WO2015046004A1 - Infrared phosphor - Google Patents

Infrared phosphor Download PDF

Info

Publication number
WO2015046004A1
WO2015046004A1 PCT/JP2014/074655 JP2014074655W WO2015046004A1 WO 2015046004 A1 WO2015046004 A1 WO 2015046004A1 JP 2014074655 W JP2014074655 W JP 2014074655W WO 2015046004 A1 WO2015046004 A1 WO 2015046004A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium oxide
infrared
infrared phosphor
phosphor
group
Prior art date
Application number
PCT/JP2014/074655
Other languages
French (fr)
Japanese (ja)
Inventor
幸平 増田
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to JP2015539147A priority Critical patent/JPWO2015046004A1/en
Publication of WO2015046004A1 publication Critical patent/WO2015046004A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/67Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing refractory metals
    • C09K11/671Chalcogenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/055Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means where light is absorbed and re-emitted at a different wavelength by the optical element directly associated or integrated with the PV cell, e.g. by using luminescent material, fluorescent concentrators or up-conversion arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to an infrared phosphor made of titanium oxide and the use of titanium oxide as an infrared phosphor. More specifically, it is a method of using titanium oxide, which is preferably surface-treated with a silicon compound having affinity for other objects, as an infrared phosphor, and used as a wavelength conversion material, a radiation heat dissipation material, and a biological imaging material. It relates to a possible infrared phosphor.
  • Infrared fluorescence refers to the property of emitting infrared light when absorbing light in the ultraviolet-visible region. Many phosphors whose emission region is in the ultraviolet-visible region have been known so far, but only a limited example of phosphors whose emission region is in the infrared region is known. Infrared rays have excellent permeability to living tissue and can be used as fluorescent probes. Although they can be used for biological research, medical research, diagnosis, etc., the development of infrared fluorescent materials has been delayed. .
  • Patent Document 1 discloses an infrared phosphor mainly composed of organic molecules.
  • An infrared phosphor mainly composed of organic molecules is characterized by a small Stokes shift (wavelength difference between excitation light and light emission) of about 20 to 30 nm.
  • a small Stokes shift is disadvantageous in that an image with a clear signal / noise ratio is obtained.
  • a technique for reducing the line width by using a double grating or the like has been developed. Has been hindered.
  • Infrared phosphors mainly composed of organic molecules are often unstable to heat and light because organic molecules having a long conjugated system are often used. Such characteristics have made the infrared phosphors expensive and special and have not only prevented simple use but also have become a serious defect that limits the targets of biological research. For example, it is possible to detect thermophilic bacteria that produce thermostable DNA polymerase (Non-patent Document 1: Science, 1988, 239, 487-491), which is also applied to the polymerase chain reaction, with an infrared fluorescent probe. However, it is still difficult with a probe using a conventional infrared phosphor. However, it is considered that a long conjugated system is indispensable for emitting infrared fluorescence, and no improvement method for this wrinkle has been proposed.
  • An object of the present invention is to provide an infrared phosphor having a large Stokes shift, excellent in thermal stability, and having affinity with other objects, and a method for using the same.
  • the present inventor has found that it is effective to use titanium oxide as the infrared phosphor.
  • the present invention provides the following infrared phosphor and a method for using the same.
  • Infrared phosphor made of titanium oxide.
  • R 1 p R 2 q R 3 r Si (OR 4 ) 4-pqr (1) In the formula, R 1 is a hydrogen atom or a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms, and R 2 , R 3 and R 4 each independently represents an alkyl group having 1 to 6 carbon atoms.
  • an infrared phosphor having a large Stokes shift, excellent thermal stability, and affinity with other objects can be obtained.
  • an infrared phosphor comprising the titanium oxide of the present invention and a method for using the titanium oxide as an infrared phosphor will be described in detail.
  • Titanium oxide may be any polymorph of anatase type, rutile type or brookite type.
  • the anatase type and the rutile type are preferable because they can be easily prepared as a fine particle dispersion.
  • the size of the titanium oxide particles is not limited.
  • when it is intended for applications such as imaging materials it is preferably transparent in the visible region.
  • the volume average 50% cumulative particle size measured by the dynamic light scattering method is preferably 1 nm to 100 nm. If it is smaller than 1 nm, it may be difficult to handle as a colloidal solution. When it is larger than 100 nm, the influence of scattering may be increased in the visible region.
  • Titanium oxide may be used in any form of solid or dispersion.
  • a dispersion is preferable because of its excellent dispersibility in tissues.
  • solids can also be used when intended for use as a general infrared phosphor.
  • the dispersion medium when titanium oxide is used as a dispersion those generally used as a solvent such as water, methanol, ethanol, isopropyl alcohol, hydrocarbon, BTX component, etc. can be used.
  • a dispersion medium such as water or ethanol having excellent biocompatibility is preferable.
  • hydrocarbons and BTX components can also be used for applications as imaging materials for industrial tests and wavelength conversion materials.
  • Such titanium oxide may be synthesized using titanium alkoxide or peroxotitanium as a precursor, or a commercially available product may be used.
  • covered the surface of titanium oxide with other metal oxides, such as a zirconia, an alumina, a silica can be used.
  • Examples of the commercially available titanium oxide that can be used in the present invention include Optolake (manufactured by JGC Catalysts and Chemicals, product number “1130Z”) and the like.
  • Infrared fluorescence in the present invention is directed to those having an emission wavelength of 700 nm to 1,200 nm, preferably 750 nm to 1,200 nm, more preferably 800 nm to 1,200 nm. If the emission wavelength is smaller than 700 nm, it becomes a phosphor in the visible region and is not a subject of the present invention. If the emission wavelength is larger than 1,200 nm, it may be used for excitation of the rotational level or vibration level of the molecule, and the biological transparency may not be sufficient.
  • the excitation wavelength in the present invention is 300 nm to 400 nm, preferably 310 nm to 390 nm, and more preferably 320 nm to 380 nm. If the excitation wavelength is less than 300 nm, the ultraviolet light may damage the sample when used as a biological imaging material. If it is larger than 400 nm, unintentional excitation may always occur when used in a bright room.
  • the difference between the emission wavelength and the excitation wavelength is called Stokes shift.
  • the Stokes shift in the method of the present invention is 300 nm to 900 nm, preferably 400 nm to 900 nm, more preferably 500 nm to 900 nm.
  • the infrared phosphors known so far are characterized by a small Stokes shift of about 20 to 30 nm.
  • the excitation light is close to the light emitting region, and the excitation light is mixed in the observation system, which causes a decrease in the ratio due to an increase in the signal / noise ratio.
  • a technique for reducing the half width of a signal by a double grating method using two or more diffraction gratings is known, but there is a drawback that the apparatus becomes complicated.
  • a special light source such as an infrared LED is often required as a light source used for excitation.
  • the Stokes shift of the infrared phosphor may generally be larger than 900 nm as long as it has an appropriate functional structure.
  • Excitation does not have to be performed simultaneously with light emission, and an infrared phosphor previously excited by ultraviolet rays may be introduced into a living body and a delayed fluorescence may be observed.
  • the delay time of delayed fluorescence is preferably 1 minute or longer, more preferably 5 minutes or longer, and even more preferably 10 minutes or longer. If the delay time is shorter than 1 minute, it will be extinguished by the introduction and observation may be difficult.
  • the infrared phosphor in the present invention is preferably surface-treated with a silicon compound represented by the following general formula (1).
  • a silicon compound represented by the following general formula (1) when it is intended to be used as an imaging material, it is preferably treated with a silicon compound having an affinity for other objects.
  • the surface treatment is not necessarily performed with a silicon compound.
  • R 1 is a hydrogen atom or a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms
  • R 2 , R 3 and R 4 each independently represents an alkyl group having 1 to 6 carbon atoms.
  • P is an integer of 1 to 3
  • q is 0, 1 or 2
  • r is 0, 1 or 2
  • p + q + r is an integer of 1 to 3.
  • R 1 include a hydrogen atom, an unsubstituted monovalent hydrocarbon group such as an alkyl group having 1 to 20 carbon atoms, preferably 1 to 8 carbon atoms, an alkenyl group, an aryl group, and an aralkyl group, and the monovalent hydrocarbon group.
  • an unsubstituted monovalent hydrocarbon group such as an alkyl group having 1 to 20 carbon atoms, preferably 1 to 8 carbon atoms, an alkenyl group, an aryl group, and an aralkyl group, and the monovalent hydrocarbon group.
  • Groups especially one or more of the hydrogen atoms of the alkyl group, epoxy groups such as (meth) acryloxy groups, glycidoxy groups, epoxycyclohexyl groups, halogen atoms such as chloro groups, fluoro groups, mercapto groups, thiol groups, sulfide groups And a substituted monovalent hydrocarbon group substituted with an amino-containing group such as an amino group and an aminoethylamino group, a carboxyl group, an oxiranyl group, an isocyanate group, and an isocyanurate group.
  • epoxy groups such as (meth) acryloxy groups, glycidoxy groups, epoxycyclohexyl groups, halogen atoms such as chloro groups, fluoro groups, mercapto groups, thiol groups, sulfide groups
  • a substituted monovalent hydrocarbon group substituted with an amino-containing group such as an amino group and an aminoethylamino group, a carboxyl
  • the amount of silicon compound used relative to the infrared phosphor is 0 to 10% by mass, preferably 0 to 8% by mass, and more preferably 0 to 5% by mass.
  • 0.5 mass% or more, especially 1 mass% or more are preferable.
  • the amount of the silicon compound used is more than 10% by mass, a free silicon oligomer that has not been subjected to the surface treatment may be easily formed, which is not preferable. Free silicon oligomers that have not been subjected to surface treatment are preferably removed by ultrafiltration.
  • the infrared of the present invention is particularly suited for applications as bioimaging materials. It may act on the subject competitively with the phosphor, forming a background and causing a decrease in the effective signal.
  • the silicon compound represented by the general formula (1) has a reactive site that becomes a factor indicating affinity with other objects.
  • the reaction site may be an electrophilic group or a nucleophilic group.
  • Electrophilic groups easily react with nucleobases constituting deoxyribonucleic acid and ribonucleic acid, and can be used effectively as a linker.
  • Nucleobase as used herein refers to adenine, thymine, cytosine, guanine, and uracil sites.
  • Electrophilic groups can also be suitably used as linkers because they can be subjected to nucleophilic attack from the N-terminus of amino acids and peptides, hydroxyl groups of sugars, and the like.
  • electrophilic group examples include oxiranyl group, vinyl group, acrylic group, carboxyl group, and chloro group.
  • Nucleophilic groups can act with amino acids and the C-terminus of peptides, electrophilic sites of enzymes, and the like. Moreover, since it can act also as a metal porphyrin or a ligand of a zerovalent metal colloid, it can be used suitably as a linker. Examples of the nucleophilic group that can be used for such purposes include amino groups, thiol groups, and sulfide groups.
  • Examples of other objects to which the silicon compound can exhibit affinity include biomaterial compounds and chemical bonds or functional groups contained in the biomaterial compounds. Specifically, adenine, thymine, cytosine, guanine, uracil, and nucleobases of these methylated derivatives, glucose, ribose, deoxyribose, galactose, saccharides such as allose, talose, gulose, altrose, mannose, idose, Amino acids and amino acid derivatives such as alanine, arginine, asparagine, aspartic acid, cysteine, glutamine, glutamic acid, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, valine, porphyrin and A metal porphyrin etc. can be mentioned.
  • the method of surface-treating the above-mentioned titanium oxide with an organosilicon compound of formula (1) or a partially hydrolyzed condensate thereof comprises reacting water, titanium oxide and the compound of formula (1) in the presence of an acid and a base catalyst.
  • an acid catalyst include monovalent carboxylic acids such as formic acid, acetic acid, propionic acid and benzoic acid, divalent carboxylic acids such as oxalic acid, malonic acid, glutaric acid, adipic acid and pimelic acid, methanesulfonic acid and p-toluenesulfone.
  • Examples thereof include organic acids such as acids, mineral acids such as hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid and boric acid, and cation exchange resins.
  • As the base catalyst sodium hydroxide, lithium hydroxide, barium hydroxide, alkali (earth) metal hydroxide such as calcium hydroxide, ammonia, ammonia derivatives such as tetramethylammonium hydroxide, tetrabutylammonium hydroxide, Examples thereof include nitrogen-containing organic compounds such as trimethylamine, triethylamine, pyridine, pyrazine and urea.
  • the acid and base catalyst can be used in an amount of 0.01 to 10% by mass, preferably 0.1 to 5% by mass, based on the organosilicon compound of the formula (1).
  • Water can use more than the stoichiometric amount necessary for the organosilicon compound of formula (1) to be completely hydrolyzed.
  • the reaction can be carried out at 10 to 200 ° C, preferably 20 to 100 ° C.
  • a heat medium using conductive heat transfer such as an oil bath or radiant heat transfer such as microwaves can be used.
  • the infrared phosphor in the present invention is characterized by having a large Stokes shift and thermal stability, and further having affinity with other objects.
  • a site having affinity with another target may be used while having an electrophilic group or a nucleophilic group in the hope of being chemically modified in vivo.
  • it may be used after reacting with a sugar chain, a peptide, a nucleobase, and a derivative thereof in advance.
  • Example 1 Ion-exchanged water (100 g), ammonium nitrate (0.01 g), ion-exchange resin (manufactured by Organo Corporation, trade name “Amberlite 200CT (H) -AG”, 10 g), titanium oxide dispersion (manufactured by JGC Catalysts & Chemicals Co., Ltd.) , Trade name “OPTRAIK 1130Z”, non-volatile content 30% by mass, 100 g), 3-glycidoxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., trade name “KBM-403”, 1 g), 3-glycid Xylpropylmethyldiethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., trade name “KBE-402”, 0.5 g) was added and stirred at room temperature for 2 hours.
  • the ion exchange resin was removed by filtration, and the obtained dispersion was filtered with an ultrafilter (manufactured by Andritz) while adding ethanol, and the non-volatile content concentration in the filtration residue was adjusted to 10% by mass. It was confirmed by gel permeation chromatography (manufactured by Tosoh Corporation, product name “HLC-8320”, polystyrene-packed column “TSKgel G3000HXL”, using eluent THF) that the filtration residue did not contain a free oligomer of silicon compound. .
  • the obtained dispersion liquid was measured for infrared fluorescence using a spectroscope (manufactured by Horiba, product name “FluoroLog3”, detector InGaAs array).
  • the measurement results are shown in FIG. FIG. 1 is an emission spectrum when the dispersion was excited at 370 nm, and it was revealed that it had a peak top near 840 nm. Although it became clear from FIG. 1 that the continuous emission spectrum was shown, it was suggested that it was based on a clear band structure.
  • titanium oxide has never been observed. As shown in Example 1, it was found that characteristic infrared fluorescence characteristics were exhibited, and it was revealed that titanium oxide can be used as an infrared phosphor. The usefulness of titanium oxide as an infrared phosphor has never been mentioned so far.
  • the infrared phosphor provided by the present invention has a large Stokes shift, a clear image can be easily provided when used as a biological imaging material.
  • a near-infrared filter blocking most of the ultraviolet-visible light and blocking near-infrared light
  • An image having a large contrast can be obtained simply by attaching a filter that transmits light.
  • Such simple infrared fluorescence observation is difficult when a conventional infrared phosphor having a small Stokes shift is used.
  • the excitation does not need to be performed simultaneously with the light emission, and a method may be employed in which delayed fluorescent light is observed by introducing a previously excited infrared phosphor into the living body.
  • the infrared phosphor provided by the present invention has applicability as a heat dissipation material for light-emitting elements such as LEDs and organic ELs. Conventionally, energy relaxation when absorbing ultraviolet light is often compensated in the form of vibrational level enhancement, in which case thermal fatigue accumulates in the sealing resin, causing cracks and yellowing. It was.
  • the infrared phosphor of the present invention can be used for the purpose of removing such unnecessary ultraviolet energy by radiant heat radiation.
  • the infrared phosphor provided by the present invention has the potential to be used as a filler for solar cell backsheets. Excitation and emission may be reversible, and infrared phosphors may emit ultraviolet light when two-photon absorption occurs in the infrared region. By utilizing this characteristic, it is possible to reuse infrared light transmitted without being absorbed by the solar cell as ultraviolet light.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The present invention relates to an infrared phosphor comprising titanium oxide. According to the present invention, it becomes possible to produce an infrared phosphor having a long Stokes shift, excellent thermal stability and an affinity for other materials of interest.

Description

赤外蛍光体Infrared phosphor
 本発明は、酸化チタンからなる赤外蛍光体及び酸化チタンの赤外蛍光体としての使用に関する。更に詳しくは、好ましくは他の対象と親和性を有するケイ素化合物で表面処理してなる酸化チタンを赤外蛍光体として使用する方法であり、波長変換材料、輻射放熱材料、並びに生体イメージング材料として使用可能な赤外蛍光体に関する。 The present invention relates to an infrared phosphor made of titanium oxide and the use of titanium oxide as an infrared phosphor. More specifically, it is a method of using titanium oxide, which is preferably surface-treated with a silicon compound having affinity for other objects, as an infrared phosphor, and used as a wavelength conversion material, a radiation heat dissipation material, and a biological imaging material. It relates to a possible infrared phosphor.
 赤外蛍光性とは、紫外可視領域の光を吸収した際に赤外線を発光する特性を示す。発光領域が紫外可視領域である蛍光体はこれまでに多数知られているが、発光領域が赤外線である蛍光体は、限られた例しか知られていない。赤外線は生体組織の透過性に優れているため蛍光プローブとしての利用が可能であり、生物学研究、医学研究、診断等の重要な用途が考えられるものの、赤外蛍光材料の開発は立ち遅れていた。 Infrared fluorescence refers to the property of emitting infrared light when absorbing light in the ultraviolet-visible region. Many phosphors whose emission region is in the ultraviolet-visible region have been known so far, but only a limited example of phosphors whose emission region is in the infrared region is known. Infrared rays have excellent permeability to living tissue and can be used as fluorescent probes. Although they can be used for biological research, medical research, diagnosis, etc., the development of infrared fluorescent materials has been delayed. .
 特許文献1(米国特許第8367714号明細書)には、有機分子を主体とした赤外蛍光体が開示されている。有機分子を主体とした赤外蛍光体は、ストークスシフト(励起光と発光の波長差)が約20~30nmと小さいのが特徴である。蛍光プローブへの応用を指向した場合、このような小さいストークスシフトは明瞭なシグナル/ノイズ比の画像を得るという点において不利であった。このような小さいストークスシフトのデメリットを低減するためにダブルグレーティング等を利用して線幅を小さくする技術が開発されているが、装置が高価で大掛かりになる場合もあり、赤外蛍光の簡便な利用を妨げてきた。 Patent Document 1 (US Pat. No. 8,367,714) discloses an infrared phosphor mainly composed of organic molecules. An infrared phosphor mainly composed of organic molecules is characterized by a small Stokes shift (wavelength difference between excitation light and light emission) of about 20 to 30 nm. When directed to application to fluorescent probes, such a small Stokes shift is disadvantageous in that an image with a clear signal / noise ratio is obtained. In order to reduce the demerits of such a small Stokes shift, a technique for reducing the line width by using a double grating or the like has been developed. Has been hindered.
 有機分子を主体とした赤外蛍光体は、共役系の長い有機分子が用いられることが多いため、熱や光に不安定である場合もあった。このような特性は赤外蛍光体を高価で特殊なものとして、簡便な利用を妨げるのみならず、生物学研究の対象をも限定する重大な瑕疵となっていた。例えば、ポリメラーゼ連鎖反応にも応用されている耐熱性DNAポリメラーゼ(非特許文献1:Science、1988年、239巻、487-491頁)を産生する好熱菌を赤外蛍光プローブで検出することは、従来の赤外蛍光体を用いたプローブでは未だに困難であろう。しかしながら、赤外蛍光を発するためには長い共役系が必須なものと考えられており、この瑕疵に対する改良方法の提案はなされていない。 Infrared phosphors mainly composed of organic molecules are often unstable to heat and light because organic molecules having a long conjugated system are often used. Such characteristics have made the infrared phosphors expensive and special and have not only prevented simple use but also have become a serious defect that limits the targets of biological research. For example, it is possible to detect thermophilic bacteria that produce thermostable DNA polymerase (Non-patent Document 1: Science, 1988, 239, 487-491), which is also applied to the polymerase chain reaction, with an infrared fluorescent probe. However, it is still difficult with a probe using a conventional infrared phosphor. However, it is considered that a long conjugated system is indispensable for emitting infrared fluorescence, and no improvement method for this wrinkle has been proposed.
 以上のように、大きなストークスシフトと熱的な安定性を兼ね備え、更に他の対象と親和性を有する赤外蛍光体の提供方法は知られていなかった。 As described above, a method for providing an infrared phosphor having both a large Stokes shift and thermal stability and having affinity for other objects has not been known.
 本発明は、大きなストークスシフトを持ち、熱的安定性に優れ、なおかつ他の対象と親和性を有することができる赤外蛍光体及びその使用方法を提供することを目的とする。 An object of the present invention is to provide an infrared phosphor having a large Stokes shift, excellent in thermal stability, and having affinity with other objects, and a method for using the same.
 本発明者は、赤外蛍光体における上記の課題を解決するために鋭意検討した結果、酸化チタンを赤外蛍光体として用いることが有効であることを知見した。 As a result of intensive studies to solve the above-described problems in the infrared phosphor, the present inventor has found that it is effective to use titanium oxide as the infrared phosphor.
 従って、本発明は、下記赤外蛍光体及びその使用方法を提供する。
〔1〕
 酸化チタンからなる赤外蛍光体。
〔2〕
 酸化チタンが下記一般式(1)で表されるケイ素化合物又はその部分加水分解縮合物で表面処理されてなる〔1〕記載の赤外蛍光体。
 R1 p2 q3 rSi(OR44-p-q-r     (1)
(式中、R1は、水素原子、又は置換又は非置換の炭素数1~20の1価炭化水素基、R2、R3、R4はそれぞれ独立に炭素数1~6のアルキル基を示し、pは1~3の整数、qは0、1又は2、rは0、1又は2で、p+q+rは1~3の整数である。)
〔3〕
 酸化チタンの赤外蛍光体としての使用。
〔4〕
 酸化チタンが下記一般式(1)で表されるケイ素化合物又はその部分加水分解縮合物で表面処理されてなる〔3〕記載の使用。
 R1 p2 q3 rSi(OR44-p-q-r (1)
(式中、R1は、水素原子、又は置換又は非置換の炭素数1~20の1価炭化水素基、R2、R3、R4はそれぞれ独立に炭素数1~6のアルキル基を示し、pは1~3の整数、qは0、1又は2、rは0、1又は2で、p+q+rは1~3の整数である。)
〔5〕
 酸化チタンを300nm以上400nm以下の光で励起し、700nm以上1,200nm以下で発せられる蛍光を利用することを特徴とする〔3〕又は〔4〕記載の使用。
Accordingly, the present invention provides the following infrared phosphor and a method for using the same.
[1]
Infrared phosphor made of titanium oxide.
[2]
The infrared phosphor according to [1], wherein the titanium oxide is surface-treated with a silicon compound represented by the following general formula (1) or a partially hydrolyzed condensate thereof.
R 1 p R 2 q R 3 r Si (OR 4 ) 4-pqr (1)
(In the formula, R 1 is a hydrogen atom or a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms, and R 2 , R 3 and R 4 each independently represents an alkyl group having 1 to 6 carbon atoms. P is an integer of 1 to 3, q is 0, 1 or 2, r is 0, 1 or 2, and p + q + r is an integer of 1 to 3.)
[3]
Use of titanium oxide as an infrared phosphor.
[4]
The use according to [3], wherein the titanium oxide is surface-treated with a silicon compound represented by the following general formula (1) or a partially hydrolyzed condensate thereof.
R 1 p R 2 q R 3 r Si (OR 4 ) 4-pqr (1)
(In the formula, R 1 is a hydrogen atom or a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms, and R 2 , R 3 and R 4 each independently represents an alkyl group having 1 to 6 carbon atoms. P is an integer of 1 to 3, q is 0, 1 or 2, r is 0, 1 or 2, and p + q + r is an integer of 1 to 3.)
[5]
The use according to [3] or [4], wherein titanium oxide is excited with light of 300 nm to 400 nm and uses fluorescence emitted from 700 nm to 1,200 nm.
 本発明によれば、大きなストークスシフトを有し、熱的安定性に優れ、他の対象と親和性を有する赤外蛍光体を得ることができる。 According to the present invention, an infrared phosphor having a large Stokes shift, excellent thermal stability, and affinity with other objects can be obtained.
実施例1で示した酸化チタンを370nmで励起した際の発光スペクトルである。なお、図1において縦軸(y軸)は発光強度、横軸(x軸)は発光波長である。It is an emission spectrum at the time of exciting the titanium oxide shown in Example 1 at 370 nm. In FIG. 1, the vertical axis (y-axis) is the emission intensity, and the horizontal axis (x-axis) is the emission wavelength.
 以下に、本発明の酸化チタンからなる赤外蛍光体及び酸化チタンの赤外蛍光体としての使用方法を詳細に説明する。 Hereinafter, an infrared phosphor comprising the titanium oxide of the present invention and a method for using the titanium oxide as an infrared phosphor will be described in detail.
酸化チタン
 本発明における酸化チタンはアナターゼ型、ルチル型、ブルッカイト型のいずれの多形であってもよい。特にアナターゼ型及びルチル型は微粒子分散液として調製することが容易であるため好ましい。酸化チタン粒子の大きさは限定されるものではない。特に、イメージング材料等の用途を指向した場合には、可視領域において透明であることが好ましい。可視領域において透明性を維持するためには、動的光散乱法で測定した体積平均の50%累計粒子径が1nm~100nmであることが好ましい。1nmより小さいとコロイド溶液として扱いにくくなることがある。100nmより大きい場合は可視領域において散乱の影響が大きくなることがある。しかしながら、一般の赤外蛍光体としての用途を指向した場合には、100nmより大きい酸化チタンを用いることを妨げない。酸化チタンは固体、分散液のいずれの形態で用いてもよい。特に、イメージング材料等の用途を指向した場合には、分散液であるほうが、組織への分散性に優れるため好ましい。しかしながら、一般の赤外蛍光体としての用途を指向した場合には、固体を用いることもできる。酸化チタンを分散液として用いる場合の分散媒は、水、メタノール、エタノール、イソプロピルアルコール、炭化水素、BTX成分等の一般に溶媒として用いられているものが使用できる。特に、生体イメージング材料としての用途を指向した場合は、生体親和性に優れた水、エタノール等の分散媒であることが好ましい。しかしながら、工業試験用のイメージング材料や波長変換材料としての用途を指向した場合には炭化水素、BTX成分を用いることもできる。このような酸化チタンはチタンアルコキシドやペルオキソチタンを前駆体として合成してもよく、市販のものを用いてもよい。また、酸化チタンの表面をジルコニア、アルミナ、シリカ等、他の金属酸化物で被覆したものを用いることができる。本発明に用いることができる市販の酸化チタンとしてはオプトレイク(日揮触媒化成株式会社製、製品番号「1130Z」)等を例示することができる。
Titanium oxide The titanium oxide in the present invention may be any polymorph of anatase type, rutile type or brookite type. In particular, the anatase type and the rutile type are preferable because they can be easily prepared as a fine particle dispersion. The size of the titanium oxide particles is not limited. In particular, when it is intended for applications such as imaging materials, it is preferably transparent in the visible region. In order to maintain transparency in the visible region, the volume average 50% cumulative particle size measured by the dynamic light scattering method is preferably 1 nm to 100 nm. If it is smaller than 1 nm, it may be difficult to handle as a colloidal solution. When it is larger than 100 nm, the influence of scattering may be increased in the visible region. However, when intended for use as a general infrared phosphor, the use of titanium oxide larger than 100 nm is not prevented. Titanium oxide may be used in any form of solid or dispersion. In particular, when intended for use as an imaging material or the like, a dispersion is preferable because of its excellent dispersibility in tissues. However, solids can also be used when intended for use as a general infrared phosphor. As the dispersion medium when titanium oxide is used as a dispersion, those generally used as a solvent such as water, methanol, ethanol, isopropyl alcohol, hydrocarbon, BTX component, etc. can be used. In particular, when intended for use as a bioimaging material, a dispersion medium such as water or ethanol having excellent biocompatibility is preferable. However, hydrocarbons and BTX components can also be used for applications as imaging materials for industrial tests and wavelength conversion materials. Such titanium oxide may be synthesized using titanium alkoxide or peroxotitanium as a precursor, or a commercially available product may be used. Moreover, what coat | covered the surface of titanium oxide with other metal oxides, such as a zirconia, an alumina, a silica, can be used. Examples of the commercially available titanium oxide that can be used in the present invention include Optolake (manufactured by JGC Catalysts and Chemicals, product number “1130Z”) and the like.
赤外蛍光性
 本発明における赤外蛍光性は、発光波長が700nm以上1,200nm以下、好ましくは750nm以上1,200nm以下、更に好ましくは800nm以上1,200nm以下のものを対象としている。発光波長が700nmより小さいと可視領域の蛍光体となるため本発明では対象としない。発光波長が1,200nmより大きいと、分子の回転準位や振動準位の励起に使用される可能性があり、生体透明性が十分ではないことがある。
Infrared fluorescence Infrared fluorescence in the present invention is directed to those having an emission wavelength of 700 nm to 1,200 nm, preferably 750 nm to 1,200 nm, more preferably 800 nm to 1,200 nm. If the emission wavelength is smaller than 700 nm, it becomes a phosphor in the visible region and is not a subject of the present invention. If the emission wavelength is larger than 1,200 nm, it may be used for excitation of the rotational level or vibration level of the molecule, and the biological transparency may not be sufficient.
 本発明における励起波長は300nm以上400nm以下、好ましくは310nm以上390nm以下、更に好ましくは320nm以上380nm以下である。励起波長が300nmより小さいと生体イメージング材料として使用した際に、紫外線が試料に損傷を与える場合がある。400nmより大きいと明室で使用した際に、意図せぬ励起が常時起こってしまうことがある。発光波長と励起波長の差をストークスシフトという。本発明の方法におけるストークスシフトは、300nm以上900nm以下、好ましくは400nm以上900nm以下、より好ましくは500nm以上900nm以下である。これまでに知られている赤外蛍光体はストークスシフトが20~30nm程度と小さいのが特徴である。ストークスシフトが小さい場合は、励起光が発光領域と近く、観測系において励起光が混入してしまい、シグナル/ノイズ比のノイズ増大によって、比を低下させる原因となってしまう。シグナル/ノイズ比を大きくするために、2つ以上の回折格子を用いたダブルグレーティング法によってシグナルの半値幅を小さくする技術が知られているが、装置が複雑となってしまう欠点があった。また励起に用いる光源も、赤外LED等の特殊なものが必要とされることが多い。ストークスシフトが300nm以上であれば、安価に汎用されているブラックライトをノンアパチャーで励起光として使用することができる。ストークスシフトが900nmより大きい場合は、シグナル/ノイズ比のノイズは低下する傾向にあるが、シグナル自体が小さくなることによって、比を低下させてしまうことがある。シグナルが小さくなる原因は、一般にストークスシフトが大きすぎると、電子遷移前後の軌道の波動関数の形状が大きく異なり、フランク-コンドン因子が小さくなってしまうからである。この原因から示唆されるように、適切な関数構造さえ有していれば、赤外蛍光体のストークスシフトは一般論として900nmより大きくてもよい。また、励起は発光と同時である必要はなく、予め紫外線で励起した赤外蛍光体を生体内に導入し遅延蛍光を観測する手法によってもよい。遅延蛍光の遅延時間は好ましくは1分以上、より好ましくは5分以上、更に好ましくは10分以上である。遅延時間が1分より短いと導入までに消光し、観測が難しいことがある。 The excitation wavelength in the present invention is 300 nm to 400 nm, preferably 310 nm to 390 nm, and more preferably 320 nm to 380 nm. If the excitation wavelength is less than 300 nm, the ultraviolet light may damage the sample when used as a biological imaging material. If it is larger than 400 nm, unintentional excitation may always occur when used in a bright room. The difference between the emission wavelength and the excitation wavelength is called Stokes shift. The Stokes shift in the method of the present invention is 300 nm to 900 nm, preferably 400 nm to 900 nm, more preferably 500 nm to 900 nm. The infrared phosphors known so far are characterized by a small Stokes shift of about 20 to 30 nm. When the Stokes shift is small, the excitation light is close to the light emitting region, and the excitation light is mixed in the observation system, which causes a decrease in the ratio due to an increase in the signal / noise ratio. In order to increase the signal / noise ratio, a technique for reducing the half width of a signal by a double grating method using two or more diffraction gratings is known, but there is a drawback that the apparatus becomes complicated. In addition, a special light source such as an infrared LED is often required as a light source used for excitation. When the Stokes shift is 300 nm or more, a black light that is widely used at low cost can be used as excitation light with no aperture. When the Stokes shift is larger than 900 nm, the noise of the signal / noise ratio tends to decrease, but the ratio may be decreased by decreasing the signal itself. The reason why the signal becomes small is that if the Stokes shift is too large, the shape of the wave function of the orbit before and after the electron transition is greatly different, and the Frank-Condon factor becomes small. As suggested by this cause, the Stokes shift of the infrared phosphor may generally be larger than 900 nm as long as it has an appropriate functional structure. Excitation does not have to be performed simultaneously with light emission, and an infrared phosphor previously excited by ultraviolet rays may be introduced into a living body and a delayed fluorescence may be observed. The delay time of delayed fluorescence is preferably 1 minute or longer, more preferably 5 minutes or longer, and even more preferably 10 minutes or longer. If the delay time is shorter than 1 minute, it will be extinguished by the introduction and observation may be difficult.
ケイ素化合物
 本発明における赤外蛍光体は、更に下記一般式(1)で表されるケイ素化合物で表面処理されていることが好ましい。特に、イメージング材料としての使用を指向した際には、他の対象と親和性を有するケイ素化合物で処理されていることが好ましい。しかしながら、一般の赤外蛍光体としての使用を指向した場合は、必ずケイ素化合物で表面処理されていなければならない訳ではない。
 R1 p2 q3 rSi(OR44-p-q-r     (1)
(式中、R1は、水素原子、又は置換又は非置換の炭素数1~20の1価炭化水素基、R2、R3、R4はそれぞれ独立に炭素数1~6のアルキル基を示し、pは1~3の整数、qは0、1又は2、rは0、1又は2で、p+q+rは1~3の整数である。)
Silicon Compound The infrared phosphor in the present invention is preferably surface-treated with a silicon compound represented by the following general formula (1). In particular, when it is intended to be used as an imaging material, it is preferably treated with a silicon compound having an affinity for other objects. However, when it is intended to be used as a general infrared phosphor, the surface treatment is not necessarily performed with a silicon compound.
R 1 p R 2 q R 3 r Si (OR 4 ) 4-pqr (1)
(In the formula, R 1 is a hydrogen atom or a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms, and R 2 , R 3 and R 4 each independently represents an alkyl group having 1 to 6 carbon atoms. P is an integer of 1 to 3, q is 0, 1 or 2, r is 0, 1 or 2, and p + q + r is an integer of 1 to 3.)
 R1として具体的には、水素原子、炭素数1~20、好ましくは1~8のアルキル基、アルケニル基、アリール基、アラルキル基等の非置換の1価炭化水素基、該1価炭化水素基、特にアルキル基の水素原子の1個又はそれ以上を(メタ)アクリロキシ基、グリシドキシ基、エポキシシクロヘキシル基等のエポキシ基、クロロ基、フルオロ基等のハロゲン原子、メルカプト基、チオール基、スルフィド基、アミノ基、アミノエチルアミノ基等のアミノ含有基、カルボキシル基、オキシラニル基、イソシアネート基、イソシアヌレート基で置換された置換1価炭化水素基を挙げることができる。 Specific examples of R 1 include a hydrogen atom, an unsubstituted monovalent hydrocarbon group such as an alkyl group having 1 to 20 carbon atoms, preferably 1 to 8 carbon atoms, an alkenyl group, an aryl group, and an aralkyl group, and the monovalent hydrocarbon group. Groups, especially one or more of the hydrogen atoms of the alkyl group, epoxy groups such as (meth) acryloxy groups, glycidoxy groups, epoxycyclohexyl groups, halogen atoms such as chloro groups, fluoro groups, mercapto groups, thiol groups, sulfide groups And a substituted monovalent hydrocarbon group substituted with an amino-containing group such as an amino group and an aminoethylamino group, a carboxyl group, an oxiranyl group, an isocyanate group, and an isocyanurate group.
 ケイ素化合物の赤外蛍光体に対する使用量は0以上10質量%以下、好ましくは0以上8質量%以下、更に好ましくは0以上5質量%以下である。なお、ケイ素化合物を使用する場合、0.5質量%以上、特に1質量%以上が好ましい。ケイ素化合物の使用量が10質量%より多いと、表面処理に供されなかった遊離ケイ素オリゴマーが形成しやすくなることがあり、好ましくない。表面処理に供されなかった遊離ケイ素オリゴマーは限外ろ過によって除去されることが好ましい。遊離ケイ素オリゴマーは赤外蛍光特性を有さないにもかかわらず、他の対象との親和性は依然として有しているため、特に生体イメージング材料としての用途を指向した場合は、本発明の赤外蛍光体と競争的に対象に作用し、バックグラウンドを形成して、有効なシグナルを低下させる原因となることがある。 The amount of silicon compound used relative to the infrared phosphor is 0 to 10% by mass, preferably 0 to 8% by mass, and more preferably 0 to 5% by mass. In addition, when using a silicon compound, 0.5 mass% or more, especially 1 mass% or more are preferable. When the amount of the silicon compound used is more than 10% by mass, a free silicon oligomer that has not been subjected to the surface treatment may be easily formed, which is not preferable. Free silicon oligomers that have not been subjected to surface treatment are preferably removed by ultrafiltration. Despite the fact that free silicon oligomers do not have infrared fluorescence properties, they still have affinity for other objects, so the infrared of the present invention is particularly suited for applications as bioimaging materials. It may act on the subject competitively with the phosphor, forming a background and causing a decrease in the effective signal.
 一般式(1)で表されるケイ素化合物は、他の対象との親和性を示す要因となるような反応部位を有する。反応部位は求電子性基であっても、求核性基であってもよい。求電子性基は、デオキシリボ核酸やリボ核酸を構成する核酸塩基と反応しやすく、リンカーとして有効に用いることができる。ここでいう核酸塩基とはアデニン、チミン、シトシン、グアニン、及びウラシル部位のことをいう。求電子性基はまた、アミノ酸及びペプチドのN末端、糖のヒドロキシル基等から求核攻撃を受け得るためリンカーとして好適に用いることができる。このような目的に用いることができる求電子性基は、オキシラニル基、ビニル基、アクリル基、カルボキシル基、クロロ基等を挙げることができる。求核性基は、アミノ酸及びペプチドのC末端、酵素の求電子性部位等と作用することができる。また金属ポルフィリンや零価金属コロイドの配位子としても作用することができるため、リンカーとして好適に用いることができる。このような目的に用いることができる求核性基は、アミノ基、チオール基、スルフィド基等を挙げることができる。 The silicon compound represented by the general formula (1) has a reactive site that becomes a factor indicating affinity with other objects. The reaction site may be an electrophilic group or a nucleophilic group. Electrophilic groups easily react with nucleobases constituting deoxyribonucleic acid and ribonucleic acid, and can be used effectively as a linker. Nucleobase as used herein refers to adenine, thymine, cytosine, guanine, and uracil sites. Electrophilic groups can also be suitably used as linkers because they can be subjected to nucleophilic attack from the N-terminus of amino acids and peptides, hydroxyl groups of sugars, and the like. Examples of the electrophilic group that can be used for such purpose include oxiranyl group, vinyl group, acrylic group, carboxyl group, and chloro group. Nucleophilic groups can act with amino acids and the C-terminus of peptides, electrophilic sites of enzymes, and the like. Moreover, since it can act also as a metal porphyrin or a ligand of a zerovalent metal colloid, it can be used suitably as a linker. Examples of the nucleophilic group that can be used for such purposes include amino groups, thiol groups, and sulfide groups.
 ケイ素化合物が親和性を示すことができる他の対象としては、生体材料化合物及び生体材料化合物に含まれる化学結合又は官能基を挙げることができる。具体的には、アデニン、チミン、シトシン、グアニン、ウラシル、及びこれらのメチル化誘導体の核酸塩基、グルコース、リボース、デオキシリボース、ガラクトース、アロース、タロース、グロース、アルトロース、マンノース、イドース等の糖類、アラニン、アルギニン、アスパラギン、アスパラギン酸、システイン、グルタミン、グルタミン酸、グリシン、ヒスチジン、イソロイシン、ロイシン、リシン、メチオニン、フェニルアラニン、プロリン、セリン、トレオニン、トリプトファン、チロシン、バリン等のアミノ酸及びアミノ酸の誘導体、ポルフィリン及び金属ポルフィリン等を挙げることができる。 Examples of other objects to which the silicon compound can exhibit affinity include biomaterial compounds and chemical bonds or functional groups contained in the biomaterial compounds. Specifically, adenine, thymine, cytosine, guanine, uracil, and nucleobases of these methylated derivatives, glucose, ribose, deoxyribose, galactose, saccharides such as allose, talose, gulose, altrose, mannose, idose, Amino acids and amino acid derivatives such as alanine, arginine, asparagine, aspartic acid, cysteine, glutamine, glutamic acid, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, valine, porphyrin and A metal porphyrin etc. can be mentioned.
 一般式(1)で示されるシラン化合物の具体例としては、p=1、q=r=0の場合では、ハイドロジェントリメトキシシラン、ハイドロジェントリエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリイソプロポキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、エチルトリイソプロポキシシラン、プロピルトリメトキシシラン、プロピルトリエトキシシラン、プロピルトリイソプロポキシシラン、フェニルトリメトキシシラン、ビニルトリメトキシシラン、アリルトリメトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルトリエトキシシラン、γ-アクリロキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-クロロプロピルトリメトキシシラン、3,3,3-トリフルオロプロピルトリメトキシシラン、3,3,3-トリフルオロプロピルトリエトキシシラン、パーフルオロオクチルエチルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)アミノプロピルトリメトキシシラン、γ-イソシアネートプロピルトリメトキシシラン、γ-イソシアネートプロピルトリエトキシシラン、イソシアネート基同士が結合したトリス(3-トリメトキシシリルプロピル)イソシアヌレート、トリス(3-トリエトキシシリルプロピル)イソシアヌレート、メチルトリメトキシシランの部分加水分解縮合物(商品名「KC-89S」、「X-40-9220」信越化学工業(株)製)、メチルトリメトキシシランとγ-グリシドキシプロピルトリメトキシシランの部分加水分解縮合物(商品名「X-41-1056」信越化学工業(株)製)等を挙げることができる。 Specific examples of the silane compound represented by the general formula (1) include hydrogentrimethoxysilane, hydrogentriethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, methyl when p = 1 and q = r = 0. Triisopropoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, ethyltriisopropoxysilane, propyltrimethoxysilane, propyltriethoxysilane, propyltriisopropoxysilane, phenyltrimethoxysilane, vinyltrimethoxysilane, allyltrimethoxy Silane, γ-methacryloxypropyltrimethoxysilane, γ-methacryloxypropyltriethoxysilane, γ-acryloxypropyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane γ-glycidoxypropyltriethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-chloropropyltrimethoxysilane, 3,3,3-trifluoropropyltrimethoxysilane, 3,3 3-trifluoropropyltriethoxysilane, perfluorooctylethyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, N- (2-aminoethyl) amino Propyltrimethoxysilane, γ-isocyanatopropyltrimethoxysilane, γ-isocyanatopropyltriethoxysilane, tris (3-trimethoxysilylpropyl) isocyanurate, tris (3-trie Xylylpropyl) isocyanurate, partially hydrolyzed condensate of methyltrimethoxysilane (trade names “KC-89S”, “X-40-9220” manufactured by Shin-Etsu Chemical Co., Ltd.), methyltrimethoxysilane and γ-glycol And a partially hydrolyzed condensate of product (“X-41-1056” manufactured by Shin-Etsu Chemical Co., Ltd.).
 一般式(1)で示されるシラン化合物の具体例としては、p=1、q=1、r=0の場合では、メチルハイドロジェンジメトキシシラン、メチルハイドロジェンジエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、メチルエチルジメトキシシラン、ジエチルジメトキシシラン、ジエチルジエトキシシラン、メチルプロピルジメトキシシラン、メチルプロピルジエトキシシラン、ジイソプロピルジメトキシシラン、フェニルメチルジメトキシシラン、ビニルメチルジメトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルメチルジメトキシシラン、γ-メタクリロキシプロピルメチルジメトキシシラン、γ-メタクリロキシプロピルメチルジエトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン、γ-アミノプロピルメチルジエトキシシラン、N-(2-アミノエチル)アミノプロピルメチルジメトキシシラン等を挙げることができる。 As specific examples of the silane compound represented by the general formula (1), when p = 1, q = 1, and r = 0, methylhydrogendimethoxysilane, methylhydrogendiethoxysilane, dimethyldimethoxysilane, dimethyldi Ethoxysilane, methylethyldimethoxysilane, diethyldimethoxysilane, diethyldiethoxysilane, methylpropyldimethoxysilane, methylpropyldiethoxysilane, diisopropyldimethoxysilane, phenylmethyldimethoxysilane, vinylmethyldimethoxysilane, γ-glycidoxypropylmethyldimethoxy Silane, γ-glycidoxypropylmethyldiethoxysilane, β- (3,4-epoxycyclohexyl) ethylmethyldimethoxysilane, γ-methacryloxypropylmethyldimethoxysilane .gamma.-methacryloxypropyl methyl diethoxy silane, .gamma.-mercaptopropyl methyl dimethoxy silane, .gamma.-aminopropyl methyl diethoxy silane, N- (2- aminoethyl) can be given aminopropyl methyl dimethoxy silane.
 一般式(1)で示されるシラン化合物の具体例としては、p=1、q=1、r=1の場合では、トリメチルメトキシシラン、トリメチルエトキシシラン、トリエチルメトキシシラン、n-プロピルジメチルメトキシシラン、n-プロピルジエチルメトキシシラン、iso-プロピルジメチルメトキシシラン、iso-プロピルジエチルメトキシシラン、プロピルジメチルエトキシシラン、n-ブチルジメチルメトキシシラン、n-ブチルジメチルエトキシシラン、n-ヘキシルジメチルメトキシシラン、n-ヘキシルジメチルエトキシシラン、n-ペンチルジメチルメトキシシラン、n-ペンチルジメチルエトキシシラン、n-ヘキシルジメチルメトキシシラン、n-ヘキシルジメチルエトキシシラン、n-デシルジメチルメトキシシラン、n-デシルジメチルエトキシシラン等を挙げることができる。 As specific examples of the silane compound represented by the general formula (1), when p = 1, q = 1, and r = 1, trimethylmethoxysilane, trimethylethoxysilane, triethylmethoxysilane, n-propyldimethylmethoxysilane, n-propyldiethylmethoxysilane, iso-propyldimethylmethoxysilane, iso-propyldiethylmethoxysilane, propyldimethylethoxysilane, n-butyldimethylmethoxysilane, n-butyldimethylethoxysilane, n-hexyldimethylmethoxysilane, n-hexyl Dimethylethoxysilane, n-pentyldimethylmethoxysilane, n-pentyldimethylethoxysilane, n-hexyldimethylmethoxysilane, n-hexyldimethylethoxysilane, n-decyldimethylmethoxysilane n- decyl dimethyl silane and the like.
 上記酸化チタンを式(1)の有機ケイ素化合物又はその部分加水分解縮合物を表面処理する方法は、酸及び塩基触媒の存在下、水、酸化チタン及び式(1)の化合物を反応させることによって達成することができる。酸触媒としては、ギ酸、酢酸、プロピオン酸、安息香酸等の1価カルボン酸、シュウ酸、マロン酸、グルタル酸、アジピン酸、ピメリン酸等の2価カルボン酸、メタンスルホン酸、p-トルエンスルホン酸等の有機酸、塩酸、硝酸、硫酸、リン酸、ホウ酸等の鉱酸、陽イオン交換樹脂等を挙げることができる。塩基触媒としては、水酸化ナトリウム、水酸化リチウム、水酸化バリウム、水酸化カルシウム等のアルカリ(土類)金属水酸化物、アンモニア、テトラメチルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド等のアンモニア誘導体、トリメチルアミン、トリエチルアミン、ピリジン、ピラジン、尿素等の含窒素有機化合物などを挙げることができる。酸及び塩基触媒は、式(1)の有機ケイ素化合物に対して0.01~10質量%、好ましくは0.1~5質量%用いることができる。水は式(1)の有機ケイ素化合物が完全に加水分解することができるのに必要な化学両論量以上を用いることができる。反応は10~200℃、好ましくは20~100℃で行うことができる。加熱にはオイルバスのような伝導伝熱による熱媒及びマイクロ波のような輻射伝熱のいずれでも用いることができる。 The method of surface-treating the above-mentioned titanium oxide with an organosilicon compound of formula (1) or a partially hydrolyzed condensate thereof comprises reacting water, titanium oxide and the compound of formula (1) in the presence of an acid and a base catalyst. Can be achieved. Examples of the acid catalyst include monovalent carboxylic acids such as formic acid, acetic acid, propionic acid and benzoic acid, divalent carboxylic acids such as oxalic acid, malonic acid, glutaric acid, adipic acid and pimelic acid, methanesulfonic acid and p-toluenesulfone. Examples thereof include organic acids such as acids, mineral acids such as hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid and boric acid, and cation exchange resins. As the base catalyst, sodium hydroxide, lithium hydroxide, barium hydroxide, alkali (earth) metal hydroxide such as calcium hydroxide, ammonia, ammonia derivatives such as tetramethylammonium hydroxide, tetrabutylammonium hydroxide, Examples thereof include nitrogen-containing organic compounds such as trimethylamine, triethylamine, pyridine, pyrazine and urea. The acid and base catalyst can be used in an amount of 0.01 to 10% by mass, preferably 0.1 to 5% by mass, based on the organosilicon compound of the formula (1). Water can use more than the stoichiometric amount necessary for the organosilicon compound of formula (1) to be completely hydrolyzed. The reaction can be carried out at 10 to 200 ° C, preferably 20 to 100 ° C. For the heating, either a heat medium using conductive heat transfer such as an oil bath or radiant heat transfer such as microwaves can be used.
赤外蛍光体
 本発明における赤外蛍光体は、大きなストークスシフトと熱的な安定性を兼ね備え、更に他の対象と親和性を有することを特徴とする。他の対象との親和性を有する部位は、生体内で化学修飾されることを期待して、求電子性基或いは求核性基を有するまま用いてもよい。また生体内で更に特定の部位を標識するために、予め糖鎖やペプチド、核酸塩基、及びその誘導体と反応させてから用いてもよい。
Infrared phosphor The infrared phosphor in the present invention is characterized by having a large Stokes shift and thermal stability, and further having affinity with other objects. A site having affinity with another target may be used while having an electrophilic group or a nucleophilic group in the hope of being chemically modified in vivo. Further, in order to label a specific site in vivo, it may be used after reacting with a sugar chain, a peptide, a nucleobase, and a derivative thereof in advance.
 以下、実施例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to the following examples.
  [実施例1]
 イオン交換水(100g)、硝酸アンモニウム(0.01g)、イオン交換樹脂(オルガノ株式会社製、商品名「アンバーライト200CT(H)-AG」、10g)に酸化チタン分散液(日揮触媒化成株式会社製、商品名「オプトレイク1130Z」、不揮発分30質量%、100g)、3-グリシドキシプロピルトリメトキシシラン(信越化学工業株式会社製、商品名「KBM-403」、1g)、3-グリシドキシプロピルメチルジエトキシシラン(信越化学工業株式会社製、商品名「KBE-402」、0.5g)を加えて2時間室温で攪拌した。イオン交換樹脂をろ過で取り除き、得られた分散液を限外ろ過器(Andritz製)でエタノールを加えながらろ過し、ろ過残分における不揮発分濃度が10質量%になるように調整した。ろ過残分にはケイ素化合物の遊離オリゴマーは含有していないことをゲル浸透クロマトグラフィー(東ソー株式会社製、製品名「HLC-8320」、ポリスチレン充填カラム「TSKgelG3000HXL」、溶離液THF使用)で確認した。得られた分散液を分光器(堀場製作所製、製品名「FluoroLog3」、検出器InGaAsアレイ)を用いて赤外蛍光を測定した。測定結果を図1に示した。図1は、該分散液を370nmで励起した際の発光スペクトルであり、840nm付近にピークトップを有することが明らかとなった。図1から、連続的な発光スペクトルを示していることが明らかとなったが、明確なバンド構造に基づくものであることが示唆された。
[Example 1]
Ion-exchanged water (100 g), ammonium nitrate (0.01 g), ion-exchange resin (manufactured by Organo Corporation, trade name “Amberlite 200CT (H) -AG”, 10 g), titanium oxide dispersion (manufactured by JGC Catalysts & Chemicals Co., Ltd.) , Trade name “OPTRAIK 1130Z”, non-volatile content 30% by mass, 100 g), 3-glycidoxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., trade name “KBM-403”, 1 g), 3-glycid Xylpropylmethyldiethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., trade name “KBE-402”, 0.5 g) was added and stirred at room temperature for 2 hours. The ion exchange resin was removed by filtration, and the obtained dispersion was filtered with an ultrafilter (manufactured by Andritz) while adding ethanol, and the non-volatile content concentration in the filtration residue was adjusted to 10% by mass. It was confirmed by gel permeation chromatography (manufactured by Tosoh Corporation, product name “HLC-8320”, polystyrene-packed column “TSKgel G3000HXL”, using eluent THF) that the filtration residue did not contain a free oligomer of silicon compound. . The obtained dispersion liquid was measured for infrared fluorescence using a spectroscope (manufactured by Horiba, product name “FluoroLog3”, detector InGaAs array). The measurement results are shown in FIG. FIG. 1 is an emission spectrum when the dispersion was excited at 370 nm, and it was revealed that it had a peak top near 840 nm. Although it became clear from FIG. 1 that the continuous emission spectrum was shown, it was suggested that it was based on a clear band structure.
 酸化チタンの赤外蛍光特性はこれまでに顧みられることがなかった。実施例1で示したように、特徴的な赤外蛍光特性を示すことが分かり、酸化チタンが赤外蛍光体として利用できることが明らかとなった。酸化チタンの赤外蛍光体としての有用性はこれまでに言及されたことがなかった。 The infrared fluorescence characteristics of titanium oxide have never been observed. As shown in Example 1, it was found that characteristic infrared fluorescence characteristics were exhibited, and it was revealed that titanium oxide can be used as an infrared phosphor. The usefulness of titanium oxide as an infrared phosphor has never been mentioned so far.
 本発明によって提供された赤外蛍光体は、大きなストークスシフトを有しているため、生体イメージング材料として用いた際に明瞭な画像を簡便に与えることができる。例えば、本発明の赤外蛍光体によって染色した微生物や細胞をブラックライト照射下、顕微鏡で観察した際に、顕微鏡に近赤外フィルター(大部分の紫外可視光を遮断し、近赤外光を透過するフィルター)を装着するだけで、大きなコントラストを有する画像を得ることができる。このような簡便な赤外蛍光の観察は、従来の小さなストークスシフトを有する赤外蛍光体を使用した場合には困難なものである。また、励起は発光と同時である必要はなく、予め励起した赤外蛍光体を生体内に導入し遅延蛍光を観測する手法によってもよい。本発明によって提供された赤外蛍光体は、LEDや有機EL等の発光素子の放熱材料としての利用可能性を有する。従来では紫外光を吸収した際のエネルギーの緩和は、振動準位の昇位という形で補償されることが多く、この場合は封止樹脂に熱疲労が蓄積して、クラックや黄変の原因となっていた。本発明の赤外蛍光体ではこのような不要な紫外線のエネルギーを輻射放熱で除去する目的に利用可能である。本発明によって提供された赤外蛍光体は、太陽電池のバックシートの充填剤としての使用可能性を有する。励起と発光は可逆的な場合もあり、赤外蛍光体では赤外領域において2光子吸収が起こった場合、紫外光を発光する可能性がある。この特性を利用することによって、太陽電池に吸収されずに透過した赤外光を紫外光として再利用する目的で利用可能である。 Since the infrared phosphor provided by the present invention has a large Stokes shift, a clear image can be easily provided when used as a biological imaging material. For example, when microbes or cells stained with the infrared phosphor of the present invention are observed with a microscope under black light irradiation, a near-infrared filter (blocking most of the ultraviolet-visible light and blocking near-infrared light) An image having a large contrast can be obtained simply by attaching a filter that transmits light. Such simple infrared fluorescence observation is difficult when a conventional infrared phosphor having a small Stokes shift is used. In addition, the excitation does not need to be performed simultaneously with the light emission, and a method may be employed in which delayed fluorescent light is observed by introducing a previously excited infrared phosphor into the living body. The infrared phosphor provided by the present invention has applicability as a heat dissipation material for light-emitting elements such as LEDs and organic ELs. Conventionally, energy relaxation when absorbing ultraviolet light is often compensated in the form of vibrational level enhancement, in which case thermal fatigue accumulates in the sealing resin, causing cracks and yellowing. It was. The infrared phosphor of the present invention can be used for the purpose of removing such unnecessary ultraviolet energy by radiant heat radiation. The infrared phosphor provided by the present invention has the potential to be used as a filler for solar cell backsheets. Excitation and emission may be reversible, and infrared phosphors may emit ultraviolet light when two-photon absorption occurs in the infrared region. By utilizing this characteristic, it is possible to reuse infrared light transmitted without being absorbed by the solar cell as ultraviolet light.

Claims (5)

  1.  酸化チタンからなる赤外蛍光体。 An infrared phosphor made of titanium oxide.
  2.  酸化チタンが下記一般式(1)で表されるケイ素化合物又はその部分加水分解縮合物で表面処理されてなる請求項1記載の赤外蛍光体。
     R1 p2 q3 rSi(OR44-p-q-r     (1)
    (式中、R1は、水素原子、又は置換又は非置換の炭素数1~20の1価炭化水素基、R2、R3、R4はそれぞれ独立に炭素数1~6のアルキル基を示し、pは1~3の整数、qは0、1又は2、rは0、1又は2で、p+q+rは1~3の整数である。)
    The infrared phosphor according to claim 1, wherein the titanium oxide is surface-treated with a silicon compound represented by the following general formula (1) or a partial hydrolysis condensate thereof.
    R 1 p R 2 q R 3 r Si (OR 4 ) 4-pqr (1)
    (In the formula, R 1 is a hydrogen atom or a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms, and R 2 , R 3 and R 4 each independently represents an alkyl group having 1 to 6 carbon atoms. P is an integer of 1 to 3, q is 0, 1 or 2, r is 0, 1 or 2, and p + q + r is an integer of 1 to 3.)
  3.  酸化チタンの赤外蛍光体としての使用。 Use of titanium oxide as an infrared phosphor.
  4.  酸化チタンが下記一般式(1)で表されるケイ素化合物又はその部分加水分解縮合物で表面処理されてなる請求項3記載の使用。
     R1 p2 q3 rSi(OR44-p-q-r (1)
    (式中、R1は、水素原子、又は置換又は非置換の炭素数1~20の1価炭化水素基、R2、R3、R4はそれぞれ独立に炭素数1~6のアルキル基を示し、pは1~3の整数、qは0、1又は2、rは0、1又は2で、p+q+rは1~3の整数である。)
    The use according to claim 3, wherein the titanium oxide is surface-treated with a silicon compound represented by the following general formula (1) or a partially hydrolyzed condensate thereof.
    R 1 p R 2 q R 3 r Si (OR 4 ) 4-pqr (1)
    (In the formula, R 1 is a hydrogen atom or a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms, and R 2 , R 3 and R 4 each independently represents an alkyl group having 1 to 6 carbon atoms. P is an integer of 1 to 3, q is 0, 1 or 2, r is 0, 1 or 2, and p + q + r is an integer of 1 to 3.)
  5.  酸化チタンを300nm以上400nm以下の光で励起し、700nm以上1,200nm以下で発せられる蛍光を利用することを特徴とする請求項3又は4記載の使用。 The use according to claim 3 or 4, wherein the titanium oxide is excited by light of 300 nm to 400 nm and fluorescence emitted from 700 nm to 1,200 nm is used.
PCT/JP2014/074655 2013-09-25 2014-09-18 Infrared phosphor WO2015046004A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015539147A JPWO2015046004A1 (en) 2013-09-25 2014-09-18 Infrared phosphor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-197969 2013-09-25
JP2013197969 2013-09-25

Publications (1)

Publication Number Publication Date
WO2015046004A1 true WO2015046004A1 (en) 2015-04-02

Family

ID=52743143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/074655 WO2015046004A1 (en) 2013-09-25 2014-09-18 Infrared phosphor

Country Status (2)

Country Link
JP (1) JPWO2015046004A1 (en)
WO (1) WO2015046004A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018536993A (en) * 2015-11-25 2018-12-13 エージーシー グラス ユーロップAgc Glass Europe Photovoltaic device
WO2019035160A1 (en) 2017-08-14 2019-02-21 日産自動車株式会社 Mobile body having reflection control layer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004107612A (en) * 2002-03-05 2004-04-08 Dainippon Printing Co Ltd Rare earth element-containing particulate and fluorescent probe using the same
JP2004199960A (en) * 2002-12-17 2004-07-15 National Institute For Materials Science Oxide light-emitting element and its manufacturing method
JP2007154066A (en) * 2005-12-06 2007-06-21 Hitachi Maxell Ltd Functional infrared fluorescent particle
WO2010016289A1 (en) * 2008-08-06 2010-02-11 コニカミノルタエムジー株式会社 Fluorescence labeling agent containing quantum dots
JP2010053213A (en) * 2008-08-27 2010-03-11 Shinkosha:Kk Fluorescent light emitting material, and method for producing the same
JP2011504544A (en) * 2007-11-22 2011-02-10 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング Surface-modified conversion luminescent material

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010090205A (en) * 2008-10-04 2010-04-22 Kotobuki Kogyo Kk Process for producing fluorescent microparticle dispersion, fluorescent microparticle dispersion, process for producing composite material, and composite material
JP2011116914A (en) * 2009-12-07 2011-06-16 Kaneka Corp Fluorescent solution, fluorescent film and use thereof
JP5813096B2 (en) * 2011-03-16 2015-11-17 株式会社東芝 Phosphor for light emitting device, method for producing the same, and light emitting device using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004107612A (en) * 2002-03-05 2004-04-08 Dainippon Printing Co Ltd Rare earth element-containing particulate and fluorescent probe using the same
JP2004199960A (en) * 2002-12-17 2004-07-15 National Institute For Materials Science Oxide light-emitting element and its manufacturing method
JP2007154066A (en) * 2005-12-06 2007-06-21 Hitachi Maxell Ltd Functional infrared fluorescent particle
JP2011504544A (en) * 2007-11-22 2011-02-10 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング Surface-modified conversion luminescent material
WO2010016289A1 (en) * 2008-08-06 2010-02-11 コニカミノルタエムジー株式会社 Fluorescence labeling agent containing quantum dots
JP2010053213A (en) * 2008-08-27 2010-03-11 Shinkosha:Kk Fluorescent light emitting material, and method for producing the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HIROKO KOMINAMI: "TiO2-kei Keikotai no Gosei to Hakko Tokusei no Hyoka", DAI 64 KAI EXTENDED ABSTRACTS; THE JAPAN SOCIETY OF APPLIED PHYSICS, 30 August 2003 (2003-08-30), pages 1317 *
J.OVENSTONE: "Luminescence in europium-doped titania:Part II. High concentration range of Eu3+", J.MATER.RES., vol. 17, no. 10, 2002, pages 2524 - 2531 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018536993A (en) * 2015-11-25 2018-12-13 エージーシー グラス ユーロップAgc Glass Europe Photovoltaic device
WO2019035160A1 (en) 2017-08-14 2019-02-21 日産自動車株式会社 Mobile body having reflection control layer
US20200194605A1 (en) * 2017-08-14 2020-06-18 Nissan Motor Co., Ltd. Mobile body having reflection control layer
US11011659B2 (en) 2017-08-14 2021-05-18 Nissan Motor Co., Ltd. Mobile body having reflection control layer

Also Published As

Publication number Publication date
JPWO2015046004A1 (en) 2017-03-09

Similar Documents

Publication Publication Date Title
JP5646855B2 (en) Silicone resin composition
ES2628314T3 (en) High emissivity coating compositions and manufacturing processes for them
CN109679646B (en) Preparation method of high-stability carbon dot-silicon dioxide composite particles
EP3505343B1 (en) Photocatalyst laminate
CN106939163B (en) A kind of preparation method of the fluorescent functional organic clay of height water dispersible
Taspika et al. Simultaneous ultraviolet and first near-infrared window absorption of luminescent carbon dots/PVA composite film
WO2015046004A1 (en) Infrared phosphor
CN104071769A (en) Method for preparing fluorescent carbon point by virtue of chemical oxidation method, fluorescent carbon point and application of fluorescent carbon point
Wang et al. Stability, UV shielding properties, and light conversion behavior of Eu (BMDM) 3@ polysiloxane nanoparticles in water and polyurethane films
JP2008050548A (en) Luminous fluorescent material having improved water resistance, and aqueous paint or aqueous color ink using the same
WO2016093221A1 (en) Hydrophobic silica and method for producing same
Silva et al. Multifunctional organic–inorganic hybrids based on cellulose acetate and 3-glycidoxypropyltrimethoxysilane
Jiang et al. One-pot synthesis of stable and functional hydrophilic CsPbBr 3 perovskite quantum dots for “turn-on” fluorescence detection of Mycobacterium tuberculosis
Tassi et al. A detailed investigation of the microwave assisted phenylphosphonic acid modification of P25 TiO2
WO2012069672A1 (en) Hybrid photocatalytic coatings, method for applying said coatings to different substrates and uses of the substrates thus coated
JPWO2017086098A1 (en) Antiviral membrane
WO2011142053A1 (en) Surface modification method and surface-modified material
JP2010235943A (en) Nano composite powdery particle having siloxane bond as main skeleton and method for producing the same, nano composite powdery particle dispersion liquid having siloxane bond as main skeleton, and resin composition
JP5513736B2 (en) Use of metal organic silicate polymers as dispersion formers
EP3546497A1 (en) Inorganic particle/siloxane composite, method for producing same, and inorganic-particle-containing silicone composition
JP2020059624A (en) Surface-treated silica particles, dispersion and resin composition comprising the same, and cured product of resin composition
RU2008104689A (en) LABELED INORGANIC ADDITIVES
CN110082332B (en) Method for detecting alkaline phosphatase by manganese dioxide modified up-conversion nano material
CN113929081A (en) Up-down conversion dual-emission panchromatic spectrum carbon dot and synthesis method and application thereof
JP4539824B2 (en) Coated hexaboride particles and method for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14848133

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015539147

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14848133

Country of ref document: EP

Kind code of ref document: A1