WO2015045833A1 - 半導体装置とその製造方法 - Google Patents

半導体装置とその製造方法 Download PDF

Info

Publication number
WO2015045833A1
WO2015045833A1 PCT/JP2014/073677 JP2014073677W WO2015045833A1 WO 2015045833 A1 WO2015045833 A1 WO 2015045833A1 JP 2014073677 W JP2014073677 W JP 2014073677W WO 2015045833 A1 WO2015045833 A1 WO 2015045833A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor layer
compound semiconductor
type
layer
semiconductor device
Prior art date
Application number
PCT/JP2014/073677
Other languages
English (en)
French (fr)
Inventor
将一 兼近
誠 桑原
上田 博之
富田 英幹
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to US14/911,680 priority Critical patent/US20160197174A1/en
Priority to EP14848960.2A priority patent/EP3054477A4/en
Priority to CN201480053831.3A priority patent/CN105593979A/zh
Publication of WO2015045833A1 publication Critical patent/WO2015045833A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7782Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET
    • H01L29/7783Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET using III-V semiconductor material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1066Gate region of field-effect devices with PN junction gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/30Semiconductor bodies ; Multistep manufacturing processes therefor characterised by physical imperfections; having polished or roughened surface
    • H01L29/34Semiconductor bodies ; Multistep manufacturing processes therefor characterised by physical imperfections; having polished or roughened surface the imperfections being on the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7788Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02502Layer structure consisting of two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0646PN junctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds

Definitions

  • the present specification discloses a technique related to a semiconductor device having a heterojunction and a manufacturing method thereof.
  • Patent Document 1 A semiconductor device using a two-dimensional electron gas layer formed in a heterojunction as a channel is known.
  • a semiconductor device of Patent Document 1 a p-type semiconductor layer is provided on part of the surface of a semiconductor layer having a heterojunction surface. Further, an n-type semiconductor layer is provided on the surface of the p-type semiconductor layer, and a gate electrode is provided on the surface of the n-type semiconductor layer.
  • the technique disclosed in this specification is characterized in that a high-resistance p-type semiconductor layer is provided between the p-type semiconductor layer and the gate electrode.
  • the high-resistance p-type semiconductor layer can suppress a gate current from flowing when a positive voltage is applied to the gate electrode.
  • the semiconductor device disclosed in this specification since a pn junction surface does not exist below the gate electrode, responsiveness when a positive voltage is applied to the gate electrode is good. Therefore, the semiconductor device disclosed in this specification is suitable for high-speed switching operation.
  • a semiconductor device disclosed in this specification includes a first compound semiconductor layer, a second compound semiconductor layer provided on the first compound semiconductor layer, and having a band gap larger than that of the first compound semiconductor layer, and a second compound A p-type third compound semiconductor layer provided on a part of the semiconductor layer, and a p-type fourth compound provided on the third compound semiconductor layer and having a higher resistance than the third compound semiconductor layer A semiconductor layer; and a gate electrode provided on the fourth compound semiconductor layer.
  • a method for manufacturing the semiconductor device includes a first step of forming a second compound semiconductor layer having a band gap larger than that of the first compound semiconductor layer on the first compound semiconductor layer, and a p-type in a part of the second compound semiconductor layer.
  • Sectional drawing of the semiconductor device of 1st Example is shown.
  • the manufacturing process of the 1st manufacturing method of a semiconductor device is shown.
  • the manufacturing process of the 1st manufacturing method of a semiconductor device is shown.
  • the manufacturing process of the 1st manufacturing method of a semiconductor device is shown.
  • the manufacturing process of the 2nd manufacturing method of a semiconductor device is shown.
  • the manufacturing process of the 2nd manufacturing method of a semiconductor device is shown.
  • Sectional drawing of the semiconductor device of 2nd Example is shown.
  • the semiconductor device disclosed in this specification may include a first compound semiconductor layer, a second compound semiconductor layer, a p-type third compound semiconductor layer, a p-type fourth compound semiconductor layer, and a gate electrode.
  • the second compound semiconductor layer is provided on the first compound semiconductor layer, and may have a larger band gap than the first compound semiconductor layer.
  • the third compound semiconductor layer may be provided in a part on the second compound semiconductor layer.
  • the fourth compound semiconductor layer is provided on the third compound semiconductor layer, and may have a higher resistance than the third compound semiconductor layer.
  • the gate electrode may be provided on the fourth compound semiconductor layer.
  • the semiconductor device disclosed in this specification may be a horizontal type or a vertical type. Other compound semiconductor layers may be provided between the compound semiconductor layers as necessary.
  • the compound semiconductor is preferably a wide band gap semiconductor.
  • the compound semiconductor includes a nitride semiconductor and silicon carbide.
  • the concentration of the p-type impurity contained in the fourth compound semiconductor layer may be lower than the concentration of the p-type impurity contained in the third compound semiconductor layer.
  • the fourth compound semiconductor layer can surely have a higher resistance than the third compound semiconductor layer.
  • the fourth compound semiconductor layer may have lower crystallinity than the third compound semiconductor layer. Even in this case, the fourth compound semiconductor layer can surely have a higher resistance than the third compound semiconductor layer.
  • the fourth compound semiconductor layer may have a p-type impurity concentration lower than that of the third compound semiconductor layer, and may have lower crystallinity than that of the third compound semiconductor layer.
  • the first compound semiconductor layer, the second compound semiconductor layer, the third compound semiconductor layer, and the fourth compound semiconductor layer may be nitride semiconductors.
  • the nitride semiconductor may have a general formula represented by Al X Ga Y In 1-XY N (0 ⁇ X ⁇ 1, 0 ⁇ Y ⁇ 1, 0 ⁇ 1-X ⁇ Y ⁇ 1).
  • An example of the first compound semiconductor layer is gallium nitride (GaN).
  • An example of the second compound semiconductor layer, the third compound semiconductor layer, and the fourth compound semiconductor layer is aluminum gallium nitride (AlGaN).
  • the semiconductor device 100 is a horizontal type, and includes a sapphire substrate 2, a buffer layer 4, a first compound semiconductor layer 6, a second compound semiconductor layer 8, a third compound semiconductor layer 14, and a fourth compound semiconductor layer 16. , A gate electrode 18, a source electrode 20, and a drain electrode 10.
  • a buffer layer 4 made of aluminum nitride (AlN) is provided on the surface of the sapphire substrate 2.
  • the first compound semiconductor layer 6 is provided on the surface of the buffer layer 4.
  • the material of the first compound semiconductor layer 6 is gallium nitride.
  • the first compound semiconductor layer 6 is non-doped.
  • the second compound semiconductor layer 8 is provided on the surface of the first compound semiconductor layer 6 and the material thereof is aluminum gallium nitride.
  • the second compound semiconductor layer 8 is non-doped. That is, the first compound semiconductor layer 6 and the second compound semiconductor layer 8 are i-type nitride semiconductors.
  • the band gap of the second compound semiconductor layer 8 is larger than the gap of the first compound semiconductor layer 6.
  • the first compound semiconductor layer 6 and the second compound semiconductor layer 8 are heterojunction, and a two-dimensional electron gas layer is formed in the vicinity of the junction surface 22 between the first compound semiconductor layer 6 and the second compound semiconductor layer 8. .
  • the thickness of the first compound semiconductor layer 6 is about 2 ⁇ m to 3 ⁇ m, and the thickness of the second compound semiconductor layer 8 is about 15 nm to 25 nm.
  • the third compound semiconductor layer 14 is provided on a part of the surface of the second compound semiconductor layer 8.
  • the material of the third compound semiconductor layer 14 is aluminum gallium nitride.
  • the third compound semiconductor layer 14 includes approximately 1 ⁇ 10 19 cm ⁇ 3 of magnesium (Mg) that is a p-type impurity.
  • the fourth compound semiconductor layer 16 is provided on the surface of the third compound semiconductor layer 14.
  • the material of the fourth compound semiconductor layer 16 is aluminum gallium nitride.
  • the content ratio of aluminum (Al) contained in the third compound semiconductor layer 14 is the same as that of the second compound semiconductor layer 8.
  • the fourth compound semiconductor layer 16 contains approximately 1 ⁇ 10 17 to 5 ⁇ 10 18 cm ⁇ 3 of magnesium.
  • the concentration of the p-type impurity (Mg) contained in the fourth compound semiconductor layer 16 is lower than the concentration of the p-type impurity contained in the third compound semiconductor layer 14. Therefore, the fourth compound semiconductor layer 16 has a higher resistance than the third compound semiconductor layer 14.
  • the thickness of the third compound semiconductor layer 14 is approximately 70 nm to 100 nm, and the thickness of the fourth compound semiconductor layer 16 is approximately 10 nm to 20 nm.
  • the gate electrode 18 is provided on the surface of the fourth compound semiconductor layer 16 and is disposed between the source electrode 20 and the drain electrode 10.
  • the material of the gate electrode 18 is nickel (Ni).
  • the gate electrode 18 is ohmically connected to the fourth compound semiconductor layer 16.
  • the source electrode 20 and the drain electrode 10 are provided apart from a part of the surface of the second compound semiconductor layer 8.
  • the source electrode 20 and the drain electrode 10 are titanium (Ti) and aluminum stacked electrodes and are ohmically connected to the second compound semiconductor layer 8.
  • the source electrode 20 and the drain electrode 10 are insulated from the gate electrode 18 by the passivation film 12.
  • the semiconductor device 100 is a normally-off type HEMT (High Electron Mobility Transistor).
  • HEMT High Electron Mobility Transistor
  • a positive voltage is applied to the drain electrode 10
  • a ground voltage is applied to the source electrode 20
  • a positive voltage is applied to the gate electrode 18, the bonding surface 22 of the first compound semiconductor layer 6 and the second compound semiconductor layer 8 is applied. Electrons travel from the source electrode 20 toward the drain electrode 10 through a two-dimensional electron gas layer formed in the vicinity. As a result, the semiconductor device 100 is turned on.
  • the depletion layer extends from the third compound semiconductor layer 14 toward the junction surface 22, the electrons of the two-dimensional electron gas layer are depleted, and the two-dimensional electron gas layer is interposed. Electronic travel stops. As a result, the semiconductor device 100 is turned off. When a positive voltage is applied to the gate electrode 18 again, the depletion layer extending to the junction surface 22 disappears, and the semiconductor device 100 is switched from the off state to the on state.
  • the concentration of the p-type impurity contained in the fourth compound semiconductor layer 16 is lower than the concentration of the p-type impurity contained in the third compound semiconductor layer 14. That is, the fourth compound semiconductor layer 16 has a higher resistance than the third compound semiconductor layer 14. Therefore, it is possible to suppress the gate current from flowing in the on state, as compared with the case where the gate electrode 18 is provided directly on the surface of the third compound semiconductor layer 14.
  • the fourth compound semiconductor layer 16 contains a p-type impurity, like the third compound semiconductor layer 14. Therefore, even if a positive voltage is applied to the gate electrode 18, the depletion layer does not extend from the interface between the third compound semiconductor layer 14 and the fourth compound semiconductor layer 16.
  • the n-type compound semiconductor layer is provided on the surface of the p-type compound semiconductor layer corresponding to the third compound semiconductor layer 14, and the gate electrode is provided on the surface of the n-type compound semiconductor layer. Therefore, when a positive voltage is applied to the gate electrode, the depletion layer extends from the interface between the p-type compound semiconductor layer and the n-type compound semiconductor layer.
  • a part of the positive voltage applied to the gate electrode is applied to the pn junction between the p-type compound semiconductor layer and the n-type compound semiconductor layer, so that the depletion layer extends from the p-type compound semiconductor layer to the heterojunction plane. Decreases until the two-dimensional electron gas layer is formed.
  • the depletion layer does not extend from the interface between the third compound semiconductor layer 14 and the fourth compound semiconductor layer 16 when switching from the off state to the on state. Therefore, in the semiconductor device 100, when a positive voltage is applied to the gate electrode 18, the depletion layer extending to the heterojunction surface disappears quickly. That is, the semiconductor device 100 has a faster switching speed than the conventional semiconductor device.
  • a first manufacturing method of the semiconductor device 100 will be described. As shown in FIG. 2, a buffer layer 4 made of AlN is grown on the surface of the sapphire substrate 2. Thereafter, the first compound semiconductor layer 6 made of GaN is crystal-grown (first step), and the second compound semiconductor layer 8 made of AlGaN is crystal-grown (second step). The second compound semiconductor layer 8 follows the crystal growth of the first compound semiconductor layer 6 by switching the source gas after the first compound semiconductor layer 6 reaches a predetermined thickness (starting supply of Al-containing gas). Can be continuously grown. By providing the buffer layer 4, the crystal structure of the first compound semiconductor layer 6 is stabilized.
  • a high-concentration p-type AlGaN layer 14a containing a high concentration of p-type impurities is grown on the surface of the second compound semiconductor layer 8 (third step).
  • a low-concentration p-type AlGaN layer 16a having a p-type impurity concentration lower than that of the high-concentration p-type AlGaN layer 14a is grown on the surface of the high-concentration p-type AlGaN layer 14a (fourth step).
  • the high-concentration p-type AlGaN layer 14a is used for crystal growth of the second compound semiconductor layer 8 by switching the source gas after the second compound semiconductor layer 8 reaches a predetermined thickness (starting supply of Mg-containing gas).
  • the crystal can be continuously grown.
  • the low-concentration p-type AlGaN layer 16a is switched to a high-concentration p-type AlGaN layer 14a by switching the source gas (reducing the Mg concentration in the source gas) after the high-concentration p-type AlGaN layer 14a reaches a predetermined thickness.
  • the crystal can be continuously grown following the crystal growth.
  • an etching mask (not shown) is formed on a part of the low-concentration p-type AlGaN layer 16a, and the low-concentration p-type AlGaN layer 16a and the high-concentration part where the etching mask is not formed.
  • the p-type AlGaN layer 14a is etched until the second compound semiconductor layer 8 is exposed. Thereby, the third compound semiconductor layer 14 and the fourth compound semiconductor layer 16 are completed. Thereafter, the etching mask is removed, and the source electrode 20, the gate electrode 18, the drain electrode 10, and the passivation film 12 are formed by a known method, whereby the semiconductor device 100 shown in FIG. 1 is completed.
  • the fourth compound semiconductor layer 16 may have lower crystallinity than the third compound semiconductor layer 14.
  • the fourth compound semiconductor layer 16 can have a higher resistance than the third compound semiconductor layer 14.
  • the concentration of the p-type impurity (Mg) contained in the fourth compound semiconductor layer 16 may be the same as that of the third compound semiconductor layer 14 or may be thinner than that of the third compound semiconductor layer 14. That is, the fourth compound semiconductor layer 16 only needs to have p-type impurities and a higher resistance than the third compound semiconductor layer 14.
  • a method for manufacturing the semiconductor device 100 in which the crystallinity of the fourth compound semiconductor layer 16 is lower than that of the third compound semiconductor layer 14 will be described.
  • a second manufacturing method of the semiconductor device 100 will be described with reference to FIGS.
  • the buffer layer 4, the first compound semiconductor layer 6, and the second compound semiconductor layer 8 are formed on the sapphire substrate 2 (see FIG. 2).
  • a p-type AlGaN layer 30 containing a p-type impurity is grown on the surface of the second compound semiconductor layer 8.
  • the thickness of the p-type AlGaN layer 30 containing the p-type impurity corresponds to the total thickness of the third compound semiconductor layer 14 and the fourth compound semiconductor layer 16 (see FIG. 1).
  • the concentration of the p-type impurity is adjusted similarly to the impurity concentration of the third compound semiconductor layer 14.
  • the p-type AlGaN layer 30 can be continuously grown following the crystal growth of the second compound semiconductor layer 8.
  • the surface of the p-type AlGaN layer 30 is irradiated with plasma to reduce the crystallinity of the surface layer of the p-type AlGaN layer 30.
  • plasma For example, by irradiating chlorine (Cl), fluorine (F), and argon (Ar) ions with an acceleration energy of 100 V or less, nitrogen (N) is extracted from the surface layer of the p-type AlGaN layer 30 to make the surface layer highly resistant. can do. Under this condition, the thickness of the high resistance layer (surface layer portion 30a of the p-type AlGaN layer 30) can be controlled to about 10 nm.
  • the crystallinity of the surface layer portion 30a of the p-type AlGaN layer 30 is lower than the crystallinity of the deep portion 30b. Specifically, nitrogen atoms in the surface layer portion 30a of the p-type AlGaN layer 30 are reduced from the deep portion 30b. As a result, the surface layer portion 30a has a higher resistance than the deep portion 30b.
  • an etching mask (not shown) is formed on a part of the p-type AlGaN layer 39, and the p-type AlGaN layer 30 where the etching mask is not formed is replaced with the second compound semiconductor layer. Etch until 8 is exposed. Thereby, the third compound semiconductor layer 14 and the fourth compound semiconductor layer 16 are completed. Subsequent steps are the same as those in the first manufacturing method, and are therefore omitted.
  • the semiconductor device 200 will be described with reference to FIG.
  • the semiconductor device 200 is a vertical type, and includes a drain electrode 210, a semiconductor layer 240 provided on the drain electrode 210, and a source electrode 220 and a gate electrode 218 provided on the surface of the semiconductor layer 240.
  • the semiconductor layer 240 includes a substrate 234 containing n-type impurities at a higher concentration, a drift layer 232 containing n-type impurities at a lower concentration than the substrate 234, and an embedded p-type compound semiconductor layer 230 containing p-type impurities at a higher concentration.
  • a fourth compound semiconductor layer 216 containing a low concentration of type impurities is provided.
  • the drain electrode 210 is ohmically connected to the back surface of the substrate 234.
  • the drain electrode 210 is a laminated electrode of titanium and aluminum.
  • the substrate 234 material is gallium nitride (GaN).
  • the substrate 234 contains approximately 1 ⁇ 10 18 to 3 ⁇ 10 18 cm ⁇ 3 of silicon (Si) as an n-type impurity.
  • the thickness of the substrate 234 is approximately 100 ⁇ m to 350 ⁇ m.
  • the drift layer 232 is provided on the surface of the substrate 234.
  • the material of the drift layer 232 is gallium nitride.
  • the drift layer 232 contains approximately 1 ⁇ 10 16 to 2 ⁇ 10 16 cm ⁇ 3 of silicon (Si) as an n-type impurity.
  • the thickness of the drift layer 232 is approximately 8 ⁇ m to 12 ⁇ m.
  • the p-type compound semiconductor layer 230 is provided dispersed in the surface layer of the drift layer 232.
  • the p-type compound semiconductor layer 230 contains about 1 ⁇ 10 19 to 5 ⁇ 10 19 cm ⁇ 3 of magnesium (Mg) as a p-type impurity.
  • the thickness of p-type compound semiconductor layer 230 (the length in the direction connecting source electrode 220 and drain electrode 210) is approximately 0.5 ⁇ m to 1.0 ⁇ m.
  • a drift layer 232 is interposed between adjacent p-type compound semiconductor layers 230.
  • the first compound semiconductor layer 206 is provided on the surfaces of the drift layer 232 and the p-type compound semiconductor layer 230.
  • the material of the first compound semiconductor layer 206 is gallium nitride.
  • the thickness of the first compound semiconductor layer 206 is approximately 0.1 ⁇ m to 0.2 ⁇ m.
  • the second compound semiconductor layer 208 is provided on the surface of the first compound semiconductor layer 206.
  • the material of the second compound semiconductor layer 208 is aluminum gallium nitride.
  • the thickness of the second compound semiconductor layer 208 is approximately 15 nm to 25 nm.
  • a heterojunction is formed by the first compound semiconductor layer 206 and the second compound semiconductor layer 208.
  • the third compound semiconductor layer 214 is provided on part of the surface of the second compound semiconductor layer 208. When seen in a plan view, the third compound semiconductor layer 214 overlaps with the drift layer 232 where the p-type compound semiconductor layer 230 is not formed.
  • the material of the third compound semiconductor layer 214 is aluminum gallium nitride.
  • the third compound semiconductor layer 214 includes approximately 1 ⁇ 10 19 cm ⁇ 3 of magnesium as a p-type impurity.
  • the thickness of the third compound semiconductor layer 214 is approximately 70 nm to 100 nm.
  • the fourth compound semiconductor layer 216 is provided on the surface of the third compound semiconductor layer 214.
  • the material of the fourth compound semiconductor layer 216 is aluminum gallium nitride.
  • the fourth compound semiconductor layer 16 contains approximately 1 ⁇ 10 17 to 5 ⁇ 10 18 cm ⁇ 3 of magnesium.
  • the thickness of the fourth compound semiconductor layer 216 is approximately 10 nm to 20 nm.
  • the gate electrode 218 is provided on the surface of the fourth compound semiconductor layer 216.
  • the material of the gate electrode 18 is nickel.
  • the gate electrode 218 is ohmically connected to the fourth compound semiconductor layer 216.
  • the source electrode 220 is provided on part of the surface of the second compound semiconductor layer 208.
  • the source electrode 220 is a laminated electrode of titanium and aluminum and is ohmically connected to the second compound semiconductor layer 208.
  • the source electrode 220 is insulated from the gate electrode 218 by the passivation film 212. When the semiconductor device 200 is viewed in plan, the gap between the source electrode 220 and the gate electrode 218 overlaps with the p-type compound semiconductor layer 230.
  • the semiconductor device 200 when a positive voltage is applied to the drain electrode 210, a ground voltage is applied to the source electrode 220, and a positive voltage is applied to the gate electrode 218, electrons supplied from the source electrode 220 are converted into the first compound.
  • a two-dimensional electron gas layer runs in the lateral direction in the vicinity of the bonding surface between the semiconductor layer 206 and the second compound semiconductor layer 208. The electrons travel through the drift layer 232 from between the p-type compound semiconductor layers 230 and reach the drain electrode 10 through the substrate 234.
  • the depletion layer extends from the third compound semiconductor layer 214 toward the heterointerface, and also from the p-type compound semiconductor layer 230 toward the heterointerface. Depletion layer grows. When the semiconductor device 200 is turned off, the conduction path from the source electrode 220 to the drain electrode 210 can be more reliably interrupted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

 半導体装置は、第1化合物半導体層と、第1化合物半導体層よりもバンドギャップが大きい第2化合物半導体層と、第2化合物半導体層上の一部に設けられているp型の第3化合物半導体層と、第3化合物半導体層の上に設けられており、第3化合物半導体層よりも高抵抗であるp型の第4化合物半導体層と、第4化合物半導体層上に設けられているゲート電極を備えている。

Description

半導体装置とその製造方法
 本出願は、2013年9月30日に出願された日本国特許出願第2013-204162号に基づく優先権を主張する。その出願の全ての内容は、この明細書中に参照により援用されている。
本明細書は、ヘテロ接合を有する半導体装置、及びその製造方法に関する技術を開示する。
 ヘテロ接合に形成される2次元電子ガス層をチャネルとして用いる半導体装置が知られている。このタイプの半導体装置では、ノーマリーオフタイプの開発が進められており、その一例が特開2011-29507号公報に開示されている。以下の説明では、特開2011-29507号公報を特許文献1と称する。特許文献1の半導体装置では、ヘテロ接合面を有する半導体層の表面の一部に、p型半導体層を設ける。さらに、そのp型半導体層の表面にn型半導体層を設け、n型半導体層の表面にゲート電極を設ける。特許文献1の半導体装置では、ゲート電極にオン電圧が印加されていないときに、p型半導体層から伸びる空乏層が2次元電子ガス層の一部を消失させことにより、ノーマリーオフを実現している。また、特許文献1の半導体装置では、p型半導体層の表面にn型半導体層を設けることにより、ゲート電極にオン電圧が印加されたときに、ゲート電流が流れることを防止している。
 特許文献1の半導体装置は、ゲート電極に正電圧が印加されることにより、p型半導体層からヘテロ接合面に伸びていた空乏層が縮小し、ターンオンする。しかしながら、ゲート電極に正電圧が印加されると、n型半導体層とp型半導体層のpn接合には逆バイアスが印加され、そのpn接合の界面に空乏層が形成される。ゲート電圧に印加される正電圧の一部がn型半導体層とp型半導体層のpn接合に加わるので、ゲート電極に正電圧を印加してからヘテロ接合面に伸びていた空乏層が縮小して2次元電子ガス層が形成されるまでの時間が長くなる。換言すると、半導体装置のスイッチング速度が遅くなる。本明細書では、スイッチング速度が改善された半導体装置、及びその半導体装置の製造方法を開示する。
 本明細書で開示する技術は、p型半導体層とゲート電極の間に高抵抗のp型半導体層を設けることを特徴とする。高抵抗のp型半導体層は、ゲート電極に正電圧が印加されたときに、ゲート電流が流れることを抑制することができる。さらに、本明細で開示する半導体装置では、ゲート電極の下方にpn接合面が存在しないので、ゲート電極に正電圧が印加されたときの応答性が良い。このため、本明細書で開示する半導体装置は、高速なスイッチング動作に適している。
 本明細書で開示する半導体装置は、第1化合物半導体層と、第1化合物半導体層上に設けられており、第1化合物半導体層よりもバンドギャップが大きい第2化合物半導体層と、第2化合物半導体層上の一部に設けられているp型の第3化合物半導体層と、第3化合物半導体層上に設けられており、第3化合物半導体層よりも高抵抗であるp型の第4化合物半導体層と、第4化合物半導体層上に設けられているゲート電極とを備えている。
 本明細書では、上記半導体装置の製造方法をも提供する。その製造方法は、第1化合物半導体層上に、第1化合物半導体層よりもバンドギャップが大きい第2化合物半導体層を形成する第1工程と、第2化合物半導体層上の一部に、p型の第3化合物半導体層を形成する第2工程と、第3化合物半導体層上に、第3化合物半導体層よりも高抵抗であるp型の第4化合物半導体層を形成する第3工程と、第4化合物半導体層上に、ゲート電極を形成する第4工程と、を備える。
第1実施例の半導体装置の断面図を示す。 半導体装置の第1製造方法の製造工程を示す。 半導体装置の第1製造方法の製造工程を示す。 半導体装置の第1製造方法の製造工程を示す。 半導体装置の第2製造方法の製造工程を示す。 半導体装置の第2製造方法の製造工程を示す。 半導体装置の第2製造方法の製造工程を示す。 第2実施例の半導体装置の断面図を示す。
 以下、本明細書で開示する実施例の技術的特徴の幾つかを記す。なお、以下に記す事項は、各々単独で技術的な有用性を有している。
 本明細書で開示する半導体装置は、第1化合物半導体層、第2化合物半導体層、p型の第3化合物半導体層、p型の第4化合物半導体層及びゲート電極を備えていてもよい。第2化合物半導体層は、第1化合物半導体層上に設けられており、第1化合物半導体層よりもバンドギャップが大きくてもよい。第3化合物半導体層は、第2化合物半導体層上の一部に設けられていてもよい。第4化合物半導体層は、第3化合物半導体層上に設けられており、第3化合物半導体層よりも高抵抗であってもよい。ゲート電極は、第4化合物半導体層上に設けられていてもよい。本明細書で開示する半導体装置は、横型であってもよく、縦型であってもよい。化合物半導体層の各々の間には、必要に応じて、他の化合物半導体層が設けられていてもよい。ここで、化合物半導体は、ワイドバンドギャップ半導体が好ましい。具体的には、化合物半導体には、窒化物半導体、炭化珪素が含まれる。
 第4化合物半導体層に含まれるp型不純物の濃度が、第3化合物半導体層に含まれるp型不純物の濃度よりも薄くてよい。第4化合物半導体層を、第3化合物半導体層より確実に高抵抗にすることができる。
 第4化合物半導体層が、第3化合物半導体層よりも結晶性が低くてよい。この場合でも、第4化合物半導体層を、第3化合物半導体層より確実に高抵抗にすることができる。なお、第4化合物半導体層は、p型不純物の濃度が第3化合物半導体層よりも薄く、さらに結晶性が第3化合物半導体層よりも低くてもよい。
 第1化合物半導体層、第2化合物半導体層、第3化合物半導体層及び第4化合物半導体層は、窒化物半導体であってもよい。窒化物半導体は、一般式がAlXGaYIn1-X-YN(0≦X≦1、0≦Y≦1、0≦1-X-Y≦1)で示されるものであってよい。第1化合物半導体層の一例として、窒化ガリウム(GaN)が挙げられる。第2化合物半導体層、第3化合物半導体層及び第4化合物半導体層の一例として、窒化アルミニウムガリウム(AlGaN)が挙げられる。
(第1実施例)
 図1に示すように、半導体装置100は横型であり、サファイア基板2、バッファ層4、第1化合物半導体層6、第2化合物半導体層8、第3化合物半導体層14、第4化合物半導体層16、ゲート電極18、ソース電極20及びドレイン電極10を備えている。
 サファイア基板2の表面に、窒化アルミニウム(AlN)を材料とするバッファ層4が設けられている。第1化合物半導体層6は、バッファ層4の表面に設けられている。第1化合物半導体層6の材料は、窒化ガリウムである。第1化合物半導体層6は、ノンドープである。第2化合物半導体層8は、第1化合物半導体層6の表面に設けられており、その材料は、窒化アルミニウムガリウムである。第2化合物半導体層8は、ノンドープである。すなわち、第1化合物半導体層6及び第2化合物半導体層8は、i型の窒化物半導体である。第2化合物半導体層8のバンドギャップは、第1化合物半導体層6のギャップより大きい。第1化合物半導体層6と第2化合物半導体層8はヘテロ接合しており、第1化合物半導体層6と第2化合物半導体層8の接合面22の近傍に、2次元電子ガス層が形成される。なお、第1化合物半導体層6の厚みはおよそ2μm~3μmであり、第2化合物半導体層8の厚みはおよそ15nm~25nmである。
 第3化合物半導体層14は、第2化合物半導体層8の表面の一部に設けられている。第3化合物半導体層14の材料は、窒化アルミニウムガリウムである。第3化合物半導体層14は、p型不純物であるマグネシウム(Mg)をおよそ1×1019cm-3含んでいる。第4化合物半導体層16は、第3化合物半導体層14の表面に設けられている。第4化合物半導体層16の材料は、窒化アルミニウムガリウムである。第3化合物半導体層14に含まれるアルミニウム(Al)の含有割合は、第2化合物半導体層8と同一である。第4化合物半導体層16は、マグネシウムをおよそ1×1017~5×1018cm-3含んでいる。第4化合物半導体層16に含まれるp型不純物(Mg)の濃度は、第3化合物半導体層14に含まれるp型不純物の濃度よりも薄い。そのため、第4化合物半導体層16は、第3化合物半導体層14よりも高抵抗である。なお、第3化合物半導体層14の厚みはおよそ70nm~100nmであり、第4化合物半導体層16の厚みはおよそ10nm~20nmである。
 ゲート電極18は、第4化合物半導体層16の表面に設けられており、ソース電極20とドレイン電極10の間に配置されている。ゲート電極18の材料は、ニッケル(Ni)である。ゲート電極18は、第4化合物半導体層16にオーミック接続されている。ソース電極20とドレイン電極10は、第2化合物半導体層8の表面の一部に離反して設けられている。ソース電極20とドレイン電極10は、チタン(Ti)とアルミニウムの積層電極であり、第2化合物半導体層8にオーミック接続されている。ソース電極20とドレイン電極10は、パッシベーション膜12によって、ゲート電極18から絶縁されている。
 半導体装置100は、ノーマリーオフタイプのHEMT(High Electron Mobility Transistor)である。ドレイン電極10に正電圧が印加され、ソース電極20に接地電圧が印加され、ゲート電極18に正電圧が印加されると、第1化合物半導体層6と第2化合物半導体層8の接合面22の近傍に形成される2次元電子ガス層を介して、ソース電極20からドレイン電極10に向けて電子が走行する。これにより、半導体装置100はオン状態となる。
 ゲート電極18への正電圧の印加を停止すると、第3化合物半導体層14から接合面22に向けて空乏層が伸び、2次元電子ガス層の電子が枯渇し、2次元電子ガス層を介した電子の走行が停止する。これにより、半導体装置100はオフ状態となる。再度ゲート電極18に正電圧が印加されると、接合面22に伸びていた空乏層が消失し、半導体装置100がオフ状態からオン状態に切り替わる。
 上記したように、第4化合物半導体層16に含まれるp型不純物の濃度は、第3化合物半導体層14に含まれるp型不純物の濃度よりも薄い。すなわち、第4化合物半導体層16は、第3化合物半導体層14と比較して高抵抗である。そのため、第3化合物半導体層14の表面に直接ゲート電極18を設ける形態と比較して、オン状態のときにゲート電流が流れることを抑制することができる。また、第4化合物半導体層16は、第3化合物半導体層14と同様にp型不純物を含んでいる。そのため、ゲート電極18に正電圧を印加しても、第3化合物半導体層14と第4化合物半導体層16の界面から空乏層が伸びることはない。
 上記したように、従来の半導体装置は、第3化合物半導体層14に相当するp型化合物半導体層の表面にn型化合物半導体層を設け、そのn型化合物半導体層の表面にゲート電極を設ける。そのため、ゲート電極に正電圧を印加すると、p型化合物半導体層とn型化合物半導体層の界面から空乏層が伸びる。従来の半導体装置は、ゲート電極に印加した正電圧の一部がp型化合物半導体層とn型化合物半導体層のpn接合に加わるので、p型化合物半導体層からヘテロ接合面に伸びていた空乏層が縮小して2次元電子ガス層が形成されるまでの時間が長くなる。
 半導体装置100では、オフ状態からオン状態に切り替わるときに、第3化合物半導体層14と第4化合物半導体層16の界面から空乏層が伸びない。そのため、半導体装置100は、ゲート電極18に正電圧を印加したときに、速やかにヘテロ接合面に伸びていた空乏層が消失する。すなわち、半導体装置100は、従来の半導体装置よりもスイッチング速度が速い。
 なお、ゲート電流が流れることを抑制するという観点から、第4化合物半導体層16に代えて絶縁膜(ゲート絶縁膜)を設け、その絶縁膜の表面にゲート電極を設けることも考え得る。このような形態であれば、ゲート電極とp型化合物半導体層の間にn型化合物半導体層を介在させる必要がない。しかしながら、この半導体装置の場合、ゲート電極に正電圧を印加したときにゲート絶縁膜とp型化合物半導体層との界面に電子が蓄積し、閾値電圧が変動することがある。半導体装置100は、第3化合物半導体層14と第4化合物半導体層16の界面に電子が蓄積することがないので、閾値電圧が安定している。
(第1製造方法)
 半導体装置100の第1製造方法について説明する。図2に示すように、サファイア基板2の表面にAlNを材料とするバッファ層4を成長させる。その後、GaNを材料とする第1化合物半導体層6を結晶成長させ(第1工程)、AlGaNを材料とする第2化合物半導体層8を結晶成長させる(第2工程)。第2化合物半導体層8は、第1化合物半導体層6が所定の厚みに達した後に原料ガスを切り替える(Al含有ガスの供給を開始する)ことにより、第1化合物半導体層6の結晶成長に続いて連続的に結晶成長させることができる。なお、バッファ層4を設けることにより、第1化合物半導体層6の結晶構造が安定する。
 次に、図3に示すように、第2化合物半導体層8の表面に、p型不純物を高濃度に含む高濃度p型AlGaN層14aを結晶成長させる(第3工程)。その後、高濃度p型AlGaN層14aの表面に、p型不純物の濃度が高濃度p型AlGaN層14aよりも薄い低濃度p型AlGaN層16aを結晶成長させる(第4工程)。高濃度p型AlGaN層14aは、第2化合物半導体層8が所定の厚みに達した後に原料ガスを切り替える(Mg含有ガスの供給を開始する)ことにより、第2化合物半導体層8の結晶成長に続いて連続的に結晶成長させることができる。また、低濃度p型AlGaN層16aは、高濃度p型AlGaN層14aが所定の厚みに達した後に原料ガスを切り替える(原料ガス中のMg濃度を減らす)ことにより、高濃度p型AlGaN層14aの結晶成長に続いて連続的に結晶成長させることができる。
 次に、図4に示すように、低濃度p型AlGaN層16aの一部にエッチングマスク(図示省略)を形成し、エッチングマスクが形成されていない部分の低濃度p型AlGaN層16aと高濃度p型AlGaN層14aを、第2化合物半導体層8が露出するまでエッチングする。それにより、第3化合物半導体層14と第4化合物半導体層16が完成する。その後、エッチングマスクを除去し、ソース電極20,ゲート電極18,ドレイン電極10及びパッシベーション膜12を既知の方法で形成することにより、図1に示す半導体装置100が完成する。
 なお、第4化合物半導体層16は、第3化合物半導体層14より結晶性が低くてもよい。第4化合物半導体層16の結晶性を第3化合物半導体層14より低くすることにより、第4化合物半導体層16を第3化合物半導体層14よりも高抵抗にすることができる。なお、この場合、第4化合物半導体層16に含まれるp型不純物(Mg)の濃度は、第3化合物半導体層14と同じでもよいし、第3化合物半導体層14より薄くてもよい。すなわち、第4化合物半導体層16は、p型不純物を含み第3化合物半導体層14よりも高抵抗であればよい。以下に、第4化合物半導体層16の結晶性が第3化合物半導体層14よりも低い半導体装置100の製造方法について説明する。
(第2製造方法)
 図5~図7を参照し、半導体装置100の第2製造方法について説明する。まず、第1製造方法と同様に、サファイア基板2上にバッファ層4,第1化合物半導体層6及び第2化合物半導体層8を形成する(図2を参照)。次に、図5に示すように、第2化合物半導体層8の表面に、p型不純物を含むp型AlGaN層30を結晶成長させる。p型不純物を含むp型AlGaN層30の厚みは、第3化合物半導体層14と第4化合物半導体層16の合計の厚み(図1を参照)に相当する。また、p型不純物の濃度は、第3化合物半導体層14の不純物濃度と同様に調整する。p型AlGaN層30は、第2化合物半導体層8の結晶成長に続いて連続的に結晶成長させることができる。
 次に、図6に示すように、p型AlGaN層30の表面にプラズマを照射し、p型AlGaN層30の表層の結晶性を低下させる。例えば、塩素(Cl)、フッ素(F)、アルゴン(Ar)のイオンを100V以下の加速エネルギーで照射することにより、p型AlGaN層30の表層から窒素(N)を抜き、表層を高抵抗にすることができる。この条件により、高抵抗層(p型AlGaN層30の表層部30a)の厚みを10nm程度に制御することができる。p型AlGaN層30の表層部30aの結晶性が、深部30bの結晶性よりも低くなる。具体的には、p型AlGaN層30の表層部30aの窒素原子が、深部30bより減少する。その結果、表層部30aが、深部30bよりも高抵抗になる。
 次に、図7に示すように、p型AlGaN層39の一部にエッチングマスク(図示省略)を形成し、エッチングマスクが形成されていない部分のp型AlGaN層30を、第2化合物半導体層8が露出するまでエッチングする。それにより、第3化合物半導体層14と第4化合物半導体層16が完成する。その後の工程は第1製造方法と同じなので省略する。
(第2実施例)
 図8を参照し、半導体装置200について説明する。半導体装置200は縦型であり、ドレイン電極210と、ドレイン電極210上に設けられている半導体層240と、半導体層240の表面に設けられているソース電極220及びゲート電極218を備えている。半導体層240は、n型不純物を高濃度に含む基板234と、基板234よりもn型不純物を低濃度に含むドリフト層232と、p型不純物を高濃度に含む埋込みp型化合物半導体層230と、実質的に不純物が含まれていない第1化合物半導体層206及び第2化合物半導体層208と、p型不純物を高濃度に含む第3化合物半導体層214と、第3化合物半導体層214よりもp型不純物を低濃度に含む第4化合物半導体層216を備えている。
 ドレイン電極210が、基板234の裏面にオーミック接続されている。ドレイン電極210は、チタンとアルミニウムの積層電極である。基板234材料は、窒化ガリウム(GaN)である。基板234は、n型不純物としてシリコン(Si)をおよそ1×1018~3×1018cm-3含んでいる。基板234の厚みはおよそ100μm~350μmである。ドリフト層232は、基板234の表面に設けられている。ドリフト層232材料は、窒化ガリウムである。ドリフト層232は、n型不純物としてシリコン(Si)をおよそ1×1016~2×1016cm-3含んでいる。ドリフト層232の厚みはおよそ8μm~12μmである。
 p型化合物半導体層230は、ドリフト層232の表層に分散して設けられている。p型化合物半導体層230は、p型の不純物としてマグネシウム(Mg)をおよそ1×1019~5×1019cm-3含んでいる。p型化合物半導体層230の厚み(ソース電極220とドレイン電極210を結ぶ方向の長さ)はおよそ0.5μm~1.0μmである。隣り合うp型化合物半導体層230の間には、ドリフト層232が介在している。
 第1化合物半導体層206は、ドリフト層232及びp型化合物半導体層230の表面に設けられている。第1化合物半導体層206材料は、窒化ガリウムである。第1化合物半導体層206の厚みはおよそ0.1μm~0.2μmである。第2化合物半導体層208は、第1化合物半導体層206の表面に設けられている。第2化合物半導体層208の材料は、窒化アルミニウムガリウムである。第2化合物半導体層208の厚みはおよそ15nm~25nmである。第1化合物半導体層206と第2化合物半導体層208によってヘテロ接合が形成されている。
 第3化合物半導体層214は、第2化合物半導体層208の表面の一部に設けられている。平面視すると、第3化合物半導体層214は、p型化合物半導体層230が形成されていない部分のドリフト層232と重複する。第3化合物半導体層214の材料は、窒化アルミニウムガリウムである。第3化合物半導体層214は、p型不純物でとしてマグネシウムをおよそ1×1019cm-3含んでいる。第3化合物半導体層214の厚みはおよそ70nm~100nmである。第4化合物半導体層216は、第3化合物半導体層214の表面に設けられている。第4化合物半導体層216の材料は、窒化アルミニウムガリウムである。第4化合物半導体層16は、マグネシウムをおよそ1×1017~5×1018cm-3含んでいる。第4化合物半導体層216の厚みはおよそ10nm~20nmである。
 ゲート電極218は、第4化合物半導体層216の表面に設けられている。ゲート電極18の材料はニッケルである。ゲート電極218は、第4化合物半導体層216にオーミック接続されている。ソース電極220は、第2化合物半導体層208の表面の一部に設けられている。ソース電極220は、チタンとアルミニウムの積層電極であり、第2化合物半導体層208にオーミック接続されている。ソース電極220は、パッシベーション膜212によって、ゲート電極218から絶縁されている。半導体装置200を平面視すると、ソース電極220とゲート電極218の隙間が、p型化合物半導体層230と重複する。
 半導体装置200は、ドレイン電極210に正電圧が印加され、ソース電極220に接地電圧が印加され、ゲート電極218に正電圧が印加されると、ソース電極220から供給された電子が、第1化合物半導体層206と第2化合物半導体層208の接合面近傍に2次元電子ガス層を横方向に走行する。電子は、p型化合物半導体層230の間からドリフト層232を走行し、基板234を経てドレイン電極10に到達する。
 半導体装置200の場合、ゲート電極218への正電圧の印加を停止すると、第3化合物半導体層214からヘテロ界面に向けて空乏層が伸びるとともに、p型化合物半導体層230からもヘテロ界面に向けて空乏層が伸びる。半導体装置200のオフ時に、ソース電極220からドレイン電極210までの導通経路を、より確実に遮断することができる。
 以上、本発明の具体例を詳細に説明したが、これらは例示に過ぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。また、本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時の請求項に記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数の目的を同時に達成し得るものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。
 

Claims (7)

  1.  第1化合物半導体層と、
     前記第1化合物半導体層上に設けられており、前記第1化合物半導体層よりもバンドギャップが大きい第2化合物半導体層と、
     前記第2化合物半導体層上の一部に設けられているp型の第3化合物半導体層と、
     前記第3化合物半導体層上に設けられており、前記第3化合物半導体層よりも高抵抗であるp型の第4化合物半導体層と、
     前記第4化合物半導体層上に設けられているゲート電極と、
     を備える半導体装置。
  2.  前記第4化合物半導体層に含まれるp型不純物の濃度が、前記第3化合物半導体層に含まれるp型不純物の濃度よりも薄い請求項1に記載の半導体装置。
  3.  前記第4化合物半導体層が、前記第3化合物半導体層よりも結晶性が低い請求項1又は2に記載の半導体装置。
  4.  前記第1化合物半導体層、前記第2化合物半導体層、前記第3化合物半導体層及び前記第4化合物半導体層は、窒化物半導体である請求項1から3のいずれか一項に記載の半導体装置。
  5.  第1化合物半導体層上に、前記第1化合物半導体層よりもバンドギャップが大きい第2化合物半導体層を形成する第1工程と、
     前記第2化合物半導体層上の一部に、p型の第3化合物半導体層を形成する第2工程と、
     前記第3化合物半導体層上に、前記第3化合物半導体層よりも高抵抗であるp型の第4化合物半導体層を形成する第3工程と、
     前記第4化合物半導体層上に、ゲート電極を形成する第4工程と、
     を備える半導体装置の製造方法。
  6.  前記第3工程は、前記第3化合物半導体層上に、前記第3化合物半導体層よりもp型不純物の濃度が薄い前記第4化合物半導体層を結晶成長させることを有する請求項5に記載の製造方法。
  7.  前記第2工程及び第3工程は、
      前記第2化合物半導体層上の一部にp型の化合物半導体層を形成すること、
      前記p型の化合物半導体層の表面にプラズマを照射すること、を有しており、
     これにより、前記p型の化合物半導体層のうちのプラズマ照射されなかった部分が前記第3化合物半導体層となり、前記p型の化合物半導体層のうちのプラズマ照射された部分が前記第4化合物半導体層となる請求項5に記載の製造方法。
     
PCT/JP2014/073677 2013-09-30 2014-09-08 半導体装置とその製造方法 WO2015045833A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/911,680 US20160197174A1 (en) 2013-09-30 2014-09-08 Semiconductor device and manufacturing method of the same
EP14848960.2A EP3054477A4 (en) 2013-09-30 2014-09-08 SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME
CN201480053831.3A CN105593979A (zh) 2013-09-30 2014-09-08 半导体装置及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013204162A JP5707463B2 (ja) 2013-09-30 2013-09-30 半導体装置とその製造方法
JP2013-204162 2013-09-30

Publications (1)

Publication Number Publication Date
WO2015045833A1 true WO2015045833A1 (ja) 2015-04-02

Family

ID=52742980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/073677 WO2015045833A1 (ja) 2013-09-30 2014-09-08 半導体装置とその製造方法

Country Status (5)

Country Link
US (1) US20160197174A1 (ja)
EP (1) EP3054477A4 (ja)
JP (1) JP5707463B2 (ja)
CN (1) CN105593979A (ja)
WO (1) WO2015045833A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017055008A (ja) * 2015-09-11 2017-03-16 株式会社東芝 半導体装置
JP6234975B2 (ja) 2015-10-02 2017-11-22 株式会社豊田中央研究所 半導体装置
JP6469559B2 (ja) * 2015-10-13 2019-02-13 株式会社豊田中央研究所 半導体装置
WO2018230136A1 (ja) 2017-06-13 2018-12-20 パナソニックIpマネジメント株式会社 窒化物半導体装置及びその製造方法
CN109786455A (zh) * 2019-01-29 2019-05-21 南方科技大学 一种高电子迁移率晶体管及其制作方法
JP6853423B2 (ja) 2019-04-01 2021-03-31 ヌヴォトンテクノロジージャパン株式会社 抵抗素子及び電力増幅回路

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011029507A (ja) 2009-07-28 2011-02-10 Panasonic Corp 半導体装置
JP2011233751A (ja) * 2010-04-28 2011-11-17 Panasonic Corp 窒化物半導体トランジスタ
JP2012523700A (ja) * 2009-04-08 2012-10-04 エフィシエント パワー コンヴァーション コーポレーション 逆拡散抑制構造
JP2013204162A (ja) 2012-03-27 2013-10-07 Uni Charm Corp 伸縮性不織布の製造方法、及び伸縮性不織布

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100616619B1 (ko) * 2004-09-08 2006-08-28 삼성전기주식회사 질화물계 이종접합 전계효과 트랜지스터
JP5457046B2 (ja) * 2009-02-13 2014-04-02 パナソニック株式会社 半導体装置
JP5784440B2 (ja) * 2011-09-28 2015-09-24 トランスフォーム・ジャパン株式会社 半導体装置の製造方法及び半導体装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012523700A (ja) * 2009-04-08 2012-10-04 エフィシエント パワー コンヴァーション コーポレーション 逆拡散抑制構造
JP2011029507A (ja) 2009-07-28 2011-02-10 Panasonic Corp 半導体装置
JP2011233751A (ja) * 2010-04-28 2011-11-17 Panasonic Corp 窒化物半導体トランジスタ
JP2013204162A (ja) 2012-03-27 2013-10-07 Uni Charm Corp 伸縮性不織布の製造方法、及び伸縮性不織布

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3054477A4

Also Published As

Publication number Publication date
US20160197174A1 (en) 2016-07-07
EP3054477A1 (en) 2016-08-10
JP5707463B2 (ja) 2015-04-30
EP3054477A4 (en) 2016-11-02
CN105593979A (zh) 2016-05-18
JP2015070151A (ja) 2015-04-13

Similar Documents

Publication Publication Date Title
JP6174874B2 (ja) 半導体装置
TWI663698B (zh) 半導體裝置
US8164117B2 (en) Nitride semiconductor device
US8664696B2 (en) Nitride semiconductor device
JP6214978B2 (ja) 半導体装置
JP6189235B2 (ja) 半導体装置
US20140110759A1 (en) Semiconductor device
WO2015045833A1 (ja) 半導体装置とその製造方法
TW201403814A (zh) 半導體裝置及其製造方法
US10784361B2 (en) Semiconductor device and method for manufacturing the same
WO2015004853A1 (ja) 半導体装置
JP2009231508A (ja) 半導体装置
US20150263155A1 (en) Semiconductor device
JP2014078565A (ja) 半導体装置
JP2007273856A (ja) 半導体装置
JP2015032744A (ja) 半導体装置および半導体装置の製造方法
JP2012227456A (ja) 半導体装置
JP2010258313A (ja) 電界効果トランジスタ及びその製造方法
US20160211357A1 (en) Semiconductor device
JP2011142358A (ja) 窒化物半導体装置
JP5721782B2 (ja) 半導体装置
JP6234975B2 (ja) 半導体装置
JP2011066464A (ja) 電界効果トランジスタ
KR102402771B1 (ko) 반도체 장치 및 이의 제조 방법
JP2015056413A (ja) 窒化物半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14848960

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14911680

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014848960

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014848960

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE