WO2015045965A1 - Laminate for touch panels, and touch panel - Google Patents

Laminate for touch panels, and touch panel Download PDF

Info

Publication number
WO2015045965A1
WO2015045965A1 PCT/JP2014/074440 JP2014074440W WO2015045965A1 WO 2015045965 A1 WO2015045965 A1 WO 2015045965A1 JP 2014074440 W JP2014074440 W JP 2014074440W WO 2015045965 A1 WO2015045965 A1 WO 2015045965A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
touch panel
laminate
sample
layer
Prior art date
Application number
PCT/JP2014/074440
Other languages
French (fr)
Japanese (ja)
Inventor
直井 憲次
遠藤 靖
林 利明
理士 小池
向井 厚史
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2015045965A1 publication Critical patent/WO2015045965A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0447Position sensing using the local deformation of sensor cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7246Water vapor barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/208Touch screens
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04112Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material

Definitions

  • the present invention relates to a laminate for a touch panel, and more particularly to a laminate for a touch panel including a conductive film having a thin metal wire having a predetermined amount of metal, and a protective substrate having a predetermined water vapor permeability. Moreover, this invention relates to the touchscreen containing the laminated body for touchscreens.
  • Conductive films with thin metal wires formed on substrates are widely used in transparent electrodes for various electronic devices such as solar cells, inorganic EL elements, and organic EL elements, electromagnetic wave shields for various display devices, touch panels, and transparent sheet heating elements. It's being used. In particular, the rate of mounting touch panels on mobile phones, portable game devices, and the like is increasing, and for example, capacitive touch panels capable of multipoint detection are attracting attention.
  • examples of the metal contained in the thin metal wire in the conductive film functioning as a touch sensor include silver and copper, but these have a problem that ion migration is likely to occur. When such ion migration occurs between the fine metal wires, conduction between the fine metal wires or disconnection of the fine metal wires occurs.
  • Patent Document 1 discloses a form in which an adhesive layer containing 5-methyl-1H-benzotriazole is formed on a conductive film.
  • Patent Document 1 when the present inventors examined the form of Patent Document 1, the malfunction due to the increase in the capacitance value due to the infiltration of water having a high dielectric constant is caused by the use of the pressure-sensitive adhesive layer. However, it cannot always be solved, and another solution is desired.
  • an object of the present invention is to provide a laminated body for a touch panel that is unlikely to cause a malfunction of the touch panel when used as a touch panel in combination with a display device, and that can suppress ion migration between thin metal wires.
  • Another object of the present invention is to provide a touch panel including the laminate for a touch panel.
  • the present inventors are able to obtain a desired effect by using a thin metal wire having a predetermined amount of metal and a protective substrate having a predetermined water vapor permeability. I found. That is, the present inventors have found that the above problem can be solved by the following configuration.
  • a laminated body for a touch panel disposed on the viewing side of a display device A first transparent protective substrate, a first pressure-sensitive adhesive layer, a conductive film having at least a fine metal wire, a second pressure-sensitive adhesive layer, and a second transparent protective substrate are provided in this order.
  • the second transparent protective substrate When arranged on the display device, the second transparent protective substrate is located on the display device side, The second transparent protective substrate has at least one or more organic layers and inorganic layers, The water vapor permeability of the second transparent protective substrate is 0.001 g / m 2 ⁇ 24 h (40 ° C., 90% RH) or less, A laminate for a touch panel, wherein the amount of metal per unit area contained in the fine metal wire is 0.010 to 10 g / m 2 . (2) The laminate for a touch panel according to (1), wherein the conductive film has at least a substrate and fine metal wires arranged on both surfaces of the substrate.
  • the laminate for a touch panel according to (1) wherein the conductive film is formed by bonding together a substrate with a metal fine wire having at least a substrate and a metal fine wire arranged on one side of the substrate via an adhesive layer. .
  • the second transparent protective substrate has a resin substrate and a barrier layer disposed on the resin substrate,
  • the sealing layer is disposed on the surface of the peripheral portion of the first pressure-sensitive adhesive layer, the conductive film, and the second pressure-sensitive adhesive layer exposed from between the first transparent protective substrate and the second transparent protective substrate.
  • the laminated body for touchscreens which cannot produce the malfunctioning of a touchscreen easily and can also suppress the ion migration between metal fine wires can be provided.
  • the touch panel containing this laminated body for touch panels can also be provided.
  • FIG. 3 is a cross-sectional view taken along a cutting line AA shown in FIG. It is an enlarged plan view of a 1st detection electrode. It is sectional drawing which shows one Embodiment of a touch panel. It is a top view which shows other embodiment of an electroconductive film. It is a top view which shows other embodiment of an electroconductive film. It is sectional drawing of other embodiment of the laminated body for touchscreens of this invention.
  • A) is the schematic of the formation apparatus of an organic layer
  • (B) is the schematic of the formation apparatus of an inorganic layer.
  • a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • metal migration proceeds by ionization of metal, but it is presumed that moisture is affected during ionization, and the degree of ionization is controlled by controlling the water vapor permeability of the protective substrate. ing. Furthermore, the present inventor has also found that the control of the amount of metal in the thin metal wire is necessary to suppress the occurrence of migration and malfunction. Specifically, when the amount of metal in the metal wiring is too small, disconnection of the metal wiring is likely to occur, whereas when the amount of metal is too large, suppression of ionization becomes insufficient. Therefore, the amount of metal is controlled so as not to cause the above problem while suppressing the degree of moisture penetration.
  • the reasons for controlling the characteristics of the second transparent protective substrate as described above is that, in the case of a tablet or PC, the outside air is forcibly sent to the vicinity of the liquid crystal module / control circuit and cooled by an air cooling fan. This is because the influence of the characteristics of the second transparent protective substrate has increased, and it has become necessary to consider it in order to detect the touch operation strictly.
  • the glass substrate itself is heavy and thick, or it is easy to crack and is easy to handle. It was not a practical solution.
  • FIG. 1 shows a cross-sectional view of an embodiment of a laminate for a touch panel.
  • the laminate 1 for a touch panel includes a first transparent protective substrate 2, a first pressure-sensitive adhesive layer 3, and a conductive film 4 having at least a thin metal wire.
  • the second pressure-sensitive adhesive layer 5 and the second transparent protective substrate 6 are provided in this order.
  • the first transparent protective substrate 2 constitutes a touch surface.
  • a 2nd transparent protective substrate is a board
  • a 2nd transparent protective substrate has a function which prevents the penetration
  • the water vapor permeability of the second transparent protective substrate is 0.001 g / m 2 ⁇ 24 h (40 ° C., 90% RH) or less, and the malfunction of the touch panel is further suppressed and / or ion migration is further suppressed. (Hereinafter also referred to as “the point where the effect of the present invention is excellent”) is preferably 0.0005 g / m 2 ⁇ 24 h (40 ° C., 90% RH) or less.
  • the lower limit is 1 ⁇ 10 ⁇ 7 g / m 2 ⁇ 24 h (40 ° C., 90% RH) or more, a transparent protective substrate having high transparency and high durability can be obtained.
  • the touch panel is likely to malfunction and / or ion migration is likely to occur.
  • N3 (three times) measurement is performed by the calcium corrosion method (the method described in JP-A-2005-283561), and the water vapor transmission rate is obtained as an average value. More specifically, a metallic calcium thin film is produced on a second transparent protective substrate (particularly an organic layer or an inorganic layer) by a vacuum evaporation method, and this is immediately sealed to produce a test cell.
  • the test cell is stored under predetermined constant temperature and humidity measurement conditions, and the water vapor permeability is measured by calculating the amount of calcium corroded by water vapor.
  • the temperature is 40 ° C. and the humidity is 90% RH.
  • the second transparent protective substrate is optically transparent.
  • Optically transparent means that the total light transmittance is 75% or more, preferably 85% or more, more preferably 90% or more, and even more preferably 100%.
  • the thickness of the second transparent protective substrate is not particularly limited, but is preferably 5 to 200 ⁇ m and more preferably 10 to 100 ⁇ m from the viewpoints of handleability and thinning of the touch panel.
  • the second transparent protective substrate is a barrier laminate having at least one inorganic layer and at least one organic layer.
  • the inorganic layer preferably contains silicon oxide, silicon nitride, silicon carbide, aluminum oxide, or a mixture thereof as a main component.
  • the main component refers to a component that is contained most in the inorganic layer, for example, that 80% by mass or more of these compounds.
  • any method for forming the inorganic layer any method can be used as long as it can form a target thin film. For example, there are physical vapor deposition methods (PVD) such as vapor deposition, sputtering, and ion plating, various chemical vapor deposition (CVD), and liquid phase growth methods such as plating and sol-gel methods.
  • PVD physical vapor deposition methods
  • CVD chemical vapor deposition
  • liquid phase growth methods such as plating and sol-gel methods.
  • the smoothness of the inorganic layer is preferably less than 1 nm as an average roughness (Ra value) of 1 ⁇ m square, and more preferably 0.5 nm or less. For this reason, it is preferable that the inorganic layer be formed in a clean room.
  • the degree of cleanness is preferably class 10000 or less, more preferably class 1000 or less.
  • the thickness of the inorganic layer is not particularly limited, but is usually in the range of 5 to 500 nm, preferably 20 to 200 nm per layer.
  • Two or more inorganic layers may be laminated. When two or more layers are provided, each layer may have the same composition or a different composition.
  • the organic layer is a layer made of an organic compound (a layer (film) containing an organic compound as a main component) and is basically a monomer and / or oligomer crosslinked (polymerized). Note that the organic layer preferably contains no halogen. Since the organic layer does not contain halogen, the formation of pinholes in the inorganic layer can be further prevented.
  • the material for forming the organic layer is not particularly limited, and various known organic compounds (resins / polymer compounds) can be used. In particular, a material containing no halogen is preferable.
  • polyester acrylic resin, methacrylic resin, methacrylic acid-maleic acid copolymer, polystyrene, polyimide, polyamide, polyamideimide, polyetherimide, cellulose acylate, polyurethane, polyetheretherketone, polycarbonate, alicyclic
  • thermoplastic polyolefins such as polyolefin, polyarylate, polyethersulfone, polysulfone, fluorene ring-modified polycarbonate, alicyclic ring-modified polycarbonate, fluorene ring-modified polyester, and acryloyl compound, or polysiloxane and other organosilicon compounds. Is done.
  • an organic layer composed of a radical polymerizable compound and / or a polymer of a cationic polymerizable compound having an ether group as a functional group is preferable from the viewpoint of having a high Tg and excellent strength.
  • acrylic resins and methacrylic resins mainly composed of acrylate and / or methacrylate monomers and oligomer polymers are organic in terms of high Tg and strength, low refractive index, and excellent optical properties.
  • TMPTA trimethylolpropane tri (meth) acrylate
  • DPHA dipentaerythritol hexa (meth) acrylate
  • acrylic resins and methacrylic resins mainly composed of a polymer of acrylate and / or methacrylate monomers or oligomers that are functional or higher.
  • the manufacturing method in particular of an organic layer is not restrict
  • the organic layer contains a surfactant.
  • the content of the surfactant in the organic layer is not particularly limited, but is preferably 0.01 to 10% by mass. That is, it is preferable to form the organic layer by using a paint containing a surfactant that is 0.01 to 10% by mass in a concentration excluding the organic solvent.
  • the surfactant used is preferably a surfactant containing no halogen, such as a silicon-based surfactant.
  • organic solvent used in the preparation of the paint there are no particular limitations on the organic solvent used in the preparation of the paint, and examples of the organic solvent used for forming the organic layer in the organic / inorganic laminated functional film such as methyl ethyl ketone (MEK), cyclohexanone, isopropyl alcohol, and acetone. Various types are available. Various additives used when forming the organic layer, such as a surfactant, a silane coupling agent, and a photopolymerization initiator, are appropriately added to the coating material forming the organic layer as necessary. May be.
  • MEK methyl ethyl ketone
  • cyclohexanone isopropyl alcohol
  • acetone Various types are available.
  • additives used when forming the organic layer such as a surfactant, a silane coupling agent, and a photopolymerization initiator, are appropriately added to the coating material forming the organic layer as necessary. May be.
  • the organic layer is preferably smooth and has a high film hardness.
  • the smoothness of the organic layer is preferably less than 1 nm as average roughness (Ra value) of 1 ⁇ m square, and more preferably less than 0.5 nm.
  • the thickness of the organic layer is not particularly limited, but is preferably 50 nm to 2000 nm, and more preferably 200 nm to 1500 nm. If it is in the said range, the uniformity of a film thickness can be acquired and it will be hard to generate
  • the surface of the organic layer is required to be free of foreign matters such as particles and protrusions. For this reason, it is preferable that the organic layer is formed in a clean room.
  • the degree of cleanness is preferably class 10000 or less, more preferably class 1000 or less. It is preferable that the organic layer has a high hardness. It has been found that when the hardness of the organic layer is high, the inorganic layer is formed smoothly and as a result, the barrier ability is improved.
  • the hardness of the organic layer can be expressed as a microhardness based on the nanoindentation method.
  • the microhardness of the organic layer is preferably 100 N / mm or more, and more preferably 150 N / mm or more.
  • the lamination of the organic layer and the inorganic layer can be performed by sequentially repeating the organic layer and the inorganic layer according to a desired layer configuration.
  • a desired layer configuration In particular, when at least one organic layer and at least one inorganic layer are alternately laminated, higher barrier properties can be exhibited.
  • the number of organic layers and inorganic layers is 1 to 6 layers (preferably 1 to 4 layers) alternately stacked, higher barrier properties can be exhibited.
  • the number of layers of the organic layer and the inorganic layer may be the same or different.
  • the barrier laminate described above may include a resin substrate as necessary. That is, the second transparent protective substrate has a resin substrate and a barrier layer having a laminated structure in which at least one inorganic layer and at least one organic layer are alternately laminated, which are disposed on the resin substrate. A configuration is preferred.
  • the preferred embodiment of the laminated structure of the barrier layer is as described above.
  • the organic layer and the inorganic layer may be provided only on one side of the resin substrate, or may be provided on both sides. Moreover, you may laminate
  • the apparatus for producing the organic layer and the inorganic layer is not particularly limited, but as an apparatus for producing each layer, for example, as shown in FIG.
  • the inorganic film forming apparatus 332 to be formed is exemplified. Hereinafter, these devices will be described in detail.
  • Both the organic film forming apparatus 330 and the inorganic film forming apparatus 332 send out the film forming material from a roll formed by winding a long film forming material (web-shaped film forming material). Is formed while the film is transported in the longitudinal direction, and the film-formed deposition material is wound again in a roll shape, so-called roll-to-roll (hereinafter also referred to as RtoR), An apparatus for forming a film.
  • the organic film forming apparatus 330 applies a coating material to be an organic layer while transporting a long support Z (film forming material) in the longitudinal direction, and after drying, an organic compound contained in the coating film by light irradiation.
  • a coating material to be an organic layer while transporting a long support Z (film forming material) in the longitudinal direction, and after drying, an organic compound contained in the coating film by light irradiation.
  • the organic film forming apparatus 330 includes a coating unit 336, a drying unit 338, a light irradiation unit 340, a rotating shaft 342, a winding shaft 346, and transport roller pairs 348 and 350.
  • a support roll ZR formed by winding a long support Z is loaded on the rotary shaft 342.
  • the support Z When the support roll ZR is loaded on the rotating shaft 342, the support Z is pulled out of the support roll ZR, passes through the conveying roller pair 348, and passes under the coating means 336, the drying means 338, and the light irradiation means 340. Then, the paper passes through a predetermined conveyance path that passes through the conveyance roller pair 350 and reaches the take-up shaft 346 (paper is passed).
  • the feeding of the support Z from the support roll ZR and the winding of the support Zo on which the organic layer is formed on the winding shaft 346 are performed in synchronization.
  • the coating material 336 is applied with an organic layer coating material, the drying device 338 is dried, and the light irradiation device 340 is cured. By doing so, an organic layer is formed.
  • the inorganic film forming apparatus 332 forms (deposits) an inorganic layer on the surface of the support Zo by plasma CVD, and includes a supply chamber 356, a film forming chamber 358, and a take-up chamber 360.
  • the inorganic film forming apparatus 332 in the illustrated example is provided with a vacuum evacuation unit 370 in the supply chamber 356 and a vacuum evacuation unit 376 in the take-up chamber 360 as a preferred embodiment.
  • the supply chamber 356 includes a rotation shaft 364, a guide roller 368, and a vacuum exhaust unit 370.
  • a rotating shaft 364 is rotated clockwise in the drawing by a driving source (not shown), the support Zo is fed from the roll ZoR, and a predetermined path is guided by the guide roller 368, so that the partition 372 is formed. From the slit 372a, the film is sent to the film formation chamber 358.
  • the film forming chamber 358 an inorganic layer is formed on the surface of the support Zo by plasma CVD.
  • the film forming chamber 358 includes a drum 380, a shower electrode 382, guide rollers 384 a and 384 b, a high frequency power source 386, a gas supply unit 387, and a vacuum exhaust unit 373.
  • the support Zo conveyed to the film forming chamber 358 is guided to a predetermined path by the guide roller 384 and is wound around a predetermined position of the drum 380.
  • the support Zo is conveyed in the longitudinal direction while being positioned at a predetermined position by the drum 380, and an inorganic layer is formed by plasma CVD.
  • the film formation chamber 358 forms an inorganic layer on the surface of the support Zo by CCP-CVD (capacitive coupling plasma CVD).
  • the drum 380 also functions as a counter electrode in CCP-CVD, and constitutes an electrode pair together with a shower electrode 382 (film formation electrode) described later.
  • the high frequency power source 386 is a known high frequency power source used for plasma CVD, and supplies plasma excitation power to the shower electrode 382.
  • the gas supply means 387 is also a known film formation gas (raw material gas / process gas) supply means used for plasma CVD, and supplies the film formation gas to the shower electrode 382.
  • the support Zo on which the inorganic layer is formed by the shower electrode 382 while being supported / conveyed by the drum 380 is guided to a predetermined path by the guide roller 384b, and from the slit 374a formed in the partition wall 374, from the winding chamber 360.
  • the winding chamber 360 includes a guide roller 390, a winding shaft 392, and a vacuum exhaust unit 376.
  • the support conveyed to the take-up chamber 360 is wound into a roll shape by the take-up shaft 392 and collected as the roll 10aR.
  • a hard coat layer may be disposed on at least one of the front surface and the back surface of the second transparent protective substrate. By arranging the hard coat layer, the occurrence of cracks in the second transparent protective substrate can be further suppressed.
  • the hardness of the hard coat layer is not particularly limited, but is preferably pencil hardness H or higher, more preferably 2H or higher. The pencil hardness can be measured by the method described in JIS-K5600.
  • the first transparent protective substrate is a substrate located on the outermost side when the laminated body for touch panels is arranged on the display device, and serves to protect a conductive film described later from the external environment, and its main surface is a touch surface.
  • a plastic substrate, a glass substrate, or the like is used, and a glass substrate is preferable from the viewpoint of strength. It is desirable that the thickness of the first transparent protective substrate is appropriately selected according to each application.
  • the raw material for the plastic substrate examples include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN); polyolefins such as polyethylene (PE), polypropylene (PP), polystyrene, and EVA; vinyl resins; Polycarbonate (PC), polyamide, polyimide, acrylic resin, triacetyl cellulose (TAC), cycloolefin resin (COP), and the like can be used.
  • the first transparent protective substrate is optically transparent. Optically transparent means that the total light transmittance is 75% or more, preferably 85% or more, more preferably 90% or more, and even more preferably 100%.
  • the thickness of the first transparent protective substrate is not particularly limited, but is preferably 10 to 1500 ⁇ m, and more preferably 100 to 1100 ⁇ m from the viewpoints of handleability and thinning of the touch panel.
  • the first pressure-sensitive adhesive layer and the second pressure-sensitive adhesive layer are layers that enhance adhesion between adjacent layers. More specifically, a 1st adhesive layer is arrange
  • the kind in particular of the adhesive which comprises a 1st adhesive layer and a 2nd adhesive layer is not restrict
  • a well-known adhesive can be used.
  • Specific examples of the pressure-sensitive adhesive include various pressure-sensitive adhesives such as a rubber-based pressure-sensitive adhesive, an acrylic pressure-sensitive adhesive, a silicone-based pressure-sensitive adhesive, and a urethane-based pressure-sensitive adhesive, and an acrylic pressure-sensitive adhesive is preferable.
  • the acrylic pressure-sensitive adhesive has an acrylic polymer having a main skeleton of an alkyl (meth) acrylate monomer unit as a base polymer.
  • (Meth) acrylate refers to acrylate and / or methacrylate.
  • the average carbon number of the alkyl group of the alkyl (meth) acrylate constituting the main skeleton of the acrylic polymer is preferably about 1 to 12, and specific examples of the alkyl (meth) acrylate include methyl (meth) acrylate, ethyl (meth) ) Acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate and the like.
  • the thickness of the first pressure-sensitive adhesive layer and the second pressure-sensitive adhesive layer is not particularly limited, but is preferably 5 to 500 ⁇ m and more preferably 20 to 300 ⁇ m from the viewpoint of thinning the touch panel.
  • the first pressure-sensitive adhesive layer and the second pressure-sensitive adhesive layer are preferably optically transparent. More specifically, the total light transmittance of the pressure-sensitive adhesive layer is preferably 80% or more, and more preferably 90% or more.
  • the conductive film uses the change in capacitance that occurs when an external conductor such as a human finger comes into contact (approach) when the touch panel laminate is arranged on the display device to form a touch panel. It functions as a sensor that detects the position of an external conductor such as a human finger. That is, it plays a role as a capacitive touch sensor.
  • FIG. 2 shows a plan view of one embodiment of the conductive film.
  • FIG. 3 is a cross-sectional view taken along the cutting line AA in FIG.
  • the conductive film 14 includes a substrate 22, a first detection electrode 24 disposed on one main surface (on the front surface) of the substrate 22, a first lead-out wiring 26, and the other main surface (on the back surface) of the substrate 22.
  • the second detection electrode 28, the second lead wiring 30, and the flexible printed wiring board 32 are provided.
  • the region where the first detection electrode 24 and the second detection electrode 28 are provided constitutes an input region E I (an input region (sensing unit) capable of detecting the contact of an object) that can be input by the user, and input.
  • a first lead wiring 26, a second lead wiring 30 and a flexible printed wiring board 32 are arranged in the outer region E O located outside the region E I.
  • the metal thin wires 34, which will be described later, and the first lead-out wiring 26 and the second lead-out wiring 30 constituting the first detection electrode 24 and the second detection electrode 28 were controlled to a predetermined metal amount described later. Corresponds to a thin metal wire.
  • the present invention is not limited to this form as long as a thin metal wire having a predetermined metal amount is included.
  • a thin metal wire having a predetermined metal amount is included.
  • only the first lead wire 26 and the second lead wire 30 are controlled to have a predetermined metal amount.
  • the form comprised by may be sufficient.
  • the substrate 22 plays a role of supporting the first detection electrode 24 and the second detection electrode 28 in the input region E I and plays a role of supporting the first lead wiring 26 and the second lead wiring 30 in the outer region E O. It is a member.
  • the substrate 22 preferably transmits light appropriately. Specifically, the total light transmittance of the substrate 22 is preferably 85 to 100%.
  • the substrate 22 preferably has an insulating property (is an insulating substrate). That is, the substrate 22 is a layer for ensuring insulation between the first detection electrode 24 and the second detection electrode 28.
  • the substrate 22 is preferably a transparent substrate (particularly a transparent insulating substrate).
  • a transparent substrate particularly a transparent insulating substrate.
  • Specific examples thereof include an insulating resin substrate, a ceramic substrate, and a glass substrate.
  • an insulating resin substrate is preferable because of its excellent toughness.
  • the material constituting the insulating resin substrate is polyethylene terephthalate, polyethersulfone, polyacrylic resin, polyurethane resin, polyester, polycarbonate, polysulfone, polyamide, polyarylate, polyolefin, cellulose resin, poly Examples include vinyl chloride and cycloolefin resins.
  • polyethylene terephthalate, cycloolefin resin, polycarbonate, and triacetyl cellulose resin are preferable because of excellent transparency.
  • the substrate 22 is a single layer, but may be a multilayer of two or more layers.
  • the thickness of the substrate 22 (when the substrate 22 is a multilayer of two or more layers, the total thickness thereof) is not particularly limited, but is preferably 5 to 350 ⁇ m, more preferably 30 to 150 ⁇ m. Within the above range, desired visible light transmittance can be obtained, and handling is easy.
  • substrate 22 is substantially rectangular shape, However, It is not restricted to this. For example, it may be circular or polygonal.
  • the first detection electrode 24 and the second detection electrode 28 are sensing electrodes that sense a change in capacitance, and constitute a sensing unit (sensing unit). That is, when the fingertip is brought into contact with the touch panel, the mutual capacitance between the first detection electrode 24 and the second detection electrode 28 changes, and the position of the fingertip is calculated by the IC circuit based on the change amount.
  • the first detection electrodes 24 are electrodes that extend in a first direction (X direction) and are arranged at a predetermined interval in a second direction (Y direction) orthogonal to the first direction. Includes patterns.
  • the second detection electrode 28 has a role of detecting the input position in the Y direction of the user's finger approaching the input area E I and has a function of generating a capacitance between the second detection electrode 28 and the finger. ing.
  • the second detection electrodes 28 are electrodes that extend in the second direction (Y direction) and are arranged at a predetermined interval in the first direction (X direction), and include a predetermined pattern as will be described later. In FIG. 4, five first detection electrodes 24 and five second detection electrodes 28 are provided, but the number is not particularly limited and may be plural.
  • the first detection electrode 24 and the second detection electrode 28 are composed of thin metal wires.
  • FIG. 4 shows an enlarged plan view of a part of the first detection electrode 24.
  • the first detection electrode 24 is composed of fine metal wires 34, and includes a plurality of gratings 36 made of intersecting metal fine wires 34.
  • the second detection electrode 28 similarly to the first detection electrode 24, also includes a plurality of lattices 36 formed by intersecting metal thin wires 34.
  • the amount of metal per unit area contained in the fine metal wire 34 is 0.010 to 10 g / m 2 .
  • the amount of metal in the above range, it is possible to reduce the film thickness and width of the fine metal wires, meet the demand for high density integration, and suppress ion migration and malfunction of the touch panel.
  • 0.012 to 8.5 g / m 2 is preferable, and 0.015 to 7.0 g / m 2 is more preferable in that the effect of the present invention is more excellent.
  • the amount of metal is less than 0.010 g / m 2 , the fine metal wire is likely to be disconnected, and the touch panel is likely to malfunction. Further, when the amount of metal exceeds 10 g / m 2 , the degree of migration is large.
  • the amount of metal in a predetermined volume can be measured by observing a cross-sectional SEM photograph of a thin metal wire and performing elemental analysis by fluorescent X-ray analysis.
  • per unit area of a metal fine wire means per unit area of the contact part with the board
  • the metal thin wire 34 includes a predetermined metal component.
  • a metal such as gold (Au), silver (Ag), copper (Cu), aluminum (Al), or an alloy thereof, ITO (indium oxide-tin) ), Metal oxides such as tin oxide, zinc oxide, cadmium oxide, gallium oxide, and titanium oxide.
  • silver may be contained in the form of a silver alloy.
  • the fine metal wire 34 includes a silver alloy, examples of the metal contained other than silver include tin, palladium, gold, nickel, and chromium.
  • the metal thin wire 34 with a metal nanowire made of silver or a silver alloy.
  • the method for producing the metal nanowire is not particularly limited and may be produced by any method, but it is preferably produced by reducing metal ions in a solvent in which a halogen compound and a dispersant are dissolved.
  • JP2009-215594A, JP2009-242880A, JP2009-299162A, JP2010-84173A, JP2010-86714A As a method for producing metal nanowires, JP2009-215594A, JP2009-242880A, JP2009-299162A, JP2010-84173A, JP2010-86714A, The method described in JP-T-2009-505358 can be used.
  • a binder is contained in the fine metal wires 34 from the viewpoint of adhesion between the fine metal wires 34 and the substrate 22.
  • the binder is preferably a water-soluble polymer because the adhesion between the fine metal wires 34 and the substrate 22 is more excellent.
  • the binder include gelatin, carrageenan, polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP), polysaccharides such as starch, cellulose and derivatives thereof, polyethylene oxide, polysaccharides, polyvinylamine, chitosan, polylysine, polyacryl.
  • PVA polyvinyl alcohol
  • PVP polyvinyl pyrrolidone
  • polysaccharides such as starch, cellulose and derivatives thereof, polyethylene oxide, polysaccharides, polyvinylamine, chitosan, polylysine, polyacryl.
  • examples include acid, polyalginic acid, polyhyaluronic acid, carboxycellulose, gum arabic, and sodium
  • gelatin is preferable because the adhesion between the fine metal wires 34 and the substrate 22 is more excellent.
  • acid-processed gelatin may be used as gelatin, and gelatin hydrolyzate, gelatin enzyme decomposition product, and other gelatins modified with amino groups and carboxyl groups (phthalated gelatin, acetylated gelatin) Can be used.
  • the volume ratio (metal volume / binder volume) of the metal and the binder in the thin metal wire 34 is preferably 1.0 or more, and more preferably 1.5 or more.
  • the upper limit is not particularly limited, but is preferably 6.0 or less, more preferably 4.0 or less, and even more preferably 2.5 or less from the viewpoint of productivity.
  • the volume ratio of the metal and the binder can be calculated from the density of the metal and the binder contained in the fine metal wire 34. For example, when the metal is silver, the density of silver is 10.5 g / cm 3 , and when the binder is gelatin, the density of gelatin is 1.34 g / cm 3 .
  • the line width of the fine metal wire 34 is not particularly limited, but is preferably 30 ⁇ m or less, more preferably 15 ⁇ m, further preferably 10 ⁇ m, particularly preferably 9 ⁇ m or less, and particularly preferably 7 ⁇ m or less, from the viewpoint that a low-resistance electrode can be formed relatively easily. Most preferably, 0.5 ⁇ m or more is preferable, and 1.0 ⁇ m or more is more preferable.
  • the thickness of the fine metal wire 34 is not particularly limited, but can be selected from 0.00001 mm to 0.2 mm from the viewpoint of conductivity and visibility, but is preferably 30 ⁇ m or less, more preferably 20 ⁇ m or less, and 0.01 to 9 ⁇ m is more preferable, and 0.05 to 5 ⁇ m is most preferable.
  • the lattice 36 includes an opening region surrounded by the thin metal wires 34.
  • the length W of one side of the grating 36 is preferably 800 ⁇ m or less, more preferably 600 ⁇ m or less, preferably 50 ⁇ m or more, and more preferably 400 ⁇ m or more.
  • the aperture ratio is preferably 85% or more, more preferably 90% or more, and most preferably 95% or more from the viewpoint of visible light transmittance. preferable.
  • the aperture ratio corresponds to the ratio of the transmissive portion excluding the thin metal wires 34 in the first detection electrode 24 or the second detection electrode 28 in the predetermined region.
  • the lattice 36 has a substantially rhombus shape.
  • other polygonal shapes for example, a triangle, a quadrangle, a hexagon, and a random polygon
  • the shape of one side may be a curved shape or a circular arc shape in addition to a linear shape.
  • the arc shape for example, the two opposing sides may have an outwardly convex arc shape, and the other two opposing sides may have an inwardly convex arc shape.
  • the shape of each side may be a wavy shape in which an outwardly convex arc and an inwardly convex arc are continuous. Of course, the shape of each side may be a sine curve.
  • the fine metal wires 34 are formed as a mesh pattern, but are not limited to this form, and may be a stripe pattern.
  • the fine metal wires 34 of the first detection electrode 24 and the second detection electrode 28 may be composed of metal oxide particles, metal paste such as silver paste and copper paste, and metal nanowire particles such as silver nanowire and copper nanowire. Among these, silver nanowires are preferable because they are excellent in conductivity and transparency.
  • the first detection electrode 24 and the second detection electrode 28 are configured by the mesh structure of the metal thin wires 34, but the present invention is not limited to this form.
  • the first detection electrode 24 and the second detection electrode 28 The entire detection electrode 28 may be formed of a metal oxide thin film (transparent metal oxide thin film) such as ITO.
  • Examples of materials that can be used in the above embodiment in addition to ITO include zinc oxide (ZnO), indium zinc oxide (IZO), gallium zinc oxide (GZO), and aluminum zinc oxide (AZO).
  • the patterning of the electrode can be selected depending on the material of the electrode, and a photolithography method, a resist mask screen printing-etching method, an ink jet method, a printing method, or the like may be used.
  • the first lead wiring 26 and the second lead wiring 30 are members that play a role in applying a voltage to the first detection electrode 24 and the second detection electrode 28, respectively.
  • the first lead wiring 26 is disposed on the substrate 22 in the outer region E O , one end of which is electrically connected to the corresponding first detection electrode 24, and the other end is electrically connected to the flexible printed wiring board 32.
  • the second lead wiring 30 is disposed on the substrate 22 in the outer region E O , one end of which is electrically connected to the corresponding second detection electrode 28, and the other end is electrically connected to the flexible printed wiring board 32.
  • the In FIG. 2, five first lead wires 26 and five second lead wires 30 are shown, but the number thereof is not particularly limited, and a plurality of them are usually arranged according to the number of detection electrodes.
  • the amount of metal per unit area contained in the first lead-out wiring 26 and the second lead-out wiring 30 is 0.010 to 10 g / m 2 , similar to the metal thin wire 34 described above.
  • the preferable range of the metal amount is the same as that of the metal thin wire 34 described above.
  • the material of the wiring constituting the first lead wiring 26 and the second lead wiring 30 is synonymous with the material constituting the metal thin wire 34 described above.
  • silver is preferable because of its excellent conductivity.
  • the binder is contained in the 1st extraction wiring 26 and the 2nd extraction wiring 30 from the point which adhesiveness with the board
  • the kind of binder is as above-mentioned.
  • the flexible printed wiring board 32 is a board in which a plurality of wirings and terminals are provided on a substrate, and is connected to the other end of each of the first lead-out wirings 26 and the other end of each of the second lead-out wirings 30, and is a conductive film. 14 and an external device (for example, a display device).
  • ⁇ Method for producing touch panel laminate> The manufacturing method in particular of the said laminated body for touchscreens is not restrict
  • a method for producing a thin metal wire in a conductive film for example, a subtractive method using an etching process, a semi-additive method using electrolytic plating, a silver paste (for example, a silver nanoparticle or silver nanowire-containing paste)
  • a method using silver halide is preferably used. More specifically, first, a step (1) of forming a silver salt emulsion layer containing silver halide on a substrate, a step of forming a fine metal wire by developing after exposing the silver salt emulsion layer ( 2). Below, each process is demonstrated.
  • Step (1) is a step of forming a silver salt emulsion layer on the substrate.
  • the method for forming the silver salt emulsion layer is not particularly limited. From the viewpoint of productivity, the silver salt emulsion layer-containing composition containing silver halide is brought into contact with the substrate to form the silver salt emulsion layer on the substrate. The method is preferred. Below, after explaining in full detail about the form of the composition for silver salt emulsion layer formation used by the said method, the procedure of a process is explained in full detail.
  • the silver salt emulsion layer forming composition contains silver halide.
  • the halogen element contained in the silver halide may be any of chlorine, bromine, iodine and fluorine, or a combination thereof.
  • As the silver halide for example, silver halides mainly composed of silver chloride, silver bromide and silver iodide are preferably used, and silver halides mainly composed of silver bromide and silver chloride are preferably used.
  • the silver salt emulsion layer forming composition may contain a resin binder, if necessary. The kind of the resin binder is as described above, and among them, gelatin is preferable.
  • the composition for forming a silver salt emulsion layer contains a solvent, if necessary.
  • the solvent used include water, organic solvents (for example, alcohols such as methanol, ketones such as acetone, amides such as formamide, sulfoxides such as dimethyl sulfoxide, esters such as ethyl acetate, ethers, and the like. Etc.), ionic liquids, or mixed solvents thereof.
  • the content of the solvent to be used is not particularly limited, but is preferably in the range of 30 to 90% by mass, and more preferably in the range of 50 to 80% by mass with respect to the total mass of the silver halide and the resin binder.
  • the method for bringing the silver salt emulsion layer-forming composition and the substrate into contact with each other is not particularly limited, and a known method can be employed.
  • a method of applying a silver salt emulsion layer forming composition to a substrate, a method of immersing a substrate in a silver salt emulsion layer forming composition, and the like can be mentioned.
  • Step (2) is a step of forming a fine metal wire by subjecting the silver salt emulsion layer obtained in the above step (1) to exposure treatment and development treatment.
  • exposure process will be described in detail, and then the development process will be described in detail.
  • the silver halide in the silver salt emulsion layer in the exposed region forms a latent image.
  • fine metal lines are formed by a development process described later.
  • the silver halide dissolves and flows out of the silver salt emulsion layer during the fixing process described later, and a transparent film is obtained.
  • the light source used in the exposure is not particularly limited, and examples thereof include light such as visible light and ultraviolet light, and radiation such as X-rays.
  • the method for performing pattern exposure is not particularly limited. For example, surface exposure using a photomask may be performed, or scanning exposure using a laser beam may be performed.
  • the shape of the pattern is not particularly limited, and is appropriately adjusted according to the pattern of fine metal wires to be formed.
  • the development processing method is not particularly limited, and a known method can be employed. For example, conventional development processing techniques used for silver salt photographic film, photographic paper, printing plate making film, photomask emulsion mask, and the like can be used.
  • the type of the developer used in the development process is not particularly limited. For example, PQ developer, MQ developer, MAA developer and the like can be used.
  • the development process can include a fixing process performed for the purpose of removing and stabilizing the silver salt in the unexposed part.
  • a technique of fixing process used for silver salt photographic film, photographic paper, printing plate-making film, photomask emulsion mask and the like can be used.
  • the fixing temperature in the fixing step is preferably 20 to 50 ° C., more preferably 25 to 45 ° C.
  • the fixing time is preferably 5 seconds to 1 minute, more preferably 7 to 50 seconds.
  • the composition for adhesive layer formation containing an adhesive is apply
  • examples thereof include a method of performing a curing treatment to form a first pressure-sensitive adhesive layer and a second pressure-sensitive adhesive layer, and a method of laminating a pressure-sensitive adhesive sheet containing a pressure-sensitive adhesive on a substrate with fine metal wires.
  • coating is preferable from the point that adjustment of the thickness of a 1st adhesive layer and a 2nd adhesive layer is easy.
  • the method for applying the adhesive layer forming composition onto the substrate with fine metal wires is not particularly limited, and is a dispensing method, a screen printing method, a curtain coating method, a barcode method, a spin coater method, an ink jet method, a dip dipping method.
  • a known method can be adopted.
  • what is necessary is just to implement heat processing or exposure processing suitably as a hardening process.
  • a desired laminated body for a touch panel can be manufactured by laminating the first transparent protective substrate and the second transparent protective substrate described above on the first pressure-sensitive adhesive layer and the second pressure-sensitive adhesive layer, respectively.
  • the occurrence of migration is further suppressed, and the malfunction of the touch panel is further suppressed, so that the metal wiring in the conductive film is 0.1 cm or more from the end face of the laminated body for touch panels (preferably , 0.3 cm or more).
  • the total light transmittance of the touch panel laminate produced as described above is not particularly limited, but is preferably 80 to 90% from the viewpoint of application to a touch panel.
  • the haze of the laminate for a touch panel is not particularly limited, but is preferably 0.3 to 3.5% from the viewpoint of application to a touch panel.
  • a measurement method using CM-3600A manufactured by Konica Minolta is adopted.
  • the touch panel 10 is manufactured by arranging the above-described laminated body 1 for a touch panel on the viewing side of the display device 11.
  • positioning the laminated body 1 for touchscreens on a display apparatus as shown in FIG. 5, it arrange
  • the obtained touch panel suppresses the ion migration of the fine metal wire and is unlikely to malfunction.
  • the form of the conductive film in the laminated body for touch panels is not limited to the form of FIG. 2, but may be the form shown in FIG.
  • the conductive film 140 is electrically connected to the second substrate 38, the second detection electrode 28 disposed on the second substrate 38, and one end of the second detection electrode 28.
  • a second lead wiring (not shown) disposed on the substrate 38, the adhesive layer 40, the first detection electrode 24, and a first lead wiring electrically connected to one end of the first detection electrode 24. (Not shown), a first substrate 42 adjacent to the first detection electrode 24 and the first lead-out wiring, and a flexible printed wiring board (not shown).
  • the conductive film 140 has the same configuration as that of the conductive film 140 except for the second substrate 38, the first substrate 42, and the adhesive layer 40. Elements are given the same reference numerals, and descriptions thereof are omitted.
  • the definitions of the second substrate 38 and the first substrate 42 are the same as the definition of the substrate 22 described above.
  • the pressure-sensitive adhesive layer 40 is a layer for bringing the first detection electrode 24 and the second detection electrode 28 into close contact with each other, and is preferably optically transparent (preferably a transparent pressure-sensitive adhesive layer).
  • a material constituting the pressure-sensitive adhesive layer 40 a known material is used.
  • a plurality of the first detection electrodes 24 and the second detection electrodes 28 in FIG. 6 are used as shown in FIG. 2, and both are arranged so as to be orthogonal to each other as shown in FIG.
  • the first detection electrode 24, the first lead wire electrically connected to one end of the first detection electrode 24, the second detection electrode 28, and one end of the second detection electrode 28 are electrically connected.
  • the second lead wiring connected in the manner is composed of a thin metal wire having a metal amount per unit area of 0.010 to 10 g / m 2 .
  • the suitable range and measuring method of metal amount are as above-mentioned. That is, the conductive film 140 shown in FIG. 6 is prepared by preparing two substrates with fine metal wires having a substrate and fine metal wires (detection electrodes and lead wires) arranged on one side of the substrate so that the fine metal wires face each other. Furthermore, it corresponds to the conductive film obtained by bonding through an adhesive layer.
  • the form shown in FIG. 7 may be sufficient as the form of the conductive film in the laminated body for touch panels.
  • the conductive film 240 is electrically connected to the second substrate 38, the second detection electrode 28 disposed on the second substrate 38, and one end of the second detection electrode 28.
  • a second lead-out wiring (not shown), an adhesive layer 40, a first substrate 42, a first detection electrode 24 disposed on the first substrate 42, and one end of the first detection electrode 24.
  • a first lead wiring (not shown) disposed on the first substrate 42 and a flexible printed wiring board (not shown).
  • the conductive film 240 shown in FIG. 7 has the same layers as those of the conductive film 140 shown in FIG. 6 except that the order of the layers is different.
  • first detection electrodes 24 and the second detection electrodes 28 in FIG. 7 are used as shown in FIG. 2, and both are arranged so as to be orthogonal to each other as shown in FIG. .
  • the first detection electrode 24, the first lead wire electrically connected to one end of the first detection electrode 24, the second detection electrode 28, and one end of the second detection electrode 28 are electrically connected.
  • the second lead wiring connected in the manner is composed of a thin metal wire having a metal amount per unit area of 0.010 to 10 g / m 2 .
  • the suitable range and measuring method of metal amount are as above-mentioned. That is, the conductive film 240 shown in FIG. 7 is prepared by preparing two substrates with fine metal wires each having a substrate and fine metal wires (detection electrodes and lead wires) arranged on one side of the substrate. It corresponds to a conductive film obtained by bonding through an adhesive layer so that the inner substrate and the metal fine wire of the other substrate with metal fine wires face each other.
  • Second Embodiment As another form of the laminated body for touch panels, as shown in FIG. 8, at least the first adhesive layer 3 exposed from between the first transparent protective substrate 2 and the second transparent protective substrate 6, the conductive film. 4 and the form by which the sealing layer 12 is arrange
  • the sealing layer 12 By disposing the sealing layer 12, the intrusion of moisture from the end face is suppressed, and the effect of the present invention is more excellent.
  • the sealing layer 12 By disposing the sealing layer 12, the intrusion of moisture from the end face is suppressed, and the effect of the present invention is more excellent.
  • the first adhesive layer 3, the conductive film 4, and the peripheral portion of the second adhesive layer 5 are the first transparent protective substrate 2, the first adhesive layer 3, the conductive film 4, the second In the laminate in which the pressure-sensitive adhesive layer 5 and the second transparent protective substrate 6 are laminated in this order, the side surfaces of the first pressure-sensitive adhesive layer 3, the conductive film 4, and the second pressure-sensitive adhesive layer 5 exposed to the outside. Intended part.
  • the sealing layer 12 may be further disposed on the end surfaces and / or main surfaces of the first transparent protective substrate 2 and the second transparent protective substrate 6.
  • the thickness of the sealing layer is not particularly limited, but is preferably 1.0 ⁇ m or more, preferably 2.0 ⁇ m or more, more preferably 4.0 ⁇ m or more, and even more preferably 10.0 ⁇ m or more in terms of more excellent effects of the present invention. .
  • the upper limit is not particularly limited, but is preferably 50 ⁇ m or less from the viewpoint that the effect is saturated and the economy is impaired.
  • the thickness of a sealing layer is the average value which measured the thickness of 20 places or more places of a sealing layer, and arithmetically averaged them.
  • the material which comprises a sealing layer in particular is not restrict
  • Example A> ⁇ Production of sample No. 102> (Preparation of silver halide emulsion) To the following 1 liquid maintained at 38 ° C. and pH 4.5, an amount corresponding to 90% of each of the following 2 and 3 liquids was simultaneously added over 20 minutes while stirring to form 0.16 ⁇ m core particles. Subsequently, the following 4 and 5 solutions were added over 8 minutes, and the remaining 10% of the following 2 and 3 solutions were added over 2 minutes to grow to 0.21 ⁇ m. Further, 0.15 g of potassium iodide was added and ripened for 5 minutes to complete the grain formation.
  • the emulsion after washing with water and desalting was adjusted to pH 6.4 and pAg 7.5, and gelatin 3.9 g, sodium benzenethiosulfonate 10 mg, sodium benzenethiosulfinate 3 mg, sodium thiosulfate 15 mg and chloroauric acid 10 mg were added.
  • Chemical sensitization to obtain optimum sensitivity at 0 ° C. 100 mg of 1,3,3a, 7-tetraazaindene as stabilizer and 100 mg of proxel (trade name, manufactured by ICI Co., Ltd.) as preservative It was.
  • the finally obtained emulsion contains 0.08 mol% of silver iodide, and the ratio of silver chlorobromide is 70 mol% of silver chloride and 30 mol% of silver bromide. It was a silver iodochlorobromide cubic grain emulsion having a coefficient of 9%.
  • the silver salt emulsion layer formation process After a polyethylene terephthalate (PET) film having a thickness of 100 ⁇ m is subjected to corona discharge treatment, a gelatin layer having a thickness of 0.1 ⁇ m as an undercoat layer on both sides of the PET film, and an optical density of about 1.0 on the undercoat layer. And an antihalation layer containing a dye which is decolorized by alkali in the developer. On the antihalation layer, the silver salt emulsion layer forming composition was applied, and a gelatin layer having a thickness of 0.15 ⁇ m was further provided to obtain a PET film having a silver salt emulsion layer formed on both sides. The obtained film is referred to as film A.
  • the formed silver salt emulsion layer had a silver amount of 6.0 g / m 2 and a gelatin amount of 1.0 g / m 2 .
  • the film A was exposed using parallel light using a high-pressure mercury lamp as a light source through a photomask having a comb-shaped pattern with a line and space (L / S) of 50 ⁇ m / 50 ⁇ m on both surfaces of the film A. After the exposure, development was performed with the following developer, and further development was performed using a fixer (trade name: N3X-R for CN16X, manufactured by Fuji Film). Furthermore, by rinsing with pure water and drying, a PET film in which an electrode pattern composed of Ag fine wires (metal fine wires) and a gelatin layer were formed on both surfaces was obtained.
  • the gelatin layer was formed between Ag fine wires, and the amount of Ag in the Ag fine wires at this time was 5.5 g / m 2 from fluorescent X-ray analysis.
  • the obtained film with a comb-shaped wiring pattern is referred to as film B.
  • barrier film 1 ⁇ A gas barrier film 10 having an organic layer and a silicon nitride layer on the surface of the support Z was produced as a barrier film.
  • the support Z a long PET film having a width of 1000 mm and a thickness of 100 ⁇ m was used.
  • An organic compound and a surfactant were added to an organic solvent and mixed to prepare a coating material for an organic layer.
  • the organic compound TMPTA (manufactured by Daicel-Cytec) was used.
  • MEK was used as the organic solvent.
  • the surfactant a silicon-based surfactant (BYK378, manufactured by BYK Japan) was used. The amount added was 1% by weight at a concentration excluding the organic solvent.
  • a photopolymerization initiator Irg184, manufactured by Ciba Chemicals Co., Ltd.
  • a photopolymerization initiator having a weight of 2% in a concentration excluding the organic solvent was added to the paint (that is, 97% by weight of the organic compound in the solid content).
  • This surfactant and photopolymerization initiator do not contain halogen.
  • the solid content concentration of the paint was 15% by weight.
  • the support roll ZR formed by winding the support Z is loaded on the rotation shaft 342 of the organic film forming apparatus 330 shown in FIG. 9A, and the prepared paint is applied to the surface of the support Z by the applying means 336. It was coated / dried and crosslinked / cured by light irradiation means 340 to obtain a roll ZoR formed by winding a support Z on which an organic layer was formed.
  • the coating means 336 used a die coater. The coating amount was 20 cc / m 2 .
  • the prepared paint has a dry film thickness, that is, an organic layer thickness of 2 ⁇ m at this coating amount.
  • the drying means 338 used hot air.
  • As the light irradiation means 340 an ultraviolet irradiation device was used.
  • the roll ZoR is loaded into the inorganic film forming apparatus 332 shown in FIG. 9B, and a silicon nitride film having a thickness of 50 nm is formed on the surface of the support Zo on which the organic layer is formed by CCP-CVD.
  • a roll 10aR formed by winding a gas barrier film on which a silicon nitride layer was formed was produced.
  • Silane gas (SiH 4 ), ammonia gas (NH 3 ), nitrogen gas (N 2 ), and hydrogen gas (H 2 ) were used as the film forming gas.
  • the supply amounts were 100 sccm for silane gas, 200 sccm for ammonia gas, 500 sccm for nitrogen gas, and 500 sccm for hydrogen gas.
  • the film forming pressure was 50 Pa.
  • the shower electrode 382 was supplied with 3000 W of plasma excitation power at a frequency of 13.5 MHz from a high frequency power source 386.
  • the drum 380 was made of stainless steel, and a bias power of 500 W was supplied from a bias power source (not shown).
  • the temperature of the drum 380 was adjusted to ⁇ 20 ° C.
  • the water vapor permeability (g / m 2 ⁇ 24h (40 ° C., 90% RH)) of the produced barrier film 1 was measured by N3 measurement using a calcium corrosion method (a method described in JP-A-2005-283561). The average value was 1 ⁇ 10 ⁇ 5 (g / m 2 ⁇ 24 h (40 ° C., 90% RH)) order.
  • sample No. 102 ⁇ Production of sample No. 102>
  • the organic film / inorganic layer is alternately laminated in the organic film / inorganic layer manufacturing procedure in the above-described barrier film 1 manufacturing procedure (two pairs of organic / inorganic layers + one organic layer) )
  • Sample No102 was prepared and evaluated according to the same procedure as Sample No101 except that the produced barrier film 2 was used. The results are shown in Table 1.
  • the film obtained had a water vapor permeability of the order of 1 ⁇ 10 ⁇ 6 (g / m 2 ⁇ 24 h (40 ° C., 90% RH)).
  • sample No103 ⁇ Production of sample No103>
  • the organic film / inorganic layer is alternately laminated in the production procedure of the above barrier film 1 with organic / inorganic / organic / inorganic / organic / inorganic / organic / inorganic / organic / inorganic / organic layers.
  • Sample No103 was prepared and evaluated according to the same procedure as Sample No101, except that (organic / inorganic 5 pair lamination + organic 1 layer) and the produced barrier film 3 were used. The results are shown in Table 1.
  • the water vapor permeability of the obtained film was less than 1 ⁇ 10 ⁇ 6 (g / m 2 ⁇ 24 h (40 ° C., 90% RH)) order because the change in the state of calcium was very small during the measurement time. Judged that there was.
  • sample No. 104 was prepared according to the same procedure as the production of the sample No. 101 except that the barrier film 4 in which the dry film thickness of the organic layer was changed to 0.25 ⁇ m was used in the manufacturing procedure of the above barrier film 1. Fabricated and evaluated. The results are shown in Table 1.
  • the film obtained had a water vapor permeability of the order of 1 ⁇ 10 ⁇ 3 (g / m 2 ⁇ 24 h (40 ° C., 90% RH)).
  • Sample No105 was produced and evaluated in accordance with the same procedure as that for producing Sample No101 except that Mitsubishi Resin Tech Barrier HX (12 ⁇ m thick) was used instead of Barrier Film 1. The results are shown in Table 1.
  • Sample No106 was produced and evaluated in accordance with the same procedure as that for producing Sample No101, except that Mitsubishi Plastics Tech Barrier L (thickness 12 micrometers) was used instead of Barrier Film 1. The results are shown in Table 1.
  • Sample No107 was produced and evaluated according to the same procedure as that for producing Sample No101, except that Zeonoa Film (40 micrometer thickness) manufactured by Nippon Zeon Co., Ltd. was used instead of Barrier Film 1. The results are shown in Table 1.
  • Sample No108 was produced and evaluated in accordance with the same procedure as that for producing Sample No101 except that a hard coat film (G1SBF: 50 ⁇ m thickness) manufactured by Kimoto Co. was used instead of the barrier film 1. The results are shown in Table 1.
  • Sample No109 was prepared and evaluated in accordance with the same procedure as Sample No101 except that JSR Arton Film (40 micrometer thickness) was used instead of Barrier Film 1. The results are shown in Table 1.
  • Sample No110 was produced and evaluated according to the same procedure as that for producing Sample No101 except that Zeonoa Film (100 micrometer thickness) manufactured by Nippon Zeon Co., Ltd. was used instead of Barrier Film 1. The results are shown in Table 1.
  • sample No111 was prepared and evaluated according to the same procedure as sample No101. The results are shown in Table 1. The amount of Ag was 1.0 g / m 2 from fluorescent X-ray analysis.
  • sample No112 ⁇ Production of sample No112> Instead of film B, Ag paste (Dotite FA-401CA, manufactured by Fujikura Kasei Co., Ltd.) is screen-printed through a screen mask with a comb-shaped pattern with a line and space (L / S) of 50/50 ⁇ m on a PET substrate. And sample No112 was produced and evaluated in accordance with the procedure similar to preparation of sample No101 except having used the film with an Ag paste produced by baking for 30 minutes at 100 degreeC. The results are shown in Table 1. The amount of Ag was 9.3 g / m 2 from fluorescent X-ray analysis.
  • Sample No113 was produced and evaluated in accordance with the same procedure as that for producing Sample No101 except that the patterned conductive film 1 described later was used instead of the film B. The results are shown in Table 1. The amount of Ag was 0.015 g / m 2 from fluorescent X-ray analysis.
  • a silver nitrate solution 101 was prepared by dissolving 60 g of silver nitrate powder in 370 g of propylene glycol. 72.0 g of polyvinylpyrrolidone (molecular weight 55,000) was added to 4.45 kg of propylene glycol, and the temperature was raised to 90 ° C. while venting nitrogen gas through the gas phase portion of the container. This solution was designated as reaction solution 101. 2.50 g of the silver nitrate solution 101 was added to the vigorously stirred reaction solution 101 while maintaining the nitrogen gas flow, and the mixture was heated and stirred for 1 minute.
  • reaction solution 102 a solution in which 11.8 g of tetrabutylammonium chloride was dissolved in 100 g of propylene glycol was added to this solution to obtain a reaction solution 102.
  • 200 g of the silver nitrate solution 101 was added to the reaction solution 102 which was kept at 90 ° C. and stirred at a stirring speed of 500 rpm at an addition speed of 50 cc / min. The stirring speed was reduced to 100 rpm, the aeration of nitrogen gas was stopped, and heating and stirring were performed for 15 hours.
  • 220 g of the silver nitrate solution 101 was added at an addition speed of 0.5 cc / min to this liquid kept at 90 ° C.
  • silver nanowire dispersion (1) indicates the silver nanowire dispersion obtained by the above method.
  • additive solution A After the addition of the aqueous silver nitrate solution A-1, the mixture was vigorously stirred for 180 minutes to obtain additive solution A.
  • additive liquid B 42.0 g of silver nitrate powder was dissolved in 958 g of distilled water.
  • Additional liquid C 75 g of 25% aqueous ammonia was mixed with 925 g of distilled water.
  • additive solution D 400 g of polyvinylpyrrolidone (K30) was dissolved in 1.6 kg of distilled water.
  • a silver nanowire dispersion liquid (2) was prepared as follows. 1.30 g of stearyltrimethylammonium bromide powder, 33.1 g of sodium bromide powder, 1,000 g of glucose powder and 115.0 g of nitric acid (1N) were dissolved in 12.7 kg of distilled water at 80 ° C. While this liquid was kept at 80 ° C. and stirred at 500 rpm, the additive liquid A was added successively at an addition rate of 250 cc / min, the additive liquid B at 500 cc / min, and the additive liquid C at 500 cc / min. The stirring speed was 200 rpm and heating was performed at 80 ° C.
  • ultrafiltration was performed as follows. After concentrating the feed liquid 202 four times, the addition and concentration of a mixed solution of distilled water and 1-propanol (volume ratio of 1: 1) was repeated until the conductivity of the filtrate finally reached 50 ⁇ S / cm or less. It was. Concentration was performed to obtain a silver nanowire dispersion liquid (2) having a metal content of 0.45%. About the silver nanowire of the obtained silver nanowire dispersion liquid (2), the average minor axis length and the average major axis length were measured. As a result, the average minor axis length was 17.2 nm and the average major axis length was 8.8 ⁇ m.
  • PET substrate thickness 125 [mu] m
  • amount of silver 0.015 g / m 2 by a bar coating method on, after the total solid content in the coating solution was coated silver nanowire coating solution (1) so that 0.120 g / m 2, It dried at 120 degreeC for 1 minute, and the electrically conductive film 1 containing a silver nanowire was formed.
  • a photoresist (TMSMR-8900LB: manufactured by Tokyo Ohka Kogyo Co., Ltd.) was applied to the conductive film 1 by spin coating and baked at 90 ° C. for 60 seconds. Next, pattern exposure was performed using a photomask (exposure amount: 12 mW / cm 2 , 20 seconds), developed with a developer (NMD-W: Tokyo Sensitivity), washed with water and dried, then at 120 ° C. A patterned photoresist was formed on the conductive film 1 by baking for 60 seconds.
  • TMSMR-8900LB manufactured by Tokyo Ohka Kogyo Co., Ltd.
  • sample No. 114 A patterned conductive film 2 was prepared according to the above procedure except that the silver nanowire dispersion liquid (1) was changed to the silver nanowire dispersion liquid (2) in the above (production of conductive film). Next, sample No. 114 was produced and evaluated according to the same procedure as that for producing sample No. 101 except that the patterned conductive film 2 was used instead of film B. The results are shown in Table 1. The amount of Ag was 0.015 g / m 2 from fluorescent X-ray analysis.
  • Sample No. 115 was produced by applying 8814M9 manufactured by Kyoritsu Chemical Co., Ltd. to the end face of the laminate of sample No. 101, irradiating and curing with 3 J / cm 2 of UV light, and sealing the end face of the laminate.
  • the formed sealing layer was arrange
  • Sample No. 117 is prepared and evaluated according to the same procedure as Sample No. 101 except that the position of the photomask is adjusted so that the distance between the Ag fine wire and the end face of the laminate is from 1 cm to 0.3 cm. did. The results are shown in Table 1.
  • Sample No. 119 was prepared and evaluated according to the same procedure as Sample No. 101 except that the formulation of the silver salt emulsion layer was changed so that the Ag amount was changed from 5.5 g / m 2 to 0.03 g / m 2. Carried out. The results are shown in Table 1.
  • Sample No. 120 was prepared according to the same procedure as Sample No. 101 except that the formulation of the silver salt emulsion layer was changed so that the Ag amount was changed from 5.5 g / m 2 to 9.2 g / m 2 , and various evaluations were made. Carried out. The results are shown in Table 1.
  • Sample No. 121 was prepared according to the same procedure as Sample No. 101 except that the formulation of the silver salt emulsion layer was changed so that the Ag amount was changed from 5.5 g / m 2 to 12 g / m 2 , and various evaluations were performed. did. The results are shown in Table 1.
  • Sample No. 201 (touch panel) was produced according to the same procedure as the production of sample No. 101 except that (exposure development process) and (bonding process) in the production of sample No. 101 of Example A were changed to the following procedure.
  • photomask A photomask (hereinafter referred to as photomask) in which detection electrodes (first detection electrode and second detection electrode) and lead wiring portions (first lead wiring and second lead wiring) as shown in FIG. 2 are arranged on both surfaces of the film A. Double-sided simultaneous exposure was performed through the mask X) using parallel light using a high-pressure mercury lamp as a light source. After the exposure, development was performed with the developer used in Example A, and further development processing was performed using a fixing solution (trade name: N3X-R for CN16X, manufactured by FUJIFILM Corporation).
  • a PET film in which an electrode pattern composed of Ag fine wires (metal fine wires) and a gelatin layer were formed on both surfaces was obtained.
  • the gelatin layer was formed between Ag fine wires, and the amount of Ag in the Ag fine wires at this time was 5.5 g / m 2 from fluorescent X-ray analysis.
  • the obtained film with a wiring pattern is referred to as film C.
  • the first detection electrode arranged on the PET film is an electrode extending in the X direction
  • the second detection electrode is an electrode extending in the Y direction
  • the Y detection electrodes (Length: 90 mm) was 10.
  • the distance between the Ag fine wire and the end face of the laminate was 1 cm or more.
  • sample No. 201 touch panel
  • a sample for measuring the total light transmittance and haze was prepared according to the same procedure except that a hard coat film (G1SBF: 50 ⁇ m thickness) manufactured by Kimoto was used instead of the liquid crystal display.
  • the total light transmittance and haze were measured. Further, the same measurement was performed for sample Nos. 202 to 221 described later.
  • the measuring machine used here was CM-3600A manufactured by Konica Minolta.
  • Sample No. 202 was prepared and evaluated according to the same procedure as Sample No. 201 except that the above barrier film 2 was used instead of the barrier film 1. The results are shown in Table 1.
  • Sample No. 203 was produced and evaluated according to the same procedure as that for producing sample No. 201 except that the above-described barrier film 3 was used instead of the barrier film 1. The results are shown in Table 1.
  • Sample No. 204 was produced and evaluated in accordance with the same procedure as that for production of sample No. 201 except that the above-described barrier film 4 was used instead of the barrier film 1. The results are shown in Table 1.
  • Sample No. 205 was prepared and evaluated in accordance with the same procedure as Sample No. 201 except that Mitsubishi Resin Tech Barrier HX (12 ⁇ m thick) was used instead of Barrier Film 1. The results are shown in Table 1.
  • Sample No206 was produced and evaluated in accordance with the same procedure as that for producing Sample No201, except that Mitsubishi Resin Tech Barrier L (thickness: 12 micrometers) was used instead of Barrier Film 1. The results are shown in Table 1.
  • Sample No. 207 was produced and evaluated in accordance with the same procedure as that for producing Sample No. 201 except that Zeonoa Film (40 micrometer thickness) manufactured by Nippon Zeon Co., Ltd. was used instead of Barrier Film 1. The results are shown in Table 1.
  • Sample No208 was prepared and evaluated in accordance with the same procedure as Sample No201 except that a hard coat film (G1SBF: 50 ⁇ m thick) manufactured by Kimoto Co. was used instead of barrier film 1. The results are shown in Table 1.
  • Sample No. 209 was prepared and evaluated in accordance with the same procedure as Sample No. 201 except that JSR Arton Film (40 micrometer thickness) was used instead of Barrier Film 1. The results are shown in Table 1.
  • Sample No210 was produced and evaluated according to the same procedure as that for producing Sample No201 except that Zeonoa Film (100 micrometer thickness) manufactured by ZEON Corporation was used instead of Barrier Film 1. The results are shown in Table 1.
  • sample No. 211 is prepared according to the same procedure as sample No. 201 except that an Ag vapor-deposited film prepared by vapor-depositing Ag is deposited on both sides of the PET substrate via the above photomask X. And evaluated. The results are shown in Table 1. The amount of Ag was 1.0 g / m 2 from fluorescent X-ray analysis.
  • sample No. 212 ⁇ Production of sample No. 212> Instead of film B, Ag paste (Dotite FA-401CA, manufactured by Fujikura Kasei Co., Ltd.) is screen-printed on both sides of the PET substrate via the above photomask X, and then fired at 100 ° C. for 30 minutes. Sample No. 212 was produced and evaluated according to the same procedure as that for producing sample No. 201 except that the film was used. The results are shown in Table 1. The amount of Ag was 9.3 g / m 2 from fluorescent X-ray analysis.
  • Example 3 (Preparation of conductive film 3) Silver nanowires coating liquid silver amount bar coating method on both surfaces 0.015 g / m 2, the total solid content coating amount is prepared in Example A such that 0.120 g / m 2 of PET substrate (thickness 125 [mu] m) ( After applying 1), it was dried at 120 ° C. for 1 minute to form a conductive film 3 containing silver nanowires.
  • a photoresist (TMSMR-8900LB: manufactured by Tokyo Ohka Kogyo Co., Ltd.) was applied to the conductive film 1 by spin coating and baked at 90 ° C. for 60 seconds. Next, pattern exposure was performed using the photomask X (exposure amount: 12 mW / cm 2 , 20 seconds), development was performed with a developer (NMD-W: Tokyo Sensitivity), water washing and drying, and then 120 ° C. And baked for 60 seconds to form a patterned photoresist on the conductive film 3.
  • TMSMR-8900LB manufactured by Tokyo Ohka Kogyo Co., Ltd.
  • SEA-2 manufactured by Kanto Chemical Co., Inc.
  • SEA-2 manufactured by Kanto Chemical Co., Inc.
  • PK-SFR8120 manufactured by Parker Corporation
  • sample No. 214 A patterned conductive film 4 was prepared according to the above procedure except that the silver nanowire dispersion liquid (1) was changed to the silver nanowire dispersion liquid (2) in the above (production of the conductive film 3). Next, sample No. 214 was produced and evaluated according to the same procedure as the production of sample No. 201 except that the patterned conductive film 4 was used instead of film B. The results are shown in Table 1. The amount of Ag was 0.015 g / m 2 from fluorescent X-ray analysis.
  • Sample No. 215 was prepared by applying 8814M9 manufactured by Kyoritsu Chemical Co., Ltd. to the laminate end face of sample No. 201, irradiating it with UV light of 3 J / cm 2 and sealing the end face of the laminate.
  • Sample No. 217 was prepared and evaluated according to the same procedure as Sample No. 201 except that the position of the photomask X was adjusted so that the distance between the Ag fine wire and the end face of the laminate was 1 cm or more to 0.3 cm or more. Carried out. The results are shown in Table 1.
  • Sample No. 219 was prepared and evaluated in accordance with the same procedure as Sample No. 201 except that the formulation of the silver salt emulsion layer was changed so that the Ag amount was changed from 5.5 g / m 2 to 0.03 g / m 2. Carried out. The results are shown in Table 1.
  • Sample No. 220 was prepared according to the same procedure as Sample No. 201 except that the formulation of the silver salt emulsion layer was changed so that the Ag amount was changed from 5.5 g / m 2 to 9.2 g / m 2 , and various evaluations were made. Carried out. The results are shown in Table 1.
  • Sample No. 221 was prepared according to the same procedure as Sample No. 201 except that the formulation of the silver salt emulsion layer was changed so that the Ag amount was changed from 5.5 g / m 2 to 12 g / m 2 , and various evaluations were performed. did. The results are shown in Table 1.
  • “alternate lamination” means a barrier laminate having at least one organic layer and inorganic layer.
  • the “migration” column shows the result of migration evaluation using samples No. 101 to 121
  • the “touch panel operability” column shows the result of touch panel operability evaluation using samples No. 201 to 221.
  • the “sealing layer” column a case where the sealing layer is used on the end face of the laminate is indicated as “present”, and a case where the sealing layer is not used is indicated as “ ⁇ ”.
  • “*” is, 1 ⁇ 10 -6 g / m 2 ⁇ 24h (40 °C, RH 90%) is intended to be less than.
  • the touch panel laminate of the present invention has reduced migration of water vapor and other gas components, so that the occurrence of migration is suppressed, and further, after being left in a high temperature and high humidity environment for a long time.
  • the operability as a touch panel was confirmed to be very good.
  • the water vapor permeability is 1 ⁇ 10 ⁇ 4 g / m 2 ⁇ 24 h (40 ° C., 90% RH) or less, it was confirmed that the effect is more excellent.
  • every time the number of alternating layers is increased the water vapor permeability is suppressed, and the performance such as migration is improved.
  • Example C Except that the film D in which the first detection electrode and the second detection electrode in the film C used in Example B were formed of an ITO thin film was used instead of the film C, the same procedure as in the preparation of the sample No 201 was followed. Sample No. 301 (touch panel) was produced. Note that the lead-out wiring portion (first lead-out wiring and second lead-out wiring) connected to the first detection electrode and the second detection electrode in the film D is composed of an Ag fine wire, like the film C. The obtained sample No. 301 was continuously driven for 100 hours in an environment of 60 ° C. and 90% RH, and after confirming the operation, there was no corrosion of the ITO constituting the first detection electrode and the second detection electrode, and the operation was good. Confirmed to do.
  • Samples Nos. 202 to 204, 211 to 217, and 219 to 220 described above were prepared by changing the first detection electrode and the second detection electrode to an ITO thin film, and the same evaluation as the sample No. 301 was performed. As a result, it was confirmed that the ITO constituting the first detection electrode and the second detection electrode did not corrode in each sample and operated well.
  • Example D> In sample No. 301 of Example C, the detection electrode portion (first detection electrode and second detection electrode) formed of an ITO thin film on one surface of the substrate, and the extraction wiring (first extraction wiring and Except for preparing two substrates with electrodes having (second lead-out wiring) and using a conductive film obtained by bonding two substrates with electrodes through an adhesive layer so that the detection electrode portions face each other.
  • Sample No. 401 touch panel
  • sample No. 401 even after driving for 100 hours in an environment of 60 ° C. and 90% RH, it was confirmed that the ITO constituting the first detection electrode and the second detection electrode did not corrode and operated well.
  • Second substrate 1, 10, 100 Touch panel laminate 2 First transparent protective substrate 3 First adhesive layer 4, 14, 140, 240 Conductive film 5 Second adhesive layer 6 Second transparent protective substrate 10 Touch panel 11 Display device 12 Sealing Layer 22 Substrate 24, 24a First detection electrode 26 First extraction wiring 28, 28a Second detection electrode 30 Second extraction wiring 32 Flexible printed wiring board 34 Metal wire 36 Grid 38 Second substrate 40 Adhesive layer 42 First substrate 330 Organic film forming apparatus 332 Inorganic film forming apparatus 336 Application means 338 Drying means 340 Light irradiation means 342 and 364 Rotating shafts 346 and 392 Winding shafts 348 and 350 Conveying roller pair 356 Supply chamber 358 Film forming chamber 360 Winding chambers 368 and 384a , 384b, 390 Guide rollers 370, 373, 376 Vacuum exhaust means 72,374 septum 380 drum 382 showers electrode 386 high-frequency power source 387 gas supply means

Abstract

The present invention provides: a laminate for touch panels, which provides a touch panel that is not susceptible to malfunctioning if used in the touch panel in combination with a display device, and which is capable of suppressing ion migration between metal thin wires; and a touch panel which comprises this laminate for touch panels. A laminate for touch panels according to the present invention is a laminate for touch panels, which is arranged on the viewing side of a display device. This laminate for touch panels is sequentially provided with a first transparent protective substrate, a first adhesive layer, a conductive film having at least metal thin wires, a second adhesive layer and a second transparent protective substrate in this order. When this laminate for touch panels is arranged on a display device, the second transparent protective substrate is positioned on the display device side, and the second transparent protective substrate is a barrier laminate having at least one organic layer and at least one inorganic layer. The second transparent protective substrate has a water vapor transmission rate of 0.001 g/m2/24h or less (at 40°C at 90% RH), and the amount of metal contained in the metal thin wires per unit area is 0.010-10 g/m2.

Description

タッチパネル用積層体、タッチパネルLaminate for touch panel, touch panel
 本発明は、タッチパネル用積層体に係り、特に、所定の金属量の金属細線を有する導電フイルム、および、所定の水蒸気透過度を示す保護基板を備えるタッチパネル用積層体に関する。
 また、本発明は、タッチパネル用積層体を含むタッチパネルに関する。
The present invention relates to a laminate for a touch panel, and more particularly to a laminate for a touch panel including a conductive film having a thin metal wire having a predetermined amount of metal, and a protective substrate having a predetermined water vapor permeability.
Moreover, this invention relates to the touchscreen containing the laminated body for touchscreens.
 基板上に金属細線が形成された導電性フイルムは、太陽電池、無機EL素子、有機EL素子などの各種電子デバイスの透明電極、各種表示装置の電磁波シールド、タッチパネル、透明面状発熱体などに幅広く利用されている。特に、携帯電話や携帯ゲーム機器等へのタッチパネルの搭載率が上昇しており、例えば、多点検出が可能な静電容量方式のタッチパネルが注目を集めている。
 一方、タッチパネルにおいて、タッチセンサとして機能する導電フイルム中の金属細線に含まれる金属としては銀や銅が挙げられるが、これらはイオンマイグレーションが発生しやすいという問題を有する。このようなイオンマイグレーションが金属細線間で起こると、金属細線間での導通や、金属細線の断線が発生する。
 このようなイオンマイグレーションを防止する方法として、特許文献1においては、導電フイルム上に5-メチル-1H-ベンゾトリアゾールを含む粘着剤層を形成する形態が開示されている。
Conductive films with thin metal wires formed on substrates are widely used in transparent electrodes for various electronic devices such as solar cells, inorganic EL elements, and organic EL elements, electromagnetic wave shields for various display devices, touch panels, and transparent sheet heating elements. It's being used. In particular, the rate of mounting touch panels on mobile phones, portable game devices, and the like is increasing, and for example, capacitive touch panels capable of multipoint detection are attracting attention.
On the other hand, in the touch panel, examples of the metal contained in the thin metal wire in the conductive film functioning as a touch sensor include silver and copper, but these have a problem that ion migration is likely to occur. When such ion migration occurs between the fine metal wires, conduction between the fine metal wires or disconnection of the fine metal wires occurs.
As a method for preventing such ion migration, Patent Document 1 discloses a form in which an adhesive layer containing 5-methyl-1H-benzotriazole is formed on a conductive film.
特開2012-77281号公報JP 2012-77281 A
 一方、本発明者らが特許文献1の形態について検討を行ったところ、誘電率の高い水が浸入することによる、静電容量値の増加に起因する動作不良などは、上記粘着剤層の使用では必ずしも解決できず、別の解決手段が望まれている。 On the other hand, when the present inventors examined the form of Patent Document 1, the malfunction due to the increase in the capacitance value due to the infiltration of water having a high dielectric constant is caused by the use of the pressure-sensitive adhesive layer. However, it cannot always be solved, and another solution is desired.
 本発明は、上記実情に鑑みて、表示装置と組み合わせてタッチパネルとして使用した際にタッチパネルの誤動作が生じにくく、金属細線間のイオンマイグレーションも抑制できるタッチパネル用積層体を提供することを目的とする。
 また、本発明は、上記タッチパネル用積層体を含むタッチパネルを提供することも目的とする。
In view of the above circumstances, an object of the present invention is to provide a laminated body for a touch panel that is unlikely to cause a malfunction of the touch panel when used as a touch panel in combination with a display device, and that can suppress ion migration between thin metal wires.
Another object of the present invention is to provide a touch panel including the laminate for a touch panel.
 本発明者らは、従来技術の問題点について鋭意検討を行ったところ、所定の金属量の金属細線と、所定の水蒸気透過度の保護基板とを使用することにより、所望の効果が得られることを見出した。
 つまり、本発明者らは、以下の構成により上記課題が解決できることを見出した。
As a result of diligent investigations on the problems of the prior art, the present inventors are able to obtain a desired effect by using a thin metal wire having a predetermined amount of metal and a protective substrate having a predetermined water vapor permeability. I found.
That is, the present inventors have found that the above problem can be solved by the following configuration.
(1) 表示装置の視認側に配置されるタッチパネル用積層体であって、
 第1透明保護基板と、第1粘着剤層と、金属細線を少なくとも有する導電フイルムと、第2粘着剤層と、第2透明保護基板とをこの順に備え、
 表示装置上に配置される際に、第2透明保護基板が表示装置側に位置し、
 第2透明保護基板が、有機層と無機層とをそれぞれ少なくとも1層以上有し、
 第2透明保護基板の水蒸気透過度が0.001g/m2・24h(40℃、90%RH)以下であり、
 金属細線中に含まれる単位面積当たりの金属量が0.010~10g/m2である、タッチパネル用積層体。
(2) 導電フイルムが、基板と、基板の両面に配置された金属細線とを少なくとも有する、(1)に記載のタッチパネル用積層体。
(3) 導電フイルムが、基板と基板の片面に配置された金属細線とを少なくとも有する金属細線付き基板同士を、粘着剤層を介して貼り合せてなる、(1)に記載のタッチパネル用積層体。
(4) 第1透明保護基板が、ガラス基板である、(1)~(3)のいずれかに記載のタッチパネル用積層体。
(5) 第2透明保護基板が、樹脂基板と樹脂基板上に配置されたバリア層とを有し、
 バリア層が、少なくとも1層の無機層と少なくとも1層の有機層とが交互に積層された積層構造を有する、(1)~(4)のいずれかに記載のタッチパネル用積層体。
(6) 無機層の層数および有機層の層数がそれぞれ1~6である、(5)に記載のタッチパネル用積層体。
(7) 全光線透過率が80%~90%で、ヘイズが0.3%~3.5%である、(1)~(6)のいずれかに記載のタッチパネル用積層体。
(8) 第1透明保護基板と第2透明保護基板との間から露出している第1粘着剤層、導電フイルム、および、第2粘着剤層の周縁部の表面上に封止層が配置される、(1)~(7)のいずれかに記載のタッチパネル用積層体。
(9) 表示装置と、(1)~(8)のいずれかに記載のタッチパネル用積層体とを有するタッチパネル。
(1) A laminated body for a touch panel disposed on the viewing side of a display device,
A first transparent protective substrate, a first pressure-sensitive adhesive layer, a conductive film having at least a fine metal wire, a second pressure-sensitive adhesive layer, and a second transparent protective substrate are provided in this order.
When arranged on the display device, the second transparent protective substrate is located on the display device side,
The second transparent protective substrate has at least one or more organic layers and inorganic layers,
The water vapor permeability of the second transparent protective substrate is 0.001 g / m 2 · 24 h (40 ° C., 90% RH) or less,
A laminate for a touch panel, wherein the amount of metal per unit area contained in the fine metal wire is 0.010 to 10 g / m 2 .
(2) The laminate for a touch panel according to (1), wherein the conductive film has at least a substrate and fine metal wires arranged on both surfaces of the substrate.
(3) The laminate for a touch panel according to (1), wherein the conductive film is formed by bonding together a substrate with a metal fine wire having at least a substrate and a metal fine wire arranged on one side of the substrate via an adhesive layer. .
(4) The touch panel laminate according to any one of (1) to (3), wherein the first transparent protective substrate is a glass substrate.
(5) The second transparent protective substrate has a resin substrate and a barrier layer disposed on the resin substrate,
The laminate for a touch panel according to any one of (1) to (4), wherein the barrier layer has a laminated structure in which at least one inorganic layer and at least one organic layer are alternately laminated.
(6) The laminate for a touch panel according to (5), wherein the number of inorganic layers and the number of organic layers are 1 to 6, respectively.
(7) The laminate for a touch panel according to any one of (1) to (6), wherein the total light transmittance is 80% to 90% and the haze is 0.3% to 3.5%.
(8) The sealing layer is disposed on the surface of the peripheral portion of the first pressure-sensitive adhesive layer, the conductive film, and the second pressure-sensitive adhesive layer exposed from between the first transparent protective substrate and the second transparent protective substrate. The laminate for a touch panel according to any one of (1) to (7).
(9) A touch panel having a display device and the laminate for a touch panel according to any one of (1) to (8).
 本発明によれば、表示装置と組み合わせてタッチパネルとして使用した際にタッチパネルの誤動作が生じにくく、金属細線間のイオンマイグレーションも抑制できるタッチパネル用積層体を提供することができる。
 また、本発明によれば、該タッチパネル用積層体を含むタッチパネルを提供することもできる。
ADVANTAGE OF THE INVENTION According to this invention, when it uses as a touch panel in combination with a display apparatus, the laminated body for touchscreens which cannot produce the malfunctioning of a touchscreen easily and can also suppress the ion migration between metal fine wires can be provided.
Moreover, according to this invention, the touch panel containing this laminated body for touch panels can also be provided.
本発明のタッチパネル用積層体の一実施形態の断面図である。It is sectional drawing of one Embodiment of the laminated body for touchscreens of this invention. 導電フイルムの一実施形態を示す平面図である。It is a top view which shows one Embodiment of a conductive film. 図2中に示した切断線A-Aに沿って切断した断面図である。FIG. 3 is a cross-sectional view taken along a cutting line AA shown in FIG. 第1検出電極の拡大平面図である。It is an enlarged plan view of a 1st detection electrode. タッチパネルの一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of a touch panel. 導電フイルムの他の実施形態を示す平面図である。It is a top view which shows other embodiment of an electroconductive film. 導電フイルムの他の実施形態を示す平面図である。It is a top view which shows other embodiment of an electroconductive film. 本発明のタッチパネル用積層体の他の実施形態の断面図である。It is sectional drawing of other embodiment of the laminated body for touchscreens of this invention. (A)は有機層の形成装置の概略図、(B)は無機層の形成装置の概略図である。(A) is the schematic of the formation apparatus of an organic layer, (B) is the schematic of the formation apparatus of an inorganic layer.
 以下に、本発明のタッチパネル用積層体の好適形態について説明する。なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 まず、本発明の従来技術と比較した特徴点について詳述する。
 上述したように、本発明の特徴点の一つとしては、タッチパネル用積層体に含まれる金属細線中の金属量と、第2透明保護基板の水蒸気透過度を所定の範囲に制御することが挙げられる。まず、第2透明保護基板の水蒸気透過度を制御することにより、水分の侵入による静電容量値の変化を抑制している。また、一般的に、金属のマイグレーションは金属のイオン化によって進行するが、イオン化の際には水分が影響していると推測され、保護基板の水蒸気透過度を制御することによりイオン化の程度を制御している。さらに、マイグレーションの発生や、誤動作の抑制には、金属細線中の金属量の制御が必要である点も本発明者は見出している。具体的には、金属配線中の金属量が少なすぎる場合は、金属配線の断線が生じやすく、一方、金属量が多すぎる場合は、イオン化の抑制が不十分となる。そこで、水分の侵入程度を抑制しつつ、上記問題が生じにくい金属量に制御している。
 なお、上記のように第2透明保護基板の特性を制御する理由の一つとしては、タブレットやPCの場合、空冷ファンで外気を強制的に液晶モジュール/制御回路付近へ送り冷却しているため、第2透明保護基板の特性の影響が大きくなり、厳密にタッチ動作を検出するためには、それを考慮する必要が生じてきたためである。
 また、第2透明保護基板として水の浸入そのものを防止できるガラス基板などを使用することなどが考えられるが、ガラス基板自体が重く、厚くなるなどの問題や、割れが生じやすいなど取扱い性の問題もあり、実用的な解決手段ではなかった。
Below, the suitable form of the laminated body for touchscreens of this invention is demonstrated. In the present specification, a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
First, the feature point compared with the prior art of this invention is explained in full detail.
As described above, one of the features of the present invention is that the amount of metal in the fine metal wires contained in the laminate for a touch panel and the water vapor permeability of the second transparent protective substrate are controlled within a predetermined range. It is done. First, by controlling the water vapor permeability of the second transparent protective substrate, the change in the capacitance value due to the ingress of moisture is suppressed. In general, metal migration proceeds by ionization of metal, but it is presumed that moisture is affected during ionization, and the degree of ionization is controlled by controlling the water vapor permeability of the protective substrate. ing. Furthermore, the present inventor has also found that the control of the amount of metal in the thin metal wire is necessary to suppress the occurrence of migration and malfunction. Specifically, when the amount of metal in the metal wiring is too small, disconnection of the metal wiring is likely to occur, whereas when the amount of metal is too large, suppression of ionization becomes insufficient. Therefore, the amount of metal is controlled so as not to cause the above problem while suppressing the degree of moisture penetration.
Note that one of the reasons for controlling the characteristics of the second transparent protective substrate as described above is that, in the case of a tablet or PC, the outside air is forcibly sent to the vicinity of the liquid crystal module / control circuit and cooled by an air cooling fan. This is because the influence of the characteristics of the second transparent protective substrate has increased, and it has become necessary to consider it in order to detect the touch operation strictly.
In addition, it is conceivable to use a glass substrate or the like that can prevent water permeation itself as the second transparent protective substrate. However, the glass substrate itself is heavy and thick, or it is easy to crack and is easy to handle. It was not a practical solution.
<第1実施形態>
 次に、本発明のタッチパネル用積層体の好適形態について、図面を参照して詳述する。
 図1は、タッチパネル用積層体の一実施形態の断面図を示し、タッチパネル用積層体1は、第1透明保護基板2と、第1粘着剤層3と、金属細線を少なくとも有する導電フイルム4と、第2粘着剤層5と、第2透明保護基板6とをこの順に備える。なお、表示装置と組み合わせてタッチパネルとして使用する際には、第1透明保護基板2がタッチ面を構成する。
 以下に、各部材について詳述する。なお、以下では、まず、本発明の特徴点の一つである、第2透明保護基板について詳述する。
<First Embodiment>
Next, the suitable form of the laminated body for touchscreens of this invention is explained in full detail with reference to drawings.
FIG. 1 shows a cross-sectional view of an embodiment of a laminate for a touch panel. The laminate 1 for a touch panel includes a first transparent protective substrate 2, a first pressure-sensitive adhesive layer 3, and a conductive film 4 having at least a thin metal wire. The second pressure-sensitive adhesive layer 5 and the second transparent protective substrate 6 are provided in this order. In addition, when using it as a touch panel in combination with a display device, the first transparent protective substrate 2 constitutes a touch surface.
Below, each member is explained in full detail. In the following, first, the second transparent protective substrate, which is one of the features of the present invention, will be described in detail.
(第2透明保護基板)
 第2透明保護基板は、タッチパネル用積層体を表示装置上に配置した際に最も表示装置側に位置する基板であり、水分の侵入を抑制する層である。第2透明保護基板は、タッチパネル用積層体と表示装置と組み合わせてタッチパネルとした際に、表示装置とタッチパネル用積層体との接触面側からの水分の侵入を防止する機能を有する。
 第2透明保護基板の水蒸気透過度は、0.001g/m2・24h(40℃、90%RH)以下であり、タッチパネルの誤動作がより抑制される、および/または、イオンマイグレーションがより抑制される点(以後、単に「本発明の効果が優れる点」とも称する)で、0.0005g/m2・24h(40℃、90%RH)以下が好ましい。下限としては、1×10-7g/m2・24h(40℃、90%RH)以上であれば、透明性が高く、かつ、耐久性の高い透明保護基板が得られる。
 水蒸気透過度が0.001g/m2・24h(40℃、90%RH)超の場合、タッチパネルの誤動作が生じやすい、および/または、イオンマイグレーションが発生しやすい。
 水蒸気透過度の測定方法としては、カルシウム腐食法(特開2005-283561号公報に記載される方法)でN3(3回)測定を行い、平均値として水蒸気透過度を求める。より具体的には、第2透明保護基板(特に、有機層または無機層)上に真空蒸発法により金属カルシウム薄膜を作製し、これを直ちに封止してテストセルを作製する。このテストセルを所定の恒温恒湿測定条件で保存し、水蒸気により腐食したカルシウムの量を算出することにより水蒸気の透過度を測定する。その際の測定条件としては、温度40℃、湿度90%RHで行う。
(Second transparent protective substrate)
A 2nd transparent protective substrate is a board | substrate located most on the display apparatus side, when the laminated body for touchscreens is arrange | positioned on a display apparatus, and is a layer which suppresses the penetration | invasion of moisture. A 2nd transparent protective substrate has a function which prevents the penetration | invasion of the water | moisture content from the contact surface side of a display apparatus and a laminated body for touchscreens, when it is set as a touchscreen combining the laminated body for touchscreens and a display apparatus.
The water vapor permeability of the second transparent protective substrate is 0.001 g / m 2 · 24 h (40 ° C., 90% RH) or less, and the malfunction of the touch panel is further suppressed and / or ion migration is further suppressed. (Hereinafter also referred to as “the point where the effect of the present invention is excellent”) is preferably 0.0005 g / m 2 · 24 h (40 ° C., 90% RH) or less. When the lower limit is 1 × 10 −7 g / m 2 · 24 h (40 ° C., 90% RH) or more, a transparent protective substrate having high transparency and high durability can be obtained.
When the water vapor permeability exceeds 0.001 g / m 2 · 24 h (40 ° C., 90% RH), the touch panel is likely to malfunction and / or ion migration is likely to occur.
As a method for measuring the water vapor transmission rate, N3 (three times) measurement is performed by the calcium corrosion method (the method described in JP-A-2005-283561), and the water vapor transmission rate is obtained as an average value. More specifically, a metallic calcium thin film is produced on a second transparent protective substrate (particularly an organic layer or an inorganic layer) by a vacuum evaporation method, and this is immediately sealed to produce a test cell. The test cell is stored under predetermined constant temperature and humidity measurement conditions, and the water vapor permeability is measured by calculating the amount of calcium corroded by water vapor. As measurement conditions at that time, the temperature is 40 ° C. and the humidity is 90% RH.
 第2透明保護基板は、光学的に透明である。光学的に透明とは、全光線透過率は75%以上であることを意図し、85%以上が好ましく、90%以上がより好ましく、100%がさらに好ましい。
 第2透明保護基板の厚みは特に制限されないが、取扱い性およびタッチパネルの薄型化の点からは、5~200μmが好ましく、10~100μmがより好ましい。
The second transparent protective substrate is optically transparent. Optically transparent means that the total light transmittance is 75% or more, preferably 85% or more, more preferably 90% or more, and even more preferably 100%.
The thickness of the second transparent protective substrate is not particularly limited, but is preferably 5 to 200 μm and more preferably 10 to 100 μm from the viewpoints of handleability and thinning of the touch panel.
 第2透明保護基板は、無機層と有機層とをそれぞれ少なくとも1層以上有するバリア性積層体である。
 無機層は、珪素酸化物、珪素窒化物、珪素炭化物、アルミニウム酸化物、または、その混合物を主成分とすることが好ましい。ここで主成分とは、無機層に最も多く含まれる成分をいい、例えば、80質量%以上がこれらの化合物であることをいう。
 無機層の形成方法は、目的の薄膜を形成できる方法であればいかなる方法でも用いることができる。例えば、蒸着法、スパッタリング法、イオンプレーティング法等の物理的気相成長法(PVD)、種々の化学的気相成長法(CVD)、めっきやゾルゲル法等の液相成長法がある。
 無機層の平滑性は、1μm角の平均粗さ(Ra値)として1nm未満であることが好ましく、0.5nm以下がより好ましい。このため、無機層の成膜はクリーンルーム内で行われることが好ましい。クリーン度はクラス10000以下が好ましく、クラス1000以下がより好ましい。
 無機層の厚みに関しては特に限定されないが、1層に付き、通常、5~500nmの範囲内であり、好ましくは20~200nmである。無機層は2層以上積層してもよい。また、2層以上設ける場合、各層が同じ組成であっても異なる組成であってもよい。
The second transparent protective substrate is a barrier laminate having at least one inorganic layer and at least one organic layer.
The inorganic layer preferably contains silicon oxide, silicon nitride, silicon carbide, aluminum oxide, or a mixture thereof as a main component. Here, the main component refers to a component that is contained most in the inorganic layer, for example, that 80% by mass or more of these compounds.
As a method for forming the inorganic layer, any method can be used as long as it can form a target thin film. For example, there are physical vapor deposition methods (PVD) such as vapor deposition, sputtering, and ion plating, various chemical vapor deposition (CVD), and liquid phase growth methods such as plating and sol-gel methods.
The smoothness of the inorganic layer is preferably less than 1 nm as an average roughness (Ra value) of 1 μm square, and more preferably 0.5 nm or less. For this reason, it is preferable that the inorganic layer be formed in a clean room. The degree of cleanness is preferably class 10000 or less, more preferably class 1000 or less.
The thickness of the inorganic layer is not particularly limited, but is usually in the range of 5 to 500 nm, preferably 20 to 200 nm per layer. Two or more inorganic layers may be laminated. When two or more layers are provided, each layer may have the same composition or a different composition.
 有機層は、有機化合物からなる層(有機化合物を主成分とする層(膜))で、基本的に、モノマーおよび/またはオリゴマーを、架橋(重合)したものである。
 なお、有機層は、ハロゲンを含まないことが好ましい。有機層がハロゲンを含まないことにより、無機層におけるピンホールの形成をより防止することができる。
 有機層の形成材料は特に制限されず、公知の有機化合物(樹脂/高分子化合物)が、各種、利用可能である。特に、ハロゲンを含有しない材料が好ましい。
 具体的には、ポリエステル、アクリル樹脂、メタクリル樹脂、メタクリル酸-マレイン酸共重合体、ポリスチレン、ポリイミド、ポリアミド、ポリアミドイミド、ポリエーテルイミド、セルロースアシレート、ポリウレタン、ポリエーテルエーテルケトン、ポリカーボネート、脂環式ポリオレフィン、ポリアリレート、ポリエーテルスルホン、ポリスルホン、フルオレン環変性ポリカーボネート、脂環変性ポリカーボネート、フルオレン環変性ポリエステル、アクリロイル化合物などの熱可塑性樹脂、あるいはポリシロキサン、その他の有機珪素化合物の膜が好適に例示される。
 なかでも、高いTgを有する、強度に優れる等の点で、ラジカル重合性化合物および/またはエーテル基を官能基に有するカチオン重合性化合物の重合物から構成された有機層が、好適である。
 なかでも特に、高Tgや強度に加え、屈折率が低い、光学特性に優れる等の点で、アクリレートおよび/またはメタクリレートのモノマーやオリゴマーの重合体を主成分とするアクリル樹脂やメタクリル樹脂は、有機層として好適に例示される。
 その中でも特に、Tgが高く、無機層形成時の耐エッチング性に優れる等の点で、トリメチロールプロパントリ(メタ)アクリレート(TMPTA)、ジペンタエリスリトールヘキサ(メタ)アクリレート(DPHA)などの、3官能以上のアクリレートおよび/またはメタクリレートのモノマーやオリゴマーの重合体を主成分とするアクリル樹脂やメタクリル樹脂は、好適に例示される。
The organic layer is a layer made of an organic compound (a layer (film) containing an organic compound as a main component) and is basically a monomer and / or oligomer crosslinked (polymerized).
Note that the organic layer preferably contains no halogen. Since the organic layer does not contain halogen, the formation of pinholes in the inorganic layer can be further prevented.
The material for forming the organic layer is not particularly limited, and various known organic compounds (resins / polymer compounds) can be used. In particular, a material containing no halogen is preferable.
Specifically, polyester, acrylic resin, methacrylic resin, methacrylic acid-maleic acid copolymer, polystyrene, polyimide, polyamide, polyamideimide, polyetherimide, cellulose acylate, polyurethane, polyetheretherketone, polycarbonate, alicyclic Preferred examples include films of thermoplastic polyolefins such as polyolefin, polyarylate, polyethersulfone, polysulfone, fluorene ring-modified polycarbonate, alicyclic ring-modified polycarbonate, fluorene ring-modified polyester, and acryloyl compound, or polysiloxane and other organosilicon compounds. Is done.
Among these, an organic layer composed of a radical polymerizable compound and / or a polymer of a cationic polymerizable compound having an ether group as a functional group is preferable from the viewpoint of having a high Tg and excellent strength.
In particular, acrylic resins and methacrylic resins mainly composed of acrylate and / or methacrylate monomers and oligomer polymers are organic in terms of high Tg and strength, low refractive index, and excellent optical properties. Preferably exemplified as a layer.
Among them, in particular, such as trimethylolpropane tri (meth) acrylate (TMPTA), dipentaerythritol hexa (meth) acrylate (DPHA), and the like in terms of high Tg and excellent etching resistance when forming the inorganic layer. Preferable examples include acrylic resins and methacrylic resins mainly composed of a polymer of acrylate and / or methacrylate monomers or oligomers that are functional or higher.
 有機層の製造方法は特に制限されないが、有機溶剤、有機層となる有機化合物、および、界面活性剤を含有する塗料によって形成されることが好ましい。この態様の場合、有機層は、界面活性剤を含有する。この態様において、有機層における界面活性剤の含有量は特に制限されないが、0.01~10質量%が好ましい。すなわち、有機溶剤を除いた濃度で、0.01~10質量%となる界面活性剤を含有する塗料を用いて、有機層を形成するのが好ましい。
 また、使用する界面活性剤は、珪素系の界面活性剤など、ハロゲンを含有しない界面活性剤が好ましい。
 塗料の調製に用いる有機溶剤には、特に限定はなく、メチルエチルケトン(MEK)、シクロヘキサノン、イソプロピルアルコール、アセトン等、有機/無機積層型の機能性フィルムにおける有機層の形成に用いられている有機溶剤が、各種、利用可能である。
 有機層を形成する塗料には、必要に応じて、界面活性剤、シランカップリング剤、および、光重合開始剤等、有機層を形成する際に用いられる各種の添加剤を、適宜、添加してもよい。
Although the manufacturing method in particular of an organic layer is not restrict | limited, It is preferable to form with the coating material containing the organic solvent, the organic compound used as an organic layer, and surfactant. In this embodiment, the organic layer contains a surfactant. In this embodiment, the content of the surfactant in the organic layer is not particularly limited, but is preferably 0.01 to 10% by mass. That is, it is preferable to form the organic layer by using a paint containing a surfactant that is 0.01 to 10% by mass in a concentration excluding the organic solvent.
The surfactant used is preferably a surfactant containing no halogen, such as a silicon-based surfactant.
There are no particular limitations on the organic solvent used in the preparation of the paint, and examples of the organic solvent used for forming the organic layer in the organic / inorganic laminated functional film such as methyl ethyl ketone (MEK), cyclohexanone, isopropyl alcohol, and acetone. Various types are available.
Various additives used when forming the organic layer, such as a surfactant, a silane coupling agent, and a photopolymerization initiator, are appropriately added to the coating material forming the organic layer as necessary. May be.
 有機層は、平滑で、膜硬度が高いことが好ましい。有機層の平滑性は1μm角の平均粗さ(Ra値)として1nm未満であることが好ましく、0.5nm未満であることがより好ましい。
 有機層の膜厚については特に限定はないが、50nm~2000nmが好ましく、200nm~1500nmがより好ましい。上記範囲内であれば、膜厚の均一性を得ることができ、外力によりクラックが発生しにくい。
 有機層の表面にはパーティクル等の異物、突起が無いことが要求される。このため、有機層の成膜はクリーンルーム内で行われることが好ましい。クリーン度はクラス10000以下が好ましく、クラス1000以下がより好ましい。
 有機層の硬度は高いほうが好ましい。有機層の硬度が高いと、無機層が平滑に成膜されその結果としてバリア能が向上することがわかっている。有機層の硬度はナノインデンテーション法に基づく微小硬度として表すことができる。有機層の微小硬度は100N/mm以上であることが好ましく、150N/mm以上であることがより好ましい。
The organic layer is preferably smooth and has a high film hardness. The smoothness of the organic layer is preferably less than 1 nm as average roughness (Ra value) of 1 μm square, and more preferably less than 0.5 nm.
The thickness of the organic layer is not particularly limited, but is preferably 50 nm to 2000 nm, and more preferably 200 nm to 1500 nm. If it is in the said range, the uniformity of a film thickness can be acquired and it will be hard to generate | occur | produce a crack by external force.
The surface of the organic layer is required to be free of foreign matters such as particles and protrusions. For this reason, it is preferable that the organic layer is formed in a clean room. The degree of cleanness is preferably class 10000 or less, more preferably class 1000 or less.
It is preferable that the organic layer has a high hardness. It has been found that when the hardness of the organic layer is high, the inorganic layer is formed smoothly and as a result, the barrier ability is improved. The hardness of the organic layer can be expressed as a microhardness based on the nanoindentation method. The microhardness of the organic layer is preferably 100 N / mm or more, and more preferably 150 N / mm or more.
 有機層と無機層の積層は、所望の層構成に応じて有機層と無機層を順次繰り返し成膜することにより行うことができる。特に、少なくとも1層の有機層と少なくとも1層の無機層を交互に積層した場合に、より高いバリア性を発揮することができる。特に、有機層および無機層との層数がそれぞれ1~6層(好ましくは、1~4層)交互に積層した場合に、より高いバリア性を発揮することができる。なお、上記交互積層の場合は、有機層と無機層との層数は同じであっても、異なっていてもよい。 The lamination of the organic layer and the inorganic layer can be performed by sequentially repeating the organic layer and the inorganic layer according to a desired layer configuration. In particular, when at least one organic layer and at least one inorganic layer are alternately laminated, higher barrier properties can be exhibited. In particular, when the number of organic layers and inorganic layers is 1 to 6 layers (preferably 1 to 4 layers) alternately stacked, higher barrier properties can be exhibited. In the case of the alternate lamination, the number of layers of the organic layer and the inorganic layer may be the same or different.
 上述したバリア性積層体には、必要に応じて、樹脂基板が含まれていてもよい。つまり、第2透明保護基板は、樹脂基板と、樹脂基板上に配置された、少なくとも1層の無機層と少なくとも1層の有機層とが交互に積層された積層構造を有するバリア層とを有する構成であることが好ましい。バリア層の積層構造の好適態様は、上述の通りである。
 有機層および無機層は、樹脂基板の片面にのみ設けられていてもよいし、両面に設けられていてもよい。また、樹脂基板側から無機層、有機層の順に積層していてもよいし、有機層、無機層の順に積層していてもよい。
The barrier laminate described above may include a resin substrate as necessary. That is, the second transparent protective substrate has a resin substrate and a barrier layer having a laminated structure in which at least one inorganic layer and at least one organic layer are alternately laminated, which are disposed on the resin substrate. A configuration is preferred. The preferred embodiment of the laminated structure of the barrier layer is as described above.
The organic layer and the inorganic layer may be provided only on one side of the resin substrate, or may be provided on both sides. Moreover, you may laminate | stack in order of the inorganic layer and the organic layer from the resin substrate side, and may laminate | stack the order of the organic layer and the inorganic layer.
 上記有機層と無機層とを製造する装置は特に制限されないが、それぞれの層の製造装置としては、例えば、図9に示すように、有機層を形成する有機成膜装置330や、無機層を形成する無機成膜装置332が例示される。以下、これらの装置について詳述する。
 有機成膜装置330および無機成膜装置332は、共に、長尺な被成膜材料(ウエブ状の被成膜材料)を巻回してなるロールから、被成膜材料を送り出し、被成膜材料を長手方向に搬送しつつ成膜を行い、成膜済の被成膜材料を、再度、ロール状に巻回する、いわゆる、ロール・ツー・ロール(Roll to Roll 以下、RtoRとも言う)によって、成膜を行なう装置である。
The apparatus for producing the organic layer and the inorganic layer is not particularly limited, but as an apparatus for producing each layer, for example, as shown in FIG. The inorganic film forming apparatus 332 to be formed is exemplified. Hereinafter, these devices will be described in detail.
Both the organic film forming apparatus 330 and the inorganic film forming apparatus 332 send out the film forming material from a roll formed by winding a long film forming material (web-shaped film forming material). Is formed while the film is transported in the longitudinal direction, and the film-formed deposition material is wound again in a roll shape, so-called roll-to-roll (hereinafter also referred to as RtoR), An apparatus for forming a film.
 有機成膜装置330は、長尺な支持体Z(被成膜材料)を長手方向に搬送しつつ、有機層となる塗料を塗布し、乾燥した後、光照射によって塗膜に含まれる有機化合物を架橋して硬化し、有機層を形成する装置である。
 有機成膜装置330は、一例として、塗布手段336と、乾燥手段338と、光照射手段340と、回転軸342と、巻取り軸346と、搬送ローラ対348および350とを有する。
 有機成膜装置330において、長尺な支持体Zを巻回してなる支持体ロールZRは、回転軸342に装填される。回転軸342に支持体ロールZRが装填されると、支持体Zは、支持体ロールZRから引き出され、搬送ローラ対348を経て、塗布手段336、乾燥手段338および光照射手段340の下部を通過して、搬送ローラ対350を経て、巻取り軸346に至る、所定の搬送経路を通される(通紙される)。有機成膜装置330では、支持体ロールZRからの支持体Zの送り出しと、巻取り軸346における有機層を形成した支持体Zoの巻き取りとを同期して行なう。これにより、長尺な支持体Zを所定の搬送経路で長手方向に搬送しつつ、塗布手段336によって有機層となる塗料を塗布し、乾燥手段338によって塗料を乾燥し、光照射手段340によって硬化することによって、有機層を形成する。
The organic film forming apparatus 330 applies a coating material to be an organic layer while transporting a long support Z (film forming material) in the longitudinal direction, and after drying, an organic compound contained in the coating film by light irradiation. Is an apparatus for forming an organic layer by crosslinking and curing.
As an example, the organic film forming apparatus 330 includes a coating unit 336, a drying unit 338, a light irradiation unit 340, a rotating shaft 342, a winding shaft 346, and transport roller pairs 348 and 350.
In the organic film forming apparatus 330, a support roll ZR formed by winding a long support Z is loaded on the rotary shaft 342. When the support roll ZR is loaded on the rotating shaft 342, the support Z is pulled out of the support roll ZR, passes through the conveying roller pair 348, and passes under the coating means 336, the drying means 338, and the light irradiation means 340. Then, the paper passes through a predetermined conveyance path that passes through the conveyance roller pair 350 and reaches the take-up shaft 346 (paper is passed). In the organic film forming apparatus 330, the feeding of the support Z from the support roll ZR and the winding of the support Zo on which the organic layer is formed on the winding shaft 346 are performed in synchronization. As a result, while the long support Z is transported in the longitudinal direction along a predetermined transport path, the coating material 336 is applied with an organic layer coating material, the drying device 338 is dried, and the light irradiation device 340 is cured. By doing so, an organic layer is formed.
 無機成膜装置332は、支持体Zoの表面に、プラズマCVDによって、無機層を形成(成膜)するもので、供給室356と、成膜室358と、巻取り室360とを有する。なお、図示例の無機成膜装置332には、好ましい態様として、供給室356に真空排気手段370を、巻取り室360に真空排気手段376を、それぞれ設けている。
 供給室356は、回転軸364と、ガイドローラ368と、真空排気手段370とを有する。供給室356においては、図示しない駆動源によって回転軸364を図中時計方向に回転して、ロールZoRから支持体Zoを送り出し、ガイドローラ368によって所定の経路を案内して、隔壁372に形成されたスリット372aから、成膜室358に送る。
The inorganic film forming apparatus 332 forms (deposits) an inorganic layer on the surface of the support Zo by plasma CVD, and includes a supply chamber 356, a film forming chamber 358, and a take-up chamber 360. Note that the inorganic film forming apparatus 332 in the illustrated example is provided with a vacuum evacuation unit 370 in the supply chamber 356 and a vacuum evacuation unit 376 in the take-up chamber 360 as a preferred embodiment.
The supply chamber 356 includes a rotation shaft 364, a guide roller 368, and a vacuum exhaust unit 370. In the supply chamber 356, a rotating shaft 364 is rotated clockwise in the drawing by a driving source (not shown), the support Zo is fed from the roll ZoR, and a predetermined path is guided by the guide roller 368, so that the partition 372 is formed. From the slit 372a, the film is sent to the film formation chamber 358.
 成膜室358は、支持体Zoの表面に、プラズマCVDによって、無機層を形成するものである。
 図示例において、成膜室358は、ドラム380と、シャワー電極382と、ガイドローラ384aおよび384bと、高周波電源386と、ガス供給手段387と、真空排気手段373とを有する。
 成膜室358に搬送された支持体Zoは、ガイドローラ384によって所定の経路に案内され、ドラム380の所定位置に巻き掛けられる。支持体Zoは、ドラム380によって所定位置に位置されつつ長手方向に搬送され、プラズマCVDによって無機層が形成される。
In the film forming chamber 358, an inorganic layer is formed on the surface of the support Zo by plasma CVD.
In the illustrated example, the film forming chamber 358 includes a drum 380, a shower electrode 382, guide rollers 384 a and 384 b, a high frequency power source 386, a gas supply unit 387, and a vacuum exhaust unit 373.
The support Zo conveyed to the film forming chamber 358 is guided to a predetermined path by the guide roller 384 and is wound around a predetermined position of the drum 380. The support Zo is conveyed in the longitudinal direction while being positioned at a predetermined position by the drum 380, and an inorganic layer is formed by plasma CVD.
 成膜室358は、一例として、CCP-CVD(容量結合プラズマCVD)によって、支持体Zoの表面に無機層を形成する。ドラム380は、CCP-CVDにおける対向電極としても作用するもので、後述するシャワー電極382(成膜電極)と共に、電極対を構成する。
 高周波電源386は、プラズマCVDに用いられる公知の高周波電源で、シャワー電極382に、プラズマ励起電力を供給する。ガス供給手段387も、プラズマCVDに用いられる公知の成膜ガス(原料ガス/プロセスガス)の供給手段で、シャワー電極382に成膜ガスを供給する。
As an example, the film formation chamber 358 forms an inorganic layer on the surface of the support Zo by CCP-CVD (capacitive coupling plasma CVD). The drum 380 also functions as a counter electrode in CCP-CVD, and constitutes an electrode pair together with a shower electrode 382 (film formation electrode) described later.
The high frequency power source 386 is a known high frequency power source used for plasma CVD, and supplies plasma excitation power to the shower electrode 382. The gas supply means 387 is also a known film formation gas (raw material gas / process gas) supply means used for plasma CVD, and supplies the film formation gas to the shower electrode 382.
 ドラム380に支持/搬送されつつ、シャワー電極382によって無機層を成膜された支持体Zoは、ガイドローラ384bによって所定経路に案内されて、隔壁374に形成されたスリット374aから、巻取り室360に搬送される。
 巻取り室360は、ガイドローラ390と、巻取り軸392と、真空排気手段376とを有する。巻取り室360に搬送された支持体は、巻取り軸392によってロール状に巻回され、ロール10aRとして回収される。
The support Zo on which the inorganic layer is formed by the shower electrode 382 while being supported / conveyed by the drum 380 is guided to a predetermined path by the guide roller 384b, and from the slit 374a formed in the partition wall 374, from the winding chamber 360. To be transported.
The winding chamber 360 includes a guide roller 390, a winding shaft 392, and a vacuum exhaust unit 376. The support conveyed to the take-up chamber 360 is wound into a roll shape by the take-up shaft 392 and collected as the roll 10aR.
 第2透明保護基板の表面および裏面の少なくとも一方には、ハードコート層が配置されていてもよい。ハードコート層が配置されることにより、第2透明保護基板中でのクラックの発生などをより抑制できる。
 ハードコート層の硬度は特に制限されないが、鉛筆硬度H以上が好ましく、2H以上がより好ましい。
 鉛筆硬度の測定方法は、JIS-K5600に記載の方法で行うことができる。
A hard coat layer may be disposed on at least one of the front surface and the back surface of the second transparent protective substrate. By arranging the hard coat layer, the occurrence of cracks in the second transparent protective substrate can be further suppressed.
The hardness of the hard coat layer is not particularly limited, but is preferably pencil hardness H or higher, more preferably 2H or higher.
The pencil hardness can be measured by the method described in JIS-K5600.
(第1透明保護基板)
 第1透明保護基板は、タッチパネル用積層体を表示装置上に配置した際に最も外側に位置する基板であり、外部環境から後述する導電フイルムを保護する役割を果たすと共に、その主面はタッチ面を構成する。
 第1透明保護基板としては、プラスチック基板、ガラス基板などが用いられ、強度などの点から、ガラス基板が好ましい。第1透明保護基板の厚みはそれぞれの用途に応じて適宜選択することが望ましい。
 上記プラスチック基板の原料としては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル類;ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン、EVA等のポリオレフィン類;ビニル系樹脂;その他、ポリカーボネート(PC)、ポリアミド、ポリイミド、アクリル樹脂、トリアセチルセルロース(TAC)、シクロオレフィン系樹脂(COP)等を用いることができる。
 第1透明保護基板は、光学的に透明である。光学的に透明とは、全光線透過率は75%以上であることを意図し、85%以上が好ましく、90%以上がより好ましく、100%がさらに好ましい。
 第1透明保護基板の厚みは特に制限されないが、取扱い性およびタッチパネルの薄型化の点からは、10~1500μmが好ましく、100~1100μmがより好ましい。
(First transparent protective substrate)
The first transparent protective substrate is a substrate located on the outermost side when the laminated body for touch panels is arranged on the display device, and serves to protect a conductive film described later from the external environment, and its main surface is a touch surface. Configure.
As the first transparent protective substrate, a plastic substrate, a glass substrate, or the like is used, and a glass substrate is preferable from the viewpoint of strength. It is desirable that the thickness of the first transparent protective substrate is appropriately selected according to each application.
Examples of the raw material for the plastic substrate include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN); polyolefins such as polyethylene (PE), polypropylene (PP), polystyrene, and EVA; vinyl resins; Polycarbonate (PC), polyamide, polyimide, acrylic resin, triacetyl cellulose (TAC), cycloolefin resin (COP), and the like can be used.
The first transparent protective substrate is optically transparent. Optically transparent means that the total light transmittance is 75% or more, preferably 85% or more, more preferably 90% or more, and even more preferably 100%.
The thickness of the first transparent protective substrate is not particularly limited, but is preferably 10 to 1500 μm, and more preferably 100 to 1100 μm from the viewpoints of handleability and thinning of the touch panel.
(第1粘着剤層および第2粘着剤層)
 第1粘着剤層および第2粘着剤層は、それぞれ隣接する層間の密着性を高める層である。より具体的には、第1粘着剤層は、導電フイルムと第1透明保護基板との間に配置され、両者の密着性を高める。また、第2粘着剤層は、導電フイルムと第2透明保護基板との間に配置され、両者の密着性を高める。
(First adhesive layer and second adhesive layer)
The first pressure-sensitive adhesive layer and the second pressure-sensitive adhesive layer are layers that enhance adhesion between adjacent layers. More specifically, a 1st adhesive layer is arrange | positioned between a conductive film and a 1st transparent protective substrate, and improves both adhesiveness. Moreover, a 2nd adhesive layer is arrange | positioned between a conductive film and a 2nd transparent protective substrate, and improves both adhesiveness.
 第1粘着剤層および第2粘着剤層を構成する粘着剤の種類は特に制限されず、公知の粘着剤を用いることができる。
 粘着剤の具体例としては、例えば、ゴム系粘着剤、アクリル系粘着剤、シリコーン系粘着剤、ウレタン系粘着剤などの各種の粘着剤を使用でき、アクリル系粘着剤が好ましい。
 アクリル系粘着剤は、アルキル(メタ)アクリレートのモノマーユニットを主骨格とするアクリル系ポリマーをベースポリマーとする。なお、(メタ)アクリレートはアクリレートおよび/またはメタクリレートをいう。アクリル系ポリマーの主骨格を構成する、アルキル(メタ)アクリレートのアルキル基の平均炭素数は1~12程度が好ましく、アルキル(メタ)アクリレートの具体例としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート等を例示できる。
The kind in particular of the adhesive which comprises a 1st adhesive layer and a 2nd adhesive layer is not restrict | limited, A well-known adhesive can be used.
Specific examples of the pressure-sensitive adhesive include various pressure-sensitive adhesives such as a rubber-based pressure-sensitive adhesive, an acrylic pressure-sensitive adhesive, a silicone-based pressure-sensitive adhesive, and a urethane-based pressure-sensitive adhesive, and an acrylic pressure-sensitive adhesive is preferable.
The acrylic pressure-sensitive adhesive has an acrylic polymer having a main skeleton of an alkyl (meth) acrylate monomer unit as a base polymer. (Meth) acrylate refers to acrylate and / or methacrylate. The average carbon number of the alkyl group of the alkyl (meth) acrylate constituting the main skeleton of the acrylic polymer is preferably about 1 to 12, and specific examples of the alkyl (meth) acrylate include methyl (meth) acrylate, ethyl (meth) ) Acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate and the like.
 第1粘着剤層および第2粘着剤層の厚みは特に制限されないが、タッチパネルの薄膜化の点からは、5~500μmが好ましく、20~300μmがより好ましい。
 第1粘着剤層および第2粘着剤層は光学的に透明であることが好ましく、より具体的には、粘着剤層の全光線透過率は80%以上が好ましく、90%以上がより好ましい。
The thickness of the first pressure-sensitive adhesive layer and the second pressure-sensitive adhesive layer is not particularly limited, but is preferably 5 to 500 μm and more preferably 20 to 300 μm from the viewpoint of thinning the touch panel.
The first pressure-sensitive adhesive layer and the second pressure-sensitive adhesive layer are preferably optically transparent. More specifically, the total light transmittance of the pressure-sensitive adhesive layer is preferably 80% or more, and more preferably 90% or more.
(導電フイルム)
 導電フイルムは、タッチパネル用積層体が表示装置上に配置されてタッチパネルを構成した際に、人間の指などの外部導体が接触(接近)するときに発生する静電容量の変化を利用して、人間の指などの外部導体の位置を検出するセンサとして機能する。つまり、静電容量式タッチセンサとしての役割を果たす。
 図2に、導電フイルムの一実施形態の平面図を示す。図3は、図2中の切断線A-Aに沿って切断した断面図である。導電フイルム14は、基板22と、基板22の一方の主面上(表面上)に配置される第1検出電極24と、第1引き出し配線26と、基板22の他方の主面上(裏面上)に配置される第2検出電極28と、第2引き出し配線30と、フレキシブルプリント配線板32とを備える。なお、第1検出電極24および第2検出電極28がある領域は、使用者によって入力操作が可能な入力領域EI(物体の接触を検知可能な入力領域(センシング部))を構成し、入力領域EIの外側に位置する外側領域EOには第1引き出し配線26、第2引き出し配線30およびフレキシブルプリント配線板32が配置される。
 この形態においては、第1検出電極24および第2検出電極28を構成する後述する金属細線34、並びに、第1引き出し配線26および第2引き出し配線30が、後述する所定の金属量に制御された金属細線に相当する。なお、所定の金属量の金属細線が含まれていれば、この形態には限定されず、例えば、第1引き出し配線26および第2引き出し配線30のみが、所定の金属量に制御された金属細線で構成される形態であってもよい。
(Conductive film)
The conductive film uses the change in capacitance that occurs when an external conductor such as a human finger comes into contact (approach) when the touch panel laminate is arranged on the display device to form a touch panel. It functions as a sensor that detects the position of an external conductor such as a human finger. That is, it plays a role as a capacitive touch sensor.
FIG. 2 shows a plan view of one embodiment of the conductive film. FIG. 3 is a cross-sectional view taken along the cutting line AA in FIG. The conductive film 14 includes a substrate 22, a first detection electrode 24 disposed on one main surface (on the front surface) of the substrate 22, a first lead-out wiring 26, and the other main surface (on the back surface) of the substrate 22. The second detection electrode 28, the second lead wiring 30, and the flexible printed wiring board 32 are provided. The region where the first detection electrode 24 and the second detection electrode 28 are provided constitutes an input region E I (an input region (sensing unit) capable of detecting the contact of an object) that can be input by the user, and input. A first lead wiring 26, a second lead wiring 30 and a flexible printed wiring board 32 are arranged in the outer region E O located outside the region E I.
In this embodiment, the metal thin wires 34, which will be described later, and the first lead-out wiring 26 and the second lead-out wiring 30 constituting the first detection electrode 24 and the second detection electrode 28 were controlled to a predetermined metal amount described later. Corresponds to a thin metal wire. Note that the present invention is not limited to this form as long as a thin metal wire having a predetermined metal amount is included. For example, only the first lead wire 26 and the second lead wire 30 are controlled to have a predetermined metal amount. The form comprised by may be sufficient.
 基板22は、入力領域EIにおいて第1検出電極24および第2検出電極28を支持する役割を担うとともに、外側領域EOにおいて第1引き出し配線26および第2引き出し配線30を支持する役割を担う部材である。
 基板22は、光を適切に透過することが好ましい。具体的には、基板22の全光線透過率は、85~100%であることが好ましい。
 基板22は、絶縁性を有する(絶縁基板である)ことが好ましい。つまり、基板22は、第1検出電極24および第2検出電極28の間の絶縁性を担保するための層である。
The substrate 22 plays a role of supporting the first detection electrode 24 and the second detection electrode 28 in the input region E I and plays a role of supporting the first lead wiring 26 and the second lead wiring 30 in the outer region E O. It is a member.
The substrate 22 preferably transmits light appropriately. Specifically, the total light transmittance of the substrate 22 is preferably 85 to 100%.
The substrate 22 preferably has an insulating property (is an insulating substrate). That is, the substrate 22 is a layer for ensuring insulation between the first detection electrode 24 and the second detection electrode 28.
 基板22としては、透明基板(特に、透明絶縁性基板)であることが好ましい。その具体例としては、例えば、絶縁樹脂基板、セラミックス基板、ガラス基板などが挙げられる。なかでも、靭性に優れる理由から、絶縁樹脂基板であることが好ましい。
 絶縁樹脂基板を構成する材料としては、より具体的には、ポリエチレンテレフタレート、ポリエーテルスルホン、ポリアクリル系樹脂、ポリウレタン系樹脂、ポリエステル、ポリカーボネート、ポリスルホン、ポリアミド、ポリアリレート、ポリオレフィン、セルロース系樹脂、ポリ塩化ビニル、シクロオレフィン系樹脂などが挙げられる。なかでも、透明性に優れる理由から、ポリエチレンテレフタレート、シクロオレフィン系樹脂、ポリカーボネート、トリアセチルセルロース樹脂であることが好ましい。
The substrate 22 is preferably a transparent substrate (particularly a transparent insulating substrate). Specific examples thereof include an insulating resin substrate, a ceramic substrate, and a glass substrate. Among these, an insulating resin substrate is preferable because of its excellent toughness.
More specifically, the material constituting the insulating resin substrate is polyethylene terephthalate, polyethersulfone, polyacrylic resin, polyurethane resin, polyester, polycarbonate, polysulfone, polyamide, polyarylate, polyolefin, cellulose resin, poly Examples include vinyl chloride and cycloolefin resins. Among these, polyethylene terephthalate, cycloolefin resin, polycarbonate, and triacetyl cellulose resin are preferable because of excellent transparency.
 図2において、基板22は単層であるが、2層以上の複層であってもよい。
 基板22の厚み(基板22が2層以上の複層の場合は、それらの合計厚み)は特に制限されないが、5~350μmであることが好ましく、30~150μmであることがより好ましい。上記範囲内であれば所望の可視光の透過率が得られ、且つ、取り扱いも容易である。
 また、図2においては、基板22の平面視形状は実質的に矩形状とされているが、これには限られない。例えば、円形状、多角形状であってもよい。
In FIG. 2, the substrate 22 is a single layer, but may be a multilayer of two or more layers.
The thickness of the substrate 22 (when the substrate 22 is a multilayer of two or more layers, the total thickness thereof) is not particularly limited, but is preferably 5 to 350 μm, more preferably 30 to 150 μm. Within the above range, desired visible light transmittance can be obtained, and handling is easy.
Moreover, in FIG. 2, the planar view shape of the board | substrate 22 is substantially rectangular shape, However, It is not restricted to this. For example, it may be circular or polygonal.
 第1検出電極24および第2検出電極28は、静電容量の変化を感知するセンシング電極であり、感知部(センシング部)を構成する。つまり、指先をタッチパネルに接触させると、第1検出電極24および第2検出電極28の間の相互静電容量が変化し、この変化量に基づいて指先の位置をIC回路によって演算する。
 第1検出電極24は、入力領域EIに接近した使用者の指のX方向における入力位置の検出を行う役割を有するものであり、指との間に静電容量を発生する機能を有している。第1検出電極24は、第1方向(X方向)に延び、第1方向と直交する第2方向(Y方向)に所定の間隔をあけて配列された電極であり、後述するように所定のパターンを含む。
 第2検出電極28は、入力領域EIに接近した使用者の指のY方向における入力位置の検出を行う役割を有するものであり、指との間に静電容量を発生する機能を有している。第2検出電極28は、第2方向(Y方向)に延び、第1方向(X方向)に所定の間隔をあけて配列された電極であり、後述するように所定のパターンを含む。図4においては、第1検出電極24は5つ、第2検出電極28は5つ設けられているが、その数は特に制限されず複数あればよい。
The first detection electrode 24 and the second detection electrode 28 are sensing electrodes that sense a change in capacitance, and constitute a sensing unit (sensing unit). That is, when the fingertip is brought into contact with the touch panel, the mutual capacitance between the first detection electrode 24 and the second detection electrode 28 changes, and the position of the fingertip is calculated by the IC circuit based on the change amount.
First detection electrode 24, which has a role to detect the input position in the X direction of the finger of the user in proximity to the input region E I, has the function of generating an electrostatic capacitance between the finger ing. The first detection electrodes 24 are electrodes that extend in a first direction (X direction) and are arranged at a predetermined interval in a second direction (Y direction) orthogonal to the first direction. Includes patterns.
The second detection electrode 28 has a role of detecting the input position in the Y direction of the user's finger approaching the input area E I and has a function of generating a capacitance between the second detection electrode 28 and the finger. ing. The second detection electrodes 28 are electrodes that extend in the second direction (Y direction) and are arranged at a predetermined interval in the first direction (X direction), and include a predetermined pattern as will be described later. In FIG. 4, five first detection electrodes 24 and five second detection electrodes 28 are provided, but the number is not particularly limited and may be plural.
 図2中、第1検出電極24および第2検出電極28は、金属細線により構成される。図4に、第1検出電極24の一部の拡大平面図を示す。図4に示すように、第1検出電極24は、金属細線34により構成され、交差する金属細線34による複数の格子36を含んでいる。なお、第2検出電極28も、第1検出電極24と同様に、交差する金属細線34による複数の格子36を含んでいる。 In FIG. 2, the first detection electrode 24 and the second detection electrode 28 are composed of thin metal wires. FIG. 4 shows an enlarged plan view of a part of the first detection electrode 24. As shown in FIG. 4, the first detection electrode 24 is composed of fine metal wires 34, and includes a plurality of gratings 36 made of intersecting metal fine wires 34. Note that, similarly to the first detection electrode 24, the second detection electrode 28 also includes a plurality of lattices 36 formed by intersecting metal thin wires 34.
 金属細線34中に含まれる単位面積当たりの金属量は、0.010~10g/m2である。金属量を上記範囲にすることにより、金属細線の膜厚および幅を小さくすることが可能となり、高密度集積化の要望に対応することができると共に、イオンマイグレーションやタッチパネルの誤動作を抑制できる。なかでも、本発明の効果がより優れる点で、0.012~8.5g/m2が好ましく、0.015~7.0g/m2がより好ましい。
 金属量が0.010g/m2未満の場合、金属細線の断線が生じやすく、タッチパネルの誤動作が生じやすい。また、金属量が10g/m2超の場合、マイグレーションの発生の程度が大きい。
The amount of metal per unit area contained in the fine metal wire 34 is 0.010 to 10 g / m 2 . By setting the amount of metal in the above range, it is possible to reduce the film thickness and width of the fine metal wires, meet the demand for high density integration, and suppress ion migration and malfunction of the touch panel. Of these, 0.012 to 8.5 g / m 2 is preferable, and 0.015 to 7.0 g / m 2 is more preferable in that the effect of the present invention is more excellent.
When the amount of metal is less than 0.010 g / m 2 , the fine metal wire is likely to be disconnected, and the touch panel is likely to malfunction. Further, when the amount of metal exceeds 10 g / m 2 , the degree of migration is large.
 金属量の測定方法は、金属細線の断面SEM写真を観察して蛍光X線分析により元素分析することにより所定の体積中における金属量を測定することができる。
 また、金属細線の単位面積当たりとは、金属細線の基板との接触部分の単位面積当たりを意味する。つまり、金属細線と基板との接触部分の面積のみを基準に金属量の計算を行う。言い換えると、金属細線と接触していない基板表面(例えば、金属細線間に位置する、金属細線と接触していない基板表面)の面積は、上記金属細線の単位面積当たりの計算には考慮にいれない。従って、金属細線の単位面積当たりに含まれる銀量とは、金属細線と基板との接触部分における単位面積あたり(m2)に含まれる金属量を意味する。
As a method for measuring the amount of metal, the amount of metal in a predetermined volume can be measured by observing a cross-sectional SEM photograph of a thin metal wire and performing elemental analysis by fluorescent X-ray analysis.
Moreover, per unit area of a metal fine wire means per unit area of the contact part with the board | substrate of a metal fine wire. That is, the amount of metal is calculated based only on the area of the contact portion between the fine metal wire and the substrate. In other words, the area of the substrate surface that is not in contact with the fine metal wires (for example, the surface of the substrate that is located between the fine metal wires and is not in contact with the fine metal wires) is taken into consideration in the calculation per unit area of the fine metal wires. Absent. Therefore, the amount of silver contained per unit area of the fine metal wire means the amount of metal contained per unit area (m 2 ) at the contact portion between the fine metal wire and the substrate.
 金属細線34には、所定の金属成分が含まれ、例えば、金(Au)、銀(Ag)、銅(Cu)、アルミニウム(Al)などの金属またはこれらの合金や、ITO(酸化インジウム-スズ)、酸化スズ、酸化亜鉛、酸化カドミウム、酸化ガリウム、酸化チタンなどの金属酸化物などが挙げられる。
 なかでも、導電性の観点から、金属細線34には、銀が含まれることが好ましい。銀は銀合金の形態で含まれていてもよく、金属細線34が銀合金を含む場合、銀以外の含有される金属としては、例えば、錫、パラジウム、金、ニッケル、クロムなどが挙げられる。
 また、金属細線34は、銀または銀合金からなる金属ナノワイヤで形成することも好ましい。金属ナノワイヤの製造方法は特に制限はなく、いかなる方法で作製してもよいが、ハロゲン化合物と分散剤を溶解した溶媒中で金属イオンを還元することによって製造することが好ましい。また、金属ナノワイヤを形成した後は、常法により脱塩処理を行うことが、分散性、導電膜の経時安定性の観点から好ましい。
 また、金属ナノワイヤの製造方法としては、特開2009-215594号公報、特開2009-242880号公報、特開2009-299162号公報、特開2010-84173号公報、特開2010-86714号公報、特表2009-505358号公報などに記載の方法を用いることができる。
The metal thin wire 34 includes a predetermined metal component. For example, a metal such as gold (Au), silver (Ag), copper (Cu), aluminum (Al), or an alloy thereof, ITO (indium oxide-tin) ), Metal oxides such as tin oxide, zinc oxide, cadmium oxide, gallium oxide, and titanium oxide.
Especially, it is preferable that silver is contained in the metal fine wire 34 from a viewpoint of electroconductivity. Silver may be contained in the form of a silver alloy. When the fine metal wire 34 includes a silver alloy, examples of the metal contained other than silver include tin, palladium, gold, nickel, and chromium.
Moreover, it is also preferable to form the metal thin wire 34 with a metal nanowire made of silver or a silver alloy. The method for producing the metal nanowire is not particularly limited and may be produced by any method, but it is preferably produced by reducing metal ions in a solvent in which a halogen compound and a dispersant are dissolved. In addition, after forming the metal nanowire, it is preferable to perform a desalting treatment by a conventional method from the viewpoints of dispersibility and stability of the conductive film over time.
In addition, as a method for producing metal nanowires, JP2009-215594A, JP2009-242880A, JP2009-299162A, JP2010-84173A, JP2010-86714A, The method described in JP-T-2009-505358 can be used.
 金属細線34の中には、金属細線34と基板22との密着性の観点から、バインダーが含まれていることが好ましい。
 バインダーとしては、金属細線34と基板22との密着性がより優れる理由から、水溶性高分子であることが好ましい。バインダーの種類としては、例えば、ゼラチン、カラギナン、ポリビニルアルコール(PVA)、ポリビニルピロリドン(PVP)、澱粉等の多糖類、セルロースおよびその誘導体、ポリエチレンオキサイド、ポリサッカライド、ポリビニルアミン、キトサン、ポリリジン、ポリアクリル酸、ポリアルギン酸、ポリヒアルロン酸、カルボキシセルロース、アラビアゴム、アルギン酸ナトリウムなどが挙げられる。なかでも、金属細線34と基板22との密着性がより優れる理由から、ゼラチンが好ましい。
 なお、ゼラチンとしては石灰処理ゼラチンの他、酸処理ゼラチンを用いてもよく、ゼラチンの加水分解物、ゼラチン酵素分解物、その他アミノ基、カルボキシル基を修飾したゼラチン(フタル化ゼラチン、アセチル化ゼラチン)を使用することができる。
It is preferable that a binder is contained in the fine metal wires 34 from the viewpoint of adhesion between the fine metal wires 34 and the substrate 22.
The binder is preferably a water-soluble polymer because the adhesion between the fine metal wires 34 and the substrate 22 is more excellent. Examples of the binder include gelatin, carrageenan, polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP), polysaccharides such as starch, cellulose and derivatives thereof, polyethylene oxide, polysaccharides, polyvinylamine, chitosan, polylysine, polyacryl. Examples include acid, polyalginic acid, polyhyaluronic acid, carboxycellulose, gum arabic, and sodium alginate. Among these, gelatin is preferable because the adhesion between the fine metal wires 34 and the substrate 22 is more excellent.
In addition to lime-processed gelatin, acid-processed gelatin may be used as gelatin, and gelatin hydrolyzate, gelatin enzyme decomposition product, and other gelatins modified with amino groups and carboxyl groups (phthalated gelatin, acetylated gelatin) Can be used.
 金属細線34中における金属とバインダーとの体積比(金属の体積/バインダーの体積)は、1.0以上が好ましく、1.5以上が更に好ましい。金属とバインダーの体積比を1.0以上とすることで、金属細線34の導電性をより高めることができる。上限は特に制限されないが、生産性の観点から、6.0以下が好ましく、4.0以下がより好ましく、2.5以下がさらに好ましい。
 なお、金属とバインダーの体積比は、金属細線34中に含まれる金属およびバインダーの密度より計算することができる。例えば、金属が銀の場合、銀の密度を10.5g/cm3として、バインダーがゼラチンの場合、ゼラチンの密度を1.34g/cm3として計算して求めるものとする。
The volume ratio (metal volume / binder volume) of the metal and the binder in the thin metal wire 34 is preferably 1.0 or more, and more preferably 1.5 or more. By setting the volume ratio of the metal and the binder to 1.0 or more, the conductivity of the fine metal wire 34 can be further increased. The upper limit is not particularly limited, but is preferably 6.0 or less, more preferably 4.0 or less, and even more preferably 2.5 or less from the viewpoint of productivity.
The volume ratio of the metal and the binder can be calculated from the density of the metal and the binder contained in the fine metal wire 34. For example, when the metal is silver, the density of silver is 10.5 g / cm 3 , and when the binder is gelatin, the density of gelatin is 1.34 g / cm 3 .
 金属細線34の線幅は特に制限されないが、低抵抗の電極を比較的容易に形成できる観点から、30μm以下が好ましく、15μmがより好ましく、10μmがさらに好ましく、9μm以下が特に好ましく、7μm以下が最も好ましく、0.5μm以上が好ましく、1.0μm以上がより好ましい。
 金属細線34の厚みは特に制限されないが、導電性と視認性との観点から、0.00001mm~0.2mmから選択可能であるが、30μm以下が好ましく、20μm以下がより好ましく、0.01~9μmがさらに好ましく、0.05~5μmが最も好ましい。
The line width of the fine metal wire 34 is not particularly limited, but is preferably 30 μm or less, more preferably 15 μm, further preferably 10 μm, particularly preferably 9 μm or less, and particularly preferably 7 μm or less, from the viewpoint that a low-resistance electrode can be formed relatively easily. Most preferably, 0.5 μm or more is preferable, and 1.0 μm or more is more preferable.
The thickness of the fine metal wire 34 is not particularly limited, but can be selected from 0.00001 mm to 0.2 mm from the viewpoint of conductivity and visibility, but is preferably 30 μm or less, more preferably 20 μm or less, and 0.01 to 9 μm is more preferable, and 0.05 to 5 μm is most preferable.
 格子36は、金属細線34で囲まれる開口領域を含んでいる。格子36の一辺の長さWは、800μm以下が好ましく、600μm以下がより好ましく、50μm以上であることが好ましく、400μm以上であることがより好ましい。
 第1検出電極24および第2検出電極28では、可視光透過率の点から開口率は85%以上であることが好ましく、90%以上であることがさらに好ましく、95%以上であることが最も好ましい。開口率とは、所定領域において第1検出電極24または第2検出電極28中の金属細線34を除いた透過性部分が全体に占める割合に相当する。
The lattice 36 includes an opening region surrounded by the thin metal wires 34. The length W of one side of the grating 36 is preferably 800 μm or less, more preferably 600 μm or less, preferably 50 μm or more, and more preferably 400 μm or more.
In the first detection electrode 24 and the second detection electrode 28, the aperture ratio is preferably 85% or more, more preferably 90% or more, and most preferably 95% or more from the viewpoint of visible light transmittance. preferable. The aperture ratio corresponds to the ratio of the transmissive portion excluding the thin metal wires 34 in the first detection electrode 24 or the second detection electrode 28 in the predetermined region.
 格子36は、略ひし形の形状を有している。但し、その他、多角形状(例えば、三角形、四角形、六角形、ランダム多角形)としてもよい。また、一辺の形状を直線状の他、湾曲形状でもよいし、円弧状にしてもよい。円弧状とする場合は、例えば、対向する2辺については、外方に凸の円弧状とし、他の対向する2辺については、内方に凸の円弧状としてもよい。また、各辺の形状を、外方に凸の円弧と内方に凸の円弧が連続した波線形状としてもよい。もちろん、各辺の形状を、サイン曲線にしてもよい。
 なお、図4においては、金属細線34はメッシュパターンとして形成されているが、この形態には限定されず、ストライプパターンであってもよい。
The lattice 36 has a substantially rhombus shape. However, other polygonal shapes (for example, a triangle, a quadrangle, a hexagon, and a random polygon) may be used. Further, the shape of one side may be a curved shape or a circular arc shape in addition to a linear shape. In the case of the arc shape, for example, the two opposing sides may have an outwardly convex arc shape, and the other two opposing sides may have an inwardly convex arc shape. The shape of each side may be a wavy shape in which an outwardly convex arc and an inwardly convex arc are continuous. Of course, the shape of each side may be a sine curve.
In FIG. 4, the fine metal wires 34 are formed as a mesh pattern, but are not limited to this form, and may be a stripe pattern.
 第1検出電極24および第2検出電極28の金属細線34は、金属酸化物粒子、銀ペーストや銅ペーストなどの金属ペースト、銀ナノワイヤや銅ナノワイヤなどの金属ナノワイヤ粒子で構成されていてもよい。なかでも導電性と透明性に優れる点で、銀ナノワイヤが好ましい。
 なお、図2においては、第1検出電極24および第2検出電極28は金属細線34のメッシュ構造で構成されていたが、この形態には限定されず、例えば、第1検出電極24および第2検出電極28全体が、ITOなどの金属酸化物薄膜(透明金属酸化物薄膜)で形成されていてもよい。ITOのほかに上記態様で使用できる材料としては、例えば、亜鉛酸化物(ZnO)、インジウム亜鉛酸化物(IZO)、ガリウム亜鉛酸化物(GZO)、アルミニウム亜鉛酸化物(AZO)などが挙げられる。
 また、電極のパターニングは、電極の材料に応じて選択でき、フォトリソグラフィー法、レジストマスクスクリーン印刷-エッチング法、インクジェット法、印刷法などを用いてもよい。
The fine metal wires 34 of the first detection electrode 24 and the second detection electrode 28 may be composed of metal oxide particles, metal paste such as silver paste and copper paste, and metal nanowire particles such as silver nanowire and copper nanowire. Among these, silver nanowires are preferable because they are excellent in conductivity and transparency.
In FIG. 2, the first detection electrode 24 and the second detection electrode 28 are configured by the mesh structure of the metal thin wires 34, but the present invention is not limited to this form. For example, the first detection electrode 24 and the second detection electrode 28 The entire detection electrode 28 may be formed of a metal oxide thin film (transparent metal oxide thin film) such as ITO. Examples of materials that can be used in the above embodiment in addition to ITO include zinc oxide (ZnO), indium zinc oxide (IZO), gallium zinc oxide (GZO), and aluminum zinc oxide (AZO).
The patterning of the electrode can be selected depending on the material of the electrode, and a photolithography method, a resist mask screen printing-etching method, an ink jet method, a printing method, or the like may be used.
 第1引き出し配線26および第2引き出し配線30は、それぞれ上記第1検出電極24および第2検出電極28に電圧を印加するための役割を担う部材である。
 第1引き出し配線26は、外側領域EOの基板22上に配置され、その一端が対応する第1検出電極24に電気的に接続され、その他端はフレキシブルプリント配線板32に電気的に接続される。
 第2引き出し配線30は、外側領域EOの基板22上に配置され、その一端が対応する第2検出電極28に電気的に接続され、その他端はフレキシブルプリント配線板32に電気的に接続される。
 なお、図2においては、第1引き出し配線26は5本、第2引き出し配線30は5本記載されているが、その数は特に制限されず、通常、検出電極の数に応じて複数配置される。
The first lead wiring 26 and the second lead wiring 30 are members that play a role in applying a voltage to the first detection electrode 24 and the second detection electrode 28, respectively.
The first lead wiring 26 is disposed on the substrate 22 in the outer region E O , one end of which is electrically connected to the corresponding first detection electrode 24, and the other end is electrically connected to the flexible printed wiring board 32. The
The second lead wiring 30 is disposed on the substrate 22 in the outer region E O , one end of which is electrically connected to the corresponding second detection electrode 28, and the other end is electrically connected to the flexible printed wiring board 32. The
In FIG. 2, five first lead wires 26 and five second lead wires 30 are shown, but the number thereof is not particularly limited, and a plurality of them are usually arranged according to the number of detection electrodes. The
 第1引き出し配線26および第2引き出し配線30中に含まれる単位面積当たりの金属量は、上述した金属細線34と同様に、0.010~10g/m2である。金属量の好適範囲は、上述した金属細線34と同様である。
 また、第1引き出し配線26および第2引き出し配線30を構成する配線の材料としては、上述した金属細線34を構成する材料と同義である。なかでも、導電性が優れる理由から、銀であることが好ましい。また、アルミニウム(Al)やモリブデン(Mo)、パラジウム(Pd)などの金属や合金薄膜で構成されていてもよい。金属ペーストの場合は、スクリーン印刷やインクジェット印刷法で、金属や合金薄膜の場合は、スパッタ膜をフォトリソグラフィー法などのパターニング方法が好適に用いられる。
 なお、第1引き出し配線26および第2引き出し配線30中には、基板22との密着性がより優れる点から、バインダーが含まれていることが好ましい。バインダーの種類は、上述の通りである。
The amount of metal per unit area contained in the first lead-out wiring 26 and the second lead-out wiring 30 is 0.010 to 10 g / m 2 , similar to the metal thin wire 34 described above. The preferable range of the metal amount is the same as that of the metal thin wire 34 described above.
In addition, the material of the wiring constituting the first lead wiring 26 and the second lead wiring 30 is synonymous with the material constituting the metal thin wire 34 described above. Among these, silver is preferable because of its excellent conductivity. Moreover, you may be comprised with metals and alloy thin films, such as aluminum (Al), molybdenum (Mo), and palladium (Pd). In the case of a metal paste, a screen printing or ink jet printing method is used, and in the case of a metal or alloy thin film, a patterning method such as a photolithography method is suitably used for the sputtered film.
In addition, it is preferable that the binder is contained in the 1st extraction wiring 26 and the 2nd extraction wiring 30 from the point which adhesiveness with the board | substrate 22 is more excellent. The kind of binder is as above-mentioned.
 フレキシブルプリント配線板32は、基板上に複数の配線および端子が設けられた板であり、第1引き出し配線26のそれぞれの他端および第2引き出し配線30のそれぞれの他端に接続され、導電フイルム14と外部の装置(例えば、表示装置)とを接続する役割を果たす。 The flexible printed wiring board 32 is a board in which a plurality of wirings and terminals are provided on a substrate, and is connected to the other end of each of the first lead-out wirings 26 and the other end of each of the second lead-out wirings 30, and is a conductive film. 14 and an external device (for example, a display device).
<タッチパネル用積層体の製造方法>
 上記タッチパネル用積層体の製造方法は特に制限されず、公知の方法を採用できる。
 まず、導電フイルム中の金属細線の製造方法としては、例えば、エッチング処理を利用したサブトラクティブ法や、電解めっきを利用したセミアディティブ法や、銀ペースト(例えば、銀ナノ粒子または銀ナノワイヤ含有ペースト)を用いて金属配線を作製する方法、真空蒸着法、スパッタ成膜法、イオンプレーティング法などが挙げられる。
<Method for producing touch panel laminate>
The manufacturing method in particular of the said laminated body for touchscreens is not restrict | limited, A well-known method is employable.
First, as a method for producing a thin metal wire in a conductive film, for example, a subtractive method using an etching process, a semi-additive method using electrolytic plating, a silver paste (for example, a silver nanoparticle or silver nanowire-containing paste) Examples thereof include a method for producing a metal wiring by using a vacuum, a vacuum deposition method, a sputtering film forming method, an ion plating method and the like.
 さらに、上記方法以外にハロゲン化銀を使用した方法が好適に挙げられる。より具体的には、まず、基板上にハロゲン化銀を含有する銀塩乳剤層を形成する工程(1)、銀塩乳剤層を露光した後、現像処理することにより金属細線を形成する工程(2)を有する方法が挙げられる。
 以下に、各工程に関して説明する。
In addition to the above method, a method using silver halide is preferably used. More specifically, first, a step (1) of forming a silver salt emulsion layer containing silver halide on a substrate, a step of forming a fine metal wire by developing after exposing the silver salt emulsion layer ( 2).
Below, each process is demonstrated.
[工程(1):銀塩乳剤層形成工程]
 工程(1)は、基板上に、銀塩乳剤層を形成する工程である。
 銀塩乳剤層を形成する方法は特に制限されないが、生産性の点から、ハロゲン化銀を含有する銀塩乳剤層形成用組成物を基板に接触させ、基板上に銀塩乳剤層を形成する方法が好ましい。
 以下に、上記方法で使用される銀塩乳剤層形成用組成物の形態について詳述した後、工程の手順について詳述する。
[Step (1): Silver salt emulsion layer forming step]
Step (1) is a step of forming a silver salt emulsion layer on the substrate.
The method for forming the silver salt emulsion layer is not particularly limited. From the viewpoint of productivity, the silver salt emulsion layer-containing composition containing silver halide is brought into contact with the substrate to form the silver salt emulsion layer on the substrate. The method is preferred.
Below, after explaining in full detail about the form of the composition for silver salt emulsion layer formation used by the said method, the procedure of a process is explained in full detail.
 銀塩乳剤層形成用組成物には、ハロゲン化銀が含有される。
 ハロゲン化銀に含有されるハロゲン元素は、塩素、臭素、ヨウ素およびフッ素のいずれであってもよく、これらを組み合わせでもよい。ハロゲン化銀としては、例えば、塩化銀、臭化銀、ヨウ化銀を主体としたハロゲン化銀が好ましく用いられ、さらに臭化銀や塩化銀を主体としたハロゲン化銀が好ましく用いられる。
 銀塩乳剤層形成用組成物には、必要に応じて、樹脂バインダーが含まれていてもよい。樹脂バインダーの種類は上述の通りであり、なかでも、ゼラチンが好ましい。
The silver salt emulsion layer forming composition contains silver halide.
The halogen element contained in the silver halide may be any of chlorine, bromine, iodine and fluorine, or a combination thereof. As the silver halide, for example, silver halides mainly composed of silver chloride, silver bromide and silver iodide are preferably used, and silver halides mainly composed of silver bromide and silver chloride are preferably used.
The silver salt emulsion layer forming composition may contain a resin binder, if necessary. The kind of the resin binder is as described above, and among them, gelatin is preferable.
 銀塩乳剤層形成用組成物には、必要に応じて、溶媒が含有される。
 使用される溶媒としては、例えば、水、有機溶媒(例えば、メタノール等のアルコール類、アセトン等のケトン類、ホルムアミド等のアミド類、ジメチルスルホキシド等のスルホキシド類、酢酸エチル等のエステル類、エーテル類等)、イオン性液体、またはこれらの混合溶媒を挙げることができる。
 使用される溶媒の含有量は特に制限されないが、ハロゲン化銀および樹脂バインダーの合計質量に対して、30~90質量%の範囲が好ましく、50~80質量%の範囲がより好ましい。
The composition for forming a silver salt emulsion layer contains a solvent, if necessary.
Examples of the solvent used include water, organic solvents (for example, alcohols such as methanol, ketones such as acetone, amides such as formamide, sulfoxides such as dimethyl sulfoxide, esters such as ethyl acetate, ethers, and the like. Etc.), ionic liquids, or mixed solvents thereof.
The content of the solvent to be used is not particularly limited, but is preferably in the range of 30 to 90% by mass, and more preferably in the range of 50 to 80% by mass with respect to the total mass of the silver halide and the resin binder.
(工程の手順)
 銀塩乳剤層形成用組成物と基板とを接触させる方法は特に制限されず、公知の方法を採用できる。例えば、銀塩乳剤層形成用組成物を基板に塗布する方法や、銀塩乳剤層形成用組成物中に基板を浸漬する方法などが挙げられる。
(Process procedure)
The method for bringing the silver salt emulsion layer-forming composition and the substrate into contact with each other is not particularly limited, and a known method can be employed. For example, a method of applying a silver salt emulsion layer forming composition to a substrate, a method of immersing a substrate in a silver salt emulsion layer forming composition, and the like can be mentioned.
[工程(2):露光現像工程]
 工程(2)は、上記工程(1)で得られた銀塩乳剤層に露光処理を施した後、現像処理することにより金属細線を形成する工程である。
 以下では、露光処理について詳述し、その後現像処理について詳述する。
[Step (2): Exposure and development step]
Step (2) is a step of forming a fine metal wire by subjecting the silver salt emulsion layer obtained in the above step (1) to exposure treatment and development treatment.
Hereinafter, the exposure process will be described in detail, and then the development process will be described in detail.
(露光処理)
 銀塩乳剤層に対してパターン状の露光を施すことにより、露光領域における銀塩乳剤層中のハロゲン化銀が潜像を形成する。この潜像が形成された領域は、後述する現像処理によって金属細線を形成する。一方、露光がなされなかった未露光領域では、後述する定着処理の際にハロゲン化銀が溶解して銀塩乳剤層から流出し、透明な膜が得られる。
 露光の際に使用される光源は特に制限されず、可視光線、紫外線などの光、または、X線などの放射線などが挙げられる。
 パターン露光を行う方法は特に制限されず、例えば、フォトマスクを利用した面露光で行ってもよいし、レーザービームによる走査露光で行ってもよい。なお、パターンの形状は特に制限されず、形成したい金属細線のパターンに合わせて適宜調整される。
(Exposure processing)
By subjecting the silver salt emulsion layer to pattern exposure, the silver halide in the silver salt emulsion layer in the exposed region forms a latent image. In the area where the latent image is formed, fine metal lines are formed by a development process described later. On the other hand, in the unexposed areas that have not been exposed, the silver halide dissolves and flows out of the silver salt emulsion layer during the fixing process described later, and a transparent film is obtained.
The light source used in the exposure is not particularly limited, and examples thereof include light such as visible light and ultraviolet light, and radiation such as X-rays.
The method for performing pattern exposure is not particularly limited. For example, surface exposure using a photomask may be performed, or scanning exposure using a laser beam may be performed. The shape of the pattern is not particularly limited, and is appropriately adjusted according to the pattern of fine metal wires to be formed.
(現像処理)
 現像処理の方法は特に制限されず、公知の方法を採用できる。例えば、銀塩写真フイルム、印画紙、印刷製版用フイルム、フォトマスク用エマルジョンマスク等に用いられる通常の現像処理の技術を用いることができる。
 現像処理の際に使用される現像液の種類は特に制限されないが、例えば、PQ現像液、MQ現像液、MAA現像液等を用いることもできる。
 現像処理は、未露光部分の銀塩を除去して安定化させる目的で行われる定着処理を含むことができる。定着処理は、銀塩写真フイルムや印画紙、印刷製版用フイルム、フォトマスク用エマルジョンマスク等に用いられる定着処理の技術を用いることができる。
 定着工程における定着温度は、20~50℃が好ましく、25~45℃がより好ましい。また、定着時間は5秒~1分が好ましく、7~50秒がより好ましい。
(Development processing)
The development processing method is not particularly limited, and a known method can be employed. For example, conventional development processing techniques used for silver salt photographic film, photographic paper, printing plate making film, photomask emulsion mask, and the like can be used.
The type of the developer used in the development process is not particularly limited. For example, PQ developer, MQ developer, MAA developer and the like can be used.
The development process can include a fixing process performed for the purpose of removing and stabilizing the silver salt in the unexposed part. For the fixing process, a technique of fixing process used for silver salt photographic film, photographic paper, printing plate-making film, photomask emulsion mask and the like can be used.
The fixing temperature in the fixing step is preferably 20 to 50 ° C., more preferably 25 to 45 ° C. The fixing time is preferably 5 seconds to 1 minute, more preferably 7 to 50 seconds.
 次に、第1粘着剤層および第2粘着剤層の製造方法としては、粘着剤を含む粘着剤層形成用組成物を金属細線付き基板(導電フイルム)上に塗布して、必要に応じて硬化処理を施し、第1粘着剤層および第2粘着剤層を形成する方法や、粘着剤を含む粘着シートを金属細線付き基板上にラミネートする方法などが挙げられる。第1粘着剤層および第2粘着剤層の厚みの調整が容易である点より、上記塗布による方法が好ましい。 Next, as a manufacturing method of a 1st adhesive layer and a 2nd adhesive layer, the composition for adhesive layer formation containing an adhesive is apply | coated on a board | substrate (conductive film) with a metal fine wire, and as needed. Examples thereof include a method of performing a curing treatment to form a first pressure-sensitive adhesive layer and a second pressure-sensitive adhesive layer, and a method of laminating a pressure-sensitive adhesive sheet containing a pressure-sensitive adhesive on a substrate with fine metal wires. The method by the said application | coating is preferable from the point that adjustment of the thickness of a 1st adhesive layer and a 2nd adhesive layer is easy.
 なお、粘着剤層形成用組成物を金属細線付き基板上へ塗布する方法は特に制限されず、ディスペンス法、スクリーン印刷法、カーテンコート法、バーコード法、スピンコーター法、インクジェット法、ディップ浸漬法など、公知の方法を採用することができる。
 また、硬化処理としては、加熱処理または露光処理を適宜実施すればよい。
The method for applying the adhesive layer forming composition onto the substrate with fine metal wires is not particularly limited, and is a dispensing method, a screen printing method, a curtain coating method, a barcode method, a spin coater method, an ink jet method, a dip dipping method. For example, a known method can be adopted.
Moreover, what is necessary is just to implement heat processing or exposure processing suitably as a hardening process.
 次に、上述した第1透明保護基板および第2透明保護基板を、それぞれ第1粘着剤層および第2粘着剤層上に貼り合せることにより所望のタッチパネル用積層体を製造できる。
 なお、タッチパネル用積層体において、マイグレーションの発生がより抑制されると共に、タッチパネルの誤動作がより抑制される点で、導電フイルム中の金属配線はタッチパネル用積層体の端面から0.1cm以上(好ましくは、0.3cm以上)離れた位置に配置されることが好ましい。
Next, a desired laminated body for a touch panel can be manufactured by laminating the first transparent protective substrate and the second transparent protective substrate described above on the first pressure-sensitive adhesive layer and the second pressure-sensitive adhesive layer, respectively.
In addition, in the laminated body for touch panels, the occurrence of migration is further suppressed, and the malfunction of the touch panel is further suppressed, so that the metal wiring in the conductive film is 0.1 cm or more from the end face of the laminated body for touch panels (preferably , 0.3 cm or more).
 上記により製造されたタッチパネル用積層体の全光線透過率は特に制限されないが、タッチパネルへの応用の観点から、80~90%が好ましい。
 また、タッチパネル用積層体のヘイズは特に制限されないが、タッチパネルへの応用の観点から、0.3~3.5%が好ましい。
 なお、光線透過率、ヘイズの測定方法としては、コニカミノルタ製CM-3600Aを用いた測定方法が採用される。
The total light transmittance of the touch panel laminate produced as described above is not particularly limited, but is preferably 80 to 90% from the viewpoint of application to a touch panel.
Further, the haze of the laminate for a touch panel is not particularly limited, but is preferably 0.3 to 3.5% from the viewpoint of application to a touch panel.
As a method for measuring light transmittance and haze, a measurement method using CM-3600A manufactured by Konica Minolta is adopted.
(タッチパネル)
 図5に示すように、上述したタッチパネル用積層体1を、表示装置11の視認側に配置することにより、タッチパネル10が製造される。
 なお、タッチパネル用積層体1を表示装置上に配置する際には、図5に示すように、第2透明保護基板6が表示装置11側になるように配置する。
 得られたタッチパネルは、金属細線のイオンマイグレーションが抑制されると共に、誤作動が生じにくい。
(Touch panel)
As shown in FIG. 5, the touch panel 10 is manufactured by arranging the above-described laminated body 1 for a touch panel on the viewing side of the display device 11.
In addition, when arrange | positioning the laminated body 1 for touchscreens on a display apparatus, as shown in FIG. 5, it arrange | positions so that the 2nd transparent protective substrate 6 may become the display apparatus 11 side.
The obtained touch panel suppresses the ion migration of the fine metal wire and is unlikely to malfunction.
 なお、タッチパネル用積層体中の導電フイルムの形態は、上記図2の形態に限定されず、図6に示す形態であってもよい。
 図6に示すように、導電フイルム140は、第2基板38と、第2基板38上に配置された第2検出電極28と、第2検出電極28の一端に電気的に接続し、第2基板38上に配置された第2引き出し配線(図示せず)と、粘着剤層40と、第1検出電極24と、第1検出電極24の一端に電気的に接続している第1引き出し配線(図示せず)と、第1検出電極24および第1引き出し配線が隣接する第1基板42と、フレキシブルプリント配線板(図示せず)とを備える。
 図6に示すように、導電フイルム140は、第2基板38、第1基板42、および粘着剤層40の点を除いて、導電フイルム140と同様の構成を有するものであるので、同一の構成要素には同一の参照符号を付し、その説明を省略する。
In addition, the form of the conductive film in the laminated body for touch panels is not limited to the form of FIG. 2, but may be the form shown in FIG.
As shown in FIG. 6, the conductive film 140 is electrically connected to the second substrate 38, the second detection electrode 28 disposed on the second substrate 38, and one end of the second detection electrode 28. A second lead wiring (not shown) disposed on the substrate 38, the adhesive layer 40, the first detection electrode 24, and a first lead wiring electrically connected to one end of the first detection electrode 24. (Not shown), a first substrate 42 adjacent to the first detection electrode 24 and the first lead-out wiring, and a flexible printed wiring board (not shown).
As shown in FIG. 6, the conductive film 140 has the same configuration as that of the conductive film 140 except for the second substrate 38, the first substrate 42, and the adhesive layer 40. Elements are given the same reference numerals, and descriptions thereof are omitted.
 第2基板38および第1基板42の定義は、上述した基板22の定義と同じである。
 粘着剤層40は、第1検出電極24および第2検出電極28を密着させるための層であり、光学的に透明であることが好ましい(透明粘着剤層であることが好ましい)。粘着剤層40を構成する材料としては、公知の材料が使用される。
 図6中の第1検出電極24と第2検出電極28とは、図2に示すようにそれぞれ複数使用されており、両者は図2に示すように互いに直交するように配置されている。
The definitions of the second substrate 38 and the first substrate 42 are the same as the definition of the substrate 22 described above.
The pressure-sensitive adhesive layer 40 is a layer for bringing the first detection electrode 24 and the second detection electrode 28 into close contact with each other, and is preferably optically transparent (preferably a transparent pressure-sensitive adhesive layer). As a material constituting the pressure-sensitive adhesive layer 40, a known material is used.
A plurality of the first detection electrodes 24 and the second detection electrodes 28 in FIG. 6 are used as shown in FIG. 2, and both are arranged so as to be orthogonal to each other as shown in FIG.
 導電フイルム140においては、第1検出電極24と、第1検出電極24の一端に電気的に接続している第1引き出し配線と、第2検出電極28と、第2検出電極28の一端に電気的に接続している第2引き出し配線とは、図2の形態と同様に、単位面積当たりの金属量が0.010~10g/m2である金属細線より構成される。なお、金属量の好適範囲および測定方法は、上述の通りである。
 つまり、図6に示す、導電フイルム140は、基板と基板の片面上に配置された金属細線(検出電極および引き出し配線)とを有する金属細線付き基板を2枚用意し、金属細線同士が向き合うように、粘着剤層を介して貼り合せて得られる導電フイルムに該当する。
In the conductive film 140, the first detection electrode 24, the first lead wire electrically connected to one end of the first detection electrode 24, the second detection electrode 28, and one end of the second detection electrode 28 are electrically connected. Similarly to the embodiment shown in FIG. 2, the second lead wiring connected in the manner is composed of a thin metal wire having a metal amount per unit area of 0.010 to 10 g / m 2 . In addition, the suitable range and measuring method of metal amount are as above-mentioned.
That is, the conductive film 140 shown in FIG. 6 is prepared by preparing two substrates with fine metal wires having a substrate and fine metal wires (detection electrodes and lead wires) arranged on one side of the substrate so that the fine metal wires face each other. Furthermore, it corresponds to the conductive film obtained by bonding through an adhesive layer.
 さらに、タッチパネル用積層体中の導電フイルムの形態は、図7に示す形態であってもよい。
 図7中、導電フイルム240は、第2基板38と、第2基板38上に配置された第2検出電極28と、第2検出電極28の一端に電気的に接続し、第2基板38上に配置された第2引き出し配線(図示せず)と、粘着剤層40と、第1基板42と、第1基板42上に配置された第1検出電極24と、第1検出電極24の一端に電気的に接続し、第1基板42上に配置された第1引き出し配線(図示せず)と、フレキシブルプリント配線板(図示せず)とを備える。
 図7に示す導電フイルム240は、各層の順番が異なる点を除いて、図6に示す導電フイルム140と同様の層を有するものであるので、同一の構成要素には同一の参照符号を付し、その説明を省略する。
 また、図7中の第1検出電極24と第2検出電極28とは、図2に示すようにそれぞれ複数使用されており、両者は図2に示すように互いに直交するように配置されている。
Furthermore, the form shown in FIG. 7 may be sufficient as the form of the conductive film in the laminated body for touch panels.
In FIG. 7, the conductive film 240 is electrically connected to the second substrate 38, the second detection electrode 28 disposed on the second substrate 38, and one end of the second detection electrode 28. A second lead-out wiring (not shown), an adhesive layer 40, a first substrate 42, a first detection electrode 24 disposed on the first substrate 42, and one end of the first detection electrode 24. And a first lead wiring (not shown) disposed on the first substrate 42 and a flexible printed wiring board (not shown).
The conductive film 240 shown in FIG. 7 has the same layers as those of the conductive film 140 shown in FIG. 6 except that the order of the layers is different. Therefore, the same components are denoted by the same reference numerals. The description is omitted.
Further, a plurality of the first detection electrodes 24 and the second detection electrodes 28 in FIG. 7 are used as shown in FIG. 2, and both are arranged so as to be orthogonal to each other as shown in FIG. .
 導電フイルム240においては、第1検出電極24と、第1検出電極24の一端に電気的に接続している第1引き出し配線と、第2検出電極28と、第2検出電極28の一端に電気的に接続している第2引き出し配線とは、図2の形態と同様に、単位面積当たりの金属量が0.010~10g/m2である金属細線より構成される。なお、金属量の好適範囲および測定方法は、上述の通りである。
 つまり、図7に示す、導電フイルム240は、基板と基板の片面上に配置された金属細線(検出電極および引き出し配線)とを有する金属細線付き基板を2枚用意し、一方の金属細線付き基板中の基板と他方の金属細線付き基板の金属細線とが向き合うように、粘着剤層を介して貼り合せて得られる導電フイルムに該当する。
In the conductive film 240, the first detection electrode 24, the first lead wire electrically connected to one end of the first detection electrode 24, the second detection electrode 28, and one end of the second detection electrode 28 are electrically connected. Similarly to the embodiment shown in FIG. 2, the second lead wiring connected in the manner is composed of a thin metal wire having a metal amount per unit area of 0.010 to 10 g / m 2 . In addition, the suitable range and measuring method of metal amount are as above-mentioned.
That is, the conductive film 240 shown in FIG. 7 is prepared by preparing two substrates with fine metal wires each having a substrate and fine metal wires (detection electrodes and lead wires) arranged on one side of the substrate. It corresponds to a conductive film obtained by bonding through an adhesive layer so that the inner substrate and the metal fine wire of the other substrate with metal fine wires face each other.
<第2実施形態>
 タッチパネル用積層体の他の形態としては、図8に示すように、少なくとも、第1透明保護基板2と第2透明保護基板6との間から露出している第1粘着剤層3、導電フイルム4、および、第2粘着剤層5の周縁部の表面上に封止層12が配置される形態が挙げられる。封止層12が配置されることにより、端面からの水分の侵入が抑制され、本発明の効果がより優れる。
 図8において、第1粘着剤層3、導電フイルム4、および、第2粘着剤層5の周縁部とは、第1透明保護基板2と、第1粘着剤層3、導電フイルム4、第2粘着剤層5、および、第2透明保護基板6をこの順で積層した積層体において、外部に露出している第1粘着剤層3、導電フイルム4、および、第2粘着剤層5の側面部を意図する。
 なお、封止層12は、第1透明保護基板2および第2透明保護基板6の端面および/または主面上にもさらに配置されていてもよい。
Second Embodiment
As another form of the laminated body for touch panels, as shown in FIG. 8, at least the first adhesive layer 3 exposed from between the first transparent protective substrate 2 and the second transparent protective substrate 6, the conductive film. 4 and the form by which the sealing layer 12 is arrange | positioned on the surface of the peripheral part of the 2nd adhesive layer 5 is mentioned. By disposing the sealing layer 12, the intrusion of moisture from the end face is suppressed, and the effect of the present invention is more excellent.
In FIG. 8, the first adhesive layer 3, the conductive film 4, and the peripheral portion of the second adhesive layer 5 are the first transparent protective substrate 2, the first adhesive layer 3, the conductive film 4, the second In the laminate in which the pressure-sensitive adhesive layer 5 and the second transparent protective substrate 6 are laminated in this order, the side surfaces of the first pressure-sensitive adhesive layer 3, the conductive film 4, and the second pressure-sensitive adhesive layer 5 exposed to the outside. Intended part.
The sealing layer 12 may be further disposed on the end surfaces and / or main surfaces of the first transparent protective substrate 2 and the second transparent protective substrate 6.
 封止層の厚みは特に制限されないが、本発明の効果がより優れる点で、1.0μm以上が好ましく、2.0μm以上が好ましく、4.0μm以上がより好ましく、10.0μm以上がさらに好ましい。なお、上限は特に制限されないが、効果が飽和し、経済性が損なわれる点から、50μm以下が好ましい。
 なお、封止層の厚みは、封止層の任意の20箇所以上の場所の厚みを測定し、それらを算術平均した平均値である。
 封止層を構成する材料は特に制限されず、公知の硬化性樹脂(熱硬化性樹脂や光硬化性樹脂)や、熱可塑性樹脂が使用される。
The thickness of the sealing layer is not particularly limited, but is preferably 1.0 μm or more, preferably 2.0 μm or more, more preferably 4.0 μm or more, and even more preferably 10.0 μm or more in terms of more excellent effects of the present invention. . The upper limit is not particularly limited, but is preferably 50 μm or less from the viewpoint that the effect is saturated and the economy is impaired.
In addition, the thickness of a sealing layer is the average value which measured the thickness of 20 places or more places of a sealing layer, and arithmetically averaged them.
The material which comprises a sealing layer in particular is not restrict | limited, A well-known curable resin (thermosetting resin or photocurable resin) and a thermoplastic resin are used.
 以下、実施例により、本発明について更に詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these.
<実施例A>
<サンプルNo102の作製>
(ハロゲン化銀乳剤の調製)
 38℃、pH4.5に保たれた下記1液に、下記の2液および3液の各々90%に相当する量を攪拌しながら同時に20分間にわたって加え、0.16μmの核粒子を形成した。続いて下記4液および5液を8分間にわたって加え、さらに、下記の2液および3液の残りの10%の量を2分間にわたって加え、0.21μmまで成長させた。さらに、ヨウ化カリウム0.15gを加え、5分間熟成し粒子形成を終了した。
<Example A>
<Production of sample No. 102>
(Preparation of silver halide emulsion)
To the following 1 liquid maintained at 38 ° C. and pH 4.5, an amount corresponding to 90% of each of the following 2 and 3 liquids was simultaneously added over 20 minutes while stirring to form 0.16 μm core particles. Subsequently, the following 4 and 5 solutions were added over 8 minutes, and the remaining 10% of the following 2 and 3 solutions were added over 2 minutes to grow to 0.21 μm. Further, 0.15 g of potassium iodide was added and ripened for 5 minutes to complete the grain formation.
 1液:
   水                    750ml
   ゼラチン                    9g
   塩化ナトリウム                 3g
   1,3-ジメチルイミダゾリジン-2-チオン 20mg
   ベンゼンチオスルホン酸ナトリウム      10mg
   クエン酸                  0.7g
 2液:
   水                    300ml
   硝酸銀                   150g
 3液:
   水                    300ml
   塩化ナトリウム                38g
   臭化カリウム                 32g
   ヘキサクロロイリジウム(III)酸カリウム
    (0.005%KCl 20%水溶液)    8ml
   ヘキサクロロロジウム酸アンモニウム
     (0.001%NaCl 20%水溶液) 10ml
 4液:
   水                    100ml
   硝酸銀                    50g
 5液:
   水                    100ml
   塩化ナトリウム                13g
   臭化カリウム                 11g
   黄血塩                    5mg
1 liquid:
750 ml of water
9g gelatin
Sodium chloride 3g
1,3-Dimethylimidazolidine-2-thione 20mg
Sodium benzenethiosulfonate 10mg
Citric acid 0.7g
Two liquids:
300 ml of water
150 g silver nitrate
3 liquids:
300 ml of water
Sodium chloride 38g
Potassium bromide 32g
Potassium hexachloroiridium (III) (0.005% KCl 20% aqueous solution) 8 ml
Ammonium hexachlororhodate (0.001% NaCl 20% aqueous solution) 10 ml
4 liquids:
100ml water
Silver nitrate 50g
5 liquids:
100ml water
Sodium chloride 13g
Potassium bromide 11g
Yellow blood salt 5mg
 その後、常法に従い、フロキュレーション法によって水洗した。具体的には、温度を35℃に下げ、硫酸を用いてハロゲン化銀が沈降するまでpHを下げた(pH3.6±0.2の範囲であった)。次に、上澄み液を約3リットル除去した(第一水洗)。さらに3リットルの蒸留水を加えてから、ハロゲン化銀が沈降するまで硫酸を加えた。再度、上澄み液を3リットル除去した(第二水洗)。第二水洗と同じ操作をさらに1回繰り返して(第三水洗)、水洗・脱塩工程を終了した。水洗・脱塩後の乳剤をpH6.4、pAg7.5に調整し、ゼラチン3.9g、ベンゼンチオスルホン酸ナトリウム10mg、ベンゼンチオスルフィン酸ナトリウム3mg、チオ硫酸ナトリウム15mgと塩化金酸10mgを加え55℃にて最適感度を得るように化学増感を施し、安定剤として1,3,3a,7-テトラアザインデン100mg、防腐剤としてプロキセル(商品名、ICI Co.,Ltd.製)100mgを加えた。最終的に得られた乳剤は、沃化銀を0.08モル%含み、塩臭化銀の比率を塩化銀70モル%、臭化銀30モル%とする、平均粒子径0.22μm、変動係数9%のヨウ塩臭化銀立方体粒子乳剤であった。 Then, it was washed with water by a flocculation method according to a conventional method. Specifically, the temperature was lowered to 35 ° C., and the pH was lowered using sulfuric acid until the silver halide precipitated (the pH was in the range of 3.6 ± 0.2). Next, about 3 liters of the supernatant was removed (first water washing). Further, 3 liters of distilled water was added, and sulfuric acid was added until the silver halide settled. Again, 3 liters of the supernatant was removed (second water wash). The same operation as the second water washing was further repeated once (third water washing) to complete the water washing / desalting step. The emulsion after washing with water and desalting was adjusted to pH 6.4 and pAg 7.5, and gelatin 3.9 g, sodium benzenethiosulfonate 10 mg, sodium benzenethiosulfinate 3 mg, sodium thiosulfate 15 mg and chloroauric acid 10 mg were added. Chemical sensitization to obtain optimum sensitivity at 0 ° C., 100 mg of 1,3,3a, 7-tetraazaindene as stabilizer and 100 mg of proxel (trade name, manufactured by ICI Co., Ltd.) as preservative It was. The finally obtained emulsion contains 0.08 mol% of silver iodide, and the ratio of silver chlorobromide is 70 mol% of silver chloride and 30 mol% of silver bromide. It was a silver iodochlorobromide cubic grain emulsion having a coefficient of 9%.
(銀塩乳剤層形成用組成物の調製)
 上記乳剤に1,3,3a,7-テトラアザインデン1.2×10-4モル/モルAg、ハイドロキノン1.2×10-2モル/モルAg、クエン酸3.0×10-4モル/モルAg、2,4-ジクロロ-6-ヒドロキシ-1,3,5-トリアジンナトリウム塩0.90g/モルAgを添加し、クエン酸を用いて塗布液pHを5.6に調整して、銀塩乳剤層形成用組成物を得た。
(Preparation of silver salt emulsion layer forming composition)
1,3,3a, 7-tetraazaindene 1.2 × 10 −4 mol / mol Ag, hydroquinone 1.2 × 10 −2 mol / mol Ag, citric acid 3.0 × 10 −4 mol / Mole Ag, 2,4-dichloro-6-hydroxy-1,3,5-triazine sodium salt 0.90 g / mole Ag was added, and the pH of the coating solution was adjusted to 5.6 with citric acid, and silver was added. A composition for forming a salt emulsion layer was obtained.
(銀塩乳剤層形成工程)
 厚み100μmのポリエチレンテレフタレート(PET)フイルムにコロナ放電処理を施した後、上記PETフイルムの両面に、下塗層として厚み0.1μmのゼラチン層、さらに下塗層上に光学濃度が約1.0で現像液のアルカリにより脱色する染料を含むアンチハレーション層を設けた。上記アンチハレーション層の上に、上記銀塩乳剤層形成用組成物を塗布し、さらに厚み0.15μmのゼラチン層を設け、両面に銀塩乳剤層が形成されたPETフイルムを得た。得られたフイルムをフイルムAとする。形成された銀塩乳剤層は、銀量6.0g/m2、ゼラチン量1.0g/m2であった。
(Silver salt emulsion layer formation process)
After a polyethylene terephthalate (PET) film having a thickness of 100 μm is subjected to corona discharge treatment, a gelatin layer having a thickness of 0.1 μm as an undercoat layer on both sides of the PET film, and an optical density of about 1.0 on the undercoat layer. And an antihalation layer containing a dye which is decolorized by alkali in the developer. On the antihalation layer, the silver salt emulsion layer forming composition was applied, and a gelatin layer having a thickness of 0.15 μm was further provided to obtain a PET film having a silver salt emulsion layer formed on both sides. The obtained film is referred to as film A. The formed silver salt emulsion layer had a silver amount of 6.0 g / m 2 and a gelatin amount of 1.0 g / m 2 .
(露光現像工程)
 上記フイルムAの両面に、ラインアンドスペース(L/S)が50μm/50μmであるクシ型パターンを配したフォトマスクを介し、高圧水銀ランプを光源とした平行光を用いて露光を行った。露光後、下記の現像液で現像し、さらに定着液(商品名:CN16X用N3X-R、富士フイルム社製)を用いて現像処理を行った。さらに、純水でリンスし、乾燥することで、両面にAg細線(金属細線)からなる電極パターンとゼラチン層とが形成されたPETフイルムを得た。ゼラチン層はAg細線間に形成されており、このときのAg細線中のAg量は、蛍光X線分析から、5.5g/m2であった。得られたクシ型配線パターン付フイルムを、フイルムBとする。
(Exposure development process)
The film A was exposed using parallel light using a high-pressure mercury lamp as a light source through a photomask having a comb-shaped pattern with a line and space (L / S) of 50 μm / 50 μm on both surfaces of the film A. After the exposure, development was performed with the following developer, and further development was performed using a fixer (trade name: N3X-R for CN16X, manufactured by Fuji Film). Furthermore, by rinsing with pure water and drying, a PET film in which an electrode pattern composed of Ag fine wires (metal fine wires) and a gelatin layer were formed on both surfaces was obtained. The gelatin layer was formed between Ag fine wires, and the amount of Ag in the Ag fine wires at this time was 5.5 g / m 2 from fluorescent X-ray analysis. The obtained film with a comb-shaped wiring pattern is referred to as film B.
(現像液の組成)
 現像液1リットル(L)中に、以下の化合物が含まれる。
    ハイドロキノン          0.037mol/L
    N-メチルアミノフェノール    0.016mol/L
    メタホウ酸ナトリウム       0.140mol/L
    水酸化ナトリウム         0.360mol/L
    臭化ナトリウム          0.031mol/L
    メタ重亜硫酸カリウム       0.187mol/L
(Developer composition)
The following compounds are contained in 1 liter (L) of the developer.
Hydroquinone 0.037mol / L
N-methylaminophenol 0.016 mol / L
Sodium metaborate 0.140 mol / L
Sodium hydroxide 0.360 mol / L
Sodium bromide 0.031 mol / L
Potassium metabisulfite 0.187 mol / L
(張り合わせ工程)
 上記で得られたフイルムBの一方のAg細線が存在する面上に、3M社製OCA(#8146-2:50マイクロメートル厚)および下記バリアフイルム1をこの順に積層した。
 さらに、フイルムBの他方のAg細線が存在する面上に、3M社製OCA(#8146-4:100マイクロメートル厚)およびガラス基板をこの順で貼り合わせたものを作製し、サンプルNo101とした。このとき、Ag細線と積層体端面との距離は1cm以上であった。
(Lamination process)
On the surface where one Ag fine wire of the film B obtained above was present, 3M OCA (# 8146-2: 50 micrometers thick) and the following barrier film 1 were laminated in this order.
Furthermore, a sample in which 3M OCA (# 8146-4: 100 micrometers thickness) and a glass substrate were bonded together in this order on the surface of the film B on which the other Ag fine wire exists was designated as sample No. 101. . At this time, the distance between the Ag fine wire and the end face of the laminate was 1 cm or more.
―バリアフイルム1の作製―
 バリアフイルムとして、支持体Zの表面に有機層および窒化珪素層を有するガスバリアフイルム10を作製した。
 支持体Zは、幅が1000mmで厚さが100μmの長尺なPETフイルムを用いた。
―Preparation of barrier film 1―
A gas barrier film 10 having an organic layer and a silicon nitride layer on the surface of the support Z was produced as a barrier film.
As the support Z, a long PET film having a width of 1000 mm and a thickness of 100 μm was used.
 有機化合物および界面活性剤を有機溶剤に投入、混合して、有機層となる塗料を調製した。有機化合物は、TMPTA(ダイセル・サイテック社製)を用いた。有機溶剤は、MEKを用いた。界面活性剤は、珪素系の界面活性剤(ビックケミージャパン社製 BYK378)を用いた。添加量は、有機溶剤を除いた濃度で重量1%とした。さらに、塗料には、有機溶剤を除いた濃度で重量2%の光重合開始剤(チバケミカルズ社製 Irg184)を添加した(すなわち固形分における有機化合物は97重量%)。この界面活性剤および光重合開始剤は、ハロゲンを含有しない。また、塗料の固形分濃度は、15重量%とした。
 支持体Zを巻回してなる支持体ロールZRを、図9(A)に示す有機成膜装置330の回転軸342に装填して、支持体Zの表面に、調製した塗料を塗布手段336で塗布/乾燥し、光照射手段340によって架橋/硬化して、有機層を形成した支持体Zを巻回してなるロールZoRを得た。塗布手段336は、ダイコータを用いた。塗布量は、20cc/m2とした。調製した塗料は、この塗布量で、乾膜の膜厚すなわち有機層の膜厚が2μmとなる。乾燥手段338は、温風を用いた。光照射手段340は、紫外線照射装置を用いた。
An organic compound and a surfactant were added to an organic solvent and mixed to prepare a coating material for an organic layer. As the organic compound, TMPTA (manufactured by Daicel-Cytec) was used. MEK was used as the organic solvent. As the surfactant, a silicon-based surfactant (BYK378, manufactured by BYK Japan) was used. The amount added was 1% by weight at a concentration excluding the organic solvent. Furthermore, a photopolymerization initiator (Irg184, manufactured by Ciba Chemicals Co., Ltd.) having a weight of 2% in a concentration excluding the organic solvent was added to the paint (that is, 97% by weight of the organic compound in the solid content). This surfactant and photopolymerization initiator do not contain halogen. The solid content concentration of the paint was 15% by weight.
The support roll ZR formed by winding the support Z is loaded on the rotation shaft 342 of the organic film forming apparatus 330 shown in FIG. 9A, and the prepared paint is applied to the surface of the support Z by the applying means 336. It was coated / dried and crosslinked / cured by light irradiation means 340 to obtain a roll ZoR formed by winding a support Z on which an organic layer was formed. The coating means 336 used a die coater. The coating amount was 20 cc / m 2 . The prepared paint has a dry film thickness, that is, an organic layer thickness of 2 μm at this coating amount. The drying means 338 used hot air. As the light irradiation means 340, an ultraviolet irradiation device was used.
 次いで、ロールZoRを図9(B)に示す無機成膜装置332に装填して、有機層を成膜した支持体Zoの表面に、CCP-CVDによって、膜厚50nmの窒化珪素膜を形成し、窒化珪素層を形成したガスバリアフイルムを巻回してなる、ロール10aRを作製した。
 成膜ガスは、シランガス(SiH4)、アンモニアガス(NH3)、窒素ガス(N2)および水素ガス(H2)を用いた。供給量は、シランガスが100sccm、アンモニアガスが200sccm、窒素ガスが500sccm、水素ガスが500sccmとした。また、成膜圧力は50Paとした。
 シャワー電極382には、高周波電源386から、周波数13.5MHzで3000Wのプラズマ励起電力を供給した。さらに、ドラム380はステンレス製とし、バイアス電源(図示省略)から、500Wのバイアス電力を供給した。また、成膜中は、ドラム380の温度を-20℃に調整した。
 作製したバリアフイルム1の水蒸気透過度(g/m2・24h(40℃、90%RH))を、カルシウム腐食法(特開2005-283561号公報に記載される方法)でN3測定を行い、平均値として、1×10-5(g/m2・24h(40℃、90%RH))オーダーであった。
Next, the roll ZoR is loaded into the inorganic film forming apparatus 332 shown in FIG. 9B, and a silicon nitride film having a thickness of 50 nm is formed on the surface of the support Zo on which the organic layer is formed by CCP-CVD. A roll 10aR formed by winding a gas barrier film on which a silicon nitride layer was formed was produced.
Silane gas (SiH 4 ), ammonia gas (NH 3 ), nitrogen gas (N 2 ), and hydrogen gas (H 2 ) were used as the film forming gas. The supply amounts were 100 sccm for silane gas, 200 sccm for ammonia gas, 500 sccm for nitrogen gas, and 500 sccm for hydrogen gas. The film forming pressure was 50 Pa.
The shower electrode 382 was supplied with 3000 W of plasma excitation power at a frequency of 13.5 MHz from a high frequency power source 386. Furthermore, the drum 380 was made of stainless steel, and a bias power of 500 W was supplied from a bias power source (not shown). During film formation, the temperature of the drum 380 was adjusted to −20 ° C.
The water vapor permeability (g / m 2 · 24h (40 ° C., 90% RH)) of the produced barrier film 1 was measured by N3 measurement using a calcium corrosion method (a method described in JP-A-2005-283561). The average value was 1 × 10 −5 (g / m 2 · 24 h (40 ° C., 90% RH)) order.
(評価(マイグレーション評価))
 上記方法で作製したサンプルNo101を60℃/90%RHで1時間静置させ、直流で5Vの電圧を30分印加し、その後、顕微鏡にてマイグレーションの様子を観察し、以下の基準に沿って評価した。表1に結果を示す。
―マイグレーションの評価―
 5  デンドライトなどの発生が全く確認できない
 4  デンドライトなどの発生がほぼ見られない
 3  デンドライトなどの発生が見られるが、実用上問題ない
 2  デンドライトなどの発生が見られ、実用上問題ある
 1  デンドライトなどの発生がひどく、実用上問題ある
(Evaluation (migration evaluation))
Sample No. 101 produced by the above method was allowed to stand at 60 ° C./90% RH for 1 hour, a voltage of 5 V was applied for 30 minutes by direct current, and then the state of migration was observed with a microscope, in accordance with the following criteria: evaluated. Table 1 shows the results.
―Evaluation of migration―
5 The occurrence of dendrite etc. cannot be confirmed at all 4 The occurrence of dendrite etc. is almost not seen 3 The occurrence of dendrite etc. is seen, but there is no problem in practical use 2 The occurrence of dendrite etc. is seen, and there is a problem in practical use 1 Occurrence is severe and practically problematic
<サンプルNo102の作製>
 バリアフイルム1の代わりに、上記バリアフイルム1の製造手順において有機層/無機層の交互積層構成において、有機/無機/有機/無機/有機と積層させ(有機/無機の2対積層+有機1層)、作製したバリアフイルム2を使用した以外は、サンプルNo101の作製と同様の手順に従って、サンプルNo102を作製し、評価を実施した。結果を表1に示す。また、得られたフイルムの水蒸気透過度は1×10-6(g/m2・24h(40℃、90%RH))オーダーであった。
<Production of sample No. 102>
Instead of the barrier film 1, the organic film / inorganic layer is alternately laminated in the organic film / inorganic layer manufacturing procedure in the above-described barrier film 1 manufacturing procedure (two pairs of organic / inorganic layers + one organic layer) ) Sample No102 was prepared and evaluated according to the same procedure as Sample No101 except that the produced barrier film 2 was used. The results are shown in Table 1. The film obtained had a water vapor permeability of the order of 1 × 10 −6 (g / m 2 · 24 h (40 ° C., 90% RH)).
<サンプルNo103の作製>
 バリアフイルム1の代わりに、上記バリアフイルム1の製造手順において有機層/無機層の交互積層構成において、有機/無機/有機/無機/有機/無機/有機/無機/有機/無機/有機と積層させ(有機/無機の5対積層+有機1層)、作製したバリアフイルム3を使用した以外は、サンプルNo101の作製と同様の手順に従って、サンプルNo103を作製し、評価を実施した。結果を表1に示す。また、得られたフイルムの水蒸気透過度は、測定時間においてカルシウムの状態変化が非常に小さかったことから1×10-6(g/m2・24h(40℃、90%RH))オーダー未満であると判断した。
<Production of sample No103>
Instead of the barrier film 1, the organic film / inorganic layer is alternately laminated in the production procedure of the above barrier film 1 with organic / inorganic / organic / inorganic / organic / inorganic / organic / inorganic / organic / inorganic / organic layers. Sample No103 was prepared and evaluated according to the same procedure as Sample No101, except that (organic / inorganic 5 pair lamination + organic 1 layer) and the produced barrier film 3 were used. The results are shown in Table 1. Further, the water vapor permeability of the obtained film was less than 1 × 10 −6 (g / m 2 · 24 h (40 ° C., 90% RH)) order because the change in the state of calcium was very small during the measurement time. Judged that there was.
<サンプルNo104の作製>
 バリアフイルム1の代わりに、上記バリアフイルム1の製造手順において有機層の乾燥膜厚を0.25μmに変更したバリアフイルム4を使用した以外は、サンプルNo101の作製と同様の手順に従って、サンプルNo104を作製し、評価を実施した。結果を表1に示す。また、得られたフイルムの水蒸気透過度は1×10-3(g/m2・24h(40℃、90%RH))オーダーであった。
<Production of sample No. 104>
Instead of the barrier film 1, the sample No. 104 was prepared according to the same procedure as the production of the sample No. 101 except that the barrier film 4 in which the dry film thickness of the organic layer was changed to 0.25 μm was used in the manufacturing procedure of the above barrier film 1. Fabricated and evaluated. The results are shown in Table 1. The film obtained had a water vapor permeability of the order of 1 × 10 −3 (g / m 2 · 24 h (40 ° C., 90% RH)).
<サンプルNo105の作製>
 バリアフイルム1の代わりに、三菱樹脂製テックバリアHX(12マイクロメートル厚)を使用した以外は、サンプルNo101の作製と同様の手順に従って、サンプルNo105を作製し、評価を実施した。結果を表1に示す。
<Production of sample No. 105>
Sample No105 was produced and evaluated in accordance with the same procedure as that for producing Sample No101 except that Mitsubishi Resin Tech Barrier HX (12 μm thick) was used instead of Barrier Film 1. The results are shown in Table 1.
<サンプルNo106の作製>
 バリアフイルム1の代わりに、三菱樹脂製テックバリアL(12マイクロメートル厚)を使用した以外は、サンプルNo101の作製と同様の手順に従って、サンプルNo106を作製し、評価を実施した。結果を表1に示す。
<Production of sample No. 106>
Sample No106 was produced and evaluated in accordance with the same procedure as that for producing Sample No101, except that Mitsubishi Plastics Tech Barrier L (thickness 12 micrometers) was used instead of Barrier Film 1. The results are shown in Table 1.
<サンプルNo107の作製>
 バリアフイルム1の代わりに、日本ゼオン社製ゼオノアフイルム(40マイクロメートル厚)を使用した以外は、サンプルNo101の作製と同様の手順に従って、サンプルNo107を作製し、評価を実施した。結果を表1に示す。
<Production of sample No107>
Sample No107 was produced and evaluated according to the same procedure as that for producing Sample No101, except that Zeonoa Film (40 micrometer thickness) manufactured by Nippon Zeon Co., Ltd. was used instead of Barrier Film 1. The results are shown in Table 1.
<サンプルNo108の作製>
 バリアフイルム1の代わりに、きもと社製ハードコートフイルム(G1SBF:50マイクロメートル厚)を使用した以外は、サンプルNo101の作製と同様の手順に従って、サンプルNo108を作製し、評価を実施した。結果を表1に示す。
<Production of Sample No. 108>
Sample No108 was produced and evaluated in accordance with the same procedure as that for producing Sample No101 except that a hard coat film (G1SBF: 50 μm thickness) manufactured by Kimoto Co. was used instead of the barrier film 1. The results are shown in Table 1.
<サンプルNo109の作製>
 バリアフイルム1の代わりに、JSR社製アートンフイルム(40マイクロメートル厚)を使用した以外は、サンプルNo101の作製と同様の手順に従って、サンプルNo109を作製し、評価を実施した。結果を表1に示す。
<Production of sample No. 109>
Sample No109 was prepared and evaluated in accordance with the same procedure as Sample No101 except that JSR Arton Film (40 micrometer thickness) was used instead of Barrier Film 1. The results are shown in Table 1.
<サンプルNo110の作製>
 バリアフイルム1の代わりに、日本ゼオン社製ゼオノアフイルム(100マイクロメートル厚)を使用した以外は、サンプルNo101の作製と同様の手順に従って、サンプルNo110を作製し、評価を実施した。結果を表1に示す。
<Production of sample No110>
Sample No110 was produced and evaluated according to the same procedure as that for producing Sample No101 except that Zeonoa Film (100 micrometer thickness) manufactured by Nippon Zeon Co., Ltd. was used instead of Barrier Film 1. The results are shown in Table 1.
<サンプルNo111の作製>
 フイルムBの代わりに、PET基板上にラインアンドスペース(L/S)が50μm/50μmであるクシ型パターンを配したメタルマスクを介し、Agを蒸着することで作製したAg蒸着フイルムを使用した以外は、サンプルNo101の作製と同様の手順に従って、サンプルNo111を作製し、評価を実施した。結果を表1に示す。なお、Ag量は、蛍光X線分析から、1.0g/m2であった。
<Production of sample No111>
Instead of film B, except using Ag vapor deposition film produced by vapor deposition of Ag through a metal mask having a comb-shaped pattern with a line and space (L / S) of 50 μm / 50 μm on a PET substrate Sample No111 was prepared and evaluated according to the same procedure as sample No101. The results are shown in Table 1. The amount of Ag was 1.0 g / m 2 from fluorescent X-ray analysis.
<サンプルNo112の作製>
 フイルムBの代わりに、PET基板上にラインアンドスペース(L/S)が50μm/50μmであるクシ型パターンを配したスクリーンマスクを介し、Agペースト(ドータイトFA-401CA、藤倉化成製)をスクリーン印刷し、100℃で30分焼成することで作製したAgペースト付きフイルムを使用した以外は、サンプルNo101の作製と同様の手順に従って、サンプルNo112を作製し、評価を実施した。結果を表1に示す。なお、Ag量は、蛍光X線分析から、9.3g/m2であった。
<Production of sample No112>
Instead of film B, Ag paste (Dotite FA-401CA, manufactured by Fujikura Kasei Co., Ltd.) is screen-printed through a screen mask with a comb-shaped pattern with a line and space (L / S) of 50/50 μm on a PET substrate. And sample No112 was produced and evaluated in accordance with the procedure similar to preparation of sample No101 except having used the film with an Ag paste produced by baking for 30 minutes at 100 degreeC. The results are shown in Table 1. The amount of Ag was 9.3 g / m 2 from fluorescent X-ray analysis.
<サンプルNo113の作製>
 フイルムBの代わりに、後述するパターニングされた導電膜1を用いた以外は、サンプルNo101の作製と同様の手順に従って、サンプルNo113を作製し、評価を実施した。結果を表1に示す。なお、Ag量は、蛍光X線分析から、0.015g/m2であった。
<Production of sample No113>
Sample No113 was produced and evaluated in accordance with the same procedure as that for producing Sample No101 except that the patterned conductive film 1 described later was used instead of the film B. The results are shown in Table 1. The amount of Ag was 0.015 g / m 2 from fluorescent X-ray analysis.
(銀ナノワイヤの水分散物の作製)
―銀ナノワイヤ分散液(1)の調製―
 プロピレングリコール370gに硝酸銀粉末60gを溶解させ、硝酸銀溶液101を調製した。プロピレングリコール4.45kgにポリビニルピロリドン(分子量55,000)72.0gを添加し、窒素ガスを容器の気相部分に通気しながら、90℃に昇温した。この液を反応溶液101とした。窒素ガスの通気を保持したまま、激しく攪拌している反応溶液101へ硝酸銀溶液101を2.50g添加して、加熱攪拌を1分間行った。さらに、この溶液へテトラブチルアンモニウムクロリド11.8gをプロピレングリコール100gに溶解させた溶液を添加し、反応溶液102とした。
 90℃に保ち、攪拌速度500rpmで攪拌している反応溶液102へ、硝酸銀溶液101を添加速度50cc/分で200g添加した。攪拌速度を100rpmに落とし、窒素ガスの通気を止めて、加熱攪拌を15時間行った。90℃に保ち、攪拌速度100rpmで攪拌しているこの液へ、硝酸銀溶液101を添加速度0.5cc/分にて220g添加し、添加終了後から2時間、加熱攪拌を続けた。攪拌を500rpmに変更し、蒸留水1.0kgを添加した後に、25℃まで冷却して仕込液101を作製した。
 分画分子量15万の限外濾過モジュールを用いて、限外濾過を次の通り実施した。蒸留水と1-プロパノールの混合溶液(体積比1対1)の仕込液101への添加と仕込液101の濃縮を、最終的にろ液の伝導度が50μS/cm以下になるまで繰り返した。濃縮を行い、金属含有量0.45%の銀ナノワイヤ分散液(1)を得た。
 得られた銀ナノワイヤ分散液(1)の銀ナノワイヤについて、平均短軸長、平均長軸長を測定した。その結果、平均短軸長28.5nm、平均長軸長15.2μmであった。以後、「銀ナノワイヤ分散液(1)」と表記する場合は、上記方法で得られた銀ナノワイヤ分散液を示す。
(Preparation of aqueous dispersion of silver nanowires)
-Preparation of silver nanowire dispersion (1)-
A silver nitrate solution 101 was prepared by dissolving 60 g of silver nitrate powder in 370 g of propylene glycol. 72.0 g of polyvinylpyrrolidone (molecular weight 55,000) was added to 4.45 kg of propylene glycol, and the temperature was raised to 90 ° C. while venting nitrogen gas through the gas phase portion of the container. This solution was designated as reaction solution 101. 2.50 g of the silver nitrate solution 101 was added to the vigorously stirred reaction solution 101 while maintaining the nitrogen gas flow, and the mixture was heated and stirred for 1 minute. Further, a solution in which 11.8 g of tetrabutylammonium chloride was dissolved in 100 g of propylene glycol was added to this solution to obtain a reaction solution 102.
200 g of the silver nitrate solution 101 was added to the reaction solution 102 which was kept at 90 ° C. and stirred at a stirring speed of 500 rpm at an addition speed of 50 cc / min. The stirring speed was reduced to 100 rpm, the aeration of nitrogen gas was stopped, and heating and stirring were performed for 15 hours. 220 g of the silver nitrate solution 101 was added at an addition speed of 0.5 cc / min to this liquid kept at 90 ° C. and stirred at a stirring speed of 100 rpm, and the heating and stirring were continued for 2 hours after the addition was completed. The stirring was changed to 500 rpm, and after adding 1.0 kg of distilled water, the mixture was cooled to 25 ° C. to prepare a charged solution 101.
Using an ultrafiltration module with a molecular weight cut off of 150,000, ultrafiltration was performed as follows. Addition of a mixed solution of distilled water and 1-propanol (volume ratio of 1: 1) to the charged liquid 101 and concentration of the charged liquid 101 were repeated until the conductivity of the filtrate finally reached 50 μS / cm or less. Concentration was performed to obtain a silver nanowire dispersion liquid (1) having a metal content of 0.45%.
About the silver nanowire of the obtained silver nanowire dispersion liquid (1), the average minor axis length and the average major axis length were measured. As a result, the average minor axis length was 28.5 nm and the average major axis length was 15.2 μm. Hereinafter, the notation “silver nanowire dispersion (1)” indicates the silver nanowire dispersion obtained by the above method.
―銀ナノワイヤ分散液(2)の調製―
 予め、下記の添加液A、B、C、および、Dを調製した。
〔添加液A〕
 ステアリルトリメチルアンモニウムクロリド55mg、ステアリルトリメチルアンモニウムヒドロキシド10%水溶液5.5g、グルコース1.8gを蒸留水115.0gに溶解させ、反応溶液A-1とした。さらに、硝酸銀粉末65mgを蒸留水1.8gに溶解させ、硝酸銀水溶液A-1とした。反応溶液A-1を25℃に保ち、激しく攪拌しながら、硝酸銀水溶液A-1を添加した。硝酸銀水溶液A-1の添加後から180分間、激しい攪拌をし、添加液Aとした。
〔添加液B〕
 硝酸銀粉末42.0gを蒸留水958gに溶解した。
〔添加液C〕
 25%アンモニア水75gを蒸留水925gと混合した。
〔添加液D〕
 ポリビニルピロリドン(K30)400gを蒸留水1.6kgに溶解した。
-Preparation of silver nanowire dispersion (2)-
The following additive solutions A, B, C and D were prepared in advance.
[Additive liquid A]
Stearyltrimethylammonium chloride 55 mg, stearyltrimethylammonium hydroxide 10% aqueous solution 5.5 g, and glucose 1.8 g were dissolved in distilled water 115.0 g to obtain reaction solution A-1. Further, 65 mg of silver nitrate powder was dissolved in 1.8 g of distilled water to obtain an aqueous silver nitrate solution A-1. The reaction solution A-1 was kept at 25 ° C., and the aqueous silver nitrate solution A-1 was added with vigorous stirring. After the addition of the aqueous silver nitrate solution A-1, the mixture was vigorously stirred for 180 minutes to obtain additive solution A.
[Additive liquid B]
42.0 g of silver nitrate powder was dissolved in 958 g of distilled water.
[Additive liquid C]
75 g of 25% aqueous ammonia was mixed with 925 g of distilled water.
[Additive solution D]
400 g of polyvinylpyrrolidone (K30) was dissolved in 1.6 kg of distilled water.
 次に、以下のようにして、銀ナノワイヤ分散液(2)を調製した。
 ステアリルトリメチルアンモニウムブロミド粉末1.30gと臭化ナトリウム粉末33.1gとグルコース粉末1,000g、硝酸(1N)115.0gを80℃の蒸留水12.7kgに溶解させた。この液を80℃に保ち、500rpmで攪拌しながら、添加液Aを添加速度250cc/分、添加液Bを500cc/分、添加液Cを500cc/分で順次添加した。攪拌速度を200rpmとし、80℃で加熱をした。攪拌速度を200rpmにしてから100分間加熱攪拌を続けた後に、25℃に冷却した。攪拌速度を500rpmに変更し、添加液Dを500cc/分で添加した。この液を仕込液201とした。次に、1-プロパノールを激しく攪拌しながら、そこへ仕込液201を混合比率が体積比1対1となるように一気に添加した。攪拌を3分間行い、仕込液202とした。
Next, a silver nanowire dispersion liquid (2) was prepared as follows.
1.30 g of stearyltrimethylammonium bromide powder, 33.1 g of sodium bromide powder, 1,000 g of glucose powder and 115.0 g of nitric acid (1N) were dissolved in 12.7 kg of distilled water at 80 ° C. While this liquid was kept at 80 ° C. and stirred at 500 rpm, the additive liquid A was added successively at an addition rate of 250 cc / min, the additive liquid B at 500 cc / min, and the additive liquid C at 500 cc / min. The stirring speed was 200 rpm and heating was performed at 80 ° C. After the stirring speed was set to 200 rpm and heating and stirring were continued for 100 minutes, the mixture was cooled to 25 ° C. The stirring speed was changed to 500 rpm, and additive solution D was added at 500 cc / min. This liquid was used as a charged liquid 201. Next, 1-propanol was vigorously stirred, and the charged solution 201 was added to the mixture at a stretch so that the mixing ratio was 1: 1. Stirring was performed for 3 minutes to obtain a charged solution 202.
 分画分子量15万の限外濾過モジュールを用いて、限外濾過を次の通り実施した。
 仕込液202を4倍に濃縮した後、蒸留水と1-プロパノールの混合溶液(体積比1対1)の添加と濃縮を、最終的にろ液の伝導度が50μS/cm以下になるまで繰り返した。濃縮を行い、金属含有量0.45%の銀ナノワイヤ分散液(2)を得た。
 得られた銀ナノワイヤ分散液(2)の銀ナノワイヤについて、平均短軸長、平均長軸長を測定した。その結果、平均短軸長17.2nm、平均長軸長8.8μmであった。
Using an ultrafiltration module with a molecular weight cut off of 150,000, ultrafiltration was performed as follows.
After concentrating the feed liquid 202 four times, the addition and concentration of a mixed solution of distilled water and 1-propanol (volume ratio of 1: 1) was repeated until the conductivity of the filtrate finally reached 50 μS / cm or less. It was. Concentration was performed to obtain a silver nanowire dispersion liquid (2) having a metal content of 0.45%.
About the silver nanowire of the obtained silver nanowire dispersion liquid (2), the average minor axis length and the average major axis length were measured. As a result, the average minor axis length was 17.2 nm and the average major axis length was 8.8 μm.
(導電膜1の作製)
 下記組成のアルコキシド化合物の溶液を60℃で1時間撹拌して均一になったことを確認した。得られたゾルゲル液の重量平均分子量(Mw)をGPC(ポリスチレン換算)で測定したところ、Mwは4,400であった。ゾルゲル溶液2.24部と上記調整された銀ナノワイヤ分散液(1)17.76部を混合し、さらに蒸留水と1-プロパノールで希釈して銀ナノワイヤ塗布液(1)を得た。得られた塗布液の溶剤比率は蒸留水:1-プロパノール=60:40であった。PET基板(厚み125μm)上にバーコート法で銀量が0.015g/m2、全固形分塗布量が0.120g/m2となるように銀ナノワイヤ塗布液(1)を塗布したのち、120℃で1分間乾燥して、銀ナノワイヤを含有する導電膜1を形成した。
(Preparation of conductive film 1)
The solution of the alkoxide compound having the following composition was stirred at 60 ° C. for 1 hour to confirm that the solution became uniform. When the weight average molecular weight (Mw) of the obtained sol-gel solution was measured by GPC (polystyrene conversion), Mw was 4,400. 2.24 parts of the sol-gel solution and 17.76 parts of the prepared silver nanowire dispersion liquid (1) were mixed and further diluted with distilled water and 1-propanol to obtain a silver nanowire coating liquid (1). The solvent ratio of the obtained coating solution was distilled water: 1-propanol = 60: 40. PET substrate (thickness 125 [mu] m) amount of silver 0.015 g / m 2 by a bar coating method on, after the total solid content in the coating solution was coated silver nanowire coating solution (1) so that 0.120 g / m 2, It dried at 120 degreeC for 1 minute, and the electrically conductive film 1 containing a silver nanowire was formed.
(アルコキシド化合物の溶液)
・テトラエトキシシラン                   5.0部
(KBE-04、信越化学工業(株)製)
・1%酢酸水溶液                     11.0部
・蒸留水                          4.0部
(Alkoxide compound solution)
・ Tetraethoxysilane 5.0 parts (KBE-04, manufactured by Shin-Etsu Chemical Co., Ltd.)
・ 1% acetic acid aqueous solution 11.0 parts ・ Distilled water 4.0 parts
(導電膜1のパターニング)
 導電膜1にフォトレジスト(TMSMR-8900LB:東京応化製)をスピンコートで塗布し、90℃で60秒間焼成した。次に、フォトマスクを用いてパターン露光(露光量:12mW/cm2、20秒)し、現像液(NMD-W:東京応化性)にて現像し、水洗、乾燥させた後に、120℃で60秒間焼成し、導電膜1上にパターニングされたフォトレジストを形成した。
 次に、銀エッチング液(SEA-2:関東化学製)に30秒浸漬後、水洗、乾燥させて、銀ナノワイヤをエッチングして、導電膜1に非導電部を形成した。その後、中性剥離液(PK-SFR8120:パーカーコーポーレーション製)を用いてフォトレジストを剥離し、その後、水洗、乾燥をさせて、櫛形電極パターン(L/S=50μm/50μm)にパターニングされた導電膜1を作製した。
(Patterning of conductive film 1)
A photoresist (TMSMR-8900LB: manufactured by Tokyo Ohka Kogyo Co., Ltd.) was applied to the conductive film 1 by spin coating and baked at 90 ° C. for 60 seconds. Next, pattern exposure was performed using a photomask (exposure amount: 12 mW / cm 2 , 20 seconds), developed with a developer (NMD-W: Tokyo Sensitivity), washed with water and dried, then at 120 ° C. A patterned photoresist was formed on the conductive film 1 by baking for 60 seconds.
Next, after being immersed in a silver etching solution (SEA-2: manufactured by Kanto Chemical Co., Inc.) for 30 seconds, washed with water and dried, the silver nanowires were etched to form a nonconductive portion in the conductive film 1. Thereafter, the photoresist is stripped using a neutral stripping solution (PK-SFR8120: manufactured by Parker Corporation), then washed with water and dried to be patterned into a comb-shaped electrode pattern (L / S = 50 μm / 50 μm). A conductive film 1 was prepared.
<サンプルNo114の作製>
 上記(導電膜の作製)において銀ナノワイヤ分散液(1)を銀ナノワイヤ分散液(2)に変更した以外は、上記手順に従って、パターニングされた導電膜2を作製した。
 次に、フイルムBの代わりに上記パターニングされた導電膜2を用いた以外は、サンプルNo101の作製と同様の手順に従って、サンプルNo114を作製し、評価を実施した。結果を表1に示す。なお、Ag量は、蛍光X線分析から、0.015g/m2であった。
<Production of sample No. 114>
A patterned conductive film 2 was prepared according to the above procedure except that the silver nanowire dispersion liquid (1) was changed to the silver nanowire dispersion liquid (2) in the above (production of conductive film).
Next, sample No. 114 was produced and evaluated according to the same procedure as that for producing sample No. 101 except that the patterned conductive film 2 was used instead of film B. The results are shown in Table 1. The amount of Ag was 0.015 g / m 2 from fluorescent X-ray analysis.
<サンプルNo115の作製>
 サンプルNo101の積層体端面に、協立化学社製8814M9を塗布し、3J/cm2のUV光を照射して硬化させ、積層体端面を封止して、サンプルNo115を作製した。なお、形成された封止層は、粘着剤層および導電フイルムの端面を覆うように配置されていた。
<Production of sample No. 115>
Sample No. 115 was produced by applying 8814M9 manufactured by Kyoritsu Chemical Co., Ltd. to the end face of the laminate of sample No. 101, irradiating and curing with 3 J / cm 2 of UV light, and sealing the end face of the laminate. In addition, the formed sealing layer was arrange | positioned so that the end surface of an adhesive layer and a conductive film might be covered.
<サンプルNo116の作製>
 サンプルNo101の積層体端面に、アサヒ化学研究所製CR-18CL-CKを塗布し、130度にて10分間オーブンに入れ硬化させ、積層体端面を封止して、サンプル116を作製した。なお、形成された封止層は、粘着剤層および導電フイルムの端面を覆うように配置されていた。
<Production of Sample No. 116>
CR-18CL-CK manufactured by Asahi Chemical Research Laboratories was applied to the end face of the laminate of Sample No. 101, cured in an oven at 130 degrees for 10 minutes, and the end face of the laminate was sealed to prepare Sample 116. In addition, the formed sealing layer was arrange | positioned so that the end surface of an adhesive layer and a conductive film might be covered.
<サンプルNo117の作製>
 Ag細線と積層体端面との距離を1cm以上から0.3cmになるように、フォトマスクの位置を調整した以外は、サンプルNo101の作製と同様の手順に従って、サンプルNo117を作製し、評価を実施した。結果を表1に示す。
<Production of Sample No. 117>
Sample No. 117 is prepared and evaluated according to the same procedure as Sample No. 101 except that the position of the photomask is adjusted so that the distance between the Ag fine wire and the end face of the laminate is from 1 cm to 0.3 cm. did. The results are shown in Table 1.
<サンプルNo118の作製>
 Ag量を5.5g/m2から0.009g/m2になるように銀塩乳剤層の処方を変更した以外は、サンプルNo101の作製と同様の手順に従って、サンプルNo118を作製し、評価を実施した。結果を表1に示す。
<Production of sample No. 118>
Except that the amount of Ag was changed formulation of a silver salt emulsion layer to consist of 5.5 g / m 2 to 0.009 g / m 2, according to the same procedure as preparation of samples No101, to prepare a sample No118, evaluation Carried out. The results are shown in Table 1.
<サンプルNo119の作製>
 Ag量を5.5g/m2から0.03g/m2になるように銀塩乳剤層の処方を変更した以外は、サンプルNo101の作製と同様の手順に従って、サンプルNo119を作製し、評価を実施した。結果を表1に示す。
<Production of Sample No. 119>
Sample No. 119 was prepared and evaluated according to the same procedure as Sample No. 101 except that the formulation of the silver salt emulsion layer was changed so that the Ag amount was changed from 5.5 g / m 2 to 0.03 g / m 2. Carried out. The results are shown in Table 1.
<サンプルNo120の作製>
 Ag量を5.5g/m2から9.2g/m2になるように銀塩乳剤層の処方を変更した以外は、サンプルNo101の作製と同様の手順に従って、サンプルNo120を作製し、各種評価を実施した。結果を表1に示す。
<Production of sample No120>
Sample No. 120 was prepared according to the same procedure as Sample No. 101 except that the formulation of the silver salt emulsion layer was changed so that the Ag amount was changed from 5.5 g / m 2 to 9.2 g / m 2 , and various evaluations were made. Carried out. The results are shown in Table 1.
<サンプルNo121の作製>
 Ag量を5.5g/m2から12g/m2になるように銀塩乳剤層の処方を変更した以外は、サンプルNo101の作製と同様の手順に従って、サンプルNo121を作製し、各種評価を実施した。結果を表1に示す。
<Preparation of sample No121>
Sample No. 121 was prepared according to the same procedure as Sample No. 101 except that the formulation of the silver salt emulsion layer was changed so that the Ag amount was changed from 5.5 g / m 2 to 12 g / m 2 , and various evaluations were performed. did. The results are shown in Table 1.
<実施例B>
<サンプルNo201の作製>
 実施例AのサンプルNo101の作製の(露光現像工程)、(張り合わせ工程)を以下の手順に変更した以外は、サンプルNo101の作製と同様の手順に従って、サンプルNo201(タッチパネル)を作製した。
<Example B>
<Production of sample No. 201>
Sample No. 201 (touch panel) was produced according to the same procedure as the production of sample No. 101 except that (exposure development process) and (bonding process) in the production of sample No. 101 of Example A were changed to the following procedure.
(露光現像工程)
 上記フイルムAの両面に、図2に示すような検出電極(第1検出電極および第2検出電極)および引き出し配線部(第1引き出し配線および第2引き出し配線)を配したフォトマスク(以後、フォトマスクX)を介し、高圧水銀ランプを光源とした平行光を用いて両面同時露光を行った。露光後、実施例Aで使用した現像液で現像し、さらに定着液(商品名:CN16X用N3X-R、富士フイルム社製)を用いて現像処理を行った。さらに、純水でリンスし、乾燥することで、両面にAg細線(金属細線)からなる電極パターンとゼラチン層とが形成されたPETフイルムを得た。ゼラチン層はAg細線間に形成されており、このときのAg細線中のAg量は、蛍光X線分析から、5.5g/m2であった。得られた配線パターン付フイルムを、フイルムCとする。
 なお、PETフイルム上に配置された第1検出電極はX方向に延びる電極で、第2検出電極はY方向に延びる電極であり、X検出電極(長さ:60mm)は15本、Y検出電極(長さ:90mm)は10本であった。
 このとき、Ag細線と積層体端面との距離は1cm以上であった。
(Exposure development process)
A photomask (hereinafter referred to as photomask) in which detection electrodes (first detection electrode and second detection electrode) and lead wiring portions (first lead wiring and second lead wiring) as shown in FIG. 2 are arranged on both surfaces of the film A. Double-sided simultaneous exposure was performed through the mask X) using parallel light using a high-pressure mercury lamp as a light source. After the exposure, development was performed with the developer used in Example A, and further development processing was performed using a fixing solution (trade name: N3X-R for CN16X, manufactured by FUJIFILM Corporation). Furthermore, by rinsing with pure water and drying, a PET film in which an electrode pattern composed of Ag fine wires (metal fine wires) and a gelatin layer were formed on both surfaces was obtained. The gelatin layer was formed between Ag fine wires, and the amount of Ag in the Ag fine wires at this time was 5.5 g / m 2 from fluorescent X-ray analysis. The obtained film with a wiring pattern is referred to as film C.
The first detection electrode arranged on the PET film is an electrode extending in the X direction, the second detection electrode is an electrode extending in the Y direction, 15 X detection electrodes (length: 60 mm), and the Y detection electrodes (Length: 90 mm) was 10.
At this time, the distance between the Ag fine wire and the end face of the laminate was 1 cm or more.
(張り合わせ工程)
 上記で得られたフイルムCの両面に3M社製OCA(#8146-2:50マイクロメートル厚)を張り合わせた。得られた積層体を略センサーサイズの0.7mm厚のソーダライムガラスと同じ大きさに外形を整え、FPC(フレキシブルプリント基板)をソニーケミカルズ社製ACF(CP906AM-25AC)で圧着接合したのちに、トップ側に上記ソーダライムガラスを貼り付け、ボトム側にバリアフイルム1を貼り合せた。
 次に、バリアフイルム上に3M社製OCA(#8146-2:50マイクロメートル厚)を貼り合せ、さらに該OCA上に液晶ディスプレイと貼り合せて、サンプルNo201(タッチパネル)を製造した。
(Lamination process)
OCA (# 8146-2: 50 micrometers thick) manufactured by 3M was bonded to both sides of the film C obtained above. After adjusting the outer shape of the resulting laminate to approximately the same size as a 0.7mm thick soda lime glass with a sensor size, FPC (Flexible Printed Circuit Board) was pressure bonded with Sony Chemicals ACF (CP906AM-25AC) The soda lime glass was pasted on the top side, and the barrier film 1 was pasted on the bottom side.
Next, 3M OCA (# 8146-2: 50 micrometer thick) was bonded onto the barrier film, and further bonded to a liquid crystal display on the OCA to produce Sample No. 201 (touch panel).
(評価(タッチパネルの動作性))
 作製したタッチパネルを、85℃85%RHの環境下で240時間静置し、室温環境下に取り出した直後にタッチパネルの動作性を確認した。評価は3サンプル作製し、5人の被験者で全数動作チェックを行い、下記評価基準に基づき点数付けを行い、得られた各人の点数を算術平均して得られる平均点の小数第一位を切り捨て、評価点とした。結果を表1に記載した。
-タッチパネルの動作性の評価-
 5  高速のフリック動作などに問題なく追従する
 4  高速のフリック動作などにほぼ問題なく追従する
 3  外周近辺で若干の動作遅れを感じるが実用上問題ない
 2  パネル全体で若干の動作遅れ、または誤動作が発生するなど、実用上問題ある
 1  誤動作がひどく、実用上問題ある
(Evaluation (operability of touch panel))
The prepared touch panel was allowed to stand for 240 hours in an environment of 85 ° C. and 85% RH, and the operability of the touch panel was confirmed immediately after being taken out in a room temperature environment. Three samples were prepared for evaluation, and all subjects were checked for movement by 5 subjects. Scores were assigned based on the following evaluation criteria, and the first decimal place of the average score obtained by arithmetically averaging the scores of each person was obtained. The score was rounded down. The results are shown in Table 1.
-Evaluation of touch panel operability-
5 Follow the high-speed flick operation without any problems 4 Follow the high-speed flick operation without any problems 3 There is a slight operational delay near the outer periphery, but there is no practical problem 2 There is a slight operational delay or malfunction in the entire panel There is a problem in practical use such as the occurrence. 1 Malfunction is severe and there is a problem in practical use.
(評価(全光線透過率、ヘイズの測定))
 サンプルNo201(タッチパネル)において、液晶ディスプレイの代わりに、きもと社製ハードコートフイルム(G1SBF:50マイクロメートル厚)を使用した以外は、同様の手順に従って、全光線透過率およびヘイズ測定用のサンプルを作製し、全光線透過率およびヘイズを測定した。また、以下、後述するサンプルNo202~221に関しても、同様の測定を行った。
 なお、このときの測定機は、コニカミノルタ製CM-3600Aを使用した。
(Evaluation (total light transmittance, measurement of haze))
In sample No. 201 (touch panel), a sample for measuring the total light transmittance and haze was prepared according to the same procedure except that a hard coat film (G1SBF: 50 μm thickness) manufactured by Kimoto was used instead of the liquid crystal display. The total light transmittance and haze were measured. Further, the same measurement was performed for sample Nos. 202 to 221 described later.
The measuring machine used here was CM-3600A manufactured by Konica Minolta.
<サンプルNo202の作製>
 バリアフイルム1の代わりに、上記バリアフイルム2を使用した以外は、サンプルNo201の作製と同様の手順に従って、サンプルNo202を作製し、評価を実施した。結果を表1に示す。
<Production of sample No. 202>
Sample No. 202 was prepared and evaluated according to the same procedure as Sample No. 201 except that the above barrier film 2 was used instead of the barrier film 1. The results are shown in Table 1.
<サンプルNo203の作製>
 バリアフイルム1の代わりに、上記バリアフイルム3を使用した以外は、サンプルNo201の作製と同様の手順に従って、サンプルNo203を作製し、評価を実施した。結果を表1に示す。
<Production of sample No. 203>
Sample No. 203 was produced and evaluated according to the same procedure as that for producing sample No. 201 except that the above-described barrier film 3 was used instead of the barrier film 1. The results are shown in Table 1.
<サンプルNo204の作製>
 バリアフイルム1の代わりに、上記バリアフイルム4を使用した以外は、サンプルNo201の作製と同様の手順に従って、サンプルNo204を作製し、評価を実施した。結果を表1に示す。
<Production of sample No. 204>
Sample No. 204 was produced and evaluated in accordance with the same procedure as that for production of sample No. 201 except that the above-described barrier film 4 was used instead of the barrier film 1. The results are shown in Table 1.
<サンプルNo205の作製>
 バリアフイルム1の代わりに、三菱樹脂製テックバリアHX(12マイクロメートル厚)を使用した以外は、サンプルNo201の作製と同様の手順に従って、サンプルNo205を作製し、評価を実施した。結果を表1に示す。
<Production of sample No. 205>
Sample No. 205 was prepared and evaluated in accordance with the same procedure as Sample No. 201 except that Mitsubishi Resin Tech Barrier HX (12 μm thick) was used instead of Barrier Film 1. The results are shown in Table 1.
<サンプルNo206の作製>
 バリアフイルム1の代わりに、三菱樹脂製テックバリアL(12マイクロメートル厚)を使用した以外は、サンプルNo201の作製と同様の手順に従って、サンプルNo206を作製し、評価を実施した。結果を表1に示す。
<Production of sample No. 206>
Sample No206 was produced and evaluated in accordance with the same procedure as that for producing Sample No201, except that Mitsubishi Resin Tech Barrier L (thickness: 12 micrometers) was used instead of Barrier Film 1. The results are shown in Table 1.
<サンプルNo207の作製>
 バリアフイルム1の代わりに、日本ゼオン社製ゼオノアフイルム(40マイクロメートル厚)を使用した以外は、サンプルNo201の作製と同様の手順に従って、サンプルNo207を作製し、評価を実施した。結果を表1に示す。
<Production of sample No. 207>
Sample No. 207 was produced and evaluated in accordance with the same procedure as that for producing Sample No. 201 except that Zeonoa Film (40 micrometer thickness) manufactured by Nippon Zeon Co., Ltd. was used instead of Barrier Film 1. The results are shown in Table 1.
<サンプルNo208の作製>
 バリアフイルム1の代わりに、きもと社製ハードコートフイルム(G1SBF:50マイクロメートル厚)を使用した以外は、サンプルNo201の作製と同様の手順に従って、サンプルNo208を作製し、評価を実施した。結果を表1に示す。
<Production of sample No. 208>
Sample No208 was prepared and evaluated in accordance with the same procedure as Sample No201 except that a hard coat film (G1SBF: 50 μm thick) manufactured by Kimoto Co. was used instead of barrier film 1. The results are shown in Table 1.
<サンプルNo209の作製>
 バリアフイルム1の代わりに、JSR社製アートンフイルム(40マイクロメートル厚)を使用した以外は、サンプルNo201の作製と同様の手順に従って、サンプルNo209を作製し、評価を実施した。結果を表1に示す。
<Production of sample No. 209>
Sample No. 209 was prepared and evaluated in accordance with the same procedure as Sample No. 201 except that JSR Arton Film (40 micrometer thickness) was used instead of Barrier Film 1. The results are shown in Table 1.
<サンプルNo210の作製>
 バリアフイルム1の代わりに、日本ゼオン社製ゼオノアフイルム(100マイクロメートル厚)を使用した以外は、サンプルNo201の作製と同様の手順に従って、サンプルNo210を作製し、評価を実施した。結果を表1に示す。
<Production of sample No. 210>
Sample No210 was produced and evaluated according to the same procedure as that for producing Sample No201 except that Zeonoa Film (100 micrometer thickness) manufactured by ZEON Corporation was used instead of Barrier Film 1. The results are shown in Table 1.
<サンプルNo211の作製>
 フイルムBの代わりに、PET基板の両面上に上記フォトマスクXを介し、Agを蒸着することで作製したAg蒸着フイルムを使用した以外は、サンプルNo201の作製と同様の手順に従って、サンプルNo211を作製し、評価を実施した。結果を表1に示す。なお、Ag量は、蛍光X線分析から、1.0g/m2であった。
<Production of sample No211>
Instead of film B, sample No. 211 is prepared according to the same procedure as sample No. 201 except that an Ag vapor-deposited film prepared by vapor-depositing Ag is deposited on both sides of the PET substrate via the above photomask X. And evaluated. The results are shown in Table 1. The amount of Ag was 1.0 g / m 2 from fluorescent X-ray analysis.
<サンプルNo212の作製>
 フイルムBの代わりに、PET基板の両面上に上記フォトマスクXを介し、Agペースト(ドータイトFA-401CA、藤倉化成製)をスクリーン印刷し、100℃で30分焼成することで作製したAgペースト付きフイルムを使用した以外は、サンプルNo201の作製と同様の手順に従って、サンプルNo212を作製し、評価を実施した。結果を表1に示す。なお、Ag量は、蛍光X線分析から、9.3g/m2であった。
<Production of sample No. 212>
Instead of film B, Ag paste (Dotite FA-401CA, manufactured by Fujikura Kasei Co., Ltd.) is screen-printed on both sides of the PET substrate via the above photomask X, and then fired at 100 ° C. for 30 minutes. Sample No. 212 was produced and evaluated according to the same procedure as that for producing sample No. 201 except that the film was used. The results are shown in Table 1. The amount of Ag was 9.3 g / m 2 from fluorescent X-ray analysis.
<サンプルNo213の作製>
 フイルムBの代わりに、後述するパターニングされた導電膜3を用いた以外は、サンプルNo201の作製と同様の手順に従って、サンプルNo213を作製し、評価を実施した。結果を表1に示す。なお、Ag量は、蛍光X線分析から、0.015g/m2であった。
<Production of Sample No. 213>
A sample No. 213 was produced and evaluated according to the same procedure as the production of the sample No. 201 except that the patterned conductive film 3 described later was used instead of the film B. The results are shown in Table 1. The amount of Ag was 0.015 g / m 2 from fluorescent X-ray analysis.
(導電膜3の作製)
 PET基板(厚み125μm)の両面にバーコート法で銀量が0.015g/m2、全固形分塗布量が0.120g/m2となるように実施例Aで製造した銀ナノワイヤ塗布液(1)を塗布したのち、120℃で1分間乾燥して、銀ナノワイヤを含有する導電膜3を形成した。
(Preparation of conductive film 3)
Silver nanowires coating liquid silver amount bar coating method on both surfaces 0.015 g / m 2, the total solid content coating amount is prepared in Example A such that 0.120 g / m 2 of PET substrate (thickness 125 [mu] m) ( After applying 1), it was dried at 120 ° C. for 1 minute to form a conductive film 3 containing silver nanowires.
(導電膜3のパターニング)
 導電膜1にフォトレジスト(TMSMR-8900LB:東京応化製)をスピンコートで塗布し、90℃で60秒間焼成した。次に、フォトマスクXを用いてパターン露光(露光量:12mW/cm2、20秒)し、現像液(NMD-W:東京応化性)にて現像し、水洗、乾燥させた後に、120℃で60秒間焼成し、導電膜3上にパターニングされたフォトレジストを形成した。
 次に、銀エッチング液(SEA-2:関東化学製)に30秒浸漬後、水洗、乾燥させて、銀ナノワイヤをエッチングして、導電膜1に非導電部を形成した。その後、中性剥離液(PK-SFR8120:パーカーコーポーレーション製)を用いてフォトレジストを剥離し、その後、水洗、乾燥をさせて、パターニングされた導電膜3を作製した。
(Patterning of conductive film 3)
A photoresist (TMSMR-8900LB: manufactured by Tokyo Ohka Kogyo Co., Ltd.) was applied to the conductive film 1 by spin coating and baked at 90 ° C. for 60 seconds. Next, pattern exposure was performed using the photomask X (exposure amount: 12 mW / cm 2 , 20 seconds), development was performed with a developer (NMD-W: Tokyo Sensitivity), water washing and drying, and then 120 ° C. And baked for 60 seconds to form a patterned photoresist on the conductive film 3.
Next, after being immersed in a silver etching solution (SEA-2: manufactured by Kanto Chemical Co., Inc.) for 30 seconds, washed with water and dried, the silver nanowires were etched to form a nonconductive portion in the conductive film 1. Thereafter, the photoresist was stripped using a neutral stripping solution (PK-SFR8120: manufactured by Parker Corporation), and then washed with water and dried to prepare a patterned conductive film 3.
<サンプルNo214の作製>
 上記(導電膜3の作製)において銀ナノワイヤ分散液(1)を銀ナノワイヤ分散液(2)に変更した以外は、上記手順に従って、パターニングされた導電膜4を作製した。
 次に、フイルムBの代わりに上記パターニングされた導電膜4を用いた以外は、サンプルNo201の作製と同様の手順に従って、サンプルNo214を作製し、評価を実施した。結果を表1に示す。なお、Ag量は、蛍光X線分析から、0.015g/m2であった。
<Production of sample No. 214>
A patterned conductive film 4 was prepared according to the above procedure except that the silver nanowire dispersion liquid (1) was changed to the silver nanowire dispersion liquid (2) in the above (production of the conductive film 3).
Next, sample No. 214 was produced and evaluated according to the same procedure as the production of sample No. 201 except that the patterned conductive film 4 was used instead of film B. The results are shown in Table 1. The amount of Ag was 0.015 g / m 2 from fluorescent X-ray analysis.
<サンプルNo215の作製>
 サンプルNo201の積層体端面に、協立化学社製8814M9を塗布し、3J/cm2のUV光を照射して硬化させ、積層体端面を封止して、サンプルNo215を作製した。
<Production of sample No. 215>
Sample No. 215 was prepared by applying 8814M9 manufactured by Kyoritsu Chemical Co., Ltd. to the laminate end face of sample No. 201, irradiating it with UV light of 3 J / cm 2 and sealing the end face of the laminate.
<サンプルNo216の作製>
 サンプルNo201の積層体端面に、アサヒ化学研究所製CR-18CL-CKを塗布し、130度にて10分間オーブンに入れ硬化させ、積層体端面を封止して、サンプル216を作製した。
<Production of sample No. 216>
CR-18CL-CK manufactured by Asahi Chemical Research Laboratories was applied to the end face of the laminate of Sample No. 201, cured in an oven at 130 ° C. for 10 minutes, and the end face of the laminate was sealed to prepare Sample 216.
<サンプルNo217の作製>
 Ag細線と積層体端面との距離を1cm以上から0.3cm以上になるように、フォトマスクXの位置を調整した以外は、サンプルNo201の作製と同様の手順に従って、サンプルNo217を作製し、評価を実施した。結果を表1に示す。
<Production of sample No. 217>
Sample No. 217 was prepared and evaluated according to the same procedure as Sample No. 201 except that the position of the photomask X was adjusted so that the distance between the Ag fine wire and the end face of the laminate was 1 cm or more to 0.3 cm or more. Carried out. The results are shown in Table 1.
<サンプルNo218の作製>
 Ag量を5.5g/m2から0.009g/m2になるように銀塩乳剤層の処方を変更した以外は、サンプルNo201の作製と同様の手順に従って、サンプルNo218を作製し、評価を実施した。結果を表1に示す。
<Production of sample No. 218>
Except that the amount of Ag was changed formulation of a silver salt emulsion layer to consist of 5.5 g / m 2 to 0.009 g / m 2, according to the same procedure as preparation of samples No201, to prepare a sample No218, evaluation Carried out. The results are shown in Table 1.
<サンプルNo219の作製>
 Ag量を5.5g/m2から0.03g/m2になるように銀塩乳剤層の処方を変更した以外は、サンプルNo201の作製と同様の手順に従って、サンプルNo219を作製し、評価を実施した。結果を表1に示す。
<Production of Sample No. 219>
Sample No. 219 was prepared and evaluated in accordance with the same procedure as Sample No. 201 except that the formulation of the silver salt emulsion layer was changed so that the Ag amount was changed from 5.5 g / m 2 to 0.03 g / m 2. Carried out. The results are shown in Table 1.
<サンプルNo220の作製>
 Ag量を5.5g/m2から9.2g/m2になるように銀塩乳剤層の処方を変更した以外は、サンプルNo201の作製と同様の手順に従って、サンプルNo220を作製し、各種評価を実施した。結果を表1に示す。
<Production of Sample No. 220>
Sample No. 220 was prepared according to the same procedure as Sample No. 201 except that the formulation of the silver salt emulsion layer was changed so that the Ag amount was changed from 5.5 g / m 2 to 9.2 g / m 2 , and various evaluations were made. Carried out. The results are shown in Table 1.
<サンプルNo221の作製>
 Ag量を5.5g/m2から12g/m2になるように銀塩乳剤層の処方を変更した以外は、サンプルNo201の作製と同様の手順に従って、サンプルNo221を作製し、各種評価を実施した。結果を表1に示す。
<Production of Sample No. 221>
Sample No. 221 was prepared according to the same procedure as Sample No. 201 except that the formulation of the silver salt emulsion layer was changed so that the Ag amount was changed from 5.5 g / m 2 to 12 g / m 2 , and various evaluations were performed. did. The results are shown in Table 1.
 表1中、「第2透明保護基板」欄において、「交互積層」とは有機層と無機層とを少なくとも1層以上有するバリア性積層体を意図する。
 「マイグレーション」欄はサンプルNo101~121を用いたマイグレーション評価の結果を、「タッチパネルの動作性」欄はサンプルNo201~221を用いたタッチパネルの動作性評価の結果を示す。
 「封止層」欄は、積層体端面に封止層を使用している場合を「有り」、使用していない場合を「-」と表記する。
 また、表1中「*」は、1×10-6g/m2・24h(40℃、90%RH)未満であることを意図する。
In Table 1, in the “second transparent protective substrate” column, “alternate lamination” means a barrier laminate having at least one organic layer and inorganic layer.
The “migration” column shows the result of migration evaluation using samples No. 101 to 121, and the “touch panel operability” column shows the result of touch panel operability evaluation using samples No. 201 to 221.
In the “sealing layer” column, a case where the sealing layer is used on the end face of the laminate is indicated as “present”, and a case where the sealing layer is not used is indicated as “−”.
Further, in Table 1, "*" is, 1 × 10 -6 g / m 2 · 24h (40 ℃, RH 90%) is intended to be less than.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の結果から、本発明のタッチパネル用積層体は、水蒸気や他のガス成分の浸入が軽減されているため、マイグレーション発生が抑制され、さらに、高温高湿環境下に長時間放置された後のタッチパネルとしての動作性も非常に良好であることが確認された。
 特に、水蒸気透過度が1×10-4g/m2・24h(40℃、90%RH)以下の場合、より効果が優れることが確認された。
 上記のように、交互積層数を増す毎に、水蒸気透過度が抑えられ、マイグレーションなどの性能は向上する。しかし、実用上問題ないものの、積層体としての全光線透過率が減少、およびヘイズが上昇してしまうこともわかった。
 また、封止層を設けた場合、より効果が優れることが確認された。
 一方、所定の水蒸気透過度、または、金属量を満たしていないサンプルNo105および205~No110および210、サンプルNo118および218、並びに、サンプルNo121および221では、所定の効果が得られなかった。
From the results in Table 1, the touch panel laminate of the present invention has reduced migration of water vapor and other gas components, so that the occurrence of migration is suppressed, and further, after being left in a high temperature and high humidity environment for a long time. The operability as a touch panel was confirmed to be very good.
In particular, when the water vapor permeability is 1 × 10 −4 g / m 2 · 24 h (40 ° C., 90% RH) or less, it was confirmed that the effect is more excellent.
As described above, every time the number of alternating layers is increased, the water vapor permeability is suppressed, and the performance such as migration is improved. However, it was also found that although there is no practical problem, the total light transmittance as a laminate decreases and haze increases.
Moreover, when the sealing layer was provided, it was confirmed that an effect is more excellent.
On the other hand, in Samples Nos. 105 and 205 to Nos. 110 and 210, Samples Nos. 118 and 218, and Samples Nos. 121 and 221 that do not satisfy the predetermined water vapor transmission rate or metal amount, the predetermined effects were not obtained.
<実施例C>
 実施例Bで使用したフイルムC中の第1検出電極および第2検出電極がITOの薄膜で形成されたフイルムDをフイルムCの代わりに使用した以外は、サンプルNo201の作製と同様の手順に従って、サンプルNo301(タッチパネル)を作製した。
 なお、フイルムD中の第1検出電極および第2検出電極に接続された引き出し配線部(第1引き出し配線および第2引き出し配線)は、フイルムCと同様に、Ag細線により構成されている。
 得られたサンプルNo301を、60℃90%RHの環境下で100時間駆動し続け、その後動作を確認したところ、第1検出電極および第2検出電極を構成するITOの腐食はなく、良好に動作することが確認された。
 なお、上述したサンプルNo202~204、211~217、219~220のそれぞれの第1検出電極および第2検出電極をITOの薄膜に変更してサンプルを作製し、上記サンプルNo301と同様の評価を実施したところ、各サンプルにおいて第1検出電極および第2検出電極を構成するITOの腐食はなく、良好に動作することが確認された。
<Example C>
Except that the film D in which the first detection electrode and the second detection electrode in the film C used in Example B were formed of an ITO thin film was used instead of the film C, the same procedure as in the preparation of the sample No 201 was followed. Sample No. 301 (touch panel) was produced.
Note that the lead-out wiring portion (first lead-out wiring and second lead-out wiring) connected to the first detection electrode and the second detection electrode in the film D is composed of an Ag fine wire, like the film C.
The obtained sample No. 301 was continuously driven for 100 hours in an environment of 60 ° C. and 90% RH, and after confirming the operation, there was no corrosion of the ITO constituting the first detection electrode and the second detection electrode, and the operation was good. Confirmed to do.
Samples Nos. 202 to 204, 211 to 217, and 219 to 220 described above were prepared by changing the first detection electrode and the second detection electrode to an ITO thin film, and the same evaluation as the sample No. 301 was performed. As a result, it was confirmed that the ITO constituting the first detection electrode and the second detection electrode did not corrode in each sample and operated well.
<実施例D>
 実施例CのサンプルNo301において、基板の片面にITOの薄膜で形成された検出電極部(第1検出電極および第2検出電極)、および、Ag細線により構成された引き出し配線(第1引き出し配線および第2引き出し配線)を有する電極付き基板を2枚用意し、検出電極部同士が対向するように粘着剤層を介して2枚の電極付き基板を貼り合せて得られる導電フイルムを使用した以外は、サンプルNo301と同様の手順に従って、サンプルNo401(タッチパネル)を作製し、同様の評価を行った。サンプルNo401においては、60℃90%RHの環境下で100時間駆動した後も、第1検出電極および第2検出電極を構成するITOの腐食はなく、良好に動作することが確認された。
<Example D>
In sample No. 301 of Example C, the detection electrode portion (first detection electrode and second detection electrode) formed of an ITO thin film on one surface of the substrate, and the extraction wiring (first extraction wiring and Except for preparing two substrates with electrodes having (second lead-out wiring) and using a conductive film obtained by bonding two substrates with electrodes through an adhesive layer so that the detection electrode portions face each other. Sample No. 401 (touch panel) was produced according to the same procedure as sample No. 301, and the same evaluation was performed. In sample No. 401, even after driving for 100 hours in an environment of 60 ° C. and 90% RH, it was confirmed that the ITO constituting the first detection electrode and the second detection electrode did not corrode and operated well.
1,10,100  タッチパネル用積層体
2  第1透明保護基板
3  第1粘着剤層
4,14,140,240  導電フイルム
5  第2粘着剤層
6  第2透明保護基板
10  タッチパネル
11  表示装置
12  封止層
22  基板
24,24a  第1検出電極
26  第1引き出し配線
28,28a  第2検出電極
30  第2引き出し配線
32  フレキシブルプリント配線板
34  金属細線
36  格子
38  第2基板
40  粘着剤層
42  第1基板
330  有機成膜装置
332  無機成膜装置
336  塗布手段
338  乾燥手段
340  光照射手段
342,364  回転軸
346,392  巻取り軸
348,350  搬送ローラ対
356  供給室
358  成膜室
360  巻取り室
368,384a,384b,390  ガイドローラ
370,373,376  真空排気手段
372,374  隔壁
380  ドラム
382  シャワー電極
386  高周波電源
387  ガス供給手段
 
1, 10, 100 Touch panel laminate 2 First transparent protective substrate 3 First adhesive layer 4, 14, 140, 240 Conductive film 5 Second adhesive layer 6 Second transparent protective substrate 10 Touch panel 11 Display device 12 Sealing Layer 22 Substrate 24, 24a First detection electrode 26 First extraction wiring 28, 28a Second detection electrode 30 Second extraction wiring 32 Flexible printed wiring board 34 Metal wire 36 Grid 38 Second substrate 40 Adhesive layer 42 First substrate 330 Organic film forming apparatus 332 Inorganic film forming apparatus 336 Application means 338 Drying means 340 Light irradiation means 342 and 364 Rotating shafts 346 and 392 Winding shafts 348 and 350 Conveying roller pair 356 Supply chamber 358 Film forming chamber 360 Winding chambers 368 and 384a , 384b, 390 Guide rollers 370, 373, 376 Vacuum exhaust means 72,374 septum 380 drum 382 showers electrode 386 high-frequency power source 387 gas supply means

Claims (9)

  1.  表示装置の視認側に配置されるタッチパネル用積層体であって、
     第1透明保護基板と、第1粘着剤層と、金属細線を少なくとも有する導電フイルムと、第2粘着剤層と、第2透明保護基板とをこの順に備え、
     前記表示装置上に配置される際に、前記第2透明保護基板が前記表示装置側に位置し、
     前記第2透明保護基板が、有機層と無機層とをそれぞれ少なくとも1層以上有し、
     前記第2透明保護基板の水蒸気透過度が0.001g/m2・24h(40℃、90%RH)以下であり、
     前記金属細線中に含まれる単位面積当たりの金属量が0.010~10g/m2である、タッチパネル用積層体。
    A laminated body for a touch panel arranged on the viewing side of the display device,
    A first transparent protective substrate, a first pressure-sensitive adhesive layer, a conductive film having at least a fine metal wire, a second pressure-sensitive adhesive layer, and a second transparent protective substrate are provided in this order.
    When disposed on the display device, the second transparent protective substrate is located on the display device side,
    The second transparent protective substrate has at least one or more organic layers and inorganic layers,
    The water vapor permeability of the second transparent protective substrate is 0.001 g / m 2 · 24 h (40 ° C., 90% RH) or less,
    A laminate for a touch panel, wherein an amount of metal per unit area contained in the metal fine wire is 0.010 to 10 g / m 2 .
  2.  前記導電フイルムが、基板と、前記基板の両面に配置された金属細線とを少なくとも有する、請求項1に記載のタッチパネル用積層体。 The laminate for a touch panel according to claim 1, wherein the conductive film includes at least a substrate and fine metal wires disposed on both surfaces of the substrate.
  3.  前記導電フイルムが、基板と前記基板の片面に配置された金属細線とを少なくとも有する金属細線付き基板同士を、粘着剤層を介して貼り合せてなる、請求項1に記載のタッチパネル用積層体。 The laminate for a touch panel according to claim 1, wherein the conductive film is formed by bonding substrates with metal wires having at least a substrate and metal wires arranged on one side of the substrate via an adhesive layer.
  4.  前記第1透明保護基板が、ガラス基板である、請求項1~3のいずれか1項に記載のタッチパネル用積層体。 4. The touch panel laminate according to claim 1, wherein the first transparent protective substrate is a glass substrate.
  5.  前記第2透明保護基板が、樹脂基板と前記樹脂基板上に配置されたバリア層とを有し、
     前記バリア層が、少なくとも1層の無機層と少なくとも1層の有機層とが交互に積層された積層構造を有する、請求項1~4のいずれか1項に記載のタッチパネル用積層体。
    The second transparent protective substrate has a resin substrate and a barrier layer disposed on the resin substrate,
    The touch panel laminate according to any one of claims 1 to 4, wherein the barrier layer has a laminated structure in which at least one inorganic layer and at least one organic layer are alternately laminated.
  6.  前記無機層の層数および前記有機層の層数がそれぞれ1~6である、請求項5に記載のタッチパネル用積層体。 The laminate for a touch panel according to claim 5, wherein the number of the inorganic layers and the number of the organic layers are 1 to 6, respectively.
  7.  全光線透過率が80%~90%で、ヘイズが0.3%~3.5%である、請求項1~6のいずれか1項に記載のタッチパネル用積層体。 7. The touch panel laminate according to claim 1, wherein the total light transmittance is 80% to 90% and the haze is 0.3% to 3.5%.
  8.  前記第1透明保護基板と前記第2透明保護基板との間から露出している前記第1粘着剤層、前記導電フイルム、および、前記第2粘着剤層の周縁部の表面上に封止層が配置される、請求項1~7のいずれか1項に記載のタッチパネル用積層体。 The first adhesive layer exposed from between the first transparent protective substrate and the second transparent protective substrate, the conductive film, and a sealing layer on the peripheral surface of the second adhesive layer The laminate for a touch panel according to any one of claims 1 to 7, wherein is disposed.
  9.  表示装置と、請求項1~8のいずれか1項に記載のタッチパネル用積層体とを有するタッチパネル。
     
    A touch panel having a display device and the laminate for a touch panel according to any one of claims 1 to 8.
PCT/JP2014/074440 2013-09-30 2014-09-16 Laminate for touch panels, and touch panel WO2015045965A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-205587 2013-09-30
JP2013205587A JP2015069585A (en) 2013-09-30 2013-09-30 Laminate for touch panel and touch panel

Publications (1)

Publication Number Publication Date
WO2015045965A1 true WO2015045965A1 (en) 2015-04-02

Family

ID=52743106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/074440 WO2015045965A1 (en) 2013-09-30 2014-09-16 Laminate for touch panels, and touch panel

Country Status (2)

Country Link
JP (1) JP2015069585A (en)
WO (1) WO2015045965A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110235091A (en) * 2017-01-19 2019-09-13 日东电工株式会社 Touch panel film laminated body
CN113573886A (en) * 2019-04-02 2021-10-29 凸版印刷株式会社 Transparent conductive gas barrier laminate, method for producing same, and apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017057584A1 (en) 2015-09-30 2017-04-06 富士フイルム株式会社 Composition for electrode protective film of capacitive input device, electrode protective film for capacitive input device, transfer film, laminate, capacitive input device, and image display device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006072694A (en) * 2004-09-02 2006-03-16 Matsushita Electric Ind Co Ltd Touch panel
JP2009111162A (en) * 2007-10-30 2009-05-21 Fujifilm Corp Method of manufacturing silicon nitride film, gas barrier film and thin-film element
JP2009133000A (en) * 2007-10-30 2009-06-18 Fujifilm Corp Silicon-nitrogen compound film, and gas-barrier film and thin-film device using the silicon-nitrogen compound film
WO2011046011A1 (en) * 2009-10-14 2011-04-21 コニカミノルタホールディングス株式会社 Transparent conductor film with barrier properties, manufacturing method thereof, and organic electroluminescence element and organic solar cell using the transparent conductor film with barrier properties
JP2012206512A (en) * 2011-03-15 2012-10-25 Mitsubishi Plastics Inc Laminated moisture proof film
WO2013141275A1 (en) * 2012-03-23 2013-09-26 富士フイルム株式会社 Transparent conductive laminate and touch panel

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006072694A (en) * 2004-09-02 2006-03-16 Matsushita Electric Ind Co Ltd Touch panel
JP2009111162A (en) * 2007-10-30 2009-05-21 Fujifilm Corp Method of manufacturing silicon nitride film, gas barrier film and thin-film element
JP2009133000A (en) * 2007-10-30 2009-06-18 Fujifilm Corp Silicon-nitrogen compound film, and gas-barrier film and thin-film device using the silicon-nitrogen compound film
WO2011046011A1 (en) * 2009-10-14 2011-04-21 コニカミノルタホールディングス株式会社 Transparent conductor film with barrier properties, manufacturing method thereof, and organic electroluminescence element and organic solar cell using the transparent conductor film with barrier properties
JP2012206512A (en) * 2011-03-15 2012-10-25 Mitsubishi Plastics Inc Laminated moisture proof film
WO2013141275A1 (en) * 2012-03-23 2013-09-26 富士フイルム株式会社 Transparent conductive laminate and touch panel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110235091A (en) * 2017-01-19 2019-09-13 日东电工株式会社 Touch panel film laminated body
CN113573886A (en) * 2019-04-02 2021-10-29 凸版印刷株式会社 Transparent conductive gas barrier laminate, method for producing same, and apparatus
EP3950314A4 (en) * 2019-04-02 2022-05-04 Toppan Printing Co., Ltd. Transparent conductive gas barrier multilayer body, method for producing same, and device

Also Published As

Publication number Publication date
JP2015069585A (en) 2015-04-13

Similar Documents

Publication Publication Date Title
US10133414B2 (en) Layered body for touch panel, and touch panel
JP5827749B2 (en) Capacitive touch panel, method for manufacturing the same, and input device
CN110650842B (en) Composite member and device
CN109564488B (en) Conductive film and touch panel
TW201241691A (en) Resistor film-type multi-touch panel and electrode sheet used therein
US10656772B2 (en) Wiring and touch panel sensor
JP6131165B2 (en) Laminate for touch panel
WO2015045408A1 (en) Touch panel
US20160370901A1 (en) Sheet-like conductor and touch panel using same
TW201821264A (en) Laminate for touch panels, flexible device and organic electroluminescent display device
WO2017010521A1 (en) Transparent electrode film, dimming element, and method for manufacturing transparent electrode film
WO2015045965A1 (en) Laminate for touch panels, and touch panel
TWI595615B (en) Touch panel
JP6846984B2 (en) Transparent conductive film and image display device
JP6235993B2 (en) Film material and method for producing conductive material
TW201814730A (en) Conductive film, touch panel, photomask, imprint template, laminate for forming a conductive film, method for producing a conductive film, and method for manufacturing an electronic device
JP6496027B2 (en) Laminate for touch panel
JP2023076952A (en) Conductive member for touch panel and touch panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14848155

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14848155

Country of ref document: EP

Kind code of ref document: A1