WO2015045247A1 - ヒートポンプシステム、及び、ヒートポンプ式給湯器 - Google Patents

ヒートポンプシステム、及び、ヒートポンプ式給湯器 Download PDF

Info

Publication number
WO2015045247A1
WO2015045247A1 PCT/JP2014/004029 JP2014004029W WO2015045247A1 WO 2015045247 A1 WO2015045247 A1 WO 2015045247A1 JP 2014004029 W JP2014004029 W JP 2014004029W WO 2015045247 A1 WO2015045247 A1 WO 2015045247A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
stage compressor
oil
heat
stage
Prior art date
Application number
PCT/JP2014/004029
Other languages
English (en)
French (fr)
Inventor
峰正 大村
岡田 拓也
太一 舘石
創 佐藤
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013203187A external-priority patent/JP6057871B2/ja
Priority claimed from JP2013243573A external-priority patent/JP6029569B2/ja
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to CN201480053999.4A priority Critical patent/CN105593610B/zh
Priority to EP14847548.6A priority patent/EP3040643B1/en
Priority to ES14847548T priority patent/ES2708779T3/es
Publication of WO2015045247A1 publication Critical patent/WO2015045247A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/20Arrangement or mounting of control or safety devices
    • F24H9/2007Arrangement or mounting of control or safety devices for water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • F25B47/025Defrosting cycles hot gas defrosting by reversing the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/001Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems in which the air treatment in the central station takes place by means of a heat-pump or by means of a reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • F24H4/04Storage heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2105Oil temperatures

Definitions

  • the present invention relates to a two-stage compression heat pump system in which two independent compressors are connected in series.
  • the heat pump system of the hot water supply system is advanced for the purpose of energy saving energy.
  • a two-stage compression refrigeration cycle including a refrigerant circuit in which a low-stage compressor and a high-stage compressor are connected in series and circulating the refrigerant in the refrigerant circuit is known (for example, patent document 1 to 3).
  • JP-A-5-93552 Japanese Patent Application Laid-Open No. 6-2966 JP, 2009-168330, A
  • a heat pump system comprises a low-stage compressor and a high-stage compressor, and a compression mechanism that compresses and discharges a refrigerant, and an oil separator provided on the discharge side of the high-stage compressor
  • a first heat exchanger that exchanges heat between the refrigerant compressed by the compression mechanism and a heat exchange object, an expansion valve that decompresses and expands the refrigerant flowing out of the first heat exchanger, and the refrigerant decompressed and expanded by the expansion valve
  • An oil equalizing system that connects a low-stage compressor and a high-stage compressor by connecting a second heat exchanger that exchanges heat with a heat exchange target, the low-stage compressor and the high-stage compressor, and distributes refrigerator oil between the low-stage compressor and the high-stage compressor A path, a main return pipe connecting the oil separator and the suction side of the high-stage compressor, an oil return path connecting the main return
  • the high pressure of the device is determined depending on the water temperature (for example, in the range of 35 to 75 ° C.) entering the heat exchanger for water and refrigerant (water to refrigerant heat exchanger) Therefore, the pressure difference between the suction side and the discharge side of the compressor may greatly change depending on the water temperature.
  • the differential pressure between the low-stage compressor and the high-stage compressor decreases. The differential pressure between the compressors determines the amount of refrigeration oil returned. Therefore, according to the present invention, when the differential pressure between the low-stage compressor and the high-stage compressor becomes low while performing the two-stage compression operation, the mode is switched to the one-stage compression operation.
  • the refrigerant path is switched to the one-stage compression path when any of the following conditions (1) to (3) is satisfied while the two-stage compression path is selected.
  • Condition (1) T W ⁇ T R T W ; when the heat exchange target of the first heat exchanger is water, the water temperature that enters the heat exchanger (water heat exchange) between water and refrigerant, T R ; prescribed value condition (2): (P HO- P LI ) ⁇ ⁇ P R1 P LI; low suction pressure stage compressor P HO; high-stage compressor discharge pressure specified value: [Delta] P R1 Condition (3) (P LO -P LI ) ⁇ ⁇ P R2 P LI ; Low stage compressor suction pressure P LO ; Low stage compressor discharge pressure Specified value: ⁇ PR 2
  • the oil return on / off valve is opened to pass the refrigerator oil from the oil separator through the high-stage compressor. Instead, it can be returned to the oil equalization path via the oil return path.
  • the opening and closing of the return on-off valve and the opening and closing of the oil equalizing on-off valve are predicted in the amount of refrigerating machine oil predicted in the low stage compressor and in the high stage compressor. It is preferable to control based on the amount of refrigeration oil.
  • the refrigeration oil can be controlled at an appropriate timing based on the pressure sensor included in the heat pump system and the oil amount of each of the two compressors obtained from the temperature sensor detection result.
  • a heat pump type water heater that uses the first heat exchanger of the heat pump system described above as a water-to-refrigerant heat exchanger that heats water by exchanging heat between a refrigerant and water is a low-stage compressor and a high-stage compressor. Since the amount of refrigeration oil of the machine is secured, stable and highly efficient hot water supply can be realized.
  • the heat pump system includes a low-stage compressor and a high-stage compressor, and the compression mechanism that compresses and discharges the refrigerant, and the refrigerant compressed by the compression mechanism exchanges heat with the refrigerant.
  • First heat exchanger an expansion valve for decompressing and expanding the refrigerant flowing out of the first heat exchanger, a second heat exchanger for exchanging heat with the refrigerant decompressed and expanded by the expansion valve, and a second heat exchanger;
  • Oil equalizing piping that connects a stage side compressor and a high stage side compressor and distributes refrigerating machine oil between a low stage side compressor and a high stage side compressor, an oil equalizing valve that opens and closes the oil equalizing pipe, oil equalizing And a controller for controlling the opening and closing operation of the valve.
  • the controller according to the present invention is characterized in that, when it is determined that the refrigerant is flowing through the oil equalizing piping, the controller instructs to open the oil equalizing valve which is open.
  • control device is configured to detect the detected temperature T 0 in the oil equalizing pipe, the detected temperature T 1 in the refrigerant pipe for flowing the refrigerant from the low stage compressor to the high stage compressor, and one or both of the detected temperature T 2 at the stage compressor, based on a comparison of the oil equalization pipe can be determined whether the refrigerant is flowing.
  • the controller preferably instructs, during non-stationary operation, to keep the oil equalizing valve closed even if the open conditions are satisfied.
  • the controller determines whether or not the refrigerant is flowing through the oil equalizing pipe when the rotational speed of the high-stage compressor is smaller than a predetermined value. Regardless, it is preferable to instruct the oil equalizing valve to alternately open and close alternately at fixed time intervals.
  • a heat pump type water heater which uses the first heat exchanger of the heat pump system of the second invention described above as a water-to-refrigerant heat exchanger that heats water by exchanging heat between a refrigerant and water, includes a low-stage compressor and Since the amount of refrigeration oil of the high-stage compressor is secured, stable and highly efficient hot water supply can be realized.
  • the low pressure side compression is performed only by the simple operation of opening and closing the first solenoid valve and the second solenoid valve without stopping the operation of the low pressure side compressor and the high pressure side compressor. It is possible to make uniform the refrigerating machine oil in the machine and the high stage side compressor. Further, according to the second aspect of the present invention, the refrigeration oil can be made uniform among the compression mechanisms without stopping the operation of the compression mechanism and by the simple operation of opening / closing the oil equalizing valve.
  • the oil equalizing valve which is open is closed, so that the space cost of the compression mechanism caused by the refrigerant flowing in the oil equalizing piping is avoided. it can.
  • FIG. 1 It is a figure showing the circuit composition of the heat pump system concerning a 1st embodiment. It is a figure which shows operation
  • the circuit configuration of the heat pump-type hot water supply / air conditioner according to the second embodiment is shown, and an operation mode different from FIG. 5 is shown.
  • (a) is closing oil equalization piping
  • (b) is opening oil equalization piping.
  • the heat pump system 1 according to the first embodiment is compressed by the low-stage compressor 10a and the high-stage compressor 10b, which compress and discharge the refrigerant, and the high-stage compressor 10b.
  • a second heat exchanger 13 is provided, which exchanges heat between the refrigerant decompressed and expanded at 12 and the fluid to be heat-exchanged, and is connected in series in this order along the circulation direction of the refrigerant.
  • the first heat exchanger 11 can function as a condenser that releases heat by exchanging heat with water
  • the second heat exchanger 13 exchanges heat with the outside air. It can function as an evaporator that absorbs heat.
  • the heat pump system 1 includes a four-way switching valve 14 that switches the connection state of the low-stage compressor 10a and the high-stage compressor 10b as follows.
  • the four-way switching valve 14 is a two-stage compression operation (two-stage compression path) in which the refrigerant passes both the low-stage compressor 10a and the high-stage compressor 10b, and the refrigerant is only the low-stage compressor 10a.
  • the single-stage compression operation (one-stage compression path) that passes through but bypasses the high-stage compressor 10b is switched.
  • the heat pump system 1 includes an oil equalizing mechanism 20 for keeping the oil amount of the refrigerator oil held by the low-stage compressor 10a equal to that of the refrigerator oil held by the high-stage compressor 10b.
  • the heat pump system 1 includes a pipe L1 connecting the low-stage compressor 10a and the high-stage compressor 10b, a pipe L2 linking the high-stage compressor 10b and the first heat exchanger 11, and a first heat exchanger 11
  • a refrigerant circuit in which the refrigerant circulates is configured.
  • the pipe L4 connects the suction-side pipe
  • the pipe L1 connecting the low-stage compressor 10a and the high-stage compressor 10b connects intermediate pressure pipes for the high-stage compressor 10b.
  • L2 constitutes the discharge side piping.
  • the heat pump system 1 further includes a pipe L5 connecting the discharge side (pipe L1) of the low-stage compressor 10a and the discharge side (pipe L2) of the high-stage compressor 10b.
  • the four-way switching valve 14 described above is provided at the connection end on the discharge side of the low-stage compressor 10a of the pipe L5.
  • the four-way switching valve 14 passes the refrigerant discharged from the low-stage compressor 10a through the pipe L1 as it is and is sucked into the high-stage compressor 10b or through the pipe L5 and through the pipe L2. It is switched whether to supply the first heat exchanger 11. By this switching, switching between the two-stage compression path and the one-stage compression path is realized.
  • the low-stage compressor 10a and the high-stage compressor 10b may be collectively referred to as the compression mechanism 10 without distinction.
  • the heat pump system 1 includes an oil separator 26 on the pipe L2.
  • the oil separator 26 is directly connected by the high stage compressor 10 b and the oil return pipe 27.
  • the oil return pipe 27 is provided with a fixed throttle 27a.
  • the oil separator 26 separates the refrigerator oil from the refrigerant discharged from the high stage compressor 10 b during the two-stage compression operation, and returns it to the high stage compressor 10 b via the return pipe 27.
  • the oil separator 26 separates the refrigeration oil from the refrigerant discharged from the low-stage compressor 10 a during the one-stage compression operation, and returns the refrigerant oil to the high-stage compressor 10 b via the oil return pipe 27.
  • the low-stage compressor 10a is rotationally driven by an integrally-constructed electric motor to suck in the low-temperature low-pressure refrigerant that has passed through the second heat exchanger 13 and compress it to an intermediate pressure, thereby performing high-stage compression. Discharge toward the machine 10b.
  • a compression mechanism applied to the low-stage compressor 10a a known type of compression mechanism such as a scroll-type compression mechanism or a rotary-type compression mechanism can be applied.
  • the high stage compressor 10b sucks in and compresses the refrigerant discharged from the low stage compressor 10a, and discharges it toward the first heat exchanger 11 as a high-temperature high-pressure refrigerant.
  • the first heat exchanger 11 heats the fluid by heat exchange between a fluid to be heat-exchanged, such as water, air, and a high-temperature and high-pressure refrigerant.
  • a fluid to be heat-exchanged such as water, air
  • a high-temperature and high-pressure refrigerant discharged from the high-stage compressor 10b is cooled and condensed here.
  • the first heat exchanger 11 a known heat exchanger can be used. The same applies to the second heat exchanger 13 described next.
  • the target of heat exchange is air
  • the first heat exchanger 11 is additionally provided with a blower fan 11f, and in the process in which the air blown by the blower fan 11f passes through the first heat exchanger 11, Heat exchange.
  • the second heat exchanger 13 exchanges heat between the refrigerant decompressed and expanded through the expansion valve 12 and the outside air (blowing air), and in the process of this heat exchange, the refrigerant evaporates, and the outside air is exchanged. Absorb heat from The second heat exchanger 13 is also provided with a blower fan 13f, and heat exchange between the air blown by the blower fan 13f and the refrigerant causes the low-pressure refrigerant to evaporate to generate a heat absorbing action.
  • the expansion valve 12 can use, for example, an expansion valve provided with a needle-like valve body and a pulse motor for driving the valve body.
  • the oil equalizing mechanism 20 includes an oil equalizing pipe 21 connecting the low-stage compressor 10a and the high-stage compressor 10b, a bypass pipe 23 connecting the oil equalizing pipe 21 and the oil return pipe 27, and electromagnetics provided in the bypass pipe 23. And a valve 25.
  • the oil equalizing mechanism 20 distributes refrigerating machine oil between the low-stage compressor 10 a and the high-stage compressor 10 b through the oil equalizing piping 21. Further, the oil equalizing mechanism 20 returns the refrigeration oil from the discharge side of the high stage compressor 10 b to the oil equalizing pipe 21 via the bypass pipe 23.
  • the function of the bypass pipe 23 is exerted when the single-stage compression operation is performed, thereby providing the oil pressure pipe 21 with a necessary differential pressure.
  • the oil equalizing piping 21 is based on the oil level indicating the amount of refrigeration oil required by each of the low stage compressor 10a and the high stage compressor 10b. It is connected with 10a and high stage side compressor 10b.
  • FIG. 1 shows an example in which a single oil equalizing pipe 21 is provided, as shown in FIG. 7, a plurality of oil equalizing pipes 21 (21A, 21B, 21C) can be provided in parallel.
  • the oil equalizing pipes 21B and 21C are provided with on-off valves 22B and 22C, respectively.
  • the oil equalizing pipe 21A can also be provided with an on-off valve.
  • the oil equalizing pipes 21A, 21B, 21C can equalize or differ the maximum amount of refrigerant oil flowing.
  • the opening and closing of the on-off valves 22B and 22C can be controlled by, for example, detecting the temperature of the refrigerator oil flowing into the high-stage compressor 10b.
  • the two-stage compression operation will be described.
  • the four-way switching valve 14 is switched so that the pipes L1 (L11 and L12) communicate with each other.
  • the pressurized refrigerant is drawn into the high-stage compressor 10b through the pipe L11, the four-way switching valve 14, and the pipe L12.
  • the arrow indicates the direction in which the refrigerant flows. The same applies to FIG. 2 (b) described later.
  • the high-pressure refrigerant that has been compressed to a high temperature and high pressure by the high-stage compressor 10b and then discharged flows into the first heat exchanger 11 through the pipe L2, and radiates heat to the heat exchange object.
  • the high-pressure refrigerant that has dissipated heat in the first heat exchanger 11 expands in the process of passing through the expansion valve 12 through the pipe L3, and becomes a low-pressure refrigerant.
  • the low-pressure refrigerant further flows into the second heat exchanger 13 through the pipe L3, absorbs heat from the outdoor air, and evaporates. Thereafter, the low pressure refrigerant flowing out of the second heat exchanger 13 is drawn into the low pressure side compressor 10a through the pipe L4.
  • the low-pressure refrigerant sucked into the low-stage compressor 10a is compressed into an intermediate-pressure refrigerant and then discharged to the pipe L1.
  • the intermediate pressure refrigerant discharged from the low pressure side compressor 10a to the pipe L1 is drawn into the high pressure side compressor 10b.
  • the refrigerant drawn into the high-stage compressor 10b is compressed into a high-pressure refrigerant and then discharged to the pipe L2.
  • the heat pump system 1 distributes the refrigerating machine oil through the oil equalizing pipe 21 in the process of repeating the cycles of compression, condensation, expansion, and evaporation of the refrigerant described above, so that the low-stage compressor 10a and the high-stage compressor Secure each oil level of 10b within the required range.
  • an apparatus called an oil separator for separating the refrigerant and the oil is disposed on the discharge side of the compressor, and the separated refrigeration is performed
  • the system oil is returned to the suction side of the compressor via an oil return circuit provided with a fixed throttle such as a capillary tube.
  • the high pressure of the device depends on the temperature of water (for example, in the range of 35 to 75 ° C.) entering the heat exchanger for water and refrigerant (water to refrigerant heat exchanger). Therefore, the pressure difference between the suction side and the discharge side of the compressor may greatly change depending on the water temperature.
  • the differential pressure between the low-stage compressor 10a and the high-stage compressor 10b decreases. The differential pressure between the compressors determines the amount of refrigeration oil returned.
  • the heat pump system 1 always returns the refrigerating machine oil from the oil separator 26 via the bypass pipe 23 to the oil equalizing pipe 21 without passing through the high-stage compressor 10b, so that the differential pressure in the oil equalizing mechanism 20 is always constant. It can be kept above the specified value.
  • the heat pump system 1 can return the oil to the low-stage compressor 10a without passing through the fixed throttle 27a and the high-stage compressor 10b in the oil return pipe 27, the fixed throttle 27a and the high-stage compressor It is possible to prevent the pressure loss from occurring in the side compressor 10b to reduce the oil return flow rate.
  • the heat pump system 1 switches to the one-stage compression operation when the following conditions (1) to (3) are provided during the two-stage compression operation.
  • the following conditions are all indicators that the differential pressure between the low stage compressor 10a and the high stage compressor 10b is low.
  • the prescribed values T R , ⁇ P R1 and ⁇ P R2 of the conditions (1) to (3) are not uniquely determined, but are determined corresponding to the respective components of the heat pump system 1 to be applied and the operating conditions. .
  • the water temperature T W , the suction pressure P LI , the discharge pressure P LO and the discharge pressure P HO are not shown, but a temperature sensor attached to the first heat exchanger 11, the low stage compressor 10a, the high stage The pressure is detected by a pressure sensor attached to the side compressor 10b.
  • the detected information is sent to the control device 30 shown in FIG.
  • the control device 30 determines the conditions (1) to (3) using the acquired information on the water temperature T W , the suction pressure P LI , the discharge pressure P LO and the discharge pressure P HO .
  • the control device 30 continues to determine the conditions (1) to (3) even during the one-stage compression operation.
  • the low-stage compressor 10a improves the operation capacity more than in the two-stage compression operation, and compresses the refrigerant to a high pressure.
  • the high-stage compressor 10b is stopped in operation.
  • the high-pressure refrigerant that has dissipated heat in the first heat exchanger 11 expands in the process of passing through the expansion valve 12 through the pipe L3, and becomes a low-pressure refrigerant.
  • the low-pressure refrigerant further flows into the second heat exchanger 13 through the pipe L3, absorbs heat from the outdoor air, and evaporates. Thereafter, the low pressure refrigerant flowing out of the second heat exchanger 13 is drawn into the low pressure side compressor 10a through the pipe L4.
  • the solenoid valve 25 is opened in the process of repeating the cycles of compression, condensation, expansion, and evaporation of the refrigerant described above, so the refrigerator oil passes through the bypass piping 23 and the high-stage compressor 10b Is returned to the oil equalizing pipe 21 without passing through. Therefore, the differential pressure in the oil equalizing mechanism 20 can always be maintained at or above the specified value, so the oil level between the low stage compressor 10a and the high stage compressor 10b can be maintained in a well-balanced manner.
  • the heat pump system 1 described above uses the four-way switching valve 14 to switch between the two-stage compression operation and the one-stage compression operation, but the present invention is not limited to this.
  • the heat pump system 2 switches between the two-stage compression operation and the one-stage compression operation by arranging the two solenoid valves 14a and 14b in the pipes L1 and L5, respectively, and selectively controlling the opening and closing. be able to.
  • the two-stage compression operation is performed when the solenoid valve 14a is opened and the solenoid valve 14b is closed
  • the two-stage compression operation is performed when the solenoid valve 14a is closed and the solenoid valve 14b is opened.
  • FIG. 1 shows an example in which the oil separator 26 is provided corresponding to both the low stage compressor 10a and the high stage compressor 10b, but as in the heat pump system 3 shown in FIG.
  • An oil separator 28 for the low pressure side compressor 10 a can be provided on the discharge side of the side compressor 10 a and in front of the four-way switching valve 14.
  • the oil separator 28 is connected to the oil equalizing pipe 21 by an oil return pipe 29.
  • the oil separator 26 separates the refrigerator oil from the refrigerant discharged from the low pressure side compressor 10 a during any of the two-stage compression operation and the one-stage compression operation, and passes the oil return pipe 29 and the oil equalizing pipe 21. And return to the low pressure side compressor 10a. Therefore, the heat pump system 3 shown in FIG. 4 can efficiently return the refrigerator oil to the lower stage compressor 10a.
  • the hot water supply / air conditioner 100 is composed of a heat pump system 200 and a water system 300.
  • the heat pump system 200 utilizes a circuit provided with only one oil separator 26 shown in the heat pump system 1 (FIG. 1) described in the first embodiment, and it is between outdoor air (outside air) and a refrigerant. Heat exchange at.
  • the heat pump system 200 attaches
  • the first heat exchanger 11 should be read as a water-to-refrigerant heat exchanger 11.
  • the water-to-refrigerant heat exchanger 11 heats the water by heat exchange between the water on the water system 300 side and the refrigerant.
  • the second heat exchanger 13 should be read as the heat source side air heat exchanger 13.
  • the heat pump system 200 includes the following elements that the heat pump system 1 does not have.
  • the heat pump system 200 includes a four-way switching valve 15 between the piping L2 on the discharge side of the high-stage compressor 10b and the piping L4 on the suction side of the low-stage compressor 10a. And a cooling cycle (defrost cycle) in which the refrigerant is circulated clockwise to the water-to-refrigerant heat exchanger 11 via the heat source side air heat exchanger 13 and the heat source via the water-to-refrigerant heat exchanger 11 One of the heating cycles for circulating the refrigerant counterclockwise to the side air heat exchanger 13 is selectable.
  • the heat pump system 200 includes, in addition to the heat source side air heat exchanger 13, the water-to-refrigerant heat exchanger 11 and the four-way switching valve 15, a first pressure reducing means for controlling the temperature of the outlet-side refrigerant of the water-to-refrigerant heat exchanger 11.
  • An expansion valve 12a, an intermediate pressure receiver 16a for gas-liquid separation of the refrigerant, a subcooling coil 17, a second expansion valve 12b for depressurizing the intermediate pressure refrigerant, and an accumulator 18 are provided on the refrigerant circuit.
  • the accumulator 18 separates the liquid refrigerant that has not been evaporated by the heat source side air heat exchanger 13.
  • the heat pump system 200 injects the intermediate pressure refrigerant gas separated by the intermediate pressure receiver 16a into the intermediate pressure refrigerant gas sucked into the high-stage compressor 10b, the solenoid valve 16b, the check valve 16c and the injection. It comprises an injection circuit 16 comprising a tube 16d.
  • the solenoid valve 16b closes the injection circuit 16, for example, to prevent the liquid refrigerant from being supplied to the high-stage compressor 10b at the time of start-up when the inside of the intermediate pressure receiver 16a is full of liquid refrigerant. It also plays a role as a valve.
  • the heat pump system 200 includes a sub pipe 121 in parallel with the oil equalizing pipe 21, and the sub pipe 121 includes a solenoid valve 122.
  • the heat pump system 200 includes a sub-pipe 127 in parallel with the return pipe 27, and the sub-pipe 127 includes a solenoid valve 128.
  • Each of the sub pipes 121 and 127 is provided with a throttle. The sub pipes 121 and 127 open the solenoid valves 122 and 128 when it is desired to flow more refrigerator oil because there is a limit to the amount of refrigerator oil flowing through the oil equalizing pipe 21 and the return pipe 27.
  • Water system 300 In the water system 300, water circulated through the pump 307 is absorbed from the refrigerant by the water-to-refrigerant heat exchanger 11 provided in the heat pump system 200 to be hot water, and the hot water is used as a radiator on the load side (use side A hot water circulation channel 301 is provided which is used as a heat source or the like for heating by circulating between the heat exchangers) 303. A hot water is introduced from the hot water circulation flow path 301 via the three-way switching valve 306 capable of adjusting the flow rate to the hot water circulation flow path 301, and a heat storage tank 305 capable of storing the hot water as heat storage hot water is connected There is.
  • the heat storage tank 305 takes the hot water heated in the water-to-refrigerant heat exchanger 11 from the upper part thereof via the three-way switching valve 306 provided in the hot water circulation passage 301 circulating to the radiator 303 The water is discharged to the hot water circulation channel 301 at the necessary timing.
  • a sanitary water supply circuit (not shown) for supplying hot water for hot water heating using the heat of stored heat stored hot water (not shown), an electric heater (energized according to need) Not shown) is provided.
  • the low temperature low pressure gas refrigerant is compressed by the compression mechanism 10 (low stage compressor 10a, high stage compressor 10b), and the heat pump is operated as a high temperature high pressure gas refrigerant. It is discharged into the system 200.
  • the gas refrigerant is led to the water-to-refrigerant heat exchanger 11 by the four-way switching valve 14 and circulated clockwise, as shown by solid arrows in FIG.
  • the water-to-refrigerant heat exchanger 11 is a heat exchanger that exchanges heat between the water of the water system 300 circulated by the water circulation pump 307 and the high-temperature high-pressure gas refrigerant, and the condensation heat released by condensation of the refrigerant is It functions as a condenser that heats water.
  • the high-temperature and high-pressure gas refrigerant flowing through the heat pump system 200 is condensed to become a high-temperature and high-pressure liquid refrigerant, and the water flowing through the water system 300 absorbs heat from the refrigerant and becomes hot water.
  • the refrigerant condensed in the water-to-refrigerant heat exchanger 11 flows into the intermediate pressure receiver 16a through the fully open first expansion valve 12a.
  • the intermediate pressure receiver 16a gas-liquid separation of the refrigerant is performed, and the separated intermediate pressure gas refrigerant passes through the solenoid valve 16b and the check valve 16c, and the low-stage compressor 10a and the high-stage compressor It is injected at an intermediate pressure between 10b.
  • the liquid refrigerant separated by the intermediate pressure receiver 16a is decompressed by the second expansion valve 12b via the subcooling coil 17, and becomes a low temperature low pressure gas-liquid two-phase refrigerant, and the heat source side air heat exchanger It is led to 13.
  • the gas-liquid two-phase refrigerant introduced to the heat source side air heat exchanger 13 functioning as an evaporator exchanges heat with the outside air, absorbs heat from the outside air, and is vaporized.
  • the low-temperature low-pressure gas refrigerant which absorbs heat from the outside air and is vaporized is again drawn into the low-stage compressor 10a through the four-way switching valve 15.
  • the low-temperature low-pressure gas refrigerant thus sucked to the low-stage compressor 10a is sequentially compressed by the low-stage compressor 10a and the high-stage compressor 10b to become a high-temperature high-pressure gas refrigerant, and the same route And change the state of gas and liquid repeatedly.
  • moisture and the like in the air may freeze on the outer peripheral surface of the heat source side air heat exchanger 13 which has a low temperature, and a frosting phenomenon may occur.
  • the defrosting is detected for each suitable operation time by detecting the presence or absence of the accumulation of frost. It is necessary to carry out the operation to remove the frost.
  • the defrosting operation in the heat pump system 200 described above, the four-way switching valve 15 is switched to reverse the circulating direction of the refrigerant, and the refrigerant cycle is switched to circulate in the direction of the dashed arrow in FIG.
  • the high temperature and high pressure gas refrigerant discharged from the stage side compressor 10b is introduced into the heat source side air heat exchanger 13, and the heat radiation (condensation heat) is used to melt the frost adhering to the heat source side air heat exchanger 13. Done by
  • the water-to-refrigerant heat exchanger 11 functions as an evaporator, absorbs heat from the water flowing through the hot water circulation passage 301 to vaporize the refrigerant, and uses the heat to heat the heat source side air
  • the frost formed on the exchanger 13 is melted.
  • the water temperature is excessively lowered, the water freezes in the water-to-refrigerant heat exchanger 11, and a risk of heat exchanger breakage occurs. For this reason, it is necessary to prevent the evaporation temperature of the refrigerant from being excessively lowered together with the water temperature circulated to the water-to-refrigerant heat exchanger 11 at the time of defrosting.
  • the heat pump system 4 according to the third embodiment, as shown in FIG. 8, is compressed by the low stage compressor 10a and the high stage compressor 10b for compressing and discharging the refrigerant, and the high stage compressor 10b.
  • the first heat exchanger 11 for heat exchange between the refrigerant and the fluid to be subjected to heat exchange
  • the expansion valve 12 for decompressing and expanding the refrigerant flowing out from the first heat exchanger 11, and the pressure reducing and expanding by the expansion valve 12
  • a second heat exchanger 13 for exchanging heat between the refrigerant and the fluid to be heat-exchanged, and is connected in series in this order along the circulation direction of the refrigerant.
  • the first heat exchanger 11 functions as a condenser that releases heat by exchanging heat with water
  • the second heat exchanger 13 absorbs heat by exchanging heat with outside air.
  • Can function as The heat pump system 4 includes an oil equalizing mechanism 20 for keeping the oil amount of the refrigerator oil held by the low-stage compressor 10a equal to that of the refrigerator oil held by the high-stage compressor 10b. Details of the oil equalizing mechanism 20 that is the feature of the present embodiment will be described later.
  • the heat pump system 4 includes a pipe L1 connecting the low-stage compressor 10a and the high-stage compressor 10b, a pipe L2 linking the high-stage compressor 10b and the first heat exchanger 11, and a first heat exchanger 11
  • a refrigerant circuit in which the refrigerant circulates is configured.
  • the pipe L4 connects the suction-side pipe
  • the pipe L1 connecting the low-stage compressor 10a and the high-stage compressor 10b connects intermediate pressure pipes for the high-stage compressor 10b.
  • L2 constitutes the discharge side piping.
  • the low-stage compressor 10a and the high-stage compressor 10b may be collectively referred to as a compression mechanism 10 without distinction.
  • the low-stage compressor 10a is rotationally driven by an integrally-constructed electric motor to suck in the low-temperature low-pressure refrigerant that has passed through the second heat exchanger 13 and compress it to an intermediate pressure, thereby performing high-stage compression. Discharge toward the machine 10b.
  • a compression mechanism applied to the low-stage compressor 10a a known type of compression mechanism such as a scroll-type compression mechanism or a rotary-type compression mechanism can be applied.
  • the high stage compressor 10b sucks in and compresses the refrigerant discharged from the low stage compressor 10a, and discharges it toward the first heat exchanger 11 as a high-temperature high-pressure refrigerant.
  • the first heat exchanger 11 heats a fluid by heat exchange between a fluid to be heat-exchanged, such as water or air, and a high-temperature high-pressure refrigerant.
  • a fluid to be heat-exchanged such as water or air
  • the high-temperature and high-pressure refrigerant discharged from the high-stage compressor 10b is cooled and condensed here.
  • the first heat exchanger 11 a known heat exchanger can be used.
  • the target of heat exchange is air
  • the first heat exchanger 11 is provided with a blower fan 11f, and the air blown by the blower fan 11f passes through the first heat exchanger 11 with a refrigerant in the process of passing through the first heat exchanger 11. Heat is exchanged.
  • the second heat exchanger 13 exchanges heat between the refrigerant, which has been decompressed and expanded through the expansion valve 12, and the outside air, and in the process of this heat exchange, the refrigerant evaporates and absorbs heat from the outside air Do.
  • the second heat exchanger 13 is also provided with a blower fan 13f, and heat exchange between the air blown by the blower fan 13f and the refrigerant causes the low-pressure refrigerant to evaporate to generate a heat absorbing action.
  • the expansion valve 12 is constituted by, for example, an electronic expansion valve provided with a needle-like valve body and a pulse motor for driving the valve body.
  • the oil equalizing mechanism 20 is provided in the oil equalizing piping 21 connecting the low-stage compressor 10a and the high-stage compressor 10b, and the oil equalizing piping 21, and between the low-stage compressor 10a and the high-stage compressor 10b.
  • Oil pressure control valve (on-off valve) 23 for controlling the flow of refrigerating machine oil, and a first temperature sensor 34 provided close to the oil equalization pipe 21 for detecting the temperature inside the oil equalization pipe 21; And a second temperature sensor 35 provided in the vicinity of L2 for detecting the temperature inside the pipe L2.
  • the respective temperature information (detected temperatures) T 0 and T 1 detected by the first temperature sensor 34 and the second temperature sensor 35 are transferred to the control device 30.
  • the controller 30 controls the opening / closing of the oil equalizing valve 23 based on the transferred temperature information T 0 , T 1 .
  • the oil equalizing mechanism 20 controls the opening / closing of the oil equalizing valve 23 to supply refrigeration oil surplus in the high stage compressor 10 b to the low stage compressor 10 a or stop the supply. .
  • reference oil levels indicating the amount of refrigeration oil required for normal operation are respectively set, and the oil equalizing piping 21 is set to the reference oil level.
  • the low-stage compressor 10a and the high-stage compressor 10b are connected at corresponding positions. And it is preferable that each connection end of oil equalizing piping 21 is always immersed in refrigeration oil.
  • FIG. 9 (b) when the oil equalizing valve 23 of the oil equalizing piping 21 is opened, the refrigerator oil flows from the high stage compressor 10b toward the low stage compressor 10a. This is because the pressure inside the high stage compressor 10b is higher than the pressure inside the low stage compressor 10a.
  • the oil equalizing valve 23 which is closed is shown in black (FIG. 9 (a)), and the oil equalizing valve 23 which is open is shown in white (FIG. 9 (b))
  • the oil equalizing piping 21 is indicated by a solid line when the refrigerating machine oil is flowing, and is indicated by a broken line when the refrigerating machine oil is not flowing.
  • refrigerant oil flows from the high-stage compressor 10b toward the low-stage compressor 10a on the premise that the connection end of the oil equalizing piping 21 in the high-stage compressor 10b is immersed in the refrigerator oil. is there. Without this premise, the oil equalizing piping 21 becomes a passage for the refrigerant. Then, part of the refrigerant compressed by the high stage compressor 10b is returned to the low stage compressor 10a. This means that the power for compressing the refrigerant is consumed in both the low-stage compressor 10a and the high-stage compressor 10b. Therefore, when the refrigeration oil is not flowing through the oil equalizing pipe 21, as shown in FIG. 9A, the oil equalizing valve 23 is closed so that the refrigerant does not flow to the lower stage compressor 10a. It is desirable to close the
  • the control device 30 controls the operation of the heat pump system 4, and particularly in the present embodiment, controls the opening / closing of the oil equalizing valve 23 of the oil equalizing piping 21.
  • the control device 30 acquires temperature information T 0 and T 1 from the first temperature sensor 34 and the second temperature sensor 35 to control the opening / closing of the oil equalizing valve 23.
  • the controller 30 determines whether the oil equalizing valve 23 is open or closed by comparing the acquired temperature information T 0 and T 1 . That is, when the temperatures of the refrigerating machine oil flowing in the oil equalizing piping 21 and the refrigerant flowing in the piping L2 are compared, the temperature of the refrigerant is remarkably low.
  • the control device 30 by comparing the temperature information T 0 and the temperature information T 1, it can be determined whether the refrigerant oil equalizing pipe 21 to the refrigerating machine oil is flowing is flowing.
  • the high-temperature and high-pressure refrigerant discharged from the high-stage compressor 10b flows into the first heat exchanger 11 through the pipe L2, and radiates heat to the heat exchange object.
  • the refrigerant that has dissipated heat in the first heat exchanger 11 expands in the process of passing through the expansion valve 12 through the pipe L3, and becomes a low-pressure refrigerant.
  • the low-pressure refrigerant further flows into the second heat exchanger 13 through the pipe L3, absorbs heat from the outdoor air, and evaporates. Thereafter, the low pressure refrigerant flowing out of the second heat exchanger 13 is drawn into the low pressure side compressor 10a through the pipe L4.
  • the low-pressure refrigerant sucked into the low-stage compressor 10a is compressed into an intermediate-pressure refrigerant and then discharged to the pipe L1.
  • the medium pressure refrigerant discharged from the low pressure side compressor 10a to the pipe L1 is drawn into the high pressure side compressor 10b.
  • the refrigerant drawn into the high-stage compressor 10b is compressed into a high-pressure refrigerant and then discharged to the pipe L2.
  • the oil equalizing valve 23 is closed during the closing period t w and is opened during the oil equalizing period t m in a process in which the cycles of compression, condensation, expansion and evaporation of the refrigerant described above are repeated. Repeat the action alternately.
  • This embodiment has a feature be between oil equalizing period t m in the Hitoshiaburaben 23 forcibly close place.
  • FIG. 10 the procedure of opening / closing operation of the oil equalizing valve 23 will be described.
  • control device 30 instructs to start the operation of the heat pump system 4 and instructs the oil equalizing valve 23 to close (OFF) as initial setting (FIG. 10 S101).
  • the oil equalizing valve 23 is closed from the beginning, it is continued as it is.
  • the controller 30 measures an elapsed time t after the start of the operation is instructed, and opens the oil equalizing valve 23 when the elapsed time t reaches a predetermined closing period t w (ON). To instruct (Fig. 10, S103). Controller 30, after the instruction to open Hitoshiaburaben 23, if reached the oil equalizing period t m predetermined, it instructs to close the Hitoshiaburaben 23 (FIG. 10 S 111). As described above, the oil equalizing valve 23 according to the first embodiment alternately repeats the operation of closing during the closing period t w and opening during the oil equalizing period t m .
  • control device 30 determines whether or not the heat pump system 4 is in steady operation, and in the case of steady operation, proceeds to the determination of the second exception (step 105 Yes, S107). If not, the oil equalizing valve 23 is kept closed (No in FIG. 10, S105).
  • the non-steady-state operation which does not correspond to the steady-state operation corresponds to, for example, the defrosting operation.
  • the premise of the present embodiment may not hold that the temperature of the refrigeration oil flowing through the oil equalizing valve 23 is higher than the temperature of the refrigerant drawn into the high-stage compressor 10b. .
  • the present embodiment is a folding already as occlusion period t w the aforementioned the initial start-up.
  • control device 30 compares the number of revolutions R of the high-stage compressor 10b with the predetermined number of revolutions R 0 (FIG. 10, S107). If less than R 0 is instructed to open Hitoshiaburaben 23 every fixed time (oN) is repeated close the (OFF) alternately (FIG. 10 S107 Yes, S108).
  • the controller 30 instructs the oil equalizing valve 23 to be opened (FIG. 10, S109). Hitoshiaburaben 23 after receiving this instruction, remain open only during the oil equalizing period t m (Fig. 3 S 111). During this time, the control device 30 determines that the difference (T 0 ⁇ T 1 ) between the temperature information T 0 acquired from the first temperature sensor 34 and the temperature information T 1 acquired from the second temperature sensor 35 is a predetermined value ⁇ T. It is determined whether it becomes the following or less (FIG. 10 S 113).
  • the temperature information T 0 is considered as the temperature of the fluid (refrigerating machine oil or refrigerant) flowing through the oil equalizing pipe 21, the temperature information T 1 is considered as the temperature of the refrigerant sucked into the high stage side compressor 10b.
  • the control device 30 determines that the oil equalizing pipe 21 is not refrigerant oil but refrigerant and is flowing, and closes the oil equalizing valve 23 (FIG. 10). S113 Yes).
  • the difference (T 0 -T 1) exceeds the [Delta] T, Hitoshiaburaben 23 continues to open up the oil-equalizing period t m expires, the oil equalizing period t m expires, Hitoshiaburaben 23 It is closed (FIG. 10 S113 No, S111 Yes).
  • the operation of the low-stage compressor 10a and the high-stage compressor 10b is not stopped, and the high oil pressure valve 23 is simply opened and closed.
  • Refrigerant oil can be supplied from the stage side to the lower stage side, and homogenization of both of them can be achieved.
  • the control device 30 determines that the refrigerant, not the refrigerator oil, is flowing in the oil equalizing pipe 21, the oil equalizing valve 23 is closed, so the refrigerant flows in the oil equalizing pipe 21. The space cost of the compression mechanism 10 which arises can be avoided.
  • the principle opening and closing of the oil equalizing valve 23 is controlled by the closing period t w and the oil equalizing period t m, but the present invention is not limited thereto.
  • temperature information T 0 and T 1 can be used. That is, as shown in FIG. 11, if T 0 ⁇ T 1 exceeds ⁇ T, the oil equalizing valve 23 is opened (FIG. 11 step 203, step 109), and if T 0 ⁇ T 1 is ⁇ T or less, oil equalization is performed.
  • the valve 23 can be closed (FIG. 11, step 113, S101).
  • the temperature information is compared with the temperature information T 0 is not limited to temperature information T 1, it may be compared with the detected temperature (temperature information) T 2 in the high pressure side compressor 10b.
  • the difference obtained in this case is T 2 ⁇ T 0 , and when this difference becomes equal to or less than a predetermined value ⁇ TT, the control device 30 determines that the refrigerant is flowing through the oil equalizing pipe 21.
  • the temperature in the high-stage compressor 10b is detected below the storage of the refrigeration oil.
  • the hot water supply / air conditioner 100 includes a heat pump system 200 and a water system 300.
  • the heat pump system 200 uses the heat pump system 4 described in the first embodiment, and performs heat exchange between outdoor air (outside air) and a refrigerant.
  • the same reference numeral as that of the third embodiment is given and the description thereof is omitted.
  • the first heat exchanger 11 should be read as a water-to-refrigerant heat exchanger 11.
  • the water-to-refrigerant heat exchanger 11 heats the water by heat exchange between the water on the water system 300 side and the refrigerant.
  • the second heat exchanger 13 should be read as the heat source side air heat exchanger 13.
  • the heat pump system 200 includes the following elements that the heat pump system 4 does not have.
  • the heat pump system 200 includes a four-way switching valve 15 between the piping L2 on the discharge side of the high-stage compressor 10b and the piping L4 on the suction side of the low-stage compressor 10a. And a cooling cycle (defrost cycle) in which the refrigerant is circulated clockwise to the water-to-refrigerant heat exchanger 11 via the heat source side air heat exchanger 13 and the heat source via the water-to-refrigerant heat exchanger 11 One of the heating cycles for circulating the refrigerant counterclockwise to the side air heat exchanger 13 is selectable.
  • the heat pump system 200 is provided with a cooling expansion valve 12 a as a throttling mechanism, a heating expansion valve 12 b and a receiver 39 in addition to the heat source side air heat exchanger 13, the water-to-refrigerant heat exchanger 11 and the four-way switching valve 15. There is.
  • the cooling expansion valve 12 a and the heating expansion valve 12 b are disposed in series with the receiver 18 interposed therebetween.
  • the economizer circuit 36 is provided in the pipe L3.
  • the economizer circuit 36 includes an economizer heat exchanger 36a, an economizer expansion valve 36b, and an injection pipe 36c.
  • a part of the liquid refrigerant passing through the water-to-refrigerant heat exchanger 11 is introduced into the economizer heat exchanger 36a through the economizer expansion valve 36b, and after heat exchange with the liquid refrigerant flowing through the pipe L3 is evaporated, A gas refrigerant is injected into a pipe L1 at an intermediate pressure between the low-stage compressor 10a and the high-stage compressor 10b via an injection pipe 36c.
  • the heat pump system 200 further includes an oil separator 37 on the discharge side of the low-stage compressor 10a and an oil separator 38 on the discharge side of the high-stage compressor 10b.
  • the refrigeration oil contained in the refrigerant discharged from the low-stage compressor 10a is separated from the refrigerant in the oil separator 37 and returned to the low-stage compressor 10a via the return pipe 37L.
  • refrigeration oil contained in the refrigerant discharged from the high-stage compressor 10b is separated from the refrigerant in the oil separator 38 and returned to the high-stage compressor 10b via the return pipe 38L.
  • Water system 300 In the water system 300, the water circulated through the water circulation pump 307 absorbs heat from the refrigerant in the water-to-refrigerant heat exchanger 11 provided in the heat pump system 200 to be hot water, and the hot water is used as a radiator 303 on the load side.
  • the hot water circulation flow path 301 used as a heat source for heating etc. is provided by circulating between them.
  • a hot water is introduced from the hot water circulation flow path 301 via the three-way switching valve 306 capable of adjusting the flow rate to the hot water circulation flow path 301, and a heat storage tank 305 capable of storing the hot water as heat storage hot water is connected There is.
  • the heat storage tank 305 takes the hot water heated in the water-to-refrigerant heat exchanger 11 from the upper part thereof via the three-way switching valve 306 provided in the hot water circulation passage 301 circulating to the radiator 303 The water is discharged to the hot water circulation channel 301 at the necessary timing.
  • a sanitary water supply circuit (not shown) for supplying hot water for hot water heating using the heat of stored heat stored hot water (not shown), an electric heater (energized according to need) Not shown) is provided.
  • the water system 300 configured as described above selects either one of a heating operation for supplying hot water to the radiator 303 or a heat storage operation for supplying hot water to the heat storage tank 305 by selectively switching the three-way switching valve 306.
  • warm water can be supplied separately to both the radiator 303 and the heat storage tank 305 so that both heating operation and heat storage operation can be performed simultaneously.
  • the water system 300 is heated by heat exchange of the water to be heated supplied from the heat storage tank 305 by the water circulation pump 307 with the refrigerant of the heat pump system 200 in the water-to-refrigerant heat exchanger 11.
  • the low temperature low pressure gas refrigerant is compressed by the compression mechanism 10 (low stage compressor 10a, high stage compressor 10b), and the heat pump is operated as a high temperature high pressure gas refrigerant. It is discharged into the system 200.
  • This gas refrigerant is led to the water-to-refrigerant heat exchanger 11 by the four-way switching valve 15 and circulated counterclockwise as shown by solid arrows in FIG.
  • the water-to-refrigerant heat exchanger 11 is a heat exchanger that exchanges heat between the water of the water system 300 circulated by the water circulation pump 307 and the high-temperature high-pressure gas refrigerant, and the condensation heat released by condensation of the refrigerant is It functions as a condenser that heats water.
  • the high-temperature and high-pressure gas refrigerant flowing through the heat pump system 200 is condensed to become a high-temperature and high-pressure liquid refrigerant, and the water flowing through the water system 300 absorbs heat from the refrigerant and becomes hot water.
  • the refrigerant condensed in the water-to-refrigerant heat exchanger 11 flows into the receiver 39 through the fully open cooling expansion valve 12a.
  • gas-liquid separation of the refrigerant is performed, and adjustment of the amount of the circulating refrigerant is performed.
  • a heating expansion valve 12b that decompresses the high-temperature high-pressure liquid refrigerant is disposed.
  • the high temperature / high pressure liquid refrigerant is decompressed to become a low temperature / low pressure gas-liquid two-phase refrigerant, and is led to the heat source side air heat exchanger 13.
  • the gas-liquid two-phase refrigerant introduced to the heat source side air heat exchanger 13 functioning as an evaporator exchanges heat with the outside air, absorbs heat from the outside air, and is vaporized.
  • the low-temperature low-pressure gas refrigerant which absorbs heat from the outside air and is vaporized is again drawn into the low-stage compressor 10a through the four-way switching valve 15.
  • the low-temperature low-pressure gas refrigerant thus sucked to the low-stage compressor 10a is sequentially compressed by the low-stage compressor 10a and the high-stage compressor 10b to become a high-temperature high-pressure gas refrigerant, and the same route And change the state of gas and liquid repeatedly.
  • moisture and the like in the air may freeze on the outer peripheral surface of the heat source side air heat exchanger 13 which has a low temperature, and a frosting phenomenon may occur.
  • the defrosting is detected for each suitable operation time by detecting the presence or absence of the accumulation of frost. It is necessary to carry out the operation to remove the frost.
  • the four-way switching valve 15 is switched to reverse the circulating direction of the refrigerant, and the refrigerant is switched to the cooling cycle (defrost cycle) for circulating the refrigerant in the arrow direction of the one-dot chain line in FIG.
  • the high-temperature high-pressure gas refrigerant discharged from the high-stage compressor 10b is introduced into the heat source air heat exchanger 13, and the heat released (condensed heat) melts the frost adhering to the heat source air heat exchanger 13. It is done by doing.
  • the water-to-refrigerant heat exchanger 11 functions as an evaporator, absorbs heat from the water flowing through the hot water circulation passage 301 to vaporize the refrigerant, and uses the heat to heat the heat source side air
  • the frost formed on the exchanger 13 is melted.
  • the water temperature is excessively lowered, the water freezes in the water-to-refrigerant heat exchanger 11, and a risk of heat exchanger breakage occurs. For this reason, it is necessary to prevent the evaporation temperature of the refrigerant from being excessively lowered together with the water temperature circulated to the water-to-refrigerant heat exchanger 11 at the time of defrosting.
  • the opening and closing of the oil equalizing valve 23 provided between the low stage compressor 10a and the high stage compressor 10b is controlled in the same manner as in the first embodiment. Therefore, according to the hot water supply and air conditioner 100 of the present embodiment, the low pressure side compressor 10a and the high pressure side compressor 10b are not stopped by the simple operation of opening and closing the oil equalizing valve 23 without stopping the operation.
  • the refrigeration oil can be made uniform in the stage compressor 10a and the high stage compressor 10b.
  • the present invention was explained based on an embodiment, unless it deviates from the main point of the present invention, it is possible to sort out the composition quoted by the above-mentioned embodiment, or to change suitably to other composition. is there.
  • parts other than the minimum elements in the present invention described in the first embodiment are optional. Therefore, the present invention can be applied to a hot water supply / air conditioner further including a heat exchanger for room, and conversely, it can also be applied to a heat pump water heater having only a hot water storage function.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

 二つの圧縮機の冷凍機油の量を均等に保つのが容易な二段圧縮式ヒートポンプシステムを提供する。 低段側圧縮機10aと高段側圧縮機10bを備え、冷媒を圧縮して吐出する圧縮機構10と、圧縮機構10で圧縮された冷媒と熱交換対象とを熱交換する水対冷媒熱交換器11と、水対冷媒熱交換器11から流出する冷媒を減圧膨張させる膨張弁12と、膨張弁12にて減圧膨張された冷媒と熱交換対象とを熱交換する熱源側空気熱交換器13と、低段側圧縮機10aと高段側圧縮機10bを繋ぎ冷凍機油を流通させる均油機構20と、冷媒を、低段側圧縮機10aと高段側圧縮機10bをこの順に流す二段圧縮経路と、低段側圧縮機10aと高段側圧縮機10bの一方だけを流す一段圧縮経路と、を選択的に切り替える、四方切り替え弁14とを備える。

Description

ヒートポンプシステム、及び、ヒートポンプ式給湯器
 本発明は、二つの独立した圧縮機を直列に連結した二段圧縮式のヒートポンプシステムに関する。
 省エネネルギーを目的に給湯システムのヒートポンプ化が進んでいる。
 この冷媒システムとして、低段側圧縮機と高段側圧縮機が直列に接続された冷媒回路を備え、その冷媒回路で冷媒を循環させる二段圧縮冷凍サイクルが知られている(例えば、特許文献1~3)。
特開平5-93552号公報 特開平6-2966号公報 特開2009-168330号公報
 二段圧縮冷凍サイクルを常に効率の良い状態で運転をするためには、低段側及び高段側の二つの圧縮機をそれぞれ独立した回転数で運転させる必要がある。そのために最も大きな課題となるのは,二つの圧縮機にそれぞれ含まれる冷凍機油の油面レベルの制御である。1つのハウジングの内部に低段側及び高段側の二つの圧縮機構を搭載している圧縮機と異なり、二つの独立した圧縮機を直列に連結する場合には、二つの圧縮機の間で冷凍機油の量を適切な均等なレベルに保つことが、二つの圧縮機を健全に運転するために必要である。
 本発明は、この技術的課題に基づいてなされたもので、運転を停止したり、あるいは、複雑な運転操作したりすることなく、二つの圧縮機の冷凍機油の量を均等に保つのが容易な二段圧縮ヒートポンプシステムを提供することを目的とする。本発明は、加えて、この二段圧縮式ヒートポンプシステムを備える高効率なヒートポンプ給湯器を提供することを目的とする。
 かかる目的のもとになされた本発明は、第一発明と第二発明に区分される。
 はじめに第一発明に係るヒートポンプシステムは、低段側圧縮機と高段側圧縮機を備え、冷媒を圧縮して吐出する圧縮機構と、高段側圧縮機の吐出側に設けられるオイルセパレータと、圧縮機構で圧縮された冷媒と熱交換対象とを熱交換する第1熱交換器と、第1熱交換器から流出する冷媒を減圧膨張させる膨張弁と、膨張弁にて減圧膨張された冷媒と熱交換対象とを熱交換する第2熱交換器と、低段側圧縮機と高段側圧縮機を繋ぎ、低段側圧縮機と高段側圧縮機の間で冷凍機油を流通させる均油経路と、オイルセパレータと高段側圧縮機の吸入側の間を繋ぐ主戻り配管と、主戻り配管と均油経路とを繋ぐ油戻り経路と、油戻り経路に設けられる油戻り用開閉弁と、冷媒を、低段側圧縮機と高段側圧縮機をこの順に流す二段圧縮経路と、低段側圧縮機と高段側圧縮機の一方だけを流す一段圧縮経路と、を選択的に切り替える冷媒経路切換え機構と、を備えることを特徴とする。
 例えばヒートポンプ式の給湯器を想定すると、機器の高圧圧力は水と冷媒の熱交換器(水対冷媒熱交換器)に入ってくる水温(例えば、35~75℃の範囲)に依存して決まるため、水温によって圧縮機の吸入側と吐出側の圧力差が大きく変わり得る。水対冷媒熱交換器の入口水温が低い状態で二段圧縮運転を行うと、低段側圧縮機と高段側圧縮機の間の差圧が小さくなる。この圧縮機間の差圧によって、戻される冷凍機油の量が決まる。そこで、本発明は、二段圧縮運転を行っている最中に、低段側圧縮機と高段側圧縮機の間の差圧が低くなると、一段圧縮運転に切り替えられるようにする。
 第一発明のヒートポンプシステムにおいて、二段圧縮経路が選択されている最中に、以下の条件(1)~条件(3)のいずれかを満たすと、冷媒の経路が、一段圧縮経路に切り換えられる。
条件(1):TW ≦ T
      T;第1熱交換器の熱交換対象が水の場合に、水と冷媒の熱交換器(水熱交)に入ってくる水温, T;規定値
条件(2):(PHO-PLI) ≦ ΔPR1
     PLI;低段側圧縮機の吸入圧力 PHO;高段側圧縮機の吐出圧力 規定値:ΔPR1
条件(3)(PLO-PLI) ≦ ΔPR2
     PLI;低段側圧縮機の吸入圧力 PLO;低段側圧縮機の吐出圧力 規定値:ΔPR2
 また、第一発明のヒートポンプシステムにおいて、冷媒経路切換え機構が、一段圧縮経路を選択すると、油戻り用開閉弁を開くことで、オイルセパレータからの冷凍機油を、高段側圧縮機を経由することなく、油戻り経路を介して均油経路に戻すことができる。
 以上の構成の油戻り経路、均油経路を設けることにより、低段側圧縮機、高段側圧縮機のそれぞれの冷凍機油の量が不足したときに油量の回復が容易にできる。
 第一発明のヒートポンプシステムにおいて、戻り用開閉弁の開閉、及び、均油用開閉弁の開閉は、低段側圧縮機における予測される冷凍機油の量、及び、高段側圧縮機における予測される冷凍機油の量に基づいて制御することが好ましい。
 ヒートポンプシステムが備えている圧力センサ、温度センサ検知結果から求められる二つの圧縮機それぞれの油量に基づいて、適切なタイミングで冷凍機油を制御することができる。
 以上説明したヒートポンプシステムの第1熱交換器を、冷媒と水とを熱交換させて水を加熱する水対冷媒熱交換器とするヒートポンプ式給湯機は、低段側圧縮機及び高段側圧縮機の冷凍機油の量が確保されるので、安定して高効率な給湯を実現できる。
 次に、第二発明のヒートポンプシステムは、低段側圧縮機と高段側圧縮機を備え、冷媒を圧縮して吐出する圧縮機構と、圧縮機構で圧縮された冷媒と熱交換対象が熱交換する第1熱交換器と、第1熱交換器から流出する冷媒を減圧膨張させる膨張弁と、膨張弁にて減圧膨張された冷媒と熱交換対象が熱交換する第2熱交換器と、低段側圧縮機と高段側圧縮機を繋ぎ、低段側圧縮機と高段側圧縮機の間で冷凍機油を流通させる均油配管と、均油配管を開閉する均油弁と、均油弁の開閉動作を制御する制御装置と、を備える。
 本発明の制御装置は、均油配管を冷媒が流れているものと判断すると、開いている均油弁を閉じるように指示することを特徴とする。
 第二発明のヒートポンプシステムにおいて、制御装置は、均油配管における検出温度Tと、低段側圧縮機から高段側圧縮機に向けて冷媒を流す冷媒配管における検出温度T、及び、高段側圧縮機における検出温度Tの一方又は双方と、の比較に基づいて、均油配管を冷媒が流れているか否かを判断することができる。
 第二発明のヒートポンプシステムにおいて、制御装置は、非定常な運転時には、開ける条件が整っていたとしても、均油弁を閉じ続けるように、指示することが好ましい。
 また、第二発明のヒートポンプシステムにおいて、制御装置は、高段側圧縮機の回転数が、予め定められた値よりも小さい場合には、均油配管を冷媒が流れているか否かの判断に関わらず、均油弁を、一定時間ごとに開閉を交互に繰り返すように指示することが好ましい。
 以上説明した第二発明のヒートポンプシステムの第1熱交換器を、冷媒と水とを熱交換させて水を加熱する水対冷媒熱交換器とするヒートポンプ式給湯機は、低段側圧縮機及び高段側圧縮機の冷凍機油の量が確保されるので、安定して高効率な給湯を実現できる。
 本願の第一発明によれば、低段側圧縮機と高段側圧縮機の運転を停止することなく、第1電磁弁と第2電磁弁の開閉という簡易な操作だけで、低段側圧縮機と高段側圧縮機における冷凍機油の均一化を図ることができる。
 また本願の第二発明によれば、圧縮機構の運転を停止することなく、かつ、均油弁の開/閉という簡易な操作により、圧縮機構間における冷凍機油の均一化を図ることができる。しかも、本発明によると、均油配管に冷媒が流れているものと判断すると、開いている均油弁を閉じるので、冷媒が均油配管を流れることで生じる圧縮機構の空費を避けることができる。
第1実施形態に係るヒートポンプシステムの回路構成を示す図である。 第1実施形態のヒートポンプシステムの動作を示す図であり、(a)は二段圧縮運転を示し、(b)は一段圧縮運転を示す。 図1のヒートポンプシステムの二段圧縮運転と一段圧縮運転の切り替えを、二つの電磁弁で行う回路構成を示す図である。 図1のヒートポンプシステムにオイルセパレータを二つ付け加えた回路構成を示す図である。 第2実施形態に係るヒートポンプ式の給湯・空調機の回路構成を示す図である。 第2実施形態に係るヒートポンプ式の給湯・空調機の回路構成を示し、図5とは異なる運転モードを示している。 均油配管の変形例を示す図である。 第3実施形態に係る冷凍サイクルの回路構成を示す図である。 図8の冷凍サイクルの動作を示す図であり、(a)は均油配管を閉じており、(b)は均油配管を開いている。 図8の冷凍サイクルの均油配管に設けられる弁の開閉の手順を示すフローチャートである。 図10の弁の開閉手順の変形例を示すフローチャートである。 第4実施形態に係るヒートポンプ式の給湯・空調機の回路構成を示す図である。 第4実施形態に係るヒートポンプ式の給湯・空調機の回路構成を示す図であり、図12とは異なる運転モードを示している。
 以下、添付する図面を参照して、本発明の実施形態を説明する。
[第1実施形態]
 第1実施形態に係るヒートポンプシステム1は、図1に示すように、冷媒を圧縮して吐出する低段側圧縮機10a及び高段側圧縮機10bと、高段側圧縮機10bで圧縮された冷媒と熱交換の対象となる流体とを熱交換させる第1熱交換器11と、第1熱交換器11から流出する冷媒を減圧膨張させる膨張弁(以下、単に膨張弁)12と、膨張弁12にて減圧膨張された冷媒と熱交換対象となる流体を熱交換させる第2熱交換器13と、を備え、冷媒の循環方向に沿ってこの順に直列に接続されている。本実施形態においては、第1熱交換器11は、例えば水と熱交換することで放熱する凝縮器として機能することができ、また、第2熱交換器13は、外気と熱交換することで吸熱する蒸発器として機能することができる。
 ヒートポンプシステム1は、低段側圧縮機10aと高段側圧縮機10bの接続状態を以下のように切り替える四方切換え弁14を備えている。つまり、四方切換え弁14は、冷媒が低段側圧縮機10aと高段側圧縮機10bの両者を通過する二段圧縮運転(二段圧縮経路)と、冷媒が低段側圧縮機10aだけを通過するが高段側圧縮機10bを迂回する一段圧縮運転(一段圧縮経路)と、を切り替える。
 また、ヒートポンプシステム1は、低段側圧縮機10aに保持される冷凍機油と高段側圧縮機10bに保持される冷凍機油の油量を均等に保つための均油機構20を備える。
 ヒートポンプシステム1は、低段側圧縮機10aと高段側圧縮機10bを繋ぐ配管L1と、高段側圧縮機10bと第1熱交換器11を繋ぐ配管L2と、第1熱交換器11と第2熱交換器13を繋ぐ配管L3と、第2熱交換器13と低段側圧縮機10aを繋ぐ配管L4とを備えることで、冷媒が循環する冷媒回路を構成する。この中で、低段側圧縮機10aにとって配管L4が吸入側配管を、低段側圧縮機10aと高段側圧縮機10bを繋ぐ配管L1が中間圧配管を、高段側圧縮機10bにとって配管L2が吐出側配管を構成する。
 また、ヒートポンプシステム1は、低段側圧縮機10aの吐出側(配管L1)と高段側圧縮機10bの吐出側(配管L2)を繋ぐ配管L5を備えている。前述した四方切換え弁14は、配管L5の低段側圧縮機10aの吐出側の接続端に設けられている。四方切換え弁14は、低段側圧縮機10aから吐出される冷媒を、配管L1をそのまま通って高段側圧縮機10bに吸入されるか、又は、配管L5を通り、さらに配管L2を通って第1熱交換器11に供給するかを切り換える。この切り替えにより、二段圧縮経路と一段圧縮経路)との切り替えが実現される。
 なお、低段側圧縮機10aと高段側圧縮機10bを区別することなく圧縮機構10と総称することがある。
 次に、ヒートポンプシステム1は、配管L2上にオイルセパレータ26を備えている。オイルセパレータ26は、高段側圧縮機10bと油戻し配管27により直接的に接続されている。油戻し配管27は固定絞り27aを備えている。
 オイルセパレータ26は、二段圧縮運転の最中には、高段側圧縮機10bから吐出される冷媒から冷凍機油を分離し、戻り配管27を介して高段側圧縮機10bに戻す。オイルセパレータ26は、一段圧縮運転の最中には、低段側圧縮機10aから吐出される冷媒から冷凍機油を分離し、油戻し配管27を介して高段側圧縮機10bに戻す。
 以下、ヒートポンプシステム1の各構成要素を順に説明する。
[圧縮機構10]
 低段側圧縮機10aは、一体に構成された電動モータにより回転駆動されることにより、第2熱交換器13を通過した低温低圧の冷媒を吸入して中間圧まで圧縮し、高段側圧縮機10bに向けて吐出する。
 低段側圧縮機10aに適用される圧縮機構としては、スクロール型圧縮機構や、ロータリ式圧縮機構など公知の形式の圧縮機構を適用できる。高段側圧縮機10bも同様である。
 高段側圧縮機10bは、低段側圧縮機10aから吐出された冷媒を吸入して圧縮し、高温高圧の冷媒として第1熱交換器11に向けて吐出する。
[第1熱交換器11]
 第1熱交換器11は、熱交換の対象となる水、空気などの流体と高温高圧の冷媒とを熱交換させることによって当該流体を加熱する。高段側圧縮機10bから吐出された高温高圧の冷媒は、ここで冷却され凝縮される。第1熱交換器11は、公知の熱交換器を用いることができる。次に説明する第2熱交換器13も同様である。
 第1熱交換器11は、熱交換の対象が空気の場合には、送風ファン11fを付設しており、送風ファン11fにより送風された空気が第1熱交換器11を通過する過程で、冷媒と熱交換される。
[膨張弁12、第2熱交換器13]
 第2熱交換器13は、膨張弁12を通過して減圧膨張された冷媒と外気(送風空気)との間で熱交換を行うものであり、この熱交換の過程で冷媒は蒸発し、外気から熱を吸収する。第2熱交換器13にも、送風ファン13fが付設されており、送風ファン13fにより送風された空気と冷媒とが熱交換されることで、低圧冷媒を蒸発させて吸熱作用を生じさせる。
 膨張弁12は、例えば、ニードル状の弁体と、弁体を駆動するためのパルスモータとを備えた膨張弁を用いることができる。
[均油機構20]
 均油機構20は、低段側圧縮機10aと高段側圧縮機10bを繋ぐ均油配管21と、均油配管21と油戻し配管27を繋ぐバイパス配管23と、バイパス配管23に設けられる電磁弁25と、を備える。
 均油機構20は、均油配管21を通じて低段側圧縮機10aと高段側圧縮機10bの間で冷凍機油を流通させる。また、均油機構20は、バイパス配管23を介して、高段側圧縮機10bの吐出側から均油配管21に冷凍機油を戻す。このバイパス配管23の機能は、一段圧縮運転が行われている際に発揮されることで、均油配管21に必要な差圧を与える。
 均油配管21は、低段側圧縮機10a及び高段側圧縮機10bの各々が必要とする冷凍機油の量を示す油面を基準とすると、その基準油面の直上において低段側圧縮機10a及び高段側圧縮機10bと接続される。
 図1は、単一の均油配管21を設けた例を示しているが、図7に示すように、複数の均油配管21(21A,21B,21C)を並行に設けることができる。そして、均油配管21B,21Cには、それぞれ開閉弁22B,22Cを設ける。
 このように複数の均油配管21A,21B,21Cを設け、開閉弁22B,22Cを開閉動作することにより、単一の均油配管21では過剰に冷凍機油が流れる場合もあるのに対して、冷凍機油が流れる量を調整することができる。なお、均油配管21Aにも開閉弁を設けることもできる。
 なお、均油配管21A,21B,21Cは、冷凍機油が流れる最大の量を同じくすることができるし、相違させることもできる。また、開閉弁22B,22Cの開閉は、例えば高段側圧縮機10bに流入する冷凍機油の温度を検知して制御することができる。
[ヒートポンプシステム1の動作]
 以下、ヒートポンプシステム1の動作を説明する。
 ヒートポンプシステム1は、冷媒が循環し、二段圧縮運転が行われる。ただし、特定の条件を備えると、一段圧縮運転が行われる。
 はじめに、二段圧縮運転について説明する。
 二段圧縮運転のときは、図2(a)に示すように、配管L1(L11とL12)が連通するように四方切換え弁14が切換えられており、低段側圧縮機10aで中間圧まで加圧された冷媒は、配管L11、四方切換え弁14、配管L12を通って、高段側圧縮機10bに吸入される。図2(a)において、矢印は冷媒が流れる向きを示している。後述する図2(b)も同様である。
 高段側圧縮機10bで高温高圧まで圧縮されてから吐出された高圧冷媒が、配管L2を通って第1熱交換器11に流入し、熱交換対象に対して放熱する。第1熱交換器11で放熱した高圧冷媒は、配管L3を通って膨張弁12を通過する過程で膨張して低圧冷媒となる。この低圧冷媒は、さらに配管L3を通って第2熱交換器13へ流入し、室外空気から吸熱して蒸発する。その後、第2熱交換器13から流出した低圧冷媒は、配管L4を通って低段側圧縮機10aへ吸入される。
 低段側圧縮機10aへ吸入された低圧冷媒は、圧縮されて中間圧冷媒となった後に配管L1へ吐出される。低段側圧縮機10aから配管L1へ吐出された中間圧冷媒は、高段側圧縮機10bへ吸入される。高段側圧縮機10bへ吸入された冷媒は、圧縮されて高圧冷媒となった後に配管L2へ吐出される。
 ヒートポンプシステム1は、以上説明した冷媒の圧縮、凝縮、膨張及び蒸発のサイクルが繰り返される過程で、均油配管21を通じて冷凍機油を流通させることで、低段側圧縮機10aと高段側圧縮機10bの各々の油面レベルを必要な範囲に確保する。
 ここで、圧縮機から吐出される冷媒に含まれる冷凍機油を圧縮機に戻す方式としては、圧縮機の吐出側に冷媒と油を分離するオイルセパレータと称される機器を配置し、分離した冷凍機油をキャピラリチューブなどの固定絞りを備える油戻し回路を経由して圧縮機の吸入側に戻す方式が一般的である。
 ところが、例えばヒートポンプ式の給湯器を想定すると、機器の高圧圧力は水と冷媒の熱交換器(水対冷媒熱交換器)に入ってくる水温(例えば、35~75℃の範囲)に依存して決まるため、水温によって圧縮機の吸入側と吐出側の圧力差が大きく変わり得る。水対冷媒熱交換器の入口水温が低い状態で二段圧縮運転を行うと、低段側圧縮機10aと高段側圧縮機10bの間の差圧が小さくなる。この圧縮機間の差圧によって、戻される冷凍機油の量が決まる。そこで、本実施形態は、二段圧縮運転を行っている最中に、低段側圧縮機10aと高段側圧縮機10bの間の差圧が低くなると、一段圧縮運転に切り替えるとともに、電磁弁25を開く。こうして、ヒートポンプシステム1は、オイルセパレータ26からバイパス配管23を介して、高段側圧縮機10bを経由することなく均油配管21に冷凍機油を戻すことで、均油機構20における差圧を常に規定値以上に保つことができる。しかも、ヒートポンプシステム1は、油戻し配管27にある固定絞り27a及び高段側圧縮機10bを経由することなく、低段側圧縮機10aに油を戻すことができるので、固定絞り27aや高段側圧縮機10bで圧力損失が生じて油戻し流量が低下するのを防げる。
 ヒートポンプシステム1は、二段圧縮運転を行っている最中に、以下の(1)~(3)の条件を備えると、一段圧縮運転に切り替える。以下の条件は、いずれも、低段側圧縮機10aと高段側圧縮機10bの間の差圧が低くなることの指標である。条件(1)~(3)の規定値T、ΔPR1及びΔPR2は、一義的に定まるものでなく、適用されるヒートポンプシステム1の各構成要素、運転条件に対応して定めることになる。なお、水温T、吸入圧力PLI、吐出圧力PLO及び吐出圧力PHOは、図示を省略するが、第1熱交換器11に付設される温度センサ、低段側圧縮機10a、高段側圧縮機10bに付設される圧力センサにより検出される。検出された情報は、図1に示す制御装置30に送られる。制御装置30は、取得した水温T、吸入圧力PLI、吐出圧力PLO及び吐出圧力PHOに関する情報を用いて、条件(1)~(3)を判定する。制御装置30は、一段圧縮運転の最中も、条件(1)~(3)を判定し続ける。
(1)水と冷媒の熱交換器(水熱交)に入ってくる水温:T, 規定値:T
   TW ≦ T
(2)低段側圧縮機10aの吸入圧力PLI,高段側圧縮機10bの吐出圧力PHO 規定値:ΔPR1
   (PHO-PLI) ≦ ΔPR1
(3)低段側圧縮機10aの吸入圧力PLI,吐出圧力PLO 規定値:ΔPR2
   (PLO-PLI) ≦ ΔPR2
[二段圧縮運転 → 一段圧縮運転]
 制御装置30は、二段圧縮運転を行っている最中に、条件(1)~(3)のいずれかを満足すると判定すると、四方切換え弁14を図2(b)に示す一段圧縮運転の位置に切り換えるよう指示する。また、制御装置30は、電磁弁25を開くように指示する。そうすると、ヒートポンプシステム1は、以下のように動作する。
 低段側圧縮機10aで高圧まで圧縮されてから吐出された高圧冷媒は、配管L11、四方切換え弁14及び配管L5を通って第1熱交換器11に流入し、熱交換対象に対して放熱する。なお、ここでは、低段側圧縮機10aは、二段圧縮運転のときよりも運転能力を向上して、冷媒を高圧まで圧縮する。また、高段側圧縮機10bは運転が停止される。
 第1熱交換器11で放熱した高圧冷媒は、配管L3を通って膨張弁12を通過する過程で膨張して低圧冷媒となる。この低圧冷媒は、さらに配管L3を通って第2熱交換器13へ流入し、室外空気から吸熱して蒸発する。その後、第2熱交換器13から流出した低圧冷媒は、配管L4を通って低段側圧縮機10aへ吸入される。
 一段圧縮運転は、以上説明した冷媒の圧縮、凝縮、膨張及び蒸発のサイクルが繰り返される過程で、電磁弁25が開いているので、冷凍機油はバイパス配管23を通って、高段側圧縮機10bを経由することなく均油配管21に戻される。したがって、均油機構20における差圧を常に規定値以上に保つことができるので、低段側圧縮機10aと高段側圧縮機10bの間の油面をバランスよく保つことができる。
 以上説明したヒートポンプシステム1は、二段圧縮運転と一段圧縮運転を切り替えるのに、四方切換え弁14を用いているが、本発明はこれに限定されない。図3に示されるように、ヒートポンプシステム2は、二つの電磁弁14a、14bを各々配管L1、L5に配置し、選択的に開閉を制御することで、二段圧縮運転と一段圧縮運転を切り替えることができる。図3に示す例の場合、電磁弁14aを開くとともに電磁弁14bを閉じると二段圧縮運転を行い、電磁弁14aを閉じるとともに電磁弁14bを開けると二段圧縮運転を行う。なお、図1と同じ要素には、図1と同じ符号を図3に付している。図4も同様である。
 図1は、オイルセパレータ26が低段側圧縮機10a及び高段側圧縮機10bの両者に対応して設けられた例を示しているが、図4に示すヒートポンプシステム3のように、低段側圧縮機10aの吐出側であって四方切換え弁14の手前に低段側圧縮機10a用のオイルセパレータ28を備えることができる。オイルセパレータ28は、油戻し配管29により均油配管21に繋げられている。
 オイルセパレータ26は、二段圧縮運転及び一段圧縮運転のいずれの最中にも、低段側圧縮機10aから吐出される冷媒から冷凍機油を分離し、油戻し配管29及び均油配管21を介して低段側圧縮機10aに戻す。したがって、図4に示すヒートポンプシステム3は、低段側圧縮機10aに効率よく冷凍機油を戻すことができる。
[第2実施形態]
 以下、第1実施形態として説明したヒートポンプシステム1を適用したヒートポンプ式の給湯・空調機100を、本発明の第2実施形態として説明する。
 給湯・空調機100は、図5に示すように、ヒートポンプ系統200と、水系統300と、から構成されている。
[ヒートポンプ系統200]
 ヒートポンプ系統200は、第1実施形態で説明したヒートポンプシステム1(図1)に示したオイルセパレータ26を一つだけ設けた回路を利用したものであり、室外の空気(外気)と冷媒との間で熱交換を行う。ヒートポンプ系統200は、ヒートポンプシステム1に対応する要素がある場合には、第1実施形態と同じ符号を付して、その説明を省略する。ただし、第1熱交換器11は、水対冷媒熱交換器11と読み替えるものとする。水対冷媒熱交換器11は、水系統300側の水と冷媒とを熱交換させることによって水を加熱する。また、第2熱交換器13は、熱源側空気熱交換器13と読み替えるものとする。さらに、ヒートポンプ系統200は、ヒートポンプシステム1が備えていない以下の要素を含んでいる。
 ヒートポンプ系統200は、高段側圧縮機10bの吐出側の配管L2と低段側圧縮機10aの吸入側の配管L4との間に四方切替え弁15を備えており、この四方切替え弁15により冷媒の循環方向を可逆させ、熱源側空気熱交換器13を経て水対冷媒熱交換器11へと時計回りに冷媒を循環させる冷房サイクル(デフロストサイクル)と、水対冷媒熱交換器11を経て熱源側空気熱交換器13へと反時計回りに冷媒を循環させる暖房サイクルとのいずれか一方が選択可能とされている。
 ヒートポンプ系統200は、熱源側空気熱交換器13、水対冷媒熱交換器11および四方切替え弁15の他に、水対冷媒熱交換器11の出口側冷媒温度をコントロールする減圧手段としての第1膨張弁12aと、冷媒を気液分離する中間圧レシーバ16aと、過冷却コイル17と、中間圧冷媒を減圧する第2膨張弁12bと、アキュムレータ18とが冷媒回路上に備えている。アキュムレータ18は、熱源側空気熱交換器13で蒸発し切れなかった液状の冷媒を分離する。
 また、ヒートポンプ系統200は、中間圧レシーバ16aで分離された中間圧の冷媒ガスを高段側圧縮機10bに吸込まれる中間圧の冷媒ガス中に注入する電磁弁16b、逆止弁16c及びインジェクション管16dを備えるインジェクション回路16を備えている。
 なお、電磁弁16bは、例えば、中間圧レシーバ16aの内部が液冷媒で一杯になっている起動時に、液冷媒が高段側圧縮機10bに供給されないようにするため、インジェクション回路16を閉塞する弁としての役目も担っている。
 また、ヒートポンプ系統200は、均油配管21と並列にサブ配管121を備え、このサブ配管121は電磁弁122を備えている。同様に、ヒートポンプ系統200は、戻り配管27と並列にサブ配管127を備え、このサブ配管127は電磁弁128を備えている。なお、サブ配管121,127は、いずれも絞りを備えている。
 サブ配管121,127は、均油配管21,戻り配管27を流れる冷凍機油の量に制限があるために、より多くの冷凍機油を流したいときに、電磁弁122,128を開く。
[水系統300]
 水系統300は、ポンプ307を介して循環される水がヒートポンプ系統200に設けられている水対冷媒熱交換器11で冷媒から吸熱して温水とされ、その温水を負荷側のラジエータ(利用側熱交換器)303との間で循環させることにより、暖房用の熱源等として利用する温水循環流路301を備えている。この温水循環流路301には、流量割合を調整可能な三方切替え弁306を介して温水循環流路301から温水を導入し、その温水を蓄熱温水として蓄えることができる蓄熱タンク305が接続されている。
 蓄熱タンク305は、水対冷媒熱交換器11で加熱された温水を、ラジエータ303に循環する温水循環流路301中に設けられている三方切替え弁306を介してその上部から蓄熱温水を取水し、必要なタイミングで温水循環流路301側に放出する。
 また、蓄熱タンク305には、貯湯されている蓄熱温水の熱を利用して加熱された給湯用の温水を供給するサニタリ水供給回路(図示を省略)、必要に応じて通電される電気ヒータ(図示を省略)が設けられている。
 以上のように構成されている水系統300は、三方切替え弁306の開閉を制御して選択切替えすることにより、ラジエータ303に温水を供給する暖房運転または蓄熱タンク305に温水を供給する蓄熱運転のいずれか一方を選択して実施し、あるいは、ラジエータ303および蓄熱タンク305の両方に温水を分割供給して温水による暖房運転及び蓄熱運転の両方を同時に実施可能な構成とされている。
 また、水系統300は、蓄熱タンク305から水循環ポンプ307によって供給された加熱対象としての水が、水対冷媒熱交換器11においてヒートポンプ系統200の冷媒と熱交換することで加熱される。
 一方、ヒートポンプ系統200において、暖房サイクルが選択されると、低温低圧のガス冷媒が圧縮機構10(低段側圧縮機10a,高段側圧縮機10b)で圧縮され、高温高圧のガス冷媒としてヒートポンプ系統200に吐出される。このガス冷媒は、図5中に実線矢印で示されるように、四方切替え弁14により水対冷媒熱交換器11に導かれて時計回りに循環される。この場合、水対冷媒熱交換器11は、水循環ポンプ307により循環される水系統300の水と高温高圧ガス冷媒とを熱交換させる熱交換器であり、冷媒の凝縮により放熱される凝縮熱が水を加熱する凝縮器として機能する。この結果、ヒートポンプ系統200を流れる高温高圧のガス冷媒は、凝縮して高温高圧の液冷媒となり、水系統300を流れる水は冷媒から吸熱して温水となる。
 水対冷媒熱交換器11で凝縮された冷媒は、全開の第1膨張弁12aを通って中間圧レシーバ16aに流入する。この中間圧レシーバ16aでは、冷媒の気液分離が行われるとともに、分離された中間圧のガス冷媒は、電磁弁16b、逆止弁16cを通って低段側圧縮機10aと高段側圧縮機10bの間の中間圧にインジェクションされる。
 一方、中間圧レシーバ16aで分離された液状の冷媒は、過冷却コイル17を経由して第2膨張弁12bにより減圧され、低温低圧の気液二相の冷媒となって熱源側空気熱交換器13に導かれる。蒸発器として機能する熱源側空気熱交換器13に導入された気液二相冷媒は、外気と熱交換することにより外気から吸熱して気化する。
 このように、熱源側空気熱交換器13を通過することにより、外気から吸熱して気化した低温低圧のガス冷媒は、再び四方切替え弁15を経て低段側圧縮機10aに吸引される。こうして低段側圧縮機10aに吸引された低温低圧のガス冷媒は、低段側圧縮機10aと高段側圧縮機10bで順番に圧縮されて高温高圧のガス冷媒となり、以下同様の経路を循環して気液の状態変化を繰り返す。この際、低温となる熱源側空気熱交換器13の外周面に、空気中の水分等が氷結して着霜現象が生じることがある。
 着霜は、熱源側空気熱交換器13での冷媒と外気との熱交換を阻害し、熱交換効率を低下させるため、霜の堆積の有無を検知することにより、適当な運転時間毎にデフロスト運転を実施して霜を除去する必要がある。このデフロスト運転は、上述のヒートポンプ系統200において、四方切替え弁15を切替えて冷媒の循環方向を逆転させ、図6中の破線矢印の向きに冷媒を循環させる冷房サイクル(デフロストサイクル)に切替え、高段側圧縮機10bから吐出された高温高圧のガス冷媒を熱源側空気熱交換器13に導入し、その放熱(凝縮熱)で熱源側空気熱交換器13に付着している霜を融解することによって行われる。
 このリバースサイクル方式によるデフロスト運転時には、水対冷媒熱交換器11は、蒸発器として機能し、温水循環流路301を流れる水から吸熱して冷媒を気化させ、その熱を用いて熱源側空気熱交換器13に着霜した霜を融解することとなる。この際、水温が低下しすぎると、水対冷媒熱交換器11内で水が凍結し、熱交換器破損のリスクが発生する。このため、デフロスト時、水対冷媒熱交換器11に循環される水温と共に冷媒の蒸発温度が低下しすぎないようにする必要がある。
 以上説明した給湯・空調機100においても、第1実施形態と同様に、二段圧縮運転を行っている最中に、以下の(1)~(3)の条件を備えると、一段圧縮運転に切り替える。この切り替えは、図2(a),(b)を参照して説明した通りである。
(1)水と冷媒の熱交換器(水熱交)に入ってくる水温:T, 規定値:T
   TW ≦ T
(2)低段側圧縮機10aの吸入圧力PLI,高段側圧縮機10bの吐出圧力PHO 規定値:ΔPR1
   (PHO-PLI) ≦ ΔPR1
(3)低段側圧縮機10aの吸入圧力PLI,吐出圧力PLO 規定値:ΔPR2
   (PLO-PLI) ≦ ΔPR2
[二段圧縮運転 → 一段圧縮運転]
 一段圧縮運転に切り替えられると、低段側圧縮機10aで高圧まで圧縮されてから吐出された高圧冷媒は、配管L11、四方切換え弁14及び配管L5を通って水対冷媒熱交換器11に流入し、熱交換対象に対して放熱する。なお、ここでは、低段側圧縮機10aは、二段圧縮運転のときよりも運転能力を向上して、冷媒を高圧まで圧縮する。また、高段側圧縮機10bは運転が停止される。
[第3実施形態]
 第3実施形態に係るヒートポンプシステム4は、図8に示すように、冷媒を圧縮して吐出する低段側圧縮機10a及び高段側圧縮機10bと、高段側圧縮機10bで圧縮された冷媒と熱交換の対象となる流体とを熱交換させる第1熱交換器11と、第1熱交換器11から流出する冷媒を減圧膨張させる膨張弁12と、膨張弁12にて減圧膨張された冷媒と熱交換の対象となる流体を熱交換させる第2熱交換器13と、を備え、冷媒の循環方向に沿ってこの順に直列に接続されている。本実施形態において、第1熱交換器11は、例えば水と熱交換することで放熱する凝縮器として機能し、また、第2熱交換器13は、外気と熱交換することで吸熱する蒸発器として機能することができる。
 ヒートポンプシステム4は、低段側圧縮機10aに保持される冷凍機油と高段側圧縮機10bに保持される冷凍機油の油量を均等に保つための均油機構20を備える。本実施形態の特徴である均油機構20の詳細は後述する。
 ヒートポンプシステム4は、低段側圧縮機10aと高段側圧縮機10bを繋ぐ配管L1と、高段側圧縮機10bと第1熱交換器11を繋ぐ配管L2と、第1熱交換器11と第2熱交換器13を繋ぐ配管L3と、第2熱交換器13と低段側圧縮機10aを繋ぐ配管L4とを備えることで、冷媒が循環する冷媒回路を構成する。この中で、低段側圧縮機10aにとって配管L4が吸入側配管を、低段側圧縮機10aと高段側圧縮機10bを繋ぐ配管L1が中間圧配管を、高段側圧縮機10bにとって配管L2が吐出側配管を構成する。
 なお、低段側圧縮機10aと高段側圧縮機10bを区別することなく、圧縮機構10と総称することがある。
 以下、ヒートポンプシステム4の各構成要素を順に説明する。
[圧縮機構10]
 低段側圧縮機10aは、一体に構成された電動モータにより回転駆動されることにより、第2熱交換器13を通過した低温低圧の冷媒を吸入して中間圧まで圧縮し、高段側圧縮機10bに向けて吐出する。
 低段側圧縮機10aに適用される圧縮機構としては、スクロール型圧縮機構や、ロータリ式圧縮機構など公知の形式の圧縮機構を適用できる。高段側圧縮機10bも同様である。
 高段側圧縮機10bは、低段側圧縮機10aから吐出された冷媒を吸入して圧縮し、高温高圧の冷媒として第1熱交換器11に向けて吐出する。
[第1熱交換器11]
 第1熱交換器11は、熱交換の対象となる水、空気などの流体と高温高圧の冷媒とを熱交換させることによって流体を加熱する。高段側圧縮機10bから吐出された高温高圧の冷媒は、ここで冷却され凝縮される。第1熱交換器11は、公知の熱交換器を用いることができる。次に説明する第2熱交換器13も同様である。
 第1熱交換器11は、熱交換の対象が空気の場合には、送風ファン11fを付設しており、送風ファン11fにより送風された空気が第1熱交換器11を通過する過程で冷媒と熱交換される。
[膨張弁12、第2熱交換器13]
 第2熱交換器13は、膨張弁12を通過して減圧膨張された冷媒と外気との間で熱交換を行うものであり、この熱交換の過程で冷媒は蒸発し、外気から熱を吸収する。第2熱交換器13にも、送風ファン13fが付設されており、送風ファン13fにより送風された空気と冷媒とが熱交換されることで、低圧冷媒を蒸発させて吸熱作用を生じさせる。
 膨張弁12は、例えば、ニードル状の弁体と、弁体を駆動するためのパルスモータとを備えた電子膨張弁から構成される。
[均油機構20]
 均油機構20は、低段側圧縮機10aと高段側圧縮機10bを繋ぐ均油配管21と、均油配管21に設けられ、低段側圧縮機10aと高段側圧縮機10bの間の冷凍機油の流れを制御する均油弁(開閉弁)23と、均油配管21に近接して設けられ、均油配管21の内部の温度を検出するための第1温度センサ34と、配管L2に近接して設けられ、配管L2の内部の温度を検出するための第2温度センサ35と、を備える。
 第1温度センサ34と第2温度センサ35で検出された各々の温度情報(検出温度)T,Tは、制御装置30に転送される。制御装置30は転送された温度情報T,Tに基づいて、均油弁23の開/閉を制御する。
 均油機構20は、均油弁23の開/閉が制御されることにより、高段側圧縮機10bで余剰となった冷凍機油を低段側圧縮機10aに供給し、あるいは供給を停止する。
 低段側圧縮機10a及び高段側圧縮機10bは、正常な運転に必要とされる冷凍機油の量を示す基準油面が各々に設定されており、均油配管21は、基準油面に対応する位置で低段側圧縮機10a,高段側圧縮機10bに接続される。そして、均油配管21の各々の接続端が冷凍機油に常に浸かっていることが好ましい。
 図9(b)に示すように、均油配管21の均油弁23を開くと、高段側圧縮機10bから低段側圧縮機10aに向けて冷凍機油が流れる。高段側圧縮機10bの内部の圧力が低段側圧縮機10aの内部の圧力よりも高いからである。なお、図9において、閉じている均油弁23を黒塗りで示し(図9(a))、開いている均油弁23を白抜きで示している(図9(b)。また、図9において、均油配管21を、冷凍機油が流れている場合には実線で示し、冷凍機油が流れていない場合には破線で示している。
 ただし、高段側圧縮機10bから低段側圧縮機10aに向けて冷凍機油が流れるのは、高段側圧縮機10bにおける均油配管21の接続端が冷凍機油に浸かっていることが前提である。この前提がないと、均油配管21は冷媒の通路となってしまう。そうすると、高段側圧縮機10bで圧縮された冷媒の一部が低段側圧縮機10aに向けて逆戻りすることになる。これは、低段側圧縮機10a及び高段側圧縮機10bの両者において、冷媒を圧縮する動力が空費されることを意味する。したがって、冷凍機油が均油配管21を流れていないときには、図9(a)に示すように、均油弁23を閉じて、冷媒が低段側圧縮機10aに流れないように均油配管21を閉塞することが望まれる。
[制御装置30]
 制御装置30は、ヒートポンプシステム4の動作を司るが、特に本実施形態においては、均油配管21の均油弁23の開/閉を制御する。制御装置30は、均油弁23の開/閉を制御するのに、第1温度センサ34と第2温度センサ35から、各々、温度情報T,Tを取得する。制御装置30は、取得した温度情報T,Tを比較することで、均油弁23の開/閉を判断する。つまり、均油配管21を流れる冷凍機油と配管L2を流れる冷媒の温度を比較すると、冷媒の温度が顕著に低い。しかし、均油配管21に冷凍機油ではなく冷媒が流れることになれば、均油配管21において検出される温度情報Tと配管L2において検出される温度情報Tの差が小さくなる。したがって、制御装置30は、温度情報Tと温度情報Tを比較すれば、均油配管21を冷凍機油が流れているか冷媒が流れているかを判断することができる。
[ヒートポンプシステム4の動作]
 以下、ヒートポンプシステム4の動作を説明する。
 ヒートポンプシステム4は、冷媒が循環し、二段圧縮冷凍サイクルが実行される。
 ヒートポンプシステム4において、高段側圧縮機10bから吐出された高温高圧の冷媒は、配管L2を通って第1熱交換器11に流入し、熱交換対象に対して放熱する。第1熱交換器11で放熱した冷媒は、配管L3を通って膨張弁12を通過する過程で膨張して低圧冷媒となる。この低圧冷媒は、さらに配管L3を通って第2熱交換器13へ流入し、室外空気から吸熱して蒸発する。その後、第2熱交換器13から流出した低圧冷媒は、配管L4を通って低段側圧縮機10aへ吸入される。
 低段側圧縮機10aへ吸入された低圧冷媒は、圧縮されて中間圧の冷媒となった後に配管L1へ吐出される。低段側圧縮機10aから配管L1へ吐出された中間圧の冷媒は、高段側圧縮機10bへ吸入される。高段側圧縮機10bへ吸入された冷媒は、圧縮されて高圧冷媒となった後に配管L2へ吐出される。
 ヒートポンプシステム4は、以上説明した冷媒の圧縮、凝縮、膨張及び蒸発のサイクルが繰り返される過程で、均油弁23が、閉塞期間tの間は閉じ、均油期間tの間は開く、という動作を交互に繰り返す。本実施形態は、均油期間tの間であっても均油弁23を強制的に閉じるところに特徴を有している。以下、図10を参照して、均油弁23の開閉動作の手順を説明する。
 制御装置30は、図10に示すように、ヒートポンプシステム4の運転開始の指示がなされる、初期設定として均油弁23に閉じる(OFF)ように指示する(図10 S101)。当初より均油弁23が閉じられているときには、そのまま継続される。
 制御装置30は、運転開始の指示がなされてからの経過時間tを計っており、この経過時間tが予め定められた閉塞期間tに達したならば、均油弁23を開く(ON)ように指示する(図10 S103)。制御装置30は、均油弁23に開くように指示してから、予め定められた均油期間tに達したならば、均油弁23に閉じるように指示する(図10 S111)。以上のように、第1実施形態の均油弁23は、閉塞期間tの間は閉じ、均油期間tの間は開く、という動作を交互に繰り返す。
 ただし、制御装置30は、均油弁23の開閉について、以下説明する二つの例外を設けている。
 始めに、制御装置30は、ヒートポンプシステム4が定常運転をしているか否かを判断し、定常運転の場合には二つ目の例外の判断(ステップ105 Yes,S107)に進むが、定常運転でない場合には、均油弁23を閉じたままにする(図10 S105 No)。ここで、定常運転に該当しない非定常運転の場合とは、例えば、デフロスト運転をしているときが該当する。この非定常運転の間は、均油弁23を流れる冷凍機油の温度が高段側圧縮機10bに吸入される冷媒の温度よりも高いという本実施形態の前提が成り立たないおそれがあるからである。また、ヒートポンプシステム4の起動初期の間も非定常運転に該当するが、本実施形態はこの起動初期を前述した閉塞期間tとして折込済みである。
 次に、制御装置30は、二つ目の例外として、高段側圧縮機10bの回転数Rと予め定められた回転数Rを比較し(図10 S107)し、回転数Rが回転数Rよりも少ない場合には、均油弁23を一定時間毎に開(ON)と閉(OFF)を交互に繰り返すように指示し(図10 S107 Yes,S108)。
 以上の二つの例外に該当しなければ、制御装置30は、均油弁23を開くように指示する(図10 S109)。均油弁23はこの指示を受けてから、均油期間tの間だけ開いた状態を維持する(図3 S111)。
 制御装置30は、この間、第1温度センサ34から取得する温度情報Tと第2温度センサ35から取得する温度情報Tとの差分(T-T)が、予め定められた値ΔT以下になるか否かを判断する(図10S113)。ここで、温度情報Tは均油配管21を流れる流体(冷凍機油又は冷媒)の温度とみなされ、温度情報Tは高段側圧縮機10bに吸入される冷媒の温度とみなされる。
 制御装置30は、上記差分(T-T)がΔT以下になると、均油配管21には冷凍機油ではなくて冷媒が流れているものと判断し、均油弁23を閉じる(図10 S113 Yes)。一方、上記差分(T-T)がΔTを超えていれば、均油弁23は均油期間tが満了するまで開き続け、均油期間tが満了すると、均油弁23は閉じられる(図10 S113 No,S111 Yes)。
 以上説明したように、本実施形態によると、低段側圧縮機10aと高段側圧縮機10bの運転を停止することなく、かつ、均油弁23の開/閉という簡易な操作により、高段側から低段側に冷凍機油を供給し、両者の冷凍機油の均一化を図ることができる。しかも、本実施形態によると、制御装置30が、均油配管21に冷凍機油ではなく冷媒が流れているものと判断すると、均油弁23を閉じるので、冷媒が均油配管21を流れることで生じる圧縮機構10の空費を避けることができる。
 以上、本発明を実施形態に基づいて説明したが、本発明の主旨を逸脱しない限り、上記実施の形態で挙げた構成を取捨選択したり、他の構成に適宜変更することが可能である。
 以上では、均油弁23の原則的な開閉を閉塞期間tと均油期間tにより制御しているが、本発明はこれに限らない。均油弁23を開く条件として、温度情報T,Tを利用することができる。つまり、図11に示すように、T-TがΔTを超えていれば均油弁23を開き(図11 ステップ203,ステップ109)、T-TがΔT以下であれば均油弁23を閉じる(図11 ステップ113,S101)こともできる。
 また、温度情報Tと比較する温度情報は、温度情報Tに限るものではなく、高段側圧縮機10bにおける検出温度(温度情報)Tと比較してもよい。この場合に求められる差分はT-Tであり、この差分が予め定められた値ΔTT以下になると、制御装置30は、冷媒が均油配管21を流れているものと判断する。なお、高段側圧縮機10bにおける温度は、冷凍機油が溜められている下方において検出される。
[第4実施形態]
 以下、第1実施形態として説明したヒートポンプシステム4を適用したヒートポンプ式の給湯・空調機100を、本発明の第4実施形態として説明する。
 給湯・空調機100は、図12及び図13に示すように、ヒートポンプ系統200と、水系統300と、から構成されている。
[ヒートポンプ系統200]
 ヒートポンプ系統200は、第1実施形態で説明したヒートポンプシステム4を利用したものであり、室外の空気(外気)と冷媒との間で熱交換を行う。ヒートポンプシステム4に対応する要素がある場合には、第3実施形態と同じ符号を付して、その説明を省略する。ただし、第1熱交換器11は、水対冷媒熱交換器11と読み替えるものとする。水対冷媒熱交換器11は、水系統300側の水と冷媒とを熱交換させることによって水を加熱する。また、第2熱交換器13は、熱源側空気熱交換器13と読み替えるものとする。さらに、ヒートポンプ系統200は、ヒートポンプシステム4が備えていない以下の要素を含んでいる。
 ヒートポンプ系統200は、高段側圧縮機10bの吐出側の配管L2と低段側圧縮機10aの吸入側の配管L4との間に四方切替え弁15を備えており、この四方切替え弁15により冷媒の循環方向を可逆させ、熱源側空気熱交換器13を経て水対冷媒熱交換器11へと時計回りに冷媒を循環させる冷房サイクル(デフロストサイクル)と、水対冷媒熱交換器11を経て熱源側空気熱交換器13へと反時計回りに冷媒を循環させる暖房サイクルとのいずれか一方が選択可能とされている。
 ヒートポンプ系統200は、熱源側空気熱交換器13、水対冷媒熱交換器11および四方切替え弁15の他、絞り機構としての冷房用膨張弁12a、暖房用膨張弁12b及びレシーバ39が設けられている。この冷房用膨張弁12aおよび暖房用膨張弁12bは、レシーバ18を挟んで直列に配置されている。
 また、ヒートポンプ系統200は、配管L3にエコノマイザ回路36が設けられている。エコノマイザ回路36は、エコノマイザ用熱交換器36aと、エコノマイザ用膨張弁36bと、インジェクション管36cを備えている。水対冷媒熱交換器11を経た液冷媒は、その一部がエコノマイザ用膨張弁36bを経てエコノマイザ用熱交換器36aに導入され、配管L3を流れる液冷媒と熱交換させて蒸発した後、このガス冷媒を低段側圧縮機10aと高段側圧縮機10bの間の中間圧の配管L1にインジェクション管36cを介して注入される。
 また、ヒートポンプ系統200は、低段側圧縮機10aの吐出側にオイルセパレータ37を、高段側圧縮機10bの吐出側にオイルセパレータ38を備えている。低段側圧縮機10aから吐出された冷媒に含まれる冷凍機油はオイルセパレータ37において冷媒から分離され、戻し配管37Lを介して低段側圧縮機10aに戻される。同様に、高段側圧縮機10bから吐出された冷媒に含まれる冷凍機油はオイルセパレータ38において冷媒から分離され、戻し配管38Lを介して高段側圧縮機10bに戻される。
[水系統300]
 水系統300は、水循環ポンプ307を介して循環される水がヒートポンプ系統200に設けられている水対冷媒熱交換器11で冷媒から吸熱して温水とされ、その温水を負荷側のラジエータ303との間で循環させることにより、暖房用の熱源等として利用する温水循環流路301を備えている。この温水循環流路301には、流量割合を調整可能な三方切替え弁306を介して温水循環流路301から温水を導入し、その温水を蓄熱温水として蓄えることができる蓄熱タンク305が接続されている。
 蓄熱タンク305は、水対冷媒熱交換器11で加熱された温水を、ラジエータ303に循環する温水循環流路301中に設けられている三方切替え弁306を介してその上部から蓄熱温水を取水し、必要なタイミングで温水循環流路301側に放出する。
 また、蓄熱タンク305には、貯湯されている蓄熱温水の熱を利用して加熱された給湯用の温水を供給するサニタリ水供給回路(図示を省略)、必要に応じて通電される電気ヒータ(図示を省略)が設けられている。
 以上のように構成されている水系統300は、三方切替え弁306を選択切替えすることにより、ラジエータ303に温水を供給する暖房運転または蓄熱タンク305に温水を供給する蓄熱運転のいずれか一方を選択して実施し、あるいは、ラジエータ303および蓄熱タンク305の両方に温水を分割供給して温水による暖房運転及び蓄熱運転の両方を同時に実施可能な構成とされている。
 また、水系統300は、蓄熱タンク305から水循環ポンプ307によって供給された加熱対象としての水が、水対冷媒熱交換器11においてヒートポンプ系統200の冷媒と熱交換することで加熱される。
 一方、ヒートポンプ系統200において、暖房サイクルが選択されると、低温低圧のガス冷媒が圧縮機構10(低段側圧縮機10a,高段側圧縮機10b)で圧縮され、高温高圧のガス冷媒としてヒートポンプ系統200に吐出される。このガス冷媒は、図12に実線矢印で示されるように、四方切替え弁15により水対冷媒熱交換器11に導かれて反時計回りに循環される。この場合、水対冷媒熱交換器11は、水循環ポンプ307により循環される水系統300の水と高温高圧ガス冷媒とを熱交換させる熱交換器であり、冷媒の凝縮により放熱される凝縮熱が水を加熱する凝縮器として機能する。この結果、ヒートポンプ系統200を流れる高温高圧のガス冷媒は、凝縮して高温高圧の液冷媒となり、水系統300を流れる水は冷媒から吸熱して温水となる。
 水対冷媒熱交換器11で凝縮された冷媒は、全開の冷房用膨張弁12aを通ってレシーバ39に流入する。このレシーバ39では、冷媒の気液分離が行われるとともに、循環する冷媒量の調整が行われる。レシーバ39の下流側には、高温高圧の液冷媒を減圧する暖房用膨張弁12bが配置されている。暖房用膨張弁12bを冷媒が通過することにより、高温高圧の液冷媒は減圧されて低温低圧の気液二相冷媒となり、熱源側空気熱交換器13に導かれる。蒸発器として機能する熱源側空気熱交換器13に導入された気液二相冷媒は、外気と熱交換することにより外気から吸熱して気化する。
 このように、熱源側空気熱交換器13を通過することにより、外気から吸熱して気化した低温低圧のガス冷媒は、再び四方切替え弁15を経て低段側圧縮機10aに吸引される。こうして低段側圧縮機10aに吸引された低温低圧のガス冷媒は、低段側圧縮機10aと高段側圧縮機10bで順番に圧縮されて高温高圧のガス冷媒となり、以下同様の経路を循環して気液の状態変化を繰り返す。この際、低温となる熱源側空気熱交換器13の外周面に、空気中の水分等が氷結して着霜現象が生じることがある。
 着霜は、熱源側空気熱交換器13での冷媒と外気との熱交換を阻害し、熱交換効率を低下させるため、霜の堆積の有無を検知することにより、適当な運転時間毎にデフロスト運転を実施して霜を除去する必要がある。このデフロスト運転は、上述のヒートポンプ系統200において、四方切替え弁15を切替えて冷媒の循環方向を逆転させ、図13中の一点差線の矢印方向に冷媒を循環させる冷房サイクル(デフロストサイクル)に切替え、高段側圧縮機10bから吐出された高温高圧のガス冷媒を熱源側空気熱交換器13に導入し、その放熱(凝縮熱)で熱源側空気熱交換器13に付着している霜を融解することによって行われる。
 このリバースサイクル方式によるデフロスト運転時には、水対冷媒熱交換器11は、蒸発器として機能し、温水循環流路301を流れる水から吸熱して冷媒を気化させ、その熱を用いて熱源側空気熱交換器13に着霜した霜を融解することとなる。この際、水温が低下しすぎると、水対冷媒熱交換器11内で水が凍結し、熱交換器破損のリスクが発生する。このため、デフロスト時、水対冷媒熱交換器11に循環される水温と共に冷媒の蒸発温度が低下しすぎないようにする必要がある。
 以上説明した給湯・空調機100においても、第1実施形態と同様にして、低段側圧縮機10aと高段側圧縮機10bの間に設けられる均油弁23の開閉を制御する。したがって、本実施形態の給湯・空調機100によると、低段側圧縮機10aと高段側圧縮機10bの運転を停止することなく、かつ、均油弁23の開閉という簡易な操作によって、低段側圧縮機10aと高段側圧縮機10bにおける冷凍機油の均一化を図ることができる。
 以上、本発明を実施形態に基づいて説明したが、本発明の主旨を逸脱しない限り、上記実施の形態で挙げた構成を取捨選択したり、他の構成に適宜変更したりすることが可能である。
 例えば、第1実施形態で述べた本発明における最低限の要素を除く部分は任意である。したがって、本発明を、室内用熱交換器をさらに備える給湯・空調機に適用することもできるし、逆に、貯湯機能のみを備えるヒートポンプ式の給湯器に適用することもできる。
1,2,3,4    ヒートポンプシステム
10a 低段側圧縮機
10b 高段側圧縮機
11  第1熱交換器,水対冷媒熱交換器
11f 送風ファン
12  膨張弁
12a 第1膨張弁,冷房用膨張弁
12b 第2膨張弁,暖房用膨張弁
13  第2熱交換器,熱源側空気熱交換器
13f 送風ファン
14,15 四方切換え弁
14a,14b 電磁弁
16  インジェクション回路
16a 中間圧レシーバ
16b 電磁弁
16c 逆止弁
16d インジェクション管
17  過冷却コイル
18  アキュムレータ
20  均油機構
21  均油配管
23  均油弁
25  電磁弁
26,28 オイルセパレータ
27,29 油戻し配管
30 制御装置
34  第1温度センサ
35  第2温度センサ
36  エコノマイザ回路
36a エコノマイザ用熱交換器
36b エコノマイザ用膨張弁
36c インジェクション管
37,38 オイルセパレータ
37L,38L 戻し配管
39  レシーバ
100 給湯・空調機
121,127 サブ配管
122,128 電磁弁
200 ヒートポンプ系統
300 水系統
301 温水循環流路
303 ラジエータ
305 蓄熱タンク
306 三方切換え弁
307 水循環ポンプ
L1,L11,L12,L2,L3,L4,L5 配管

Claims (10)

  1.  低段側圧縮機と高段側圧縮機を備え、冷媒を圧縮して吐出する圧縮機構と、
     前記高段側圧縮機の吐出側に設けられるオイルセパレータと、
     前記圧縮機構で圧縮された前記冷媒と熱交換対象とを熱交換する第1熱交換器と、
     前記第1熱交換器から流出する前記冷媒を減圧膨張させる膨張弁と、
     前記膨張弁にて減圧膨張された冷媒と熱交換対象とを熱交換する第2熱交換器と、
     前記低段側圧縮機と前記高段側圧縮機を繋ぎ、前記低段側圧縮機と前記高段側圧縮機の間で冷凍機油を流通させる均油経路と、
     前記オイルセパレータと前記高段側圧縮機の吸入側の間を繋ぐ主戻り配管と、
     前記主戻り配管と前記均油経路とを繋ぐ油戻り経路と、
     前記油戻り経路に設けられる油戻り用開閉弁と、
     前記冷媒を、前記低段側圧縮機と前記高段側圧縮機をこの順に流す二段圧縮経路と、前記低段側圧縮機と前記高段側圧縮機の一方だけを流す一段圧縮経路と、を選択的に切り替える、冷媒経路切換え機構と、
    を備えることを特徴とするヒートポンプシステム。
  2.  前記二段圧縮経路が選択されている最中に、以下の条件(1)~条件(3)のいずれかを満たすと、前記冷媒の経路が、前記一段圧縮経路に切り換えられる、
    請求項1に記載のヒートポンプシステム。
    条件(1):TW ≦ T
          T;第1熱交換器の熱交換対象が水の場合に、水と冷媒の熱交換器(水熱交)に入ってくる水温, T;規定値
    条件(2):(PHO-PLI) ≦ ΔPR1
         PLI;低段側圧縮機の吸入圧力 PHO;高段側圧縮機の吐出圧力 規定値:ΔPR1
    条件(3)(PLO-PLI) ≦ ΔPR2
         PLI;低段側圧縮機の吸入圧力 PLO;低段側圧縮機の吐出圧力 規定値:ΔPR2
  3.  前記冷媒経路切換え機構が、前記一段圧縮経路を選択すると、
     前記油戻り用開閉弁を開くことで、前記オイルセパレータからの前記冷凍機油が、前記高段側圧縮機を経由することなく、前記油戻り経路を介して前記均油経路に戻される、
    請求項1又は請求項2に記載のヒートポンプシステム。
  4.  前記戻り用開閉弁の開閉、及び、前記均油用開閉弁の開閉は、
     前記低段側圧縮機における予測される冷凍機油の量、及び、前記高段側圧縮機における予測される冷凍機油の量に基づいて制御される、
    請求項1~請求項3のいずれか一項に記載のヒートポンプシステム。
  5.  請求項1~4のいずれか一項に記載のヒートポンプシステムの前記第1熱交換器が、冷媒と水とを熱交換させて水を加熱する水対冷媒熱交換器である、
    ことを特徴とするヒートポンプ式給湯機。
  6.  低段側圧縮機と高段側圧縮機を備え、冷媒を圧縮して吐出する圧縮機構と、
     前記圧縮機構で圧縮された前記冷媒が熱交換対象と熱交換する第1熱交換器と、
     前記第1熱交換器から流出する前記冷媒を減圧膨張させる膨張弁と、
     前記膨張弁にて減圧膨張された前記冷媒が熱交換対象と熱交換する第2熱交換器と、
     前記低段側圧縮機と前記高段側圧縮機を繋ぎ、前記低段側圧縮機と前記高段側圧縮機の間で冷凍機油を流通させる均油配管と、
     前記均油配管を開閉する均油弁と、
     前記均油弁の開閉動作を制御する制御装置と、を備え、
     前記制御装置は、
     前記均油配管を前記冷媒が流れているものと判断すると、開いている前記均油弁を閉じるように指示する、
    ことを特徴とするヒートポンプシステム。
  7.  前記制御装置は、
     前記均油配管における検出温度Tと、
     前記低段側圧縮機から前記高段側圧縮機に向けて前記冷媒を流す冷媒配管における検出温度T、及び、前記高段側圧縮機における検出温度Tの一方又は双方と、
    の比較に基づいて、前記均油配管を前記冷媒が流れているか否かを判断する、
    請求項6に記載のヒートポンプシステム。
  8.  前記制御装置は、
     非定常な運転時には、開ける条件が整っていたとしても、前記均油弁を閉じ続けるように、指示する、
    請求項6又は請求項7に記載のヒートポンプシステム。
  9.  前記制御装置は、
     前記高段側圧縮機の回転数が、予め定められた値よりも小さい場合には、
     前記均油配管を前記冷媒が流れているか否かの前記判断に関わらず、
     前記均油弁を、一定時間ごとに開閉を交互に繰り返すように指示する、
    請求項6~請求項7のいずれか一項に記載のヒートポンプシステム。
  10.  請求項6~9のいずれか一項に記載のヒートポンプシステムの前記第1熱交換器が、冷媒と水とを熱交換させて水を加熱する水対冷媒熱交換器である、
    ことを特徴とするヒートポンプ式給湯機。
PCT/JP2014/004029 2013-09-30 2014-07-31 ヒートポンプシステム、及び、ヒートポンプ式給湯器 WO2015045247A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480053999.4A CN105593610B (zh) 2013-09-30 2014-07-31 热泵***及热泵式供热水机
EP14847548.6A EP3040643B1 (en) 2013-09-30 2014-07-31 Heat pump system, and heat pump water heater
ES14847548T ES2708779T3 (es) 2013-09-30 2014-07-31 Sistema de bomba de calor, y calentador de agua de bomba de calor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-203187 2013-09-30
JP2013203187A JP6057871B2 (ja) 2013-09-30 2013-09-30 ヒートポンプシステム、及び、ヒートポンプ式給湯器
JP2013243573A JP6029569B2 (ja) 2013-11-26 2013-11-26 ヒートポンプシステム、及び、ヒートポンプ式給湯器
JP2013-243573 2013-11-26

Publications (1)

Publication Number Publication Date
WO2015045247A1 true WO2015045247A1 (ja) 2015-04-02

Family

ID=52742427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/004029 WO2015045247A1 (ja) 2013-09-30 2014-07-31 ヒートポンプシステム、及び、ヒートポンプ式給湯器

Country Status (4)

Country Link
EP (1) EP3040643B1 (ja)
CN (2) CN105593610B (ja)
ES (1) ES2708779T3 (ja)
WO (1) WO2015045247A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105526735A (zh) * 2015-12-25 2016-04-27 徐英杰 一种高效的大温升两级节流两级压缩热泵热水机
CN114935223A (zh) * 2022-06-08 2022-08-23 青岛海信日立空调***有限公司 空气源热泵***
US11807623B2 (en) 2017-11-30 2023-11-07 Arrakis Therapeutics, Inc. Nucleic acid-binding photoprobes and uses thereof

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11460224B2 (en) 2018-10-31 2022-10-04 Emerson Climate Technologies, Inc. Oil control for climate-control system
JP7082098B2 (ja) * 2019-08-27 2022-06-07 ダイキン工業株式会社 熱源ユニット及び冷凍装置
KR20210121401A (ko) * 2020-03-30 2021-10-08 엘지전자 주식회사 히트펌프 및 그 동작방법
JP6970363B1 (ja) * 2020-09-30 2021-11-24 ダイキン工業株式会社 圧縮装置
JP7469668B2 (ja) * 2020-09-30 2024-04-17 ダイキン工業株式会社 冷凍装置および圧縮装置
CN115097878B (zh) * 2022-06-23 2023-11-17 北京京仪自动化装备技术股份有限公司 温控***的控制方法、控制***及温控***
CN115200180A (zh) * 2022-06-29 2022-10-18 山东雅士股份有限公司 一种稳定性高的变频受热式热水机控制***

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0593552A (ja) 1991-10-01 1993-04-16 Matsushita Electric Ind Co Ltd 二段圧縮ヒートポンプシステム
JPH062966A (ja) 1992-06-16 1994-01-11 Matsushita Electric Ind Co Ltd 二段圧縮ヒートポンプシステム
JP2001324247A (ja) * 2000-05-16 2001-11-22 Sanyo Electric Co Ltd 高圧容器のオイルレベル検知装置および空気調和装置
JP2008064421A (ja) * 2006-09-11 2008-03-21 Daikin Ind Ltd 冷凍装置
JP2008111585A (ja) * 2006-10-30 2008-05-15 Daikin Ind Ltd 空気調和装置
JP2009168330A (ja) 2008-01-16 2009-07-30 Daikin Ind Ltd 冷凍装置
JP2013024447A (ja) * 2011-07-19 2013-02-04 Daikin Industries Ltd 冷凍装置
JP2013139902A (ja) * 2011-12-28 2013-07-18 Daikin Industries Ltd 冷凍装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4407013B2 (ja) * 2000-06-07 2010-02-03 ダイキン工業株式会社 ヒートポンプ装置
CN1250925C (zh) * 2002-10-16 2006-04-12 广东科龙电器股份有限公司 双压缩机房间空调器及其控制方法
CN201096082Y (zh) * 2007-06-07 2008-08-06 浙江盾安人工环境设备股份有限公司 动态油路平衡***
EP2221559B1 (fr) * 2009-02-19 2016-08-10 Systemair AC S.A.S Installation thermodynamique à lubrification améliorée
JP5510393B2 (ja) * 2011-05-30 2014-06-04 株式会社デンソー 複数段圧縮式冷凍サイクル装置
US8863533B2 (en) * 2011-06-08 2014-10-21 Lg Electronics Inc. Refrigerating cycle apparatus and method for operating the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0593552A (ja) 1991-10-01 1993-04-16 Matsushita Electric Ind Co Ltd 二段圧縮ヒートポンプシステム
JPH062966A (ja) 1992-06-16 1994-01-11 Matsushita Electric Ind Co Ltd 二段圧縮ヒートポンプシステム
JP2001324247A (ja) * 2000-05-16 2001-11-22 Sanyo Electric Co Ltd 高圧容器のオイルレベル検知装置および空気調和装置
JP2008064421A (ja) * 2006-09-11 2008-03-21 Daikin Ind Ltd 冷凍装置
JP2008111585A (ja) * 2006-10-30 2008-05-15 Daikin Ind Ltd 空気調和装置
JP2009168330A (ja) 2008-01-16 2009-07-30 Daikin Ind Ltd 冷凍装置
JP2013024447A (ja) * 2011-07-19 2013-02-04 Daikin Industries Ltd 冷凍装置
JP2013139902A (ja) * 2011-12-28 2013-07-18 Daikin Industries Ltd 冷凍装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3040643A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105526735A (zh) * 2015-12-25 2016-04-27 徐英杰 一种高效的大温升两级节流两级压缩热泵热水机
CN105526735B (zh) * 2015-12-25 2018-12-21 苏州热火能源科技有限公司 一种高效的大温升两级节流两级压缩热泵热水机
US11807623B2 (en) 2017-11-30 2023-11-07 Arrakis Therapeutics, Inc. Nucleic acid-binding photoprobes and uses thereof
CN114935223A (zh) * 2022-06-08 2022-08-23 青岛海信日立空调***有限公司 空气源热泵***

Also Published As

Publication number Publication date
CN107270570A (zh) 2017-10-20
CN105593610B (zh) 2017-09-08
ES2708779T3 (es) 2019-04-11
EP3040643A4 (en) 2016-12-14
EP3040643B1 (en) 2018-12-26
CN105593610A (zh) 2016-05-18
EP3040643A1 (en) 2016-07-06

Similar Documents

Publication Publication Date Title
WO2015045247A1 (ja) ヒートポンプシステム、及び、ヒートポンプ式給湯器
KR101155496B1 (ko) 히트펌프식 급탕장치
KR101192346B1 (ko) 히트 펌프식 급탕장치
EP3062031B1 (en) Air conditioner
US7730729B2 (en) Refrigerating machine
KR101155497B1 (ko) 히트펌프식 급탕장치
JP2006284035A (ja) 空気調和装置およびその制御方法
JP6057871B2 (ja) ヒートポンプシステム、及び、ヒートポンプ式給湯器
TW200928260A (en) Refrigeration device
KR101737365B1 (ko) 공기조화기
KR20110127836A (ko) 히트펌프 연동 급탕장치
JP2001056159A (ja) 空気調和装置
WO2013065233A1 (ja) 冷凍サイクル装置およびそれを備えた空気調和機
KR20050086189A (ko) 멀티형 히트 펌프의 제어 방법
WO2017037891A1 (ja) 冷凍サイクル装置
KR101161381B1 (ko) 냉동 사이클 장치
CN111919073A (zh) 制冷装置
JP4023387B2 (ja) 冷凍装置
KR101692243B1 (ko) 캐스캐이드 사이클을 이용한 히트 펌프
JP6029569B2 (ja) ヒートポンプシステム、及び、ヒートポンプ式給湯器
JP2012076589A (ja) 車両用空調装置
JP6228798B2 (ja) ヒートポンプシステム、及び、ヒートポンプ式給湯器
KR101212686B1 (ko) 히트 펌프식 급탕장치
JP6105271B2 (ja) 空気調和機
JP2004218992A (ja) 冷凍装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14847548

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014847548

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014847548

Country of ref document: EP