WO2015046090A1 - Polishing composition, polishing-composition production method, and silicon-wafer production method. - Google Patents

Polishing composition, polishing-composition production method, and silicon-wafer production method. Download PDF

Info

Publication number
WO2015046090A1
WO2015046090A1 PCT/JP2014/074951 JP2014074951W WO2015046090A1 WO 2015046090 A1 WO2015046090 A1 WO 2015046090A1 JP 2014074951 W JP2014074951 W JP 2014074951W WO 2015046090 A1 WO2015046090 A1 WO 2015046090A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
polishing composition
silicon wafer
abrasive grains
protrusions
Prior art date
Application number
PCT/JP2014/074951
Other languages
French (fr)
Japanese (ja)
Inventor
匠学 井出
高橋 洋介
高見 信一郎
Original Assignee
株式会社フジミインコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジミインコーポレーテッド filed Critical 株式会社フジミインコーポレーテッド
Priority to JP2015539176A priority Critical patent/JP6279593B2/en
Publication of WO2015046090A1 publication Critical patent/WO2015046090A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02024Mirror polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/042Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
    • B24B37/044Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor characterised by the composition of the lapping agent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1436Composite particles, e.g. coated particles
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions

Definitions

  • the present invention relates to a polishing composition for polishing a silicon wafer and a method for producing the same. Moreover, it is related with the method of manufacturing a silicon wafer using the said polishing composition.
  • the surface of a silicon wafer used as a component of a semiconductor product is generally finished to a high-quality mirror surface through a lapping process (rough polishing process) and a polishing process (precision polishing process).
  • the polishing process typically includes a preliminary polishing process (preliminary polishing process) and a final polishing process (final polishing process).
  • a polishing method in the polishing step a chemical mechanical polishing (CMP) method using a polishing composition containing water, abrasive grains and a polishing accelerator is known.
  • CMP chemical mechanical polishing
  • polishing process is performed while maintaining the surface quality that can be reached by the polishing process with respect to any polishing process upstream of the final polishing process among the polishing processes included in the polishing process. It would be beneficial if the polishing rate could be improved. This is because the time that can be spent in the downstream polishing process (for example, final polishing process) is increased, and the polishing object can be polished to a smoother surface.
  • the surface quality after polishing and the polishing rate are in a contradictory relationship, and the surface quality tends to decrease when the polishing rate is improved.
  • a polishing composition for polishing a silicon wafer contains silica particles having a plurality of protrusions on the surface (hereinafter also referred to as “silica particles with protrusions”) as abrasive grains.
  • the polishing composition further contains an inorganic basic compound (A) selected from the group consisting of ammonia and ammonium salts.
  • A inorganic basic compound selected from the group consisting of ammonia and ammonium salts.
  • the above-mentioned silica particles with projections are the heights of the projections of the silica particles with projections, with respect to the silica particles with projections larger than the volume average particle size among the silica particles with projections contained in the polishing composition.
  • the average of values obtained by dividing by the width at the base of the same protrusion (hereinafter also referred to as “protrusion degree”) is preferably 0.245 or more. According to the silica particles with protrusions having an average protrusion degree (hereinafter also referred to as “average protrusion degree”) of 0.245 or more, the effect of improving the polishing rate can be suitably exhibited.
  • the polishing composition may further contain a water-soluble polymer.
  • a polishing composition comprising a water-soluble polymer can provide a higher quality surface. Thereby, the deterioration of the surface quality can be effectively suppressed while improving the polishing rate.
  • the amount of the water-soluble polymer contained in the polishing composition can be 5 g to 50 g per kg of the abrasive grains.
  • the effect of including the silica particles with protrusions and the inorganic basic compound (A) in combination with the water-soluble polymer can be suitably exhibited.
  • the double-side polishing step is sometimes referred to as a primary polishing step, and is generally performed by setting a silicon wafer in a double-side polishing apparatus.
  • the silicon wafer after the double-side polishing is subjected to cleaning, drying, and processing such as edge polishing as necessary, and then set in a single-side polishing apparatus and subjected to a single-side polishing step.
  • Two or more polishing steps may be included in the single-side polishing step.
  • the two or more polishing steps typically include a final polishing step and a secondary polishing step performed prior to final polishing.
  • the secondary polishing process may be further divided into a plurality of polishing processes.
  • the polishing composition disclosed herein is preferably used in the first polishing step (that is, the first secondary polishing step) in the single-side polishing step.
  • the polishing composition in the first secondary polishing step the effect of including the combination of the protruding silica particles and the inorganic basic compound (A) is particularly well exhibited. obtain.
  • a method for producing a polishing composition for polishing a silicon wafer comprises preparing a polishing composition comprising abrasive grains containing silica particles having a plurality of protrusions on the surface, and an inorganic basic compound (A) selected from the group consisting of ammonia and ammonium salts.
  • A inorganic basic compound
  • a method for manufacturing a silicon wafer includes a double-side polishing step in which both surfaces of the silicon wafer are simultaneously polished, and a single-side polishing step in which one side of the silicon wafer that has undergone the double-side polishing step is more precisely polished.
  • the single-side polishing step includes two or more polishing steps, and in the first polishing step, polishing is performed using any of the polishing compositions disclosed herein.
  • the polishing composition disclosed herein contains silica particles having a plurality of protrusions on the surface (silica particles with protrusions) as abrasive grains.
  • silica particles with protrusions can exhibit a higher mechanical polishing action on the surface of the object to be polished than silica particles having a shape that does not have a plurality of protrusions on the surface.
  • spherical silica particles and peanut-type silica particles are typical examples included in the concept of silica particles having a shape that does not have a plurality of protrusions on the surface.
  • the number of protrusions in the silica particles with protrusions is preferably 2 or more, more preferably 3 or more, and further preferably 5 or more on an average per particle.
  • the protrusions have a height and width that are sufficiently smaller than the particle diameter of the silica particles. More specifically, the length of the part from the point A to the point B via the point C in the outline of the silica particle shown in FIG. 1 is the maximum circle inscribed in the outline (maximum inscribed A protrusion that does not exceed a quarter of the circumference of the circle.
  • the points A and B indicate the base points of the protrusions on the contour line
  • the point C indicates the apex of the protrusions.
  • the width of the protrusions refers to the width at the base of the protrusions, and is represented as the distance between the points A and B in FIG.
  • the height of the protrusion refers to the distance between the base of the protrusion and the portion of the protrusion farthest from the base, and is represented as the length of the line segment CD orthogonal to the straight line AB in FIG.
  • the average protrusion degree of the silica particles with protrusions is not particularly limited.
  • silica particles with protrusions having an average protrusion degree of 0.170 or more can be used.
  • the average protrusion degree is preferably 0.200 or more, more preferably 0.220 or more, and further preferably 0.245 or more (for example, 0.255 or more).
  • the upper limit of the average protrusion degree is not particularly limited.
  • silica particles with protrusions having an average protrusion degree of 0.5 or less can be preferably employed.
  • the average protrusion degree is preferably 0.4 or less, and more preferably 0.37 or less (for example, 0.35 or less).
  • the average degree of protrusion is the surface of a silica particle with protrusions having a particle diameter larger than the volume average particle diameter of the silica particles with protrusions among the silica particles with protrusions included in the polishing composition.
  • the height H of each protrusion of the silica particles with protrusions and the width W at the base thereof can be obtained by analyzing a scanning electron microscope image of the silica particles with protrusions using general image analysis software. .
  • the average height of the protrusions in the silica particles with protrusions having a particle diameter larger than the volume average particle diameter is suitably, for example, 3.5 nm or more, preferably Is 4.0 nm or more. As the average height of the protrusions increases, the effect of improving the polishing rate tends to increase.
  • the upper limit of the average height of the protrusion is not particularly limited. From the viewpoint of obtaining higher surface quality, the average height of the protrusions is usually suitably 10 nm or less, and preferably 7.0 nm or less.
  • the silica particles with protrusions can be produced, for example, by the following method. That is, first, a slurry containing colloidal silica particles is obtained by continuously adding alkoxysilane to a mixed solution of methanol and water to which ammonia water is added as a catalyst and hydrolyzing the mixture. The resulting slurry is heated to distill off methanol and ammonia. Thereafter, an organic alkali is added to the slurry as a catalyst, and then alkoxysilane is continuously added again at a temperature of 70 ° C. or more to hydrolyze, thereby forming a plurality of protrusions on the surface of the colloidal silica particles.
  • organic alkali examples include amine compounds such as triethanolamine and quaternary ammonium compounds such as tetramethylammonium hydroxide. According to this method, it is possible to easily obtain colloidal silica particles (silica particles with protrusions) having a metal impurity content of 1 ppm by weight or less.
  • a general method for producing colloidal silica by hydrolysis of alkoxysilane is described in, for example, pages 154 to 156 of “Science of Sol-Gel Method” by Sakuo Sakuhana.
  • Japanese Patent Application Publication No. 11-60232 discloses that methyl silicate or a mixture of methyl silicate and methanol is dropped into water, methanol and ammonia or a mixed solvent composed of ammonia and an ammonium salt to drop methyl silicate.
  • vertical colloidal silica produced by reacting water with water.
  • 2001-48520 discloses an elongated shape produced by hydrolyzing an alkyl silicate with an acid catalyst, and then adding an alkali catalyst and heating to advance polymerization of silicic acid to grow particles.
  • colloidal silica There is a disclosure of colloidal silica.
  • Japanese Patent Application Publication No. 2007-153732 discloses that colloidal silica having a large number of small protrusions can be produced from a readily hydrolyzable organosilicate as a raw material by using a specific type of hydrolysis catalyst in a specific amount. Is described.
  • Japanese Patent Application Publication No. 2002-338232 discloses that secondary agglomeration is made spherically by adding an aggregating agent to monodispersed colloidal silica. In Japanese Patent Application Publication No.
  • a calcium salt or a magnesium salt is added to activated silicic acid obtained from sodium silicate in order to obtain irregular shaped colloidal silica such as slender shape.
  • adding discloses disclosure of beaded colloidal silica by adding a calcium salt to activated silicic acid obtained from sodium silicate.
  • colloidal silica having a large number of small protrusions such as confetti can be produced by generating and growing fine particles on the surface of seed particles.
  • the silica particles with protrusions in the present specification can also be produced by using one kind of methods described in these documents alone or in combination of two or more kinds.
  • the polishing composition disclosed herein may contain abrasive grains other than the silica particles with protrusions as long as the effects of the present invention are not significantly impaired.
  • Abrasive grains other than the silica particles with protrusions (hereinafter also referred to as “arbitrary abrasive grains”) are silica abrasive grains having a shape that does not have a plurality of protrusions on the surface, such as a spherical shape, a peanut type, and a bowl shape. obtain.
  • the above-mentioned arbitrary abrasive grains may also be inorganic particles other than silica, organic particles, or organic-inorganic composite particles.
  • the inorganic particles include alumina particles, cerium oxide particles, chromium oxide particles, titanium dioxide particles, zirconium oxide particles, magnesium oxide particles, manganese dioxide particles, zinc oxide particles, bengara particles, etc .; silicon nitride particles And nitride particles such as boron nitride particles; carbide particles such as silicon carbide particles and boron carbide particles; diamond particles; carbonates such as calcium carbonate and barium carbonate.
  • Specific examples of the organic particles include polymethyl methacrylate (PMMA) particles and poly (meth) acrylic acid particles (here, (meth) acrylic acid is a generic term for acrylic acid and methacrylic acid). And polyacrylonitrile particles.
  • PMMA polymethyl methacrylate
  • acrylic acid is a generic term for acrylic acid and methacrylic acid
  • polyacrylonitrile particles Arbitrary abrasive can be used individually by 1 type or in combination of 2 or more types.
  • the content of the optional abrasive grains is suitably, for example, 30% by weight or less, preferably 20% by weight or less, and preferably 10% by weight or less, based on the total weight of the abrasive grains contained in the polishing composition. More preferably.
  • the technique disclosed herein can be preferably implemented in an embodiment in which the content of the optional abrasive grains is 5% by weight or less of the total weight of the abrasive grains contained in the polishing composition.
  • the polishing composition may be substantially free of any abrasive grains.
  • the phrase “the polishing composition does not substantially contain any abrasive grains” means that the optional abrasive grains are not blended at least intentionally.
  • the average primary particle diameter D P1 of the abrasive grains in the polishing composition is not particularly limited.
  • the average primary particle diameter D P1 of the abrasive grains from the viewpoint of polishing efficiency, preferably 10nm or more, and more preferably 15nm or more, more preferably 20nm or more. Further, in view of smoother highly surface easily obtained, an average primary particle diameter D P1 of the abrasive grains is preferably 100nm or less, more preferably 50nm or less, more preferably 40nm or less.
  • the measurement of the specific surface area of the abrasive grains can be performed using, for example, a surface area measuring device manufactured by Micromeritex Co., Ltd., trade name “Flow Sorb II 2300”.
  • average secondary particle diameter D P2 abrasive grains in the polishing composition limit, from the viewpoint of polishing efficiency, preferably 20nm or more, more preferably 30nm or more, more preferably 40nm or more.
  • average secondary particle diameter D P2 of the abrasive grains is appropriately 300nm or less, typically 200nm or less, preferably 150nm or less, More preferably, it is 100 nm or less.
  • the abrasive grains having an average secondary particle diameter D P2 is preferably at 90nm or less, more preferably 80nm or less, still more preferably 70nm or less (e.g., 65nm or less) .
  • the average secondary particle diameter D P2 of the abrasive grains for example, by dynamic light scattering method using a Nikkiso Co. Model "UPA-UT151", can be measured as a volume average particle diameter. When the volume average particle diameter of the abrasive grains reaches 50% of the cumulative volume of all abrasive grains in the polishing composition, the volume of the abrasive grains is accumulated in order from the abrasive grains having the smallest particle diameter by the dynamic light scattering method. It is equal to the particle diameter of the abrasive grain accumulated last.
  • the volume-based 95% particle diameter (D95 value) of the abrasive grains in the polishing composition is preferably 500 nm or less, more preferably 400 nm or less.
  • the settling stability (dispersion stability) of the polishing composition tends to improve.
  • the volume-based 95% particle diameter of the abrasive grains was accumulated in order from the abrasive grains having the smallest particle diameter by dynamic light scattering until reaching 95% of the accumulated volume of all abrasive grains in the polishing composition. Sometimes equal to the particle size of the abrasive grain accumulated last.
  • the abrasive grains contained in the polishing composition disclosed herein contain metal impurities such as sodium, potassium, calcium, boron, aluminum, titanium, zirconium, manganese, iron, cobalt, copper, zinc, silver, and lead. Is preferably 1 ppm by weight or less, and the total content of these metal impurities is more preferably 1 ppm by weight or less.
  • the content of the metal impurity can be measured by, for example, an IC gravimetric analyzer.
  • the polishing composition disclosed herein contains at least one inorganic basic compound (A) selected from the group consisting of ammonia and ammonium salts.
  • the ammonium salt include ammonium hydrogen carbonate, ammonium carbonate, ammonium chloride, and ammonium chlorate. These can be used alone or in combination of two or more.
  • a polishing composition containing at least ammonia as the inorganic basic compound (A) is preferred.
  • the amount of the inorganic basic compound (A) contained in the polishing composition can be, for example, 0.1 mol or more per kg of abrasive grains of the polishing composition, Usually, it is suitable to be 0.5 mol or more. From the viewpoint of obtaining a greater effect, the amount of the inorganic basic compound (A) per kg of the abrasive grains is preferably 1 mol or more, more preferably 2 mol or more, and typically 3 mol or more (typically Is more preferably 4 mol or more, for example 5 mol or more).
  • the upper limit of the amount of the inorganic basic compound (A) per kg of the abrasive grains is not particularly limited, but is usually 50 mol or less, preferably 30 mol or less, and preferably 20 mol or less (for example, 10 More preferably, it is less than or equal to mol).
  • the surface of a silicon wafer that is an object to be polished may be thinly covered with an oxide film generated by oxidation of the silicon wafer.
  • the silicon wafer surface at the start of the first polishing process (that is, the first secondary polishing process) in the single-side polishing process may be cleaned after the double-side polishing or before the start of the single-side polishing process.
  • a silicon wafer in a surface state covered with an oxide film as described above even if it is a thin oxide film of about 1 nm (for example, 0.5 nm to 2 nm), the oxide film is removed by polishing, As a result, it takes time to reach the surface of silicon (typically single crystal silicon), and as a result, the overall polishing rate including the time for removing the oxide film is lowered.
  • a polishing composition using an inorganic strong base such as KOH as a polishing accelerator can exhibit a high polishing rate for an oxide film, but such a polishing composition has a strong chemical polishing action on silicon. Therefore, as described above, the surface quality after polishing tends to deteriorate as a contradiction to improve the polishing rate.
  • the inventors have moved away from the technical idea of exclusively using a chemical polishing action to quickly remove the oxide film, while using a polishing accelerator capable of realizing high surface quality in silicon polishing,
  • the present invention was completed as a result of intensive investigations mainly on utilizing the mechanical polishing action of abrasive grains for removal.
  • the inorganic basic compound (A) selected from the group consisting of ammonia and an ammonium salt and the silica particles with protrusions are contained in combination, thereby mechanically forming the silica particles with protrusions.
  • the silica particles with protrusions are also effective in improving the silicon polishing rate.
  • it has the effect of improving the polishing rate while maintaining the surface quality. It is considered to be obtained.
  • the polishing composition disclosed herein preferably contains water.
  • water contained in the polishing composition ion exchange water (deionized water), pure water, ultrapure water, distilled water, and the like can be preferably used.
  • the water to be used preferably has, for example, a total content of transition metal ions of 100 ppb or less in order to avoid as much as possible the action of other components contained in the polishing composition.
  • the purity of water can be increased by operations such as removal of impurity ions with an ion exchange resin, removal of foreign matter with a filter, distillation, and the like.
  • the polishing composition disclosed herein may further contain an organic solvent (lower alcohol, lower ketone, etc.) that can be uniformly mixed with water, if necessary.
  • 90% by volume or more of the solvent contained in the polishing composition is preferably water, and more preferably 95% by volume or more (typically 99 to 100% by volume) is water.
  • the polishing composition disclosed herein (typically a slurry-like composition) has, for example, a solid content (non-volatile content: NV) of 0.01 wt% to 50 wt%, and the balance Is preferably an aqueous solvent (water or a mixed solvent of water and the above-mentioned organic solvent) or a form in which the balance is an aqueous solvent and a volatile compound (for example, ammonia). More preferably, the NV is 0.05 wt% to 40 wt%.
  • the said solid content (NV) is calculated
  • the polishing composition disclosed herein preferably further contains a water-soluble polymer.
  • a water-soluble polymer By appropriate use of the water-soluble polymer, the effect of improving the polishing rate and the good surface quality due to the use of the silica abrasive grains with protrusions can be more suitably achieved.
  • the type of the water-soluble polymer to be used is not particularly limited, and can be appropriately selected from water-soluble polymers known in the field of polishing compositions.
  • a water-soluble polymer can be used individually by 1 type or in combination of 2 or more types.
  • the water-soluble polymer may have at least one functional group selected from a cationic group, an anionic group and a nonionic group in the molecule.
  • the water-soluble polymer may have, for example, a hydroxyl group, a carboxyl group, an acyloxy group, a sulfo group, a primary amide structure, a heterocyclic structure, a vinyl structure, or a polyoxyalkylene structure in the molecule. From the standpoint of reducing aggregates and improving detergency, a nonionic polymer can be preferably used as the water-soluble polymer.
  • water-soluble polymers examples include cellulose derivatives, starch derivatives, polymers containing oxyalkylene units, polymers containing nitrogen atoms, and polyvinyl alcohol.
  • cellulose derivative examples include hydroxyethyl cellulose (HEC), hydroxypropyl cellulose, hydroxyethyl methyl cellulose, hydroxypropyl methyl cellulose, methyl cellulose, ethyl cellulose, ethyl hydroxyethyl cellulose, carboxymethyl cellulose and the like. Of these, hydroxyethyl cellulose is preferred.
  • starch derivatives include pregelatinized starch, pullulan, and cyclodextrin. Of these, pullulan is preferred.
  • Polymers containing oxyalkylene units include polyethylene oxide (PEO), block copolymers of ethylene oxide (EO) and propylene oxide (PO) or butylene oxide (BO), and random copolymerization of EO and PO or BO. Examples include coalescence. Among these, a block copolymer of EO and PO or a random copolymer of EO and PO is preferable.
  • the block copolymer of EO and PO may be a diblock body, a triblock body or the like including a PEO block and a polypropylene oxide (PPO) block. Examples of the triblock body include a PEO-PPO-PEO type triblock body and a PPO-PEO-PPO type triblock body.
  • a PEO-PPO-PEO type triblock body is more preferable.
  • the molar ratio (EO / PO) of EO and PO constituting the copolymer is determined from the viewpoint of solubility in water, detergency, and the like. It is preferably larger than 1, more preferably 2 or more, and further preferably 3 or more (for example, 5 or more).
  • both a polymer containing a nitrogen atom in the main chain and a polymer having a nitrogen atom in a side chain functional group (pendant group) can be used.
  • the polymer containing a nitrogen atom in the main chain include homopolymers and copolymers of N-acylalkylenimine type monomers.
  • Specific examples of the N-acylalkyleneimine monomer include N-acetylethyleneimine, N-propionylethyleneimine and the like.
  • Examples of the polymer having a nitrogen atom in the pendant group include a polymer containing an N-vinyl type monomer unit.
  • homopolymers and copolymers of N-vinylpyrrolidone can be preferably used.
  • a preferred nitrogen atom-containing polymer is exemplified by poly (N-vinylpyrrolidone).
  • the degree of saponification of the polyvinyl alcohol is not particularly limited.
  • the cationized PVA can be derived from a monomer having a cationic group, such as diallyldialkylammonium salt and N- (meth) acryloylaminoalkyl-N, N, N-trialkylammonium salt.
  • the molecular weight of the water-soluble polymer is not particularly limited.
  • a water-soluble polymer having a weight average molecular weight (Mw) of 200 ⁇ 10 4 or less can be used.
  • Mw weight average molecular weight
  • a water-soluble polymer having Mw of 150 ⁇ 10 4 or less is usually preferable.
  • the Mw of the water-soluble polymer is preferably 1 ⁇ 10 4 or more, and more preferably 2 ⁇ 10 4 or more.
  • Mw may vary depending on the type of water-soluble polymer.
  • Mw can be preferably 10 ⁇ 10 4 to 150 ⁇ 10 4 , more preferably 15 ⁇ 10 4 to 130 ⁇ 10 4 .
  • PVA which may be cationized PVA
  • its Mw is preferably 1 ⁇ 10 4 to 10 ⁇ 10 4 , more preferably 1 ⁇ 10 4 to 7 ⁇ 10 4 , and even more preferably Can be 1 ⁇ 10 4 to 5 ⁇ 10 4 (eg, 1 ⁇ 10 4 to 3 ⁇ 10 4 ).
  • the Mw is preferably 1 ⁇ 10 4 to 15 ⁇ 10 4 , more preferably 1 ⁇ 10 4 to 10 ⁇ 10 4 , and even more preferably 2 ⁇ 10. It can be 4 to 7 ⁇ 10 4 .
  • the relationship between the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the water-soluble polymer is not particularly limited. From the viewpoint of preventing the occurrence of aggregates, for example, the molecular weight distribution (Mw / Mn) is preferably 10.0 or less, and more preferably 7.0 or less.
  • Mw and Mn of the water-soluble polymer values based on aqueous gel permeation chromatography (GPC) (aqueous, polyethylene oxide equivalent) can be adopted.
  • the content of the water-soluble polymer can be, for example, 0.01 g or more per kg of abrasive grains.
  • the content of the water-soluble polymer per kg of the abrasive grains is suitably more than 1 g, preferably 5 g or more. More preferably, it is 10 g or more, and further preferably 15 g or more.
  • the content of the water-soluble polymer with respect to 1 kg of abrasive grains is usually suitably 50 g or less, and 40 g or less. It is preferably 35 g or less (for example, 30 g or less).
  • the polishing composition disclosed herein may intentionally or unintentionally contain a basic compound (B) other than the inorganic basic compound (A) as long as the effects of the present invention are not significantly impaired.
  • the basic compound (B) as such an optional component may be an organic basic compound (B1) or an inorganic basic compound (B2).
  • a basic compound (B) can be used individually by 1 type or in combination of 2 or more types.
  • Examples of the organic basic compound (B1) include quaternary ammonium salts such as tetraalkylammonium salts.
  • the anion in the ammonium salt can be, for example, OH ⁇ , F ⁇ , Cl ⁇ , Br ⁇ , I ⁇ , ClO 4 ⁇ , BH 4 ⁇ and the like.
  • quaternary ammonium salts such as tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, and tetrabutylammonium hydroxide can be preferably used. Of these, tetramethylammonium hydroxide is preferable.
  • organic basic compound (B1) examples include methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, ethylenediamine, monoethanolamine, N- ( ⁇ -aminoethyl) ethanolamine, hexamethylenediamine, diethylenetriamine.
  • amines such as triethylenetetramine; piperazine anhydride such as anhydrous piperazine, piperazine hexahydrate, 1- (2-aminoethyl) piperazine, N-methylpiperazine; azoles such as imidazole and triazole; guanidine; It is done.
  • Examples of the inorganic basic compound (B2) include ammonia, alkali metal or alkaline earth metal hydroxide, carbonate, bicarbonate, etc .; ammonia; and the like.
  • Specific examples of the hydroxide include potassium hydroxide and sodium hydroxide.
  • Specific examples of the carbonate or bicarbonate include ammonium bicarbonate, ammonium carbonate, potassium bicarbonate, potassium carbonate, sodium bicarbonate, sodium carbonate and the like.
  • the amount of the organic basic compound (B1) used is usually less than 4 mol per kg of abrasive grains. In view of surface quality, the amount is preferably less than 3 mol, more preferably less than 2 mol.
  • the number of moles of the organic basic compound (B1) contained in the polishing composition is preferably smaller than the number of moles of the inorganic basic compound (A).
  • the composition which does not contain an organic basic compound (B1) substantially may be sufficient as the polishing composition disclosed here.
  • the phrase “the polishing composition does not substantially contain the organic basic compound (B1)” means that the organic basic compound (B1) is not included at least intentionally.
  • a polishing composition that inevitably contains a small amount (for example, 0.01 mol or less, preferably 0.005 mol or less) of the organic basic compound (B1) derived from the raw materials and the manufacturing method.
  • a thing may be included by the concept of polishing composition which does not contain the organic basic compound (B1) substantially here.
  • the amount of the inorganic basic compound (B2) used is usually less than 1 mole per 1 kg of abrasive grains. In view of surface quality, the amount is preferably less than 0.5 mol, and more preferably less than 0.2 mol.
  • the number of moles of the inorganic basic compound (B2) contained in the polishing composition is preferably smaller than the number of moles of the inorganic basic compound (A). Or the composition which does not contain an inorganic basic compound (B2) substantially may be sufficient as the polishing composition disclosed here.
  • the number of moles of the basic compound (B) contained in the polishing composition is the number of moles of the inorganic basic compound (A). Is preferably less. Or the composition which does not contain a basic compound (B) substantially may be sufficient as the constituent for polish indicated here.
  • the polishing composition disclosed herein can contain a chelating agent as an optional component.
  • the chelating agent functions to suppress contamination of the object to be polished by metal impurities by forming complex ions with metal impurities that can be contained in the polishing composition and capturing them.
  • Examples of chelating agents include aminocarboxylic acid chelating agents and organic phosphonic acid chelating agents.
  • aminocarboxylic acid chelating agents include ethylenediaminetetraacetic acid, ethylenediaminetetraacetic acid sodium, nitrilotriacetic acid, nitrilotriacetic acid sodium, nitrilotriacetic acid ammonium, hydroxyethylethylenediaminetriacetic acid, hydroxyethylethylenediamine sodium triacetate, diethylenetriaminepentaacetic acid Diethylenetriamine sodium pentaacetate, triethylenetetramine hexaacetic acid and sodium triethylenetetramine hexaacetate.
  • organic phosphonic acid chelating agents examples include 2-aminoethylphosphonic acid, 1-hydroxyethylidene-1,1-diphosphonic acid, aminotri (methylenephosphonic acid), ethylenediaminetetrakis (methylenephosphonic acid), diethylenetriaminepenta (methylenephosphonic).
  • Ethane-1,2-dicarboxy-1,2-diphosphonic acid methanehydroxyphosphonic acid, 2-phosphonobutane-1,2-dicarboxylic acid, 1-phosphonobutane-2,3,4-tricarboxylic acid and ⁇ -methylphospho Nosuccinic acid is included.
  • organic phosphonic acid-based chelating agents are more preferable, and ethylenediaminetetrakis (methylenephosphonic acid) and diethylenetriaminehexaacetic acid are particularly preferable.
  • a particularly preferred chelating agent is ethylenediaminetetrakis (methylenephosphonic acid).
  • the polishing composition disclosed herein may contain a surfactant (typically a water-soluble organic compound having a molecular weight of less than 1 ⁇ 10 4 ) as an optional component.
  • a surfactant typically a water-soluble organic compound having a molecular weight of less than 1 ⁇ 10 4
  • the dispersion stability of the polishing composition can be improved.
  • Surfactant can be used individually by 1 type or in combination of 2 or more types.
  • an anionic or nonionic surfactant can be preferably used. From the viewpoint of low foaming property and ease of pH adjustment, a nonionic surfactant is more preferable.
  • oxyalkylene polymers such as polyethylene glycol, polypropylene glycol, polytetramethylene glycol; polyoxyethylene alkyl ether, polyoxyethylene alkylphenyl ether, polyoxyethylene alkylamine, polyoxyethylene fatty acid ester, polyoxyethylene glyceryl ether fatty acid
  • Nonionic surfactants such as esters, polyoxyalkylene adducts such as polyoxyethylene sorbitan fatty acid esters; copolymers of plural types of oxyalkylene (diblock type, triblock type, random type, alternating type); It is done.
  • the amount of the surfactant used is suitably 5 g or less per kg of abrasive grains, preferably 2 g or less, and more preferably 1 g or less.
  • the polishing composition disclosed herein can also be preferably implemented in an embodiment that does not substantially contain a surfactant.
  • the polishing composition disclosed herein is a polishing composition such as an organic acid, an organic acid salt, an inorganic acid, an inorganic acid salt, an antiseptic, and an antifungal agent as long as the effects of the present invention are not significantly hindered.
  • organic acids include fatty acids such as formic acid, acetic acid and propionic acid, aromatic carboxylic acids such as benzoic acid and phthalic acid, citric acid, oxalic acid, tartaric acid, malic acid, maleic acid, fumaric acid, succinic acid, organic Examples include sulfonic acid and organic phosphonic acid.
  • organic acid salts include alkali metal salts (sodium salts, potassium salts, etc.) and ammonium salts of organic acids.
  • inorganic acids include sulfuric acid, nitric acid, hydrochloric acid, carbonic acid and the like.
  • inorganic acid salts include alkali metal salts (sodium salts, potassium salts, etc.) and ammonium salts of inorganic acids.
  • An organic acid and its salt, and an inorganic acid and its salt can be used individually by 1 type or in combination of 2 or more types.
  • antiseptics and fungicides include isothiazoline compounds, paraoxybenzoates, phenoxyethanol and the like.
  • the polishing composition disclosed here contains substantially no oxidizing agent. If the polishing composition contains an oxidizing agent, the surface of the silicon wafer is oxidized to produce an oxide film by supplying the composition to the silicon wafer, thereby reducing the polishing rate. This is possible.
  • the oxidizing agent herein include hydrogen peroxide (H 2 O 2 ), sodium dichloroisocyanurate, and the like.
  • polishing composition does not contain an oxidizing agent substantially means not containing an oxidizing agent at least intentionally.
  • the polishing composition disclosed herein is typically supplied to a polishing object in the form of a polishing liquid containing the polishing composition, and used for polishing the polishing object.
  • the polishing liquid may be prepared, for example, by diluting (typically diluting with water) any of the polishing compositions disclosed herein. Or you may use this polishing composition as polishing liquid as it is. That is, the concept of the polishing composition in the technology disclosed herein is used as a polishing liquid diluted with a polishing liquid (working slurry) that is supplied to a polishing object and used for polishing the polishing object. Both concentrated liquid (polishing liquid stock solution) are included.
  • Another example of the polishing liquid containing the polishing composition disclosed herein is a polishing liquid obtained by adjusting the pH of the composition.
  • the content of abrasive grains in the polishing liquid disclosed herein is not particularly limited, but is typically 0.05% by weight or more, preferably 0.1% by weight or more, and 0.2% by weight or more. More preferably, it is 0.3% by weight or more (for example, 0.4% by weight or more). Higher polishing rates can be achieved by increasing the abrasive content. Further, from the viewpoint of dispersion stability of the polishing composition, the content is usually suitably 10% by weight or less, preferably 7% by weight or less, more preferably 5% by weight or less, and still more preferably. 3% by weight or less. From the viewpoint of obtaining higher surface quality, the content of the abrasive grains can be 2% by weight or less, may be 1% by weight or less, and may be 0.8% by weight or less (eg, 0.5% by weight or less). Good.
  • the pH of the polishing liquid is preferably 8.0 or more, more preferably 9.0 or more, and further preferably 9.5 or more. As the pH of the polishing liquid increases, the polishing rate of the silicon wafer tends to improve.
  • the upper limit of the pH of the polishing liquid is not particularly limited, but is preferably 12.0 or less, more preferably 11.5 or less, and even more preferably 11.0 or less. By this, it can prevent that the abrasive grain (especially silica particle with a protrusion) contained in polishing liquid melt
  • the pH can be preferably applied to a polishing liquid used for polishing a silicon wafer.
  • the pH of the polishing liquid was measured using a pH meter (for example, a glass electrode type hydrogen ion concentration indicator (model number F-23) manufactured by Horiba, Ltd.) and a standard buffer solution (phthalate pH buffer solution: pH 4.01 ( 25 ° C), neutral phosphate pH buffer solution pH: 6.86 (25 ° C), carbonate pH buffer solution pH: 10.01 (25 ° C)), and then the glass electrode It can be grasped by measuring the value after being put in the polishing liquid and stabilized after 2 minutes or more.
  • a pH meter for example, a glass electrode type hydrogen ion concentration indicator (model number F-23) manufactured by Horiba, Ltd.
  • a standard buffer solution phthalate pH buffer solution: pH 4.01 ( 25 ° C), neutral phosphate pH buffer solution pH: 6.86 (25 ° C), carbonate pH buffer solution pH: 10.01 (25 ° C)
  • the polishing composition disclosed herein may be in a concentrated form (that is, in the form of a polishing liquid concentrate) before being supplied to the object to be polished.
  • the polishing composition in such a concentrated form is advantageous from the viewpoints of convenience, cost reduction, etc. during production, distribution, storage and the like.
  • the concentration rate can be, for example, about 2 to 100 times in terms of volume, and usually about 5 to 50 times is appropriate.
  • the concentration ratio of the polishing composition according to a preferred embodiment is 10 to 40 times.
  • the polishing composition in the form of a concentrated liquid can be used in such a manner that a polishing liquid is prepared by diluting at a desired timing and the polishing liquid is supplied to an object to be polished.
  • the dilution can be typically performed by adding and mixing the above-mentioned aqueous solvent to the concentrated solution.
  • the aqueous solvent is a mixed solvent, only a part of the components of the aqueous solvent may be added for dilution, and a mixture containing these components in a different ratio from the aqueous solvent.
  • a solvent may be added for dilution.
  • a part of them may be diluted and then mixed with another agent to prepare a polishing liquid, or a plurality of agents may be mixed. Later, the mixture may be diluted to prepare a polishing liquid.
  • the NV of the concentrated liquid can be 50% by weight or less, for example.
  • the NV of the concentrated liquid is usually suitably 40% by weight or less, and 30% by weight or less. Preferably, it is 20% by weight or less, for example, 15% by weight or less.
  • the NV of the concentrate is suitably 0.5% by weight or more, preferably 1% by weight or more, more preferably Is 3% by weight or more, for example, 5% by weight or more.
  • the content of abrasive grains in the concentrated liquid can be, for example, 50% by weight or less.
  • the content is usually preferably 45% by weight or less, more preferably 40% by weight or less.
  • the abrasive content may be 30% by weight or less, or 20% by weight or less (eg, 15% by weight or less).
  • the content of abrasive grains can be, for example, 0.5% by weight or more, preferably 1% by weight or more, and more preferably Is 3% by weight or more (for example, 4% by weight or more).
  • the polishing composition disclosed herein may be a one-part type or a multi-part type including a two-part type.
  • the liquid A containing a part of the constituents of the polishing composition typically, components other than the aqueous solvent
  • the liquid B containing the remaining components are mixed to form a polishing object. You may be comprised so that it may be used for grinding
  • each component contained in the polishing composition may be mixed using a well-known mixing device such as a blade-type stirrer, an ultrasonic disperser, or a homomixer.
  • a well-known mixing device such as a blade-type stirrer, an ultrasonic disperser, or a homomixer.
  • the aspect which mixes these components is not specifically limited, For example, all the components may be mixed at once and may be mixed in the order set suitably.
  • the polishing composition disclosed herein can be preferably used as a polishing composition for polishing a silicon wafer (typically a single crystal silicon wafer).
  • a polishing liquid typically a slurry-like polishing liquid, sometimes referred to as a polishing slurry
  • Preparing the polishing liquid may include preparing a polishing liquid by adding operations such as concentration adjustment (for example, dilution) and pH adjustment to the polishing composition. Or you may use the said polishing composition as polishing liquid as it is.
  • concentration adjustment for example, dilution
  • pH adjustment for example, a polishing slurry
  • mixing those agents, diluting one or more agents before the mixing, and after the mixing Diluting the mixture, etc. can be included.
  • the polishing liquid is supplied to the object to be polished and polished by a conventional method.
  • the silicon wafer that has undergone the lapping process and the double-side polishing process (primary polishing process) is set in a general single-side polishing apparatus and passed through the polishing pad of the polishing apparatus.
  • a polishing liquid is supplied to the surface (surface to be polished) of the silicon wafer.
  • the polishing pad is pressed against the surface of the silicon wafer to relatively move (for example, rotate) the two. Thereafter, a further secondary polishing step is performed as necessary, and final polishing is finally performed to complete the polishing of the object to be polished.
  • polishing pad used in the polishing process using the polishing composition disclosed herein is not particularly limited.
  • any of non-woven fabric type, suede type, polyurethane type, those containing abrasive grains, and those not containing abrasive grains may be used.
  • the silicon wafer manufacturing method including the process of grind
  • the silicon wafer manufacturing method disclosed herein may further include a step of performing double-side polishing of the silicon wafer before the polishing step using the polishing composition.
  • final polishing refers to the final polishing step in the manufacturing process of the object (that is, a step in which no further polishing is performed after that step).
  • the above double-side polishing step and final polishing step may be performed using the polishing composition disclosed herein, or may be performed using another polishing composition.
  • the silicon wafer polishing step using the polishing composition is a polishing step upstream of final polishing.
  • the polishing composition disclosed herein is suitable as a polishing composition used for polishing a silicon wafer in the first secondary polishing step.
  • Example 1 A polishing composition according to this example was prepared by mixing silica particles (abrasive grain A) having a plurality of protrusions, ammonia water (concentration 29%), a water-soluble polymer and pure water.
  • silica particles abrasive grain A
  • ammonia water concentration 29%)
  • a water-soluble polymer a water-soluble polymer
  • pure water concentration 29%
  • the average height of protrusions on the surface of silica particles having a particle diameter larger than the volume average particle diameter was 5.5 nm
  • the average protrusion degree was 0.27.
  • the average primary particle diameter D P1 of the abrasive grains A is 30 nm
  • average secondary particle diameter D P2 was 58 nm.
  • the average primary particle diameter DP1 is measured using a surface area measuring device manufactured by Micromerex, Inc., trade name “Flow Sorb II 2300”. Further, the average secondary particle diameter D P2 is the volume average particle diameter was measured using a Nikkiso Co. Model "UPA-UT151".
  • As the water-soluble polymer hydroxyethyl cellulose (HEC) having an Mw of about 120 ⁇ 10 4 was used.
  • the amount of abrasive grains A, aqueous ammonia and water-soluble polymer used is such that the abrasive grain A content in the polishing composition is 0.46%, the ammonia (NH 3 ) content is 0.041%, and the water-soluble polymer. The content was set to 0.009% (19.6 g with respect to 1 kg of abrasive grains).
  • the resulting polishing composition had a pH of 10.4.
  • Example 2 In Example 1, it replaced with the abrasive grain A and the silica particle (abrasive grain B) which has a some protrusion on the surface was used.
  • the average height of protrusions on the surface of silica particles having a particle diameter larger than the volume average particle diameter was 5.5 nm, and the average protrusion degree was 0.25.
  • the average primary particle diameter D P1 of the abrasive grains B is 30 nm
  • average secondary particle diameter D P2 was 58 nm.
  • the other points were the same as in Example 1, and a polishing composition according to this example was prepared.
  • the polishing composition had a pH of 10.4.
  • Example 3 Abrasive grain A, ammonia water (concentration 29%), tetramethylammonium hydroxide (TMAH), a water-soluble polymer and pure water were mixed to prepare a polishing composition according to this example.
  • the same HEC as in Example 1 was used as the water-soluble polymer.
  • the amount of abrasive grains A, aqueous ammonia, TMAH and water-soluble polymer used is 0.46% for abrasive grains A in the polishing composition, 0.03% for ammonia (NH 3 ), and TMAH.
  • the content was 0.06%, and the content of the water-soluble polymer was 0.009%.
  • the resulting polishing composition had a pH of 10.8.
  • Example 1 In Example 1, in place of the abrasive A, the average primary particle diameter D P1 is 35 nm, was used an average secondary particle diameter D P2 is 64nm peanut shape of the colloidal silica (abrasive C). The other points were the same as in Example 1, and a polishing composition according to this example was prepared. The pH was 10.4.
  • Example 2 In Example 1, in place of the abrasive A, an average primary particle diameter D P1 is 80 nm, was used spherical colloidal silica having an average secondary particle diameter D P2 is 97 nm (abrasive grain D). The other points were the same as in Example 1, and a polishing composition according to this example was prepared. The pH was 10.6.
  • Example 3 (Comparative Example 3) In Example 1, TMAH was used instead of ammonia water in an amount such that the content in the polishing composition was 1.365%. The other points were the same as in Example 1, and a polishing composition according to this example was prepared. The pH was 11.0.
  • Example 4 (Comparative Example 4) In Example 1, instead of ammonia water, potassium hydroxide (KOH) was used in an amount such that the content in the polishing composition was 0.84%. The other points were the same as in Example 1, and a polishing composition according to this example was prepared. The pH was 11.0.
  • KOH potassium hydroxide
  • Example 5 (Comparative Example 5) In Example 1, triethanolamine was used in an amount such that the content in the polishing composition was 2.235% instead of ammonia water. The other points were the same as in Example 1, and a polishing composition according to this example was prepared. The pH was 11.0.
  • Polishing device One-side polishing device manufactured by Fujikoshi Machine Industry Co., Ltd. Model “SPM-15” Polishing pad: Fujimi Incorporated, suede polishing pad "Surfin 000FM” Polishing pressure: 94 g / cm 2 Surface plate rotation speed: 30 rotations / min. Head rotation speed: 30 rotations / min. Polishing time: 30 minutes. Polishing liquid supply rate: 500 mL / min. Polishing liquid temperature: 25 ° C
  • polishing slurry (trade name “GLANZOX 2100” manufactured by Fujimi Incorporated, Inc.) to adjust the surface roughness to 0.1 nm to 10 nm, and then polished under the following conditions: .
  • Polishing device One-side polishing device manufactured by Fujikoshi Machine Industry Co., Ltd. Model “SPM-15” Polishing pad: Fujimi Incorporated, suede polishing pad "Surfin 000FM” Polishing pressure: 94 g / cm 2
  • Surface plate rotation speed 30 rotations / min.
  • Head rotation speed 30 rotations / min.
  • Polishing time 5 minutes.
  • Polishing liquid supply rate 500 mL / min.
  • Polishing liquid temperature 25 ° C
  • the polishing rate could be improved by 10% to 20% compared to Comparative Examples 1 and 2 using peanut-shaped or spherical colloidal silica.
  • the surface quality of the same level as that of Comparative Example 1 could be maintained in both the haze and the number of defects.
  • Example 3 In Example 3 in which TMAH was used in addition to ammonia as a polishing accelerator, an even higher polishing rate improvement effect was obtained and the number of defects was the same as in Examples 1 and 2 using ammonia alone. The haze value tended to increase slightly.
  • Comparative Examples 3 to 5 using the polishing composition containing no inorganic basic compound (A) the polishing rate was lower than that of Comparative Example 1 despite using the silica particles with protrusions.
  • Comparative Example 3 in which KOH alone was used as the polishing accelerator the haze value was greatly increased as compared with Comparative Example 1, and the surface quality was deteriorated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

Provided is a polishing composition with which an improvement in polishing rate can be achieved while suppressing the impact on surface quality, in relation to the polishing of silicon wafers. According to the present invention, a polishing composition for polishing silicon wafers is provided. The polishing composition includes, as abrasive grains, silica particles having a plurality of protrusions on surfaces thereof. The polishing composition further includes an inorganic basic compound (A) selected from the group consisting of ammonia and ammonium salts.

Description

研磨用組成物、研磨用組成物の製造方法およびシリコンウェーハ製造方法Polishing composition, method for producing polishing composition, and method for producing silicon wafer
 本発明は、シリコンウェーハを研磨するための研磨用組成物およびその製造方法に関する。また、上記研磨用組成物を使用してシリコンウェーハを製造する方法に関する。本出願は、2013年9月26日に出願された日本国特許出願2013-200641号に基づく優先権を主張しており、その出願の全内容は本明細書中に参照として組み入れられている。 The present invention relates to a polishing composition for polishing a silicon wafer and a method for producing the same. Moreover, it is related with the method of manufacturing a silicon wafer using the said polishing composition. This application claims priority based on Japanese Patent Application No. 2013-200601 filed on Sep. 26, 2013, the entire contents of which are incorporated herein by reference.
 半導体製品の構成要素等として用いられるシリコンウェーハの表面は、一般に、ラッピング工程(粗研磨工程)とポリシング工程(精密研磨工程)とを経て高品位の鏡面に仕上げられる。上記ポリシング工程は、典型的には、予備ポリシング工程(予備研磨工程)とファイナルポリシング工程(最終研磨工程)とを含む。上記ポリシング工程における研磨方法として、水、砥粒および研磨促進剤を含む研磨用組成物を用いるケミカルメカニカルポリシング(CMP)法が知られている。研磨用組成物に関する技術文献として特許文献1および2が挙げられる。 The surface of a silicon wafer used as a component of a semiconductor product is generally finished to a high-quality mirror surface through a lapping process (rough polishing process) and a polishing process (precision polishing process). The polishing process typically includes a preliminary polishing process (preliminary polishing process) and a final polishing process (final polishing process). As a polishing method in the polishing step, a chemical mechanical polishing (CMP) method using a polishing composition containing water, abrasive grains and a polishing accelerator is known. Patent documents 1 and 2 are mentioned as technical literature about a constituent for polish.
日本国特許出願公開2008-53415号公報Japanese Patent Application Publication No. 2008-53415 日本国特許出願公開2013-121631号公報Japanese Patent Application Publication No. 2013-121631
 近年、シリコンウェーハ等の半導体基板その他の基板について、より高品位の表面が要求されるようになってきている。特に、生産性やコスト等への配慮から、ポリシング工程に要するトータルの研磨時間(合計研磨時間)を延ばすことなく、より高品位の表面を得ることが望まれている。そのための一手法として、ポリシング工程に含まれる研磨工程のうちファイナルポリシング工程より上流のいずれかの研磨工程について、当該研磨工程により到達し得る表面品質を同等またはそれ以上に維持しつつ、該研磨工程における研磨レートを向上させることができれば有益である。このことによって、より下流の研磨工程(例えばファイナルポリシング工程)に費やし得る時間が長くなり、研磨対象物をより平滑性の高い表面に磨き上げ得るためである。
 しかし、一般に研磨後の表面品質と研磨レートとは相反する関係にあり、研磨レートを向上させようとすると表面品質は低下する傾向にある。
In recent years, higher quality surfaces have been required for semiconductor substrates such as silicon wafers and other substrates. In particular, in consideration of productivity and cost, it is desired to obtain a higher quality surface without extending the total polishing time (total polishing time) required for the polishing process. As one of the techniques, the polishing process is performed while maintaining the surface quality that can be reached by the polishing process with respect to any polishing process upstream of the final polishing process among the polishing processes included in the polishing process. It would be beneficial if the polishing rate could be improved. This is because the time that can be spent in the downstream polishing process (for example, final polishing process) is increased, and the polishing object can be polished to a smoother surface.
However, in general, the surface quality after polishing and the polishing rate are in a contradictory relationship, and the surface quality tends to decrease when the polishing rate is improved.
 本発明は、かかる事情に鑑みてなされたものであり、表面品質への影響を抑えつつ研磨レートを向上させ得る研磨用組成物を提供することを目的とする。本発明の他の目的は、そのような研磨用組成物を用いてシリコンウェーハを製造する方法を提供することである。 The present invention has been made in view of such circumstances, and an object thereof is to provide a polishing composition that can improve the polishing rate while suppressing the influence on the surface quality. Another object of the present invention is to provide a method for producing a silicon wafer using such a polishing composition.
 この明細書によると、シリコンウェーハを研磨するための研磨用組成物が提供される。その研磨用組成物は、複数の突起を表面に有するシリカ粒子(以下「突起付きシリカ粒子」ともいう。)を砥粒として含む。上記研磨用組成物は、さらにアンモニアおよびアンモニウム塩からなる群から選択される無機塩基性化合物(A)を含有する。このような組成の研磨用組成物を用いた研磨によると、下流の研磨工程のために、より効率よく高品質の表面を供給することができる。したがって、上記研磨用組成物は、例えばポリシング工程に含まれる複数の研磨工程のうちファイナルポリシング工程より上流のいずれかの研磨工程に適用されて、最終的に得られるシリコンウェーハの表面品位の向上に有意に寄与し得る。 According to this specification, a polishing composition for polishing a silicon wafer is provided. The polishing composition contains silica particles having a plurality of protrusions on the surface (hereinafter also referred to as “silica particles with protrusions”) as abrasive grains. The polishing composition further contains an inorganic basic compound (A) selected from the group consisting of ammonia and ammonium salts. According to the polishing using the polishing composition having such a composition, a high-quality surface can be supplied more efficiently for the downstream polishing step. Therefore, the polishing composition is applied to any polishing process upstream of the final polishing process among a plurality of polishing processes included in the polishing process, for example, to improve the surface quality of the finally obtained silicon wafer. Can contribute significantly.
 上記突起付きシリカ粒子は、研磨用組成物中に含まれる突起付きシリカ粒子のうちその体積平均粒子径よりも粒子径の大きな突起付きシリカ粒子について、該突起付きシリカ粒子の突起の高さをそれぞれ同じ突起の基部における幅で除することにより得られる値(以下「突起度」ともいう。)の平均が0.245以上であることが好ましい。上記突起度の平均(以下「平均突起度」ともいう。)が0.245以上である突起付きシリカ粒子によると、研磨レートを向上させる効果が好適に発揮され得る。 The above-mentioned silica particles with projections are the heights of the projections of the silica particles with projections, with respect to the silica particles with projections larger than the volume average particle size among the silica particles with projections contained in the polishing composition. The average of values obtained by dividing by the width at the base of the same protrusion (hereinafter also referred to as “protrusion degree”) is preferably 0.245 or more. According to the silica particles with protrusions having an average protrusion degree (hereinafter also referred to as “average protrusion degree”) of 0.245 or more, the effect of improving the polishing rate can be suitably exhibited.
 上記研磨用組成物は、さらに水溶性ポリマーを含んでもよい。水溶性ポリマーを含む研磨用組成物によると、より高品質の表面が提供され得る。これにより、研磨レートを向上させつつ、表面品質の低下を効果的に抑制することができる。 The polishing composition may further contain a water-soluble polymer. A polishing composition comprising a water-soluble polymer can provide a higher quality surface. Thereby, the deterioration of the surface quality can be effectively suppressed while improving the polishing rate.
 ここに開示される技術の好ましい一態様において、上記研磨用組成物に含まれる上記水溶性ポリマーの量は、上記砥粒1kgにつき5g~50gとすることができる。このような組成において、突起付きシリカ粒子および無機塩基性化合物(A)と水溶性ポリマーとを組み合わせて含むことによる効果が好適に発揮され得る。 In a preferred embodiment of the technology disclosed herein, the amount of the water-soluble polymer contained in the polishing composition can be 5 g to 50 g per kg of the abrasive grains. In such a composition, the effect of including the silica particles with protrusions and the inorganic basic compound (A) in combination with the water-soluble polymer can be suitably exhibited.
 ところで、近年のシリコンウェーハの製造方法には、上述したポリシング工程のなかに、シリコンウェーハの両面を同時に研磨する両面研磨工程と、その後に該シリコンウェーハの片面をより精密に研磨する片面研磨工程とが含まれることが多い。両面研磨工程は、1次研磨工程と称されることもあり、一般にシリコンウェーハを両面研磨装置にセットして行われる。両面研磨後のシリコンウェーハは、洗浄、乾燥、および必要に応じてエッジ研磨等の加工を行った後、片面研磨装置にセットして片面研磨工程に供される。片面研磨工程のなかには2以上の研磨工程が含まれ得る。それら2以上の研磨工程は、典型的には、ファイナルポリシング工程と、ファイナルポリシングに先立って行われる2次研磨工程とを含む。2次研磨工程は、さらに複数の研磨工程に分けて行われることもある。 By the way, in recent silicon wafer manufacturing methods, in the polishing step described above, a double-side polishing step for simultaneously polishing both surfaces of the silicon wafer, and then a single-side polishing step for polishing one surface of the silicon wafer more precisely. Is often included. The double-side polishing step is sometimes referred to as a primary polishing step, and is generally performed by setting a silicon wafer in a double-side polishing apparatus. The silicon wafer after the double-side polishing is subjected to cleaning, drying, and processing such as edge polishing as necessary, and then set in a single-side polishing apparatus and subjected to a single-side polishing step. Two or more polishing steps may be included in the single-side polishing step. The two or more polishing steps typically include a final polishing step and a secondary polishing step performed prior to final polishing. The secondary polishing process may be further divided into a plurality of polishing processes.
 ここに開示される研磨用組成物は、上記片面研磨工程のうち最初の研磨工程(すなわち、最初の2次研磨工程)に使用されることが好ましい。上記研磨用組成物が最初の2次研磨工程に使用されることにより、該研磨用組成物が突起付きシリカ粒子と無機塩基性化合物(A)とを組み合わせて含むことによる効果が特によく発揮され得る。 The polishing composition disclosed herein is preferably used in the first polishing step (that is, the first secondary polishing step) in the single-side polishing step. By using the polishing composition in the first secondary polishing step, the effect of including the combination of the protruding silica particles and the inorganic basic compound (A) is particularly well exhibited. obtain.
 この明細書によると、また、シリコンウェーハを研磨するための研磨用組成物を製造する方法が提供される。その方法は、複数の突起を表面に有するシリカ粒子を含む砥粒と、アンモニアおよびアンモニウム塩からなる群から選択される無機塩基性化合物(A)と、を含む研磨用組成物を調製することを特徴とする。かかる方法によると、ここに開示されるいずれかの研磨用組成物を好適に製造することができる。 According to this specification, a method for producing a polishing composition for polishing a silicon wafer is also provided. The method comprises preparing a polishing composition comprising abrasive grains containing silica particles having a plurality of protrusions on the surface, and an inorganic basic compound (A) selected from the group consisting of ammonia and ammonium salts. Features. According to such a method, any of the polishing compositions disclosed herein can be suitably produced.
 この明細書によると、また、シリコンウェーハを製造する方法が提供される。その方法は、シリコンウェーハの両面を同時に研磨する両面研磨工程と、上記両面研磨工程を経たシリコンウェーハの片面をより精密に研磨する片面研磨工程とを包含する。上記片面研磨工程は2以上の研磨工程を含み、それらのうち最初の研磨工程では、ここに開示されるいずれかの研磨用組成物を用いて研磨を行う。かかるシリコンウェーハ製造方法によると、片面研磨工程のうち最初の研磨工程において上記研磨用組成物を用いることにより、下流の研磨工程のために、より効率よく高品質の表面を供給することができる。このことによって、最終的に、より表面品位の高いシリコンウェーハが製造され得る。 According to this specification, a method for manufacturing a silicon wafer is also provided. The method includes a double-side polishing step in which both surfaces of the silicon wafer are simultaneously polished, and a single-side polishing step in which one side of the silicon wafer that has undergone the double-side polishing step is more precisely polished. The single-side polishing step includes two or more polishing steps, and in the first polishing step, polishing is performed using any of the polishing compositions disclosed herein. According to this silicon wafer manufacturing method, by using the polishing composition in the first polishing step of the single-side polishing step, a high-quality surface can be supplied more efficiently for the downstream polishing step. As a result, a silicon wafer having a higher surface quality can be finally produced.
複数の突起を表面に有するシリカ粒子の外形を投影した輪郭線を示す模式図である。It is a schematic diagram which shows the outline which projected the external shape of the silica particle which has a some processus | protrusion on the surface.
 以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。 Hereinafter, preferred embodiments of the present invention will be described. Note that matters other than matters specifically mentioned in the present specification and necessary for the implementation of the present invention can be grasped as design matters of those skilled in the art based on the prior art in this field. The present invention can be carried out based on the contents disclosed in this specification and common technical knowledge in the field.
 <砥粒>
 ここに開示される研磨用組成物は、複数の突起を表面に有するシリカ粒子(突起付きシリカ粒子)を砥粒として含む。このような突起付きシリカ粒子は、表面に複数の突起を有しない形状のシリカ粒子に比べて、研磨対象物の表面に対してより高い機械的研磨作用を発揮し得る。ここで、球状のシリカ粒子やピーナッツ型のシリカ粒子は、表面に複数の突起を有しない形状のシリカ粒子の概念に包含される典型例である。
<Abrasive grains>
The polishing composition disclosed herein contains silica particles having a plurality of protrusions on the surface (silica particles with protrusions) as abrasive grains. Such silica particles with protrusions can exhibit a higher mechanical polishing action on the surface of the object to be polished than silica particles having a shape that does not have a plurality of protrusions on the surface. Here, spherical silica particles and peanut-type silica particles are typical examples included in the concept of silica particles having a shape that does not have a plurality of protrusions on the surface.
 突起付きシリカ粒子における突起の数は、1粒子当たりの平均で、2以上であることが好ましく、3以上であることがより好ましく、5以上であることがさらに好ましい。ここでいう突起とは、シリカ粒子の粒子径に比べて、充分に小さい高さおよび幅を有するものである。より具体的には、図1に示すシリカ粒子の輪郭線のうち、点Aから点Cを経由して点Bに至る部分の長さが、該輪郭線に内接する最大の円(最大内接円)の円周長さの4分の1を超えないような突起を指す。 The number of protrusions in the silica particles with protrusions is preferably 2 or more, more preferably 3 or more, and further preferably 5 or more on an average per particle. Here, the protrusions have a height and width that are sufficiently smaller than the particle diameter of the silica particles. More specifically, the length of the part from the point A to the point B via the point C in the outline of the silica particle shown in FIG. 1 is the maximum circle inscribed in the outline (maximum inscribed A protrusion that does not exceed a quarter of the circumference of the circle.
 なお、図1において、上記点Aおよび点Bは上記輪郭線における突起の基点を示し、点Cは突起の頂点を示している。ここに開示される技術における突起付きシリカ粒子について、突起の幅とは、突起の基部における幅のことをいい、図1においては点Aと点Bの間の距離として表される。また、突起の高さとは、突起の基部と、その基部から最も離れた突起の部位との間の距離のことをいい、図1においては直線ABと直交する線分CDの長さとして表される。 In FIG. 1, the points A and B indicate the base points of the protrusions on the contour line, and the point C indicates the apex of the protrusions. For the silica particles with protrusions in the technology disclosed herein, the width of the protrusions refers to the width at the base of the protrusions, and is represented as the distance between the points A and B in FIG. Further, the height of the protrusion refers to the distance between the base of the protrusion and the portion of the protrusion farthest from the base, and is represented as the length of the line segment CD orthogonal to the straight line AB in FIG. The
 ここに開示される技術において、突起付きシリカ粒子の平均突起度は特に限定されない。例えば、平均突起度が0.170以上の突起付きシリカ粒子を用いることができる。平均突起度は、0.200以上であることが好ましく、0.220以上であることがより好ましく、0.245以上(例えば0.255以上)であることがさらに好ましい。突起付きシリカ砥粒の平均突起度が大きくなると、突起の形状が鋭くなる傾向にある。このことによって、研磨レートを向上させる効果がよりよく発揮され得る。
 平均突起度の上限は特に制限されない。製造容易性や強度の観点から、通常、平均突起度が0.5以下の突起付きシリカ粒子を好ましく採用し得る。より高い表面品質を得る観点から、上記平均突起度は、0.4以下であることが好ましく、0.37以下(例えば0.35以下)であることがより好ましい。
In the technique disclosed here, the average protrusion degree of the silica particles with protrusions is not particularly limited. For example, silica particles with protrusions having an average protrusion degree of 0.170 or more can be used. The average protrusion degree is preferably 0.200 or more, more preferably 0.220 or more, and further preferably 0.245 or more (for example, 0.255 or more). When the average protrusion degree of the silica abrasive grains with protrusions increases, the shape of the protrusions tends to be sharp. As a result, the effect of improving the polishing rate can be better exhibited.
The upper limit of the average protrusion degree is not particularly limited. From the viewpoint of ease of manufacture and strength, usually, silica particles with protrusions having an average protrusion degree of 0.5 or less can be preferably employed. From the viewpoint of obtaining higher surface quality, the average protrusion degree is preferably 0.4 or less, and more preferably 0.37 or less (for example, 0.35 or less).
 この明細書において平均突起度とは、研磨用組成物に含まれる突起付きシリカ粒子のうち該突起付きシリカ粒子の体積平均粒子径よりも大きい粒子径を有する突起付きシリカ粒子において、表面に有している突起の高さをHとし、その突起の基部における幅をWとしたとき、H/Wで表わされる値(突起度)の平均値のことをいう。上記突起付きシリカ粒子の各突起の高さHおよびその基部における幅Wは、一般的な画像解析ソフトウエアを用いて、突起付きシリカ粒子の走査型電子顕微鏡像を解析することにより求めることができる。 In this specification, the average degree of protrusion is the surface of a silica particle with protrusions having a particle diameter larger than the volume average particle diameter of the silica particles with protrusions among the silica particles with protrusions included in the polishing composition. This means the average value of the values (protrusion degree) represented by H / W, where H is the height of the protrusion and W is the width at the base of the protrusion. The height H of each protrusion of the silica particles with protrusions and the width W at the base thereof can be obtained by analyzing a scanning electron microscope image of the silica particles with protrusions using general image analysis software. .
 研磨用組成物に含まれる突起付きシリカ粒子のうち体積平均粒子径よりも粒子径の大きな突起付きシリカ粒子における突起の平均高さは、例えば、3.5nm以上であることが適当であり、好ましくは4.0nm以上である。この突起の平均高さが大きくなるにつれて、研磨レートを向上させる効果が大きくなる傾向にある。上記突起の平均高さの上限は特に制限されない。より高い表面品質を得る観点から、上記突起の平均高さは、通常、10nm以下であることが適当であり、7.0nm以下であることが好ましい。 Among the silica particles with protrusions contained in the polishing composition, the average height of the protrusions in the silica particles with protrusions having a particle diameter larger than the volume average particle diameter is suitably, for example, 3.5 nm or more, preferably Is 4.0 nm or more. As the average height of the protrusions increases, the effect of improving the polishing rate tends to increase. The upper limit of the average height of the protrusion is not particularly limited. From the viewpoint of obtaining higher surface quality, the average height of the protrusions is usually suitably 10 nm or less, and preferably 7.0 nm or less.
 突起付きシリカ粒子は、例えば以下の方法で製造することができる。すなわち、まず、アンモニア水が触媒として加えられたメタノールと水との混合溶液に、アルコキシシランを連続的に添加して加水分解することにより、コロイダルシリカ粒子を含んだスラリーを得る。得られたスラリーを加熱してメタノールおよびアンモニアを留去する。その後、有機アルカリを触媒としてスラリーに加えてから、70℃以上の温度で再びアルコキシシランを連続的に添加して加水分解することにより、コロイダルシリカ粒子の表面に複数の突起を形成する。ここで使用可能な有機アルカリの具体例としては、トリエタノールアミンなどのアミン化合物や、テトラメチルアンモニウムヒドロキシドなどの第四級アンモニウム化合物が挙げられる。この方法によれば、金属不純物の含有量が1重量ppm以下のコロイダルシリカ粒子(突起付きシリカ粒子)を容易に得ることが可能である。 The silica particles with protrusions can be produced, for example, by the following method. That is, first, a slurry containing colloidal silica particles is obtained by continuously adding alkoxysilane to a mixed solution of methanol and water to which ammonia water is added as a catalyst and hydrolyzing the mixture. The resulting slurry is heated to distill off methanol and ammonia. Thereafter, an organic alkali is added to the slurry as a catalyst, and then alkoxysilane is continuously added again at a temperature of 70 ° C. or more to hydrolyze, thereby forming a plurality of protrusions on the surface of the colloidal silica particles. Specific examples of the organic alkali that can be used here include amine compounds such as triethanolamine and quaternary ammonium compounds such as tetramethylammonium hydroxide. According to this method, it is possible to easily obtain colloidal silica particles (silica particles with protrusions) having a metal impurity content of 1 ppm by weight or less.
 なお、アルコキシシランの加水分解によりコロイダルシリカを製造する一般的な方法は、例えば作花済夫の著による「ゾル-ゲル法の科学」の第154~156頁に記載されている。また、日本国特許出願公開平11-60232号公報には、ケイ酸メチルまたはケイ酸メチルとメタノールの混合物を水、メタノールおよびアンモニアまたはアンモニアとアンモニウム塩からなる混合溶媒中に滴下してケイ酸メチルと水とを反応させることにより製造される繭型コロイダルシリカの開示がある。日本国特許出願公開2001-48520号公報には、アルキルシリケートを酸触媒で加水分解した後、アルカリ触媒を加えて加熱してケイ酸の重合を進行させて粒子成長させることにより製造される細長形状のコロイダルシリカの開示がある。日本国特許出願公開2007-153732号公報には、特定の種類の加水分解触媒を特定の量で使用することにより、易加水分解性オルガノシリケートを原料として多数の小突起を有するコロイダルシリカを製造できることが記載されている。日本国特許出願公開2002-338232号公報には、単分散のコロイダルシリカに凝集剤を添加することにより球状に二次凝集させることの記載がある。日本国特許出願公開平07-118008号公報および国際公開第2007/018069号には、細長などの異形のコロイダルシリカを得るために、ケイ酸ソーダから得られる活性ケイ酸にカルシウム塩またはマグネシウム塩を添加することの開示がある。日本国特許出願公開2001-11433号公報には、ケイ酸ソーダから得られる活性ケイ酸にカルシウム塩を添加することにより数珠状のコロイダルシリカを得ることの開示がある。日本国特許出願公開2008-169102号公報には、シード粒子の表面に微小粒子を生成および成長させることで金平糖のように多数の小突起を有するコロイダルシリカを製造できることが記載されている。本明細書における突起付きシリカ粒子は、これらの文献に記載の方法の1種を単独でまたは2種以上組み合わせて使用することにより製造することも可能である。 A general method for producing colloidal silica by hydrolysis of alkoxysilane is described in, for example, pages 154 to 156 of “Science of Sol-Gel Method” by Sakuo Sakuhana. Japanese Patent Application Publication No. 11-60232 discloses that methyl silicate or a mixture of methyl silicate and methanol is dropped into water, methanol and ammonia or a mixed solvent composed of ammonia and an ammonium salt to drop methyl silicate. There is a disclosure of vertical colloidal silica produced by reacting water with water. Japanese Patent Application Publication No. 2001-48520 discloses an elongated shape produced by hydrolyzing an alkyl silicate with an acid catalyst, and then adding an alkali catalyst and heating to advance polymerization of silicic acid to grow particles. There is a disclosure of colloidal silica. Japanese Patent Application Publication No. 2007-153732 discloses that colloidal silica having a large number of small protrusions can be produced from a readily hydrolyzable organosilicate as a raw material by using a specific type of hydrolysis catalyst in a specific amount. Is described. Japanese Patent Application Publication No. 2002-338232 discloses that secondary agglomeration is made spherically by adding an aggregating agent to monodispersed colloidal silica. In Japanese Patent Application Publication No. 07-118008 and International Publication No. 2007/018069, a calcium salt or a magnesium salt is added to activated silicic acid obtained from sodium silicate in order to obtain irregular shaped colloidal silica such as slender shape. There is disclosure of adding. Japanese Patent Application Publication No. 2001-11433 discloses disclosure of beaded colloidal silica by adding a calcium salt to activated silicic acid obtained from sodium silicate. In Japanese Patent Application Publication No. 2008-169102, it is described that colloidal silica having a large number of small protrusions such as confetti can be produced by generating and growing fine particles on the surface of seed particles. The silica particles with protrusions in the present specification can also be produced by using one kind of methods described in these documents alone or in combination of two or more kinds.
 ここに開示される研磨用組成物は、本発明の効果を大きく損なわない範囲で、突起付きシリカ粒子以外の砥粒を含有してもよい。上記突起付きシリカ粒子以外の砥粒(以下「任意砥粒」ともいう。)は、例えば球状、ピーナッツ型、繭型等のような、表面に複数の突起を有しない形状のシリカ砥粒であり得る。上記任意砥粒は、また、シリカ以外の無機粒子、有機粒子、または有機無機複合粒子であってもよい。無機粒子の具体例としては、アルミナ粒子、酸化セリウム粒子、酸化クロム粒子、二酸化チタン粒子、酸化ジルコニウム粒子、酸化マグネシウム粒子、二酸化マンガン粒子、酸化亜鉛粒子、ベンガラ粒子等の酸化物粒子;窒化ケイ素粒子、窒化ホウ素粒子等の窒化物粒子;炭化ケイ素粒子、炭化ホウ素粒子等の炭化物粒子;ダイヤモンド粒子;炭酸カルシウムや炭酸バリウム等の炭酸塩等が挙げられる。有機粒子の具体例としては、ポリメタクリル酸メチル(PMMA)粒子やポリ(メタ)アクリル酸粒子(ここで(メタ)アクリル酸とは、アクリル酸およびメタクリル酸を包括的に指す意味である。)、ポリアクリロニトリル粒子等が挙げられる。任意砥粒は、1種を単独でまたは2種以上を組み合わせて用いることができる。 The polishing composition disclosed herein may contain abrasive grains other than the silica particles with protrusions as long as the effects of the present invention are not significantly impaired. Abrasive grains other than the silica particles with protrusions (hereinafter also referred to as “arbitrary abrasive grains”) are silica abrasive grains having a shape that does not have a plurality of protrusions on the surface, such as a spherical shape, a peanut type, and a bowl shape. obtain. The above-mentioned arbitrary abrasive grains may also be inorganic particles other than silica, organic particles, or organic-inorganic composite particles. Specific examples of the inorganic particles include alumina particles, cerium oxide particles, chromium oxide particles, titanium dioxide particles, zirconium oxide particles, magnesium oxide particles, manganese dioxide particles, zinc oxide particles, bengara particles, etc .; silicon nitride particles And nitride particles such as boron nitride particles; carbide particles such as silicon carbide particles and boron carbide particles; diamond particles; carbonates such as calcium carbonate and barium carbonate. Specific examples of the organic particles include polymethyl methacrylate (PMMA) particles and poly (meth) acrylic acid particles (here, (meth) acrylic acid is a generic term for acrylic acid and methacrylic acid). And polyacrylonitrile particles. Arbitrary abrasive can be used individually by 1 type or in combination of 2 or more types.
 任意砥粒の含有量は、研磨用組成物に含まれる砥粒の全重量のうち、例えば30重量%以下とすることが適当であり、20重量%以下とすることが好ましく、10重量%以下とすることがより好ましい。ここに開示される技術は、任意砥粒の含有量が、研磨用組成物に含まれる砥粒の全重量のうち5重量%以下である態様で好ましく実施され得る。実質的に任意砥粒を含まない研磨用組成物であってもよい。ここで、研磨用組成物が任意砥粒を実質的に含まないとは、少なくとも意図的には任意砥粒が配合されていないことをいう。 The content of the optional abrasive grains is suitably, for example, 30% by weight or less, preferably 20% by weight or less, and preferably 10% by weight or less, based on the total weight of the abrasive grains contained in the polishing composition. More preferably. The technique disclosed herein can be preferably implemented in an embodiment in which the content of the optional abrasive grains is 5% by weight or less of the total weight of the abrasive grains contained in the polishing composition. The polishing composition may be substantially free of any abrasive grains. Here, the phrase “the polishing composition does not substantially contain any abrasive grains” means that the optional abrasive grains are not blended at least intentionally.
 研磨用組成物中の砥粒の平均一次粒子径DP1は特に制限されない。砥粒の平均一次粒子径DP1は、研磨効率等の観点から、好ましくは10nm以上、より好ましくは15nm以上、さらに好ましくは20nm以上である。また、より平滑性の高い表面が得られやすいという観点から、砥粒の平均一次粒子径DP1は、好ましくは100nm以下、より好ましくは50nm以下、さらに好ましくは40nm以下である。
 なお、砥粒の平均一次粒子径DP1は、例えば、BET法により測定される比表面積S(m/g)から平均一次粒子径DP1(nm)=2727/Sの式により算出することができる。砥粒の比表面積の測定は、例えば、マイクロメリテックス社製の表面積測定装置、商品名「Flow Sorb II 2300」を用いて行うことができる。
The average primary particle diameter D P1 of the abrasive grains in the polishing composition is not particularly limited. The average primary particle diameter D P1 of the abrasive grains, from the viewpoint of polishing efficiency, preferably 10nm or more, and more preferably 15nm or more, more preferably 20nm or more. Further, in view of smoother highly surface easily obtained, an average primary particle diameter D P1 of the abrasive grains is preferably 100nm or less, more preferably 50nm or less, more preferably 40nm or less.
The average primary particle diameter D P1 of the abrasive grains is calculated from the specific surface area S (m 2 / g) measured by the BET method, for example, according to the formula of average primary particle diameter D P1 (nm) = 2727 / S. Can do. The measurement of the specific surface area of the abrasive grains can be performed using, for example, a surface area measuring device manufactured by Micromeritex Co., Ltd., trade name “Flow Sorb II 2300”.
 研磨用組成物中の砥粒の平均二次粒子径DP2は特に限定されないが、研磨効率等の観点から、好ましくは20nm以上、より好ましくは30nm以上、さらに好ましくは40nm以上である。また、研磨用組成物の沈降安定性(分散安定性)の観点から、砥粒の平均二次粒子径DP2は、300nm以下が適当であり、典型的には200nm以下、好ましくは150nm以下、より好ましくは100nm以下である。さらに、表面品質の観点から、砥粒の平均二次粒子径DP2は、90nm以下であることが好ましく、80nm以下であることがより好ましく、70nm以下(例えば65nm以下)であることがさらに好ましい。
 なお、砥粒の平均二次粒子径DP2は、例えば、日機装株式会社製の型式「UPA-UT151」を用いた動的光散乱法により、体積平均粒子径として測定することができる。砥粒の体積平均粒子径は、研磨用組成物中の全砥粒の積算体積の50%に達するまで、動的光散乱法による粒子径の小さい砥粒から順に砥粒の体積を積算したときに最後に積算される砥粒の粒子径に等しい。
There is no particular average secondary particle diameter D P2 abrasive grains in the polishing composition limit, from the viewpoint of polishing efficiency, preferably 20nm or more, more preferably 30nm or more, more preferably 40nm or more. Further, from the viewpoint of sedimentation stability of the polishing composition (dispersion stability), average secondary particle diameter D P2 of the abrasive grains is appropriately 300nm or less, typically 200nm or less, preferably 150nm or less, More preferably, it is 100 nm or less. Furthermore, in view of surface quality, the abrasive grains having an average secondary particle diameter D P2 is preferably at 90nm or less, more preferably 80nm or less, still more preferably 70nm or less (e.g., 65nm or less) .
The average secondary particle diameter D P2 of the abrasive grains, for example, by dynamic light scattering method using a Nikkiso Co. Model "UPA-UT151", can be measured as a volume average particle diameter. When the volume average particle diameter of the abrasive grains reaches 50% of the cumulative volume of all abrasive grains in the polishing composition, the volume of the abrasive grains is accumulated in order from the abrasive grains having the smallest particle diameter by the dynamic light scattering method. It is equal to the particle diameter of the abrasive grain accumulated last.
 研磨用組成物中の砥粒の体積基準95%粒子径(D95値)は、500nm以下であることが好ましく、より好ましくは400nm以下である。砥粒の体積基準95%粒子径が小さくなるにつれて、研磨用組成物の沈降安定性(分散安定性)が向上する傾向にある。また、研磨用組成物を用いて研磨した後の研磨対象物の表面粗さが小さくなりやすくなる傾向にある。砥粒の体積基準95%粒子径は、研磨用組成物中の全砥粒の積算体積の95%に達するまで動的光散乱法による粒子径の小さい砥粒から順に砥粒の体積を積算したときに最後に積算される砥粒の粒子径に等しい。 The volume-based 95% particle diameter (D95 value) of the abrasive grains in the polishing composition is preferably 500 nm or less, more preferably 400 nm or less. As the volume-based 95% particle diameter of the abrasive grains decreases, the settling stability (dispersion stability) of the polishing composition tends to improve. Moreover, it exists in the tendency for the surface roughness of the grinding | polishing target object after grind | polishing using a polishing composition to become small easily. The volume-based 95% particle diameter of the abrasive grains was accumulated in order from the abrasive grains having the smallest particle diameter by dynamic light scattering until reaching 95% of the accumulated volume of all abrasive grains in the polishing composition. Sometimes equal to the particle size of the abrasive grain accumulated last.
 ここに開示される研磨用組成物に含まれる砥粒は、ナトリウム、カリウム、カルシウム、ホウ素、アルミニウム、チタン、ジルコニウム、マンガン、鉄、コバルト、銅、亜鉛、銀、鉛などの金属不純物の含有量の各々が1重量ppm以下であることが好ましく、これらの金属不純物の合計含有量が1重量ppm以下であることがより好ましい。金属不純物の含有量は、例えばIC重量分析装置により測定することができる。 The abrasive grains contained in the polishing composition disclosed herein contain metal impurities such as sodium, potassium, calcium, boron, aluminum, titanium, zirconium, manganese, iron, cobalt, copper, zinc, silver, and lead. Is preferably 1 ppm by weight or less, and the total content of these metal impurities is more preferably 1 ppm by weight or less. The content of the metal impurity can be measured by, for example, an IC gravimetric analyzer.
 <無機塩基性化合物(A)>
 ここに開示される研磨用組成物は、アンモニアおよびアンモニウム塩からなる群から選択される少なくとも1種の無機塩基性化合物(A)を含む。上記アンモニウム塩の具体例としては、炭酸水素アンモニウム、炭酸アンモニウム、塩化アンモニウム、塩素酸アンモニウム等が挙げられる。これらは1種を単独でまたは2種以上を組み合わせて用いることができる。無機塩基性化合物(A)として少なくともアンモニアを含む研磨用組成物が好ましい。
<Inorganic basic compound (A)>
The polishing composition disclosed herein contains at least one inorganic basic compound (A) selected from the group consisting of ammonia and ammonium salts. Specific examples of the ammonium salt include ammonium hydrogen carbonate, ammonium carbonate, ammonium chloride, and ammonium chlorate. These can be used alone or in combination of two or more. A polishing composition containing at least ammonia as the inorganic basic compound (A) is preferred.
 特に限定するものではないが、研磨用組成物中に含まれる無機塩基性化合物(A)の量は、該研磨用組成物の砥粒1kg当たり、例えば0.1モル以上とすることができ、通常は0.5モル以上とすることが適当である。より大きな効果を得る観点から、砥粒1kg当たりの無機塩基性化合物(A)の量は、1モル以上とすることが好ましく、2モル以上とすることがより好ましく、3モル以上(典型的には4モル以上、例えば5モル以上)とすることがさらに好ましい。砥粒1kg当たりの無機塩基性化合物(A)の量の上限は特に制限されないが、通常は50モル以下とすることが適当であり、30モル以下とすることが好ましく、20モル以下(例えば10モル以下)とすることがより好ましい。 Although not particularly limited, the amount of the inorganic basic compound (A) contained in the polishing composition can be, for example, 0.1 mol or more per kg of abrasive grains of the polishing composition, Usually, it is suitable to be 0.5 mol or more. From the viewpoint of obtaining a greater effect, the amount of the inorganic basic compound (A) per kg of the abrasive grains is preferably 1 mol or more, more preferably 2 mol or more, and typically 3 mol or more (typically Is more preferably 4 mol or more, for example 5 mol or more). The upper limit of the amount of the inorganic basic compound (A) per kg of the abrasive grains is not particularly limited, but is usually 50 mol or less, preferably 30 mol or less, and preferably 20 mol or less (for example, 10 More preferably, it is less than or equal to mol).
 ここに開示される技術を実施するにあたり、突起付きシリカ砥粒と無機塩基性化合物(A)とを組み合わせて含む研磨用組成物により上述の課題が解決される理由を明らかにする必要はないが、例えば以下のことが考えられる。
 すなわち、研磨対象物であるシリコンウェーハの表面は、該シリコンウェーハの酸化により生じた酸化膜によって薄く覆われていることがあり得る。例えば、片面研磨工程のうち最初の研磨工程(すなわち、最初の2次研磨工程)の開始時におけるシリコンウェーハ表面には、両面研磨後の洗浄や、片面研磨工程の開始までの間にシリコンウェーハの表面が空気に直接触れることによる自然酸化等により生じた酸化膜が存在し得る。このように酸化膜で覆われた表面状態にあるシリコンウェーハでは、たとえ1nm程度(例えば0.5nm~2nm)程度の薄い酸化膜であっても、該酸化膜を研磨除去して本来の研磨対象であるシリコン(典型的には単結晶シリコン)の表面に到達するまでに時間がかかる結果、該酸化膜を除去する時間を含めた全体としての研磨レートが低くなってしまう。一方、KOH等の無機の強塩基を研磨促進剤とする研磨用組成物は、酸化膜に対して高い研磨レートを示し得るが、このような研磨用組成物はシリコンに対する化学的研磨作用が強いため、上述のように、研磨レートを向上させる背反として研磨後の表面品質が低下する傾向にある。
In carrying out the technology disclosed herein, it is not necessary to clarify the reason why the above-mentioned problem is solved by a polishing composition containing a combination of silica grains with protrusions and an inorganic basic compound (A). For example, the following can be considered.
That is, the surface of a silicon wafer that is an object to be polished may be thinly covered with an oxide film generated by oxidation of the silicon wafer. For example, the silicon wafer surface at the start of the first polishing process (that is, the first secondary polishing process) in the single-side polishing process may be cleaned after the double-side polishing or before the start of the single-side polishing process. There may be an oxide film generated by natural oxidation or the like caused by direct contact of the surface with air. In the case of a silicon wafer in a surface state covered with an oxide film as described above, even if it is a thin oxide film of about 1 nm (for example, 0.5 nm to 2 nm), the oxide film is removed by polishing, As a result, it takes time to reach the surface of silicon (typically single crystal silicon), and as a result, the overall polishing rate including the time for removing the oxide film is lowered. On the other hand, a polishing composition using an inorganic strong base such as KOH as a polishing accelerator can exhibit a high polishing rate for an oxide film, but such a polishing composition has a strong chemical polishing action on silicon. Therefore, as described above, the surface quality after polishing tends to deteriorate as a contradiction to improve the polishing rate.
 本発明者らは、酸化膜を素早く除去するために専ら化学的研磨作用を利用する技術思想から離れて、シリコンの研磨において高い表面品質を実現し得る研磨促進剤を使用しつつ、酸化膜の除去には主に砥粒の機械的研磨作用を利用することにつき鋭意検討した結果、本発明を完成した。ここに開示される研磨用組成物によると、アンモニアおよびアンモニウム塩からなる群から選択される無機塩基性化合物(A)と突起付きシリカ粒子とを組み合わせて含むことにより、突起付きシリカ粒子の機械的研磨作用を活用して酸化膜を効率よく除去し、かつ無機塩基性化合物(A)の効果により高い表面品質を維持することができる。突起付きシリカ粒子は、また、シリコンの研磨レートの向上にも有効である。これらのことによって、例えば片面研磨工程のうち最初の研磨工程の開始時のように表面が薄い酸化膜で覆われたシリコンウェーハであっても、表面品質を維持しつつ研磨レートを向上させる効果が得られるものと考えられる。 The inventors have moved away from the technical idea of exclusively using a chemical polishing action to quickly remove the oxide film, while using a polishing accelerator capable of realizing high surface quality in silicon polishing, The present invention was completed as a result of intensive investigations mainly on utilizing the mechanical polishing action of abrasive grains for removal. According to the polishing composition disclosed herein, the inorganic basic compound (A) selected from the group consisting of ammonia and an ammonium salt and the silica particles with protrusions are contained in combination, thereby mechanically forming the silica particles with protrusions. By utilizing the polishing action, the oxide film can be efficiently removed, and high surface quality can be maintained by the effect of the inorganic basic compound (A). The silica particles with protrusions are also effective in improving the silicon polishing rate. As a result, for example, even in the case of a silicon wafer whose surface is covered with a thin oxide film as at the start of the first polishing step in the single-side polishing step, it has the effect of improving the polishing rate while maintaining the surface quality. It is considered to be obtained.
 <水>
 ここに開示される研磨用組成物は、水を含むことが好ましい。上記研磨用組成物に含まれる水としては、イオン交換水(脱イオン水)、純水、超純水、蒸留水等を好ましく用いることができる。使用する水は、研磨用組成物に含有される他の成分の働きが阻害されることを極力回避するため、例えば遷移金属イオンの合計含有量が100ppb以下であることが好ましい。例えば、イオン交換樹脂による不純物イオンの除去、フィルタによる異物の除去、蒸留等の操作によって水の純度を高めることができる。
 ここに開示される研磨用組成物は、必要に応じて、水と均一に混合し得る有機溶剤(低級アルコール、低級ケトン等)をさらに含有してもよい。通常は、研磨用組成物に含まれる溶媒の90体積%以上が水であることが好ましく、95体積%以上(典型的には99~100体積%)が水であることがより好ましい。
<Water>
The polishing composition disclosed herein preferably contains water. As water contained in the polishing composition, ion exchange water (deionized water), pure water, ultrapure water, distilled water, and the like can be preferably used. The water to be used preferably has, for example, a total content of transition metal ions of 100 ppb or less in order to avoid as much as possible the action of other components contained in the polishing composition. For example, the purity of water can be increased by operations such as removal of impurity ions with an ion exchange resin, removal of foreign matter with a filter, distillation, and the like.
The polishing composition disclosed herein may further contain an organic solvent (lower alcohol, lower ketone, etc.) that can be uniformly mixed with water, if necessary. Usually, 90% by volume or more of the solvent contained in the polishing composition is preferably water, and more preferably 95% by volume or more (typically 99 to 100% by volume) is water.
 ここに開示される研磨用組成物(典型的にはスラリー状の組成物)は、例えば、その固形分含量(non-volatile content;NV)が0.01重量%~50重量%であり、残部が水系溶媒(水または水と上記有機溶剤との混合溶媒)である形態、または残部が水系溶媒および揮発性化合物(例えばアンモニア)である形態で好ましく実施され得る。上記NVが0.05重量%~40重量%である形態がより好ましい。なお、上記固形分含量(NV)は、例えば研磨用組成物を105℃で24時間乾燥させた後における残留物が上記研磨用組成物に占める重量の割合から求められる。 The polishing composition disclosed herein (typically a slurry-like composition) has, for example, a solid content (non-volatile content: NV) of 0.01 wt% to 50 wt%, and the balance Is preferably an aqueous solvent (water or a mixed solvent of water and the above-mentioned organic solvent) or a form in which the balance is an aqueous solvent and a volatile compound (for example, ammonia). More preferably, the NV is 0.05 wt% to 40 wt%. In addition, the said solid content (NV) is calculated | required from the ratio of the weight which the residue after drying polishing composition at 105 degreeC for 24 hours occupies for the said polishing composition, for example.
 <水溶性ポリマー>
 ここに開示される研磨用組成物は、さらに水溶性ポリマーを含むことが好ましい。水溶性ポリマーの適切な使用により、突起付きシリカ砥粒の使用による研磨レート向上効果と良好な表面品質とを、より好適に両立させることができる。
 使用する水溶性ポリマーの種類は特に制限されず、研磨用組成物の分野において公知の水溶性ポリマーのなかから適宜選択することができる。水溶性ポリマーは、1種を単独でまたは2種以上を組み合わせて用いることができる。
<Water-soluble polymer>
The polishing composition disclosed herein preferably further contains a water-soluble polymer. By appropriate use of the water-soluble polymer, the effect of improving the polishing rate and the good surface quality due to the use of the silica abrasive grains with protrusions can be more suitably achieved.
The type of the water-soluble polymer to be used is not particularly limited, and can be appropriately selected from water-soluble polymers known in the field of polishing compositions. A water-soluble polymer can be used individually by 1 type or in combination of 2 or more types.
 上記水溶性ポリマーは、分子中に、カチオン性基、アニオン性基およびノニオン性基から選ばれる少なくとも1種の官能基を有するものであり得る。上記水溶性ポリマーは、例えば、分子中に水酸基、カルボキシル基、アシルオキシ基、スルホ基、第1級アミド構造、複素環構造、ビニル構造、ポリオキシアルキレン構造等を有するものであり得る。凝集物の低減や洗浄性向上等の観点から、上記水溶性ポリマーとしてノニオン性のポリマーを好ましく採用し得る。 The water-soluble polymer may have at least one functional group selected from a cationic group, an anionic group and a nonionic group in the molecule. The water-soluble polymer may have, for example, a hydroxyl group, a carboxyl group, an acyloxy group, a sulfo group, a primary amide structure, a heterocyclic structure, a vinyl structure, or a polyoxyalkylene structure in the molecule. From the standpoint of reducing aggregates and improving detergency, a nonionic polymer can be preferably used as the water-soluble polymer.
 ここに開示される研磨用組成物に好ましく使用し得る水溶性ポリマーの例として、セルロース誘導体、デンプン誘導体、オキシアルキレン単位を含むポリマー、窒素原子を含有するポリマー、ポリビニルアルコール等が挙げられる。 Examples of water-soluble polymers that can be preferably used in the polishing composition disclosed herein include cellulose derivatives, starch derivatives, polymers containing oxyalkylene units, polymers containing nitrogen atoms, and polyvinyl alcohol.
 セルロース誘導体の具体例としては、ヒドロキシエチルセルロース(HEC)、ヒドロキシプロピルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシプロピルメチルセルロース、メチルセルロース、エチルセルロース、エチルヒドロキシエチルセルロース、カルボキシメチルセルロース等が挙げられる。なかでもヒドロキシエチルセルロースが好ましい。 Specific examples of the cellulose derivative include hydroxyethyl cellulose (HEC), hydroxypropyl cellulose, hydroxyethyl methyl cellulose, hydroxypropyl methyl cellulose, methyl cellulose, ethyl cellulose, ethyl hydroxyethyl cellulose, carboxymethyl cellulose and the like. Of these, hydroxyethyl cellulose is preferred.
 デンプン誘導体の具体例としては、アルファ化デンプン、プルラン、シクロデキストリンなどが挙げられる。なかでもプルランが好ましい。 Specific examples of starch derivatives include pregelatinized starch, pullulan, and cyclodextrin. Of these, pullulan is preferred.
 オキシアルキレン単位を含むポリマーとしては、ポリエチレンオキサイド(PEO)や、エチレンオキサイド(EO)とプロピレンオキサイド(PO)またはブチレンオキサイド(BO)とのブロック共重合体、EOとPOまたはBOとのランダム共重合体等が例示される。そのなかでも、EOとPOのブロック共重合体またはEOとPOのランダム共重合体が好ましい。EOとPOとのブロック共重合体は、PEOブロックとポリプロピレンオキサイド(PPO)ブロックとを含むジブロック体、トリブロック体等であり得る。上記トリブロック体の例には、PEO-PPO-PEO型トリブロック体およびPPO-PEO-PPO型トリブロック体が含まれる。通常は、PEO-PPO-PEO型トリブロック体がより好ましい。
 EOとPOとのブロック共重合体またはランダム共重合体において、該共重合体を構成するEOとPOとのモル比(EO/PO)は、水への溶解性や洗浄性等の観点から、1より大きいことが好ましく、2以上であることがより好ましく、3以上(例えば5以上)であることがさらに好ましい。
Polymers containing oxyalkylene units include polyethylene oxide (PEO), block copolymers of ethylene oxide (EO) and propylene oxide (PO) or butylene oxide (BO), and random copolymerization of EO and PO or BO. Examples include coalescence. Among these, a block copolymer of EO and PO or a random copolymer of EO and PO is preferable. The block copolymer of EO and PO may be a diblock body, a triblock body or the like including a PEO block and a polypropylene oxide (PPO) block. Examples of the triblock body include a PEO-PPO-PEO type triblock body and a PPO-PEO-PPO type triblock body. Usually, a PEO-PPO-PEO type triblock body is more preferable.
In the block copolymer or random copolymer of EO and PO, the molar ratio (EO / PO) of EO and PO constituting the copolymer is determined from the viewpoint of solubility in water, detergency, and the like. It is preferably larger than 1, more preferably 2 or more, and further preferably 3 or more (for example, 5 or more).
 窒素原子を含有するポリマーとしては、主鎖に窒素原子を含有するポリマーおよび側鎖官能基(ペンダント基)に窒素原子を有するポリマーのいずれも使用可能である。主鎖に窒素原子を含有するポリマーの例としては、N-アシルアルキレンイミン型モノマーの単独重合体および共重合体が挙げられる。N-アシルアルキレンイミン型モノマーの具体例としては、N-アセチルエチレンイミン、N-プロピオニルエチレンイミン等が挙げられる。ペンダント基に窒素原子を有するポリマーとしては、例えばN-ビニル型のモノマー単位を含むポリマー等が挙げられる。例えば、N-ビニルピロリドンの単独重合体および共重合体等を好ましく採用し得る。なかでも好ましい窒素原子含有ポリマーとして、ポリ(N-ビニルピロリドン)が例示される。 As the polymer containing a nitrogen atom, both a polymer containing a nitrogen atom in the main chain and a polymer having a nitrogen atom in a side chain functional group (pendant group) can be used. Examples of the polymer containing a nitrogen atom in the main chain include homopolymers and copolymers of N-acylalkylenimine type monomers. Specific examples of the N-acylalkyleneimine monomer include N-acetylethyleneimine, N-propionylethyleneimine and the like. Examples of the polymer having a nitrogen atom in the pendant group include a polymer containing an N-vinyl type monomer unit. For example, homopolymers and copolymers of N-vinylpyrrolidone can be preferably used. Among these, a preferred nitrogen atom-containing polymer is exemplified by poly (N-vinylpyrrolidone).
 水溶性ポリマーとしてポリビニルアルコール(PVA)を用いる場合、該ポリビニルアルコールのけん化度は特に限定されない。また、上記PVAとして、第四級アンモニウム構造等のカチオン性基を有するカチオン化PVAを使用してもよい。上記カチオン化PVAは、例えば、ジアリルジアルキルアンモニウム塩、N-(メタ)アクリロイルアミノアルキル-N,N,N-トリアルキルアンモニウム塩等のカチオン性基を有するモノマーに由来するものであり得る。 When polyvinyl alcohol (PVA) is used as the water-soluble polymer, the degree of saponification of the polyvinyl alcohol is not particularly limited. Moreover, you may use the cationized PVA which has cationic groups, such as a quaternary ammonium structure, as said PVA. The cationized PVA can be derived from a monomer having a cationic group, such as diallyldialkylammonium salt and N- (meth) acryloylaminoalkyl-N, N, N-trialkylammonium salt.
 ここに開示される研磨用組成物において、水溶性ポリマーの分子量は特に限定されない。例えば、重量平均分子量(Mw)が200×10以下の水溶性ポリマーを用いることができる。研磨用組成物の濾過性や洗浄性等の観点から、通常は、Mwが150×10以下の水溶性ポリマーが好ましい。また、研磨後の表面品質の観点から、水溶性ポリマーのMwは、1×10以上であることが好ましく、2×10以上であることがより好ましい。 In the polishing composition disclosed herein, the molecular weight of the water-soluble polymer is not particularly limited. For example, a water-soluble polymer having a weight average molecular weight (Mw) of 200 × 10 4 or less can be used. From the viewpoint of filterability and detergency of the polishing composition, a water-soluble polymer having Mw of 150 × 10 4 or less is usually preferable. Further, from the viewpoint of the surface quality after polishing, the Mw of the water-soluble polymer is preferably 1 × 10 4 or more, and more preferably 2 × 10 4 or more.
 より好ましいMwの範囲は、水溶性ポリマーの種類によっても異なり得る。例えば、水溶性ポリマーとしてセルロース誘導体(例えばHEC)を使用する場合、Mwは、好ましくは10×10~150×10、より好ましくは15×10~130×10であり得る。水溶性ポリマーとしてPVA(カチオン化PVAであり得る。)を使用する場合、そのMwは、好ましくは1×10~10×10、より好ましくは1×10~7×10、さらに好ましくは1×10~5×10(例えば1×10~3×10)であり得る。水溶性ポリマーとして窒素原子を含有するポリマーを使用する場合、そのMwは、好ましくは1×10~15×10、より好ましくは1×10~10×10、さらに好ましくは2×10~7×10であり得る。 The more preferable range of Mw may vary depending on the type of water-soluble polymer. For example, when a cellulose derivative (eg, HEC) is used as the water-soluble polymer, Mw can be preferably 10 × 10 4 to 150 × 10 4 , more preferably 15 × 10 4 to 130 × 10 4 . When PVA (which may be cationized PVA) is used as the water-soluble polymer, its Mw is preferably 1 × 10 4 to 10 × 10 4 , more preferably 1 × 10 4 to 7 × 10 4 , and even more preferably Can be 1 × 10 4 to 5 × 10 4 (eg, 1 × 10 4 to 3 × 10 4 ). When a polymer containing a nitrogen atom is used as the water-soluble polymer, the Mw is preferably 1 × 10 4 to 15 × 10 4 , more preferably 1 × 10 4 to 10 × 10 4 , and even more preferably 2 × 10. It can be 4 to 7 × 10 4 .
 水溶性ポリマーの重量平均分子量(Mw)と数平均分子量(Mn)との関係は特に制限されない。凝集物の発生防止等の観点から、例えば分子量分布(Mw/Mn)が10.0以下であるものが好ましく、7.0以下であるものがさらに好ましい。 The relationship between the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the water-soluble polymer is not particularly limited. From the viewpoint of preventing the occurrence of aggregates, for example, the molecular weight distribution (Mw / Mn) is preferably 10.0 or less, and more preferably 7.0 or less.
 なお、水溶性ポリマーのMwおよびMnとしては、水系のゲルパーミエーションクロマトグラフィ(GPC)に基づく値(水系、ポリエチレンオキサイド換算)を採用することができる。 In addition, as Mw and Mn of the water-soluble polymer, values based on aqueous gel permeation chromatography (GPC) (aqueous, polyethylene oxide equivalent) can be adopted.
 特に限定するものではないが、水溶性ポリマーの含有量は、砥粒1kg当たり、例えば0.01g以上とすることができる。突起付きシリカ砥粒との組合せにおいて、より良好な表面品質を得る観点から、砥粒1kg当たりの水溶性ポリマーの含有量は、1g超とすることが適当であり、5g以上とすることが好ましく、10g以上とすることがより好ましく、15g以上とすることがさらに好ましい。また、無機塩基性化合物(A)との組合せにおいて良好な研磨レートを得る観点から、砥粒1kgに対する水溶性ポリマーの含有量は、通常は50g以下とすることが適当であり、40g以下とすることが好ましく、35g以下(例えば30g以下)とすることが好ましい。 Although not particularly limited, the content of the water-soluble polymer can be, for example, 0.01 g or more per kg of abrasive grains. From the viewpoint of obtaining better surface quality in combination with the silica abrasive grains with protrusions, the content of the water-soluble polymer per kg of the abrasive grains is suitably more than 1 g, preferably 5 g or more. More preferably, it is 10 g or more, and further preferably 15 g or more. Further, from the viewpoint of obtaining a good polishing rate in combination with the inorganic basic compound (A), the content of the water-soluble polymer with respect to 1 kg of abrasive grains is usually suitably 50 g or less, and 40 g or less. It is preferably 35 g or less (for example, 30 g or less).
 <塩基性化合物(B)>
 ここに開示される研磨用組成物は、本発明の効果を大きく損なわない範囲で、無機塩基性化合物(A)以外の塩基性化合物(B)を、意図的あるいは非意図的に含有し得る。このような任意成分としての塩基性化合物(B)は、有機塩基性化合物(B1)であってもよく、無機塩基性化合物(B2)であってもよい。塩基性化合物(B)は、1種を単独でまたは2種以上を組み合わせて用いることができる。
<Basic compound (B)>
The polishing composition disclosed herein may intentionally or unintentionally contain a basic compound (B) other than the inorganic basic compound (A) as long as the effects of the present invention are not significantly impaired. The basic compound (B) as such an optional component may be an organic basic compound (B1) or an inorganic basic compound (B2). A basic compound (B) can be used individually by 1 type or in combination of 2 or more types.
 有機塩基性化合物(B1)の例としては、テトラアルキルアンモニウム塩等の第四級アンモニウム塩が挙げられる。上記アンモニウム塩におけるアニオンは、例えば、OH、F、Cl、Br、I、ClO 、BH 等であり得る。例えば、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド等の第四級アンモニウム塩を好ましく使用し得る。なかでもテトラメチルアンモニウムヒドロキシドが好ましい。
 有機塩基性化合物(B1)の他の例としては、メチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、エチレンジアミン、モノエタノールアミン、N-(β-アミノエチル)エタノールアミン、ヘキサメチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン等のアミン類;無水ピペラジン、ピペラジン六水和物、1-(2-アミノエチル)ピペラジン、N-メチルピペラジン等のピペラジン類;イミダゾールやトリアゾール等のアゾール類;グアニジン;等が挙げられる。
Examples of the organic basic compound (B1) include quaternary ammonium salts such as tetraalkylammonium salts. The anion in the ammonium salt can be, for example, OH , F , Cl , Br , I , ClO 4 , BH 4 − and the like. For example, quaternary ammonium salts such as tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, and tetrabutylammonium hydroxide can be preferably used. Of these, tetramethylammonium hydroxide is preferable.
Other examples of the organic basic compound (B1) include methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, ethylenediamine, monoethanolamine, N- (β-aminoethyl) ethanolamine, hexamethylenediamine, diethylenetriamine. And amines such as triethylenetetramine; piperazine anhydride such as anhydrous piperazine, piperazine hexahydrate, 1- (2-aminoethyl) piperazine, N-methylpiperazine; azoles such as imidazole and triazole; guanidine; It is done.
 無機塩基性化合物(B2)の例としては、アンモニア、アルカリ金属またはアルカリ土類金属の、水酸化物、炭酸塩、炭酸水素塩等;アンモニア;等が挙げられる。上記水酸化物の具体例としては、水酸化カリウム、水酸化ナトリウム等が挙げられる。上記炭酸塩または炭酸水素塩の具体例としては、炭酸水素アンモニウム、炭酸アンモニウム、炭酸水素カリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸ナトリウム等が挙げられる。 Examples of the inorganic basic compound (B2) include ammonia, alkali metal or alkaline earth metal hydroxide, carbonate, bicarbonate, etc .; ammonia; and the like. Specific examples of the hydroxide include potassium hydroxide and sodium hydroxide. Specific examples of the carbonate or bicarbonate include ammonium bicarbonate, ammonium carbonate, potassium bicarbonate, potassium carbonate, sodium bicarbonate, sodium carbonate and the like.
 無機塩基性化合物(A)に加えて有機塩基性化合物(B1)を使用する場合、該有機塩基性化合物(B1)の使用量は、通常、砥粒1kg当たり4モル未満とすることが適当であり、表面品質等の観点から3モル未満とすることが好ましく、2モル未満とすることがより好ましい。研磨用組成物中に含まれる有機塩基性化合物(B1)のモル数は、無機塩基性化合物(A)のモル数よりも少なくすることが好ましい。あるいは、ここに開示される研磨用組成物は、有機塩基性化合物(B1)を実質的に含有しない組成であってもよい。ここで、研磨用組成物が有機塩基性化合物(B1)を実質的に含有しないとは、少なくとも意図的には有機塩基性化合物(B1)を含有させないことをいう。したがって、原料や製法に由来して微量(例えば、砥粒1kg当たり0.01モル以下、好ましくは0.005モル以下)の有機塩基性化合物(B1)が不可避的に含まれている研磨用組成物は、ここでいう有機塩基性化合物(B1)を実質的に含有しない研磨用組成物の概念に包含され得る。 When the organic basic compound (B1) is used in addition to the inorganic basic compound (A), the amount of the organic basic compound (B1) used is usually less than 4 mol per kg of abrasive grains. In view of surface quality, the amount is preferably less than 3 mol, more preferably less than 2 mol. The number of moles of the organic basic compound (B1) contained in the polishing composition is preferably smaller than the number of moles of the inorganic basic compound (A). Or the composition which does not contain an organic basic compound (B1) substantially may be sufficient as the polishing composition disclosed here. Here, the phrase “the polishing composition does not substantially contain the organic basic compound (B1)” means that the organic basic compound (B1) is not included at least intentionally. Accordingly, a polishing composition that inevitably contains a small amount (for example, 0.01 mol or less, preferably 0.005 mol or less) of the organic basic compound (B1) derived from the raw materials and the manufacturing method. A thing may be included by the concept of polishing composition which does not contain the organic basic compound (B1) substantially here.
 無機塩基性化合物(A)に加えて無機塩基性化合物(B2)を使用する場合、該無機塩基性化合物(B2)の使用量は、通常、砥粒1kg当たり1モル未満とすることが適当であり、表面品質等の観点から0.5モル未満とすることが好ましく、0.2モル未満とすることがより好ましい。研磨用組成物中に含まれる無機塩基性化合物(B2)のモル数は、無機塩基性化合物(A)のモル数よりも少なくすることが好ましい。あるいは、ここに開示される研磨用組成物は、無機塩基性化合物(B2)を実質的に含有しない組成であってもよい。 When the inorganic basic compound (B2) is used in addition to the inorganic basic compound (A), the amount of the inorganic basic compound (B2) used is usually less than 1 mole per 1 kg of abrasive grains. In view of surface quality, the amount is preferably less than 0.5 mol, and more preferably less than 0.2 mol. The number of moles of the inorganic basic compound (B2) contained in the polishing composition is preferably smaller than the number of moles of the inorganic basic compound (A). Or the composition which does not contain an inorganic basic compound (B2) substantially may be sufficient as the polishing composition disclosed here.
 無機塩基性化合物(A)に加えて塩基性化合物(B)を使用する場合、研磨用組成物中に含まれる塩基性化合物(B)のモル数は、無機塩基性化合物(A)のモル数よりも少なくすることが好ましい。あるいは、ここに開示される研磨用組成物は、塩基性化合物(B)を実質的に含有しない組成であってもよい。 When the basic compound (B) is used in addition to the inorganic basic compound (A), the number of moles of the basic compound (B) contained in the polishing composition is the number of moles of the inorganic basic compound (A). Is preferably less. Or the composition which does not contain a basic compound (B) substantially may be sufficient as the constituent for polish indicated here.
 <キレート剤>
 ここに開示される研磨用組成物には、任意成分として、キレート剤を含有させることができる。キレート剤は、研磨用組成物中に含まれ得る金属不純物と錯イオンを形成してこれを捕捉することにより、金属不純物による研磨対象物の汚染を抑制する働きをする。
 キレート剤の例としては、アミノカルボン酸系キレート剤および有機ホスホン酸系キレート剤が挙げられる。アミノカルボン酸系キレート剤の例には、エチレンジアミン四酢酸、エチレンジアミン四酢酸ナトリウム、ニトリロ三酢酸、ニトリロ三酢酸ナトリウム、ニトリロ三酢酸アンモニウム、ヒドロキシエチルエチレンジアミン三酢酸、ヒドロキシエチルエチレンジアミン三酢酸ナトリウム、ジエチレントリアミン五酢酸、ジエチレントリアミン五酢酸ナトリウム、トリエチレンテトラミン六酢酸およびトリエチレンテトラミン六酢酸ナトリウムが含まれる。有機ホスホン酸系キレート剤の例には、2-アミノエチルホスホン酸、1-ヒドロキシエチリデン-1,1-ジホスホン酸、アミノトリ(メチレンホスホン酸)、エチレンジアミンテトラキス(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)、エタン-1,1-ジホスホン酸、エタン-1,1,2-トリホスホン酸、エタン-1-ヒドロキシ-1,1-ジホスホン酸、エタン-1-ヒドロキシ-1,1,2-トリホスホン酸、エタン-1,2-ジカルボキシ-1,2-ジホスホン酸、メタンヒドロキシホスホン酸、2-ホスホノブタン-1,2-ジカルボン酸、1-ホスホノブタン-2,3,4-トリカルボン酸およびα-メチルホスホノコハク酸が含まれる。これらのうち有機ホスホン酸系キレート剤がより好ましく、なかでも好ましいものとしてエチレンジアミンテトラキス(メチレンホスホン酸)およびジエチレントリアミン六酢酸が挙げられる。特に好ましいキレート剤として、エチレンジアミンテトラキス(メチレンホスホン酸)が挙げられる。
<Chelating agent>
The polishing composition disclosed herein can contain a chelating agent as an optional component. The chelating agent functions to suppress contamination of the object to be polished by metal impurities by forming complex ions with metal impurities that can be contained in the polishing composition and capturing them.
Examples of chelating agents include aminocarboxylic acid chelating agents and organic phosphonic acid chelating agents. Examples of aminocarboxylic acid chelating agents include ethylenediaminetetraacetic acid, ethylenediaminetetraacetic acid sodium, nitrilotriacetic acid, nitrilotriacetic acid sodium, nitrilotriacetic acid ammonium, hydroxyethylethylenediaminetriacetic acid, hydroxyethylethylenediamine sodium triacetate, diethylenetriaminepentaacetic acid Diethylenetriamine sodium pentaacetate, triethylenetetramine hexaacetic acid and sodium triethylenetetramine hexaacetate. Examples of organic phosphonic acid chelating agents include 2-aminoethylphosphonic acid, 1-hydroxyethylidene-1,1-diphosphonic acid, aminotri (methylenephosphonic acid), ethylenediaminetetrakis (methylenephosphonic acid), diethylenetriaminepenta (methylenephosphonic). Acid), ethane-1,1-diphosphonic acid, ethane-1,1,2-triphosphonic acid, ethane-1-hydroxy-1,1-diphosphonic acid, ethane-1-hydroxy-1,1,2-triphosphonic acid Ethane-1,2-dicarboxy-1,2-diphosphonic acid, methanehydroxyphosphonic acid, 2-phosphonobutane-1,2-dicarboxylic acid, 1-phosphonobutane-2,3,4-tricarboxylic acid and α-methylphospho Nosuccinic acid is included. Among these, organic phosphonic acid-based chelating agents are more preferable, and ethylenediaminetetrakis (methylenephosphonic acid) and diethylenetriaminehexaacetic acid are particularly preferable. A particularly preferred chelating agent is ethylenediaminetetrakis (methylenephosphonic acid).
 <界面活性剤>
 ここに開示される研磨用組成物には、任意成分として、界面活性剤(典型的には、分子量1×10未満の水溶性有機化合物)を含ませることができる。界面活性剤の使用により、研磨用組成物の分散安定性が向上し得る。界面活性剤は、1種を単独でまたは2種以上を組み合わせて用いることができる。
 界面活性剤としては、アニオン性またはノニオン性のものを好ましく採用し得る。低起泡性やpH調整の容易性の観点から、ノニオン性の界面活性剤がより好ましい。例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等のオキシアルキレン重合体;ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンアルキルアミン、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレングリセリルエーテル脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル等のポリオキシアルキレン付加物;複数種のオキシアルキレンの共重合体(ジブロック型、トリブロック型、ランダム型、交互型);等のノニオン性界面活性剤が挙げられる。
 界面活性剤の使用量は、砥粒1kg当たり5g以下とすることが適当であり、2g以下とすることが好ましく、1g以下とすることがより好ましい。ここに開示される研磨用組成物は、界面活性剤を実質的に含まない態様でも好ましく実施され得る。
<Surfactant>
The polishing composition disclosed herein may contain a surfactant (typically a water-soluble organic compound having a molecular weight of less than 1 × 10 4 ) as an optional component. By using the surfactant, the dispersion stability of the polishing composition can be improved. Surfactant can be used individually by 1 type or in combination of 2 or more types.
As the surfactant, an anionic or nonionic surfactant can be preferably used. From the viewpoint of low foaming property and ease of pH adjustment, a nonionic surfactant is more preferable. For example, oxyalkylene polymers such as polyethylene glycol, polypropylene glycol, polytetramethylene glycol; polyoxyethylene alkyl ether, polyoxyethylene alkylphenyl ether, polyoxyethylene alkylamine, polyoxyethylene fatty acid ester, polyoxyethylene glyceryl ether fatty acid Nonionic surfactants such as esters, polyoxyalkylene adducts such as polyoxyethylene sorbitan fatty acid esters; copolymers of plural types of oxyalkylene (diblock type, triblock type, random type, alternating type); It is done.
The amount of the surfactant used is suitably 5 g or less per kg of abrasive grains, preferably 2 g or less, and more preferably 1 g or less. The polishing composition disclosed herein can also be preferably implemented in an embodiment that does not substantially contain a surfactant.
 <その他の成分>
 ここに開示される研磨用組成物は、本発明の効果が著しく妨げられない範囲で、有機酸、有機酸塩、無機酸、無機酸塩、防腐剤、防カビ剤等の、研磨用組成物(典型的には、シリコンウェーハのポリシング工程に用いられる研磨用組成物)に用いられ得る公知の添加剤を、必要に応じてさらに含有してもよい。
<Other ingredients>
The polishing composition disclosed herein is a polishing composition such as an organic acid, an organic acid salt, an inorganic acid, an inorganic acid salt, an antiseptic, and an antifungal agent as long as the effects of the present invention are not significantly hindered. You may further contain the well-known additive which can be used for (typically polishing composition used for the polishing process of a silicon wafer) as needed.
 有機酸の例としては、ギ酸、酢酸、プロピオン酸等の脂肪酸、安息香酸、フタル酸等の芳香族カルボン酸、クエン酸、シュウ酸、酒石酸、リンゴ酸、マレイン酸、フマル酸、コハク酸、有機スルホン酸、有機ホスホン酸等が挙げられる。有機酸塩の例としては、有機酸のアルカリ金属塩(ナトリウム塩、カリウム塩等)やアンモニウム塩等が挙げられる。無機酸の例としては、硫酸、硝酸、塩酸、炭酸等が挙げられる。無機酸塩の例としては、無機酸のアルカリ金属塩(ナトリウム塩、カリウム塩等)やアンモニウム塩が挙げられる。有機酸およびその塩、ならびに無機酸およびその塩は、1種を単独でまたは2種以上を組み合わせて用いることができる。
 防腐剤および防カビ剤の例としては、イソチアゾリン系化合物、パラオキシ安息香酸エステル類、フェノキシエタノール等が挙げられる。
Examples of organic acids include fatty acids such as formic acid, acetic acid and propionic acid, aromatic carboxylic acids such as benzoic acid and phthalic acid, citric acid, oxalic acid, tartaric acid, malic acid, maleic acid, fumaric acid, succinic acid, organic Examples include sulfonic acid and organic phosphonic acid. Examples of organic acid salts include alkali metal salts (sodium salts, potassium salts, etc.) and ammonium salts of organic acids. Examples of inorganic acids include sulfuric acid, nitric acid, hydrochloric acid, carbonic acid and the like. Examples of inorganic acid salts include alkali metal salts (sodium salts, potassium salts, etc.) and ammonium salts of inorganic acids. An organic acid and its salt, and an inorganic acid and its salt can be used individually by 1 type or in combination of 2 or more types.
Examples of antiseptics and fungicides include isothiazoline compounds, paraoxybenzoates, phenoxyethanol and the like.
 ここに開示される研磨用組成物は、酸化剤を実質的に含まないことが好ましい。研磨用組成物中に酸化剤が含まれていると、当該組成物がシリコンウェーハに供給されることで該シリコンウェーハの表面が酸化されて酸化膜が生じ、これにより研磨レートが低下することがあり得るためである。ここでいう酸化剤の具体例としては、過酸化水素(H)、ジクロロイソシアヌル酸ナトリウム等が挙げられる。なお、研磨用組成物が酸化剤を実質的に含まないとは、少なくとも意図的には酸化剤を含有させないことをいう。 It is preferable that the polishing composition disclosed here contains substantially no oxidizing agent. If the polishing composition contains an oxidizing agent, the surface of the silicon wafer is oxidized to produce an oxide film by supplying the composition to the silicon wafer, thereby reducing the polishing rate. This is possible. Specific examples of the oxidizing agent herein include hydrogen peroxide (H 2 O 2 ), sodium dichloroisocyanurate, and the like. In addition, that polishing composition does not contain an oxidizing agent substantially means not containing an oxidizing agent at least intentionally.
 <研磨液>
 ここに開示される研磨用組成物は、典型的には該研磨用組成物を含む研磨液の形態で研磨対象物に供給されて、その研磨対象物の研磨に用いられる。上記研磨液は、例えば、ここに開示されるいずれかの研磨用組成物を希釈(典型的には、水により希釈)して調製されたものであり得る。あるいは、該研磨用組成物をそのまま研磨液として使用してもよい。すなわち、ここに開示される技術における研磨用組成物の概念には、研磨対象物に供給されて該研磨対象物の研磨に用いられる研磨液(ワーキングスラリー)と、希釈して研磨液として用いられる濃縮液(研磨液の原液)との双方が包含される。ここに開示される研磨用組成物を含む研磨液の他の例として、該組成物のpHを調整してなる研磨液が挙げられる。
<Polishing liquid>
The polishing composition disclosed herein is typically supplied to a polishing object in the form of a polishing liquid containing the polishing composition, and used for polishing the polishing object. The polishing liquid may be prepared, for example, by diluting (typically diluting with water) any of the polishing compositions disclosed herein. Or you may use this polishing composition as polishing liquid as it is. That is, the concept of the polishing composition in the technology disclosed herein is used as a polishing liquid diluted with a polishing liquid (working slurry) that is supplied to a polishing object and used for polishing the polishing object. Both concentrated liquid (polishing liquid stock solution) are included. Another example of the polishing liquid containing the polishing composition disclosed herein is a polishing liquid obtained by adjusting the pH of the composition.
 ここに開示される研磨液における砥粒の含有量は特に制限されないが、典型的には0.05重量%以上であり、0.1重量%以上であることが好ましく、0.2重量%以上であることがより好ましく、0.3重量%以上(例えば0.4重量%以上)であることがさらに好ましい。砥粒の含有量の増大によって、より高い研磨レートが実現され得る。また、研磨用組成物の分散安定性等の観点から、通常は、上記含有量は、10重量%以下が適当であり、好ましくは7重量%以下、より好ましくは5重量%以下、さらに好ましくは3重量%以下である。より高い表面品質を得る観点から、砥粒の含有量を2重量%以下とすることができ、1重量%以下としてもよく、0.8重量%以下(例えば0.5重量%以下)としてもよい。 The content of abrasive grains in the polishing liquid disclosed herein is not particularly limited, but is typically 0.05% by weight or more, preferably 0.1% by weight or more, and 0.2% by weight or more. More preferably, it is 0.3% by weight or more (for example, 0.4% by weight or more). Higher polishing rates can be achieved by increasing the abrasive content. Further, from the viewpoint of dispersion stability of the polishing composition, the content is usually suitably 10% by weight or less, preferably 7% by weight or less, more preferably 5% by weight or less, and still more preferably. 3% by weight or less. From the viewpoint of obtaining higher surface quality, the content of the abrasive grains can be 2% by weight or less, may be 1% by weight or less, and may be 0.8% by weight or less (eg, 0.5% by weight or less). Good.
 研磨液のpHは、8.0以上であることが好ましく、より好ましくは9.0以上、さらに好ましくは9.5以上である。研磨液のpHが高くなると、シリコンウェーハの研磨レートが向上する傾向にある。研磨液のpHの上限値は特に制限されないが、12.0以下であることが好ましく、11.5以下であることがより好ましく、11.0以下であることがさらに好ましい。このことによって、研磨液に含まれる砥粒(特に突起付きシリカ粒子)が塩基性化合物によって溶解することを防ぎ、砥粒による機械的な研磨作用の低下を抑制することができる。上記pHは、シリコンウェーハの研磨に用いられる研磨液に好ましく適用され得る。研磨液のpHは、pHメーター(例えば、堀場製作所製のガラス電極式水素イオン濃度指示計(型番F-23))を使用し、標準緩衝液(フタル酸塩pH緩衝液 pH:4.01(25℃)、中性リン酸塩pH緩衝液 pH:6.86(25℃)、炭酸塩pH緩衝液 pH:10.01(25℃))を用いて3点校正した後で、ガラス電極を研磨液に入れて、2分以上経過して安定した後の値を測定することにより把握することができる。 The pH of the polishing liquid is preferably 8.0 or more, more preferably 9.0 or more, and further preferably 9.5 or more. As the pH of the polishing liquid increases, the polishing rate of the silicon wafer tends to improve. The upper limit of the pH of the polishing liquid is not particularly limited, but is preferably 12.0 or less, more preferably 11.5 or less, and even more preferably 11.0 or less. By this, it can prevent that the abrasive grain (especially silica particle with a protrusion) contained in polishing liquid melt | dissolves with a basic compound, and can suppress the fall of the mechanical grinding | polishing effect | action by an abrasive grain. The pH can be preferably applied to a polishing liquid used for polishing a silicon wafer. The pH of the polishing liquid was measured using a pH meter (for example, a glass electrode type hydrogen ion concentration indicator (model number F-23) manufactured by Horiba, Ltd.) and a standard buffer solution (phthalate pH buffer solution: pH 4.01 ( 25 ° C), neutral phosphate pH buffer solution pH: 6.86 (25 ° C), carbonate pH buffer solution pH: 10.01 (25 ° C)), and then the glass electrode It can be grasped by measuring the value after being put in the polishing liquid and stabilized after 2 minutes or more.
 <濃縮液>
 ここに開示される研磨用組成物は、研磨対象物に供給される前には濃縮された形態(すなわち、研磨液の濃縮液の形態)であってもよい。このように濃縮された形態の研磨用組成物は、製造、流通、保存等の際における利便性やコスト低減等の観点から有利である。濃縮倍率は、例えば、体積換算で2倍~100倍程度とすることができ、通常は5倍~50倍程度が適当である。好ましい一態様に係る研磨用組成物の濃縮倍率は10倍~40倍である。
<Concentrate>
The polishing composition disclosed herein may be in a concentrated form (that is, in the form of a polishing liquid concentrate) before being supplied to the object to be polished. The polishing composition in such a concentrated form is advantageous from the viewpoints of convenience, cost reduction, etc. during production, distribution, storage and the like. The concentration rate can be, for example, about 2 to 100 times in terms of volume, and usually about 5 to 50 times is appropriate. The concentration ratio of the polishing composition according to a preferred embodiment is 10 to 40 times.
 このように濃縮液の形態にある研磨用組成物は、所望のタイミングで希釈して研磨液を調製し、その研磨液を研磨対象物に供給する態様で使用することができる。上記希釈は、典型的には、上記濃縮液に前述の水系溶媒を加えて混合することにより行うことができる。また、上記水系溶媒が混合溶媒である場合、該水系溶媒の構成成分のうち一部の成分のみを加えて希釈してもよく、それらの構成成分を上記水系溶媒とは異なる量比で含む混合溶媒を加えて希釈してもよい。また、後述するように多剤型の研磨用組成物においては、それらのうち一部の剤を希釈した後に他の剤と混合して研磨液を調製してもよく、複数の剤を混合した後にその混合物を希釈して研磨液を調製してもよい。 Thus, the polishing composition in the form of a concentrated liquid can be used in such a manner that a polishing liquid is prepared by diluting at a desired timing and the polishing liquid is supplied to an object to be polished. The dilution can be typically performed by adding and mixing the above-mentioned aqueous solvent to the concentrated solution. In addition, when the aqueous solvent is a mixed solvent, only a part of the components of the aqueous solvent may be added for dilution, and a mixture containing these components in a different ratio from the aqueous solvent. A solvent may be added for dilution. In addition, as will be described later, in a multi-component polishing composition, a part of them may be diluted and then mixed with another agent to prepare a polishing liquid, or a plurality of agents may be mixed. Later, the mixture may be diluted to prepare a polishing liquid.
 上記濃縮液のNVは、例えば50重量%以下とすることができる。研磨用組成物の安定性(例えば、砥粒の分散安定性)や濾過性等の観点から、通常、濃縮液のNVは、40重量%以下とすることが適当であり、30重量%以下が好ましく、より好ましくは20重量%以下、例えば15重量%以下である。また、製造、流通、保存等の際における利便性やコスト低減等の観点から、濃縮液のNVは、0.5重量%以上とすることが適当であり、好ましくは1重量%以上、より好ましくは3重量%以上、例えば5重量%以上である。 The NV of the concentrated liquid can be 50% by weight or less, for example. From the viewpoint of the stability of the polishing composition (for example, dispersion stability of abrasive grains) and filterability, the NV of the concentrated liquid is usually suitably 40% by weight or less, and 30% by weight or less. Preferably, it is 20% by weight or less, for example, 15% by weight or less. Further, from the viewpoints of convenience, cost reduction, etc. during production, distribution, storage, etc., the NV of the concentrate is suitably 0.5% by weight or more, preferably 1% by weight or more, more preferably Is 3% by weight or more, for example, 5% by weight or more.
 上記濃縮液における砥粒の含有量は、例えば50重量%以下とすることができる。研磨用組成物の安定性(例えば、砥粒の分散安定性)や濾過性等の観点から、通常、上記含有量は、好ましくは45重量%以下であり、より好ましくは40重量%以下である。好ましい一態様において、砥粒の含有量を30重量%以下としてもよく、20重量%以下(例えば15重量%以下)としてもよい。また、製造、流通、保存等の際における利便性やコスト低減等の観点から、砥粒の含有量は、例えば0.5重量%以上とすることができ、好ましくは1重量%以上、より好ましくは3重量%以上(例えば4重量%以上)である。 The content of abrasive grains in the concentrated liquid can be, for example, 50% by weight or less. From the viewpoint of the stability of the polishing composition (for example, dispersion stability of abrasive grains) and filterability, the content is usually preferably 45% by weight or less, more preferably 40% by weight or less. . In a preferred embodiment, the abrasive content may be 30% by weight or less, or 20% by weight or less (eg, 15% by weight or less). In addition, from the viewpoint of convenience in manufacturing, distribution, storage, etc. and cost reduction, the content of abrasive grains can be, for example, 0.5% by weight or more, preferably 1% by weight or more, and more preferably Is 3% by weight or more (for example, 4% by weight or more).
 ここに開示される研磨用組成物は、一剤型であってもよいし、二剤型を始めとする多剤型であってもよい。例えば、該研磨用組成物の構成成分(典型的には、水系溶媒以外の成分)のうち一部の成分を含むA液と、残りの成分を含むB液とが混合されて研磨対象物の研磨に用いられるように構成されていてもよい。 The polishing composition disclosed herein may be a one-part type or a multi-part type including a two-part type. For example, the liquid A containing a part of the constituents of the polishing composition (typically, components other than the aqueous solvent) and the liquid B containing the remaining components are mixed to form a polishing object. You may be comprised so that it may be used for grinding | polishing.
 <研磨用組成物の調製>
 ここに開示される研磨用組成物の製造方法は特に限定されない。例えば、翼式攪拌機、超音波分散機、ホモミキサー等の周知の混合装置を用いて、研磨用組成物に含まれる各成分を混合するとよい。これらの成分を混合する態様は特に限定されず、例えば全成分を一度に混合してもよく、適宜設定した順序で混合してもよい。
<Preparation of polishing composition>
The manufacturing method of polishing composition disclosed here is not specifically limited. For example, each component contained in the polishing composition may be mixed using a well-known mixing device such as a blade-type stirrer, an ultrasonic disperser, or a homomixer. The aspect which mixes these components is not specifically limited, For example, all the components may be mixed at once and may be mixed in the order set suitably.
 <研磨>
 ここに開示される研磨用組成物は、シリコンウェーハ(典型的には単結晶のシリコンウェーハ)を研磨するための研磨用組成物として好ましく使用され得る。以下、ここに開示される研磨用組成物を用いて研磨対象物を研磨する方法の好適な一態様につき説明する。
 すなわち、ここに開示されるいずれかの研磨用組成物を含む研磨液(典型的にはスラリー状の研磨液であり、研磨スラリーと称されることもある。)を用意する。上記研磨液を用意することには、研磨用組成物に、濃度調整(例えば希釈)、pH調整等の操作を加えて研磨液を調製することが含まれ得る。あるいは、上記研磨用組成物をそのまま研磨液として使用してもよい。また、多剤型の研磨用組成物の場合、上記研磨液を用意することには、それらの剤を混合すること、該混合の前に1または複数の剤を希釈すること、該混合の後にその混合物を希釈すること、等が含まれ得る。
<Polishing>
The polishing composition disclosed herein can be preferably used as a polishing composition for polishing a silicon wafer (typically a single crystal silicon wafer). Hereinafter, a preferred embodiment of a method for polishing a polishing object using the polishing composition disclosed herein will be described.
That is, a polishing liquid (typically a slurry-like polishing liquid, sometimes referred to as a polishing slurry) containing any of the polishing compositions disclosed herein is prepared. Preparing the polishing liquid may include preparing a polishing liquid by adding operations such as concentration adjustment (for example, dilution) and pH adjustment to the polishing composition. Or you may use the said polishing composition as polishing liquid as it is. Further, in the case of a multi-drug type polishing composition, to prepare the polishing liquid, mixing those agents, diluting one or more agents before the mixing, and after the mixing Diluting the mixture, etc. can be included.
 次いで、その研磨液を研磨対象物に供給し、常法により研磨する。例えば、シリコンウェーハの最初の片面研磨工程を行う場合には、ラッピング工程および両面研磨工程(1次研磨工程)を経たシリコンウェーハを一般的な片面研磨装置にセットし、該研磨装置の研磨パッドを通じて上記シリコンウェーハの表面(研磨対象面)に研磨液を供給する。典型的には、上記研磨液を連続的に供給しつつ、シリコンウェーハの表面に研磨パッドを押しつけて両者を相対的に移動(例えば回転移動)させる。その後、必要に応じてさらなる2次研磨工程を経て、最終的にファイナルポリシングを行って研磨対象物の研磨が完了する。
 なお、ここに開示される研磨用組成物を用いる研磨工程において使用される研磨パッドは特に限定されない。例えば、不織布タイプ、スウェードタイプ、ポリウレタンタイプ、砥粒を含むもの、砥粒を含まないもの等のいずれを用いてもよい。
Next, the polishing liquid is supplied to the object to be polished and polished by a conventional method. For example, when the first single-side polishing process of a silicon wafer is performed, the silicon wafer that has undergone the lapping process and the double-side polishing process (primary polishing process) is set in a general single-side polishing apparatus and passed through the polishing pad of the polishing apparatus. A polishing liquid is supplied to the surface (surface to be polished) of the silicon wafer. Typically, while continuously supplying the polishing liquid, the polishing pad is pressed against the surface of the silicon wafer to relatively move (for example, rotate) the two. Thereafter, a further secondary polishing step is performed as necessary, and final polishing is finally performed to complete the polishing of the object to be polished.
In addition, the polishing pad used in the polishing process using the polishing composition disclosed herein is not particularly limited. For example, any of non-woven fabric type, suede type, polyurethane type, those containing abrasive grains, and those not containing abrasive grains may be used.
 この明細書によると、ここに開示される研磨用組成物を用いてシリコンウェーハを研磨する工程を含むシリコンウェーハ製造方法が提供される。ここに開示されるシリコンウェーハ製造方法は、上記研磨用組成物を用いる研磨工程の前に、上記シリコンウェーハの両面研磨を行う工程をさらに含んでもよい。また、上記研磨用組成物を用いる研磨工程を経たシリコンウェーハにファイナルポリシングを施す工程をさらに含んでもよい。ここでファイナルポリシングとは、目的物の製造プロセスにおける最後のポリシング工程(すなわち、その工程の後にはさらなるポリシングを行わない工程)を指す。上記両面研磨工程やファイナルポリシング工程は、ここに開示される研磨用組成物を用いて行ってもよく、他の研磨用組成物を用いて行ってもよい。
 好ましい一態様において、上記研磨用組成物を用いるシリコンウェーハ研磨工程は、ファイナルポリシングよりも上流のポリシング工程である。なかでも、両面研磨工程を経たシリコンウェーハに対して行われる最初の片面研磨工程(最初の2次研磨工程)において、上記研磨用組成物を用いることが好ましい。ここに開示される研磨用組成物は、上記最初の2次研磨工程においてシリコンウェーハの研磨に用いられる研磨用組成物として好適である。
According to this specification, the silicon wafer manufacturing method including the process of grind | polishing a silicon wafer using the polishing composition disclosed here is provided. The silicon wafer manufacturing method disclosed herein may further include a step of performing double-side polishing of the silicon wafer before the polishing step using the polishing composition. Moreover, you may further include the process of performing final polishing to the silicon wafer which passed through the grinding | polishing process using the said polishing composition. Here, final polishing refers to the final polishing step in the manufacturing process of the object (that is, a step in which no further polishing is performed after that step). The above double-side polishing step and final polishing step may be performed using the polishing composition disclosed herein, or may be performed using another polishing composition.
In a preferred embodiment, the silicon wafer polishing step using the polishing composition is a polishing step upstream of final polishing. Especially, it is preferable to use the said polishing composition in the first single-sided polishing process (first secondary polishing process) performed with respect to the silicon wafer which passed through the double-sided polishing process. The polishing composition disclosed herein is suitable as a polishing composition used for polishing a silicon wafer in the first secondary polishing step.
 以下、本発明に関するいくつかの実施例を説明するが、本発明をかかる実施例に示すものに限定することを意図したものではない。なお、以下の説明において「部」および「%」は、特に断りがない限り重量基準である。 Hereinafter, some examples relating to the present invention will be described. However, the present invention is not intended to be limited to the examples shown in the examples. In the following description, “parts” and “%” are based on weight unless otherwise specified.
 <研磨用組成物の調製>
  (実施例1)
 複数の突起を表面に有するシリカ粒子(砥粒A)、アンモニア水(濃度29%)、水溶性ポリマーおよび純水を混合して、本例に係る研磨用組成物を調製した。
 使用した砥粒Aのうち体積平均粒子径よりも粒子径の大きなシリカ粒子が表面に有する突起の高さの平均は5.5nmであり、平均突起度は0.27であった。この砥粒Aの平均一次粒子径DP1は30nmであり、平均二次粒子径DP2は58nmであった。上記平均一次粒子径DP1は、マイクロメリテックス社製の表面積測定装置、商品名「Flow Sorb II 2300」を用いて測定されたものである。また、上記平均二次粒子径DP2は、日機装株式会社製の型式「UPA-UT151」を用いて測定された体積平均粒子径である。
 水溶性ポリマーとしては、Mwが約120×10のヒドロキシエチルセルロース(HEC)を使用した。
 砥粒A、アンモニア水および水溶性ポリマーの使用量は、研磨用組成物中における砥粒Aの含有量が0.46%、アンモニア(NH)の含有量が0.041%、水溶性ポリマーの含有量が0.009%(砥粒1kgに対して19.6g)となる量とした。得られた研磨用組成物のpHは10.4であった。
<Preparation of polishing composition>
Example 1
A polishing composition according to this example was prepared by mixing silica particles (abrasive grain A) having a plurality of protrusions, ammonia water (concentration 29%), a water-soluble polymer and pure water.
Of the abrasive grains A used, the average height of protrusions on the surface of silica particles having a particle diameter larger than the volume average particle diameter was 5.5 nm, and the average protrusion degree was 0.27. The average primary particle diameter D P1 of the abrasive grains A is 30 nm, average secondary particle diameter D P2 was 58 nm. The average primary particle diameter DP1 is measured using a surface area measuring device manufactured by Micromerex, Inc., trade name “Flow Sorb II 2300”. Further, the average secondary particle diameter D P2 is the volume average particle diameter was measured using a Nikkiso Co. Model "UPA-UT151".
As the water-soluble polymer, hydroxyethyl cellulose (HEC) having an Mw of about 120 × 10 4 was used.
The amount of abrasive grains A, aqueous ammonia and water-soluble polymer used is such that the abrasive grain A content in the polishing composition is 0.46%, the ammonia (NH 3 ) content is 0.041%, and the water-soluble polymer. The content was set to 0.009% (19.6 g with respect to 1 kg of abrasive grains). The resulting polishing composition had a pH of 10.4.
  (実施例2)
 実施例1において、砥粒Aに代えて、複数の突起を表面に有するシリカ粒子(砥粒B)を使用した。使用した砥粒Bのうち体積平均粒子径よりも粒子径の大きなシリカ粒子が表面に有する突起の高さの平均は5.5nmであり、平均突起度は0.25であった。この砥粒Bの平均一次粒子径DP1は30nmであり、平均二次粒子径DP2は58nmであった。その他の点は実施例1と同様にして、本例に係る研磨用組成物を調製した。この研磨用組成物のpHは10.4であった。
(Example 2)
In Example 1, it replaced with the abrasive grain A and the silica particle (abrasive grain B) which has a some protrusion on the surface was used. Of the abrasive grains B used, the average height of protrusions on the surface of silica particles having a particle diameter larger than the volume average particle diameter was 5.5 nm, and the average protrusion degree was 0.25. The average primary particle diameter D P1 of the abrasive grains B is 30 nm, average secondary particle diameter D P2 was 58 nm. The other points were the same as in Example 1, and a polishing composition according to this example was prepared. The polishing composition had a pH of 10.4.
  (実施例3)
 砥粒A、アンモニア水(濃度29%)、テトラメチルアンモニウムヒドロキシド(TMAH)、水溶性ポリマーおよび純水を混合して、本例に係る研磨用組成物を調製した。水溶性ポリマーとしては、実施例1と同じHECを使用した。砥粒A、アンモニア水、TMAHおよび水溶性ポリマーの使用量は、研磨用組成物中における砥粒Aの含有量が0.46%、アンモニア(NH)の含有量が0.03%、TMAHの含有量が0.06%、水溶性ポリマーの含有量が0.009%となるとなる量とした。得られた研磨用組成物のpHは10.8であった。
Example 3
Abrasive grain A, ammonia water (concentration 29%), tetramethylammonium hydroxide (TMAH), a water-soluble polymer and pure water were mixed to prepare a polishing composition according to this example. The same HEC as in Example 1 was used as the water-soluble polymer. The amount of abrasive grains A, aqueous ammonia, TMAH and water-soluble polymer used is 0.46% for abrasive grains A in the polishing composition, 0.03% for ammonia (NH 3 ), and TMAH. The content was 0.06%, and the content of the water-soluble polymer was 0.009%. The resulting polishing composition had a pH of 10.8.
  (比較例1)
 実施例1において、砥粒Aに代えて、平均一次粒子径DP1が35nmであり、平均二次粒子径DP2が64nmであるピーナッツ形状のコロイダルシリカ(砥粒C)を使用した。その他の点は実施例1と同様にして、本例に係る研磨用組成物を調製した。pHは10.4であった。
(Comparative Example 1)
In Example 1, in place of the abrasive A, the average primary particle diameter D P1 is 35 nm, was used an average secondary particle diameter D P2 is 64nm peanut shape of the colloidal silica (abrasive C). The other points were the same as in Example 1, and a polishing composition according to this example was prepared. The pH was 10.4.
  (比較例2)
 実施例1において、砥粒Aに代えて、平均一次粒子径DP1が80nmであり、平均二次粒子径DP2が97nmである球状のコロイダルシリカ(砥粒D)を使用した。その他の点は実施例1と同様にして、本例に係る研磨用組成物を調製した。pHは10.6であった。
(Comparative Example 2)
In Example 1, in place of the abrasive A, an average primary particle diameter D P1 is 80 nm, was used spherical colloidal silica having an average secondary particle diameter D P2 is 97 nm (abrasive grain D). The other points were the same as in Example 1, and a polishing composition according to this example was prepared. The pH was 10.6.
  (比較例3)
 実施例1において、アンモニア水に代えてTMAHを、研磨用組成物中における含有量が1.365%となる量で使用した。その他の点は実施例1と同様にして、本例に係る研磨用組成物を調製した。pHは11.0であった。
(Comparative Example 3)
In Example 1, TMAH was used instead of ammonia water in an amount such that the content in the polishing composition was 1.365%. The other points were the same as in Example 1, and a polishing composition according to this example was prepared. The pH was 11.0.
  (比較例4)
 実施例1において、アンモニア水に代えて水酸化カリウム(KOH)を、研磨用組成物中における含有量が0.84%となる量で使用した。その他の点は実施例1と同様にして、本例に係る研磨用組成物を調製した。pHは11.0であった。
(Comparative Example 4)
In Example 1, instead of ammonia water, potassium hydroxide (KOH) was used in an amount such that the content in the polishing composition was 0.84%. The other points were the same as in Example 1, and a polishing composition according to this example was prepared. The pH was 11.0.
  (比較例5)
 実施例1において、アンモニア水に代えてトリエタノールアミンを、研磨用組成物中における含有量が2.235%となる量で使用した。その他の点は実施例1と同様にして、本例に係る研磨用組成物を調製した。pHは11.0であった。
(Comparative Example 5)
In Example 1, triethanolamine was used in an amount such that the content in the polishing composition was 2.235% instead of ammonia water. The other points were the same as in Example 1, and a polishing composition according to this example was prepared. The pH was 11.0.
 各例に係る研磨用組成物をそのまま研磨液として使用して、以下の評価試験を行い、その結果を表1に示した。試験片としては、直径6インチ(約150mm)のシリコンウェーハ(伝導型:P型、結晶方位:<100>、抵抗率:0.1Ω・cm以上100Ω・cm未満)を両面研磨装置により表面粗さ0.5nm~1.5nmに調整した後、以下の条件で洗浄(SC-1洗浄)したものを使用した。
  [SC-1洗浄条件]
 NHOH(29%):H(31%):脱イオン水(DIW)=1:1:15(体積比)の洗浄液を、第1の洗浄槽および第2の洗浄槽の各々に収容して80℃に保持した。洗浄は、洗浄対象物を第1の洗浄槽に5分、その後超純水によるリンス槽を経て、第2の洗浄槽に5分浸漬することにより行った。
The following evaluation tests were conducted using the polishing composition according to each example as a polishing liquid as it was, and the results are shown in Table 1. As a test piece, a silicon wafer (conductivity type: P type, crystal orientation: <100>, resistivity: 0.1 Ω · cm or more and less than 100 Ω · cm) having a diameter of 6 inches (about 150 mm) is roughened by a double-side polishing apparatus. After adjusting the thickness to 0.5 nm to 1.5 nm, the one washed under the following conditions (SC-1 washing) was used.
[SC-1 cleaning conditions]
A cleaning solution of NH 4 OH (29%): H 2 O 2 (31%): deionized water (DIW) = 1: 1: 15 (volume ratio) was added to each of the first cleaning tank and the second cleaning tank. And kept at 80 ° C. The washing was performed by immersing the object to be washed in the first washing tank for 5 minutes, and then immersing in the second washing tank for 5 minutes after rinsing with ultrapure water.
 <研磨レートの評価>
 上記試験片の重量(W1[g])を測定した。これを2.5%濃度のフッ酸に10秒間浸漬した後、流量7リットル/分の流水で10秒間洗浄した。この試験片を以下の条件で研磨した。
  [研磨条件]
 研磨装置:不二越機械工業株式会社製の片面研磨装置、型式「SPM-15」
 研磨パッド :株式会社フジミインコーポレーテッド製、スエード研磨パッド「Surfin 000FM」
 研磨圧力:94g/cm
 定盤回転数:30回転/分
 ヘッド回転数:30回転/分
 研磨時間:30分
 研磨液の供給レート:500mL/分(掛け流し使用)
 研磨液の温度:25℃
<Evaluation of polishing rate>
The weight (W1 [g]) of the test piece was measured. This was immersed in 2.5% strength hydrofluoric acid for 10 seconds and then washed with running water at a flow rate of 7 liters / minute for 10 seconds. This specimen was polished under the following conditions.
[Polishing conditions]
Polishing device: One-side polishing device manufactured by Fujikoshi Machine Industry Co., Ltd. Model “SPM-15”
Polishing pad: Fujimi Incorporated, suede polishing pad "Surfin 000FM"
Polishing pressure: 94 g / cm 2
Surface plate rotation speed: 30 rotations / min. Head rotation speed: 30 rotations / min. Polishing time: 30 minutes. Polishing liquid supply rate: 500 mL / min.
Polishing liquid temperature: 25 ° C
 研磨後の試験片を、上記SC-1洗浄条件にて洗浄した後、その重量(W2[g])を測定した。その結果から、以下の計算式に従って、研磨により減少した厚さ(研磨取り代)を算出した。
 (W1-W2)[g]/シリコンの密度[g/cm](=2.33g/cm)/被研磨面積[cm](=363cm)=研磨取り代[cm]
 この研磨取り代を研磨時間(=30分)で除して研磨レートを算出した。また、この研磨レートを以下の5段階で点数化した。
  5点:23nm/分以上
  4点:21nm/分以上23nm/分未満
  3点:19nm/分以上21nm/分未満
  2点:17nm/分以上19nm/分未満
  1点: 1nm/分以上17nm/分未満
The polished specimen was washed under the above SC-1 washing conditions, and its weight (W2 [g]) was measured. From the results, the thickness (polishing allowance) decreased by polishing was calculated according to the following calculation formula.
(W1-W2) [g] / density of silicon [g / cm 3 ] (= 2.33 g / cm 3 ) / polished area [cm 2 ] (= 363 cm 2 ) = polishing allowance [cm]
The polishing rate was calculated by dividing the polishing allowance by the polishing time (= 30 minutes). The polishing rate was scored in the following five stages.
5 points: 23 nm / min or more 4 points: 21 nm / min or more and less than 23 nm / min 3 points: 19 nm / min or more and less than 21 nm / min 2 points: 17 nm / min or more and less than 19 nm / min 1 point: 1 nm / min or more and 17 nm / min Less than
 <表面品質の評価>
 上記試験片を、研磨スラリー(株式会社フジミインコーポレーテッド製、商品名「GLANZOX 2100」)を用いて予備研磨を行うことにより表面粗さ0.1nm~10nmに調整した後、以下の条件で研磨した。
  [研磨条件]
 研磨装置:不二越機械工業株式会社製の片面研磨装置、型式「SPM-15」
 研磨パッド :株式会社フジミインコーポレーテッド製、スエード研磨パッド「Surfin 000FM」
 研磨圧力:94g/cm
 定盤回転数:30回転/分
 ヘッド回転数:30回転/分
 研磨時間:5分
 研磨液の供給レート:500mL/分(掛け流し使用)
 研磨液の温度:25℃
<Evaluation of surface quality>
The test piece was subjected to preliminary polishing using a polishing slurry (trade name “GLANZOX 2100” manufactured by Fujimi Incorporated, Inc.) to adjust the surface roughness to 0.1 nm to 10 nm, and then polished under the following conditions: .
[Polishing conditions]
Polishing device: One-side polishing device manufactured by Fujikoshi Machine Industry Co., Ltd. Model “SPM-15”
Polishing pad: Fujimi Incorporated, suede polishing pad "Surfin 000FM"
Polishing pressure: 94 g / cm 2
Surface plate rotation speed: 30 rotations / min. Head rotation speed: 30 rotations / min. Polishing time: 5 minutes. Polishing liquid supply rate: 500 mL / min.
Polishing liquid temperature: 25 ° C
  [ヘイズ測定]
 研磨後の試験片を、上記SC-1洗浄条件にて洗浄した後、ケーエルエー・テンコール社製のウエハ検査装置、商品名「AWIS3110」を用いてヘイズを測定した。また、その結果を以下の5段階で点数化した。
  5点:0.035ppm以上0.040ppm未満
  4点:0.040ppm以上0.045ppm未満
  3点:0.045ppm以上0.050ppm未満
  2点:0.050ppm以上0.060ppm未満
  1点:0.060ppm以上
[Haze measurement]
The polished specimen was washed under the above SC-1 washing conditions, and then the haze was measured using a wafer inspection device manufactured by KLA-Tencor Corporation, trade name “AWIS3110”. The results were scored in the following five stages.
5 points: 0.035 ppm to less than 0.040 ppm 4 points: 0.040 ppm to less than 0.045 ppm 3 points: 0.045 ppm to less than 0.050 ppm 2 points: 0.050 ppm to less than 0.060 ppm 1 point: 0.060 ppm more than
  [欠陥数測定]
 ケーエルエー・テンコール社製のウエハ検査装置、商品名「AWIS3110」を用いて、洗浄後の直径6インチのシリコンウェーハ表面に存在する80nm以上の大きさの欠陥(パーティクル)の個数をカウントした。また、その結果を以下の5段階で点数化した。
  5点:カウント600未満
  4点:カウント600以上700未満
  3点:カウント700以上800未満
  2点:カウント800以上900未満
  1点:カウント900以上
[Defect count measurement]
The number of defects (particles) having a size of 80 nm or more present on the surface of a silicon wafer having a diameter of 6 inches after cleaning was counted using a wafer inspection apparatus manufactured by KLA-Tencor Corporation, trade name “AWIS3110”. The results were scored in the following five stages.
5 points: less than 600 counts 4 points: count 600 to less than 700 3 points: count 700 to less than 800 2 points: count 800 to less than 900 1 point: count 900 or more
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、突起付きシリカ粒子とアンモニアとを組み合わせて含む研磨用組成物を用いた実施例1,2によると、砥粒として表面に複数の突起を有しない形状のシリカ粒子、具体的にはピーナッツ形状または球状のコロイダルシリカを用いた比較例1,2に比べて、研磨レートを10%~20%向上させることができた。また、実施例1,2によると、ヘイズおよび欠陥数のいずれの点においても、比較例1と同レベルの高い表面品質を維持することができた。研磨促進剤としてアンモニアに加えてTMAHを用いた実施例3では、アンモニアを単独で用いた実施例1,2に比べて、さらに高い研磨レート向上効果が得られ、欠陥数も同等であったが、ヘイズの値は若干上昇する傾向であった。 As shown in Table 1, according to Examples 1 and 2 using a polishing composition containing a combination of silica particles with protrusions and ammonia, silica particles having a shape that does not have a plurality of protrusions on the surface as abrasive grains, Specifically, the polishing rate could be improved by 10% to 20% compared to Comparative Examples 1 and 2 using peanut-shaped or spherical colloidal silica. Further, according to Examples 1 and 2, the surface quality of the same level as that of Comparative Example 1 could be maintained in both the haze and the number of defects. In Example 3 in which TMAH was used in addition to ammonia as a polishing accelerator, an even higher polishing rate improvement effect was obtained and the number of defects was the same as in Examples 1 and 2 using ammonia alone. The haze value tended to increase slightly.
 一方、無機塩基性化合物(A)を含まない研磨用組成物を用いた比較例3~5では、突起付きシリカ粒子を用いたにもかかわらず、比較例1に比べて研磨レートが低下した。研磨促進剤としてKOHを単独で使用した比較例3では、比較例1に比べてヘイズの値が大きく上昇し、表面品質が低下した。 On the other hand, in Comparative Examples 3 to 5 using the polishing composition containing no inorganic basic compound (A), the polishing rate was lower than that of Comparative Example 1 despite using the silica particles with protrusions. In Comparative Example 3 in which KOH alone was used as the polishing accelerator, the haze value was greatly increased as compared with Comparative Example 1, and the surface quality was deteriorated.
 以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。 Although specific examples of the present invention have been described in detail above, these are merely examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.

Claims (7)

  1.  シリコンウェーハを研磨するための研磨用組成物であって、
     複数の突起を表面に有するシリカ粒子を砥粒として含み、
     さらにアンモニアおよびアンモニウム塩からなる群から選択される無機塩基性化合物(A)を含む、研磨用組成物。
    A polishing composition for polishing a silicon wafer,
    Containing silica particles having a plurality of protrusions on the surface as abrasive grains,
    Furthermore, polishing composition containing the inorganic basic compound (A) selected from the group which consists of ammonia and ammonium salt.
  2.  前記研磨用組成物に含まれる前記シリカ粒子の体積平均粒子径よりも粒子径の大きなシリカ粒子が表面に有している突起の高さをそれぞれ同じ突起の基部における幅で除することにより得られる値の平均が0.245以上である、請求項1に記載の研磨用組成物。 It is obtained by dividing the height of the protrusions on the surface of the silica particles having a particle diameter larger than the volume average particle diameter of the silica particles contained in the polishing composition by the width at the base of the same protrusions. The polishing composition according to claim 1, wherein the average value is 0.245 or more.
  3.  さらに水溶性ポリマーを含む、請求項1または2に記載の研磨用組成物。 The polishing composition according to claim 1 or 2, further comprising a water-soluble polymer.
  4.  前記研磨用組成物に含まれる前記水溶性ポリマーの量は、前記砥粒1kgにつき5g~50gである、請求項3に記載の研磨用組成物。 The polishing composition according to claim 3, wherein the amount of the water-soluble polymer contained in the polishing composition is 5 to 50 g per kg of the abrasive grains.
  5.  前記シリコンウェーハの両面を同時に研磨する両面研磨工程の後にそのシリコンウェーハの片面をより精密に研磨する片面研磨工程において、該片面研磨工程のうち最初の研磨工程に使用されることを特徴とする、請求項1から4のいずれか一項に記載の研磨用組成物。 In the single-side polishing step of polishing the single side of the silicon wafer more precisely after the double-side polishing step of polishing both sides of the silicon wafer at the same time, it is used for the first polishing step in the single-side polishing step, The polishing composition according to any one of claims 1 to 4.
  6.  シリコンウェーハを研磨するための研磨用組成物を製造する方法であって、
     複数の突起を表面に有するシリカ粒子を含む砥粒と、
     アンモニアおよびアンモニウム塩からなる群から選択される無機塩基性化合物(A)と、
     を含む研磨用組成物を調製することを特徴とする、研磨用組成物の製造方法。
    A method for producing a polishing composition for polishing a silicon wafer,
    Abrasive grains containing silica particles having a plurality of protrusions on the surface;
    An inorganic basic compound (A) selected from the group consisting of ammonia and ammonium salts;
    A method for producing a polishing composition comprising preparing a polishing composition comprising:
  7.  シリコンウェーハの両面を同時に研磨する両面研磨工程と、
     前記両面研磨工程を経たシリコンウェーハの片面をより精密に研磨する片面研磨工程と、
     を包含するシリコンウェーハ製造方法であって、
     前記片面研磨工程は2以上の研磨工程を含み、それら2以上の研磨工程のうち最初の研磨工程において請求項1から4のいずれか一項に記載の研磨用組成物を用いて研磨を行うことを特徴とする、シリコンウェーハ製造方法。
    A double-side polishing process for simultaneously polishing both sides of a silicon wafer;
    A single-side polishing step for more precisely polishing one side of the silicon wafer that has undergone the double-side polishing step;
    A silicon wafer manufacturing method comprising:
    The single-side polishing step includes two or more polishing steps, and polishing is performed using the polishing composition according to any one of claims 1 to 4 in a first polishing step among the two or more polishing steps. A method for producing a silicon wafer.
PCT/JP2014/074951 2013-09-26 2014-09-19 Polishing composition, polishing-composition production method, and silicon-wafer production method. WO2015046090A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015539176A JP6279593B2 (en) 2013-09-26 2014-09-19 Polishing composition, method for producing polishing composition, and method for producing silicon wafer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013200641 2013-09-26
JP2013-200641 2013-09-26

Publications (1)

Publication Number Publication Date
WO2015046090A1 true WO2015046090A1 (en) 2015-04-02

Family

ID=52743227

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/074951 WO2015046090A1 (en) 2013-09-26 2014-09-19 Polishing composition, polishing-composition production method, and silicon-wafer production method.

Country Status (3)

Country Link
JP (1) JP6279593B2 (en)
TW (1) TWI658132B (en)
WO (1) WO2015046090A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016009629A1 (en) * 2014-07-18 2016-01-21 株式会社フジミインコーポレーテッド Polishing composition
JP2017216333A (en) * 2016-05-31 2017-12-07 株式会社ディスコ Processing apparatus and processing method
CN108713242A (en) * 2016-03-01 2018-10-26 福吉米株式会社 The grinding method and composition for polishing set group of silicon substrate
JP2019143119A (en) * 2017-12-14 2019-08-29 ローム アンド ハース エレクトロニック マテリアルズ シーエムピー ホウルディングス インコーポレイテッド Aqueous composition of low dishing silica particle for polysilicon polishing
CN110546740A (en) * 2017-04-24 2019-12-06 信越半导体株式会社 Method for polishing silicon wafer
CN111095604A (en) * 2017-09-28 2020-05-01 日本瑞翁株式会社 Composition for functional layer of nonaqueous secondary battery, functional layer for nonaqueous secondary battery, nonaqueous secondary battery member, and nonaqueous secondary battery
EP4120322A4 (en) * 2020-03-13 2024-03-27 Fujimi Inc Polishing composition and polishing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6604313B2 (en) * 2016-11-10 2019-11-13 株式会社Sumco Abrasive Grain Evaluation Method and Wafer Manufacturing Method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0997775A (en) * 1995-07-21 1997-04-08 Shin Etsu Handotai Co Ltd Manufacture of mirror-surface semiconductor wafer
WO2002035593A1 (en) * 2000-10-26 2002-05-02 Shin-Etsu Handotai Co.,Ltd. Wafer manufacturing method, polishing apparatus, and wafer
JP2010058985A (en) * 2008-09-01 2010-03-18 Jgc Catalysts & Chemicals Ltd Silica sol and method for producing the same
JP2012079964A (en) * 2010-10-04 2012-04-19 Nissan Chem Ind Ltd Polishing liquid composition for semiconductor wafer
JP2013080752A (en) * 2011-09-30 2013-05-02 Fujimi Inc Polishing composition

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010153576A (en) * 2008-12-25 2010-07-08 Asahi Glass Co Ltd Grinding material for semiconductor integrated circuit, grinding method, and manufacturing method for semiconductor integrated circuit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0997775A (en) * 1995-07-21 1997-04-08 Shin Etsu Handotai Co Ltd Manufacture of mirror-surface semiconductor wafer
WO2002035593A1 (en) * 2000-10-26 2002-05-02 Shin-Etsu Handotai Co.,Ltd. Wafer manufacturing method, polishing apparatus, and wafer
JP2010058985A (en) * 2008-09-01 2010-03-18 Jgc Catalysts & Chemicals Ltd Silica sol and method for producing the same
JP2012079964A (en) * 2010-10-04 2012-04-19 Nissan Chem Ind Ltd Polishing liquid composition for semiconductor wafer
JP2013080752A (en) * 2011-09-30 2013-05-02 Fujimi Inc Polishing composition

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016009629A1 (en) * 2014-07-18 2016-01-21 株式会社フジミインコーポレーテッド Polishing composition
CN108713242A (en) * 2016-03-01 2018-10-26 福吉米株式会社 The grinding method and composition for polishing set group of silicon substrate
US11897081B2 (en) 2016-03-01 2024-02-13 Fujimi Incorporated Method for polishing silicon substrate and polishing composition set
JP2017216333A (en) * 2016-05-31 2017-12-07 株式会社ディスコ Processing apparatus and processing method
US11181883B2 (en) 2016-05-31 2021-11-23 Disco Corporation Processing apparatus and processing method
CN110546740A (en) * 2017-04-24 2019-12-06 信越半导体株式会社 Method for polishing silicon wafer
CN111095604A (en) * 2017-09-28 2020-05-01 日本瑞翁株式会社 Composition for functional layer of nonaqueous secondary battery, functional layer for nonaqueous secondary battery, nonaqueous secondary battery member, and nonaqueous secondary battery
US11462727B2 (en) 2017-09-28 2022-10-04 Zeon Corporation Composition for non-aqueous secondary battery functional layer, functional layer for non-aqueous secondary battery, non-aqueous secondary battery component, and non-aqueous secondary battery
JP2019143119A (en) * 2017-12-14 2019-08-29 ローム アンド ハース エレクトロニック マテリアルズ シーエムピー ホウルディングス インコーポレイテッド Aqueous composition of low dishing silica particle for polysilicon polishing
EP4120322A4 (en) * 2020-03-13 2024-03-27 Fujimi Inc Polishing composition and polishing method

Also Published As

Publication number Publication date
JPWO2015046090A1 (en) 2017-03-09
TWI658132B (en) 2019-05-01
JP6279593B2 (en) 2018-02-14
TW201518491A (en) 2015-05-16

Similar Documents

Publication Publication Date Title
JP6279593B2 (en) Polishing composition, method for producing polishing composition, and method for producing silicon wafer
JP6037416B2 (en) Silicon wafer polishing composition
TW201500492A (en) Polishing composition, method for producing polishing composition, and kit for preparing polishing composition
CN106663619B (en) Composition for polishing silicon wafer
JP6360311B2 (en) Polishing composition and method for producing the same
JP6649828B2 (en) Polishing method of silicon substrate and polishing composition set
JP6110681B2 (en) Polishing composition, polishing composition manufacturing method and polishing product manufacturing method
JP2017101248A (en) Polishing composition, manufacturing method of polishing composition and manufacturing method of polished article
TWI797076B (en) Polishing method of silicon substrate and polishing composition set
JP6691774B2 (en) Polishing composition and method for producing the same
JPWO2019017407A1 (en) Substrate polishing method and polishing composition set
JP5859055B2 (en) Silicon wafer polishing composition
JP7026043B2 (en) A method for manufacturing a composition for rough polishing a silicon wafer, a composition set for rough polishing a silicon wafer, and a method for polishing a silicon wafer.
JPWO2020100563A1 (en) Polishing composition
JP6348927B2 (en) Silicon wafer polishing composition
JP2020035870A (en) Polishing composition
JP6562605B2 (en) Method for producing polishing composition
JP6295052B2 (en) Polishing composition, method for producing polishing composition, and method for producing silicon wafer
TWI572703B (en) Silicon wafer grinding composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14848537

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015539176

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14848537

Country of ref document: EP

Kind code of ref document: A1