WO2015046331A1 - Anode for fuel cells and single cell of fuel cell - Google Patents

Anode for fuel cells and single cell of fuel cell Download PDF

Info

Publication number
WO2015046331A1
WO2015046331A1 PCT/JP2014/075429 JP2014075429W WO2015046331A1 WO 2015046331 A1 WO2015046331 A1 WO 2015046331A1 JP 2014075429 W JP2014075429 W JP 2014075429W WO 2015046331 A1 WO2015046331 A1 WO 2015046331A1
Authority
WO
WIPO (PCT)
Prior art keywords
active layer
diffusion layer
layer
fuel cell
anode
Prior art date
Application number
PCT/JP2014/075429
Other languages
French (fr)
Japanese (ja)
Inventor
邦裕 小島
真哉 寺西
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2015046331A1 publication Critical patent/WO2015046331A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/861Porous electrodes with a gradient in the porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8621Porous electrodes containing only metallic or ceramic material, e.g. made by sintering or sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8636Inert electrodes with catalytic activity, e.g. for fuel cells with a gradient in another property than porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8652Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites as mixture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0236Glass; Ceramics; Cermets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a fuel cell anode and a fuel cell single cell, and more particularly to a fuel cell anode used in a fuel cell single cell using a solid electrolyte as an electrolyte, and a fuel cell single cell using the same.
  • a solid electrolyte type fuel cell unit cell having an anode, a solid electrolyte layer, and a cathode is known.
  • an anode an anode composed of two layers of an active layer disposed on the solid electrolyte layer side and a diffusion layer disposed on the surface of the active layer opposite to the solid electrolyte layer side is known.
  • the anode material cermets of nickel particles and zirconia solid electrolyte particles such as Ni-yttria stabilized zirconia (YSZ) cermet are usually used.
  • Patent Document 1 discloses a fuel cell anode formed of a first layer having high strength and conductivity (corresponding to a diffusion layer) and a second layer having high electrode reactivity (corresponding to an active layer). It is disclosed.
  • the prior art has problems in the following points. That is, the active layer constituting the anode is required to have high activity as a reaction field. Therefore, the active layer often has a dense structure using solid electrolyte particles having a small particle size in order to increase the number of reaction points where the fuel gas and oxygen ions react.
  • the diffusion layer constituting the anode is required to have diffusibility of fuel gas. Therefore, the diffusion layer often has a sparse structure using solid electrolyte particles having a large particle diameter in order to improve gas diffusibility.
  • the conventional anode for a fuel cell has a weak bonding strength at the interface between the active layer and the diffusion layer, and there is a possibility that delamination may occur at the interface when the fuel cell single cell is operated. Further, in the conventional anode for a fuel cell, relatively small pores contained in the active layer are closed during the redox reaction, and gas diffusibility and the number of reaction points are lowered.
  • the present invention has been made in view of the above background, and can suppress delamination between the active layer and the diffusion layer, and can easily ensure gas diffusibility and the number of reaction points,
  • the present invention intends to provide a single fuel cell using this.
  • One aspect of the present disclosure is an anode for a fuel cell that is used in a fuel cell single cell having an anode, a solid electrolyte layer, and a cathode, and is disposed on the solid electrolyte layer side and has a small diameter.
  • the active layer has a plurality of active layer side protrusions protruding from the diffusion layer side surface, and the diffusion layer has a plurality of diffusion layer side protrusions protruding from the active layer side surface of the diffusion layer.
  • Another aspect of the present disclosure is a fuel cell single cell including the fuel cell anode, a solid electrolyte layer, and a cathode.
  • the fuel cell anode has the above-described configuration.
  • the active layer includes small-diameter pores and has a large number of active layer-side convex portions.
  • the diffusion layer includes large-diameter pores having a diameter larger than that of the small-diameter pores, and has a large number of convex portions on the diffusion layer side.
  • the anode for a fuel cell includes a buffer region including an active layer side convex portion and a diffusion layer side convex portion, and the active layer side convex portion and the diffusion layer side convex portion are in contact with each other. Have. *
  • the anode for a fuel cell has a sinterability difference between the active layer and the diffusion layer and a redox reaction due to the presence of the buffer region including the active layer side convex portion and the diffusion layer side convex portion provided actively.
  • the difference in the expansion and contraction behavior of the film is reduced.
  • the contact area between the active layer and the diffusion layer also increases due to the engagement between the active layer side convex portion and the diffusion layer side convex portion in the buffer region. Therefore, in the fuel cell anode, the bonding strength at the interface between the active layer and the diffusion layer is improved, and delamination between the active layer and the diffusion layer can be suppressed.
  • the small diameter pores in the active layer side convex portion are crushed by the redox reaction. Even in this case, the large-diameter pores in the diffusion layer side convex portion can remain without being crushed. Therefore, the fuel cell anode can easily ensure gas diffusibility and the number of reaction points.
  • the fuel cell single cell includes the fuel cell anode, a solid electrolyte layer, and a cathode. Therefore, the fuel cell single cell can suppress delamination between the active layer and the diffusion layer during operation of the fuel cell single cell.
  • the fuel cell single cell is excellent in redox resistance because the gas diffusivity and the number of reaction points are not easily lowered by the redox reaction.
  • FIG. 1 is a diagram schematically showing a cross-sectional structure of a fuel cell anode of Example 1 and a fuel cell single cell of Example 1.
  • FIG. 3 is an explanatory view schematically showing the microstructure of a fuel cell anode of Example 1 and a fuel cell anode in a fuel cell single cell of Example 1;
  • the anode for a fuel cell is applied to an anode in a solid electrolyte type fuel cell unit cell using a solid electrolyte as an electrolyte.
  • a solid electrolyte constituting the solid electrolyte layer
  • a solid oxide ceramic exhibiting oxygen ion conductivity can be used.
  • a fuel cell using solid oxide ceramics as a solid electrolyte is called a solid oxide fuel cell (SOFC).
  • SOFC solid oxide fuel cell
  • the battery structure of the fuel cell unit cell can be a flat plate having a layered anode as a support, from the viewpoints of excellent manufacturability and the ability to reduce the electrolyte that becomes a reaction resistance.
  • the fuel cell unit cell includes a first layer including an anode layer, a second layer including a solid electrolyte layer, and a third layer including a cathode layer, which are stacked in this order, and are included in the first layer.
  • the anode includes an active layer disposed on the solid electrolyte side and a diffusion layer on the surface of the active layer opposite to the solid electrolyte. Specifically, it has a solid electrolyte layer, an anode laminated on one side of the solid electrolyte layer, and a cathode laminated on the other side of the solid electrolyte layer with or without an intermediate layer.
  • the anode can be used as a support.
  • the intermediate layer is mainly a layer for preventing a reaction between the material constituting the cathode and the material constituting the solid electrolyte layer.
  • the cathode and the intermediate layer can be composed of one layer or two or more layers. *
  • the active layer is a layer mainly serving as a reaction field for electrochemical reaction on the anode side.
  • the diffusion layer is a layer that can mainly diffuse the supplied fuel gas.
  • the diffusion layer can be composed of one layer or two or more layers.
  • the outer shape of the active layer and the diffusion layer can be configured to be the same size.
  • the diffusion layer may be configured to cover the remaining surface except the surface in contact with the solid electrolyte layer in the active layer.
  • the buffer region is, for example, a state in which each diffusion layer side convex portion enters each active layer side concave portion between the active layer side convex portions spaced apart from each other (in other words, Each active layer side convex portion enters into each diffusion layer side concave portion between the diffusion layer side convex portions spaced apart from each other.
  • the active layer side convex portion and the diffusion layer side convex portion can be sufficiently brought into contact with each other, and the contact area can be easily increased. Therefore, in this case, it is easy to improve the bonding strength at the interface between the active layer and the diffusion layer, and it is easy to suppress delamination between the active layer and the diffusion layer.
  • the shapes of the active layer side convex portion and the diffusion layer side convex portion are not particularly limited as long as the above-described effects are obtained.
  • the shape of the active layer side convex portion and the diffusion layer side convex portion can be, for example, hemispherical, semi-needle-shaped, columnar (such as prismatic or cylindrical), or mountain-shaped.
  • the active layer can be composed of a mixture containing the catalyst particles in the active layer and the solid electrolyte particles in the active layer.
  • a diffusion layer can be comprised from the mixture containing the catalyst particle in a diffusion layer, and the solid electrolyte particle in a diffusion layer.
  • the anode for a fuel cell satisfies the relationship of the particle size of the active layer catalyst particles and the solid electrolyte particles in the active layer ⁇ the height of the active layer side convex portion, and the catalyst particles in the diffusion layer and the solid electrolyte particles in the diffusion layer
  • the particle diameter can be configured to satisfy the relationship of the height of the convex part on the diffusion layer side.
  • the height of the active layer side convex portion can be equal to or larger than the particle diameter of the active layer catalyst particles and the active layer solid electrolyte particles.
  • the height of the convex part on the diffusion layer side can be equal to or larger than the particle diameter of the catalyst particles in the diffusion layer and the solid electrolyte particles in the diffusion layer.
  • the height of the active layer side convex portion referred to above refers to the distance from the base end of the active layer side convex portion to the tip end, and the height of the diffusion layer side convex portion is from the base end of the diffusion layer side convex portion. The distance to the tip.
  • the value measured by a scanning electron microscope (SEM) can be respectively used for the particle diameter and the height of the convex portion described above (the same applies hereinafter). *
  • the particle size of the solid electrolyte particles in the active layer ⁇ the particle size of the catalyst particles in the active layer is satisfied, and the particle size of the solid electrolyte particles in the diffusion layer ⁇ the particle size of the catalyst particles in the diffusion layer Can be configured to satisfy. In this case, it is easy to ensure the effect of the buffer region.
  • the anode for a fuel cell can be configured to satisfy the relationship of the height of the diffusion layer side convex portion ⁇ the thickness of the active layer.
  • the height of the diffusion layer-side convex portion is preferably not more than 3/4 times the film thickness of the active layer, more preferably from the viewpoint of ensuring the advantageous effects described above and improving the bondability.
  • the thickness of the active layer is preferably 1 ⁇ 2 times or less.
  • the film thickness of the active layer said above says the distance from the surface by the side of the solid electrolyte in an active layer to the front-end
  • the anode for a fuel cell can be configured to satisfy the relationship of particle diameter of solid electrolyte particles in active layer ⁇ particle diameter of solid electrolyte particles in diffusion layer.
  • the particle diameter of the catalyst particles in the active layer can be specifically in the range of 1 to 10 ⁇ m from the viewpoint of improving gas diffusibility of the fuel gas and suppressing particle aggregation.
  • the particle diameter of the catalyst particles in the active layer is preferably 2 ⁇ m or more, more preferably 3 ⁇ m or more, and further preferably 4 ⁇ m or more.
  • the particle diameter of the catalyst particles in the active layer is preferably 7 ⁇ m or less, more preferably 6 ⁇ m or less, and even more preferably 5 ⁇ m or less, from the viewpoint of increasing the reaction point (higher surface area).
  • the particle size of the catalyst particles in the diffusion layer can be specifically set within the range of 1 to 10 ⁇ m from the viewpoint of improving the gas diffusibility of the fuel gas and ensuring the anode strength.
  • the particle diameter of the catalyst particles in the diffusion layer is preferably 2 ⁇ m or more, more preferably 3 ⁇ m or more, and further preferably 4 ⁇ m or more.
  • the particle size of the catalyst particles in the diffusion layer is preferably 7 ⁇ m or less, more preferably 6 ⁇ m or less, and even more preferably 5 ⁇ m or less from the viewpoint of reforming methane fuel or the like.
  • the particle diameter of the solid electrolyte particles in the active layer is specifically 0.2 to 0 from the viewpoint of increasing the reaction point in the active layer (increasing the surface area) and suppressing particle aggregation. Within the range of 4 ⁇ m.
  • the particle diameter of the solid electrolyte particles in the active layer is preferably 0.3 ⁇ m or less.
  • the particle diameter of the solid electrolyte particles in the diffusion layer is specifically in the range of 0.5 to 1 ⁇ m from the viewpoint of improving the gas diffusibility of the combustion gas and ensuring the anode strength. be able to.
  • the particle diameter of the solid electrolyte particles in the diffusion layer can be preferably 0.7 ⁇ m or more.
  • the active layer catalyst particles and the diffusion layer catalyst particles may be made of nickel (Ni), nickel oxide (NiO, etc.), cobalt (Co), noble metals (Au, Ag). And platinum group elements Ru, Rh, Pd, Os, Ir, Pt, preferably Pt, Pd, Ru). These can be used alone or in combination of two or more.
  • the catalyst particles in the active layer and the catalyst particles in the diffusion layer may be made of the same material or different materials. More specifically, nickel and / or nickel oxide can be suitably used as the material for the catalyst particles in the active layer and the catalyst particles in the diffusion layer. Nickel (nickel oxide becomes nickel in the reducing atmosphere of the anode) has a sufficiently large affinity with hydrogen, which is suitably used for fuel gas, and is less expensive than other metals. Is appropriate. *
  • solid electrolyte used for the solid electrolyte particles in the active layer and the solid electrolyte particles in the diffusion layer in the fuel cell anode include, for example, Y 2 O 3 , Sc 2 O 3 , and Yb 2 O.
  • lanthanoid oxides such as 3
  • lanthanum gallate oxides CeO 2 and CeO 2 with Gd
  • Sm And cerium oxide oxides such as ceria-based solid solutions doped with one or more elements selected from Y, La, Nd, Yb, Ca, Dr, and Ho.
  • These can be used alone or in
  • the solid electrolyte of the solid electrolyte particles in the active layer and the solid electrolyte particles in the diffusion layer more specifically, from the viewpoint of oxygen ion conductivity, thermal expansion coefficient, high densification, etc., preferably a zirconia solid electrolyte is used. It can be used suitably.
  • each mixture constituting the active layer and the diffusion layer may contain components other than the above components as necessary as long as they are within the range where the above-described effects are exhibited.
  • the mixture constituting the active layer can contain carbon or the like.
  • the mixture constituting the diffusion layer can contain carbon, alumina, and the like.
  • the mixture constituting the active layer contains, for example, a mass ratio of the catalyst particles in the active layer and the solid electrolyte particles in the active layer in a range of 30/70 to 70/30, preferably 40/60 to 60/40. Can be contained within.
  • the mixture constituting the diffusion layer comprises, for example, a mass ratio of catalyst particles in the diffusion layer and solid electrolyte particles in the diffusion layer in the range of 30/70 to 70/30, preferably 40/60 to 60/40. Can be contained within.
  • the fuel cell anode satisfies the relationship of the pore diameter of the small pores contained in the active layer ⁇ the pore diameter of the large pores contained in the diffusion layer.
  • the size relationship between the pore diameter of the small pores and the pore diameter of the large pores can be determined by cross-sectional observation with a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the average pore size of the small pores contained in the active layer and the average pore size of the large pores contained in the diffusion layer are determined. Each can be measured and compared.
  • the said average pore diameter is an average value of the pore diameter computed from the pore diameter distribution measured with the palm porometer etc. *
  • the average pore diameter of the small pores may be in the range of 0.1 to 5 ⁇ m, and the average pore diameter of the large pores may be in the range of 1 to 20 ⁇ m.
  • the balance between securing the number of reaction points in the active layer and ensuring gas diffusibility in the diffusion layer is excellent. Further, since the small-diameter pores included in the active layer-side convex portion and the large-diameter pores included in the diffusion layer-side convex portion in the buffer region are each within the above range, the small-diameter pore of the active layer-side convex portion is reduced by the redox reaction. Even when crushed, the large-diameter pores on the diffusion layer side convex portion are likely to exist without being crushed. *
  • the average pore diameter of the small pores is preferably 4 ⁇ m or less, more preferably 3 ⁇ m or less, and even more preferably 2 ⁇ m or less, from the viewpoint of increasing the reaction point.
  • the average pore diameter of the large pores is preferably 2 ⁇ m or more, more preferably 5 ⁇ m or more, and even more preferably 7 ⁇ m or more, from the viewpoint of gas diffusibility and the like.
  • the average pore diameter of the large pores is preferably 18 ⁇ m or less, more preferably 15 ⁇ m or less, and even more preferably 10 ⁇ m or less, from the viewpoint of ensuring anode strength.
  • the numerical value is selected from the above range so that the average pore diameter of the large pores contained in the diffusion layer is larger than the average pore diameter of the small pores contained in the active layer.
  • the content of small-diameter pores in the buffer region can be in the range of 30% to 70% in terms of volume fraction.
  • the content of the small pores is a value calculated from (volume of small pores in the buffer region) / (volume of small pores in the buffer region + volume of large pores in the buffer region) ⁇ 100.
  • the content of the small-diameter pores in the buffer region is preferably 35% or more, more preferably 40%, from the viewpoints of improving the anode performance by increasing the reaction area and improving the bonding strength of the interface between the active layer and the diffusion layer. % Or more, more preferably 45% or more.
  • the content of the small-diameter pores in the buffer region is preferably 65% or less, more preferably 60% or less, and still more preferably, from the viewpoint of reducing the frequency of blockage of the small-diameter pores on the active layer side convex portion due to the redox reaction. It can be 55% or less.
  • the thickness of the active layer is preferably 10 ⁇ m or more, more preferably 15 ⁇ m or more, from the viewpoints of reaction sustainability, handleability, workability, and the like.
  • the thickness of the active layer is preferably 25 ⁇ m or less, more preferably 20 ⁇ m or less, from the viewpoint of electrode reaction resistance and the like.
  • the thickness of the diffusion layer is preferably 200 ⁇ m or more, more preferably 400 ⁇ m or more, from the viewpoint of strength as a support.
  • the thickness of the diffusion layer is preferably 800 ⁇ m or less, more preferably 700 ⁇ m or less, from the viewpoint of gas diffusibility and the like. *
  • examples of the material constituting each layer include the following, but are not particularly limited. *
  • Examples of the solid electrolyte constituting the solid electrolyte layer include zirconium oxide-based oxides such as yttria-stabilized zirconia (YSZ) and scandia-stabilized zirconia (ScSZ); lanthanum gallate-based oxides; CeO 2 , CeO 2 with Gd, Examples include cerium oxide-based oxides such as ceria-based solid solutions doped with one or more elements selected from Sm, Y, La, Nd, Yb, Ca, Dr, and Ho. it can.
  • the thickness of the solid electrolyte layer is preferably 3 to 20 ⁇ m, more preferably 3 to 10 ⁇ m, from the viewpoint of ohmic resistance and the like.
  • the cathode material examples include conductive perovskite oxides such as lanthanum-manganese oxides, lanthanum-cobalt oxides, lanthanum-iron oxides, the perovskite oxides, the solid electrolytes, and the like. The mixture of these can be illustrated.
  • the thickness of the cathode is preferably 20 to 100 ⁇ m, more preferably 30 to 60 ⁇ m, from the viewpoints of gas diffusibility, electrode reaction resistance, current collection, and the like. *
  • Examples of the material for the intermediate layer include the cerium oxide-based oxide.
  • the thickness of the intermediate layer is preferably 1 to 10 ⁇ m, more preferably 1 to 5 ⁇ m, from the viewpoints of ohmic resistance and prevention of element diffusion from the cathode.
  • the fuel cell anode and the fuel cell single cell having the fuel cell anode can be suitably manufactured by, for example, the following first to third steps, but are not particularly limited. *
  • the first step includes an unfired diffusion layer forming material that becomes a diffusion layer by firing, an unfired active layer formation material that becomes an active layer by firing, and an unfired solid electrolyte that becomes a solid electrolyte layer by firing
  • This is a step of laminating a layer forming material and, if necessary, an unfired intermediate layer forming material, which becomes an intermediate layer by firing, in this order in layers, and pressing to obtain a laminate.
  • defatting etc. can be performed to the said laminated body as needed.
  • the diffusion layer forming material As the diffusion layer forming material, the active layer forming material, the solid electrolyte layer forming material, and the intermediate layer forming material, a sheet-like material, a paste-like material, or a combination thereof can be used.
  • the diffusion layer forming material and the active layer forming material can contain a pore-forming agent, a binder, a plasticizer, and the like, if necessary, in addition to each catalyst powder and each solid electrolyte powder.
  • the size of the large pores in the diffusion layer and the small pores in the active layer can be adjusted by the average particle size of each catalyst powder and each solid electrolyte powder, the amount of pore-forming agent added, and the like. *
  • the surface uneven portion is formed on the surface of the diffusion layer forming material on the side of the diffusion layer and / or on the surface of the diffusion layer forming material in the layer of the active layer. Is formed.
  • stacking side surface of the active layer forming material turns into an active layer side convex part by baking mentioned later.
  • stacking side surface of the diffusion layer forming material turns into a diffused layer side convex part by baking mentioned later.
  • the surface irregularities for example, by forming a sheet of an active layer forming material and a diffusion layer forming material on a plastic substrate having a corresponding surface irregularity corresponding to the surface irregularities to be applied,
  • Examples thereof include a method of transferring the corresponding surface irregularities of the plastic substrate to the active layer forming material and the layer-side surface of the diffusion layer forming material.
  • the sheet-like active layer forming material and the diffusion layer forming material are molded, and at the same time, a predetermined surface irregularity can be imparted, and there is an advantage that the productivity of the anode for the fuel cell is excellent.
  • the surface uneven portion is formed by a roller having a corresponding surface uneven portion on the laminated surface of the sheet forming active layer forming material or diffusion layer forming material, a stamping member, or the like. Examples of such a method can be exemplified.
  • a conventional plastic substrate can be used without preparing a plastic substrate having a corresponding surface uneven portion.
  • the surface uneven portion can be provided using the roller.
  • the surface irregularity portion can be imparted by rolling the stamping member on the sheet surface formed into a flat sheet.
  • the surface uneven part is not formed by the above lamination and pressure bonding.
  • the surface irregularities are pushed into the surface of the other diffusion layer forming material or active layer forming material laminated side.
  • the buffer region can be formed also by such a method.
  • the second step is a step of co-firing the laminated body at, for example, 1300 to 1500 ° C.
  • a fired body in which the diffusion layer, the active layer, the solid electrolyte layer, and if necessary, the intermediate layer are laminated in this order is obtained.
  • This also forms a buffer region including the active layer side convex portion and the diffusion layer side convex portion, and the active layer side convex portion and the diffusion layer side convex portion are configured to contact each other. it can.
  • a cathode forming material that becomes a cathode by firing is layered on the surface of the intermediate layer (or the surface of the solid electrolyte layer if no intermediate layer is provided) in the fired body, for example, 900-1300 This is a step of baking at 0 ° C. *
  • a paste-like material can be used as the cathode forming material.
  • the cathode-forming material can be applied in a layered manner to the surface of the intermediate layer (or the surface of the solid electrolyte layer when there is no intermediate layer) by a printing method or the like.
  • Example 1 A fuel cell anode and a fuel cell single cell according to Example 1 will be described with reference to FIGS. 1 and 2.
  • the fuel cell anode 10 of this example is used in a fuel cell single cell 5 having an anode 1, a solid electrolyte layer 2, and a cathode 3.
  • the fuel cell anode 10 is disposed on the solid electrolyte layer 2 side, and is laminated on the active layer 11 including the small-diameter pores 110 and on the surface of the active layer 11 opposite to the solid electrolyte layer 2 side.
  • a diffusion layer 12 including large large-diameter pores 120. *
  • the active layer 11 has many active layer side convex portions 111a protruding from the surface of the active layer 11 on the diffusion layer 12 side.
  • the diffusion layer 12 has a large number of diffusion layer-side convex portions 121a protruding from the surface of the diffusion layer 12 on the active layer 11 side.
  • the fuel cell anode 10 includes an active layer side convex portion 111a and a diffusion layer side convex portion 121a, and the active layer side convex portion 111a and the diffusion layer side convex portion 121a are in contact with each other.
  • the fuel cell single cell 5 of this example has the anode 10 for fuel cells of this example, the solid electrolyte layer 2, and the cathode 3, as shown in FIG.
  • the fuel cell single cell 5 includes a solid electrolyte layer 2, a fuel cell anode 10 (provided that the active layer 11 is in contact with the solid electrolyte layer 2) laminated on one surface of the solid electrolyte layer 2, and It has a cathode 3 laminated on the other surface of the solid electrolyte layer 2 with an intermediate layer 4 interposed therebetween, and is a flat single cell having a fuel cell anode 10 as a support.
  • the buffer region 13 specifically includes the diffusion layer-side convex portions 121a in the active layer-side concave portions 111b between the active layer-side convex portions 111a that are separated from each other.
  • each active layer side convex portion 111a is inserted into each diffusion layer side concave portion 121b between the diffusion layer side convex portions 121a that are separated from each other.
  • the shapes of the active layer side convex portion 111a and the diffusion layer side convex portion 121a are both mountain-shaped.
  • the active layer 11 is composed of a mixture including the catalyst particles 112 in the active layer and the solid electrolyte particles 113 in the active layer.
  • the diffusion layer 12 is composed of a mixture containing the in-diffusion layer catalyst particles 122 and the in-diffusion layer solid electrolyte particles 123.
  • the anode 10 for the fuel cell of the present example satisfies the relationship of the particle diameter of the active layer catalyst particles 112 and the solid electrolyte particles 113 in the active layer ⁇ the height of the active layer side convex portion 111a.
  • the particle size of the solid electrolyte particles 123 in the diffusion layer ⁇ the height relationship of the diffusion layer side convex portion 121a is satisfied.
  • the anode 10 for fuel cells of this example also satisfies the relationship of the particle diameter of the solid electrolyte particles 113 in the active layer ⁇ the particle diameter of the solid electrolyte particles 123 in the diffusion layer.
  • the anode 10 for the fuel cell of this example satisfies the relationship of the particle diameter of the solid electrolyte particles 113 in the active layer ⁇ the particle diameter of the catalyst particles 112 in the active layer, and the particle diameter of the solid electrolyte particles 123 in the diffusion layer ⁇ the diffusion layer.
  • the relationship of the particle diameter of the inner catalyst particle 122 is also satisfied. *
  • the fuel cell anode 10 of this example satisfies the relationship of the height of the diffusion layer side convex portion 121a ⁇ the thickness of the active layer 11. More specifically, the height of the diffusion layer-side convex portion 121a ⁇ 3/4 times the film thickness of the active layer 11, more specifically, 1 ⁇ 2 times the film thickness of the active layer 11 or less. Yes. *
  • the content of the small-diameter pores 110 in the buffer region 13 is in the range of 30% to 70% in terms of volume fraction. Specifically, the content can be set to 35%.
  • the average pore diameter of the small pores is in the range of 0.1 to 5 ⁇ m, and the average pore diameter of the large pores is in the range of 1 to 20 ⁇ m. Specifically, the average pore diameter of the small pores can be 2 ⁇ m, and the average pore diameter of the large pores can be 10 ⁇ m.
  • the solid electrolyte layer 2 is specifically formed from a zirconia solid electrolyte. More specifically, the zirconia-based solid electrolyte is yttria-stabilized zirconia (hereinafter, 8YSZ) containing 8 mol% of Y 2 O 3 , which is a zirconium oxide-based oxide, and has a thickness of 10 ⁇ m.
  • 8YSZ yttria-stabilized zirconia
  • the intermediate layer 4 is specifically formed of ceria (hereinafter, 10GDC) doped with 10 mol% of Gd, which is a cerium oxide-based oxide, and the thickness thereof is 5 ⁇ m.
  • 10GDC ceria
  • Gd cerium oxide-based oxide
  • the thickness of the cathode is 50 ⁇ m.
  • the fuel cell anode 10 (diffusion layer 12, active layer 11), solid electrolyte layer 2, intermediate layer 4 and cathode 3 all have a rectangular shape in plan view.
  • the fuel cell anode 10 (diffusion layer 12, active layer 11) and the solid electrolyte layer 2 have the same outer shape.
  • the outer shape of the intermediate layer 4 is smaller than the outer shape of the solid electrolyte layer 2.
  • the outer shape of the cathode 3 is smaller than the outer shape of the intermediate layer 4.
  • the unit size of the cathode 3, the intermediate layer 4, and the solid electrolyte layer 2 in the fuel cell unit cell 5 is such that the external shape of the cathode 3 ⁇ the external shape of the intermediate layer 4 ⁇ the external shape of the solid electrolyte layer 2. It is configured to satisfy.
  • the fuel cell anode 10 has the above-described configuration.
  • the active layer 11 includes small-diameter pores 110 and has a large number of active layer-side convex portions 111a.
  • the diffusion layer 12 includes a large diameter pore 120 having a diameter larger than that of the small diameter pore 110, and has a large number of diffusion layer side convex portions 121a.
  • the fuel cell anode 10 includes an active layer side convex portion 111a and a diffusion layer side convex portion 121a, and the active layer side convex portion 111a and the diffusion layer side convex portion 121a are in contact with each other.
  • the anode 10 for the fuel cell has a sinterability in the active layer 11 and the diffusion layer 12 due to the presence of the buffer region 13 including the active layer side convex portion 111a and the diffusion layer side convex portion 121a that are positively provided. Differences and differences in expansion and contraction behavior during redox reactions are alleviated.
  • the contact area between the active layer 11 and the diffusion layer 12 increases due to the meshing of the active layer side convex portion 111 a and the diffusion layer side convex portion 121 a in the buffer region 13. Therefore, the fuel cell anode 10 can improve the bonding strength of the interface I between the active layer 11 and the diffusion layer 12, and can suppress delamination between the active layer 11 and the diffusion layer 12. .
  • the anode 10 for the fuel cell has an active layer side convex portion by redox reaction due to the presence of the buffer region 13 in which the small diameter pores 110 of the active layer side convex portion 111a and the large diameter pores 120 of the diffusion layer side convex portion 121a coexist. Even when the small-diameter pores 110 in the 111a are crushed, the large-diameter pores 120 in the diffusion layer side convex portion 121a can remain without being crushed. Therefore, the fuel cell anode 10 can easily ensure gas diffusibility and the number of reaction points. *
  • the buffer region 13 is in the above state. Therefore, in the fuel cell anode 10 of this example, the active layer side convex portion 111a and the diffusion layer side convex portion 121a can be sufficiently brought into contact with each other, and the contact area can be easily increased. Therefore, the anode 10 for the fuel cell of this example can easily improve the bonding strength of the interface I between the active layer 11 and the diffusion layer 12 and suppress delamination between the active layer 11 and the diffusion layer 12. It becomes easy.
  • the anode 10 for the fuel cell of the present example satisfies the relationship of the particle diameter of the active layer catalyst particles 112 and the solid electrolyte particles 113 in the active layer ⁇ the height of the active layer side convex portion 111a.
  • the particle diameter of the solid electrolyte particles 123 in the diffusion layer ⁇ the height of the diffusion layer side convex portion 121a is satisfied. Therefore, the fuel cell anode 10 of this example can easily increase the contact area between the active layer side convex portion 111a and the diffusion layer side convex portion 121a, so that the interface I between the active layer 11 and the diffusion layer 12 is joined. It is advantageous for improving the strength.
  • the small-diameter pores 110 are increased due to the presence of the active layer-side convex portion 111a, and the reaction area is easily increased, which is advantageous in improving the anode performance. Further, during the redox reaction, it becomes easy to secure the large-diameter pores 120 that remain without being collapsed due to the presence of the diffusion layer-side convex portions 121a in the buffer region, which is advantageous in improving gas diffusibility and the number of reaction points.
  • the fuel cell anode 10 of this example is configured to satisfy the relationship of the height of the diffusion layer-side convex portion 121a ⁇ the thickness of the active layer 11. Therefore, the anode 10 for the fuel cell of this example is advantageous in that the diffusion layer side convex portion 121a is difficult to penetrate the active layer 11, and thus the active layer 11 is hardly broken.
  • the fuel cell anode 10 of this example is configured to satisfy the relationship of the particle diameter of the solid electrolyte particles 113 in the active layer ⁇ the particle diameter of the solid electrolyte particles 123 in the diffusion layer. Therefore, the anode 10 for a fuel cell of this example has an advantage that it is easy to satisfy the relationship of the pore diameter of the small diameter pores 110 in the active layer 11 ⁇ the pore diameter of the large diameter pores 120 in the diffusion layer 12. *
  • the content of the small-diameter pores 110 in the buffer region 13 is in the range of 30% to 70% in terms of volume fraction. Therefore, the anode 10 for the fuel cell of this example is improved in anode performance by increasing the reaction area, and the active layer 11 and the diffusion layer 12. It is excellent in the balance between the improvement of the bonding strength of the interface between and the active layer side convex portion 111a due to the redox reaction.
  • the average pore diameter of the small pores 110 is in the range of 0.1 to 5 ⁇ m, and the average pore diameter of the large pores 120 is in the range of 1 to 20 ⁇ m. Therefore, the fuel cell anode 10 of this example has an excellent balance between ensuring the number of reaction points in the active layer 11 and ensuring the gas diffusibility of the diffusion layer 12.
  • the small-diameter pores 110 included in the active layer-side convex portion 111a and the large-diameter pores 120 included in the diffusion layer-side convex portion 121a in the buffer region 13 are within the above ranges, the active layer side convex portion is formed by redox reaction. Even when the small-diameter pores 110 of the portion 111a are crushed, the large-diameter pores 120 of the diffusion layer-side convex portion 121a are likely to remain without being crushed. *
  • the fuel cell single cell 5 includes a fuel cell anode 10, a solid electrolyte layer 2, and a cathode 3. Therefore, the fuel cell single cell 5 can suppress delamination between the active layer 11 and the diffusion layer 12 during operation of the fuel cell single cell 5. Further, the fuel cell single cell 5 is excellent in redox resistance because the gas diffusibility and the number of reaction points are hardly lowered by the redox reaction. *
  • NiO powder (average particle size: 1.0 ⁇ m), 8YSZ powder (average particle size: 0.5 ⁇ m), carbon (pore forming agent), polyvinyl butyral (organic material), isoamyl acetate and 1-butanol (mixed)
  • the solvent was mixed with a ball mill to prepare a slurry.
  • the mass ratio of NiO powder and 8YSZ powder is 65:35.
  • the doctor blade method the slurry is coated in a layer on a plastic substrate having a corresponding surface irregularity corresponding to the surface irregularity to be applied, and dried to provide a surface on one side (lamination side surface).
  • a sheet-shaped diffusion layer forming material having an uneven portion and having a flat free surface on the other surface was prepared.
  • the average particle diameter is the particle diameter (diameter) d50 when the volume-based cumulative frequency distribution measured by the laser diffraction / scattering method shows 50% (hereinafter the same). *
  • NiO powder (average particle size: 1.0 ⁇ m), 8YSZ powder (average particle size: 0.2 ⁇ m), carbon (pore forming agent), polyvinyl butyral (organic material), isoamyl acetate and 1-butanol (mixed)
  • the solvent was mixed with a ball mill to prepare a slurry.
  • the mass ratio of NiO powder and 8YSZ powder is 65:35.
  • the doctor blade method the slurry is coated in a layer on a plastic substrate having a corresponding surface irregularity corresponding to the surface irregularity to be applied, and dried to provide a surface on one side (lamination side surface).
  • a sheet-form active layer forming material having an uneven portion and a flat free surface on the other surface was prepared.
  • the amount of carbon in the diffusion layer forming material is larger than that of the active layer forming material. *
  • a slurry was prepared by mixing 8YSZ powder (average particle size: 0.5 ⁇ m), polyvinyl butyral (organic material), isoamyl acetate and 1-butanol (mixed solvent) with a ball mill. The slurry was applied in a layer form on a plastic substrate using a doctor blade method and dried to prepare a sheet-shaped solid electrolyte layer forming material.
  • a slurry was prepared by mixing 10 GDC powder (average particle size: 0.3 ⁇ m), polyvinyl butyral (organic material), isoamyl acetate, 2-butanol and ethanol (mixed solvent) with a ball mill.
  • the slurry was applied in a layer form on a plastic substrate using a doctor blade method and dried to prepare a sheet-shaped intermediate layer forming material.
  • LSCF (La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3 ) powder (average particle size: 0.6 ⁇ m), 10 GDC powder (average particle size: 0.3 ⁇ m), ethyl cellulose (organic material) ) And terpineol (solvent) were mixed in a ball mill to prepare a paste-like cathode forming material.
  • the mass ratio of the LSCF powder to the 10GDC powder is 90:10.
  • a sheet-shaped diffusion layer forming material, a sheet-shaped active layer forming material, a sheet-shaped solid electrolyte layer forming material, and a sheet-shaped intermediate layer forming material are laminated in this order, A laminate was obtained by pressure bonding.
  • the material for forming the diffusion layer and the material for forming the active layer were arranged and laminated so that the formation surfaces of the respective surface irregularities face each other.
  • the CIP molding method was used for pressure bonding.
  • the CIP molding conditions were a temperature of 80 ° C., a pressing force of 50 MPa, and a pressing time of 10 minutes.
  • the laminated body was degreased after the pressure bonding. *
  • a cathode forming material is applied to the surface of the intermediate layer in the sintered body by a screen printing method, and baked (baked) at 950 ° C. for 2 hours to form a layered cathode (thickness 50 ⁇ m). Formed.
  • the cathode forming material is not printed up to the outer edge of the intermediate layer, and the outer shape of the cathode layer is smaller than the outer shape of the solid electrolyte layer.
  • the fuel cell anode diffusion layer, active layer
  • solid electrolyte layer, intermediate layer, and cathode are laminated in this order, and the fuel cell anode is used as a support.
  • a fuel cell single cell was obtained.
  • a fuel cell anode in which two layers of a diffusion layer and an active layer were laminated was obtained.
  • the obtained fuel cell anode and fuel cell single cell are designated as Sample 1 fuel cell anode and fuel cell single cell. *
  • each of Samples 1 to 3 includes an active layer side convex portion and a diffusion layer side convex portion by observing a cross section perpendicular to the solid electrolyte layer surface with an SEM, and the active layer side convex portion. And a buffer region where the diffusion layer side convex portions are in contact with each other can be confirmed.
  • a sheet-shaped diffusion layer forming material having a surface uneven portion prepared in the same manner as in the preparation of Sample 2 is a sheet material Ad2 (thickness 100 ⁇ m), and a sheet-like active layer forming surface uneven portion is formed.
  • the material is a sheet material Aa2 (thickness 20 ⁇ m).
  • a sheet-shaped diffusion layer forming material that does not have a surface uneven portion, prepared in the same manner as in the preparation of Sample 4 as a comparative example has a sheet material Ad4 (thickness 100 ⁇ m), and has a surface uneven portion.
  • the sheet-like active layer forming material that is not used is a sheet material Aa4 (thickness 20 ⁇ m). Using these, each test material was produced as follows. *
  • the sheet material Ad2 and the sheet material Aa2 were laminated in this order and pressed to obtain an unfired specimen 1. At this time, the sheet material Ad2 and the sheet material Aa2 were arranged and laminated such that the formation surfaces of the respective surface uneven portions faced each other. Note that the CIP molding method was used for pressure bonding. The CIP molding conditions were a temperature of 80 ° C., a pressing force of 50 MPa, and a pressing time of 10 minutes. *
  • the unfired specimen 2 was obtained by laminating the sheet material Ad4 and the sheet material Aa4 in this order and press-bonding them.
  • JIS No. 2 type test piece was collected from each test material. Then, using a precision universal testing machine (manufactured by Shimadzu Corporation, “Autograph AG-X”), each specimen was subjected to a tensile test according to “JIS K-7113 Plastic Tensile Test Method”. Specifically, after holding both ends of the test piece with a jig, the tensile yield strength of each test piece was measured by pulling and breaking the test piece at a pulling speed of 100 mm / min. As a result, the tensile yield strength of the specimen of specimen 1 was about 4.6 MPa. On the other hand, the tensile yield strength of the test piece of test material 2 was about 1.7 MPa, which was lower than the tensile yield strength of the test piece of test material 1. *
  • the material for forming the diffusion layer and the material for forming the active layer are formed by laminating, pressing and bonding the material for forming the diffusion layer and the material for forming the active layer so that the formation surfaces of the surface irregularities face each other. It can be seen that the adhesion at the interface with the material is improved. In addition, if fired in the state of high adhesion, as described above, the buffer region can be formed relatively easily, and the presence of the buffer region makes it possible to bond the interface between the active layer and the diffusion layer. It can be said that the strength can be improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Ceramic Engineering (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

Provided are: an anode for fuel cells, which is able to suppress interlayer separation between an active layer and a diffusion layer, and which is easily capable of achieving good gas diffusion properties and a good number of reaction sites; and a single cell of a fuel cell, which uses this anode for fuel cells. An anode (10) for fuel cells is used for a single cell (5) of a fuel cell, which comprises an anode (1), a solid electrolyte layer (2) and a cathode (3). The anode (10) for fuel cells is provided with: an active layer (11) that is arranged on the solid electrolyte layer (2) side and contains a small-diameter void (110); and a diffusion layer (12) that is laminated on a surface of the active layer (11), said surface being on the reverse side of the solid electrolyte layer (2)-side surface, and contains a large-diameter void (120). The active layer (11) has a plurality of active layer-side projections (111a). The diffusion layer (12) has a plurality of diffusion layer-side projections (121a). The anode (10) for fuel cells has a buffer region (13) that is configured to contain an active layer-side projection (111a) and a diffusion layer-side projection (121a) so that the active layer-side projection (111a) and the diffusion layer-side projection (121a) are in contact with each other.

Description

燃料電池用アノードおよび燃料電池単セルAnode for fuel cell and single cell for fuel cell
本発明は、燃料電池用アノードおよび燃料電池単セルに関し、さらに詳しくは、電解質として固体電解質を利用する燃料電池単セルに用いられる燃料電池用アノード、これを用いた燃料電池単セルに関する。 The present invention relates to a fuel cell anode and a fuel cell single cell, and more particularly to a fuel cell anode used in a fuel cell single cell using a solid electrolyte as an electrolyte, and a fuel cell single cell using the same.
従来、アノードと、固体電解質層と、カソードとを有する固体電解質型の燃料電池単セルが知られている。アノードとしては、固体電解質層側に配置される活性層と活性層における固体電解質層側と反対側の面に配置される拡散層との二層からなるアノードが知られている。アノード材料としては、通常、Ni-イットリア安定化ジルコニア(YSZ)サーメット等、ニッケル粒子とジルコニア系固体電解質粒子とのサーメットが使用されている。例えば、特許文献1には、強度と導電性の高い第一の層(拡散層に相当)と、電極反応性が高い第二の層(活性層に相当)から形成される燃料電池用アノードが開示されている。 Conventionally, a solid electrolyte type fuel cell unit cell having an anode, a solid electrolyte layer, and a cathode is known. As an anode, an anode composed of two layers of an active layer disposed on the solid electrolyte layer side and a diffusion layer disposed on the surface of the active layer opposite to the solid electrolyte layer side is known. As the anode material, cermets of nickel particles and zirconia solid electrolyte particles such as Ni-yttria stabilized zirconia (YSZ) cermet are usually used. For example, Patent Document 1 discloses a fuel cell anode formed of a first layer having high strength and conductivity (corresponding to a diffusion layer) and a second layer having high electrode reactivity (corresponding to an active layer). It is disclosed.
特開平9-259895号公報Japanese Patent Laid-Open No. 9-259895
しかしながら、従来技術は、以下の点で問題がある。すなわち、アノードを構成する活性層は、反応場として高い活性が求められる。そのため、活性層は、燃料ガスと酸素イオンとが反応する反応点の数を増加させるために、粒子径の小さい固体電解質粒子を用いて緻密な構成とされることが多い。一方、アノードを構成する拡散層は、燃料ガスの拡散性が求められる。そのため、拡散層は、ガス拡散性の向上のために、粒子径の大きい固体電解質粒子を用いて、疎な構成とされることが多い。  However, the prior art has problems in the following points. That is, the active layer constituting the anode is required to have high activity as a reaction field. Therefore, the active layer often has a dense structure using solid electrolyte particles having a small particle size in order to increase the number of reaction points where the fuel gas and oxygen ions react. On the other hand, the diffusion layer constituting the anode is required to have diffusibility of fuel gas. Therefore, the diffusion layer often has a sparse structure using solid electrolyte particles having a large particle diameter in order to improve gas diffusibility. *
しかし、各層の材料形態が異なると、各層における焼結性やレドックス反応時の膨張収縮挙動が異なる。そのため、従来の燃料電池用アノードは、活性層と拡散層との間の界面の接合強度が弱く、燃料電池単セルの運転時に上記界面で層間剥離が生じるおそれがある。また、従来の燃料電池用アノードは、上記レドックス反応時に、活性層内に含まれる相対的に小さな気孔が閉塞し、ガス拡散性および反応点数が低下する。  However, when the material form of each layer is different, the sinterability and the expansion / contraction behavior during the redox reaction in each layer are different. Therefore, the conventional anode for a fuel cell has a weak bonding strength at the interface between the active layer and the diffusion layer, and there is a possibility that delamination may occur at the interface when the fuel cell single cell is operated. Further, in the conventional anode for a fuel cell, relatively small pores contained in the active layer are closed during the redox reaction, and gas diffusibility and the number of reaction points are lowered. *
本発明は、上記背景に鑑みてなされたものであり、活性層と拡散層との間の層間剥離を抑制することが可能であり、ガス拡散性および反応点数を確保しやすい燃料電池用アノード、これを用いた燃料電池単セルを提供しようとするものである。 The present invention has been made in view of the above background, and can suppress delamination between the active layer and the diffusion layer, and can easily ensure gas diffusibility and the number of reaction points, The present invention intends to provide a single fuel cell using this.
本開示の一態様は、アノードと、固体電解質層と、カソードとを有する燃料電池単セルに用いられ、上記アノードを構成する燃料電池用アノードであって、 上記固体電解質層側に配置され、小径気孔を含む活性層と、該活性層における上記固体電解質層側と反対側の面に積層され、上記小径気孔よりも径の大きな大径気孔を含む拡散層とを備え、 上記活性層は、該活性層における上記拡散層側の面から突出する活性層側凸部を複数有するとともに、上記拡散層は、該拡散層における上記活性層側の面から突出する拡散層側凸部を複数有しており、 上記活性層側凸部と上記拡散層側凸部とを含み、かつ、上記活性層側凸部と上記拡散層側凸部とが互いに接触して構成されている緩衝領域を有していることを特徴とする燃料電池用アノードにある。  One aspect of the present disclosure is an anode for a fuel cell that is used in a fuel cell single cell having an anode, a solid electrolyte layer, and a cathode, and is disposed on the solid electrolyte layer side and has a small diameter. An active layer containing pores, and a diffusion layer laminated on the surface of the active layer opposite to the solid electrolyte layer side and containing large pores having a diameter larger than the small pores, the active layer comprising: The active layer has a plurality of active layer side protrusions protruding from the diffusion layer side surface, and the diffusion layer has a plurality of diffusion layer side protrusions protruding from the active layer side surface of the diffusion layer. And having a buffer region including the active layer side convex portion and the diffusion layer side convex portion, and the active layer side convex portion and the diffusion layer side convex portion being in contact with each other. Anode for fuel cell A. *
本開示の他の態様は、上記燃料電池用アノードと、固体電解質層と、カソードとを有することを特徴とする燃料電池単セルにある。 Another aspect of the present disclosure is a fuel cell single cell including the fuel cell anode, a solid electrolyte layer, and a cathode.
上記燃料電池用アノードは、上記構成を有している。特に、上記燃料電池用アノードにおいて、活性層は、小径気孔を含み、活性層側凸部を多数有している。また、拡散層は、上記小径気孔よりも径の大きな大径気孔を含み、拡散層側凸部を多数有している。そして、上記燃料電池用アノードは、活性層側凸部と拡散層側凸部とを含み、かつ、活性層側凸部と拡散層側凸部とが互いに接触して構成されている緩衝領域を有している。  The fuel cell anode has the above-described configuration. In particular, in the fuel cell anode, the active layer includes small-diameter pores and has a large number of active layer-side convex portions. The diffusion layer includes large-diameter pores having a diameter larger than that of the small-diameter pores, and has a large number of convex portions on the diffusion layer side. The anode for a fuel cell includes a buffer region including an active layer side convex portion and a diffusion layer side convex portion, and the active layer side convex portion and the diffusion layer side convex portion are in contact with each other. Have. *
そのため、上記燃料電池用アノードは、積極的に設けられた活性層側凸部および拡散層側凸部を含む緩衝領域の存在により、活性層と拡散層とにおける焼結性の差やレドックス反応時の膨張収縮挙動の差が緩和される。また、緩衝領域における活性層側凸部と拡散層側凸部との噛み合いにより、活性層と拡散層との接触面積も増加する。そのため、上記燃料電池用アノードは、活性層と拡散層との間の界面の接合強度が向上し、活性層と拡散層との間の層間剥離を抑制することが可能となる。また、上記燃料電池用アノードは、活性層側凸部の小径気孔と拡散層側凸部の大径気孔とが共存する緩衝領域の存在により、レドックス反応によって活性層側凸部内の小径気孔が潰れた場合でも、拡散層側凸部内の大径気孔は、潰れずに残ったまま存在することができる。そのため、上記燃料電池用アノードは、ガス拡散性および反応点数を確保しやすい。  For this reason, the anode for a fuel cell has a sinterability difference between the active layer and the diffusion layer and a redox reaction due to the presence of the buffer region including the active layer side convex portion and the diffusion layer side convex portion provided actively. The difference in the expansion and contraction behavior of the film is reduced. Further, the contact area between the active layer and the diffusion layer also increases due to the engagement between the active layer side convex portion and the diffusion layer side convex portion in the buffer region. Therefore, in the fuel cell anode, the bonding strength at the interface between the active layer and the diffusion layer is improved, and delamination between the active layer and the diffusion layer can be suppressed. Further, in the anode for a fuel cell, due to the existence of a buffer region where the small diameter pores on the active layer side convex portion and the large diameter pores on the diffusion layer side convex portion coexist, the small diameter pores in the active layer side convex portion are crushed by the redox reaction. Even in this case, the large-diameter pores in the diffusion layer side convex portion can remain without being crushed. Therefore, the fuel cell anode can easily ensure gas diffusibility and the number of reaction points. *
上記燃料電池単セルは、上記燃料電池用アノードと、固体電解質層と、カソードとを有している。そのため、上記燃料電池単セルは、燃料電池単セルの運転時における活性層と拡散層との間の層間剥離を抑制することができる。また、上記燃料電池単セルは、レドックス反応によるガス拡散性および反応点数の低下が生じ難いので、レドックス耐性に優れる。 The fuel cell single cell includes the fuel cell anode, a solid electrolyte layer, and a cathode. Therefore, the fuel cell single cell can suppress delamination between the active layer and the diffusion layer during operation of the fuel cell single cell. The fuel cell single cell is excellent in redox resistance because the gas diffusivity and the number of reaction points are not easily lowered by the redox reaction.
実施例1の燃料電池用アノード、実施例1の燃料電池単セルの断面構造を模式的に示した図である。1 is a diagram schematically showing a cross-sectional structure of a fuel cell anode of Example 1 and a fuel cell single cell of Example 1. FIG. 実施例1の燃料電池用アノード、実施例1の燃料電池単セルにおける燃料電池用アノードの微構造を模式的に示した説明図である。FIG. 3 is an explanatory view schematically showing the microstructure of a fuel cell anode of Example 1 and a fuel cell anode in a fuel cell single cell of Example 1;
上記燃料電池用アノードは、電解質として固体電解質を利用する固体電解質型の燃料電池単セルにおけるアノードに適用される。固体電解質層を構成する固体電解質には、酸素イオン導電性を示す固体酸化物セラミックス等を用いることができる。  The anode for a fuel cell is applied to an anode in a solid electrolyte type fuel cell unit cell using a solid electrolyte as an electrolyte. As the solid electrolyte constituting the solid electrolyte layer, a solid oxide ceramic exhibiting oxygen ion conductivity can be used. *
なお、固体電解質として固体酸化物セラミックスを用いる燃料電池は、固体酸化物形燃料電池(SOFC)と称される。上記燃料電池単セルの電池構造は、製造性に優れる、反応抵抗となる電解質を薄くすることができる等の観点から、層状のアノードを支持体とする平板形とすることができる。  A fuel cell using solid oxide ceramics as a solid electrolyte is called a solid oxide fuel cell (SOFC). The battery structure of the fuel cell unit cell can be a flat plate having a layered anode as a support, from the viewpoints of excellent manufacturability and the ability to reduce the electrolyte that becomes a reaction resistance. *
上記燃料電池単セルは、アノードからなる層を含む第1層と、固体電解質層を含む第2層と、カソードからなる層を含む第3層と、がこの順に積層され、第1層に含まれるアノードは、固体電解質側に配置される活性層と、活性層における固体電解質と反対側の面に拡散層を含む。具体的には、固体電解質層と、固体電解質層の一方面に積層されたアノードと、固体電解質層の他方面に中間層を介してまたは中間層を介さずに積層されたカソードとを有しており、アノードを支持体とする構成とすることができる。なお、中間層は、主に、カソードを構成する材料と固体電解質層を構成する材料との反応を防止するための層である。カソードおよび中間層は、1層または2層以上から構成することができる。  The fuel cell unit cell includes a first layer including an anode layer, a second layer including a solid electrolyte layer, and a third layer including a cathode layer, which are stacked in this order, and are included in the first layer. The anode includes an active layer disposed on the solid electrolyte side and a diffusion layer on the surface of the active layer opposite to the solid electrolyte. Specifically, it has a solid electrolyte layer, an anode laminated on one side of the solid electrolyte layer, and a cathode laminated on the other side of the solid electrolyte layer with or without an intermediate layer. The anode can be used as a support. The intermediate layer is mainly a layer for preventing a reaction between the material constituting the cathode and the material constituting the solid electrolyte layer. The cathode and the intermediate layer can be composed of one layer or two or more layers. *
上記燃料電池用アノードにおいて、活性層は、主に、アノード側における電気化学的反応の反応場となる層である。また、拡散層は、主に、供給される燃料ガスを拡散させることが可能な層である。拡散層は、1層または2層以上から構成することができる。活性層と拡散層の外形は、同じ大きさに構成することができる。また、他にも、活性層における固体電解質層と接する面を除いた残りの面を拡散層が覆うように構成することもできる。  In the fuel cell anode, the active layer is a layer mainly serving as a reaction field for electrochemical reaction on the anode side. The diffusion layer is a layer that can mainly diffuse the supplied fuel gas. The diffusion layer can be composed of one layer or two or more layers. The outer shape of the active layer and the diffusion layer can be configured to be the same size. In addition, the diffusion layer may be configured to cover the remaining surface except the surface in contact with the solid electrolyte layer in the active layer. *
上記燃料電池用アノードにおいて、緩衝領域は、具体的には、例えば、互いに離間する活性層側凸部間にある各活性層側凹部に、各拡散層側凸部が入り込んだ状態(言い換えれば、互いに離間する拡散層側凸部間にある各拡散層側凹部に、各活性層側凸部が入り込んだ状態)とすることができる。この場合は、活性層側凸部と拡散層側凸部とを互いの側面同士で十分に接触させることが可能となり、接触面積を増加させやすい。そのため、この場合は、活性層と拡散層との間の界面の接合強度を向上させやすく、活性層と拡散層との間の層間剥離を抑制しやすくなる。  In the fuel cell anode, specifically, the buffer region is, for example, a state in which each diffusion layer side convex portion enters each active layer side concave portion between the active layer side convex portions spaced apart from each other (in other words, Each active layer side convex portion enters into each diffusion layer side concave portion between the diffusion layer side convex portions spaced apart from each other. In this case, the active layer side convex portion and the diffusion layer side convex portion can be sufficiently brought into contact with each other, and the contact area can be easily increased. Therefore, in this case, it is easy to improve the bonding strength at the interface between the active layer and the diffusion layer, and it is easy to suppress delamination between the active layer and the diffusion layer. *
上記燃料電池用アノードにおいて、活性層側凸部および拡散層側凸部の形状は、上記作用効果が得られる限りにおいて、特に制限されない。活性層側凸部および拡散層側凸部の形状は、例えば、半球状、半針状、柱状(角柱状、円柱状等)、山状などとすることができる。  In the fuel cell anode, the shapes of the active layer side convex portion and the diffusion layer side convex portion are not particularly limited as long as the above-described effects are obtained. The shape of the active layer side convex portion and the diffusion layer side convex portion can be, for example, hemispherical, semi-needle-shaped, columnar (such as prismatic or cylindrical), or mountain-shaped. *
上記燃料電池用アノードにおいて、活性層は、活性層内触媒粒子と活性層内固体電解質粒子とを含む混合物より構成することができる。拡散層は、拡散層内触媒粒子と拡散層内固体電解質粒子とを含む混合物より構成することができる。そして、上記燃料電池用アノードは、活性層内触媒粒子、活性層内固体電解質粒子の粒子径≦活性層側凸部の高さの関係を満たし、拡散層内触媒粒子、拡散層内固体電解質粒子の粒子径≦拡散層側凸部の高さの関係を満たすように構成することができる。つまり、活性層側凸部の高さは、活性層内触媒粒子、活性層内固体電解質粒子の粒子径と同等またはそれ以上とすることができる。拡散層側凸部の高さは、拡散層内触媒粒子、拡散層内固体電解質粒子の粒子径と同等またはそれ以上とすることができる。なお、上記にいう活性層側凸部の高さは、活性層側凸部の基端から先端までの距離をいい、拡散層側凸部の高さは、拡散層側凸部の基端から先端までの距離をいう。また、上記にいう粒子径、凸部の高さは、それぞれ走査型電子顕微鏡(SEM)より測定される値を用いることができる(以下、同様である。)。  In the fuel cell anode, the active layer can be composed of a mixture containing the catalyst particles in the active layer and the solid electrolyte particles in the active layer. A diffusion layer can be comprised from the mixture containing the catalyst particle in a diffusion layer, and the solid electrolyte particle in a diffusion layer. The anode for a fuel cell satisfies the relationship of the particle size of the active layer catalyst particles and the solid electrolyte particles in the active layer ≦ the height of the active layer side convex portion, and the catalyst particles in the diffusion layer and the solid electrolyte particles in the diffusion layer The particle diameter can be configured to satisfy the relationship of the height of the convex part on the diffusion layer side. That is, the height of the active layer side convex portion can be equal to or larger than the particle diameter of the active layer catalyst particles and the active layer solid electrolyte particles. The height of the convex part on the diffusion layer side can be equal to or larger than the particle diameter of the catalyst particles in the diffusion layer and the solid electrolyte particles in the diffusion layer. The height of the active layer side convex portion referred to above refers to the distance from the base end of the active layer side convex portion to the tip end, and the height of the diffusion layer side convex portion is from the base end of the diffusion layer side convex portion. The distance to the tip. Moreover, the value measured by a scanning electron microscope (SEM) can be respectively used for the particle diameter and the height of the convex portion described above (the same applies hereinafter). *
この場合は、活性層側凸部と拡散層側凸部との接触面積を増加させやすいので、活性層と拡散層との間の界面の接合強度の向上に有利である。また、緩衝領域において、活性層側凸部の存在による小径気孔が増え、反応面積を増加させやすく、アノード性能の向上に有利である。また、レドックス反応時に、緩衝領域において、拡散層側凸部の存在により潰れずに残る大径気孔を確保しやすくなるので、ガス拡散性および反応点数の向上に有利である。  In this case, it is easy to increase the contact area between the active layer side convex portion and the diffusion layer side convex portion, which is advantageous in improving the bonding strength of the interface between the active layer and the diffusion layer. Further, in the buffer region, the small-diameter pores due to the presence of the active layer side convex portion increase, the reaction area is easily increased, and it is advantageous for improving the anode performance. Further, during the redox reaction, in the buffer region, it becomes easy to ensure large-diameter pores that remain without being collapsed due to the presence of the convex portion on the diffusion layer side, which is advantageous in improving gas diffusibility and the number of reaction points. *
また、上記の場合において、活性層内固体電解質粒子の粒子径≦活性層内触媒粒子の粒子径の関係を満たし、拡散層内固体電解質粒子の粒子径≦拡散層内触媒粒子の粒子径の関係を満たすように構成することができる。この場合は、上記緩衝領域の作用効果を確実なものとしやすくなる。  In the above case, the particle size of the solid electrolyte particles in the active layer ≦ the particle size of the catalyst particles in the active layer is satisfied, and the particle size of the solid electrolyte particles in the diffusion layer ≦ the particle size of the catalyst particles in the diffusion layer Can be configured to satisfy. In this case, it is easy to ensure the effect of the buffer region. *
上記燃料電池用アノードにおいて、拡散層側凸部の高さ<活性層の膜厚の関係を満たすように構成することができる。  The anode for a fuel cell can be configured to satisfy the relationship of the height of the diffusion layer side convex portion <the thickness of the active layer. *
この場合は、拡散層側凸部が活性層を貫通し難くなるので、活性層を壊し難くなって有利である。拡散層側凸部の高さは、上記有利な効果を確実なものとしやすくなる、接合性が向上するなどの観点から、好ましくは、活性層の膜厚の3/4倍以下、より好ましくは、活性層の膜厚の1/2倍以下であるとよい。なお、上記にいう活性層の膜厚は、活性層における固体電解質側の面から活性層側凸部の先端までの距離をいう。  In this case, since the diffusion layer side convex portion hardly penetrates the active layer, it is difficult to break the active layer, which is advantageous. The height of the diffusion layer-side convex portion is preferably not more than 3/4 times the film thickness of the active layer, more preferably from the viewpoint of ensuring the advantageous effects described above and improving the bondability. The thickness of the active layer is preferably ½ times or less. In addition, the film thickness of the active layer said above says the distance from the surface by the side of the solid electrolyte in an active layer to the front-end | tip of an active layer side convex part. *
上記燃料電池用アノードは、活性層内固体電解質粒子の粒子径<拡散層内固体電解質粒子の粒子径の関係を満たすように構成することができる。この場合は、活性層内の小径気孔の気孔径<拡散層内の大径気孔の気孔径の関係を満たしやすくなる利点がある。  The anode for a fuel cell can be configured to satisfy the relationship of particle diameter of solid electrolyte particles in active layer <particle diameter of solid electrolyte particles in diffusion layer. In this case, there is an advantage that it is easy to satisfy the relationship of the pore diameter of the small pores in the active layer <the pore diameter of the large pores in the diffusion layer. *
上記燃料電池用アノードにおいて、活性層内触媒粒子の粒子径は、燃料ガスのガス拡散性向上、粒子凝集の抑制などの観点から、具体的には、1~10μmの範囲内とすることができる。活性層内触媒粒子の粒子径は、好ましくは2μm以上、より好ましくは3μm以上、さらに好ましくは4μm以上とすることができる。また、活性層内触媒粒子の粒子径は、反応点の増大(高表面積化)などの観点から、好ましくは7μm以下、より好ましくは6μm以下、さらに好ましく5μm以下とすることができる。  In the anode for a fuel cell, the particle diameter of the catalyst particles in the active layer can be specifically in the range of 1 to 10 μm from the viewpoint of improving gas diffusibility of the fuel gas and suppressing particle aggregation. . The particle diameter of the catalyst particles in the active layer is preferably 2 μm or more, more preferably 3 μm or more, and further preferably 4 μm or more. In addition, the particle diameter of the catalyst particles in the active layer is preferably 7 μm or less, more preferably 6 μm or less, and even more preferably 5 μm or less, from the viewpoint of increasing the reaction point (higher surface area). *
上記燃料電池用アノードにおいて、拡散層内触媒粒子の粒子径は、燃料ガスのガス拡散性向上、アノード強度の確保などの観点から、具体的には、1~10μmの範囲内とすることができる。拡散層
内触媒粒子の粒子径は、好ましくは2μm以上、より好ましくは3μm以上、さらに好ましくは4μm以上とすることができる。また、拡散層内触媒粒子の粒子径は、メタン燃料等の改質などの観点から、好ましくは7μm以下、より好ましくは6μm以下、さらに好ましくは5μm以下とすることができる。 
In the fuel cell anode, the particle size of the catalyst particles in the diffusion layer can be specifically set within the range of 1 to 10 μm from the viewpoint of improving the gas diffusibility of the fuel gas and ensuring the anode strength. . The particle diameter of the catalyst particles in the diffusion layer is preferably 2 μm or more, more preferably 3 μm or more, and further preferably 4 μm or more. In addition, the particle size of the catalyst particles in the diffusion layer is preferably 7 μm or less, more preferably 6 μm or less, and even more preferably 5 μm or less from the viewpoint of reforming methane fuel or the like.
上記燃料電池用アノードにおいて、活性層内固体電解質粒子の粒子径は、活性層における反応点の増大(高表面積化)、粒子凝集の抑制などの観点から、具体的には、0.2~0.4μmの範囲内とすることができる。活性層内固体電解質粒子の粒子径は、好ましくは0.3μm以下とすることができる。  In the anode for a fuel cell, the particle diameter of the solid electrolyte particles in the active layer is specifically 0.2 to 0 from the viewpoint of increasing the reaction point in the active layer (increasing the surface area) and suppressing particle aggregation. Within the range of 4 μm. The particle diameter of the solid electrolyte particles in the active layer is preferably 0.3 μm or less. *
上記燃料電池用アノードにおいて、拡散層内固体電解質粒子の粒子径は、燃焼ガスのガス拡散性向上、アノード強度の確保などの観点から、具体的には、0.5~1μmの範囲内とすることができる。拡散層内固体電解質粒子の粒子径は、好ましくは0.7μm以上とすることができる。  In the fuel cell anode, the particle diameter of the solid electrolyte particles in the diffusion layer is specifically in the range of 0.5 to 1 μm from the viewpoint of improving the gas diffusibility of the combustion gas and ensuring the anode strength. be able to. The particle diameter of the solid electrolyte particles in the diffusion layer can be preferably 0.7 μm or more. *
上記燃料電池用アノードにおいて、活性層内触媒粒子、拡散層内触媒粒子の材質としては、具体的には、ニッケル(Ni)、酸化ニッケル(NiO等)、コバルト(Co)、貴金属(Au、Ag、白金族元素のRu、Rh、Pd、Os、Ir、Pt、好ましくはPt、Pd、Ru)などを例示することができる。これらは1種または2種以上併用することができる。活性層内触媒粒子、拡散層内触媒粒子は、同じ材質であってもよいし、異なる材質であってもよい。より具体的には、活性層内触媒粒子、拡散層内触媒粒子の材質としては、ニッケルおよび/または酸化ニッケルを好適に用いることができる。ニッケル(酸化ニッケルは、アノードの還元性雰囲気中でニッケルとなる)は、燃料ガスに好適に用いられる水素との親和性が充分に大きく、他の金属に比べて安価であるので、アノード触媒として適当である。  In the fuel cell anode, the active layer catalyst particles and the diffusion layer catalyst particles may be made of nickel (Ni), nickel oxide (NiO, etc.), cobalt (Co), noble metals (Au, Ag). And platinum group elements Ru, Rh, Pd, Os, Ir, Pt, preferably Pt, Pd, Ru). These can be used alone or in combination of two or more. The catalyst particles in the active layer and the catalyst particles in the diffusion layer may be made of the same material or different materials. More specifically, nickel and / or nickel oxide can be suitably used as the material for the catalyst particles in the active layer and the catalyst particles in the diffusion layer. Nickel (nickel oxide becomes nickel in the reducing atmosphere of the anode) has a sufficiently large affinity with hydrogen, which is suitably used for fuel gas, and is less expensive than other metals. Is appropriate. *
上記燃料電池用アノードにおいて、活性層内固体電解質粒子、拡散層内固体電解質粒子に用いられる固体電解質としては、具体的には、例えば、Y、Sc、および、Yb等のランタノイド系酸化物から選択される1種または2種以上の酸化物が固溶されたZrO等の酸化ジルコニウム系酸化物;ランタンガレート系酸化物;CeO、CeOにGd、Sm、Y、La、Nd、Yb、Ca、Dr、および、Hoから選択される1種または2種以上の元素等がドープされたセリア系固溶体等の酸化セリウム系酸化物などを例示することができる。これらは1種または2種以上併用することができる。活性層内固体電解質粒子、拡散層内固体電解質粒子の固体電解質としては、より具体的には、酸素イオン導電性、熱膨張率、高緻密化などの観点から、好ましくは、ジルコニア系固体電解質を好適に用いることができる。  Specific examples of the solid electrolyte used for the solid electrolyte particles in the active layer and the solid electrolyte particles in the diffusion layer in the fuel cell anode include, for example, Y 2 O 3 , Sc 2 O 3 , and Yb 2 O. ZrO 2 and other zirconium oxides in which one or more oxides selected from lanthanoid oxides such as 3 are solid-dissolved; lanthanum gallate oxides; CeO 2 and CeO 2 with Gd, Sm And cerium oxide oxides such as ceria-based solid solutions doped with one or more elements selected from Y, La, Nd, Yb, Ca, Dr, and Ho. . These can be used alone or in combination of two or more. As the solid electrolyte of the solid electrolyte particles in the active layer and the solid electrolyte particles in the diffusion layer, more specifically, from the viewpoint of oxygen ion conductivity, thermal expansion coefficient, high densification, etc., preferably a zirconia solid electrolyte is used. It can be used suitably.
上記燃料電池用アノードにおいて、活性層、拡散層を構成する各混合物は、上記作用効果を奏する範囲内であれば、必要に応じて上記成分以外の他の成分を含有しうる。活性層を構成する混合物は、炭素等を含有しうる。拡散層を構成する混合物は、炭素、アルミナ等を含有しうる。また、活性層を構成する混合物は、活性層内触媒粒子と活性層内固体電解質粒子とを、例えば、質量比で、30/70~70/30、好ましくは40/60~60/40の範囲内で含有することができる。また、拡散層を構成する混合物は、拡散層内触媒粒子と拡散層内固体電解質粒子とを、例えば、質量比で、30/70~70/30、好ましくは40/60~60/40の範囲内で含有することができる。  In the fuel cell anode, each mixture constituting the active layer and the diffusion layer may contain components other than the above components as necessary as long as they are within the range where the above-described effects are exhibited. The mixture constituting the active layer can contain carbon or the like. The mixture constituting the diffusion layer can contain carbon, alumina, and the like. In addition, the mixture constituting the active layer contains, for example, a mass ratio of the catalyst particles in the active layer and the solid electrolyte particles in the active layer in a range of 30/70 to 70/30, preferably 40/60 to 60/40. Can be contained within. In addition, the mixture constituting the diffusion layer comprises, for example, a mass ratio of catalyst particles in the diffusion layer and solid electrolyte particles in the diffusion layer in the range of 30/70 to 70/30, preferably 40/60 to 60/40. Can be contained within. *
上記燃料電池用アノードは、活性層に含まれる小径気孔の気孔径<拡散層に含まれる大径気孔の気孔径の関係を満たしている。なお、上記小径気孔の気孔径と上記大径気孔の気孔径との大小関係は、走査型電子顕微鏡(SEM)による断面観察によって判断することができる。また、上記断面観察だけでは両気孔径の大小関係を明確に判断することができない場合には、活性層に含まれる小径気孔の平均気孔径、拡散層に含まれる大径気孔の平均気孔径をそれぞれ測定して比較することができる。なお、上記平均気孔径は、パームポロメータ等により測定した細孔径分布から算出した気孔径の平均値のことである。  The fuel cell anode satisfies the relationship of the pore diameter of the small pores contained in the active layer <the pore diameter of the large pores contained in the diffusion layer. The size relationship between the pore diameter of the small pores and the pore diameter of the large pores can be determined by cross-sectional observation with a scanning electron microscope (SEM). In addition, if the cross-sectional observation alone cannot clearly determine the size relationship between both pore sizes, the average pore size of the small pores contained in the active layer and the average pore size of the large pores contained in the diffusion layer are determined. Each can be measured and compared. In addition, the said average pore diameter is an average value of the pore diameter computed from the pore diameter distribution measured with the palm porometer etc. *
上記燃料電池用アノードにおいて、小径気孔の平均気孔径は0.1~5μmの範囲内、大径気孔の平均気孔径は1~20μmの範囲内とすることができる。  In the fuel cell anode, the average pore diameter of the small pores may be in the range of 0.1 to 5 μm, and the average pore diameter of the large pores may be in the range of 1 to 20 μm. *
この場合には、活性層における反応点数の確保と、拡散層のガス拡散性の確保とのバランスに優れる。また、緩衝領域における、活性層側凸部に含まれる小径気孔と拡散層側凸部に含まれる大径気孔とがそれぞれ上記範囲内となるので、レドックス反応によって活性層側凸部の小径気孔が潰れた場合でも、拡散層側凸部の大径気孔が、潰れずに残ったまま存在しやすくなる。  In this case, the balance between securing the number of reaction points in the active layer and ensuring gas diffusibility in the diffusion layer is excellent. Further, since the small-diameter pores included in the active layer-side convex portion and the large-diameter pores included in the diffusion layer-side convex portion in the buffer region are each within the above range, the small-diameter pore of the active layer-side convex portion is reduced by the redox reaction. Even when crushed, the large-diameter pores on the diffusion layer side convex portion are likely to exist without being crushed. *
上記小径気孔の平均気孔径は、反応点の増大等の観点から、好ましくは4μm以下、より好ましくは3μm以下、さらにより好ましくは2μm以下とすることができる。一方、上記大径気孔の平均気孔径は、ガス拡散性等の観点から、好ましくは2μm以上、より好ましくは5μm以上、さらにより好ましくは7μm以上とすることができる。また、上記大径気孔の平均気孔径は、アノード強度の確保等の観点から、好ましくは18μm以下、より好ましくは15μm以下、さらにより好ましくは10μm以下とすることができる。なお、拡散層に含まれる大径気孔の平均気孔径が、活性層に含まれる小径気孔の平均気孔径よりも大きくなるように上記範囲内から数値が選択される。  The average pore diameter of the small pores is preferably 4 μm or less, more preferably 3 μm or less, and even more preferably 2 μm or less, from the viewpoint of increasing the reaction point. On the other hand, the average pore diameter of the large pores is preferably 2 μm or more, more preferably 5 μm or more, and even more preferably 7 μm or more, from the viewpoint of gas diffusibility and the like. The average pore diameter of the large pores is preferably 18 μm or less, more preferably 15 μm or less, and even more preferably 10 μm or less, from the viewpoint of ensuring anode strength. The numerical value is selected from the above range so that the average pore diameter of the large pores contained in the diffusion layer is larger than the average pore diameter of the small pores contained in the active layer. *
上記燃料電池用アノードにおいて、緩衝領域における小径気孔の含有率は、体積分率で、30%~70%の範囲内とすることができる。なお、上記小径気孔の含有率は、(緩衝領域における小径気孔の体積)/(緩衝領域における小径気孔の体積+緩衝領域における大径気孔の体積)×100より算出される値である。  In the fuel cell anode, the content of small-diameter pores in the buffer region can be in the range of 30% to 70% in terms of volume fraction. The content of the small pores is a value calculated from (volume of small pores in the buffer region) / (volume of small pores in the buffer region + volume of large pores in the buffer region) × 100. *
この場合は、反応面積の増大によるアノード性能の向上と、活性層と拡散層との間の界面の接合強度の向上と、レドックス反応による活性層側凸部の小径気孔の閉塞抑制とのバランスに優れる。  In this case, the balance between improved anode performance by increasing the reaction area, improved bond strength at the interface between the active layer and the diffusion layer, and suppression of clogging of the small-diameter pores on the active layer side protrusion due to redox reaction. Excellent. *
緩衝領域における小径気孔の含有率は、反応面積の増大によるアノード性能の向上、活性層と拡散層との間の界面の接合強度の向上などの観点から、好ましくは35%以上、より好ましくは40%以上、さらに好ましくは45%以上とすることができる。また、緩衝領域における小径気孔の含有率は、レドックス反応による活性層側凸部の小径気孔の閉塞頻度を少なくするなどの観点から、好ましくは65%以下、より好ましくは60%以下、さらに好ましくは55%以下とすることができる。  The content of the small-diameter pores in the buffer region is preferably 35% or more, more preferably 40%, from the viewpoints of improving the anode performance by increasing the reaction area and improving the bonding strength of the interface between the active layer and the diffusion layer. % Or more, more preferably 45% or more. In addition, the content of the small-diameter pores in the buffer region is preferably 65% or less, more preferably 60% or less, and still more preferably, from the viewpoint of reducing the frequency of blockage of the small-diameter pores on the active layer side convex portion due to the redox reaction. It can be 55% or less. *
上記燃料電池用アノードにおいて、活性層の厚みは、反応持続性、取り扱い性、加工性等の観点から、好ましくは10μm以上、より好ましくは15μm以上とすることができる。活性層の厚みは、電極反応抵抗等の観点から、好ましくは25μm以下、より好ましくは20μm以下とすることができる。また、拡散層の厚みは、支持体としての強度等の観点から、好ましくは200μm以上、より好ましくは400μm以上とすることができる。拡散層の厚みは、ガス拡散性等の観点から、好ましくは800μm以下、より好ましくは700μm以下とすることができる。  In the fuel cell anode, the thickness of the active layer is preferably 10 μm or more, more preferably 15 μm or more, from the viewpoints of reaction sustainability, handleability, workability, and the like. The thickness of the active layer is preferably 25 μm or less, more preferably 20 μm or less, from the viewpoint of electrode reaction resistance and the like. In addition, the thickness of the diffusion layer is preferably 200 μm or more, more preferably 400 μm or more, from the viewpoint of strength as a support. The thickness of the diffusion layer is preferably 800 μm or less, more preferably 700 μm or less, from the viewpoint of gas diffusibility and the like. *
上記燃料電池単セルにおいて、各層を構成する材料としては、以下のものを例示することができるが、特に限定されない。  In the fuel cell single cell, examples of the material constituting each layer include the following, but are not particularly limited. *
固体電解質層を構成する固体電解質としては、例えば、イットリア安定化ジルコニア(YSZ)、スカンジア安定化ジルコニア(ScSZ)等の酸化ジルコニウム系酸化物;ランタンガレート系酸化物;CeO、CeOにGd、Sm、Y、La、Nd、Yb、Ca、Dr、および、Hoから選択される1種または2種以上の元素等がドープされたセリア系固溶体等の酸化セリウム系酸化物などを例示することができる。固体電解質層の厚みは、オーミック抵抗などの観点から、好ましくは3~20μm、より好ましくは3~10μmとすることができる。  Examples of the solid electrolyte constituting the solid electrolyte layer include zirconium oxide-based oxides such as yttria-stabilized zirconia (YSZ) and scandia-stabilized zirconia (ScSZ); lanthanum gallate-based oxides; CeO 2 , CeO 2 with Gd, Examples include cerium oxide-based oxides such as ceria-based solid solutions doped with one or more elements selected from Sm, Y, La, Nd, Yb, Ca, Dr, and Ho. it can. The thickness of the solid electrolyte layer is preferably 3 to 20 μm, more preferably 3 to 10 μm, from the viewpoint of ohmic resistance and the like.
カソードの材質としては、例えば、ランタン-マンガン系酸化物、ランタン-コバルト系酸化物、ランタン-鉄系酸化物等の導電性を有するペロブスカイト型酸化物、上記ペロブスカイト型酸化物と上記固体電解質等との混合物などを例示することができる。カソードの厚みは、ガス拡散性、電極反応抵抗、集電性などの観点から、好ましくは20~100μm、より好ましくは30~60μmとすることができる。  Examples of the cathode material include conductive perovskite oxides such as lanthanum-manganese oxides, lanthanum-cobalt oxides, lanthanum-iron oxides, the perovskite oxides, the solid electrolytes, and the like. The mixture of these can be illustrated. The thickness of the cathode is preferably 20 to 100 μm, more preferably 30 to 60 μm, from the viewpoints of gas diffusibility, electrode reaction resistance, current collection, and the like. *
中間層の材質としては、上記酸化セリウム系酸化物などを例示することができる。中間層の厚みは、オーミック抵抗、カソードからの元素拡散防止などの観点から、好ましくは1~10μm、より好ましくは1~5μmとすることができる。  Examples of the material for the intermediate layer include the cerium oxide-based oxide. The thickness of the intermediate layer is preferably 1 to 10 μm, more preferably 1 to 5 μm, from the viewpoints of ohmic resistance and prevention of element diffusion from the cathode. *
上記燃料電池用アノード、上記燃料電池用アノードを有する燃料電池単セルは、例えば、以下の第1~第3の工程を経ることによって好適に製造することができるが、特に制限されない。  The fuel cell anode and the fuel cell single cell having the fuel cell anode can be suitably manufactured by, for example, the following first to third steps, but are not particularly limited. *
第1の工程は、焼成により拡散層になる未焼成の拡散層形成用材料と、焼成により活性層になる未焼成の活性層形成用材料と、焼成により固体電解質層になる未焼成の固体電解質層形成用材料と、必要に応じて、焼成により中間層になる未焼成の中間層形成用材料とをこの順に層状に積層し、圧着して積層体を得る工程である。なお、上記積層体には、必要に応じて脱脂等を行うことができる。  The first step includes an unfired diffusion layer forming material that becomes a diffusion layer by firing, an unfired active layer formation material that becomes an active layer by firing, and an unfired solid electrolyte that becomes a solid electrolyte layer by firing This is a step of laminating a layer forming material and, if necessary, an unfired intermediate layer forming material, which becomes an intermediate layer by firing, in this order in layers, and pressing to obtain a laminate. In addition, degreasing | defatting etc. can be performed to the said laminated body as needed. *
拡散層形成用材料、活性層形成用材料、固体電解質層形成用材料および中間層形成用材料には、シート状材料、ペースト状材料またはこれらの組合せを用いることができる。なお、拡散層形成用材料、活性層形成用材料は、各触媒粉末、各固体電解質粉末以外にも、必要に応じて、造孔剤、バインダー、可塑剤等を含むことができる。また、拡散層の大径気孔、活性層の小径気孔の径の大きさは、各触媒粉末、各固体電解質粉末の平均粒子径や、造孔剤の添加量等によって調整することができる。  As the diffusion layer forming material, the active layer forming material, the solid electrolyte layer forming material, and the intermediate layer forming material, a sheet-like material, a paste-like material, or a combination thereof can be used. Note that the diffusion layer forming material and the active layer forming material can contain a pore-forming agent, a binder, a plasticizer, and the like, if necessary, in addition to each catalyst powder and each solid electrolyte powder. The size of the large pores in the diffusion layer and the small pores in the active layer can be adjusted by the average particle size of each catalyst powder and each solid electrolyte powder, the amount of pore-forming agent added, and the like. *
但し、上記第1の工程において、拡散層形成用材料における活性層形成用材料の積層側表面、および/または、活性層形成用材料における拡散層形成用材料の積層側表面には、表面凹凸部を形成しておく。なお、活性層形成用材料の積層側表面における表面凸部が、後述の焼成によって活性層側凸部になる。また、拡散層形成用材料の積層側表面における表面凸部が、後述の焼成によって拡散層側凸部になる。  However, in the first step, the surface uneven portion is formed on the surface of the diffusion layer forming material on the side of the diffusion layer and / or on the surface of the diffusion layer forming material in the layer of the active layer. Is formed. In addition, the surface convex part in the lamination | stacking side surface of the active layer forming material turns into an active layer side convex part by baking mentioned later. Moreover, the surface convex part in the lamination | stacking side surface of the diffusion layer forming material turns into a diffused layer side convex part by baking mentioned later. *
上記表面凹凸部の形成方法としては、例えば、付与したい表面凹凸部に対応する対応表面凹凸部を有するプラスチック基材上に、活性層形成用材料、拡散層形成用材料をシート成形することによって、プラスチック基材の対応表面凹凸部を活性層形成用材料、拡散層形成用材料の上記積層側表面に転写する方法などを例示することができる。この場合は、シート状の活性層形成用材料、拡散層形成用材料を成形すると同時に、所定の表面凹凸部を付与することができ、燃料電池用アノードの製造性に優れる利点がある。  As a method for forming the surface irregularities, for example, by forming a sheet of an active layer forming material and a diffusion layer forming material on a plastic substrate having a corresponding surface irregularity corresponding to the surface irregularities to be applied, Examples thereof include a method of transferring the corresponding surface irregularities of the plastic substrate to the active layer forming material and the layer-side surface of the diffusion layer forming material. In this case, the sheet-like active layer forming material and the diffusion layer forming material are molded, and at the same time, a predetermined surface irregularity can be imparted, and there is an advantage that the productivity of the anode for the fuel cell is excellent. *
また例えば、上記表面凹凸部の形成方法としては、シート成形した活性層形成用材料、拡散層形成用材料の上記積層側表面に、上記対応表面凹凸部を有するローラ、押印部材等によって表面凹凸部を転写する方法などを例示することができる。この場合は、対応表面凹凸部を有するプラスチック基材を準備することなく、従来のプラスチック基材を使用できる利点がある。なお、前者のローラを用いた転写による場合は、平面にシート成形されたシートを巻き取る際等に、上記ローラを利用して表面凹凸部を付与することができる。また、後者の押印部材を用いた転写による場合は、平面にシート成形されたシート表面にて押印部材を転がすこと等によって、表面凹凸部を付与することができる。  Further, for example, as a method for forming the surface uneven portion, the surface uneven portion is formed by a roller having a corresponding surface uneven portion on the laminated surface of the sheet forming active layer forming material or diffusion layer forming material, a stamping member, or the like. Examples of such a method can be exemplified. In this case, there is an advantage that a conventional plastic substrate can be used without preparing a plastic substrate having a corresponding surface uneven portion. In the case of transfer using the former roller, when the sheet formed into a flat surface is taken up, the surface uneven portion can be provided using the roller. Further, in the case of the transfer using the latter stamping member, the surface irregularity portion can be imparted by rolling the stamping member on the sheet surface formed into a flat sheet. *
なお、上記において、活性層形成用材料または拡散層形成用材料のいずれか一方の積層側表面にだけ表面凹凸部を付与した場合には、上
記積層、圧着によって、表面凹凸部が形成されていない他方の拡散層形成用材料または活性層形成用材料の積層側表面に、上記表面凹凸部が押し込まれる。このような方法によっても、上記緩衝領域を形成することが可能である。 
In addition, in the above, when a surface uneven part is provided only on the surface on either side of the active layer forming material or the diffusion layer forming material, the surface uneven part is not formed by the above lamination and pressure bonding. The surface irregularities are pushed into the surface of the other diffusion layer forming material or active layer forming material laminated side. The buffer region can be formed also by such a method.
第2の工程は、上記積層体を、例えば、1300~1500℃で同時焼成する工程である。これにより、拡散層、活性層、固体電解質層、必要に応じて中間層がこの順に積層された焼成体が得られる。また、これにより、活性層側凸部と拡散層側凸部とを含み、かつ、活性層側凸部と拡散層側凸部とが互いに接触して構成されている緩衝領域を形成することができる。  The second step is a step of co-firing the laminated body at, for example, 1300 to 1500 ° C. Thus, a fired body in which the diffusion layer, the active layer, the solid electrolyte layer, and if necessary, the intermediate layer are laminated in this order is obtained. This also forms a buffer region including the active layer side convex portion and the diffusion layer side convex portion, and the active layer side convex portion and the diffusion layer side convex portion are configured to contact each other. it can. *
第3の工程は、上記焼成体における中間層(中間層がない場合は、固体電解質層の表面)の表面に、焼成によりカソードになるカソード形成用材料を層状に積層し、例えば、900~1300℃で焼成する工程である。  In the third step, a cathode forming material that becomes a cathode by firing is layered on the surface of the intermediate layer (or the surface of the solid electrolyte layer if no intermediate layer is provided) in the fired body, for example, 900-1300 This is a step of baking at 0 ° C. *
カソード形成用材料には、ペースト状材料を用いることができる。カソード形成用材料は、中間層の表面(中間層がない場合は、固体電解質層の表面)に印刷法等によって層状に塗布することができる。  A paste-like material can be used as the cathode forming material. The cathode-forming material can be applied in a layered manner to the surface of the intermediate layer (or the surface of the solid electrolyte layer when there is no intermediate layer) by a printing method or the like. *
これにより、上記燃料電池用アノード、上記燃料電池用アノードを有する燃料電池単セルを得ることができる。  Thereby, the fuel cell single cell which has the said anode for fuel cells and the said anode for fuel cells can be obtained. *
なお、上述した各構成は、上述した各作用効果等を得るなどのために必要に応じて任意に組み合わせることができる。 In addition, each structure mentioned above can be arbitrarily combined as needed, in order to acquire each effect etc. which were mentioned above.
以下、実施例の燃料電池用アノードおよび燃料電池単セルについて、図面を用いて説明する。なお、同一部材については同一の符号を用いて説明する。  Hereinafter, an anode for a fuel cell and a single cell for a fuel cell according to examples will be described with reference to the drawings. In addition, about the same member, it demonstrates using the same code | symbol. *
(実施例1) 実施例1の燃料電池用アノードおよび燃料電池単セルについて、図1、図2を用いて説明する。図1、2に示すように、本例の燃料電池用アノード10は、アノード1と、固体電解質層2と、カソード3とを有する燃料電池単セル5に用いられる。燃料電池用アノード10は、固体電解質層2側に配置され、小径気孔110を含む活性層11と、活性層11における固体電解質層2側と反対側の面に積層され、小径気孔110よりも径の大きな大径気孔120を含む拡散層12とを備えている。  Example 1 A fuel cell anode and a fuel cell single cell according to Example 1 will be described with reference to FIGS. 1 and 2. As shown in FIGS. 1 and 2, the fuel cell anode 10 of this example is used in a fuel cell single cell 5 having an anode 1, a solid electrolyte layer 2, and a cathode 3. The fuel cell anode 10 is disposed on the solid electrolyte layer 2 side, and is laminated on the active layer 11 including the small-diameter pores 110 and on the surface of the active layer 11 opposite to the solid electrolyte layer 2 side. And a diffusion layer 12 including large large-diameter pores 120. *
ここで、活性層11は、活性層11における拡散層12側の面から突出する活性層側凸部111aを多数有している。また、拡散層12は、拡散層12における活性層11側の面から突出する拡散層側凸部121aを多数有している。そして、燃料電池用アノード10は、活性層側凸部111aと拡散層側凸部121aとを含み、かつ、活性層側凸部111aと拡散層側凸部121aとが互いに接触して構成されている緩衝領域13を有している。  Here, the active layer 11 has many active layer side convex portions 111a protruding from the surface of the active layer 11 on the diffusion layer 12 side. Further, the diffusion layer 12 has a large number of diffusion layer-side convex portions 121a protruding from the surface of the diffusion layer 12 on the active layer 11 side. The fuel cell anode 10 includes an active layer side convex portion 111a and a diffusion layer side convex portion 121a, and the active layer side convex portion 111a and the diffusion layer side convex portion 121a are in contact with each other. A buffer region 13. *
また、本例の燃料電池単セル5は、図1に示すように、本例の燃料電池用アノード10と、固体電解質層2と、カソード3とを有している。具体的には、燃料電池単セル5は、固体電解質層2と、固体電解質層2の一方面に積層された燃料電池用アノード10(但し、活性層11が固体電解質層2に接する)と、固体電解質層2の他方面に中間層4を介して積層されたカソード3とを有しており、燃料電池用アノード10を支持体とする平板形の単セルである。以下、これらを詳説する。  Moreover, the fuel cell single cell 5 of this example has the anode 10 for fuel cells of this example, the solid electrolyte layer 2, and the cathode 3, as shown in FIG. Specifically, the fuel cell single cell 5 includes a solid electrolyte layer 2, a fuel cell anode 10 (provided that the active layer 11 is in contact with the solid electrolyte layer 2) laminated on one surface of the solid electrolyte layer 2, and It has a cathode 3 laminated on the other surface of the solid electrolyte layer 2 with an intermediate layer 4 interposed therebetween, and is a flat single cell having a fuel cell anode 10 as a support. These are described in detail below. *
本例の燃料電池用アノード10において、緩衝領域13は、具体的には、互いに離間する活性層側凸部111a間にある各活性層側凹部111bに、各拡散層側凸部121aが入り込んだ状態、言い換えれば、互いに離間する拡散層側凸部121a間にある各拡散層側凹部121bに、各活性層側凸部111aが入り込んだ状態とされている。また、活性層側凸部111aおよび拡散層側凸部121aの形状は、いずれも山状である。  In the fuel cell anode 10 of this example, the buffer region 13 specifically includes the diffusion layer-side convex portions 121a in the active layer-side concave portions 111b between the active layer-side convex portions 111a that are separated from each other. In other words, each active layer side convex portion 111a is inserted into each diffusion layer side concave portion 121b between the diffusion layer side convex portions 121a that are separated from each other. Further, the shapes of the active layer side convex portion 111a and the diffusion layer side convex portion 121a are both mountain-shaped. *
本例の燃料電池用アノード10は、具体的には、活性層11が、活性層内触媒粒子112と活性層内固体電解質粒子113とを含む混合物より構成されている。また、拡散層12が、拡散層内触媒粒子122と拡散層内固体電解質粒子123とを含む混合物より構成されている。また、本例の燃料電池用アノード10は、活性層内触媒粒子112、活性層内固体電解質粒子113の粒子径≦活性層側凸部111aの高さの関係を満たし、拡散層内触媒粒子122、拡散層内固体電解質粒子123の粒子径≦拡散層側凸部121aの高さの関係を満たしている。なお、本例の燃料電池用アノード10は、活性層内固体電解質粒子113の粒子径<拡散層内固体電解質粒子123の粒子径の関係も満たしている。また、本例の燃料電池用アノード10は、活性層内固体電解質粒子113の粒子径<活性層内触媒粒子112の粒子径の関係を満たし、拡散層内固体電解質粒子123の粒子径<拡散層内触媒粒子122の粒子径の関係も満たしている。  Specifically, in the fuel cell anode 10 of this example, the active layer 11 is composed of a mixture including the catalyst particles 112 in the active layer and the solid electrolyte particles 113 in the active layer. Further, the diffusion layer 12 is composed of a mixture containing the in-diffusion layer catalyst particles 122 and the in-diffusion layer solid electrolyte particles 123. Further, the anode 10 for the fuel cell of the present example satisfies the relationship of the particle diameter of the active layer catalyst particles 112 and the solid electrolyte particles 113 in the active layer ≦ the height of the active layer side convex portion 111a. The particle size of the solid electrolyte particles 123 in the diffusion layer ≦ the height relationship of the diffusion layer side convex portion 121a is satisfied. In addition, the anode 10 for fuel cells of this example also satisfies the relationship of the particle diameter of the solid electrolyte particles 113 in the active layer <the particle diameter of the solid electrolyte particles 123 in the diffusion layer. Further, the anode 10 for the fuel cell of this example satisfies the relationship of the particle diameter of the solid electrolyte particles 113 in the active layer <the particle diameter of the catalyst particles 112 in the active layer, and the particle diameter of the solid electrolyte particles 123 in the diffusion layer <the diffusion layer. The relationship of the particle diameter of the inner catalyst particle 122 is also satisfied. *
本例の燃料電池用アノード10は、具体的には、拡散層側凸部121aの高さ<活性層11の膜厚の関係を満たしている。より具体的には、拡散層側凸部121aの高さ≦活性層11の膜厚の3/4倍以下、さらに具体的には、活性層11の膜厚の1/2倍以下とされている。  Specifically, the fuel cell anode 10 of this example satisfies the relationship of the height of the diffusion layer side convex portion 121a <the thickness of the active layer 11. More specifically, the height of the diffusion layer-side convex portion 121a ≦ 3/4 times the film thickness of the active layer 11, more specifically, ½ times the film thickness of the active layer 11 or less. Yes. *
本例の燃料電池用アノード10は、緩衝領域13における小径気孔110の含有率が、体積分率で、30%~70%の範囲内とされている。具体的には、上記含有率は、35%とすることができる。また、本例の燃料電池用アノード10は、小径気孔の平均気孔径が0.1~5μmの範囲内、大径気孔の平均気孔径が1~20μmの範囲内とされている。具体的には、小径気孔の平均気孔径は、2μmとすることができ、大径気孔の平均気孔径は、10μmとすることができる。  In the fuel cell anode 10 of this example, the content of the small-diameter pores 110 in the buffer region 13 is in the range of 30% to 70% in terms of volume fraction. Specifically, the content can be set to 35%. Further, in the fuel cell anode 10 of this example, the average pore diameter of the small pores is in the range of 0.1 to 5 μm, and the average pore diameter of the large pores is in the range of 1 to 20 μm. Specifically, the average pore diameter of the small pores can be 2 μm, and the average pore diameter of the large pores can be 10 μm. *
本例において、固体電解質層2は、具体的には、ジルコニア系固体電解質より形成されている。より具体的には、ジルコニア系固体電解質は、酸化ジルコニウム系酸化物である、8mol%のYを含むイットリア安定化ジルコニア(以下、8YSZ)であり、その厚みは10μmである。  In this example, the solid electrolyte layer 2 is specifically formed from a zirconia solid electrolyte. More specifically, the zirconia-based solid electrolyte is yttria-stabilized zirconia (hereinafter, 8YSZ) containing 8 mol% of Y 2 O 3 , which is a zirconium oxide-based oxide, and has a thickness of 10 μm.
本例において、燃料電池用アノード10における活性層11は、より具体的には、活性層内触媒粒子112であるNiO粒子(粒子径=1μm)と、活性層内固体電解質粒子113であるジルコニア系固体電解質粒子(粒子径=0.2μm)とのサーメットより形成されている。また、燃料電池用アノード10における拡散層12は、より具体的には、拡散層内触媒粒子122であるNiO粒子(粒子径=1μm)と、拡散層内固体電解質粒子123であるジルコニア系固体電解質粒子(粒子径=0.5μm)とのサーメットより形成されている。本例では、上記ジルコニア系固体電解質は、いずれも8YSZである。  In this example, the active layer 11 in the fuel cell anode 10 more specifically includes NiO particles (particle diameter = 1 μm) which are the catalyst particles 112 in the active layer and zirconia-based solid electrolyte particles 113 which are the solid electrolyte particles 113 in the active layer. It is formed from a cermet with solid electrolyte particles (particle size = 0.2 μm). More specifically, the diffusion layer 12 in the anode 10 for a fuel cell includes NiO particles (particle diameter = 1 μm) as the catalyst particles 122 in the diffusion layer and zirconia solid electrolytes as the solid electrolyte particles 123 in the diffusion layer. It is formed from cermet with particles (particle size = 0.5 μm). In this example, all the zirconia solid electrolytes are 8YSZ. *
本例において、中間層4は、具体的には、酸化セリウム系酸化物である、10mol%のGdがドープされたセリア(以下、10GDC)より形成されており、その厚みは5μmである。  In this example, the intermediate layer 4 is specifically formed of ceria (hereinafter, 10GDC) doped with 10 mol% of Gd, which is a cerium oxide-based oxide, and the thickness thereof is 5 μm. *
本例において、カソード3は、具体的には、ペロブスカイト型酸化物と固体電解質とを含む混合物より層状に形成されている。より具体的には、ペロブスカイト型酸化物は、La1-xSrCo1-y(x=0.4、y=0.8、以下、LSCF)であり、固体電解質は、酸化セリウム系酸化物である10GDCである。カソードの厚みは50μmである。  In this example, specifically, the cathode 3 is formed in a layer form from a mixture containing a perovskite oxide and a solid electrolyte. More specifically, the perovskite oxide is La 1-x Sr x Co 1-y F y O 3 (x = 0.4, y = 0.8, hereinafter, LSCF), and the solid electrolyte is 10GDC, which is a cerium oxide-based oxide. The thickness of the cathode is 50 μm.
本例において、燃料電池用アノード10(拡散層12、活性層11)、固体電解質層2、中間層4、および、カソード3は、いずれも、平面視で、矩形状の形状を呈している。また、燃料電池用アノード10(拡散層12、活性層11)および固体電解質層2の外形は、同じ大きさに揃えられている。一方、中間層4の外形は、固体電解質層2の外形よりも小さく形成されている。また、カソード3の外形は、中間層4の外形よりも小さく形成されている。つまり、本例では、燃料電池単セル5は、カソード3、中間層4および固体電解質層2の外形の大きさが、カソード3の外形<中間層4の外形<固体電解質層2の外形の関係を満たすように構成されている。  In this example, the fuel cell anode 10 (diffusion layer 12, active layer 11), solid electrolyte layer 2, intermediate layer 4 and cathode 3 all have a rectangular shape in plan view. The fuel cell anode 10 (diffusion layer 12, active layer 11) and the solid electrolyte layer 2 have the same outer shape. On the other hand, the outer shape of the intermediate layer 4 is smaller than the outer shape of the solid electrolyte layer 2. The outer shape of the cathode 3 is smaller than the outer shape of the intermediate layer 4. In other words, in this example, the unit size of the cathode 3, the intermediate layer 4, and the solid electrolyte layer 2 in the fuel cell unit cell 5 is such that the external shape of the cathode 3 <the external shape of the intermediate layer 4 <the external shape of the solid electrolyte layer 2. It is configured to satisfy. *
本例の燃料電池用アノードの作用効果について説明する。  The effect of the fuel cell anode of this example will be described. *
上記燃料電池用アノード10は、上記構成を有している。特に、燃料電池用アノード10において、活性層11は、小径気孔110を含み、活性層側凸部111aを多数有している。また、拡散層12は、小径気孔110よりも径の大きな大径気孔120を含み、拡散層側凸部121aを多数有している。そして、燃料電池用アノード10は、活性層側凸部111aと拡散層側凸部121aとを含み、かつ、活性層側凸部111aと拡散層側凸部121aとが互いに接触して構成されている緩衝領域13を有している。  The fuel cell anode 10 has the above-described configuration. In particular, in the anode 10 for a fuel cell, the active layer 11 includes small-diameter pores 110 and has a large number of active layer-side convex portions 111a. Further, the diffusion layer 12 includes a large diameter pore 120 having a diameter larger than that of the small diameter pore 110, and has a large number of diffusion layer side convex portions 121a. The fuel cell anode 10 includes an active layer side convex portion 111a and a diffusion layer side convex portion 121a, and the active layer side convex portion 111a and the diffusion layer side convex portion 121a are in contact with each other. A buffer region 13. *
そのため、燃料電池用アノード10は、積極的に設けられた活性層側凸部111aおよび拡散層側凸部121aを含む緩衝領域13の存在により、活性層11と拡散層12とにおける焼結性の差やレドックス反応時の膨張収縮挙動の差が緩和される。また、緩衝領域13における活性層側凸部111aと拡散層側凸部121aとの噛み合いにより、活性層11と拡散層12との接触面積も増加する。そのため、燃料電池用アノード10は、活性層11と拡散層12との間の界面Iの接合強度が向上し、活性層11と拡散層12との間の層間剥離を抑制することが可能となる。また、燃料電池用アノード10は、活性層側凸部111aの小径気孔110と拡散層側凸部121aの大径気孔120とが共存する緩衝領域13の存在により、レドックス反応によって活性層側凸部111a内の小径気孔110が潰れた場合でも、拡散層側凸部121a内の大径気孔120は、潰れずに残ったまま存在することができる。そのため、燃料電池用アノード10は、ガス拡散性および反応点数を確保しやすい。  Therefore, the anode 10 for the fuel cell has a sinterability in the active layer 11 and the diffusion layer 12 due to the presence of the buffer region 13 including the active layer side convex portion 111a and the diffusion layer side convex portion 121a that are positively provided. Differences and differences in expansion and contraction behavior during redox reactions are alleviated. In addition, the contact area between the active layer 11 and the diffusion layer 12 increases due to the meshing of the active layer side convex portion 111 a and the diffusion layer side convex portion 121 a in the buffer region 13. Therefore, the fuel cell anode 10 can improve the bonding strength of the interface I between the active layer 11 and the diffusion layer 12, and can suppress delamination between the active layer 11 and the diffusion layer 12. . Further, the anode 10 for the fuel cell has an active layer side convex portion by redox reaction due to the presence of the buffer region 13 in which the small diameter pores 110 of the active layer side convex portion 111a and the large diameter pores 120 of the diffusion layer side convex portion 121a coexist. Even when the small-diameter pores 110 in the 111a are crushed, the large-diameter pores 120 in the diffusion layer side convex portion 121a can remain without being crushed. Therefore, the fuel cell anode 10 can easily ensure gas diffusibility and the number of reaction points. *
また、本例の燃料電池用アノード10は、緩衝領域13が上記状態とされている。そのため、本例の燃料電池用アノード10は、活性層側凸部111aと拡散層側凸部121aとを互いの側面同士で十分に接触させることが可能となり、接触面積を増加させやすい。それ故、本例の燃料電池用アノード10は、活性層11と拡散層12との間の界面Iの接合強度を向上させやすく、活性層11と拡散層12との間の層間剥離を抑制しやすくなる。  In the fuel cell anode 10 of this example, the buffer region 13 is in the above state. Therefore, in the fuel cell anode 10 of this example, the active layer side convex portion 111a and the diffusion layer side convex portion 121a can be sufficiently brought into contact with each other, and the contact area can be easily increased. Therefore, the anode 10 for the fuel cell of this example can easily improve the bonding strength of the interface I between the active layer 11 and the diffusion layer 12 and suppress delamination between the active layer 11 and the diffusion layer 12. It becomes easy. *
また、本例の燃料電池用アノード10は、活性層内触媒粒子112、活性層内固体電解質粒子113の粒子径≦活性層側凸部111aの高さの関係を満たし、拡散層内触媒粒子122、拡散層内固体電解質粒子123の粒子径≦拡散層側凸部121aの高さの関係を満たすように構成されている。そのため、本例の燃料電池用アノード10は、活性層側凸部111aと拡散層側凸部121aとの接触面積を増加させやすいので、活性層11と拡散層12との間の界面Iの接合強度の向上に有利である。また、緩衝領域において、活性層側凸部111aの存在による小径気孔110が増え、反応面積を増加させやすく、アノード性能の向上に有利である。また、レドックス反応時に、緩衝領域において、拡散層側凸部121aの存在により潰れずに残る大径気孔120を確保しやすくなるので、ガス拡散性および反応点数の向上に有利である。  Further, the anode 10 for the fuel cell of the present example satisfies the relationship of the particle diameter of the active layer catalyst particles 112 and the solid electrolyte particles 113 in the active layer ≦ the height of the active layer side convex portion 111a. The particle diameter of the solid electrolyte particles 123 in the diffusion layer ≦ the height of the diffusion layer side convex portion 121a is satisfied. Therefore, the fuel cell anode 10 of this example can easily increase the contact area between the active layer side convex portion 111a and the diffusion layer side convex portion 121a, so that the interface I between the active layer 11 and the diffusion layer 12 is joined. It is advantageous for improving the strength. Further, in the buffer region, the small-diameter pores 110 are increased due to the presence of the active layer-side convex portion 111a, and the reaction area is easily increased, which is advantageous in improving the anode performance. Further, during the redox reaction, it becomes easy to secure the large-diameter pores 120 that remain without being collapsed due to the presence of the diffusion layer-side convex portions 121a in the buffer region, which is advantageous in improving gas diffusibility and the number of reaction points. *
また、本例の燃料電池用アノード10は、拡散層側凸部121aの高さ<活性層11の膜厚の関係を満たすように構成されている。そのため、本例の燃料電池用アノード10は、拡散層側凸部121aが活性層11を貫通し難くなるので、活性層11を壊し難くなって有利である。  Further, the fuel cell anode 10 of this example is configured to satisfy the relationship of the height of the diffusion layer-side convex portion 121a <the thickness of the active layer 11. Therefore, the anode 10 for the fuel cell of this example is advantageous in that the diffusion layer side convex portion 121a is difficult to penetrate the active layer 11, and thus the active layer 11 is hardly broken. *
また、本例の燃料電池用アノード10は、活性層内固体電解質粒子113の粒子径<拡散層内固体電解質粒子123の粒子径の関係を満たすように構成されている。そのため、本例の燃料電池用アノード10は、活性層11内の小径気孔110の気孔径<拡散層12内の大径気孔120の気孔径の関係を満たしやすい利点がある。  The fuel cell anode 10 of this example is configured to satisfy the relationship of the particle diameter of the solid electrolyte particles 113 in the active layer <the particle diameter of the solid electrolyte particles 123 in the diffusion layer. Therefore, the anode 10 for a fuel cell of this example has an advantage that it is easy to satisfy the relationship of the pore diameter of the small diameter pores 110 in the active layer 11 <the pore diameter of the large diameter pores 120 in the diffusion layer 12. *
また、本例の燃料電池用アノード10は、緩衝領域13における小径気孔110の含有率が、体積分率で、30%~70%の範囲内とされている。そのため、本例の燃料電池用アノード10は、反応面積の増大によるアノード性能の向上と、活性層11と拡散層12
との間の界面の接合強度の向上と、レドックス反応による活性層側凸部111aの小径気孔110の閉塞抑制とのバランスに優れる。 
Further, in the fuel cell anode 10 of this example, the content of the small-diameter pores 110 in the buffer region 13 is in the range of 30% to 70% in terms of volume fraction. Therefore, the anode 10 for the fuel cell of this example is improved in anode performance by increasing the reaction area, and the active layer 11 and the diffusion layer 12.
It is excellent in the balance between the improvement of the bonding strength of the interface between and the active layer side convex portion 111a due to the redox reaction.
また、本例の燃料電池用アノード10は、小径気孔110の平均気孔径が0.1~5μmの範囲内、大径気孔120の平均気孔径が1~20μmの範囲内とされている。そのため、本例の燃料電池用アノード10は、活性層11における反応点数の確保と、拡散層12のガス拡散性の確保とのバランスに優れる。また、緩衝領域13における、活性層側凸部111aに含まれる小径気孔110と拡散層側凸部121aに含まれる大径気孔120とがそれぞれ上記範囲内となるので、レドックス反応によって活性層側凸部111aの小径気孔110が潰れた場合でも、拡散層側凸部121aの大径気孔120が、潰れずに残ったまま存在しやすくなる。  Further, in the fuel cell anode 10 of this example, the average pore diameter of the small pores 110 is in the range of 0.1 to 5 μm, and the average pore diameter of the large pores 120 is in the range of 1 to 20 μm. Therefore, the fuel cell anode 10 of this example has an excellent balance between ensuring the number of reaction points in the active layer 11 and ensuring the gas diffusibility of the diffusion layer 12. In addition, since the small-diameter pores 110 included in the active layer-side convex portion 111a and the large-diameter pores 120 included in the diffusion layer-side convex portion 121a in the buffer region 13 are within the above ranges, the active layer side convex portion is formed by redox reaction. Even when the small-diameter pores 110 of the portion 111a are crushed, the large-diameter pores 120 of the diffusion layer-side convex portion 121a are likely to remain without being crushed. *
本例の燃料電池単セルの作用効果について説明する。  The effect of the fuel cell single cell of this example is demonstrated. *
燃料電池単セル5は、燃料電池用アノード10と、固体電解質層2と、カソード3とを有している。そのため、燃料電池単セル5は、燃料電池単セル5の運転時における活性層11と拡散層12との間の層間剥離を抑制することができる。また、燃料電池単セル5は、レドックス反応によるガス拡散性および反応点数の低下が生じ難いので、レドックス耐性に優れる。  The fuel cell single cell 5 includes a fuel cell anode 10, a solid electrolyte layer 2, and a cathode 3. Therefore, the fuel cell single cell 5 can suppress delamination between the active layer 11 and the diffusion layer 12 during operation of the fuel cell single cell 5. Further, the fuel cell single cell 5 is excellent in redox resistance because the gas diffusibility and the number of reaction points are hardly lowered by the redox reaction. *
以下、実験例を用いてより具体的に説明する。<実験例>1.燃料電池用アノード、燃料電池単セルの作製(材料準備)  Hereinafter, it demonstrates more concretely using an experiment example. <Experimental example> Preparation of fuel cell anode and fuel cell single cell (material preparation)
NiO粉末(平均粒子径:1.0μm)と、8YSZ粉末(平均粒子径:0.5μm)と、カーボン(造孔剤)と、ポリビニルブチラール(有機材料)と、酢酸イソアミルおよび1-ブタノール(混合溶媒)とをボールミルにて混合することによりスラリーを調製した。NiO粉末と8YSZ粉末の質量比は、65:35である。上記スラリーを、ドクターブレード法を用いて、付与する表面凹凸部に対応する対応表面凹凸部を有するプラスチック基材上に層状に塗工し、乾燥させることにより、一方面(積層側表面)に表面凹凸部を有し、他方面に平らな自由面を有するシート状の拡散層形成用材料を準備した。なお、上記平均粒子径は、レーザー回折・散乱法により測定した体積基準の累積度数分布が50%を示すときの粒子径(直径)d50である(以下、同様)。  NiO powder (average particle size: 1.0 μm), 8YSZ powder (average particle size: 0.5 μm), carbon (pore forming agent), polyvinyl butyral (organic material), isoamyl acetate and 1-butanol (mixed) The solvent was mixed with a ball mill to prepare a slurry. The mass ratio of NiO powder and 8YSZ powder is 65:35. Using the doctor blade method, the slurry is coated in a layer on a plastic substrate having a corresponding surface irregularity corresponding to the surface irregularity to be applied, and dried to provide a surface on one side (lamination side surface). A sheet-shaped diffusion layer forming material having an uneven portion and having a flat free surface on the other surface was prepared. The average particle diameter is the particle diameter (diameter) d50 when the volume-based cumulative frequency distribution measured by the laser diffraction / scattering method shows 50% (hereinafter the same). *
NiO粉末(平均粒子径:1.0μm)と、8YSZ粉末(平均粒子径:0.2μm)と、カーボン(造孔剤)と、ポリビニルブチラール(有機材料)と、酢酸イソアミルおよび1-ブタノール(混合溶媒)とをボールミルにて混合することによりスラリーを調製した。NiO粉末と8YSZ粉末の質量比は、65:35である。上記スラリーを、ドクターブレード法を用いて、付与する表面凹凸部に対応する対応表面凹凸部を有するプラスチック基材上に層状に塗工し、乾燥させることにより、一方面(積層側表面)に表面凹凸部を有し、他方面に平らな自由面を有するシート状の活性層形成用材料を準備した。なお、上記拡散層形成用材料におけるカーボン量は、上記活性層形成用材料と比較して多量とされている。  NiO powder (average particle size: 1.0 μm), 8YSZ powder (average particle size: 0.2 μm), carbon (pore forming agent), polyvinyl butyral (organic material), isoamyl acetate and 1-butanol (mixed) The solvent was mixed with a ball mill to prepare a slurry. The mass ratio of NiO powder and 8YSZ powder is 65:35. Using the doctor blade method, the slurry is coated in a layer on a plastic substrate having a corresponding surface irregularity corresponding to the surface irregularity to be applied, and dried to provide a surface on one side (lamination side surface). A sheet-form active layer forming material having an uneven portion and a flat free surface on the other surface was prepared. The amount of carbon in the diffusion layer forming material is larger than that of the active layer forming material. *
8YSZ粉末(平均粒子径:0.5μm)と、ポリビニルブチラール(有機材料)と、酢酸イソアミルおよび1-ブタノール(混合溶媒)とをボールミルにて混合することによりスラリーを調製した。このスラリーを、ドクターブレード法を用いて、プラスチック基材上に層状に塗工し、乾燥させることにより、シート状の固体電解質層形成用材料を準備した。  A slurry was prepared by mixing 8YSZ powder (average particle size: 0.5 μm), polyvinyl butyral (organic material), isoamyl acetate and 1-butanol (mixed solvent) with a ball mill. The slurry was applied in a layer form on a plastic substrate using a doctor blade method and dried to prepare a sheet-shaped solid electrolyte layer forming material. *
10GDC粉末(平均粒子径:0.3μm)と、ポリビニルブチラール(有機材料)と、酢酸イソアミル、2-ブタノールおよびエタノール(混合溶媒)とをボールミルにて混合することによりスラリーを調製した。このスラリーを、ドクターブレード法を用いて、プラスチック基材上に層状に塗工し、乾燥させることにより、シート状の中間層形成用材料を準備した。  A slurry was prepared by mixing 10 GDC powder (average particle size: 0.3 μm), polyvinyl butyral (organic material), isoamyl acetate, 2-butanol and ethanol (mixed solvent) with a ball mill. The slurry was applied in a layer form on a plastic substrate using a doctor blade method and dried to prepare a sheet-shaped intermediate layer forming material. *
LSCF(La0.6Sr0.4Co0.2Fe0.8)粉末(平均粒子径:0.6μm)と、10GDC粉末(平均粒子径:0.3μm)と、エチルセルロース(有機材料)と、テルピネオール(溶媒)とをボールミルにて混合することにより、ペースト状のカソード形成用材料を準備した。なお、LSCF粉末と10GDC粉末の質量比は、90:10である。  LSCF (La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3 ) powder (average particle size: 0.6 μm), 10 GDC powder (average particle size: 0.3 μm), ethyl cellulose (organic material) ) And terpineol (solvent) were mixed in a ball mill to prepare a paste-like cathode forming material. The mass ratio of the LSCF powder to the 10GDC powder is 90:10.
(第1の工程) シート状の拡散層形成用材料、シート状の活性層形成用材料、シート状の固体電解質層形成用材料、および、シート状の中間層形成用材料をこの順に積層し、圧着して積層体を得た。この際、拡散層形成用材料、活性層形成用材料は、それぞれの表面凹凸部の形成面同士が互いに向き合うように配置して積層した。なお、圧着には、CIP成形法を用いた。CIP成形条件は、温度80℃、加圧力50MPa、加圧時間10分という条件とした。また、上記圧着後、積層体を脱脂した。  (First Step) A sheet-shaped diffusion layer forming material, a sheet-shaped active layer forming material, a sheet-shaped solid electrolyte layer forming material, and a sheet-shaped intermediate layer forming material are laminated in this order, A laminate was obtained by pressure bonding. At this time, the material for forming the diffusion layer and the material for forming the active layer were arranged and laminated so that the formation surfaces of the respective surface irregularities face each other. Note that the CIP molding method was used for pressure bonding. The CIP molding conditions were a temperature of 80 ° C., a pressing force of 50 MPa, and a pressing time of 10 minutes. Moreover, the laminated body was degreased after the pressure bonding. *
(第2の工程) 次いで、上記積層体を1350℃で2時間焼成した。これにより、拡散層(400μm)、活性層(20μm)、固体電解質層(10μm)、および中間層(5μm)がこの順に積層された焼結体を得た。  (2nd process) Next, the said laminated body was baked at 1350 degreeC for 2 hours. As a result, a sintered body was obtained in which a diffusion layer (400 μm), an active layer (20 μm), a solid electrolyte layer (10 μm), and an intermediate layer (5 μm) were laminated in this order. *
(第3の工程) 次いで、上記焼結体における中間層の表面に、カソード形成用材料をスクリーン印刷法により塗布し、950℃で2時間焼成(焼付)することによって層状のカソード(厚み50μm)を形成した。なお、カソード形成用材料は、中間層の外縁まで印刷しておらず、カソード層の外形は、固体電解質層の外形よりも小さく形成されている。これにより、図1に示されるように、燃料電池用アノード(拡散層、活性層)、固体電解質層、中間層、および、カソードがこの順に積層されており、燃料電池用アノードを支持体とする燃料電池単セルを得た。また、拡散層と活性層との二層が積層されてなる燃料電池用アノードを得た。得られた燃料電池用アノード、燃料電池単セルを、試料1の燃料電池用アノード、燃料電池単セルとする。  (Third step) Next, a cathode forming material is applied to the surface of the intermediate layer in the sintered body by a screen printing method, and baked (baked) at 950 ° C. for 2 hours to form a layered cathode (thickness 50 μm). Formed. The cathode forming material is not printed up to the outer edge of the intermediate layer, and the outer shape of the cathode layer is smaller than the outer shape of the solid electrolyte layer. As a result, as shown in FIG. 1, the fuel cell anode (diffusion layer, active layer), solid electrolyte layer, intermediate layer, and cathode are laminated in this order, and the fuel cell anode is used as a support. A fuel cell single cell was obtained. In addition, a fuel cell anode in which two layers of a diffusion layer and an active layer were laminated was obtained. The obtained fuel cell anode and fuel cell single cell are designated as Sample 1 fuel cell anode and fuel cell single cell. *
試料1の作製において、対応表面凹凸部が形成されていないプラスチック基材を用い、シート状の拡散層形成用材料、活性層形成用材料を準備した点、対応表面凹凸部を有するローラを押し付け、拡散層形成用材料、活性層形成用材料における各一方面に表面凹凸部をそれぞれ形成した点以外は同様にして、試料2の燃料電池用アノード、燃料電池単セルを作製した。  In the preparation of Sample 1, using a plastic base material on which the corresponding surface irregularities are not formed, the sheet-shaped diffusion layer forming material and the active layer forming material are prepared, the roller having the corresponding surface irregularities is pressed, A fuel cell anode and a fuel cell single cell of Sample 2 were prepared in the same manner except that a surface irregularity was formed on each one surface of the diffusion layer forming material and the active layer forming material. *
試料1の作製において、対応表面凹凸部が形成されていないプラスチック基材を用い、活性層形成用材料を準備した点、上記積層、圧着によって、拡散層形成用材料における表面凹凸部の形成面を、平坦な活性層形成用材料の表面に押し込むようにした点以外は同様にして、試料3の燃料電池用アノード、燃料電池単セルを作製した。なお、試料1~試料3は、いずれも、固体電解質層面に垂直な断面をSEMにて観察することにより、活性層側凸部と拡散層側凸部とを含み、かつ、活性層側凸部と拡散層側凸部とが互いに接触して構成されている緩衝領域を確認することができる。  In the preparation of Sample 1, using a plastic base material on which the corresponding surface irregularities are not formed, the active layer forming material was prepared, and the formation surface of the surface irregularities in the diffusion layer forming material was obtained by the above lamination and pressure bonding. A fuel cell anode and a fuel cell single cell of Sample 3 were prepared in the same manner except that the material was pushed into the surface of the flat active layer forming material. Each of Samples 1 to 3 includes an active layer side convex portion and a diffusion layer side convex portion by observing a cross section perpendicular to the solid electrolyte layer surface with an SEM, and the active layer side convex portion. And a buffer region where the diffusion layer side convex portions are in contact with each other can be confirmed. *
試料1の作製において、対応表面凹凸部が形成されていないプラスチック基材を用い、表面凹凸部を有していないシート状の拡散層形成用材料、活性層形成用材料を準備した点以外は同様にして、試料4の燃料電池用アノード、燃料電池単セルを作製した。なお、試料4の燃料電池用アノード、燃料電池単セルは、比較例であり、緩衝領域を有していない。  In the preparation of Sample 1, the same applies except that a plastic substrate having no corresponding surface irregularities is used, and a sheet-like diffusion layer forming material and active layer forming material having no surface irregularities are prepared. Thus, a fuel cell anode of Sample 4 and a fuel cell single cell were produced. In addition, the anode for fuel cells and the single fuel cell of Sample 4 are comparative examples and do not have a buffer region. *
2.引張強度試験 試料2の作製時と同様にして準備された、表面凹凸部を有するシート状の拡散層形成用材料をシート材Ad2(厚み100μm)、表面凹凸部を有するシート状の活性層形成用材料をシート材Aa2(厚み20μm)とする。また、比較例としての試料4の作製時と同様にして準備された、表面凹凸部を有していないシート状の拡散層形成用材料をシート材Ad4(厚み100μm)、表面凹凸部を有していないシート状の活性層形成用材料をシート材Aa4(厚み20μm)とする。これらを用い、以下のようにして各供試材を作製した。  2. Tensile strength test A sheet-shaped diffusion layer forming material having a surface uneven portion prepared in the same manner as in the preparation of Sample 2 is a sheet material Ad2 (thickness 100 μm), and a sheet-like active layer forming surface uneven portion is formed. The material is a sheet material Aa2 (thickness 20 μm). Further, a sheet-shaped diffusion layer forming material that does not have a surface uneven portion, prepared in the same manner as in the preparation of Sample 4 as a comparative example, has a sheet material Ad4 (thickness 100 μm), and has a surface uneven portion. The sheet-like active layer forming material that is not used is a sheet material Aa4 (thickness 20 μm). Using these, each test material was produced as follows. *
シート材Ad2、シート材Aa2をこの順に積層し、圧着することにより、未焼成の供試材1を得た。この際、シート材Ad2、シート材Aa2は、それぞれの表面凹凸部の形成面同士が互いに向き合うように配置して積層した。なお、圧着には、CIP成形法を用いた。CIP成形条件は、温度80℃、加圧力50MPa、加圧時間10分という条件とした。  The sheet material Ad2 and the sheet material Aa2 were laminated in this order and pressed to obtain an unfired specimen 1. At this time, the sheet material Ad2 and the sheet material Aa2 were arranged and laminated such that the formation surfaces of the respective surface uneven portions faced each other. Note that the CIP molding method was used for pressure bonding. The CIP molding conditions were a temperature of 80 ° C., a pressing force of 50 MPa, and a pressing time of 10 minutes. *
上記と同様に、シート材Ad4、シート材Aa4をこの順に積層し、圧着することにより、未焼成の供試材2を得た。  Similarly to the above, the unfired specimen 2 was obtained by laminating the sheet material Ad4 and the sheet material Aa4 in this order and press-bonding them. *
次いで、各供試材からそれぞれJIS2号型試験片を採取した。そして、精密万能試験機(島津製作所製、「オートグラフAG-X」)を用い、「JIS K-7113 プラスチックの引張試験方法」に準じて、各試験片について引張試験を行った。具体的には、上記試験片の両端を治具でつかんで保持した後、引張速度100mm/分にて試験片を引っ張って破断させることにより、各試験片の引張降伏強さを測定した。その結果、供試材1の試験片の引張降伏強さは、約4.6MPaであった。一方、供試材2の試験片の引張降伏強さは、約1.7MPaであり、供試材1の試験片の引張降伏強さよりも低い値となった。  Next, a JIS No. 2 type test piece was collected from each test material. Then, using a precision universal testing machine (manufactured by Shimadzu Corporation, “Autograph AG-X”), each specimen was subjected to a tensile test according to “JIS K-7113 Plastic Tensile Test Method”. Specifically, after holding both ends of the test piece with a jig, the tensile yield strength of each test piece was measured by pulling and breaking the test piece at a pulling speed of 100 mm / min. As a result, the tensile yield strength of the specimen of specimen 1 was about 4.6 MPa. On the other hand, the tensile yield strength of the test piece of test material 2 was about 1.7 MPa, which was lower than the tensile yield strength of the test piece of test material 1. *
この結果から、表面凹凸部の形成面同士が互いに向き合うように拡散層形成用材料と活性層形成用材料とが配置されて積層、圧着されることにより、拡散層形成用材料と活性層形成用材料との間の界面の密着力が向上することがわかる。また、上記密着性の高い状態にて焼成すれば、上述したように、比較的容易に緩衝領域を形成することができ、緩衝領域の存在により、活性層と拡散層との間の界面の接合強度を向上させることができるといえる。  From this result, the material for forming the diffusion layer and the material for forming the active layer are formed by laminating, pressing and bonding the material for forming the diffusion layer and the material for forming the active layer so that the formation surfaces of the surface irregularities face each other. It can be seen that the adhesion at the interface with the material is improved. In addition, if fired in the state of high adhesion, as described above, the buffer region can be formed relatively easily, and the presence of the buffer region makes it possible to bond the interface between the active layer and the diffusion layer. It can be said that the strength can be improved. *
以上、本発明の実施例について詳細に説明したが、本発明は上記実施例に限定されるものではなく、本発明の趣旨を損なわない範囲内で種々の変更が可能である。 As mentioned above, although the Example of this invention was described in detail, this invention is not limited to the said Example, A various change is possible within the range which does not impair the meaning of this invention.
1 アノード 2 固体電解質層 3 カソード 5 燃料電池単セル 10 燃料電池用アノード 11 活性層 110 小径気孔 111a 活性層側凸部 12 拡散層 120 大径気孔 121a 拡散層側凸部 13 緩衝領域 DESCRIPTION OF SYMBOLS 1 Anode 2 Solid electrolyte layer 3 Cathode 5 Fuel cell single cell 10 Fuel cell anode 11 Active layer 110 Small pore 111a Active layer side convex part 12 Diffusion layer 120 Large diameter pore 121a Diffusion layer side convex part 13 Buffer area

Claims (8)

  1. アノードと、固体電解質層(2)と、カソード(3)とを有する燃料電池単セル(5)に用いられ、上記アノードを構成する燃料電池用アノード(10)であって、 上記固体電解質層(2)側に配置され、小径気孔(110)を含む活性層(11)と、該活性層(11)における上記固体電解質層(2)側と反対側の面に積層され、上記小径気孔(110)よりも径の大きな大径気孔(120)を含む拡散層(12)とを備え、 上記活性層(11)は、該活性層(11)における上記拡散層(12)側の面から突出する活性層側凸部(111a)を複数有するとともに、上記拡散層(12)は、該拡散層(12)における上記活性層(11)側の面から突出する拡散層側凸部(121a)を複数有しており、 上記活性層側凸部(111a)と上記拡散層側凸部(121a)とを含み、かつ、上記活性層側凸部(111a)と上記拡散層側凸部(121a)とが互いに接触して構成されている緩衝領域(13)を有していることを特徴とする燃料電池用アノード(10)。 A fuel cell anode (10) used in a fuel cell single cell (5) having an anode, a solid electrolyte layer (2), and a cathode (3), wherein the solid electrolyte layer ( 2) is disposed on the side and includes an active layer (11) including small-diameter pores (110), and is laminated on the surface of the active layer (11) opposite to the solid electrolyte layer (2) side, and the small-diameter pores (110 ) And a diffusion layer (12) including large pores (120) having a larger diameter than the active layer (11), and the active layer (11) protrudes from the surface of the active layer (11) on the diffusion layer (12) side. While having a plurality of active layer side convex portions (111a), the diffusion layer (12) has a plurality of diffusion layer side convex portions (121a) protruding from the surface of the diffusion layer (12) on the active layer (11) side. The active layer side convex part (111 ) And the diffusion layer side convex portion (121a), and the active layer side convex portion (111a) and the diffusion layer side convex portion (121a) are configured to be in contact with each other. A fuel cell anode (10).
  2. 上記活性層(11)は、活性層内触媒粒子(112)と活性層内固体電解質粒子(113)とを含む混合物より構成されており、 上記拡散層(12)は、拡散層内触媒粒子(122)と拡散層内固体電解質粒子(123)とを含む混合物より構成されており、 上記活性層内触媒粒子(112)、上記活性層内固体電解質粒子(113)の粒子径≦上記活性層側凸部(111a)の高さの関係を満たし、 上記拡散層内触媒粒子(122)、上記拡散層内固体電解質粒子(123)の粒子径≦上記拡散層側凸部(121a)の高さの関係を満たしていることを特徴とする請求項1に記載の燃料電池用アノード(10)。 The active layer (11) is composed of a mixture containing the catalyst particles in the active layer (112) and the solid electrolyte particles in the active layer (113). The diffusion layer (12) is composed of catalyst particles in the diffusion layer ( 122) and the solid electrolyte particles in the diffusion layer (123), the particle diameter of the catalyst particles in the active layer (112) and the solid electrolyte particles in the active layer (113) ≦ the active layer side The height relationship of the convex portion (111a) is satisfied, and the particle diameter of the catalyst particles in the diffusion layer (122) and the solid electrolyte particles in the diffusion layer (123) ≦ the height of the convex portion on the diffusion layer side (121a). The anode (10) for a fuel cell according to claim 1, wherein the relationship is satisfied.
  3. 上記拡散層側凸部(121a)の高さ<上記活性層(11)の膜厚の関係を満たすことを特徴とする請求項1または2に記載の燃料電池用アノード(10)。 The fuel cell anode (10) according to claim 1 or 2, wherein a relationship of a height of the diffusion layer side convex portion (121a) <a film thickness of the active layer (11) is satisfied.
  4. 上記拡散層側凸部(121a)の高さ≦上記活性層(11)の膜厚×3/4の関係を満たすことを特徴とする請求項3に記載の燃料電池用アノード(10)。 The fuel cell anode (10) according to claim 3, wherein a relation of height of the diffusion layer side convex portion (121a) ≤ thickness of the active layer (11) x 3/4 is satisfied.
  5. 上記小径気孔(110)の平均気孔径は0.1~5μmの範囲内にあり、上記大径気孔(120)の平均気孔径は1~20μmの範囲内にあることを特徴とする請求項1~4のいずれか1項に記載の燃料電池用アノード(10)。 The average pore size of the small pores (110) is in the range of 0.1 to 5 µm, and the average pore size of the large pores (120) is in the range of 1 to 20 µm. The anode (10) for a fuel cell according to any one of 1 to 4.
  6. 上記緩衝領域(13)における小径気孔(110)の含有率は、体積分率で、30%~70%の範囲内にあることを特徴とする請求項1~5のいずれか1項に記載の燃料電池用アノード(10)。 The content rate of the small-diameter pores (110) in the buffer region (13) is in the range of 30% to 70% as a volume fraction, according to any one of claims 1 to 5. Fuel cell anode (10).
  7. 請求項1~6のいずれか1項に記載の燃料電池用アノード(10)と、固体電解質層(2)と、カソード(3)とを有することを特徴とする燃料電池単セル(5)。 A fuel cell single cell (5) comprising the anode (10) for a fuel cell according to any one of claims 1 to 6, a solid electrolyte layer (2), and a cathode (3).
  8. 上記燃料電池用アノード(10)を支持体とすることを特徴とする請求項7に記載の燃料電池単セル(5)。 The fuel cell single cell (5) according to claim 7, wherein the fuel cell anode (10) is a support.
PCT/JP2014/075429 2013-09-25 2014-09-25 Anode for fuel cells and single cell of fuel cell WO2015046331A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013198053 2013-09-25
JP2013-198053 2013-09-25
JP2014-178842 2014-09-03
JP2014178842A JP6382037B2 (en) 2013-09-25 2014-09-03 Anode for fuel cell and single cell for fuel cell

Publications (1)

Publication Number Publication Date
WO2015046331A1 true WO2015046331A1 (en) 2015-04-02

Family

ID=52743465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/075429 WO2015046331A1 (en) 2013-09-25 2014-09-25 Anode for fuel cells and single cell of fuel cell

Country Status (2)

Country Link
JP (1) JP6382037B2 (en)
WO (1) WO2015046331A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017027863A (en) * 2015-07-24 2017-02-02 日本碍子株式会社 Fuel cell

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6396127B2 (en) * 2013-09-25 2018-09-26 株式会社デンソー Anode for fuel cell and single cell for fuel cell
JP6972963B2 (en) * 2017-11-24 2021-11-24 株式会社デンソー Anode for solid oxide fuel cell and single cell for solid oxide fuel cell

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008004422A (en) * 2006-06-23 2008-01-10 Japan Fine Ceramics Center Electrode for solid oxide fuel cell, solid oxide fuel cell, and its manufacturing method
JP2010073563A (en) * 2008-09-19 2010-04-02 Nissan Motor Co Ltd Fuel cell and gas diffusion layer for fuel cell, and its manufacturing method
JP2011014461A (en) * 2009-07-03 2011-01-20 Nissan Motor Co Ltd Fuel electrode for solid electrolyte fuel cell, and solid electrolyte fuel cell
JP2012104407A (en) * 2010-11-11 2012-05-31 Honda Motor Co Ltd Electrolyte-electrode assembly, and method for manufacturing the same
JP2013077409A (en) * 2011-09-30 2013-04-25 Kikusui Chemical Industries Co Ltd Fuel battery single cell

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3730774B2 (en) * 1997-12-01 2006-01-05 京セラ株式会社 Solid oxide fuel cell
JP4845296B2 (en) * 2001-07-30 2011-12-28 京セラ株式会社 Solid oxide fuel cell and fuel cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008004422A (en) * 2006-06-23 2008-01-10 Japan Fine Ceramics Center Electrode for solid oxide fuel cell, solid oxide fuel cell, and its manufacturing method
JP2010073563A (en) * 2008-09-19 2010-04-02 Nissan Motor Co Ltd Fuel cell and gas diffusion layer for fuel cell, and its manufacturing method
JP2011014461A (en) * 2009-07-03 2011-01-20 Nissan Motor Co Ltd Fuel electrode for solid electrolyte fuel cell, and solid electrolyte fuel cell
JP2012104407A (en) * 2010-11-11 2012-05-31 Honda Motor Co Ltd Electrolyte-electrode assembly, and method for manufacturing the same
JP2013077409A (en) * 2011-09-30 2013-04-25 Kikusui Chemical Industries Co Ltd Fuel battery single cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017027863A (en) * 2015-07-24 2017-02-02 日本碍子株式会社 Fuel cell

Also Published As

Publication number Publication date
JP2015088471A (en) 2015-05-07
JP6382037B2 (en) 2018-08-29

Similar Documents

Publication Publication Date Title
JP5160131B2 (en) Electrolyte / electrode assembly and method for producing the same
JP6393711B2 (en) Solid oxide fuel cell
JP6396127B2 (en) Anode for fuel cell and single cell for fuel cell
JP5791552B2 (en) FUEL CELL AND METHOD FOR PRODUCING LAMINATED SINTERED BODY
JP6382037B2 (en) Anode for fuel cell and single cell for fuel cell
JP4820463B2 (en) Fuel cell and solid oxide fuel cell
JP6047470B2 (en) Anode for fuel cell and single cell for fuel cell
KR20160068202A (en) Solid oxide fuel cell and method for manufacturing the same
JP6047471B2 (en) Anode for fuel cell and single cell for fuel cell
JP6485123B2 (en) Anode for fuel cell and single cell for fuel cell
WO2015046002A1 (en) Anode for fuel cells and single cell of fuel cells using same
JP6044717B2 (en) CERAMIC SUBSTRATE FOR ELECTROCHEMICAL DEVICE, PROCESS FOR PRODUCING THE SAME, FUEL CELL AND FUEL CELL STACK
WO2015037618A1 (en) Single cell of fuel cell and method for producing same
JP6118694B2 (en) Anode for fuel cell and single cell for fuel cell
JP5395295B1 (en) Fuel cell
JP6075924B2 (en) Fuel cell single cell and manufacturing method thereof
WO2015037727A1 (en) Single cell of fuel cell
WO2020261935A1 (en) Fuel electrode-solid electrolyte layer composite body, fuel electrode-solid electrolyte layer composite member, fuel cell and method for producing fuel cell
JP2017199601A (en) Solid electrolyte membrane and method of producing the same, and fuel cell
JP2022115542A (en) solid oxide fuel cell
JP2013077395A (en) Anode substrate, solid oxide fuel cell and manufacturing method of anode substrate
JP2019204612A (en) Fuel battery single cell and method for manufacturing the same
JP2017199570A (en) Fuel battery single cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14849124

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14849124

Country of ref document: EP

Kind code of ref document: A1