파이트화 촉매 내로 침투, 포화되는 과정을 거치고, 포화된 그래파이트화 촉매로부터 탄소들이 석출되며 6각형의 고리 구조를 형성하며 수행될 수 있다.In the method for producing a carbon nanotube aggregate according to the chemical vapor phase synthesis method, after charging the iron-containing graphite catalyst in the reactor, the carbon nanotubes are grown on the supported catalyst by supplying a gaseous carbon source under the conditions of atmospheric pressure and high temperature Carbon nanotube aggregates can be prepared. The growth of carbon nanotubes is carried out by the process of infiltrating and saturating the pyrolyzed hydrocarbons by applying high temperature heat to the graphitization catalyst as described above, and depositing carbons from the saturated graphitization catalyst to form a hexagonal ring structure. Can be.
본 발명에 있어서, 상기 화학적 기상 합성법은 상기 담지 촉매를 수평 고정층 반응기 또는 유동층 반응기에 투입하고, 상기 기상 탄소 공급원의 열분해 온도 이상 내지 상기 그래파이트화 촉매의 융점 이하, 예를 들어 약 500℃ 내지 약 900℃, 또는 약 600℃ 내지 약 750℃, 또는 약 660℃ 내지 약 690℃의 온도에서 탄소수 1 내지 6의 포화 또는 불포화 탄화수소에서 선택된 하나 이상의 탄소 공급원, 또는 상기 탄소공급원과 환원가스(예를 들어, 수소) 및 운반가스(예를 들어, 질소)의 혼합가스를 주입하여 실시될 수 있다. 상기 담지 촉매에 탄소공급원을 주입하여 탄소나노튜브를 성장시키는 단계는 30분 내지 8시간 동안 수행될 수 있다. 보다 바람직하게는 유동층 반응기를 이용할 수 있다. In the present invention, the chemical vapor phase synthesis method comprises adding the supported catalyst to a horizontal fixed bed reactor or a fluidized bed reactor, the thermal decomposition temperature of the gaseous carbon source up to the melting point of the graphitization catalyst, for example from about 500 ℃ to about 900 At least one carbon source selected from saturated or unsaturated hydrocarbons having 1 to 6 carbon atoms at a temperature of about 600 ° C. to about 750 ° C., or about 660 ° C. to about 690 ° C., or the carbon source and a reducing gas (eg, It may be carried out by injecting a mixed gas of hydrogen) and a carrier gas (for example, nitrogen). Injecting a carbon source into the supported catalyst to grow the carbon nanotubes may be performed for 30 minutes to 8 hours. More preferably, a fluidized bed reactor can be used.
상기 제조방법 중 소성 공정이나 열처리 공정을 위한 열원으로서는 유도가열(induction heating), 복사열, 레이져, IR, 마이크로파, 플라즈마, UV, 표면 플라즈몬 가열 등을 제한 없이 사용할 수 있다.As the heat source for the firing process or the heat treatment process of the manufacturing method, induction heating, radiant heat, laser, IR, microwave, plasma, UV, surface plasmon heating, etc. can be used without limitation.
상기 화학적 기상 합성법에 사용되는 탄소공급원은 탄소를 공급할 수 있으며, 300℃ 이상의 온도에서 기상으로 존재할 수 있는 물질이라면 특별한 제한 없이 사용할 수 있다. 이와 같은 기상 탄소계 물질로서는 탄소를 함유하는 화합물이면 가능하며, 탄소수 6개 이하의 화합물이 바람직하고, 더욱 바람직하게는 탄소수 4개 이하의 화합물이다. 그러한 예로서는 일산화탄소, 메탄, 에탄, 에틸렌, 에탄올, 아세틸렌, 프로판, 프로필렌, 부탄, 부타디엔, 펜탄, 펜텐, 사이클로펜타디엔, 헥산, 사이클로헥산, 벤젠 및 톨루엔으로 이루어진 군으로부터 선택된 하나 이상을 사용할 수 있으나 이에 한정되는 것은 아니다. 또한, 수소 및 질소의 혼합가스는 탄소공급원을 운송하며, 탄소나노튜브가 고온에서 연소되는 것을 방지하고, 탄소공급원의 분해를 돕는다.The carbon source used in the chemical vapor phase synthesis method may supply carbon, and any material that may exist in the gas phase at a temperature of 300 ° C. or higher may be used without particular limitation. As such a gaseous carbonaceous substance, any compound containing carbon may be used, and a compound having 6 or less carbon atoms is preferable, and more preferably a compound having 4 or less carbon atoms. As such an example, one or more selected from the group consisting of carbon monoxide, methane, ethane, ethylene, ethanol, acetylene, propane, propylene, butane, butadiene, pentane, pentene, cyclopentadiene, hexane, cyclohexane, benzene and toluene can be used. It is not limited. In addition, the mixed gas of hydrogen and nitrogen transports a carbon source, prevents carbon nanotubes from burning at high temperatures, and helps to decompose the carbon source.
이와 같은 기상 탄소공급원, 수소 및 질소는 다양한 부피비로 사용될 수 있으며, 예를 들어 질소 : 기상 탄소공급원 : 수소의 부피비는 1 : 0.1 ~ 10 : 0 ~ 10, 또는 1 : 0.5 ~ 1.5 : 0.5 ~ 1.5의 범위에서 사용할 수 있다. 이때 반응가스의 유량은 약 100 sccm 이상 약 10,000sccm 이하의 범위에서 적절히 사용할 수 있다.Such gaseous carbon source, hydrogen and nitrogen can be used in various volume ratios, for example, the volume ratio of nitrogen: gaseous carbon source: hydrogen is 1: 0.1 to 10: 0 to 10, or 1: 0.5 to 1.5: 0.5 to 1.5 Can be used in the range of. At this time, the flow rate of the reaction gas may be suitably used in the range of about 100 sccm or more and about 10,000 sccm or less.
상기와 같이 고온의 열처리 공정에 의해 탄소나노튜브를 성장시킨 후, 냉각 공정을 거치게 되는 바, 이와 같은 냉각 공정에 의해 상기 탄소나노튜브는 보다 규칙적으로 배열될 수 있다. 이와 같은 냉각 공정은 자연 냉각(열원의 제거), 또는 분당 약 5℃ 내지 약 30℃의 속도로 냉각할 수 있다.After the carbon nanotubes are grown by a high temperature heat treatment process as described above, the carbon nanotubes are subjected to a cooling process. The carbon nanotubes may be arranged more regularly by the cooling process. Such cooling process may be natural cooling (removal of heat source), or cooling at a rate of about 5 ° C. to about 30 ° C. per minute.
상기와 같은 제조공정을 거치게 되면 BET 비표면적이 약 150 m2/g 이상, 바람직하게는 약 200 m2/g 내지 약 500 m2/g인 번들형 탄소나노튜브가 얻어질 수 있게 된다. 상기 비표면적은 통상의 BET법을 통해 측정할 수 있다.Through the above manufacturing process, a BET specific surface area of about 150 m 2 / g or more, preferably about 200 m 2 / g to about 500 m 2 / g can be obtained a bundle type carbon nanotubes. The specific surface area can be measured by a conventional BET method.
특히 상기 제조방법은 높은 수율로 탄소나노튜브 집합체를 수득할 수 있게 되는 바, 예를 들어 약 5배 내지 50배, 또는 약 10배 내지 40배의 수율을 달성할 수 있게 된다. 상기 수율은 합성된 탄소나노튜브 집합체를 상온에서 수득하여 그 함량을 전자저울을 이용하여 측정할 수 있다. 이때 반응 수율은 사용한 담지 촉매의 중량과 반응 후 중량 증가량을 기준으로 하기 식에 의거하여 계산할 수 있다.In particular, the production method is able to obtain a carbon nanotube aggregate in a high yield, for example, it is possible to achieve a yield of about 5 times to 50 times, or about 10 times to 40 times. The yield can be obtained by synthesizing the synthesized carbon nanotube aggregate at room temperature using an electronic balance. The reaction yield can be calculated based on the weight of the supported catalyst used and the weight increase after the reaction based on the following formula.
탄소나노튜브 집합체의 수율(배)=(반응 후 총 중량g - 사용한 담지 촉매의 중량g)/사용한 담지 촉매 중량gYield (times) of carbon nanotube aggregate = (total weight g after reaction-weight g of supported catalyst used) / weight of supported catalyst used g
본 발명에 있어서, 상기 탄소나노튜브 집합체는 편평률이 약 0.9 내지 약 1인 번들형일 수 있으며, 또한 BET 비표면적이 증가함에 따라 탄소나노튜브 각 가닥 직경은 약 2nm 내지 약 20nm, 바람직하게는 약 3nm 내지 약 8nm 저직경을 가질 수 있다. In the present invention, the carbon nanotube aggregate may be a bundle having a flatness of about 0.9 to about 1, and as the BET specific surface area increases, each strand diameter of the carbon nanotubes is about 2 nm to about 20 nm, preferably about 3 nm to about 8 nm low diameter.
상기 편평률은 하기 식으로 정의될 수 있다.The flatness may be defined by the following equation.
편평률 = 탄소나노튜브의 중심을 관통하는 최단 직경 / 탄소나노튜브의 중심을 관통하는 최대 직경Flatness ratio = shortest diameter through the center of the carbon nanotube / maximum diameter through the center of the carbon nanotube
상술한 바와 같은 탄소나노튜브 집합체는 BET 비표면적이 크고, 즉 저직경이며, 번들 형태를 가짐에 따라 다른 소재, 예를 들어 고분자에 분산 및 혼합이 잘 되므로 복합소재의 형성시 물성을 개선할 수 있게 된다.As described above, the carbon nanotube aggregate has a large BET specific surface area, that is, a low diameter, and has a bundle shape, so that it is well dispersed and mixed in another material, for example, a polymer, thereby improving physical properties when forming a composite material. Will be.
구체적으로, 본 발명에 따른 탄소나노튜브 집합체를 포함하는 복합소재는 탄소나노튜브 집합체의 벌크밀도가 증가함에 따라 감소되는 전도성을 가질 수 있다. Specifically, the composite material including the carbon nanotube aggregate according to the present invention may have a conductivity that decreases as the bulk density of the carbon nanotube aggregate increases.
일 구현예에 따르면, 탄소나노튜브의 벌크밀도(kg/m3)와 복합소재의 표면저항(ohm/sq)의 로그값 (Log R)은 하기 관계식을 만족할 수 있다. According to an embodiment, the log density (Log R) of the bulk density (kg / m 3 ) of the carbon nanotubes and the surface resistance (ohm / sq) of the composite material may satisfy the following relationship.
[수학식 3][Equation 3]
0.1x3 + 1≤ Log R ≤ 0.1x3 + 40.1x 3 + 1≤ Log R ≤ 0.1x 3 + 4
보다 바람직하게는 하기 관계식을 만족할 수 있다. More preferably, the following relational expression can be satisfied.
0.1x3 + 2≤ Log R ≤ 0.1x3 + 30.1x 3 + 2≤ Log R ≤ 0.1x 3 + 3
상기 식에서 x3는 CNT 집합체의 벌크밀도(kg/m3), R은 복합소재의 표면저항(ohm/sq)을 나타낸다. In the above formula, x 3 represents the bulk density (kg / m 3 ) of the CNT aggregate, and R represents the surface resistance (ohm / sq) of the composite material.
따라서 다양한 LCD, OLED, PDP, e-paper와 같은 표시소자; 태양전지, 연료전지, 리튬전지, 슈퍼 커패시터 등의 전극 구조체; 기능성 복합소재; 에너지 소재; 의약; FET 등의 반도체 등에 유용하게 사용할 수 있다.Therefore, various display devices such as LCD, OLED, PDP, e-paper; Electrode structures such as solar cells, fuel cells, lithium batteries and supercapacitors; Functional composite materials; Energy material; medicine; It can be usefully used for semiconductors such as FETs.
이하, 본 발명의 이해를 돕기 위하여 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 본 기술분야에서 통상의 지식을 가진 자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.Hereinafter, examples are provided to help the understanding of the present invention, but the following examples are only for exemplifying the present invention, and various changes and modifications can be made within the scope and spirit of the present invention. It will be apparent to those having the same, and it is natural that such variations and modifications belong to the appended claims.
실시예 1Example 1
A. 그래파이트화 금속촉매 전구체 수용액 제조A. Preparation of Graphitized Metal Catalyst Precursor Aqueous Solution
그래파이트화 촉매로서 Fe 금속촉매를 준비하였다. Fe의 전구체 물질로서 Fe(NO3)2·6H2O 2,424g을 물 2,000g에 투입하였다. 제조된 금속 수용액은 침전 없이 맑은 용액 상태로 관찰되었다.Fe metal catalyst was prepared as a graphitization catalyst. 2,424 g of Fe (NO 3 ) 2 .6H 2 O was added to 2,000 g of water as a precursor material of Fe. The prepared aqueous metal solution was observed as a clear solution without precipitation.
B. 지지체 준비B. Support Preparation
알루미늄계 지지체 전구체로서 수산화알루미늄(Aluminum-tri-hydroxide, Al(OH)3)을 300 내지 500℃에서 4시간 동안 제1 소성하여 얻어진 지지체 2,000g을 플라스크 B에 준비하였다. XRD 분석에 의하면 소성 후 지지체는 AlO(OH)를 40 중량% 이상 함유하는 것으로 나타났다. 2,000 g of the support obtained by first calcining aluminum hydroxide (Aluminum-tri-hydroxide, Al (OH) 3 ) as an aluminum-based support precursor at 300 to 500 ° C. for 4 hours was prepared in Flask B. XRD analysis showed that after firing the support contained at least 40% by weight of AlO (OH).
C. 담지촉매 제조C. Supported Catalyst Manufacturing
300 내지 500℃에서 4시간 동안 제1 소성하여 얻어진 지지체 2,000g을 몰 기준 100으로 환산하면 Fe 30몰이 되도록 플라스크 B에 상기 플라스크 A 용액 4,424g을 첨가하였다. 혼합물의 중량을 측정한 후 그래파이트화 촉매 금속 전구체를 충분히 ATH400에 담지시키기 위하여 60℃ 항온조에서 5분간 교반하여 숙성시켰다. 이를 상기 온도를 유지하면서 80 rpm으로 회전시키며, 진공 건조시킨 후 건조 후 중량을 측정하여 수분 제거량을 측정하였다(약 14.1%). 건조된 촉매를 550 내지 700℃에서 4시간 동안 제2 소성시켜 담지 촉매를 제조하였다. 4,424 g of the Flask A solution was added to Flask B such that 2,000 g of the support obtained by the first firing at 300 to 500 ° C. for 4 hours was converted to 30 moles of Fe in terms of 100 moles. After the weight of the mixture was measured, the graphitized catalyst metal precursor was aged by stirring in a 60 ° C. thermostat for 5 minutes to sufficiently support the ATH400. This was rotated at 80 rpm while maintaining the temperature, and dried after vacuum drying to measure the weight after drying to determine the water removal amount (about 14.1%). The supported catalyst was prepared by second baking at 550 to 700 ° C. for 4 hours.
D. 탄소나노튜브 집합체 합성D. Synthesis of Carbon Nanotube Aggregates
상기에서 제조된 탄소나노튜브 합성용 담지 촉매를 이용하여 실험실 규모의 고정층 반응장치에서 탄소나노튜브 합성을 수행하였다.Carbon nanotube synthesis was carried out in a laboratory-scale fixed bed reactor using the prepared carbon nanotube supported catalyst prepared above.
구체적으로 상기 C에서 제조된 탄소나노튜브 합성용 담지 촉매를 직경 55 mm의 내경을 갖는 석영관의 중앙부에 장착한 후, 질소 분위기에서 670℃까지 승온한 다음 유지시키고, 질소와 수소, 그리고 에틸렌 가스의 부피 혼합비를 동일 비율로 총 분당 180ml 흘리면서 1시간 동안 합성하여 소정량의 탄소나노튜브 집합체를 합성하였다. Specifically, the supported catalyst for synthesizing carbon nanotubes prepared in C was mounted at the center of a quartz tube having an inner diameter of 55 mm, and then heated up to 670 ° C. in a nitrogen atmosphere, and maintained therein, nitrogen, hydrogen, and ethylene gas. The volume mixing ratio of was synthesized for 1 hour while flowing 180ml per minute in the same ratio to synthesize a predetermined amount of carbon nanotube aggregate.
촉매제조단계에서 제1 및 제2 소성온도, 결과적으로 제조된 탄소나노튜브 집합체의 수율 및 벌크밀도를 하기 표 1에 나타내었고, 도 5는 탄소나노튜브 집합체의 SEM 이미지이다.First and second firing temperatures in the catalyst manufacturing step, the yield and bulk density of the resulting carbon nanotube aggregate are shown in Table 1 below, and FIG. 5 is an SEM image of the carbon nanotube aggregate.
표 1
Entry 촉매 ATH 소성온도(℃) 촉매 소성온도(℃) 수율(배) 벌크밀도(kg/m3)
1 Fe/ATH300-600 300 600 4.3 40
2 Fe/ATH400-600 400 600 4.3 40
3 Fe/ATH500-600 500 600 4.5 37
4 Fe/ATH400-550 400 550 4.1 50
5 Fe/ATH400-600 400 600 4.3 40
6 Fe/ATH400-650 400 650 3.9 37
7 Fe/ATH400-700 400 700 4.3 40
Table 1
Entry catalyst ATH firing temperature (℃) Catalyst firing temperature (℃) Yield (times) Bulk Density (kg / m 3 )
One Fe / ATH300-600 300 600 4.3 40
2 Fe / ATH400-600 400 600 4.3 40
3 Fe / ATH500-600 500 600 4.5 37
4 Fe / ATH400-550 400 550 4.1 50
5 Fe / ATH400-600 400 600 4.3 40
6 Fe / ATH400-650 400 650 3.9 37
7 Fe / ATH400-700 400 700 4.3 40
상기 결과로부터 550℃ 에서 소성된 Fe촉매의 경우에는 생성되는 CNT 집합체의 벌크밀도가 커지고, 도 5의 SEM 이미지에서 entangled CNT의 분포가 증가한 것을 알 수 있다.In the Fe catalyst calcined at 550 ° C., the bulk density of the resulting CNT aggregates was increased, and the distribution of entangled CNTs in the SEM image of FIG. 5 was increased.
실시예 2Example 2
촉매 소성온도에 따른 벌크밀도 변화를 관찰하였다. Fe 대신 Co/V (10:1 몰비)를 사용하였으며, 제1 소성온도를 400℃로 하고, 제2 소성온도를 600 내지 700℃로 변화시키고, 시트르산을 첨가한 것(시트르산 1몰 대비 Co 23몰)을 제외하고는 실시예 1과 동일한 방법으로 촉매를 제조한 후 이를 이용하여 탄소나노튜브 집합체를 합성하였다. 반응시간 1시간 및 2시간으로 한 경우 탄소나노튜브 집합체의 수율 및 벌크 밀도는 다음과 같다. The bulk density change with the catalyst firing temperature was observed. Co / V (10: 1 molar ratio) was used instead of Fe, and the first firing temperature was changed to 400 ° C., the second firing temperature was changed to 600 to 700 ° C., and citric acid was added (co 23 to 1 mole of citric acid). Mole) to prepare a catalyst in the same manner as in Example 1 and synthesized using the carbon nanotube aggregate. When the reaction time is 1 hour and 2 hours, the yield and bulk density of the carbon nanotube aggregate are as follows.
표 2
Entry 촉매 촉매 소성온도(℃) 반응시간(hr) 수율(배) 벌크밀도(kg/m3)
1 CoV/ATH400-600 600 1 18.51 32
2 36.31 44
2 CoV/ATH400-650 650 1 26.32 42
2 55.53 56
3 CoV/ATH400-675 675 1 25.50 44
2 57.00 60
4 CoV/ATH400-700 700 1 24.03 37
2 51.00 52
TABLE 2
Entry catalyst Catalyst firing temperature (℃) Response time (hr) Yield (times) Bulk Density (kg / m 3 )
One CoV / ATH400-600 600 One 18.51 32
2 36.31 44
2 CoV / ATH400-650 650 One 26.32 42
2 55.53 56
3 CoV / ATH400-675 675 One 25.50 44
2 57.00 60
4 CoV / ATH400-700 700 One 24.03 37
2 51.00 52
도 6은 상기 표 2의 결과를 그래프로 나타낸 것이다. 제2 소성온도가 675℃ 보다 낮은 구간에서는 제2 소성온도가 높아질수록 탄소나노튜브 집합체의 벌크밀도가 증가하고, 제2 소성온도가 675℃ 보다 높은 구간에서는 제2 소성온도가 증가함에 따라 탄소나노튜브 집합체의 벌크밀도가 감소하는 것을 알 수 있다. 반응시간이 증가하게 되면 벌크밀도도 증가하지만 제2 소성온도 변화에 따른 벌크밀도 변화의 경향성은 유사함을 알 수 있다. 6 is a graph showing the results of Table 2. In the section where the second firing temperature is lower than 675 ° C, the bulk density of the carbon nanotube assembly increases as the second firing temperature increases, and in the section where the second firing temperature is higher than 675 ° C, as the second firing temperature increases It can be seen that the bulk density of the tube assembly is reduced. Increasing the reaction time increases the bulk density, but it can be seen that the tendency of the bulk density change with the second firing temperature is similar.
실시예 3Example 3
제1 소성온도를 400℃로 하고, 제2 소성온도를 675℃로 한 것을 제외하고는 실시예 2와 동일한 방법으로 촉매를 제조한 후 이를 이용하여 탄소나노튜브 집합체를 합성하였다. 반응시간 1시간 및 2시간으로 한 경우 코발트 함량 변화에 따른 탄소나노튜브 집합체의 수율 및 벌크 밀도는 다음과 같다.A carbon nanotube aggregate was synthesized using the same catalyst as in Example 2 except that the first firing temperature was 400 ° C. and the second firing temperature was 675 ° C. When the reaction time is 1 hour and 2 hours, the yield and bulk density of the carbon nanotube aggregate according to the cobalt content change are as follows.
표 3
Entry 촉매 Co 함량(wt%) 반응시간(hr) 수율(배) 벌크밀도(kg/m3)
1 CoV/ATH400-675 11.8 1 14.77 28
2 23.90 30
2 CoV/ATH400-675 15 1 25.50 44
2 57.00 60
3 CoV/ATH400-675 17.7 1 21.67 56
2 40.04 62
4 CoV/ATH400-675 20 1 21.36 60
2 41.94 85
TABLE 3
Entry catalyst Co content (wt%) Response time (hr) Yield (times) Bulk Density (kg / m 3 )
One CoV / ATH400-675 11.8 One 14.77 28
2 23.90 30
2 CoV / ATH400-675 15 One 25.50 44
2 57.00 60
3 CoV / ATH400-675 17.7 One 21.67 56
2 40.04 62
4 CoV / ATH400-675 20 One 21.36 60
2 41.94 85
도 7은 상기 표 3의 결과를 그래프로 나타낸 것이고, 도 8은 제조된 탄소나노튜브 집합체의 SEM 이미지들이다.7 is a graph showing the results of Table 3, and FIG. 8 is SEM images of the prepared carbon nanotube aggregates.
실시예 4Example 4
시트르산 1몰 대비 Co 함량을 5.8몰로 한 것을 제외하고는 실시예 3과 동일한 방법으로 촉매를 제조한 후 이를 이용하여 탄소나노튜브 집합체를 합성하였다. 반응시간 1시간 및 2시간으로 한 경우 코발트 함량 변화에 따른 탄소나노튜브 집합체의 수율 및 벌크 밀도는 다음과 같다.A carbon nanotube aggregate was synthesized using the catalyst prepared in the same manner as in Example 3, except that Co content was set to 5.8 moles relative to 1 mole of citric acid. When the reaction time is 1 hour and 2 hours, the yield and bulk density of the carbon nanotube aggregate according to the cobalt content change are as follows.
표 4
Entry 촉매 Co 함량(wt%) 반응시간(hr) 수율(배) 벌크밀도(kg/m3)
1 CoV/ATH400-675 11.8 1 11.70 30
2 20.33 29
2 CoV/ATH400-675 15 1 18.53 45
2 36.84 60
3 CoV/ATH400-675 17.7 1 25.76 63
2 41.26 68
4 CoV/ATH400-675 20 1 27.58 81
2 50.43 88
Table 4
Entry catalyst Co content (wt%) Response time (hr) Yield (times) Bulk Density (kg / m 3 )
One CoV / ATH400-675 11.8 One 11.70 30
2 20.33 29
2 CoV / ATH400-675 15 One 18.53 45
2 36.84 60
3 CoV / ATH400-675 17.7 One 25.76 63
2 41.26 68
4 CoV / ATH400-675 20 One 27.58 81
2 50.43 88
도 9는 상기 표 4의 결과를 그래프로 나타낸 것이고, 도 10은 제조된 탄소나노튜브 집합체 중 벌크밀도 81인 것에 대한 SEM 이미지이다. 9 is a graph showing the results of Table 4, and FIG. 10 is an SEM image of the bulk density 81 of the prepared carbon nanotube aggregates.
상기 실시예 3 및 4의 결과로부터, 코발트 함량이 증가할수록 벌크밀도가 증가하며, 도 1 및 도 2에 도시된 바와 같은 수학식 1의 관계를 만족함을 알 수 있다. 도 1은 1시간 반응, 도 2는 2시간 반응의 결과이다. From the results of Examples 3 and 4, it can be seen that the bulk density increases as the cobalt content increases, and satisfies the relationship of Equation 1 as shown in FIGS. 1 and 2. 1 is a result of a 1 hour reaction, and FIG. 2 is a result of a 2 hour reaction.
[수학식 1][Equation 1]
y = a1x1 + b1 y = a 1 x 1 + b 1
상기 식 중, y는 벌크밀도(kg/m3), x1은 촉매 총중량을 기준으로 한 촉매금속 함량으로서 10 내지 30(wt%), a1 은 반응시간에 따라 결정되는 4 내지 7의 상수, b1 은 반응시간에 따라 결정되는 -15 내지 -40 의 상수임. In the above formula, y is the bulk density (kg / m 3 ), x 1 is the catalyst metal content based on the total weight of the catalyst 10 to 30 (wt%), a 1 is a constant of 4 to 7 determined by the reaction time , b 1 is a constant of -15 to -40 determined by the reaction time.
또한 도 9 및 도 10의 SEM 이미지로부터 번들형 탄소나노튜브 집합체가 형성되었음을 확인할 수 있다.In addition, it can be seen from the SEM images of FIGS. 9 and 10 that a bundle of carbon nanotube aggregates is formed.
실시예 5Example 5
유기산 첨가에 따른 벌크밀도를 관찰하였다. 시트르산 1몰 대비 코발트 함량을 변화시켜가면서 카본나노튜브 집합체 수율 및 벌크밀도를 관찰하였다. 결과는 표 5에 나타내었다.The bulk density with the addition of organic acid was observed. Carbon nanotube aggregate yield and bulk density were observed while varying the cobalt content relative to 1 mole of citric acid. The results are shown in Table 5.
표 5
Entry 촉매 Co:시트르산(몰비) 반응시간(hr) 수율(배) 벌크밀도(kg/m3)
1 CoV/ATH300-675 28.9:1 1 20.14 26
2 36.68 38
2 CoV/ATH300-675 9.6:1 1 28.22 33
2 50.77 46
3 CoV/ATH300-675 8.3:1 1 27.56 40
2 47.90 51
4 CoV/ATH300-675 5.8:1 1 20.73 54
2 35.20 73
Table 5
Entry catalyst Co: citric acid (molar ratio) Response time (hr) Yield (times) Bulk Density (kg / m 3 )
One CoV / ATH300-675 28.9: 1 One 20.14 26
2 36.68 38
2 CoV / ATH300-675 9.6: 1 One 28.22 33
2 50.77 46
3 CoV / ATH300-675 8.3: 1 One 27.56 40
2 47.90 51
4 CoV / ATH300-675 5.8: 1 One 20.73 54
2 35.20 73
상기 표 5의 결과를 도 11에 그래프로 나타내었다. 도 12는 벌크밀도 51과 73인 집합체에 대한 SEM 이미지이다. 상기 결과로부터, 유기산 대비 코발트 함량이 증가할수록 벌크밀도가 증가하였으며, 번들형이 잘 형성되었음을 확인할 수 있다. 유기산 대비 코발트 함량에 따른 벌크밀도는 도 3 및 도 4의 관계를 만족한다. 도 3은 1시간 반응, 도 4는 2시간 반응의 결과이다. The results of Table 5 are shown graphically in FIG. 12 is an SEM image of the aggregates with bulk densities 51 and 73. From the above results, as the cobalt content was increased compared to the organic acid, the bulk density was increased, and it was confirmed that the bundle was well formed. The bulk density according to the cobalt content compared to the organic acid satisfies the relationship of FIGS. 3 and 4. 3 is a result of a 1 hour reaction, and FIG. 4 is a result of a 2 hour reaction.
[수학식 2] [Equation 2]
y = a2x2 + b2 y = a 2 x 2 + b 2
상기 식 중, y는 벌크밀도(kg/m3), x2는 유기산 1몰 대비 촉매 금속 몰수, a2는 1 내지 1.5의 상수, b2는 20 내지 40의 상수임.Wherein y is the bulk density (kg / m 3 ), x 2 is the number of moles of catalyst metal relative to 1 mole of the organic acid, a 2 is a constant of 1 to 1.5, and b 2 is a constant of 20 to 40.
실시예 6Example 6
실시예 2와 하기 표 6에 제시된 바와 같이 촉매를 사용하고 질소:에틸렌:수소의 비율을 5.5:1:1로 하여 실험실 규모의 유동층 반응기 상에서 2시간 반응시켜 CNT 집합체를 제조하였다. 구체적으로 CNT 합성용 촉매를 직경 58 mm의 내경과 길이 1200 mm의 석영관 반응기에서, 질소 분위기에서 675℃까지 승온한 다음 유지시키고, 질소와 수소, 그리고 에틸렌 가스의 부피 혼합비를 5.5:1:1로 총 분당 4000 ml 흘리면서 2시간 동안 합성하여 소정량의 CNT 집합체를 합성하였다.As shown in Example 2 and Table 6, CNT aggregates were prepared by using a catalyst and reacting with a nitrogen: ethylene: hydrogen ratio of 5.5: 1: 1 for 2 hours on a laboratory scale fluidized bed reactor. Specifically, the catalyst for synthesizing CNTs was maintained in a quartz tube reactor having an internal diameter of 58 mm and a length of 1200 mm, heated up to 675 ° C. in a nitrogen atmosphere, and maintained a volume mixing ratio of nitrogen, hydrogen, and ethylene gas at 5.5: 1: 1. A total amount of CNT aggregates were synthesized by synthesizing for 2 hours with a flow of 4000 ml per minute.
CNT 집합체의 수율 및 벌크밀도도 함께 나타내었다.  The yield and bulk density of the CNT aggregates are also shown.
또한, 실시예에 따른 촉매로 제조된 CNT 집합체 함량이 3 중량%가 되도록 폴리카보네이트(MI 22)와 혼합한 후 이축스크류압출기를 이용하여 240~280℃로 용융압출하여 펠렛 형태의 컴파운드를 제조하였다. 상기 컴파운드를 사용하여 전도도 측정용 시편을 제작한 후 전도도측정기(SRM-110, PINION사)를 사용하여 표면저항을 측정하였다.In addition, after mixing with a polycarbonate (MI 22) so that the content of the CNT aggregate prepared by the catalyst according to the embodiment to 3% by weight, melt-extruded to 240 ~ 280 ℃ using a twin screw extruder to prepare a pellet-type compound. . After preparing the test piece for measuring the conductivity using the compound, the surface resistance was measured using a conductivity meter (SRM-110, PINION).
표 6
Entry 촉매/소성온도 Co:시트르산(몰비) 수율(배) 벌크밀도(kg/m3) 표면저항(ohm/sq)
1 CoV/ATH400-675 5.8:1 33 80 10^11.5
2 CoV/ATH400-675 23:1 30 58 10^8
3 CoV/ATH400-675 23:1 26 47 10^7.3
4 CoV/ATH300-675 23:1 26 36 10^6.8
Table 6
Entry Catalyst / Firing Temperature Co: citric acid (molar ratio) Yield (times) Bulk Density (kg / m 3 ) Surface resistance (ohm / sq)
One CoV / ATH400-675 5.8: 1 33 80 10 ^ 11.5
2 CoV / ATH400-675 23: 1 30 58 10 ^ 8
3 CoV / ATH400-675 23: 1 26 47 10 ^ 7.3
4 CoV / ATH300-675 23: 1 26 36 10 ^ 6.8
상기 표 6의 결과로부터 CNT 집합체의 벌크밀도는 고분자 컴파운드의 전도도 특성에 밀접한 영향을 미치는 것을 알 수 있다. 도 13에서 볼 수 있는 바와 같이, 하기 수학식 3의 관계를 만족하면서 벌크밀도가 증가함에 따라 컴파운드의 표면저항이 비례하여 증가하는바, CNT 집합체의 벌크밀도를 적절히 조절함으로써 결과적으로 제조되는 컴파운드의 전도도 특성을 조절할 수 있다. From the results in Table 6, it can be seen that the bulk density of the CNT aggregate has a close influence on the conductivity characteristics of the polymer compound. As can be seen in Figure 13, the surface resistance of the compound is proportionally increased as the bulk density is increased while satisfying the relationship of Equation 3 below, by adjusting the bulk density of the CNT aggregate appropriately, The conductivity characteristics can be adjusted.
[수학식 3][Equation 3]
0.1x3 + 1≤ Log R ≤ 0.1x3 + 40.1x 3 + 1≤ Log R ≤ 0.1x 3 + 4
상기 식에서 x3는 탄소나노튜브 집합체의 벌크밀도(kg/m3), R은 복합소재의 표면저항값(ohm/sq)을 나타낸다. In the above formula, x 3 represents the bulk density of the carbon nanotube aggregate (kg / m 3 ), and R represents the surface resistance value (ohm / sq) of the composite material.
이상과 같이, 본 발명에 따르면 촉매 함량, 반응시간, 소성온도 등의 공정 조건을 변화시킴으로써 일정 수준의 벌크밀도를 갖는 탄소나노튜브 집합체를 제조할 수 있다. 또한, 상기 벌크밀도를 조절함으로써 탄소나노튜브 복합체의 전도성과 같은 물성을 조절할 수 있다.As described above, according to the present invention, carbon nanotube aggregates having a certain level of bulk density can be manufactured by changing process conditions such as catalyst content, reaction time, firing temperature, and the like. In addition, by controlling the bulk density, it is possible to control physical properties such as conductivity of the carbon nanotube composite.
본 발명에 따른 방법은 분산 및 혼합이 잘 될 수 있는 번들형태를 가진 탄소나노튜브 집합체의 벌크밀도를 조절할 수 있으므로, 상기 탄소나노튜브를 포함하는 복합소재의 물성을 개선하는 것이 가능해진다. 그 결과 본 발명에 따른 방법으로 제조된 탄소나노튜브 집합체는 에너지 소재, 기능성 복합재, 의약, 전지, 반도체, 표시소자 및 이들의 제조방법 등 다양한 분야에 유용하게 사용할 수 있다.The method according to the present invention can adjust the bulk density of the carbon nanotube aggregate having a bundle form that can be well dispersed and mixed, it is possible to improve the physical properties of the composite material containing the carbon nanotubes. As a result, the carbon nanotube aggregate produced by the method according to the present invention can be usefully used in various fields such as energy materials, functional composites, medicines, batteries, semiconductors, display devices, and manufacturing methods thereof.

Claims (16)

  1. 수산화알루미늄을 100 내지 500℃의 제1 소성온도에서 소성하여 지지체를 형성하고, The aluminum hydroxide is calcined at a first firing temperature of 100 to 500 ℃ to form a support,
    상기 지지체에 촉매 금속 전구체를 담지시킨 후 100 내지 800℃의 제2 소성온도에서 소성하여 얻은 담지 촉매를 탄소 함유 화합물과 가열 하에 접촉 반응시켜 탄소나노튜브 집합체를 제조하는 방법에 있어서, In the method of producing a carbon nanotube aggregate by carrying out a catalytic reaction of the catalyst metal precursor on the support and then carrying a contact catalyst obtained by calcining at a second firing temperature of 100 to 800 ℃ contact with a carbon-containing compound under heating,
    상기 제1 소성온도, 제2 소성온도, 촉매 담지량, 또는 반응시간을 조절하여 10kg/m3 이상의 벌크 밀도를 갖는 탄소나노튜브 집합체를 제조하는 방법. Method for producing a carbon nanotube aggregate having a bulk density of 10kg / m 3 or more by adjusting the first firing temperature, the second firing temperature, the catalyst loading amount, or the reaction time.
  2. 제1항에 있어서, The method of claim 1,
    상기 탄소나노튜브 집합체의 벌크 밀도가 100kg/m3 이하인 것인 방법. The bulk density of the carbon nanotube aggregate is 100kg / m 3 or less.
  3. 제1항에 있어서, The method of claim 1,
    상기 탄소나노튜브 집합체의 적어도 일부가 번들형인 것인 방법. At least a portion of the carbon nanotube aggregate is bundled.
  4. 제1항에 있어서, The method of claim 1,
    상기 제2 소성온도는 상기 제1 소성온도보다 200 내지 400℃ 높은 것인 방법.The second firing temperature is 200 to 400 ℃ higher than the first firing temperature.
  5. 제1항에 있어서, The method of claim 1,
    상기 제1 소성온도는 300 내지 500℃ 이고, 상기 제2 소성온도는 550 내지 800℃ 인 것인 방법. Wherein the first firing temperature is 300 to 500 ° C., and the second firing temperature is 550 to 800 ° C.
  6. 제1항에 있어서, The method of claim 1,
    상기 촉매 금속이 Fe, Co, Mo, V 또는 이들 중 둘 이상의 조합을 포함하는 것인 방법. Wherein said catalytic metal comprises Fe, Co, Mo, V or a combination of two or more thereof.
  7. 제1항에 있어서, The method of claim 1,
    상기 제2 소성온도가 675℃ 보다 낮은 구간에서는 제2 소성온도가 높아질수록 탄소나노튜브 집합체의 벌크밀도가 증가하고, 제2 소성온도가 675℃ 보다 높은 구간에서는 제2 소성온도가 증가함에 따라 탄소나노튜브 집합체의 벌크밀도가 감소하는 것인 방법. In the section where the second firing temperature is lower than 675 ° C, the bulk density of the carbon nanotube aggregate increases as the second firing temperature increases, and in the section where the second firing temperature is higher than 675 ° C, the carbon increases as the second firing temperature increases. The bulk density of the nanotube aggregate is reduced.
  8. 제1항에 있어서, The method of claim 1,
    상기 촉매 금속의 함량이 촉매 총 중량을 기준으로 5 내지 30중량%인 것인 방법. The content of the catalyst metal is 5 to 30% by weight based on the total weight of the catalyst.
  9. 제1항에 있어서, The method of claim 1,
    상기 촉매 금속의 함량(x1)과 탄소나노튜브 집합체의 벌크밀도(y)가 하기 수학식 1의 관계를 만족하는 것인 방법: Wherein the content of the catalyst metal (x 1 ) and the bulk density (y) of the carbon nanotube aggregate satisfy the relationship of Equation 1 below:
    [수학식 1][Equation 1]
    y = a1x1 + b1 y = a 1 x 1 + b 1
    상기 식 중, y는 벌크밀도(kg/m3), x1은 촉매 총중량을 기준으로 한 촉매금속 함량으로서 10 내지 30(wt%), a1은 반응시간에 따라 결정되는 4 내지 7의 상수, b1은 반응시간에 따라 결정되는 -15 내지 -40 의 상수임.In the above formula, y is the bulk density (kg / m 3 ), x 1 is the catalyst metal content based on the total weight of the catalyst 10 to 30 (wt%), a 1 is a constant of 4 to 7 determined by the reaction time , b 1 is a constant of -15 to -40 determined by the reaction time.
  10. 제1항에 있어서, The method of claim 1,
    상기 탄소 함유 화합물과의 반응시간(hr)에 비례하여 탄소나노튜브 집합체의 벌크밀도가 1.2 내지 1.5배 증가하는 것인 방법. The bulk density of the carbon nanotube aggregate is increased 1.2 to 1.5 times in proportion to the reaction time (hr) with the carbon-containing compound.
  11. 제1항에 있어서, The method of claim 1,
    상기 담지 촉매 제조시, 촉매 금속 대비 유기산을 5:1 내지 30:1의 몰비로 첨가하며, 유기산 첨가량을 조절하여 탄소나노튜브 집합체의 벌크밀도를 조절하는 것을 포함하는 방법. When preparing the supported catalyst, a method comprising adding an organic acid to the catalyst metal in a molar ratio of 5: 1 to 30: 1, and adjusting the bulk density of the carbon nanotube aggregate by adjusting the amount of the organic acid added.
  12. 제11항에 있어서, The method of claim 11,
    유기산 1몰 대비 촉매 금속 몰수(x2)와 탄소나노튜브 집합체의 벌크밀도(y)가 하기 수학식 2의 관계를 만족하는 것인 방법: Method in which the number of moles of the catalyst metal (x 2 ) and the bulk density (y) of the carbon nanotube aggregate with respect to 1 mole of the organic acid satisfy the following equation:
    [수학식 2][Equation 2]
    y = a2x2 + b2 y = a 2 x 2 + b 2
    상기 식 중, y는 벌크밀도(kg/m3), x2는 유기산 1몰 대비 촉매 금속 몰수, a2는 1 내지 1.5의 상수, b2는 20 내지 40의 상수임.Wherein y is the bulk density (kg / m 3 ), x 2 is the number of moles of catalyst metal relative to 1 mole of the organic acid, a 2 is a constant of 1 to 1.5, and b 2 is a constant of 20 to 40.
  13. 제1항에 있어서, The method of claim 1,
    상기 탄소 함유 화합물과의 반응은 유동층 반응기에서 실시되는 것인 방법. The reaction with the carbon containing compound is carried out in a fluidized bed reactor.
  14. 제1항 내지 제13항 중 어느 한 항의 방법에 의해 제조된 탄소나노튜브 집합체. Carbon nanotube aggregate produced by the method of any one of claims 1 to 13.
  15. 제1항 내지 제13항 중 어느 한 항의 방법에 의해 제조된 탄소나노튜브 집합체를 포함하는 복합소재.A composite material comprising a carbon nanotube aggregate produced by the method of any one of claims 1 to 13.
  16. 제15항에 있어서, The method of claim 15,
    상기 복합소재는 하기 관계식을 만족하는 전도성을 갖는 것인 복합소재: The composite material is a composite material having a conductivity satisfying the following relationship:
    [수학식 3][Equation 3]
    0.1x3 + 1≤ Log R ≤ 0.1x3 + 40.1x 3 + 1≤ Log R ≤ 0.1x 3 + 4
    상기 식에서 x3는 탄소나노튜브 집합체의 벌크밀도(kg/m3), R은 복합소재의 표면저항값(ohm/sq)을 나타낸다.In the above formula, x 3 represents the bulk density of the carbon nanotube aggregate (kg / m 3 ), and R represents the surface resistance value (ohm / sq) of the composite material.
PCT/KR2014/009231 2013-09-30 2014-09-30 Method for controlling bulk density of carbon nanotube agglomerate WO2015047048A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480004965.6A CN104918881B (en) 2013-09-30 2014-09-30 The method of the bulk density of control carbon nanotube agglomerate
US14/438,816 US9809458B2 (en) 2013-09-30 2014-09-30 Method for controlling bulk density of carbon nanotube agglomerate
JP2015545398A JP6083624B2 (en) 2013-09-30 2014-09-30 Method for adjusting the bulk density of carbon nanotube aggregates
EP14849633.4A EP3053880B1 (en) 2013-09-30 2014-09-30 Method for controlling bulk density of carbon nanotube agglomerate

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR20130116963 2013-09-30
KR10-2013-0116963 2013-09-30
KR20140072553 2014-06-16
KR10-2014-0072553 2014-06-16
KR20140129449A KR101508101B1 (en) 2013-09-30 2014-09-26 Carbon nanotubes having high specific surface area and Process for preparing same
KR10-2014-0129449 2014-09-26
KR10-2014-0129411 2014-09-26
KR1020140129411A KR101620194B1 (en) 2013-09-30 2014-09-26 Process for preparing carbon nanotube agglomerates having a controlled bulk density

Publications (1)

Publication Number Publication Date
WO2015047048A1 true WO2015047048A1 (en) 2015-04-02

Family

ID=52744047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/009231 WO2015047048A1 (en) 2013-09-30 2014-09-30 Method for controlling bulk density of carbon nanotube agglomerate

Country Status (1)

Country Link
WO (1) WO2015047048A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190078485A (en) * 2017-12-26 2019-07-04 주식회사 엘지화학 Entangled carbon nano tube and method for preparing the same
EP3461790A4 (en) * 2017-03-17 2019-08-14 LG Chem, Ltd. Bundle-type carbon nanotube and production method therefor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009508667A (en) * 2005-09-20 2009-03-05 ナノシル エス.エー. Catalyst system for multi-walled carbon nanotube manufacturing process
KR20090090738A (en) * 2008-02-22 2009-08-26 주식회사 엘지화학 Carbon nanotube-polymer nanocomposite improved in electrical conductivity and preparation method thereof
KR101007183B1 (en) * 2008-10-23 2011-01-12 제일모직주식회사 Supported Catalyst for Synthesizing Carbon Nanotubes, Method for Preparing thereof and Carbon Nanotube Using the Same
KR20130082458A (en) * 2012-01-11 2013-07-19 주식회사 엘지화학 Cnt and method for manufacturing thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009508667A (en) * 2005-09-20 2009-03-05 ナノシル エス.エー. Catalyst system for multi-walled carbon nanotube manufacturing process
KR20090090738A (en) * 2008-02-22 2009-08-26 주식회사 엘지화학 Carbon nanotube-polymer nanocomposite improved in electrical conductivity and preparation method thereof
KR101007183B1 (en) * 2008-10-23 2011-01-12 제일모직주식회사 Supported Catalyst for Synthesizing Carbon Nanotubes, Method for Preparing thereof and Carbon Nanotube Using the Same
KR20130082458A (en) * 2012-01-11 2013-07-19 주식회사 엘지화학 Cnt and method for manufacturing thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3461790A4 (en) * 2017-03-17 2019-08-14 LG Chem, Ltd. Bundle-type carbon nanotube and production method therefor
US11352260B2 (en) 2017-03-17 2022-06-07 Lg Chem, Ltd Bundle-type carbon nanotubes and method for preparing the same
KR20190078485A (en) * 2017-12-26 2019-07-04 주식회사 엘지화학 Entangled carbon nano tube and method for preparing the same
CN110418767A (en) * 2017-12-26 2019-11-05 Lg化学株式会社 Entanglement type carbon nanotube and preparation method thereof
EP3620434A4 (en) * 2017-12-26 2020-04-08 Lg Chem, Ltd. Entangled type carbon nanotubes and manufacturing method therefor
KR102379594B1 (en) 2017-12-26 2022-03-29 주식회사 엘지화학 Entangled carbon nano tube and method for preparing the same
CN110418767B (en) * 2017-12-26 2023-01-24 Lg化学株式会社 Entangled carbon nanotube and method for producing the same
US11618679B2 (en) 2017-12-26 2023-04-04 Lg Chem, Ltd. Entangled-type carbon nanotubes and method for preparing the same

Similar Documents

Publication Publication Date Title
WO2015190774A1 (en) Method for manufacturing carbon nanotube agglomerate having controlled bulk density
WO2015005709A1 (en) Supported catalyst, carbon nanotube assembly, and preparation method therefor
US9809458B2 (en) Method for controlling bulk density of carbon nanotube agglomerate
KR101620720B1 (en) Catalysts for preparing carbon nanotubes and carbon nanotubes prepared using same
WO2014051271A1 (en) Catalyst composition for the synthesis of multi-walled carbon nanotube
WO2015008988A1 (en) Supported catalyst, method for producing same, and secondary structure of carbon nanostructure manufactured using same
WO2015047042A1 (en) Carbon nanotube having high specific surface area and method for manufacturing same
WO2013095045A1 (en) Novel secondary structure of carbon nanostructures, assembly thereof, and composite comprising same
Mahanandia et al. A one-step technique to prepare aligned arrays of carbon nanotubes
WO2015047048A1 (en) Method for controlling bulk density of carbon nanotube agglomerate
WO2020022725A1 (en) Method for preparing carbon nanotubes
WO2015047050A1 (en) Catalyst for producing carbon nanotubes and carbon nanotubes produced using same
WO2017052349A1 (en) Carbon nanotube manufacturing method capable of controlling carbon nanotube selectivity, and composite material including carbon nanotubes manufactured by said method
WO2022124799A1 (en) Supported catalyst for manufacturing carbon nanotube
KR101672867B1 (en) Method for preparing carbon nanotubes having high purity and high density
KR20120092204A (en) Process for preparing catalyst compositions for the synthesis of carbon nanotube having high bulk density
TW593136B (en) Fine carbon fiber mixture and composition thereof
KR102379594B1 (en) Entangled carbon nano tube and method for preparing the same
Wang et al. Growth of boron nitride nanotubes from magnesium-based catalysts
WO2023136633A1 (en) Catalyst for manufacturing carbon nanotubes
WO2023136631A1 (en) Carbon nanotube bundles
WO2024080789A1 (en) Catalyst for producing carbon nanotube
WO2019132266A1 (en) Carbon nanotube composition and manufacturing method therefor
WO2018160041A1 (en) Method for manufacturing multi-wall carbon nanotubes using continuous type process
Fu et al. Catalytic chemical vapor deposition of single-walled carbon nanotubes

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015545398

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014849633

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014849633

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14438816

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14849633

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE