WO2015043454A1 - 用来调理CdTe薄层太阳能电池的CdTe层的方法 - Google Patents

用来调理CdTe薄层太阳能电池的CdTe层的方法 Download PDF

Info

Publication number
WO2015043454A1
WO2015043454A1 PCT/CN2014/087202 CN2014087202W WO2015043454A1 WO 2015043454 A1 WO2015043454 A1 WO 2015043454A1 CN 2014087202 W CN2014087202 W CN 2014087202W WO 2015043454 A1 WO2015043454 A1 WO 2015043454A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
cdte
solar cell
thin
cerium
Prior art date
Application number
PCT/CN2014/087202
Other languages
English (en)
French (fr)
Inventor
德罗斯特·克里斯蒂案
斯帕特·贝蒂娜
彭寿
Original Assignee
中国建材国际工程集团有限公司
Ctf 太阳能有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国建材国际工程集团有限公司, Ctf 太阳能有限公司 filed Critical 中国建材国际工程集团有限公司
Priority to EP14847054.5A priority Critical patent/EP3051596B1/en
Publication of WO2015043454A1 publication Critical patent/WO2015043454A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • H01L31/1836Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe comprising a growth substrate not being an AIIBVI compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02562Tellurides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0296Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/073Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising only AIIBVI compound semiconductors, e.g. CdS/CdTe solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/543Solar cells from Group II-VI materials

Definitions

  • the subject of the invention is a method for conditioning a CdTe layer of a CdTe thin-film solar cell, whereby a better contact of the back contact layer sequence is achieved.
  • a Superstrat-Konfiguration type CdTe thin-film solar cell is produced by applying a transparent front contact layer (TCO, transparent conductive oxide) onto a substrate, preferably glass.
  • TCO transparent front contact layer
  • a layer consisting of pure or modified CdS (cadmium sulfide) is deposited on the front contact layer.
  • Modified CdS (cadmium sulfide) is understood below as a mixture of CdS or CdS with other materials, with dopants, crystal shape changes or grain size changes.
  • a layer of cadmium telluride (CdTe) is applied over the layer of CdS.
  • a back contact layer or a back contact layer sequence is then deposited onto the CdTe layer.
  • the problem here is that coating the metal contact layer on CdTe is not easy to achieve as this would result in a rectified Schottky contact.
  • the task of the layer sequence is to adjust the energy levels of the individual layer materials in such a way that an ohmic contact is produced, wherein a metal layer is preferred as the outermost back contact layer.
  • activation of CdTe is preferably carried out by means of CdCl 2 and heating after coating of CdTe.
  • the method from the prior art is such that the cadmium telluride layer is then subjected to wet chemical etching. Furthermore, the CdTe solar cell is immersed in a so-called NP etching solution.
  • the NP etching solution is an aqueous solution of a different inorganic acid, preferably (HNO 3 (0.5% - 5%) / H 3 PO 4 (50% - 85%) / H 2 O (15% - 45%) (total 100%). This is carried out in a temperature range of room temperature (18 ° C to about 80 ° C.)
  • the etching time is preferably in the range of 5 s to 60 s.
  • a cerium-rich layer having a thickness in the range of 1 nm to 300 nm is produced.
  • NP corrosion causes oxidation of CdTe to an amorphous, elemental Te, which crystallizes and constitutes a germanium-rich layer.
  • the oxidation does not stop at the stage of the element Te.
  • the existing portion of Te is also oxidized to a cerium oxide (e.g., TeO 2 ).
  • TeO 2 a cerium oxide
  • These oxides remain largely in the ruthenium-rich layer, and in particular in the grain boundary region of the CdTe/Te transition region (Korngrenzenzwickeln) (the undisturbed CdTe layer to the transition region of the enthalpy layer).
  • the ruthenium rich layer is susceptible to oxidation by oxygen in the air. This additional oxidation deteriorates the p-type conductivity of the Te layer and the conductivity of the CdTe layer. In addition to this, the oxidized regions lead to poor contact to the secondary back contact layer (for example the layer sequence Sb 2 Te 3 , Mo, Ni:V).
  • the CdTe layer is etched by a strong, preferably oxidizing, acid.
  • a strong, preferably oxidizing, acid In this regard, particular mention is made of sulfuric acid, nitric acid, hydrochloric acid and hydrofluoric acid.
  • the surface layer is treated by an oxidizing agent, preferably by dichromate or peroxide.
  • the resulting oxide is then reduced/removed by means of a strong alkaline chemical.
  • a hydrazine or alkali metal hydroxide solution Designated to use a hydrazine or alkali metal hydroxide solution.
  • the etching time by an oxidizing acid is specified to be, for example, 2 s (column 2, line 61).
  • the proposed task is solved by a method according to claim 1.
  • Preferred embodiments are disclosed in the dependent dependent claims.
  • a semi-finished product of a thin-film solar cell on a substrate is provided according to the prior art.
  • Such a semifinished product preferably has a substrate, a front contact layer disposed thereon, and a layer of pure or modified CdS disposed on the front contact layer.
  • a CdTe layer is coated on the CdS layer.
  • the CdTe layer is subjected to NP corrosion so that the outermost layer of the CdTe layer is germanium, that is, the layer contains a very stoichiometric amount of Te.
  • the NP corrosion which is well mastered according to the prior art, is supplemented with an additional reduction step after NP corrosion.
  • the goal of this reduction treatment is to largely eliminate the cerium oxide compound in the cerium-rich layer.
  • an aqueous solution of a suitable chemical reagent is contacted with the surface, in particular the surface of the cerium-rich layer, under atmospheric conditions. This preferably takes place in a wet bench by means of a immersion method according to the prior art.
  • Suitable chemical reagents are:
  • the solar cell semi-finished product When treated by the immersion method, the solar cell semi-finished product is immersed in the above-mentioned solution for 1 second to 30 minutes. This is carried out in a temperature range of preferably 15 ° C to 30 ° C. The solar cell semi-finished product is then rinsed with deionized water, dried and directed to further processing (coating the back contact layer sequence).
  • a particularly preferred embodiment for the reduction of the cerium-rich layer which is partially oxidized by the action of the NP etching solution (HNO 3 ) according to the invention is:
  • a weakly acidic Na 2 S 2 O 4 solution for example by acidification with citric acid or EDTA (ethylenediaminetetraacetic acid).
  • the reduction according to (i) and (ii) is preferably carried out at a solution temperature of about 20 °C.
  • the solution is regularly reconstituted or renewed as it is expected that sodium dithionite will slowly decompose in water.
  • the duration of the reduction is preferably between 10 s and 300 s, particularly preferably between 30 s and 120 s.
  • aqueous solution of sodium borohydride preferably 0.001 to 2 moles per liter, (particularly preferred concentration range 0.04-0.8 moles per liter).
  • the temperature of the solution is preferably between a temperature range between 15 ° C and 30 ° C.
  • the treatment duration is preferably between 10 s and 300 s, particularly preferably between 30 s and 60 s.
  • the surface layer enriched in ruthenium preferably has a thickness of from 1 nm to 300 nm, particularly preferably from 50 nm to 150 nm. This thickness does not change or only an unimportant change occurs by an additional reduction step according to the invention.
  • the treatment by a reducing chemical according to the present invention results in the cerium oxide feeding the bound oxygen to the chemical reagent.
  • the result of the treatment according to the invention is that the cerium oxide is largely reduced in the cerium-rich layer (41) and at least reduced to one-fifth of the mass fraction of cerium oxide in the cerium-rich layer, preferably reduced. Up to one-twentieth, particularly preferably reduced to one percent.
  • the retention in the eucalyptus layer is advantageously avoided, as is the case in US 4 456 630, which damages or dilutes the cerium rich layer.
  • the process can take place at room temperature or at a slightly elevated room temperature.
  • the wet chemical process is well grasped on an industrial scale.
  • Sb 2 Te 3 layer is coated.
  • the other layers of the back contact layer sequence are then applied, typically a layer made of molybdenum and nickel.
  • FIGs of Figures 1 to 5 schematically illustrate the flow of process steps, including an additional reduction step in accordance with the present invention after NP corrosion.
  • Figure 1 shows a prepared solar cell with a substrate 1 on which a transparent front contact 21 and a CdS layer 3 have been applied, and a CdTe layer 4 has been applied over the CdS layer;
  • the cerium-rich layer 41 remains after the etching process, and Cd is mostly extracted from the cerium-rich layer.
  • Figure 4 shows schematically the treatment of the surface by a reducing chemical after the etching process.
  • FIG. 5 schematically shows a layer sequence of a solar cell produced after the back contact 22 is applied to the Sb 2 Te 3 layer 5.
  • the back contact layer 22 can be formed as a layer sequence.
  • the CdTe surface layer was activated by CdCl 2 at 400 ° C according to the prior art.
  • the NP etching step (Fig. 2) was carried out by NP etching solution 6: (HNO 3 (3%) / H 3 PO 4 (75%) / H 2 O (22%) at a temperature of 30 ° C.
  • NP etching solution 6 HNO 3 (3%) / H 3 PO 4 (75%) / H 2 O (22%) at a temperature of 30 ° C.
  • a cerium-rich layer 41 having a layer thickness of 250 nm is produced (Fig. 3). On the cerium-rich layer, the oxidized component is only partially extracted, and cadmium is largely extracted.
  • the post-treatment according to the invention is carried out by reducing chemical agent 7, here neutral sodium dithionite (3%), at 20 ° C for 2 min. This is done in a wet bath according to the prior art (Nassbad).
  • the back contact layer 22 which consists of a molybdenum layer and a nickel layer with a vanadium additive.
  • a layer of molybdenum (150 nm) was deposited by sputtering onto the Sb 2 Te 3 layer.
  • a nickel layer with vanadium addition (sputtering, 150 nm) was also deposited on the molybdenum layer (Fig. 5).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)
  • Weting (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

一种用来调理CdTe薄层太阳能电池的CdTe层的方法。具体涉及一种处理基材上置式薄层太阳能电池半成品的CdTe层的方法,该薄层太阳能电池半成品具有作为最表面覆层的CdTe层。根据现有技术,这些表面经受NP腐蚀并且接着被涂镀。然而在NP腐蚀时产生的碲氧化物被证实对于随后的涂镀步骤是不利的。因此提出了,存在的碲氧化物在进一步的加工中借助于还原剂还原为碲。

Description

用来调理CdTe薄层太阳能电池的CdTe层的方法 技术领域
本发明的主题是一种用来调理CdTe薄层太阳能电池的CdTe层的方法,由此实现了背接触层序列的更好的接触。
背景技术
根据现有技术,基材上置(Superstrat-Konfiguration)式CdTe薄层太阳能电池以如下方式制造:把透明的前接触层(TCO,透明导电氧化物)涂覆到基材(优选玻璃)上。在前接触层上沉积由纯的或改性的CdS(硫化镉)构成的层。改性的CdS(硫化镉)在以下理解为,带有掺杂剂、晶体形状变更或晶粒尺寸变更的CdS或CdS与其他原料的混合物。将碲化镉(CdTe)层涂覆到在CdS层之上。再将背接触层或背接触层序列沉积到CdTe层上。
在此问题是,在CdTe上涂布金属的接触层是不容易实现的,因为这会导致产生整流的肖特基(Schottky)接触。然而所希望的是产生欧姆接触。层序列的任务是,使各个层材料的能级如此地实现调整,即,生成欧姆接触,其中,优选金属层作为最表面的背接触层。
在制造过程中,优选在CdTe的涂覆之后借助于CdCl2和加热进行CdTe的活化。
出自现有技术的方法设置为,碲化镉层接着经受湿法化学腐蚀。此外CdTe太阳能电池被浸入到所谓的NP腐蚀液中。NP腐蚀液是不同无机酸的水溶液,优选(HNO3(0.5%-5%)/H3PO4(50%-85%)/H2O(15%-45%)(总计100%)。这在室温(18℃到约80℃)的温度范围中进行。腐蚀时间优选为在5s到60s的范围中。NP腐蚀的结果是,产生厚度在1nm到300nm的范围中的富碲层。
基于HNO3的作用,NP腐蚀导致CdTe氧化成无定形的、元素Te,其结晶并且构成富碲层。然而氧化不停止于元素Te的阶段。不期望地,现有的Te的部分 还被氧化成碲氧化物(例如TeO2)。这些氧化物在很大程度上残留在富碲层中,并且特别是在CdTe/Te过渡区的晶界楔区(Korngrenzenzwickeln)(未受干扰的CdTe层到富碲层的过渡区域)那里。
另外,富碲层容易发生通过空气中的氧进行的氧化。这种额外地氧化使Te层的p型导电性以及相对CdTe层的导电性变差。除此之外,氧化区域导致对于次级背接触层(例如层序列Sb2Te3、Mo、Ni:V)的接触变差。
存在一系列的建议,如腐蚀CdTe表面以及改进CdTe层在NP腐蚀之后的状态。
因此,在US 2011/0117696A1中提出了用来产生富碲和无氧化的层的、变化了的腐蚀过程,其中,借助由有机酸构成的混合物、氧化剂以及配位剂工作。公知的酸是:葡萄糖酸、醋酸、柠檬酸以及它们的混合物。作为氧化剂提及过氧化氢。配位剂应当优选能够配位铜。然而在腐蚀剂本身的研究中,证明了所提出的腐蚀剂对于富碲层的生产是低效的,特别是证明了对工业化的太阳能电池制造是不适合的。
在US 4 456 630中描述了其他的设置方式。在此,CdTe层通过强的、优选氧化性的酸腐蚀。对此,特别提及硫酸、硝酸、盐酸和氢氟酸。随后,表面层通过氧化剂处理,优选通过重铬酸盐或过氧化物处理。随后借助强碱性化学试剂来还原/去除所产生的氧化物。指定使用联氨或碱金属氢氧化物溶液。在该文献中,通过氧化性酸的腐蚀时间指定为例如2s(第2栏第61行)。这种类型的短暂的腐蚀时间难以掌握,并且可以导致强烈的质量波动。此外,对于碱金属氢氧化物溶液如NaOH或KOH的使用,其特征是,碲氧化物由所处理的富碲表面被析取出。后者可能对富碲层的厚度产生负面的影响。除此之外,在使用联氨作为还原性试剂时,必需接触剧毒的致癌物。这种方法因此是时间要求极其严格的,并且需要接触强酸、碱和/或有毒物质。
因此,提出了如下任务:使NP腐蚀过程或过程序列如此地进一步改进,从而在富碲层中使氧化碲化合物最小化,然而其中应当不使用高危险性的化学试剂。
发明内容
根据本发明,所提出的任务通过根据权利要求1的方法解决。优选实施方式在相关从属权利要求中公开。
根据现有技术来提供基材上置式薄层太阳能电池半成品。这种半成品优选具有基材、布置在其上的前接触层、以及布置在前接触层上的、由纯的或改性的CdS构成的层。在CdS层上涂覆CdTe层。CdTe层经受NP腐蚀,从而CdTe层的最表面的层为富碲的,也就是说,该层含有化学计量上非常多的的Te。
根据本发明设置,根据现有技术良好地掌握的NP腐蚀,在NP腐蚀之后补充以额外的还原步骤。这种还原处理的目标是,在很大程度上消除在富碲层中的氧化碲化合物。为此,在大气条件下适当的化学试剂的水溶液与表面,特别是富碲层的表面,相接触。这优选地借助根据现有技术的浸液方法在湿性工作台中发生。适合的化学试剂为:
-连二亚硫酸钠(Na2S2O4),在中性或弱酸性的溶液中(0.01到1摩尔每升);或者,
-氯化亚锡(SnCl2),在HCl酸溶液中(0.005到1摩尔每升);或者
-硼氢化钠(NaBH4),在中性或弱碱性的溶液中(0.001到2摩尔每升)。
在以浸液方法处理时,太阳能电池半成品在以上提到的溶液中浸泡1秒钟到30分钟。这在优选15℃到30℃的温度区间中进行。接着太阳能电池半成品通过去离子水冲洗,干燥并且导向进一步的加工(涂覆背接触层序列)。
用于根据本发明的、使通过NP腐蚀液(HNO3)的作用部分被氧化的富碲层的还原的特别优选的实施方式为:
(i)连二亚硫酸钠Na2S2O4的水溶液:0.01到1摩尔每升的溶液(优选范围:约0.03-0.04摩尔每升)
(ii)弱酸性Na2S2O4溶液,例如通过以柠檬酸或EDTA(乙二胺四乙酸)酸化。
根据(i)和(ii)的还原优选在大约20℃的溶液温度的情况下实行。优选地,溶液规律性地重新配制或更新,因为可以预期到,连二亚硫酸钠在水中缓慢分解。还原的持续时间优选在10s-300s之间,特别优选的在30s-120s之间。
(iii)借助于氯化亚锡的酸性水溶液:0.005到1摩尔每升,通过稀释过的HCl弱酸化(优选范围:约0.02-0.05摩尔每升)。溶液温度在约20℃,还原的持续时间优选10s-120s。
(iv)借助于硼氢化钠水溶液:优选0.001到2摩尔每升,(特别优选浓度范围0.04-0.8摩尔每升)。溶液的温度为优选在15℃和30℃之间的温度范围之间。处理持续时间优选在10s-300s之间,特别优选地在30s-60s之间。
在NP腐蚀之后,富集碲的表面层优选具有1nm到300nm的厚度,特别优选地为50nm到150nm。通过根据本发明的额外的还原步骤该厚度不发生改变或者仅发生不重要的改变。
根据本发明的通过还原性化学试剂的处理导致,碲氧化物将所结合的氧送给化学试剂。根据本发明的处理的结果是,碲氧化物在富碲层(41)中在很大程度上被还原,而至少还原到在富碲层中碲氧化物质量份额的五分之一,优选还原到二十分之一,特别优选地还原到百分之一。碲留在富碲层中,据此有利地避免了,例如在US 4 456 630中发生的那样,损害或稀释富碲层。除此之外,该过程可以在室温下或略微提高的室温下发生。另外,湿法化学过程在产业规模上被良好地掌握。
在根据本发明的额外的还原步骤以及后续的以去离子水的冲洗之后,通过根据现有技术的方法,优选通过溅镀Sb2Te3,涂覆Sb2Te3层。接着涂覆背接触层序列的其他层,典型地由钼和镍制成的层。
附图说明
图1至图5的图示意性地示出了过程步骤的流程,包括在NP腐蚀之后额外的根据本发明的还原步骤。
图1示出了准备好的、带有基材1的太阳能电池,在基材上已经涂覆了透明的前接触21以及CdS层3,并且在CdS层上方已经涂覆了CdTe层4;
在图2中,示意性地示出了借助于NP腐蚀液6的腐蚀过程。
如在图3中示意性地所示出的那样,在腐蚀过程后残留富碲层41,Cd从该富碲层中被大部分地析取走。
图4示意性地示出了,表面在腐蚀过程之后通过还原性的化学试剂的处理。
图5示意性地示出了,在背接触部22涂覆到Sb2Te3层5之后制成的太阳能电池的层序列。在此,背接触层22可以形成为层序列。
具体实施方式
以下依据实施例阐述根据本发明的过程,而本发明的过程不局限于这个示例。
在玻璃基材1上涂覆前接触层21、CdS层3和CdTe层4之后(图1),根据现有技术,通过CdCl2在400℃的情况下活化CdTe表面层。随后通过NP腐蚀溶液6:(HNO3(3%)/H3PO4(75%)/H2O(22%),在温度为30℃的情况下进行NP腐蚀步骤(图2)。逐渐产生具有250nm的层厚度的富碲层41(图3)。在富碲层上,氧化的组成部分仅仅部分地被析取走,而镉则在很大程度上被析取走。
接着,通过还原性化学试剂7,在此为中性的连二亚硫酸钠(3%),在20℃的情况下进行2min根据本发明的后处理。这在根据现有技术的湿浴(Nassbad)中进行。
随后为通过去离子水的冲洗过程以及随后的干燥。
接着在基材温度为250℃时,45nm的Sb2Te3层5被溅镀到富碲层41上。
随后,进行背接触层22的沉积,该背接触层由钼层和带有钒添加物的镍层构成。钼层(150nm)借助于溅射沉积到Sb2Te3层上。最后,还在钼层上沉积带有钒添加物的镍层(溅射,150nm)(图5)。
附图标记列表
1   基材(玻璃)
21  前接触(透明的、TCO)
22  背接触(金属)
3   CdS层(纯的或改性的CdS(硫化镉))
4   CdTe层
41  腐蚀后的富碲层
5   Sb2Te3层
6   NP腐蚀
7   还原性化学试剂

Claims (8)

  1. 一种处理基材上置式薄层太阳能电池半成品的CdTe层的方法,所述薄层太阳能电池半成品具有作为最表面覆层的CdTe层,其特征在于,所述CdTe层由具有富碲的表面层,并且将其通过如下方式在很大程度上清除那里存在的碲氧化物,即,将碲氧化物借助于还原剂还原成碲。
  2. 根据权利要求1所述的方法,其特征在于,所述富碲的表面层通过NP腐蚀步骤或者通过借助溴/甲醇混合物的腐蚀来生成。
  3. 根据权利要求1或2所述的方法,其特征在于,使用中性的或弱酸性的Na2S2O4水溶液作为还原剂。
  4. 根据权利要求1或2所述的方法,其特征在于,使用氯化亚锡的酸性水溶液作为还原剂。
  5. 根据权利要求1或2所述的方法,其特征在于,使用硼氢化钠水溶液作为还原剂。
  6. 根据以上所述权利要求中任意一项所述的方法,其特征在于,还原步骤通过将所述薄层太阳能电池半成品浸入到湿浴中进行。
  7. 根据以上所述权利要求中任意一项所述的方法,其特征在于,在还原步骤之后,通过去离子水对所述富碲的表面层进行冲洗。
  8. 根据权利要求7所述的方法,其特征在于,在所述冲洗之后,涂覆背接触层序列。
PCT/CN2014/087202 2013-09-26 2014-09-23 用来调理CdTe薄层太阳能电池的CdTe层的方法 WO2015043454A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP14847054.5A EP3051596B1 (en) 2013-09-26 2014-09-23 Method for modifying cdte layer of cdte thin-layer solar cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310446482.9 2013-09-26
CN201310446482.9A CN104518045B (zh) 2013-09-26 2013-09-26 用来调理CdTe薄层太阳能电池的CdTe层的方法

Publications (1)

Publication Number Publication Date
WO2015043454A1 true WO2015043454A1 (zh) 2015-04-02

Family

ID=52742056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/087202 WO2015043454A1 (zh) 2013-09-26 2014-09-23 用来调理CdTe薄层太阳能电池的CdTe层的方法

Country Status (3)

Country Link
EP (1) EP3051596B1 (zh)
CN (1) CN104518045B (zh)
WO (1) WO2015043454A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113060707A (zh) * 2021-03-16 2021-07-02 成都中建材光电材料有限公司 一种碲化镉废弃组件的回收方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107768453A (zh) * 2017-08-31 2018-03-06 成都中建材光电材料有限公司 一种具有复合背电极的碲化镉薄膜电池及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2822250A (en) * 1954-12-01 1958-02-04 Philips Corp Material removal from semi-conductive metal telluride
US4456630A (en) 1983-08-18 1984-06-26 Monosolar, Inc. Method of forming ohmic contacts
CN101615638A (zh) * 2008-10-06 2009-12-30 四川大学 具有Te缓冲层的CdTe薄膜太阳电池
US20110117696A1 (en) 2009-11-19 2011-05-19 Air Liquide Electronics U.S. Lp CdTe SURFACE TREATMENT FOR STABLE BACK CONTACTS
CN102723384A (zh) * 2011-03-29 2012-10-10 比亚迪股份有限公司 一种CdTe太阳能电池及其制作方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4524433B2 (ja) * 2004-03-25 2010-08-18 Dowaメタルマイン株式会社 定量分析を目的とした貴金属元素の分離回収方法
CN102037152A (zh) * 2008-03-26 2011-04-27 索莱克山特公司 基板太阳能电池中改进的结
CN102498572B (zh) * 2009-09-11 2016-03-02 第一太阳能有限公司 清洗碲化镉表面的方法和制造光伏器件的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2822250A (en) * 1954-12-01 1958-02-04 Philips Corp Material removal from semi-conductive metal telluride
US4456630A (en) 1983-08-18 1984-06-26 Monosolar, Inc. Method of forming ohmic contacts
CN101615638A (zh) * 2008-10-06 2009-12-30 四川大学 具有Te缓冲层的CdTe薄膜太阳电池
US20110117696A1 (en) 2009-11-19 2011-05-19 Air Liquide Electronics U.S. Lp CdTe SURFACE TREATMENT FOR STABLE BACK CONTACTS
CN102723384A (zh) * 2011-03-29 2012-10-10 比亚迪股份有限公司 一种CdTe太阳能电池及其制作方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113060707A (zh) * 2021-03-16 2021-07-02 成都中建材光电材料有限公司 一种碲化镉废弃组件的回收方法

Also Published As

Publication number Publication date
CN104518045B (zh) 2018-03-23
CN104518045A (zh) 2015-04-15
EP3051596A4 (en) 2017-05-31
EP3051596B1 (en) 2019-12-25
EP3051596A1 (en) 2016-08-03

Similar Documents

Publication Publication Date Title
EP2717315A1 (en) Copper-based metal wiring comprising oxide layer including indium and zinc
US8916412B2 (en) High efficiency cadmium telluride solar cell and method of fabrication
CA1208372A (en) Method of forming ohmic contacts
US11129282B2 (en) Method for manufacturing ceramic circuit board
US9252302B2 (en) Photovoltaic back contact
JP2017504179A (ja) 結晶シリコン太陽電池の表面テクスチャ構造及びその製造方法
CN102822992B (zh) 半导体装置的制造方法、半导体装置的制造装置、半导体装置、以及转印用组件
JP2011176283A (ja) 光電変換素子の製造方法
WO2015043454A1 (zh) 用来调理CdTe薄层太阳能电池的CdTe层的方法
WO2015145815A1 (ja) 半導体装置、半導体装置の製造方法
WO2011044382A1 (en) Porous substrates for fabrication of thin film solar cells
CN113964244A (zh) 太阳能薄膜电池及其制作方法
JP2005023301A5 (zh)
WO2013081114A1 (ja) 薄膜太陽電池
CN220753458U (zh) 一种紫外发光二极管
CN109659395A (zh) 一种perc太阳电池的背面钝化方法
CN111378453B (zh) 用于同时蚀刻包含氧化锌及银的层压膜的蚀刻液组合物
CN102637786B (zh) 以ITO∕ZnO基复合膜为p电极的LED电极制作方法
KR100819121B1 (ko) 화학조 침착법에 의한 황화카드뮴 박막 및 황화카드뮴다이오드의 제조방법
CN115117183B (zh) 异质结电池的加工方法
JP2014221882A (ja) 樹脂基板の処理方法、及び、太陽電池の製造方法
US9640678B2 (en) Method for producing the rear contact layer for CdTe thin-film solar cells
TR201614094A1 (tr) Si̇li̇syum di̇li̇mleri̇n ni̇kel yardimli tek aşamali kaplanma ve aşindirilmasina i̇li̇şki̇n yöntem
CN116344683A (zh) 太阳电池及其制备方法
CN117476807A (zh) 电极及其制备方法、太阳电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14847054

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014847054

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014847054

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE