WO2015046104A1 - Base station and user terminal - Google Patents

Base station and user terminal Download PDF

Info

Publication number
WO2015046104A1
WO2015046104A1 PCT/JP2014/075004 JP2014075004W WO2015046104A1 WO 2015046104 A1 WO2015046104 A1 WO 2015046104A1 JP 2014075004 W JP2014075004 W JP 2014075004W WO 2015046104 A1 WO2015046104 A1 WO 2015046104A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
neighboring
extended
cell identifier
measurement
Prior art date
Application number
PCT/JP2014/075004
Other languages
French (fr)
Japanese (ja)
Inventor
真人 藤代
柏瀬 薦
空悟 守田
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2015046104A1 publication Critical patent/WO2015046104A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/26Network addressing or numbering for mobility support
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/003Locating users or terminals or network equipment for network management purposes, e.g. mobility management locating network equipment

Definitions

  • the present invention relates to a base station and a user terminal used in a mobile communication system.
  • LTE Long Term Evolution
  • 3GPP 3rd Generation Partnership Project
  • the cell identifier is a physical cell identifier (PCI: Physical Cell ID), a cell global identifier (ECGI: E-UTRAN Cell Global ID), or the like (for example, see Non-Patent Document 1).
  • PCI Physical Cell ID
  • ECGI E-UTRAN Cell Global ID
  • the number of cell identifiers that can be used in a mobile communication system is finite. For example, in the LTE specification, 504 physical cell identifiers are defined.
  • an object of the present invention is to realize a cell identifier capable of uniquely identifying a cell while maintaining compatibility with an existing cell identifier.
  • the base station is used in a mobile communication system.
  • the base station includes a control unit that manages a cell having a physical cell identifier, and a transmission unit that transmits a radio signal capable of specifying the physical cell identifier.
  • An extended cell identifier associated with the physical cell identifier is assigned to the cell.
  • the extended cell identifier includes an extended portion associated with the geographical location of the cell.
  • the user terminal according to the second feature is connected to a cell having a physical cell identifier in the mobile communication system.
  • the user terminal includes a receiving unit that receives a radio signal capable of specifying the physical cell identifier from the cell.
  • An extended cell identifier associated with the physical cell identifier is assigned to the cell.
  • the extended cell identifier includes an extended portion associated with the geographical location of the cell.
  • the base station is used in a mobile communication system.
  • the base station includes a control unit that manages a cell having a physical cell identifier, and a transmission unit that transmits a radio signal capable of specifying the physical cell identifier.
  • An extended cell identifier associated with the physical cell identifier is assigned to the cell.
  • the extended cell identifier includes an extended portion associated with the geographical location of the cell.
  • the extension part is an index value indicating an area unit to which the geographical position of the cell belongs.
  • the extended cell identifier includes the physical cell identifier and the extended portion.
  • the extended cell identifier is used in a measurement report procedure for handover.
  • the base station further includes a storage unit that stores a neighbor extended cell identifier that is an extended cell identifier assigned to a neighbor cell of the cell.
  • the neighbor extended cell identifier includes a physical cell identifier of the neighbor cell and an extended portion associated with the geographical location of the neighbor cell.
  • control unit notifies a user terminal connected to the cell of a measurement configuration for controlling measurement of the neighboring cell.
  • the measurement configuration includes the neighbor extended cell identifier assigned to the neighbor cell to be measured.
  • the base station further includes a reception unit that receives a measurement report related to measurement of the neighboring cell from a user terminal connected to the cell.
  • the measurement report includes a physical cell identifier of the neighboring cell where the measurement is performed, and location information regarding a geographical location of the user terminal or the neighboring cell.
  • the controller refers to the neighbor extended cell identifier stored in the storage unit and identifies the neighbor cell in which the measurement has been performed.
  • the base station further includes a reception unit that receives a measurement report related to measurement of the neighboring cell from a user terminal connected to the cell.
  • the measurement report includes the neighboring extended cell identifier of the neighboring cell where the measurement has been performed.
  • the control unit identifies the neighboring cell where the measurement is performed by referring to the neighboring extended cell identifier stored in the storage unit based on the measurement report.
  • the base station further includes a reception unit that receives a measurement report related to measurement of the neighboring cell from a user terminal connected to the cell.
  • the measurement report includes a physical cell identifier of the neighboring cell where the measurement is performed.
  • the said control part acquires the said geographical position from the server apparatus which manages the positional information regarding the geographical position of the said user terminal.
  • the control unit identifies the neighboring cell where the measurement is performed by referring to the neighboring extended cell identifier stored in the storage unit based on the physical cell identifier and the location information.
  • the user terminal is connected to a cell having a physical cell identifier in a mobile communication system.
  • the user terminal includes a receiving unit that receives a radio signal capable of specifying the physical cell identifier from the cell.
  • An extended cell identifier associated with the physical cell identifier is assigned to the cell.
  • the extended cell identifier includes an extended portion associated with the geographical location of the cell.
  • the extension part is an index value indicating an area unit to which the geographical position of the cell belongs.
  • the extended cell identifier includes the physical cell identifier and the extended portion.
  • the extended cell identifier is used in a measurement report procedure for handover.
  • the user terminal further includes a reception unit that receives from the cell a measurement configuration for controlling measurement of neighboring cells of the cell.
  • the measurement configuration includes a neighbor extended cell identifier that is an extended cell identifier assigned to the neighbor cell to be measured.
  • the neighbor extended cell identifier includes a physical cell identifier of the neighbor cell and an extended portion associated with the geographical location of the neighbor cell.
  • the user terminal further includes a control unit that performs measurement on the neighboring cell based on the neighboring extended cell identifier included in the measurement configuration.
  • the control unit is a neighbor cell having the physical cell identifier included in the neighbor extended cell identifier, and a position corresponding to the extended portion included in the neighbor extended cell identifier is a geographical position of the user terminal To the nearest neighbor cell.
  • the user terminal further includes a transmission unit that transmits a measurement report related to the measurement to the neighboring cell to the cell.
  • the measurement report includes a neighbor extended cell identifier that is an extended cell identifier assigned to the neighbor cell in which the measurement is performed.
  • the neighbor extended cell identifier includes a physical cell identifier of the neighbor cell and an extended portion associated with the geographical location of the neighbor cell.
  • FIG. 1 is a configuration diagram of an LTE system according to the embodiment.
  • the LTE system according to the embodiment includes a UE (User Equipment) 100, an E-UTRAN (Evolved-UMTS Terrestrial Radio Access Network) 10, and an EPC (Evolved Packet Core) 20.
  • UE User Equipment
  • E-UTRAN Evolved-UMTS Terrestrial Radio Access Network
  • EPC Evolved Packet Core
  • the UE 100 corresponds to a user terminal.
  • the UE 100 is a mobile communication device, and performs wireless communication with a connection destination cell (serving cell).
  • the configuration of the UE 100 will be described later.
  • the E-UTRAN 10 corresponds to a radio access network.
  • the E-UTRAN 10 includes an eNB 200 (evolved Node-B).
  • the eNB 200 corresponds to a base station.
  • the eNB 200 is connected to each other via the X2 interface. The configuration of the eNB 200 will be described later.
  • the eNB 200 manages one or a plurality of cells and performs radio communication with the UE 100 that has established a connection with the own cell.
  • the eNB 200 has a radio resource management (RRM) function, a user data routing function, a measurement control function for mobility control / scheduling, and the like.
  • RRM radio resource management
  • Cell is used as a term indicating a minimum unit of a radio communication area, and is also used as a term indicating a function of performing radio communication with the UE 100.
  • the EPC 20 corresponds to a core network.
  • the LTE system network is configured by the E-UTRAN 10 and the EPC 20.
  • the EPC 20 includes an MME (Mobility Management Entity) / S-GW (Serving-Gateway) 300.
  • the MME performs various mobility controls for the UE 100.
  • the SGW performs user data transfer control.
  • the MME / S-GW 300 is connected to the eNB 200 via the S1 interface.
  • the EPC 20 may include a server device 400 that manages position information indicating the geographical position of the UE 100.
  • the server device 400 is, for example, an E-SMLC (e-Serving Mobile Location Center) defined by 3GPP technical specification TS36.305.
  • FIG. 2 is a block diagram of the UE 100.
  • the UE 100 includes a plurality of antennas 101, a radio transceiver 110, a user interface 120, a GNSS (Global Navigation Satellite System) receiver 130, a battery 140, a memory 150, and a processor 160.
  • the memory 150 corresponds to a storage unit.
  • the processor 160 (and the memory 150) constitutes a control unit.
  • the UE 100 may not have the GNSS receiver 130.
  • the memory 150 may be integrated with the processor 160, and this set (that is, a chip set) may be used as the processor 160 '.
  • the plurality of antennas 101 and the wireless transceiver 110 are used for transmitting and receiving wireless signals.
  • the radio transceiver 110 converts the baseband signal (transmission signal) output from the processor 160 into a radio signal and transmits it from the plurality of antennas 101. Further, the radio transceiver 110 converts radio signals received by the plurality of antennas 101 into baseband signals (received signals) and outputs the baseband signals to the processor 160.
  • the user interface 120 is an interface with a user who owns the UE 100, and includes, for example, a display, a microphone, a speaker, and various buttons.
  • the user interface 120 receives an operation from the user and outputs a signal indicating the content of the operation to the processor 160.
  • the GNSS receiver 130 receives a GNSS signal and outputs the received signal to the processor 160 in order to obtain position information (longitude, latitude, etc.) indicating the geographical position of the UE 100.
  • the battery 140 stores power to be supplied to each block of the UE 100.
  • the memory 150 stores a program executed by the processor 160 and information used for processing by the processor 160.
  • the processor 160 includes a baseband processor that modulates / demodulates and encodes / decodes a baseband signal, and a CPU (Central Processing Unit) that executes programs stored in the memory 150 and performs various processes. .
  • the processor 160 may further include a codec that performs encoding / decoding of an audio / video signal.
  • the processor 160 executes various processes and various communication protocols described later.
  • FIG. 3 is a block diagram of the eNB 200.
  • the eNB 200 includes a plurality of antennas 201, a radio transceiver 210, a network interface 220, a memory 230, and a processor 240.
  • the memory 230 corresponds to a storage unit.
  • the processor 240 (and the memory 230) constitutes a control unit.
  • the plurality of antennas 201 and the wireless transceiver 210 are used for transmitting and receiving wireless signals.
  • the radio transceiver 210 converts a baseband signal (transmission signal) output from the processor 240 into a radio signal and transmits the radio signal from the plurality of antennas 201.
  • the radio transceiver 210 converts radio signals received by the plurality of antennas 201 into baseband signals (reception signals) and outputs the baseband signals to the processor 240.
  • the network interface 220 is connected to the neighboring eNB 200 via the X2 interface and is connected to the MME / S-GW 300 via the S1 interface.
  • the network interface 220 is used for communication performed on the X2 interface and communication performed on the S1 interface.
  • the memory 230 stores a program executed by the processor 240 and information used for processing by the processor 240.
  • the processor 240 includes a baseband processor that performs modulation / demodulation and encoding / decoding of a baseband signal, and a CPU that executes a program stored in the memory 230 and performs various processes.
  • the processor 240 executes various processes and various communication protocols described later.
  • FIG. 4 is a protocol stack diagram of a radio interface in the LTE system. As shown in FIG. 4, the radio interface protocol is divided into the first to third layers of the OSI reference model, and the first layer is a physical (PHY) layer.
  • the second layer includes a MAC (Medium Access Control) layer, an RLC (Radio Link Control) layer, and a PDCP (Packet Data Convergence Protocol) layer.
  • the third layer includes an RRC (Radio Resource Control) layer.
  • the physical layer performs encoding / decoding, modulation / demodulation, antenna mapping / demapping, and resource mapping / demapping. Between the physical layer of UE100 and the physical layer of eNB200, user data and a control signal are transmitted via a physical channel.
  • the MAC layer performs data priority control, retransmission processing by hybrid ARQ (HARQ), and the like. Between the MAC layer of the UE 100 and the MAC layer of the eNB 200, user data and control signals are transmitted via a transport channel.
  • the MAC layer of the eNB 200 includes a scheduler that determines an uplink / downlink transport format (transport block size, modulation / coding scheme) and an allocation resource block to the UE 100.
  • the RLC layer transmits data to the RLC layer on the receiving side using the functions of the MAC layer and the physical layer. Between the RLC layer of the UE 100 and the RLC layer of the eNB 200, user data and control signals are transmitted via a logical channel.
  • the PDCP layer performs header compression / decompression and encryption / decryption.
  • the RRC layer is defined only in the control plane that handles control signals. Control signals (RRC messages) for various settings are transmitted between the RRC layer of the UE 100 and the RRC layer of the eNB 200.
  • the RRC layer controls the logical channel, the transport channel, and the physical channel according to establishment, re-establishment, and release of the radio bearer.
  • RRC connection When there is a connection (RRC connection) between the RRC of the UE 100 and the RRC of the eNB 200, the UE 100 is in a connection state (RRC connection state). Otherwise, the UE 100 is in an idle state (RRC idle state).
  • the NAS (Non-Access Stratum) layer located above the RRC layer performs session management and mobility management.
  • FIG. 5 is a configuration diagram of a radio frame used in the LTE system.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Division Multiple Access
  • the radio frame is composed of 10 subframes arranged in the time direction.
  • Each subframe is composed of two slots arranged in the time direction.
  • the length of each subframe is 1 ms, and the length of each slot is 0.5 ms.
  • Each subframe includes a plurality of resource blocks (RB) in the frequency direction and includes a plurality of symbols in the time direction.
  • Each resource block includes a plurality of subcarriers in the frequency direction.
  • a resource element is composed of one subcarrier and one symbol.
  • frequency resources are configured by resource blocks, and time resources are configured by subframes (or slots).
  • the section of the first few symbols of each subframe is an area mainly used as a physical downlink control channel (PDCCH) for transmitting a control signal.
  • the remaining part of each subframe is an area that can be used mainly as a physical downlink shared channel (PDSCH) for transmitting user data.
  • PDCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • both ends in the frequency direction in each subframe are regions used mainly as a physical uplink control channel (PUCCH) for transmitting a control signal.
  • the remaining part of each subframe is an area that can be used mainly as a physical uplink shared channel (PUSCH) for transmitting user data.
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • a cell identifier for identifying a cell is assigned to each cell.
  • the cell identifier is a physical cell identifier (PCI), a cell global identifier (ECGI), or the like.
  • PCI physical cell identifier
  • ECGI is composed of MCC, MNC, and ECI
  • ECI is composed of a combination of PCI and eNB identifiers.
  • the UE 100 specifies the PCI of the cell by the primary synchronization signal (PSS) and the secondary synchronization signal (SSS) received from the cell during the cell search.
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • the PSS value is associated with the cell ID (3) in the cell ID group
  • the SSS value is associated with the cell ID group (168)
  • the combination of PSS and SSS is associated with the cell ID group (168)
  • downlink frame level synchronization is achieved by PSS and SSS.
  • the UE100 specifies the PCI of a cell by the combination of PSS and SSS, and receives CRS based on PCI.
  • the CRS is provided in the first OFDM symbol and the third OFDM symbol from the end in the slot at intervals of 6 subcarriers.
  • the CRS is divided into six frequency shift groups according to the PCI. For example, the PCI is set so that the frequency shift is different between neighboring cells.
  • ECGI is reported from the cell by a system information block (SIB) transmitted and received in the RRC layer.
  • SIB system information block
  • FIG. 6 is a diagram for explaining an operating environment according to the embodiment.
  • the embodiment assumes an environment (so-called HetNet environment) in which a large number of small cells SC are provided in the macro cell MC.
  • the small cell SC is, for example, a pico cell or a femto cell.
  • the eNB 200-1 manages three macro cells MC # 1 to MC # 3, and a large number of small cells SC are provided in each macro cell MC.
  • Each small cell SC is managed by one eNB 200.
  • a plurality of small cells SC may be managed by one eNB 200.
  • Each cell is assigned a cell identifier such as PCI.
  • the eNB 200 that manages the cell transmits radio signals (PSS, SSS, and CRS) that can identify the PCI of the cell in the cell.
  • the frequency F1 to which the macro cell MC belongs and the frequency F2 to which the small cell SC belongs are different, but the frequency to which the macro cell MC belongs and the frequency to which the small cell SC belongs may be the same.
  • an extended cell identifier capable of uniquely identifying a cell is introduced while maintaining compatibility with an existing cell identifier.
  • the extended cell identifier is associated with the PCI.
  • the extended cell identifier includes an extended portion associated with the geographical location of the cell. Taking the macro cell into consideration, the geographical position of the cell is preferably the center position of the coverage area of the cell, for example.
  • the extended cell identifier is configured by a combination of PCI and an extended part.
  • the extended cell identifier may be configured by a combination of a PCI, eNB identifier, and an extended portion (that is, a combination of ECI and an extended portion).
  • E-PCI an extended cell identifier configured by a combination of PCI and an extended portion
  • the extended part is a value that directly indicates the geographical position of the cell, for example, longitude / latitude (and altitude).
  • the extended part is a value indirectly indicating the geographical position of the cell, for example, an index value indicating the area unit to which the geographical position of the cell belongs.
  • the area unit may be an area unit obtained by dividing a service area in a matrix, or may be an existing area unit (region, prefecture, municipality, etc.).
  • each cell is uniquely identified by the extended portion associated with the geographical location of each cell. Can be identified. Further, the configuration of the cell identifier (PCI) itself is maintained, and there is no need to change the operation of the existing physical layer.
  • PCI cell identifier
  • E-PCI is used in a measurement report procedure for handover.
  • a specific operation example related to the measurement report procedure will be described later.
  • FIG. 7 is a diagram for explaining the NRT according to the embodiment. As shown in FIG. 7, the NRT includes the E-PCI (neighboring E-PCI) of each of a plurality of neighboring cells.
  • the neighboring E-PCI includes a neighboring cell's PCI and an extended portion associated with the neighboring cell's geographical location.
  • the NRT shown in FIG. 7 is used in a specific operation example to be described later.
  • eNB200 receives the measurement report regarding the measurement with respect to a neighboring cell from UE100 connected with an own cell.
  • the measurement report includes the PCI of the neighboring cell where the measurement is performed and the location information regarding the geographical location of the UE 100.
  • the position information related to the geographical position of the UE 100 may be used instead of the position information related to the geographical position of the UE 100.
  • the UE 100 acquires the position information broadcast from the neighboring cell, or inquires the network about the position information of the neighboring cell based on the identifier of the neighboring cell.
  • the eNB 200 refers to the stored neighboring E-PCI (that is, NRT) and identifies the neighboring cell where the measurement is performed. Thereby, even if there are a plurality of neighboring cells with overlapping PCI, the neighboring cell in which the measurement has been performed can be more reliably identified.
  • E-PCI that is, NRT
  • FIG. 8 is a sequence diagram of the operation pattern 1 according to the embodiment.
  • the eNB 200-1 manages the serving cell of the UE 100
  • the eNB 200-2 manages the neighboring cell.
  • UE100 is the state (RRC connection state) which established the connection with a serving cell.
  • step S101 the eNB 200-1 and the eNB 200-2 exchange cell location information via, for example, the X2 interface. Or each of eNB200-1 and eNB200-2 may acquire the said positional information from EPC20 (MME300 etc.).
  • step S102 the eNB 200-1 updates the NRT managed by the eNB 200-1 based on the position information acquired in step S101. Specifically, in the NRT, the neighboring E-PCI is registered in the NRT by adding location information to the PCI of the cell (neighboring cell) of the eNB 200-2.
  • each of the eNB 200-1 and the eNB 200-2 transmits a CRS.
  • the UE 100 receives the CRS from each of the eNB 200-1 (serving cell) and the eNB 200-2 (neighboring cell).
  • step S105 the UE 100 performs measurement for each of the serving cell and the neighboring cell based on the received CRS. For example, the UE 100 measures reference signal received power (RSRP) and / or reference signal received quality (RSRQ).
  • RSRP reference signal received power
  • RSRQ reference signal received quality
  • step S106 the UE 100 acquires its location information using GNSS.
  • the operation pattern 1 it is assumed that the UE 100 has already received the measurement configuration including “obtainLocation” for requesting that the GNSS position information is included in the measurement report from the eNB 200-1.
  • step S107 the UE 100 transmits to the eNB 200-1 a measurement report including the measurement results and GNSS position information of the serving cell and the neighboring cell.
  • the measurement result includes the PCI and RSR and / or RSRQ of the cell in which the measurement is performed.
  • step S108 the eNB 200-1 that has received the measurement report, the neighboring cell in which the measurement is performed based on the PCI and GNSS location information included in the measurement report and the stored neighboring E-PCI (NRT) Is identified. For example, when there are a plurality of neighboring cells having the same PCI and the PCI is included in the measurement result, the eNB 200-1 selects the neighboring cell closest to the GNSS location information corresponding to the measurement result. , Identify the cell where the measurement was made.
  • NRT neighboring E-PCI
  • the operation pattern 1 assumes a case where a value (longitude / latitude) that directly indicates the geographical position of a cell is used as an extended portion included in the E-PCI.
  • the eNB 200-1 converts the GNSS position information into an index value, and then uses the neighbor E -Check against PCI (NRT).
  • the UE 100 may be notified in advance of a table in which longitude / latitude ranges and index values are associated with each other, the GNSS position information may be converted into index values on the UE 100 side, and the index values may be included in the measurement report.
  • the eNB 200-1 notifies the UE 100 connected to the own cell of the measurement configuration for controlling the measurement of the neighboring cell (and the own cell).
  • the measurement configuration may include a neighboring E-PCI assigned to a neighboring cell to be measured.
  • the UE 100 performs the measurement on the neighboring cell based on the neighboring E-PCI included in the measurement configuration. Specifically, for a neighboring cell having a PCI included in the neighboring E-PCI, and a location corresponding to the extended portion included in the neighboring E-PCI is closest to the geographical location of the UE 100 To measure. Thereby, even if there are a plurality of neighboring cells with overlapping PCI, the neighboring cell to be measured can be more reliably specified.
  • the UE100 transmits the measurement report regarding the measurement with respect to a neighboring cell to a serving cell.
  • the measurement report includes a neighboring E-PCI that is an E-PCI assigned to the neighboring cell in which the measurement was made.
  • the eNB 200-1 receives the measurement report from the UE 100. Based on the measurement report, the eNB 200-1 refers to the stored neighboring E-PCI (NRT) to identify the neighboring cell where the measurement has been performed. Thereby, even if there are a plurality of neighboring cells with overlapping PCI, the neighboring cell in which the measurement has been performed can be more reliably identified.
  • NRT neighboring E-PCI
  • FIG. 9 is a sequence diagram of the operation pattern 2 according to the embodiment. Here, differences from the operation pattern 1 will be mainly described.
  • steps S201 and S202 are the same as in operation pattern 1.
  • the eNB 200-1 transmits the measurement configuration to the UE 100.
  • the measurement configuration may include a neighbor E-PCI assigned to a neighbor cell to be measured.
  • Steps S204 to S206 are the same as in operation pattern 1.
  • the UE 100 performs measurement for each of the serving cell (eNB 200-1) and the neighboring cell (eNB 200-2). However, when the neighbor E-PCI is included in the measurement configuration, the UE 100 is a neighbor cell having the PCI included in the neighbor E-PCI and corresponds to the extension part included in the neighbor E-PCI. Measurement is performed on a neighboring cell whose location is closest to the geographical location of the UE 100.
  • step S207 the eNB 200-2 transmits the SIB including the E-PCI of the own cell.
  • step S208 the UE 100 decodes the SIB received from the eNB 200-2 (neighboring cell) and acquires the E-PCI included in the SIB.
  • step S209 the UE 100 transmits a measurement report including the measurement results of the serving cell and the neighboring cell and the E-PCI of the neighboring cell to the eNB 200-1.
  • the eNB 200-1 refers to the stored neighboring E-PCI (NRT) to identify the neighboring cell where the measurement has been performed.
  • the eNB 200-1 (serving cell) transmits a neighbor E-PCI list (NRT) to the UE 100 by broadcast or unicast.
  • NRT neighbor E-PCI list
  • each cell may transmit E-PCI of the own cell to the UE 100 by broadcast or unicast.
  • FIG. 10 is a sequence diagram of the operation pattern 3 according to the embodiment. Here, differences from the operation pattern 1 will be mainly described.
  • steps S301 and S302 are the same as in operation pattern 1.
  • the eNB 200-1 transmits a list of neighboring E-PCIs to the UE 100 by broadcast (for example, SIB) or unicast (for example, RRC message).
  • the eNB 200-1 may transmit only the difference related to the change to the UE 100 using a change in the stored NRT as a trigger.
  • step S304 the UE 100 that has received the neighboring E-PCI list stores the neighboring E-PCI list. Note that when the UE 100 subsequently receives the difference information, the UE 100 updates the stored list of neighboring E-PCIs.
  • Steps S305 to S308 are the same as the operation pattern 1.
  • the UE 100 refers to the stored list of neighboring E-PCIs based on the measurement result (including PCI) obtained in step S307 and the GNSS location information obtained in step S308.
  • the E-PCI of the neighboring cell where the measurement is performed is specified. For example, when there are a plurality of neighboring cells having the same PCI and the PCI is included in the measurement result, the UE 100 uses the E-PCI whose position is closest to the GNSS position information. It is specified as the E-PCI of the cell.
  • step S310 the UE 100 transmits to the eNB 200-1 a measurement report including the measurement results of the serving cell and the neighboring cell and the E-PCI of the neighboring cell.
  • E-PCI is associated with PCI.
  • the E-PCI includes an extension associated with the geographical location of the cell.
  • the UE 100 does not have to acquire the SIB of the neighboring cell as compared with the method of uniquely identifying the cell by ECGI, so that the adverse effect on the communication with the serving cell can be reduced. it can.
  • the above-described operation pattern 2 obtains SIBs of neighboring cells, but considering the possibility that ECGI is not assigned without duplication, it is more accurate than the method of uniquely identifying a cell by ECGI. The cell can be identified.
  • the position information or E-PCI is included in the measurement report.
  • the eNB 200-1 can acquire the UE location information from the server device 400, the location information or E-PCI may not be included in the measurement report.
  • the eNB 200-1 receives a measurement report related to the measurement for the neighboring cell from the UE 100 connected to the own cell.
  • the measurement report includes the PCI of the neighboring cell where the measurement was made.
  • the eNB 200-1 acquires the geographical position from the server apparatus 400 that manages position information regarding the geographical position of the UE 100.
  • the eNB 200-1 refers to the stored neighboring E-PCI (NRT) based on the PCI included in the measurement report and the UE location information acquired from the server apparatus 400, thereby determining the neighboring cell in which the measurement has been performed. Identify. For example, when there are a plurality of neighboring cells having the same PCI and the PCI is included in the measurement result, the eNB 200-1 selects the neighboring cell having the closest position to the UE location information acquired from the server device 400. , Identify the cell where the measurement was made.
  • NRT stored neighboring E-PCI
  • E-PCI In the above-described embodiment, an example in which E-PCI is used for the measurement report procedure has been described. However, E-PCI may be used for other purposes. Other applications include, for example, parameters for generating PUCCH cyclic shift sequences, parameters for generating PUSCH hopping patterns, and the like.
  • E-PCI composed mainly of a combination of PCI and an extended part has been mainly described as an extended cell identifier.
  • the extended cell identifier may be E-ECI configured by a combination of a PCI, eNB identifier, and an extended portion (that is, a combination of ECI and an extended portion).
  • the LTE system has been described as an example of a mobile communication system.
  • the present invention is not limited to the LTE system, and the present invention may be applied to a system other than the LTE system.
  • the present invention is useful in the mobile communication field.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

An eNB (200) comprises: a control unit that manages a cell having a physical cell identifier (PCI); and a transmission unit that transmits a radio signal from which the PCI can be identified. An expanded cell identifier (E-PCI), which is associated with the PCI, is allocated to the cell. The E-PCI includes an expanded part associated with the geographic position of the cell.

Description

基地局及びユーザ端末Base station and user terminal
 本発明は、移動通信システムにおいて用いられる基地局及びユーザ端末に関する。 The present invention relates to a base station and a user terminal used in a mobile communication system.
 移動通信システムの標準化プロジェクトである3GPP(3rd Generation Partnership Project)で仕様が策定されているLTE(Long Term Evolution)では、セルを識別するためのセル識別子が各セルに割り当てられる。 In LTE (Long Term Evolution) whose specifications are defined by 3GPP (3rd Generation Partnership Project), which is a standardization project for mobile communication systems, a cell identifier for identifying a cell is assigned to each cell.
 セル識別子は、物理セル識別子(PCI:Physical Cell ID)及びセルグローバル識別子(ECGI:E-UTRAN Cell Global ID)などである(例えば非特許文献1参照)。 The cell identifier is a physical cell identifier (PCI: Physical Cell ID), a cell global identifier (ECGI: E-UTRAN Cell Global ID), or the like (for example, see Non-Patent Document 1).
 移動通信システムにおいて利用可能なセル識別子の数は有限である。例えば、LTEの仕様では504個の物理セル識別子が規定されている。 The number of cell identifiers that can be used in a mobile communication system is finite. For example, in the LTE specification, 504 physical cell identifiers are defined.
 よって、マクロセル内に多数の小セルが設けられるような通信環境においては、セル識別子が枯渇し、重複なくセル識別子を割り当てることが困難になるため、セルを一意に識別することができない問題がある。 Therefore, in a communication environment in which a large number of small cells are provided in a macro cell, cell identifiers are exhausted and it becomes difficult to assign cell identifiers without duplication, and thus there is a problem that cells cannot be uniquely identified. .
 そこで、本発明は、既存のセル識別子との互換性を保ちつつ、セルを一意に識別可能なセル識別子を実現することを目的とする。 Therefore, an object of the present invention is to realize a cell identifier capable of uniquely identifying a cell while maintaining compatibility with an existing cell identifier.
 第1の特徴に係る基地局は、移動通信システムにおいて用いられる。前記基地局は、物理セル識別子を有するセルを管理する制御部と、前記物理セル識別子を特定可能な無線信号を送信する送信部と、を備える。前記セルには、前記物理セル識別子と関連付けられた拡張セル識別子が割り当てられている。前記拡張セル識別子は、前記セルの地理的位置と関連付けられた拡張部分を含む。 The base station according to the first feature is used in a mobile communication system. The base station includes a control unit that manages a cell having a physical cell identifier, and a transmission unit that transmits a radio signal capable of specifying the physical cell identifier. An extended cell identifier associated with the physical cell identifier is assigned to the cell. The extended cell identifier includes an extended portion associated with the geographical location of the cell.
 第2の特徴に係るユーザ端末は、移動通信システムにおいて、物理セル識別子を有するセルと接続する。前記ユーザ端末は、前記物理セル識別子を特定可能な無線信号を前記セルから受信する受信部を備える。前記セルには、前記物理セル識別子と関連付けられた拡張セル識別子が割り当てられている。前記拡張セル識別子は、前記セルの地理的位置と関連付けられた拡張部分を含む。 The user terminal according to the second feature is connected to a cell having a physical cell identifier in the mobile communication system. The user terminal includes a receiving unit that receives a radio signal capable of specifying the physical cell identifier from the cell. An extended cell identifier associated with the physical cell identifier is assigned to the cell. The extended cell identifier includes an extended portion associated with the geographical location of the cell.
実施形態に係るLTEシステムの構成図である。It is a block diagram of the LTE system which concerns on embodiment. 実施形態に係るUEのブロック図である。It is a block diagram of UE which concerns on embodiment. 実施形態に係るeNBのブロック図である。It is a block diagram of eNB which concerns on embodiment. 実施形態に係る無線インターフェイスのプロトコルスタック図である。It is a protocol stack figure of the radio | wireless interface which concerns on embodiment. 実施形態に係る無線フレームの構成図である。It is a block diagram of the radio | wireless frame which concerns on embodiment. 実施形態に係る動作環境を説明するための図である。It is a figure for demonstrating the operating environment which concerns on embodiment. 実施形態に係るNRTを説明するための図である。It is a figure for demonstrating NRT which concerns on embodiment. 実施形態に係る動作パターン1のシーケンス図である。It is a sequence diagram of the operation | movement pattern 1 which concerns on embodiment. 実施形態に係る動作パターン2のシーケンス図である。It is a sequence diagram of the operation | movement pattern 2 which concerns on embodiment. 実施形態に係る動作パターン3のシーケンス図である。It is a sequence diagram of the operation | movement pattern 3 which concerns on embodiment.
 [実施形態の概要]
 実施形態に係る基地局は、移動通信システムにおいて用いられる。前記基地局は、物理セル識別子を有するセルを管理する制御部と、前記物理セル識別子を特定可能な無線信号を送信する送信部と、を備える。前記セルには、前記物理セル識別子と関連付けられた拡張セル識別子が割り当てられている。前記拡張セル識別子は、前記セルの地理的位置と関連付けられた拡張部分を含む。
[Outline of Embodiment]
The base station according to the embodiment is used in a mobile communication system. The base station includes a control unit that manages a cell having a physical cell identifier, and a transmission unit that transmits a radio signal capable of specifying the physical cell identifier. An extended cell identifier associated with the physical cell identifier is assigned to the cell. The extended cell identifier includes an extended portion associated with the geographical location of the cell.
 実施形態では、前記拡張部分は、前記セルの地理的位置が属するエリア単位を示すインデックス値である。 In the embodiment, the extension part is an index value indicating an area unit to which the geographical position of the cell belongs.
 実施形態では、前記拡張セル識別子は、前記物理セル識別子と前記拡張部分とを含む。 In the embodiment, the extended cell identifier includes the physical cell identifier and the extended portion.
 実施形態では、前記拡張セル識別子は、ハンドオーバのための測定報告手順において利用される。 In the embodiment, the extended cell identifier is used in a measurement report procedure for handover.
 実施形態では、前記基地局は、前記セルの近隣セルに割り当てられた拡張セル識別子である近隣拡張セル識別子を記憶する記憶部をさらに備える。前記近隣拡張セル識別子は、前記近隣セルの物理セル識別子と、前記近隣セルの地理的位置と関連付けられた拡張部分と、を含む。 In the embodiment, the base station further includes a storage unit that stores a neighbor extended cell identifier that is an extended cell identifier assigned to a neighbor cell of the cell. The neighbor extended cell identifier includes a physical cell identifier of the neighbor cell and an extended portion associated with the geographical location of the neighbor cell.
 実施形態では、前記制御部は、前記セルと接続するユーザ端末に対して、前記近隣セルに対する測定を制御するための測定構成を通知する。前記測定構成は、測定の対象とする前記近隣セルに割り当てられた前記近隣拡張セル識別子を含む。 In the embodiment, the control unit notifies a user terminal connected to the cell of a measurement configuration for controlling measurement of the neighboring cell. The measurement configuration includes the neighbor extended cell identifier assigned to the neighbor cell to be measured.
 実施形態では、前記基地局は、前記セルと接続するユーザ端末から、前記近隣セルに対する測定に関する測定報告を受信する受信部をさらに備える。前記測定報告は、測定が行われた前記近隣セルの物理セル識別子と、前記ユーザ端末又は当該近隣セルの地理的位置に関する位置情報と、を含む。前記制御部は、前記記憶部に記憶された前記近隣拡張セル識別子を参照して、測定が行われた前記近隣セルを特定する。 In the embodiment, the base station further includes a reception unit that receives a measurement report related to measurement of the neighboring cell from a user terminal connected to the cell. The measurement report includes a physical cell identifier of the neighboring cell where the measurement is performed, and location information regarding a geographical location of the user terminal or the neighboring cell. The controller refers to the neighbor extended cell identifier stored in the storage unit and identifies the neighbor cell in which the measurement has been performed.
 実施形態では、前記基地局は、前記セルと接続するユーザ端末から、前記近隣セルに対する測定に関する測定報告を受信する受信部をさらに備える。前記測定報告は、測定が行われた前記近隣セルの前記近隣拡張セル識別子を含む。前記制御部は、前記測定報告に基づいて、前記記憶部に記憶された前記近隣拡張セル識別子を参照することにより、測定が行われた前記近隣セルを特定する。 In the embodiment, the base station further includes a reception unit that receives a measurement report related to measurement of the neighboring cell from a user terminal connected to the cell. The measurement report includes the neighboring extended cell identifier of the neighboring cell where the measurement has been performed. The control unit identifies the neighboring cell where the measurement is performed by referring to the neighboring extended cell identifier stored in the storage unit based on the measurement report.
 実施形態では、前記基地局は、前記セルと接続するユーザ端末から、前記近隣セルに対する測定に関する測定報告を受信する受信部をさらに備える。前記測定報告は、測定が行われた前記近隣セルの物理セル識別子を含む。前記制御部は、前記ユーザ端末の地理的位置に関する位置情報を管理するサーバ装置から、当該地理的位置を取得する。前記制御部は、前記物理セル識別子及び前記位置情報に基づいて、前記記憶部に記憶された前記近隣拡張セル識別子を参照することにより、測定が行われた前記近隣セルを特定する。 In the embodiment, the base station further includes a reception unit that receives a measurement report related to measurement of the neighboring cell from a user terminal connected to the cell. The measurement report includes a physical cell identifier of the neighboring cell where the measurement is performed. The said control part acquires the said geographical position from the server apparatus which manages the positional information regarding the geographical position of the said user terminal. The control unit identifies the neighboring cell where the measurement is performed by referring to the neighboring extended cell identifier stored in the storage unit based on the physical cell identifier and the location information.
 実施形態に係るユーザ端末は、移動通信システムにおいて、物理セル識別子を有するセルと接続する。前記ユーザ端末は、前記物理セル識別子を特定可能な無線信号を前記セルから受信する受信部を備える。前記セルには、前記物理セル識別子と関連付けられた拡張セル識別子が割り当てられている。前記拡張セル識別子は、前記セルの地理的位置と関連付けられた拡張部分を含む。 The user terminal according to the embodiment is connected to a cell having a physical cell identifier in a mobile communication system. The user terminal includes a receiving unit that receives a radio signal capable of specifying the physical cell identifier from the cell. An extended cell identifier associated with the physical cell identifier is assigned to the cell. The extended cell identifier includes an extended portion associated with the geographical location of the cell.
 実施形態では、前記拡張部分は、前記セルの地理的位置が属するエリア単位を示すインデックス値である。 In the embodiment, the extension part is an index value indicating an area unit to which the geographical position of the cell belongs.
 実施形態では、前記拡張セル識別子は、前記物理セル識別子と前記拡張部分とを含む。 In the embodiment, the extended cell identifier includes the physical cell identifier and the extended portion.
 実施形態では、前記拡張セル識別子は、ハンドオーバのための測定報告手順において利用される。 In the embodiment, the extended cell identifier is used in a measurement report procedure for handover.
 実施形態では、前記ユーザ端末は、前記セルの近隣セルに対する測定を制御するための測定構成を、前記セルから受信する受信部をさらに備える。前記測定構成は、測定の対象とする前記近隣セルに割り当てられた拡張セル識別子である近隣拡張セル識別子を含む。前記近隣拡張セル識別子は、前記近隣セルの物理セル識別子と、前記近隣セルの地理的位置と関連付けられた拡張部分と、を含む。 In the embodiment, the user terminal further includes a reception unit that receives from the cell a measurement configuration for controlling measurement of neighboring cells of the cell. The measurement configuration includes a neighbor extended cell identifier that is an extended cell identifier assigned to the neighbor cell to be measured. The neighbor extended cell identifier includes a physical cell identifier of the neighbor cell and an extended portion associated with the geographical location of the neighbor cell.
 実施形態では、前記ユーザ端末は、前記測定構成に含まれる前記近隣拡張セル識別子に基づいて前記近隣セルに対する測定を行う制御部をさらに備える。前記制御部は、前記近隣拡張セル識別子に含まれる前記物理セル識別子を有する近隣セルであって、かつ、前記近隣拡張セル識別子に含まれる前記拡張部分に対応する位置が前記ユーザ端末の地理的位置と最も近い近隣セルに対して測定を行う。 In the embodiment, the user terminal further includes a control unit that performs measurement on the neighboring cell based on the neighboring extended cell identifier included in the measurement configuration. The control unit is a neighbor cell having the physical cell identifier included in the neighbor extended cell identifier, and a position corresponding to the extended portion included in the neighbor extended cell identifier is a geographical position of the user terminal To the nearest neighbor cell.
 実施形態では、前記ユーザ端末は、前記近隣セルに対する測定に関する測定報告を前記セルに送信する送信部をさらに備える。前記測定報告は、測定が行われた前記近隣セルに割り当てられた拡張セル識別子である近隣拡張セル識別子を含む。前記近隣拡張セル識別子は、前記近隣セルの物理セル識別子と、前記近隣セルの地理的位置と関連付けられた拡張部分と、を含む。 In the embodiment, the user terminal further includes a transmission unit that transmits a measurement report related to the measurement to the neighboring cell to the cell. The measurement report includes a neighbor extended cell identifier that is an extended cell identifier assigned to the neighbor cell in which the measurement is performed. The neighbor extended cell identifier includes a physical cell identifier of the neighbor cell and an extended portion associated with the geographical location of the neighbor cell.
 [実施形態]
 以下において、本発明をLTEシステムに適用する場合の実施形態を説明する。
[Embodiment]
In the following, an embodiment when the present invention is applied to an LTE system will be described.
 (システム構成)
 図1は、実施形態に係るLTEシステムの構成図である。図1に示すように、実施形態に係るLTEシステムは、UE(User Equipment)100、E-UTRAN(Evolved-UMTS Terrestrial Radio Access Network)10、及びEPC(Evolved Packet Core)20を備える。
(System configuration)
FIG. 1 is a configuration diagram of an LTE system according to the embodiment. As shown in FIG. 1, the LTE system according to the embodiment includes a UE (User Equipment) 100, an E-UTRAN (Evolved-UMTS Terrestrial Radio Access Network) 10, and an EPC (Evolved Packet Core) 20.
 UE100は、ユーザ端末に相当する。UE100は、移動型の通信装置であり、接続先のセル(サービングセル)との無線通信を行う。UE100の構成については後述する。 UE 100 corresponds to a user terminal. The UE 100 is a mobile communication device, and performs wireless communication with a connection destination cell (serving cell). The configuration of the UE 100 will be described later.
 E-UTRAN10は、無線アクセスネットワークに相当する。E-UTRAN10は、eNB200(evolved Node-B)を含む。eNB200は、基地局に相当する。eNB200は、X2インターフェイスを介して相互に接続される。eNB200の構成については後述する。 E-UTRAN 10 corresponds to a radio access network. The E-UTRAN 10 includes an eNB 200 (evolved Node-B). The eNB 200 corresponds to a base station. The eNB 200 is connected to each other via the X2 interface. The configuration of the eNB 200 will be described later.
 eNB200は、1又は複数のセルを管理しており、自セルとの接続を確立したUE100との無線通信を行う。eNB200は、無線リソース管理(RRM)機能、ユーザデータのルーティング機能、モビリティ制御・スケジューリングのための測定制御機能などを有する。「セル」は、無線通信エリアの最小単位を示す用語として使用される他に、UE100との無線通信を行う機能を示す用語としても使用される。 The eNB 200 manages one or a plurality of cells and performs radio communication with the UE 100 that has established a connection with the own cell. The eNB 200 has a radio resource management (RRM) function, a user data routing function, a measurement control function for mobility control / scheduling, and the like. “Cell” is used as a term indicating a minimum unit of a radio communication area, and is also used as a term indicating a function of performing radio communication with the UE 100.
 EPC20は、コアネットワークに相当する。E-UTRAN10及びEPC20によりLTEシステムのネットワークが構成される。EPC20は、MME(Mobility Management Entity)/S-GW(Serving-Gateway)300を含む。MMEは、UE100に対する各種モビリティ制御などを行う。SGWは、ユーザデータの転送制御を行う。MME/S-GW300は、S1インターフェイスを介してeNB200と接続される。また、EPC20は、UE100の地理的位置を示す位置情報を管理するサーバ装置400を含んでもよい。サーバ装置400は、例えば3GPP技術仕様書TS36.305で規定されるE-SMLC(e-Serving Mobile Location Center)である。 The EPC 20 corresponds to a core network. The LTE system network is configured by the E-UTRAN 10 and the EPC 20. The EPC 20 includes an MME (Mobility Management Entity) / S-GW (Serving-Gateway) 300. The MME performs various mobility controls for the UE 100. The SGW performs user data transfer control. The MME / S-GW 300 is connected to the eNB 200 via the S1 interface. Further, the EPC 20 may include a server device 400 that manages position information indicating the geographical position of the UE 100. The server device 400 is, for example, an E-SMLC (e-Serving Mobile Location Center) defined by 3GPP technical specification TS36.305.
 図2は、UE100のブロック図である。図2に示すように、UE100は、複数のアンテナ101、無線送受信機110、ユーザインターフェイス120、GNSS(Global Navigation Satellite System)受信機130、バッテリ140、メモリ150、及びプロセッサ160を備える。メモリ150は記憶部に相当する。プロセッサ160(及びメモリ150)は、制御部を構成する。UE100は、GNSS受信機130を有していなくてもよい。また、メモリ150をプロセッサ160と一体化し、このセット(すなわち、チップセット)をプロセッサ160’としてもよい。 FIG. 2 is a block diagram of the UE 100. As shown in FIG. 2, the UE 100 includes a plurality of antennas 101, a radio transceiver 110, a user interface 120, a GNSS (Global Navigation Satellite System) receiver 130, a battery 140, a memory 150, and a processor 160. The memory 150 corresponds to a storage unit. The processor 160 (and the memory 150) constitutes a control unit. The UE 100 may not have the GNSS receiver 130. Further, the memory 150 may be integrated with the processor 160, and this set (that is, a chip set) may be used as the processor 160 '.
 複数のアンテナ101及び無線送受信機110は、無線信号の送受信に用いられる。無線送受信機110は、プロセッサ160が出力するベースバンド信号(送信信号)を無線信号に変換して複数のアンテナ101から送信する。また、無線送受信機110は、複数のアンテナ101が受信する無線信号をベースバンド信号(受信信号)に変換してプロセッサ160に出力する。 The plurality of antennas 101 and the wireless transceiver 110 are used for transmitting and receiving wireless signals. The radio transceiver 110 converts the baseband signal (transmission signal) output from the processor 160 into a radio signal and transmits it from the plurality of antennas 101. Further, the radio transceiver 110 converts radio signals received by the plurality of antennas 101 into baseband signals (received signals) and outputs the baseband signals to the processor 160.
 ユーザインターフェイス120は、UE100を所持するユーザとのインターフェイスであり、例えば、ディスプレイ、マイク、スピーカ、及び各種ボタンなどを含む。ユーザインターフェイス120は、ユーザからの操作を受け付けて、該操作の内容を示す信号をプロセッサ160に出力する。GNSS受信機130は、UE100の地理的な位置を示す位置情報(経度・緯度など)を得るために、GNSS信号を受信して、受信した信号をプロセッサ160に出力する。バッテリ140は、UE100の各ブロックに供給すべき電力を蓄える。 The user interface 120 is an interface with a user who owns the UE 100, and includes, for example, a display, a microphone, a speaker, and various buttons. The user interface 120 receives an operation from the user and outputs a signal indicating the content of the operation to the processor 160. The GNSS receiver 130 receives a GNSS signal and outputs the received signal to the processor 160 in order to obtain position information (longitude, latitude, etc.) indicating the geographical position of the UE 100. The battery 140 stores power to be supplied to each block of the UE 100.
 メモリ150は、プロセッサ160により実行されるプログラム、及びプロセッサ160による処理に使用される情報を記憶する。プロセッサ160は、ベースバンド信号の変調・復調及び符号化・復号などを行うベースバンドプロセッサと、メモリ150に記憶されるプログラムを実行して各種の処理を行うCPU(Central Processing Unit)と、を含む。プロセッサ160は、さらに、音声・映像信号の符号化・復号を行うコーデックを含んでもよい。プロセッサ160は、後述する各種の処理及び各種の通信プロトコルを実行する。 The memory 150 stores a program executed by the processor 160 and information used for processing by the processor 160. The processor 160 includes a baseband processor that modulates / demodulates and encodes / decodes a baseband signal, and a CPU (Central Processing Unit) that executes programs stored in the memory 150 and performs various processes. . The processor 160 may further include a codec that performs encoding / decoding of an audio / video signal. The processor 160 executes various processes and various communication protocols described later.
 図3は、eNB200のブロック図である。図3に示すように、eNB200は、複数のアンテナ201、無線送受信機210、ネットワークインターフェイス220、メモリ230、及びプロセッサ240を備える。メモリ230は記憶部に相当する。プロセッサ240(及びメモリ230)は、制御部を構成する。 FIG. 3 is a block diagram of the eNB 200. As illustrated in FIG. 3, the eNB 200 includes a plurality of antennas 201, a radio transceiver 210, a network interface 220, a memory 230, and a processor 240. The memory 230 corresponds to a storage unit. The processor 240 (and the memory 230) constitutes a control unit.
 複数のアンテナ201及び無線送受信機210は、無線信号の送受信に用いられる。無線送受信機210は、プロセッサ240が出力するベースバンド信号(送信信号)を無線信号に変換して複数のアンテナ201から送信する。また、無線送受信機210は、複数のアンテナ201が受信する無線信号をベースバンド信号(受信信号)に変換してプロセッサ240に出力する。 The plurality of antennas 201 and the wireless transceiver 210 are used for transmitting and receiving wireless signals. The radio transceiver 210 converts a baseband signal (transmission signal) output from the processor 240 into a radio signal and transmits the radio signal from the plurality of antennas 201. In addition, the radio transceiver 210 converts radio signals received by the plurality of antennas 201 into baseband signals (reception signals) and outputs the baseband signals to the processor 240.
 ネットワークインターフェイス220は、X2インターフェイスを介して近隣eNB200と接続され、S1インターフェイスを介してMME/S-GW300と接続される。ネットワークインターフェイス220は、X2インターフェイス上で行う通信及びS1インターフェイス上で行う通信に用いられる。 The network interface 220 is connected to the neighboring eNB 200 via the X2 interface and is connected to the MME / S-GW 300 via the S1 interface. The network interface 220 is used for communication performed on the X2 interface and communication performed on the S1 interface.
 メモリ230は、プロセッサ240により実行されるプログラム、及びプロセッサ240による処理に使用される情報を記憶する。プロセッサ240は、ベースバンド信号の変調・復調及び符号化・復号などを行うベースバンドプロセッサと、メモリ230に記憶されるプログラムを実行して各種の処理を行うCPUと、を含む。プロセッサ240は、後述する各種の処理及び各種の通信プロトコルを実行する。 The memory 230 stores a program executed by the processor 240 and information used for processing by the processor 240. The processor 240 includes a baseband processor that performs modulation / demodulation and encoding / decoding of a baseband signal, and a CPU that executes a program stored in the memory 230 and performs various processes. The processor 240 executes various processes and various communication protocols described later.
 図4は、LTEシステムにおける無線インターフェイスのプロトコルスタック図である。図4に示すように、無線インターフェイスプロトコルは、OSI参照モデルの第1層乃至第3層に区分されており、第1層は物理(PHY)層である。第2層は、MAC(Medium Access Control)層、RLC(Radio Link Control)層、及びPDCP(Packet Data Convergence Protocol)層を含む。第3層は、RRC(Radio Resource Control)層を含む。 FIG. 4 is a protocol stack diagram of a radio interface in the LTE system. As shown in FIG. 4, the radio interface protocol is divided into the first to third layers of the OSI reference model, and the first layer is a physical (PHY) layer. The second layer includes a MAC (Medium Access Control) layer, an RLC (Radio Link Control) layer, and a PDCP (Packet Data Convergence Protocol) layer. The third layer includes an RRC (Radio Resource Control) layer.
 物理層は、符号化・復号、変調・復調、アンテナマッピング・デマッピング、及びリソースマッピング・デマッピングを行う。UE100の物理層とeNB200の物理層との間では、物理チャネルを介してユーザデータ及び制御信号が伝送される。 The physical layer performs encoding / decoding, modulation / demodulation, antenna mapping / demapping, and resource mapping / demapping. Between the physical layer of UE100 and the physical layer of eNB200, user data and a control signal are transmitted via a physical channel.
 MAC層は、データの優先制御、及びハイブリッドARQ(HARQ)による再送処理などを行う。UE100のMAC層とeNB200のMAC層との間では、トランスポートチャネルを介してユーザデータ及び制御信号が伝送される。eNB200のMAC層は、上下リンクのトランスポートフォーマット(トランスポートブロックサイズ、変調・符号化方式)及びUE100への割当リソースブロックを決定するスケジューラを含む。 The MAC layer performs data priority control, retransmission processing by hybrid ARQ (HARQ), and the like. Between the MAC layer of the UE 100 and the MAC layer of the eNB 200, user data and control signals are transmitted via a transport channel. The MAC layer of the eNB 200 includes a scheduler that determines an uplink / downlink transport format (transport block size, modulation / coding scheme) and an allocation resource block to the UE 100.
 RLC層は、MAC層及び物理層の機能を利用してデータを受信側のRLC層に伝送する。UE100のRLC層とeNB200のRLC層との間では、論理チャネルを介してユーザデータ及び制御信号が伝送される。 The RLC layer transmits data to the RLC layer on the receiving side using the functions of the MAC layer and the physical layer. Between the RLC layer of the UE 100 and the RLC layer of the eNB 200, user data and control signals are transmitted via a logical channel.
 PDCP層は、ヘッダ圧縮・伸張、及び暗号化・復号化を行う。 The PDCP layer performs header compression / decompression and encryption / decryption.
 RRC層は、制御信号を取り扱う制御プレーンでのみ定義される。UE100のRRC層とeNB200のRRC層との間では、各種設定のための制御信号(RRCメッセージ)が伝送される。RRC層は、無線ベアラの確立、再確立及び解放に応じて、論理チャネル、トランスポートチャネル、及び物理チャネルを制御する。UE100のRRCとeNB200のRRCとの間に接続(RRC接続)がある場合、UE100は接続状態(RRC接続状態)であり、そうでない場合、UE100はアイドル状態(RRCアイドル状態)である。 The RRC layer is defined only in the control plane that handles control signals. Control signals (RRC messages) for various settings are transmitted between the RRC layer of the UE 100 and the RRC layer of the eNB 200. The RRC layer controls the logical channel, the transport channel, and the physical channel according to establishment, re-establishment, and release of the radio bearer. When there is a connection (RRC connection) between the RRC of the UE 100 and the RRC of the eNB 200, the UE 100 is in a connection state (RRC connection state). Otherwise, the UE 100 is in an idle state (RRC idle state).
 RRC層の上位に位置するNAS(Non-Access Stratum)層は、セッション管理及びモビリティ管理などを行う。 The NAS (Non-Access Stratum) layer located above the RRC layer performs session management and mobility management.
 図5は、LTEシステムで使用される無線フレームの構成図である。LTEシステムは、下りリンクにはOFDMA(Orthogonal Frequency Division Multiple Access)、上りリンクにはSC-FDMA(Single Carrier Frequency Division Multiple Access)がそれぞれ適用される。 FIG. 5 is a configuration diagram of a radio frame used in the LTE system. In the LTE system, OFDMA (Orthogonal Frequency Division Multiple Access) is applied to the downlink, and SC-FDMA (Single Carrier Division Multiple Access) is applied to the uplink.
 図5に示すように、無線フレームは、時間方向に並ぶ10個のサブフレームで構成される。各サブフレームは、時間方向に並ぶ2個のスロットで構成される。各サブフレームの長さは1msであり、各スロットの長さは0.5msである。各サブフレームは、周波数方向に複数個のリソースブロック(RB)を含み、時間方向に複数個のシンボルを含む。各リソースブロックは、周波数方向に複数個のサブキャリアを含む。1つのサブキャリア及び1つのシンボルによりリソースエレメントが構成される。 As shown in FIG. 5, the radio frame is composed of 10 subframes arranged in the time direction. Each subframe is composed of two slots arranged in the time direction. The length of each subframe is 1 ms, and the length of each slot is 0.5 ms. Each subframe includes a plurality of resource blocks (RB) in the frequency direction and includes a plurality of symbols in the time direction. Each resource block includes a plurality of subcarriers in the frequency direction. A resource element is composed of one subcarrier and one symbol.
 UE100に割り当てられる無線リソースのうち、周波数リソースはリソースブロックにより構成され、時間リソースはサブフレーム(又はスロット)により構成される。 Among radio resources allocated to the UE 100, frequency resources are configured by resource blocks, and time resources are configured by subframes (or slots).
 下りリンクにおいて、各サブフレームの先頭数シンボルの区間は、主に制御信号を伝送するための物理下りリンク制御チャネル(PDCCH)として使用される領域である。また、各サブフレームの残りの部分は、主にユーザデータを伝送するための物理下りリンク共有チャネル(PDSCH)として使用できる領域である。 In the downlink, the section of the first few symbols of each subframe is an area mainly used as a physical downlink control channel (PDCCH) for transmitting a control signal. The remaining part of each subframe is an area that can be used mainly as a physical downlink shared channel (PDSCH) for transmitting user data.
 上りリンクにおいて、各サブフレームにおける周波数方向の両端部は、主に制御信号を伝送するための物理上りリンク制御チャネル(PUCCH)として使用される領域である。各サブフレームにおける残りの部分は、主にユーザデータを伝送するための物理上りリンク共有チャネル(PUSCH)として使用できる領域である。 In the uplink, both ends in the frequency direction in each subframe are regions used mainly as a physical uplink control channel (PUCCH) for transmitting a control signal. The remaining part of each subframe is an area that can be used mainly as a physical uplink shared channel (PUSCH) for transmitting user data.
 (セル識別子の概要)
 LTEシステムにおいて、各セルには、セルを識別するためのセル識別子が割り当てられている。セル識別子は、物理セル識別子(PCI)及びセルグローバル識別子(ECGI)などである。ECGIは、MCC、MNC、ECIで構成されており、ECIは、PCIとeNB識別子との組み合わせにより構成される。
(Overview of cell identifier)
In the LTE system, a cell identifier for identifying a cell is assigned to each cell. The cell identifier is a physical cell identifier (PCI), a cell global identifier (ECGI), or the like. ECGI is composed of MCC, MNC, and ECI, and ECI is composed of a combination of PCI and eNB identifiers.
 PCIは8ビットで構成され、主に物理層において利用される。仕様上定義されているPCIは504個である。また、セル固有参照信号(CRS)の信号系列は504個用意され、当該信号系列はPCIと対応付けられている。PCIは、168個のセルIDグループに分けられており、各セルIDグループには3つのセルIDが含まれる(168×3=504)。 PCI is composed of 8 bits and is mainly used in the physical layer. There are 504 PCIs defined in the specification. Further, 504 signal sequences of cell-specific reference signals (CRS) are prepared, and the signal sequences are associated with PCI. The PCI is divided into 168 cell ID groups, and each cell ID group includes three cell IDs (168 × 3 = 504).
 UE100は、セルサーチの際に、セルから受信するプライマリ同期信号(PSS)及びセカンダリ同期信号(SSS)により、当該セルのPCIを特定する。具体的には、PSSの値はセルIDグループ中のセルID(3個)と対応付けられており、SSSの値はセルIDグループ(168個)と対応付けられており、PSS及びSSSの組み合わせによりPCIが特定される。また、PSS及びSSSにより下りリンクのフレームレベルの同期がとられる。 The UE 100 specifies the PCI of the cell by the primary synchronization signal (PSS) and the secondary synchronization signal (SSS) received from the cell during the cell search. Specifically, the PSS value is associated with the cell ID (3) in the cell ID group, the SSS value is associated with the cell ID group (168), and the combination of PSS and SSS. Identifies the PCI. Also, downlink frame level synchronization is achieved by PSS and SSS.
 UE100は、PSS及びSSSの組み合わせによりセルのPCIを特定した後、PCIに基づいてCRSを受信する。CRSは、6サブキャリア間隔で、スロット中の最初のOFDMシンボルと最後から3番目のOFDMシンボルとに設けられる。また、CRSは、PCIに応じて6つの周波数シフトのグループに分けられており、例えば近隣のセル間で異なる周波数シフトになるようPCIが設定される。 UE100 specifies the PCI of a cell by the combination of PSS and SSS, and receives CRS based on PCI. The CRS is provided in the first OFDM symbol and the third OFDM symbol from the end in the slot at intervals of 6 subcarriers. The CRS is divided into six frequency shift groups according to the PCI. For example, the PCI is set so that the frequency shift is different between neighboring cells.
 なお、ECGIは、RRC層で送受信されるシステム情報ブロック(SIB)によりセルから報知される。 ECGI is reported from the cell by a system information block (SIB) transmitted and received in the RRC layer.
 (実施形態に係る動作)
 (1)動作概要
 図6は、実施形態に係る動作環境を説明するための図である。
(Operation according to the embodiment)
(1) Outline of Operation FIG. 6 is a diagram for explaining an operating environment according to the embodiment.
 図6に示すように、実施形態では、マクロセルMC内に多数の小セルSCが設けられる環境(いわゆる、HetNet環境)を想定する。小セルSCは、例えばピコセル又はフェムトセルである。 As shown in FIG. 6, the embodiment assumes an environment (so-called HetNet environment) in which a large number of small cells SC are provided in the macro cell MC. The small cell SC is, for example, a pico cell or a femto cell.
 図6の例では、eNB200-1は、3つのマクロセルMC#1乃至MC#3を管理しており、各マクロセルMC内に多数の小セルSCが設けられる。小セルSCのそれぞれは、1つのeNB200により管理されている。或いは、複数の小セルSCが1つのeNB200により管理されてもよい。各セルには、PCIなどのセル識別子が割り当てられている。セルを管理するeNB200は、当該セルにおいて、当該セルのPCIを特定可能な無線信号(PSS、SSS、及びCRS)を送信する。 In the example of FIG. 6, the eNB 200-1 manages three macro cells MC # 1 to MC # 3, and a large number of small cells SC are provided in each macro cell MC. Each small cell SC is managed by one eNB 200. Alternatively, a plurality of small cells SC may be managed by one eNB 200. Each cell is assigned a cell identifier such as PCI. The eNB 200 that manages the cell transmits radio signals (PSS, SSS, and CRS) that can identify the PCI of the cell in the cell.
 なお、図6の例では、マクロセルMCが属する周波数F1と小セルSCが属する周波数F2とが異なっているが、マクロセルMCが属する周波数と小セルSCが属する周波数とは同じであってもよい。 In the example of FIG. 6, the frequency F1 to which the macro cell MC belongs and the frequency F2 to which the small cell SC belongs are different, but the frequency to which the macro cell MC belongs and the frequency to which the small cell SC belongs may be the same.
 このように、マクロセルMC内に多数の小セルSCが設けられるような環境においては、セル識別子が枯渇し、重複なくセル識別子を割り当てることが困難になるため、セルを一意に識別することができない。特に、UE100が小セルSCへのハンドオーバを行う際に、対象の小セルSCが不定であると、正常なハンドオーバを行うことができない。一方で、特にPCIは物理層の動作と密接に関連しているため、PCIのビット長を延長することは難しい。 In this way, in an environment where a large number of small cells SC are provided in the macro cell MC, the cell identifiers are exhausted and it becomes difficult to assign cell identifiers without duplication, and thus the cells cannot be uniquely identified. . In particular, when the UE 100 performs handover to the small cell SC, if the target small cell SC is indefinite, normal handover cannot be performed. On the other hand, since PCI is closely related to the operation of the physical layer, it is difficult to extend the bit length of PCI.
 そこで、実施形態では、既存のセル識別子との互換性を保ちつつ、セルを一意に識別可能な拡張セル識別子を導入する。拡張セル識別子は、PCIと関連付けられている。拡張セル識別子は、セルの地理的位置と関連付けられた拡張部分を含む。セルの地理的位置とは、マクロセルも考慮すると、例えばセルのカバレッジエリアの中心位置であることが好ましい。 Therefore, in the embodiment, an extended cell identifier capable of uniquely identifying a cell is introduced while maintaining compatibility with an existing cell identifier. The extended cell identifier is associated with the PCI. The extended cell identifier includes an extended portion associated with the geographical location of the cell. Taking the macro cell into consideration, the geographical position of the cell is preferably the center position of the coverage area of the cell, for example.
 実施形態では、拡張セル識別子は、PCIと拡張部分との組み合わせにより構成される。或いは、拡張セル識別子は、PCIとeNB識別子と拡張部分との組み合わせ(すなわち、ECIと拡張部分との組み合わせ)により構成されてもよい。以下において、PCIと拡張部分との組み合わせにより構成される拡張セル識別子を「E-PCI」と称する。 In the embodiment, the extended cell identifier is configured by a combination of PCI and an extended part. Alternatively, the extended cell identifier may be configured by a combination of a PCI, eNB identifier, and an extended portion (that is, a combination of ECI and an extended portion). Hereinafter, an extended cell identifier configured by a combination of PCI and an extended portion is referred to as “E-PCI”.
 拡張部分は、セルの地理的位置を直接的に示す値、例えば経度・緯度(及び高度)である。或いは、拡張部分は、セルの地理的位置を間接的に示す値、例えばセルの地理的位置が属するエリア単位を示すインデックス値である。エリア単位とは、サービスエリアをマトリクス状に区分したエリア単位であってもよく、既存のエリア単位(地方、都道府県、市町村など)を流用したものであってもよい。 The extended part is a value that directly indicates the geographical position of the cell, for example, longitude / latitude (and altitude). Alternatively, the extended part is a value indirectly indicating the geographical position of the cell, for example, an index value indicating the area unit to which the geographical position of the cell belongs. The area unit may be an area unit obtained by dividing a service area in a matrix, or may be an existing area unit (region, prefecture, municipality, etc.).
 このようなE-PCIを導入することにより、セル識別子(PCI)が重複する複数のセルが存在する場合であっても、各セルの地理的位置と関連付けられた拡張部分により各セルを一意に識別できる。また、セル識別子(PCI)自体の構成は維持されており、既存の物理層の動作を変更する必要がない。 By introducing such E-PCI, even if there are multiple cells with overlapping cell identifiers (PCI), each cell is uniquely identified by the extended portion associated with the geographical location of each cell. Can be identified. Further, the configuration of the cell identifier (PCI) itself is maintained, and there is no need to change the operation of the existing physical layer.
 実施形態では、E-PCIは、ハンドオーバのための測定報告手順において利用される。測定報告手順に係る動作具体例については後述する。 In the embodiment, E-PCI is used in a measurement report procedure for handover. A specific operation example related to the measurement report procedure will be described later.
 eNB200は、自セルの近隣セルに割り当てられたE-PCIである近隣E-PCI(のテーブル)を記憶する。このようなテーブルは、近隣関係テーブル(NRT)と称される。図7は、実施形態に係るNRTを説明するための図である。図7に示すように、NRTは、複数の近隣セルのそれぞれのE-PCI(近隣E-PCI)を含む。近隣E-PCIは、近隣セルのPCIと、当該近隣セルの地理的位置(Location)と関連付けられた拡張部分と、を含む。図7に示すNRTは、後述する動作具体例において利用される。 ENB 200 stores a neighboring E-PCI (table) which is an E-PCI assigned to a neighboring cell of the own cell. Such a table is called a neighbor relation table (NRT). FIG. 7 is a diagram for explaining the NRT according to the embodiment. As shown in FIG. 7, the NRT includes the E-PCI (neighboring E-PCI) of each of a plurality of neighboring cells. The neighboring E-PCI includes a neighboring cell's PCI and an extended portion associated with the neighboring cell's geographical location. The NRT shown in FIG. 7 is used in a specific operation example to be described later.
 (2)動作具体例
 次に、実施形態に係る動作具体例について説明する。
(2) Specific Operation Example Next, a specific operation example according to the embodiment will be described.
 (2.1)動作パターン1
 実施形態に係る動作パターン1では、eNB200は、自セルと接続するUE100から、近隣セルに対する測定に関する測定報告を受信する。測定報告は、測定が行われた近隣セルのPCIと、UE100の地理的位置に関する位置情報と、を含む。或いは、UE100の地理的位置に関する位置情報に代えて、近隣セルの地理的位置に関する位置情報を使用してもよい。この場合、例えばUE100は近隣セルからブロードキャストされている位置情報を取得する、又は近隣セルの識別子に基づき当該近隣セルの位置情報をネットワークに問い合わせる。
(2.1) Operation pattern 1
In the operation pattern 1 which concerns on embodiment, eNB200 receives the measurement report regarding the measurement with respect to a neighboring cell from UE100 connected with an own cell. The measurement report includes the PCI of the neighboring cell where the measurement is performed and the location information regarding the geographical location of the UE 100. Alternatively, instead of the position information related to the geographical position of the UE 100, the position information related to the geographical position of the neighboring cell may be used. In this case, for example, the UE 100 acquires the position information broadcast from the neighboring cell, or inquires the network about the position information of the neighboring cell based on the identifier of the neighboring cell.
 そして、eNB200は、記憶している近隣E-PCI(すなわち、NRT)を参照して、測定が行われた近隣セルを特定する。これにより、PCIが重複する複数の近隣セルが存在する場合であっても、測定が行われた近隣セルをより確実に特定できる。 Then, the eNB 200 refers to the stored neighboring E-PCI (that is, NRT) and identifies the neighboring cell where the measurement is performed. Thereby, even if there are a plurality of neighboring cells with overlapping PCI, the neighboring cell in which the measurement has been performed can be more reliably identified.
 図8は、実施形態に係る動作パターン1のシーケンス図である。図8においてeNB200-1はUE100のサービングセルを管理しており、eNB200-2は近隣セルを管理している。UE100は、サービングセルとの接続を確立した状態(RRC接続状態)である。 FIG. 8 is a sequence diagram of the operation pattern 1 according to the embodiment. In FIG. 8, the eNB 200-1 manages the serving cell of the UE 100, and the eNB 200-2 manages the neighboring cell. UE100 is the state (RRC connection state) which established the connection with a serving cell.
 図8に示すように、ステップS101において、eNB200-1及びeNB200-2は、例えばX2インターフェイスを介してセルの位置情報を交換する。或いは、eNB200-1及びeNB200-2のそれぞれは、当該位置情報をEPC20(MME300など)から取得してもよい。 As shown in FIG. 8, in step S101, the eNB 200-1 and the eNB 200-2 exchange cell location information via, for example, the X2 interface. Or each of eNB200-1 and eNB200-2 may acquire the said positional information from EPC20 (MME300 etc.).
 ステップS102において、eNB200-1は、ステップS101で取得した位置情報に基づいて、eNB200-1が管理しているNRTを更新する。具体的には、NRTにおいて、eNB200-2のセル(近隣セル)のPCIに位置情報を付加することにより、近隣E-PCIをNRTに登録する。 In step S102, the eNB 200-1 updates the NRT managed by the eNB 200-1 based on the position information acquired in step S101. Specifically, in the NRT, the neighboring E-PCI is registered in the NRT by adding location information to the PCI of the cell (neighboring cell) of the eNB 200-2.
 ステップS103及びS104において、eNB200-1及びeNB200-2のそれぞれは、CRSを送信する。UE100は、eNB200-1(サービングセル)及びeNB200-2(近隣セル)のそれぞれからCRSを受信する。 In steps S103 and S104, each of the eNB 200-1 and the eNB 200-2 transmits a CRS. The UE 100 receives the CRS from each of the eNB 200-1 (serving cell) and the eNB 200-2 (neighboring cell).
 ステップS105において、UE100は、受信したCRSに基づいて、サービングセル及び近隣セルのそれぞれに対する測定を行う。例えば、UE100は、参照信号受信電力(RSRP)及び/又は参照信号受信品質(RSRQ)の測定を行う。 In step S105, the UE 100 performs measurement for each of the serving cell and the neighboring cell based on the received CRS. For example, the UE 100 measures reference signal received power (RSRP) and / or reference signal received quality (RSRQ).
 ステップS106において、UE100は、GNSSを利用して自身の位置情報を取得する。なお、動作パターン1では、GNSS位置情報を測定報告に含めることを要求するための「obtainLocation」を含んだ測定構成をUE100がeNB200-1から受信済みであるケースを想定している。 In step S106, the UE 100 acquires its location information using GNSS. In the operation pattern 1, it is assumed that the UE 100 has already received the measurement configuration including “obtainLocation” for requesting that the GNSS position information is included in the measurement report from the eNB 200-1.
 ステップS107において、UE100は、サービングセル及び近隣セルのそれぞれの測定結果及びGNSS位置情報を含む測定報告をeNB200-1に送信する。測定結果は、測定が行われたセルのPCIとRSR及び/又はRSRQとを含む。 In step S107, the UE 100 transmits to the eNB 200-1 a measurement report including the measurement results and GNSS position information of the serving cell and the neighboring cell. The measurement result includes the PCI and RSR and / or RSRQ of the cell in which the measurement is performed.
 ステップS108において、測定報告を受信したeNB200-1は、測定報告に含まれるPCI及びGNSS位置情報と、記憶している近隣E-PCI(NRT)と、に基づいて、測定が行われた近隣セルを特定する。例えば、eNB200-1は、同一PCIを有する複数の近隣セルが存在する場合で、かつ測定結果に当該PCIが含まれる場合に、当該測定結果と対応するGNSS位置情報と最も近い位置の近隣セルを、測定が行われたセルとして特定する。 In step S108, the eNB 200-1 that has received the measurement report, the neighboring cell in which the measurement is performed based on the PCI and GNSS location information included in the measurement report and the stored neighboring E-PCI (NRT) Is identified. For example, when there are a plurality of neighboring cells having the same PCI and the PCI is included in the measurement result, the eNB 200-1 selects the neighboring cell closest to the GNSS location information corresponding to the measurement result. , Identify the cell where the measurement was made.
 なお、動作パターン1では、E-PCIに含まれる拡張部分として、セルの地理的位置を直接的に示す値(経度・緯度)が使用されるケースを想定している。しかしながら、E-PCIに含まれる拡張部分として、セルの地理的位置が属するエリア単位を示すインデックス値を使用するケースでは、eNB200-1は、GNSS位置情報をインデックス値に変換した上で、近隣E-PCI(NRT)との照合を行う。或いは、経度・緯度の範囲とインデックス値とを対応付けたテーブルを予めUE100に通知し、UE100側でGNSS位置情報をインデックス値に変換し、当該インデックス値を測定報告に含めてもよい。 Note that the operation pattern 1 assumes a case where a value (longitude / latitude) that directly indicates the geographical position of a cell is used as an extended portion included in the E-PCI. However, in the case of using an index value indicating the area unit to which the geographical position of the cell belongs as an extension included in the E-PCI, the eNB 200-1 converts the GNSS position information into an index value, and then uses the neighbor E -Check against PCI (NRT). Alternatively, the UE 100 may be notified in advance of a table in which longitude / latitude ranges and index values are associated with each other, the GNSS position information may be converted into index values on the UE 100 side, and the index values may be included in the measurement report.
 (2.2)動作パターン2
 eNB200-1は、自セルと接続するUE100に対して、近隣セル(及び自セル)に対する測定を制御するための測定構成を通知する。動作パターン2では、当該測定構成は、測定の対象とする近隣セルに割り当てられた近隣E-PCIを含んでもよい。この場合、UE100は、測定構成に含まれる近隣E-PCIに基づいて近隣セルに対する測定を行う。具体的には、近隣E-PCIに含まれるPCIを有する近隣セルであって、かつ、当該近隣E-PCIに含まれる拡張部分に対応する位置がUE100の地理的位置と最も近い近隣セルに対して測定を行う。これにより、PCIが重複する複数の近隣セルが存在する場合であっても、測定対象の近隣セルをより確実に指定できる。
(2.2) Operation pattern 2
The eNB 200-1 notifies the UE 100 connected to the own cell of the measurement configuration for controlling the measurement of the neighboring cell (and the own cell). In the operation pattern 2, the measurement configuration may include a neighboring E-PCI assigned to a neighboring cell to be measured. In this case, the UE 100 performs the measurement on the neighboring cell based on the neighboring E-PCI included in the measurement configuration. Specifically, for a neighboring cell having a PCI included in the neighboring E-PCI, and a location corresponding to the extended portion included in the neighboring E-PCI is closest to the geographical location of the UE 100 To measure. Thereby, even if there are a plurality of neighboring cells with overlapping PCI, the neighboring cell to be measured can be more reliably specified.
 UE100は、近隣セルに対する測定に関する測定報告をサービングセルに送信する。動作パターン2では、測定報告は、測定が行われた近隣セルに割り当てられたE-PCIである近隣E-PCIを含む。eNB200-1は、当該測定報告をUE100から受信する。eNB200-1は、当該測定報告に基づいて、記憶している近隣E-PCI(NRT)を参照することにより、測定が行われた近隣セルを特定する。これにより、PCIが重複する複数の近隣セルが存在する場合であっても、測定が行われた近隣セルをより確実に特定できる。 UE100 transmits the measurement report regarding the measurement with respect to a neighboring cell to a serving cell. In operation pattern 2, the measurement report includes a neighboring E-PCI that is an E-PCI assigned to the neighboring cell in which the measurement was made. The eNB 200-1 receives the measurement report from the UE 100. Based on the measurement report, the eNB 200-1 refers to the stored neighboring E-PCI (NRT) to identify the neighboring cell where the measurement has been performed. Thereby, even if there are a plurality of neighboring cells with overlapping PCI, the neighboring cell in which the measurement has been performed can be more reliably identified.
 図9は、実施形態に係る動作パターン2のシーケンス図である。ここでは、動作パターン1との相違点を主として説明する。 FIG. 9 is a sequence diagram of the operation pattern 2 according to the embodiment. Here, differences from the operation pattern 1 will be mainly described.
 図9に示すように、ステップS201及びS202は動作パターン1と同様である。 As shown in FIG. 9, steps S201 and S202 are the same as in operation pattern 1.
 ステップS203において、eNB200-1は、測定構成をUE100に送信する。測定構成は、測定の対象とする近隣セルに割り当てられた近隣E-PCIを含んでもよい。 In step S203, the eNB 200-1 transmits the measurement configuration to the UE 100. The measurement configuration may include a neighbor E-PCI assigned to a neighbor cell to be measured.
 ステップS204乃至S206は動作パターン1と同様である。UE100は、サービングセル(eNB200-1)及び近隣セル(eNB200-2)のそれぞれに対する測定を行う。但し、近隣E-PCIが測定構成に含まれる場合には、UE100は、近隣E-PCIに含まれるPCIを有する近隣セルであって、かつ、当該近隣E-PCIに含まれる拡張部分に対応する位置がUE100の地理的位置と最も近い近隣セルに対して測定を行う。 Steps S204 to S206 are the same as in operation pattern 1. The UE 100 performs measurement for each of the serving cell (eNB 200-1) and the neighboring cell (eNB 200-2). However, when the neighbor E-PCI is included in the measurement configuration, the UE 100 is a neighbor cell having the PCI included in the neighbor E-PCI and corresponds to the extension part included in the neighbor E-PCI. Measurement is performed on a neighboring cell whose location is closest to the geographical location of the UE 100.
 ステップS207において、eNB200-2は、自セルのE-PCIを含んだSIBを送信する。 In step S207, the eNB 200-2 transmits the SIB including the E-PCI of the own cell.
 ステップS208において、UE100は、eNB200-2(近隣セル)から受信したSIBを復号し、SIBに含まれるE-PCIを取得する。 In step S208, the UE 100 decodes the SIB received from the eNB 200-2 (neighboring cell) and acquires the E-PCI included in the SIB.
 ステップS209において、UE100は、サービングセル及び近隣セルのそれぞれの測定結果及び近隣セルのE-PCIを含む測定報告をeNB200-1に送信する。eNB200-1は、当該測定報告に基づいて、記憶している近隣E-PCI(NRT)を参照することにより、測定が行われた近隣セルを特定する。 In step S209, the UE 100 transmits a measurement report including the measurement results of the serving cell and the neighboring cell and the E-PCI of the neighboring cell to the eNB 200-1. Based on the measurement report, the eNB 200-1 refers to the stored neighboring E-PCI (NRT) to identify the neighboring cell where the measurement has been performed.
 (2.3)動作パターン3
 動作パターン3では、eNB200-1(サービングセル)は、近隣E-PCIのリスト(NRT)をブロードキャスト又はユニキャストでUE100に送信する。或いは、各セルがブロードキャスト又はユニキャストで自セルのE-PCIをUE100に送信してもよい。
(2.3) Operation pattern 3
In the operation pattern 3, the eNB 200-1 (serving cell) transmits a neighbor E-PCI list (NRT) to the UE 100 by broadcast or unicast. Alternatively, each cell may transmit E-PCI of the own cell to the UE 100 by broadcast or unicast.
 図10は、実施形態に係る動作パターン3のシーケンス図である。ここでは、動作パターン1との相違点を主として説明する。 FIG. 10 is a sequence diagram of the operation pattern 3 according to the embodiment. Here, differences from the operation pattern 1 will be mainly described.
 図10に示すように、ステップS301及びS302は動作パターン1と同様である。 As shown in FIG. 10, steps S301 and S302 are the same as in operation pattern 1.
 ステップS303において、eNB200-1は、近隣E-PCIのリストをブロードキャスト(例えばSIB)又はユニキャスト(例えばRRCメッセージ)でUE100に送信する。eNB200-1は、記憶しているNRTに変化があったことをトリガとして、当該変化に係る差分のみをUE100に送信してもよい。 In step S303, the eNB 200-1 transmits a list of neighboring E-PCIs to the UE 100 by broadcast (for example, SIB) or unicast (for example, RRC message). The eNB 200-1 may transmit only the difference related to the change to the UE 100 using a change in the stored NRT as a trigger.
 ステップS304において、近隣E-PCIのリストを受信したUE100は、近隣E-PCIのリストを記憶する。なお、UE100は、その後に差分情報を受信した場合には、記憶している近隣E-PCIのリストを更新する。 In step S304, the UE 100 that has received the neighboring E-PCI list stores the neighboring E-PCI list. Note that when the UE 100 subsequently receives the difference information, the UE 100 updates the stored list of neighboring E-PCIs.
 ステップS305乃至S308は動作パターン1と同様である。 Steps S305 to S308 are the same as the operation pattern 1.
 ステップS309において、UE100は、ステップS307で得られた測定結果(PCIを含む)と、ステップS308で得られたGNSS位置情報と、に基づいて、記憶している近隣E-PCIのリストを参照することにより、測定が行われた近隣セルのE-PCIを特定する。例えば、UE100は、同一PCIを有する複数の近隣セルが存在する場合で、かつ測定結果に当該PCIが含まれる場合に、GNSS位置情報と最も位置が近いE-PCIを、測定が行われた近隣セルのE-PCIとして特定する。 In step S309, the UE 100 refers to the stored list of neighboring E-PCIs based on the measurement result (including PCI) obtained in step S307 and the GNSS location information obtained in step S308. Thus, the E-PCI of the neighboring cell where the measurement is performed is specified. For example, when there are a plurality of neighboring cells having the same PCI and the PCI is included in the measurement result, the UE 100 uses the E-PCI whose position is closest to the GNSS position information. It is specified as the E-PCI of the cell.
 ステップS310において、UE100は、サービングセル及び近隣セルのそれぞれの測定結果及び当該近隣セルのE-PCIを含む測定報告をeNB200-1に送信する。 In step S310, the UE 100 transmits to the eNB 200-1 a measurement report including the measurement results of the serving cell and the neighboring cell and the E-PCI of the neighboring cell.
 (実施形態のまとめ)
 上述したように、E-PCIは、PCIと関連付けられている。E-PCIは、セルの地理的位置と関連付けられた拡張部分を含む。このようなE-PCIを導入することにより、PCIが重複する複数のセルが存在する場合であっても、各セルの地理的位置と関連付けられた拡張部分により各セルを一意に識別できる。また、PCI自体の構成は維持されており、既存の物理層の動作を変更する必要がない。よって、既存のセル識別子との互換性を保ちつつ、セルを一意に識別可能なセル識別子を実現できる。
(Summary of embodiment)
As described above, E-PCI is associated with PCI. The E-PCI includes an extension associated with the geographical location of the cell. By introducing such E-PCI, even if there are a plurality of cells having overlapping PCI, each cell can be uniquely identified by the extended portion associated with the geographical position of each cell. Further, the configuration of the PCI itself is maintained, and there is no need to change the operation of the existing physical layer. Therefore, a cell identifier that can uniquely identify a cell can be realized while maintaining compatibility with an existing cell identifier.
 さらに、上述した動作パターン1及び3では、ECGIによりセルを一意に識別する方法に比べ、UE100が近隣セルのSIBを取得しなくてもよいため、サービングセルとの通信に与える悪影響を小さくすることができる。また、上述した動作パターン2は、近隣セルのSIBを取得するものの、ECGIが重複なく割り当てられていない可能性を考慮した場合には、ECGIによりセルを一意に識別する方法に比べ、より正確にセルを識別できる。 Furthermore, in the operation patterns 1 and 3 described above, the UE 100 does not have to acquire the SIB of the neighboring cell as compared with the method of uniquely identifying the cell by ECGI, so that the adverse effect on the communication with the serving cell can be reduced. it can. In addition, the above-described operation pattern 2 obtains SIBs of neighboring cells, but considering the possibility that ECGI is not assigned without duplication, it is more accurate than the method of uniquely identifying a cell by ECGI. The cell can be identified.
 [変更例]
 上述した実施形態に係る動作パターン1乃至3では、測定報告に位置情報又はE-PCIを含めていた。しかしながら、eNB200-1がサーバ装置400からUE位置情報を取得できる場合には、測定報告に位置情報又はE-PCIを含めなくてもよい。
[Example of change]
In the operation patterns 1 to 3 according to the above-described embodiments, the position information or E-PCI is included in the measurement report. However, if the eNB 200-1 can acquire the UE location information from the server device 400, the location information or E-PCI may not be included in the measurement report.
 実施形態の変更例では、eNB200-1は、自セルと接続するUE100から、近隣セルに対する測定に関する測定報告を受信する。測定報告は、測定が行われた近隣セルのPCIを含む。eNB200-1は、UE100の地理的位置に関する位置情報を管理するサーバ装置400から、当該地理的位置を取得する。 In the modification example of the embodiment, the eNB 200-1 receives a measurement report related to the measurement for the neighboring cell from the UE 100 connected to the own cell. The measurement report includes the PCI of the neighboring cell where the measurement was made. The eNB 200-1 acquires the geographical position from the server apparatus 400 that manages position information regarding the geographical position of the UE 100.
 eNB200-1は、測定報告に含まれるPCI及びサーバ装置400から取得したUE位置情報に基づいて、記憶している近隣E-PCI(NRT)を参照することにより、測定が行われた近隣セルを特定する。例えば、eNB200-1は、同一PCIを有する複数の近隣セルが存在する場合で、かつ測定結果に当該PCIが含まれる場合に、サーバ装置400から取得したUE位置情報と最も近い位置の近隣セルを、測定が行われたセルとして特定する。 The eNB 200-1 refers to the stored neighboring E-PCI (NRT) based on the PCI included in the measurement report and the UE location information acquired from the server apparatus 400, thereby determining the neighboring cell in which the measurement has been performed. Identify. For example, when there are a plurality of neighboring cells having the same PCI and the PCI is included in the measurement result, the eNB 200-1 selects the neighboring cell having the closest position to the UE location information acquired from the server device 400. , Identify the cell where the measurement was made.
 [その他の実施形態]
 上述した実施形態では、E-PCIを測定報告手順に利用する一例について説明したが、E-PCIを他の用途に利用してもよい。他の用途としては、例えば、PUCCHサイクリックシフトシーケンス生成用のパラメータ、PUSCHホッピングパターン生成用のパラメータなどが考えられる。
[Other Embodiments]
In the above-described embodiment, an example in which E-PCI is used for the measurement report procedure has been described. However, E-PCI may be used for other purposes. Other applications include, for example, parameters for generating PUCCH cyclic shift sequences, parameters for generating PUSCH hopping patterns, and the like.
 上述した実施形態では、拡張セル識別子として、PCIと拡張部分との組み合わせにより構成されるE-PCIについて主として説明した。しかしながら、拡張セル識別子は、PCIとeNB識別子と拡張部分との組み合わせ(すなわち、ECIと拡張部分との組み合わせ)により構成されるE-ECIであってもよい。 In the above-described embodiment, E-PCI composed mainly of a combination of PCI and an extended part has been mainly described as an extended cell identifier. However, the extended cell identifier may be E-ECI configured by a combination of a PCI, eNB identifier, and an extended portion (that is, a combination of ECI and an extended portion).
 上述した各実施形態では、移動通信システムの一例としてLTEシステムを説明したが、LTEシステムに限定されるものではなく、LTEシステム以外のシステムに本発明を適用してもよい。 In each of the above-described embodiments, the LTE system has been described as an example of a mobile communication system. However, the present invention is not limited to the LTE system, and the present invention may be applied to a system other than the LTE system.
 日本国特許出願第2013-198075号(2013年9月25日出願)の全内容が、参照により、本願明細書に組み込まれている。 The entire contents of Japanese Patent Application No. 2013-198075 (filed on September 25, 2013) are incorporated herein by reference.
 本発明は、移動通信分野において有用である。 The present invention is useful in the mobile communication field.

Claims (16)

  1.  移動通信システムにおいて用いられる基地局であって、
     物理セル識別子を有するセルを管理する制御部と、
     前記物理セル識別子を特定可能な無線信号を送信する送信部と、を備え、
     前記セルには、前記物理セル識別子と関連付けられた拡張セル識別子が割り当てられており、
     前記拡張セル識別子は、前記セルの地理的位置と関連付けられた拡張部分を含むことを特徴とする基地局。
    A base station used in a mobile communication system,
    A control unit for managing a cell having a physical cell identifier;
    A transmitter that transmits a radio signal capable of specifying the physical cell identifier,
    The cell is assigned an extended cell identifier associated with the physical cell identifier;
    The base station of claim 1, wherein the extended cell identifier includes an extended portion associated with a geographical location of the cell.
  2.  前記拡張部分は、前記セルの地理的位置が属するエリア単位を示すインデックス値であることを特徴とする請求項1に記載の基地局。 The base station according to claim 1, wherein the extension part is an index value indicating an area unit to which a geographical position of the cell belongs.
  3.  前記拡張セル識別子は、前記物理セル識別子と前記拡張部分とを含むことを特徴とする請求項1に記載の基地局。 The base station according to claim 1, wherein the extended cell identifier includes the physical cell identifier and the extended portion.
  4.  前記拡張セル識別子は、ハンドオーバのための測定報告手順において利用されることを特徴とする請求項3に記載の基地局。 The base station according to claim 3, wherein the extended cell identifier is used in a measurement report procedure for handover.
  5.  前記セルの近隣セルに割り当てられた拡張セル識別子である近隣拡張セル識別子を記憶する記憶部をさらに備え、
     前記近隣拡張セル識別子は、前記近隣セルの物理セル識別子と、前記近隣セルの地理的位置と関連付けられた拡張部分と、を含むことを特徴とする請求項4に記載の基地局。
    A storage unit for storing a neighbor extended cell identifier that is an extended cell identifier assigned to a neighbor cell of the cell;
    The base station according to claim 4, wherein the neighboring extended cell identifier includes a physical cell identifier of the neighboring cell and an extended portion associated with a geographical position of the neighboring cell.
  6.  前記制御部は、前記セルと接続するユーザ端末に対して、前記近隣セルに対する測定を制御するための測定構成を通知し、
     前記測定構成は、測定の対象とする前記近隣セルに割り当てられた前記近隣拡張セル識別子を含むことを特徴とする請求項5に記載の基地局。
    The control unit notifies a user terminal connected to the cell of a measurement configuration for controlling measurement of the neighboring cell;
    The base station according to claim 5, wherein the measurement configuration includes the neighboring extended cell identifier assigned to the neighboring cell to be measured.
  7.  前記セルと接続するユーザ端末から、前記近隣セルに対する測定に関する測定報告を受信する受信部をさらに備え、
     前記測定報告は、測定が行われた前記近隣セルの物理セル識別子と、前記ユーザ端末又は当該近隣セルの地理的位置に関する位置情報と、を含み、
     前記制御部は、前記記憶部に記憶された前記近隣拡張セル識別子を参照して、測定が行われた前記近隣セルを特定することを特徴とする請求項5に記載の基地局。
    A receiving unit for receiving a measurement report related to measurement for the neighboring cell from a user terminal connected to the cell;
    The measurement report includes a physical cell identifier of the neighboring cell where the measurement was performed, and location information regarding a geographical location of the user terminal or the neighboring cell,
    The base station according to claim 5, wherein the control unit specifies the neighboring cell in which the measurement is performed with reference to the neighboring extended cell identifier stored in the storage unit.
  8.  前記セルと接続するユーザ端末から、前記近隣セルに対する測定に関する測定報告を受信する受信部をさらに備え、
     前記測定報告は、測定が行われた前記近隣セルの前記近隣拡張セル識別子を含み、
     前記制御部は、前記測定報告に基づいて、前記記憶部に記憶された前記近隣拡張セル識別子を参照することにより、測定が行われた前記近隣セルを特定することを特徴とする請求項5に記載の基地局。
    A receiving unit for receiving a measurement report related to measurement for the neighboring cell from a user terminal connected to the cell;
    The measurement report includes the neighbor extended cell identifier of the neighbor cell where the measurement was performed;
    The said control part specifies the said neighbor cell by which the measurement was performed by referring the said neighbor extended cell identifier memorize | stored in the said memory | storage part based on the said measurement report. The listed base station.
  9.  前記セルと接続するユーザ端末から、前記近隣セルに対する測定に関する測定報告を受信する受信部をさらに備え、
     前記測定報告は、測定が行われた前記近隣セルの物理セル識別子を含み、
     前記制御部は、前記ユーザ端末の地理的位置に関する位置情報を管理するサーバ装置から、当該地理的位置を取得し、
     前記制御部は、前記物理セル識別子及び前記位置情報に基づいて、前記記憶部に記憶された前記近隣拡張セル識別子を参照することにより、測定が行われた前記近隣セルを特定することを特徴とする請求項5に記載の基地局。
    A receiving unit for receiving a measurement report related to measurement for the neighboring cell from a user terminal connected to the cell;
    The measurement report includes a physical cell identifier of the neighboring cell where the measurement was performed,
    The control unit acquires the geographical position from a server device that manages position information regarding the geographical position of the user terminal,
    The control unit identifies the neighboring cell where the measurement is performed by referring to the neighboring extended cell identifier stored in the storage unit based on the physical cell identifier and the location information. The base station according to claim 5.
  10.  移動通信システムにおいて、物理セル識別子を有するセルと接続するユーザ端末であって、
     前記物理セル識別子を特定可能な無線信号を前記セルから受信する受信部を備え、
     前記セルには、前記物理セル識別子と関連付けられた拡張セル識別子が割り当てられており、
     前記拡張セル識別子は、前記セルの地理的位置と関連付けられた拡張部分を含むことを特徴とするユーザ端末。
    In a mobile communication system, a user terminal connected to a cell having a physical cell identifier,
    A receiving unit for receiving a radio signal capable of specifying the physical cell identifier from the cell;
    The cell is assigned an extended cell identifier associated with the physical cell identifier;
    The user equipment according to claim 1, wherein the extended cell identifier includes an extended portion associated with a geographical position of the cell.
  11.  前記拡張部分は、前記セルの地理的位置が属するエリア単位を示すインデックス値であることを特徴とする請求項10に記載のユーザ端末。 The user terminal according to claim 10, wherein the extension part is an index value indicating an area unit to which a geographical position of the cell belongs.
  12.  前記拡張セル識別子は、前記物理セル識別子と前記拡張部分とを含むことを特徴とする請求項10に記載のユーザ端末。 The user terminal according to claim 10, wherein the extended cell identifier includes the physical cell identifier and the extended portion.
  13.  前記拡張セル識別子は、ハンドオーバのための測定報告手順において利用されることを特徴とする請求項12に記載のユーザ端末。 The user terminal according to claim 12, wherein the extended cell identifier is used in a measurement report procedure for handover.
  14.  前記セルの近隣セルに対する測定を制御するための測定構成を、前記セルから受信する受信部をさらに備え、
     前記測定構成は、測定の対象とする前記近隣セルに割り当てられた拡張セル識別子である近隣拡張セル識別子を含み、
     前記近隣拡張セル識別子は、前記近隣セルの物理セル識別子と、前記近隣セルの地理的位置と関連付けられた拡張部分と、を含むことを特徴とする請求項12に記載のユーザ端末。
    A receiver configured to receive a measurement configuration for controlling measurement of neighboring cells of the cell from the cell;
    The measurement configuration includes a neighbor extended cell identifier that is an extended cell identifier assigned to the neighbor cell to be measured,
    The user terminal according to claim 12, wherein the neighboring extended cell identifier includes a physical cell identifier of the neighboring cell and an extended portion associated with a geographical position of the neighboring cell.
  15.  前記測定構成に含まれる前記近隣拡張セル識別子に基づいて前記近隣セルに対する測定を行う制御部をさらに備え、
     前記制御部は、前記近隣拡張セル識別子に含まれる前記物理セル識別子を有する近隣セルであって、かつ、前記近隣拡張セル識別子に含まれる前記拡張部分に対応する位置が前記ユーザ端末の地理的位置と最も近い近隣セルに対して測定を行うことを特徴とする請求項14に記載のユーザ端末。
    A control unit that performs measurement on the neighboring cell based on the neighboring extended cell identifier included in the measurement configuration;
    The control unit is a neighbor cell having the physical cell identifier included in the neighbor extended cell identifier, and a position corresponding to the extended portion included in the neighbor extended cell identifier is a geographical position of the user terminal The user terminal according to claim 14, wherein measurement is performed on a nearest neighbor cell.
  16.  前記近隣セルに対する測定に関する測定報告を前記セルに送信する送信部をさらに備え、
     前記測定報告は、測定が行われた前記近隣セルに割り当てられた拡張セル識別子である近隣拡張セル識別子を含み、
     前記近隣拡張セル識別子は、前記近隣セルの物理セル識別子と、前記近隣セルの地理的位置と関連付けられた拡張部分と、を含むことを特徴とする請求項13に記載のユーザ端末。
    A transmitter for transmitting a measurement report related to the measurement to the neighboring cell to the cell;
    The measurement report includes a neighbor extended cell identifier that is an extended cell identifier assigned to the neighbor cell in which the measurement was performed;
    The user terminal according to claim 13, wherein the neighboring extended cell identifier includes a physical cell identifier of the neighboring cell and an extended portion associated with a geographical position of the neighboring cell.
PCT/JP2014/075004 2013-09-25 2014-09-22 Base station and user terminal WO2015046104A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-198075 2013-09-25
JP2013198075A JP2015065561A (en) 2013-09-25 2013-09-25 Base station and user terminal

Publications (1)

Publication Number Publication Date
WO2015046104A1 true WO2015046104A1 (en) 2015-04-02

Family

ID=52743240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/075004 WO2015046104A1 (en) 2013-09-25 2014-09-22 Base station and user terminal

Country Status (2)

Country Link
JP (1) JP2015065561A (en)
WO (1) WO2015046104A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3338487A4 (en) * 2015-08-18 2019-01-09 Parallel Wireless Inc. Cell id disambiguation
WO2019138950A1 (en) * 2018-01-12 2019-07-18 Nec Corporation Determining handover target cell among neighbour cells based on measurement report and cell identifier
US10701668B2 (en) 2014-11-03 2020-06-30 Parallel Wireless, Inc. Tracking area planning
US10743276B2 (en) 2014-11-07 2020-08-11 Parallel Wireless, Inc. Signal quality database
WO2021216434A1 (en) * 2020-04-20 2021-10-28 Qualcomm Incorporated Determining a user equipment position within a coverage sub-area of a cell based on cell identity data
US11665597B2 (en) 2016-03-18 2023-05-30 Parallel Wireless, Inc. UE mobility across super-cells

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010113407A1 (en) * 2009-03-31 2010-10-07 パナソニック株式会社 Handover destination specification system, mobile terminal, and base station
WO2011043044A1 (en) * 2009-10-05 2011-04-14 パナソニック株式会社 Terminal device, base station device, wireless communication method, and wireless communication system
JP2013138510A (en) * 2007-09-26 2013-07-11 Nec Corp Wireless communication system and method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013138510A (en) * 2007-09-26 2013-07-11 Nec Corp Wireless communication system and method
WO2010113407A1 (en) * 2009-03-31 2010-10-07 パナソニック株式会社 Handover destination specification system, mobile terminal, and base station
WO2011043044A1 (en) * 2009-10-05 2011-04-14 パナソニック株式会社 Terminal device, base station device, wireless communication method, and wireless communication system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
3RD GENERATION PARTNERSHIP PROJECT;: "Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E- UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2 (Release 11", 3GPP TS 36.300 V11.4.0, December 2012 (2012-12-01), pages 59 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10701668B2 (en) 2014-11-03 2020-06-30 Parallel Wireless, Inc. Tracking area planning
US10743276B2 (en) 2014-11-07 2020-08-11 Parallel Wireless, Inc. Signal quality database
EP3338487A4 (en) * 2015-08-18 2019-01-09 Parallel Wireless Inc. Cell id disambiguation
US10863395B2 (en) 2015-08-18 2020-12-08 Parallel Wireless, Inc. Cell ID disambiguation
US11665597B2 (en) 2016-03-18 2023-05-30 Parallel Wireless, Inc. UE mobility across super-cells
WO2019138950A1 (en) * 2018-01-12 2019-07-18 Nec Corporation Determining handover target cell among neighbour cells based on measurement report and cell identifier
JP2021510288A (en) * 2018-01-12 2021-04-15 日本電気株式会社 Determining the target cell for handover between adjacent cells based on the measurement report and cell identifier
JP2022119926A (en) * 2018-01-12 2022-08-17 日本電気株式会社 Determination of target cell for handover between adjacent cells based on measurement report and cell identifier
US11917468B2 (en) 2018-01-12 2024-02-27 Nec Corporation Determining handover target cell among neighbour cells based on measurement report and cell identifier
WO2021216434A1 (en) * 2020-04-20 2021-10-28 Qualcomm Incorporated Determining a user equipment position within a coverage sub-area of a cell based on cell identity data
US11765683B2 (en) 2020-04-20 2023-09-19 Qualcomm Incorporated Determining a user equipment position within a coverage sub-area of a cell based on cell identity data

Also Published As

Publication number Publication date
JP2015065561A (en) 2015-04-09

Similar Documents

Publication Publication Date Title
JP6382467B2 (en) Radio base station, user terminal and processor
JP5981671B2 (en) Base station, user terminal and processor
JP6174213B2 (en) User terminal, processor and base station
JP6618801B2 (en) Communication control method and user terminal
JP6147848B2 (en) Communication control method and processor
WO2015046104A1 (en) Base station and user terminal
JPWO2014129450A1 (en) Mobile communication system, base station, user terminal and processor
JP6563408B2 (en) User terminal, service control apparatus, and base station
JPWO2014112468A1 (en) Communication control method, cellular base station, and user terminal
WO2016021642A1 (en) User terminal and base station
JPWO2017130743A1 (en) Wireless terminal, communication device and base station
JP2018152888A (en) Communication control method, user terminal, and processor
JP6028038B2 (en) Mobile communication system, base station, processor
WO2015045860A1 (en) User terminal and network device
WO2015046268A1 (en) User terminal, base station, and server device
WO2015046105A1 (en) Communication control method, base station, and user terminal
JP6110265B2 (en) Base station and user terminal
WO2015125686A1 (en) User terminal and communication control method
JP2015159490A (en) Communication control method and base station

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14846948

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14846948

Country of ref document: EP

Kind code of ref document: A1