WO2015041453A1 - Electrical-storage type desalination electrode module, production method therefor and desalination device using same - Google Patents

Electrical-storage type desalination electrode module, production method therefor and desalination device using same Download PDF

Info

Publication number
WO2015041453A1
WO2015041453A1 PCT/KR2014/008636 KR2014008636W WO2015041453A1 WO 2015041453 A1 WO2015041453 A1 WO 2015041453A1 KR 2014008636 W KR2014008636 W KR 2014008636W WO 2015041453 A1 WO2015041453 A1 WO 2015041453A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
porous substrate
module
carbon
capacitive desalination
Prior art date
Application number
PCT/KR2014/008636
Other languages
French (fr)
Korean (ko)
Inventor
황준식
Original Assignee
주식회사 아모그린텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아모그린텍 filed Critical 주식회사 아모그린텍
Priority to CN201480042503.3A priority Critical patent/CN105408260B/en
Priority claimed from KR20140123315A external-priority patent/KR20150032221A/en
Publication of WO2015041453A1 publication Critical patent/WO2015041453A1/en
Priority to US15/045,452 priority patent/US10472262B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • C02F1/4691Capacitive deionisation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46152Electrodes characterised by the shape or form
    • C02F2001/46157Perforated or foraminous electrodes
    • C02F2001/46161Porous electrodes

Definitions

  • the present invention relates to a capacitive desalination electrode module, and more particularly, by applying a nanofiber web or a nonwoven fabric as a conductive support, ultra-thin and slim, capacitive desalination electrode module having excellent flexibility, a method of manufacturing the same And a desalination apparatus using the same.
  • Water is very important for human life, and water is widely used as living water or industrial water. Due to industrial development, water is contaminated with heavy metals, nitrate nitrogen, fluorine ions, etc., and it is very harmful to health when drinking contaminated water.
  • the desalination technology is a technique for desalination by removing various suspended substances or ionic components contained in contaminated water such as seawater and wastewater, and the evaporation method of evaporating moisture using a heat source such as fossil fuel or electricity, and foreign matter using a separator. Filtration to remove the filtration and electrodialysis to remove ions using the electrolysis of the electrode cells.
  • the evaporation method is to evaporate water by using fossil fuel or electricity as a heat source.
  • the volume of the desalination unit is large, inefficient, the consumption of energy is increased, and the manufacturing cost is increased. It may cause contamination.
  • Korean Patent Publication No. 501417 includes a reverse osmosis membrane device for firstly removing a salt component with respect to treated water flowing at a predetermined pressure;
  • An electrode desalination device in which a spacer, a positive electrode, and a negative electrode are sequentially installed in a cylindrical tank to remove salt components from the treated water firstly treated in the reverse osmosis membrane apparatus;
  • An energy recovery device for utilizing the brine side pressure of the reverse osmosis membrane device to pressurize the inlet water of the electrode desalination device;
  • Power supply means for supplying power to the positive electrode and the negative electrode provided in the electrode desalination device;
  • control means for controlling valves provided in pipes through which the treated water flows to perform a desalting process of desalting the treated water flowing into the electrode desalting apparatus and a regeneration process of desorbing ions adsorbed to the electrode during the desalting process.
  • a wastewater desalination apparatus using a reverse osmosis membrane method / electrode method Disclosed is a wastewater desalination apparatus using a reverse osmosis membrane method / electrode method.
  • the wastewater desalination apparatus is provided with a reverse osmosis membrane apparatus and an electrode desalination apparatus separately, so that the size of the desalination apparatus is large and a large manufacturing cost is required.
  • the present inventors continue to study the technology to slim the desalination apparatus and reduce the manufacturing cost, the structural characteristics of the current collector module capable of realizing an ultra-thin current collector while having a high storage capacity
  • the present invention has completed the more economical, usable and competitive invention.
  • the present invention has been made in view of the problems of the prior art, the object of which is to adopt a conductive support in which the carbon-based electrode powder is fixed to the fine pores of the porous substrate as a current collector, to reduce the manufacturing cost, high capacity
  • the present invention provides a capacitive desalination electrode module, a method of manufacturing the same, and a desalination apparatus using the same.
  • Still another object of the present invention is to provide a capacitive desalination electrode module capable of implementing a flexible current collector module, a manufacturing method thereof, and a desalination apparatus using the same.
  • the carbon electrode powder is injected into the fine pores of the porous substrate is fixed to the conductive support; It provides a capacitive desalination electrode module comprising a; and a plating layer plated on one surface of the conductive support.
  • an embodiment of the present invention preparing a porous substrate having fine pores; Injecting a carbon electrode powder slurry obtained by mixing the carbon electrode powder with a solvent together with a solvent into the fine pores of the porous substrate; Fixing the carbon electrode powder to the fine pores of the porous substrate; And forming a plating layer on the porous substrate on which the carbon electrode powder is fixed to the micro pores.
  • the first storage of electricity including a first conductive support
  • the carbon electrode powder is injected and fixed to the fine pores of the porous substrate, and a first plating layer plated on one surface of the first conductive support
  • Type desalination electrode module A second conductive support facing the first capacitive desalination electrode module with a space therebetween and fixed with carbon electrode powder injected into the micropores of the porous substrate, and a plated on one surface of the second conductive support
  • a nonwoven fabric positioned in a space between the first and second capacitive desalination electrode modules to allow the treated water to pass therethrough.
  • the carbon electrode powder is composed of a conductive support made of a porous substrate fixed to micropores, and a capacitive desalination electrode module is formed of a plating layer, thereby having an ultra-thin and slimmer structure.
  • a flexible capacitive desalination electrode module can be realized by fabricating a nanofiber web or nonwoven fabric having excellent flexibility as a conductive support, and at the same time, the module can be mounted in a curved desalination apparatus having a curved extreme shape. have.
  • the carbon-based electrode powder having a high specific surface area and excellent electrical conductivity is fixed to the micropores of the porous substrate to prepare a conductive support, thereby reducing manufacturing costs and having a high storage capacity.
  • FIG. 1 is a conceptual cross-sectional view for explaining a capacitive desalination electrode module according to an embodiment of the present invention
  • 3A to 3C are conceptual cross-sectional views illustrating a method of manufacturing a capacitive desalination electrode module according to an embodiment of the present invention
  • FIG. 4 is a conceptual view illustrating a desalination apparatus according to a first embodiment of the present invention
  • FIG. 5 is a conceptual view illustrating a desalination apparatus according to a second embodiment of the present invention.
  • FIG. 6 is a conceptual view illustrating a structure in which the filter module of FIG. 5 is stacked.
  • FIG. 1 is a conceptual cross-sectional view for explaining a capacitive desalination electrode module according to an embodiment of the present invention
  • Figure 2 is to explain that the carbon electrode powder is dispersed in the nanofiber web applied to an embodiment of the present invention Conceptual drawing.
  • the capacitive desalination electrode module 100 is fixed to the carbon electrode powder 120 is injected into the fine pores of the porous substrate 110, such as porous nanofiber web or nonwoven fabric Conductive support 130; And a plating layer 150 plated on one surface of the conductive support 130.
  • the carbon electrode powder 120 is mixed with a binder and a solvent to prepare a carbon electrode powder slurry in which the carbon electrode powder 120 is dispersed, and the slurry is injected and fixed into the fine pores of the porous substrate 110.
  • the carbon electrode powder 120 is fixed to the fine pores of the porous substrate 110.
  • the binder may be interposed between the carbon electrode powder 120 and the porous substrate 110, the binder increases the bonding force for fixing the carbon electrode powder 120 to the porous substrate 110.
  • the conductive support 130 forms a spinning solution by dissolving a polymer capable of electrospinning in a solvent, followed by electrospinning the spinning solution on the collector or the transfer sheet to accumulate the nanofibers that are spun onto the micropores.
  • a porous substrate 110 such as a porous nanofiber web, or a non-woven fabric having a fine carbon electrode powder 120 is injected to secure the conductivity has a fixed structure.
  • the capacitive desalination electrode module 100 is a conductive support 130, the porous nanofiber web having a micropores formed by the accumulation of the electrospun nanofibers, or a porous substrate 110 made of a nonwoven fabric, the fine to ensure conductivity Since the carbon electrode powder 120 is injected to have a fixed structure, the carbon electrode powder 120 may have flexibility and excellent electrical conductivity. Therefore, the capacitive desalination electrode module 100 of the present invention functions as a flexible current collector.
  • the thin film can be made ultra-thin and the size of the desalination apparatus can be reduced.
  • the carbon electrode powder 120 injected into the porous nanofiber web is disposed outside the nanofibers 111. Is dispersed.
  • the porous nanofiber web is made of a stack of nanofibers 111, the fine pores are formed by the stacked nanofibers 111, the injected carbon electrode powder 120 is a porous nanofiber along the micropores It is injected into the web and fixed.
  • the carbon electrode powder 120 may be fixed to the inlet of the micropores outside the nanofibers 111 by a binder. As a result, most of the carbon electrode powder 120 is fixed to micropores made of the nanofibers 111 and distributed on the porous nanofiber web.
  • the conductive support made of a porous substrate having a carbon electrode powder fixed to fine pores, and a plating layer have an advantage of making the capacitive desalination electrode module ultra-thin and slim.
  • a flexible capacitive desalination electrode module can be realized by fabricating a nanofiber web or nonwoven fabric having excellent flexibility as a conductive support, and at the same time, the module can be mounted in a curved desalination apparatus having a curved extreme shape. have.
  • the carbon-based electrode powder having a high specific surface area and excellent electrical conductivity is fixed to the micropores of the porous substrate to produce a conductive support, thereby reducing manufacturing costs and having a high storage capacity at a low cost.
  • a desalting electrode module can be provided.
  • 3A to 3C are conceptual cross-sectional views for describing a method of manufacturing a capacitive desalination electrode module according to an embodiment of the present invention.
  • a method of manufacturing a capacitive desalination electrode module according to an embodiment of the present invention first includes a porous nanofiber web in which nanofibers obtained by air electrospinning a polymer material are stacked and have micropores.
  • a porous substrate such as a nonwoven fabric having fine pores is prepared (FIG. 3A).
  • Porous nanofiber webs are either electrospun a single spinning polymer or a mixed spinning solution in which at least two polymers are mixed and dissolved in a solvent, or cross-spinning through different spinning nozzles after dissolving different polymers in a solvent. Can be obtained.
  • the mixing ratio of the heat-resistant polymer and the adhesive polymer is less than 5: 5 by weight, the heat resistance is poor and does not have the required high temperature characteristics.
  • the mixing ratio is larger than 8: 2 by weight, the strength drops and the radiation trouble occurs.
  • a single solvent or a two-component mixed solvent in which a high boiling point solvent and a low boiling point solvent are mixed may be used.
  • the mixing ratio between the two-component mixed solvent and the entire polymeric material is preferably set to about 8: 2 by weight.
  • the process when using a single solvent, considering that the solvent may not be well volatilized depending on the type of the polymer, after the spinning process as described below after the pre-air dry zone (Pre-Air Dry Zone) As it passes, the process may control the amount of solvent and water remaining on the surface of the porous nanofiber web.
  • Any polymer may be used as long as the polymer is dissolved in a solvent to form a spinning solution and then spun by an electrospinning method to form nanofibers.
  • the heat resistant polymer resin usable in the present invention is a resin that can be dissolved in an organic solvent for electrospinning and has a melting point of 180 ° C. or higher, for example, polyacrylonitrile (PAN), polyamide, polyimide, polyamideimide, Aromatic polyesters such as poly (meth-phenylene isophthalamide), polysulfones, polyetherketones, polyethylene terephthalates, polytrimethylene terephthalates, polyethylene naphthalates, and the like, polytetrafluoroethylene, polydiphenoxyphosphazenes Polyphosphazenes, such as poly ⁇ bis [2- (2-methoxyethoxy) phosphazene] ⁇ , polyurethane copolymers including polyurethanes and polyetherurethanes, cellulose acetates, cellulose acetate butyrates, cellulose acetate pros Cypionate and the like can be used.
  • PAN polyacrylonitrile
  • Polyamide polyimi
  • the swellable polymer resin usable in the present invention is a resin that swells in an electrolyte and can be formed into ultrafine fibers by electrospinning.
  • PVDF polyvinylidene fluoride
  • poly (vinylidene fluoride-co-hexa) Fluoropropylene) perfuluropolymer
  • poly (oxymethylene-oligo- Oxyethylene) polyoxides including polyethylene oxide and polypropylene oxide
  • polyvinylacetate poly (vinylpyrrolidone-vinylacetate)
  • polystyrene and polystyrene acrylonitrile copolymers polyacrylonitrile methyl methacrylate copolymers
  • Polyacrylic containing Casting reel can be given to the copolymer, polymethyl me
  • Porous nanofiber web forms a spinning solution by dissolving a single or mixed polymer in a solvent to form a spinning solution, and then spinning the spinning solution to form a porous nanofiber web made of ultra-fine nanofibers, and calendering pores at a temperature below the melting point of the polymer It is formed by adjusting the size and thickness of the web.
  • the porous nanofiber web is formed, for example, by nanofibers having a diameter of 0.3 to 1.5 um and is set to 10 to 70 um thick, preferably 20 to 25 um thick.
  • the size of the fine pores is set to several tens of um, the porosity is set to 50 to 90%.
  • the porous substrate 110 may be used alone or a porous nonwoven fabric may be laminated to reinforce the strength of the porous nanofiber web and the support if necessary.
  • the porous nonwoven fabric is, for example, a nonwoven fabric made of a double structured PP / PE fiber coated with PE on the outer circumference of the PP fiber as a core, or a PET nonwoven fabric made of polyethyleneterephthalate (PET) fibers and a nonwoven fabric made of cellulose fibers. Either one can be used.
  • the carbon electrode powder slurry in which the carbon electrode powder 120 is mixed with the solvent together with the binder is injected into the micropores of the porous substrate 110, and the carbon electrode powder 120 is fixed to the micropores of the porous substrate 110.
  • the carbon electrode powder 120 injected into the micropores of the porous substrate 110 to form the conductive support 130 includes a carbon electrode powder 120 having a size of several um smaller than the size of the micropores together with the binder.
  • Carbon electrode powder 120 is preferably to apply a carbon-based electrode powder, in particular, activated carbon powder (ACP; Activated Carbon Powder), carbon nanotube (CNT; Carbon Nano Tube) powder, graphite powder, vapor growth carbon fiber Carbon produced by carbonizing (VGCF; Vapor Grown Carbon Fiber) powder, Carbon aerogel powder, Poly acrylonitrile (PAN) or Polyvinylidene fluoride (PVdF) At least one of nano carbon (CNF) powders may be used.
  • ACP activated carbon powder
  • CNT Carbon Nano Tube
  • VGCF Vapor Grown Carbon Fiber
  • PAN Poly acrylonitrile
  • PVdF Polyvinylidene fluoride
  • the carbon electrode powder 120 may further include a metal powder to improve conductivity.
  • the metal powder may be any metal having excellent electrical conductivity, for example, nickel (Ni), copper (Cu), stainless steel (SUS), titanium (Ti), chromium (Cr), manganese (Mn) , Metals such as iron (Fe), cobalt (Co), zinc (Zn), molybdenum (Mo), tungsten (W), silver (Ag), gold (Au) and aluminum (Al) may be used.
  • Ni nickel
  • Cu copper
  • SUS stainless steel
  • Ti titanium
  • Cr chromium
  • Mo manganese
  • Metals such as iron (Fe), cobalt (Co), zinc (Zn), molybdenum (Mo), tungsten (W), silver (Ag), gold (Au) and aluminum (Al) may be used.
  • the carbon electrode powder 120 forms the plating layer 150 on the porous substrate 110 fixed to the fine pores by electrolytic plating or electroless plating (FIG. 3C). A portion of the plating layer 150 is formed on one surface of the porous substrate 110, and the plating material of the plating layer 150 penetrates into fine pores located on one surface of the porous substrate 110.
  • a process of further forming a conductive adhesive layer (not shown) on the porous substrate 110 may be performed.
  • the conductive adhesive layer has a function of an adhesive layer and is to further secure the conductivity of the plating layer 150.
  • the conductive adhesive layer is preferably made of the same material as the plating layer, and may be formed to a thickness of 1 ⁇ m or less by PVD (Physical Vapor Deposition) methods such as sputtering, vacuum deposition, and ion plating.
  • PVD Physical Vapor Deposition
  • FIG. 4 is a conceptual view illustrating a desalination apparatus according to a first embodiment of the present invention.
  • one of the first conductive support 161 and the first conductive support 161 fixed with the carbon electrode powder injected into the micropores of the porous substrate is fixed.
  • a nonwoven fabric 180 positioned in a space between the first and second capacitive desalination electrode modules 160 and 170 and passing through the treated water.
  • the first and second capacitive desalination electrode modules 160 and 170 may be current collectors having different polarities or current collectors in which potentials may be generated.
  • the first capacitive desalination electrode module 160 may be a negative electrode current collector.
  • the bipolar desalting electrode module 170 is a positive electrode current collector.
  • the nonwoven fabric 180 is formed with a plurality of irregularly shaped pores to vary the flow direction of the treated water passing between the first and second capacitive desalination electrode modules 160 and 170, thereby to vary the first and second power storage Adsorption efficiency of the ions may be increased by the potential applied between the desalination electrode modules 160 and 170.
  • the depolarization apparatus may be formed by electrical attraction in an electric double layer formed on the surfaces of the first and second capacitive desalination electrode modules 160 and 170.
  • the ions contained in the treated water, such as seawater or wastewater, which are introduced to one side are adsorbed and removed on the surfaces of the first and second capacitive desalination electrode modules 160 and 170, thereby purifying purified water to the other side of the desalination apparatus.
  • the carbon electrode powder fixed to the micropores of the porous substrate by the electrical attraction attracts ions contained in the treated water such as seawater or wastewater.
  • the desalination apparatus implements capacitive desalination by adsorbing ions in the treated water passing through the nonwoven fabric at the potentials applied to the first and second capacitive desalination electrode modules.
  • the desalting apparatus employs an ultra-thin capacitive desalination electrode module composed of a conductive support made of a porous substrate having carbon electrode powder fixed to fine pores, and a plating layer as a current collector, and thus ultra-thin desalting
  • an ultra-thin capacitive desalination electrode module composed of a conductive support made of a porous substrate having carbon electrode powder fixed to fine pores, and a plating layer as a current collector, and thus ultra-thin desalting The device can be implemented.
  • the electrode potential is switched to 0 volts (V), or the reverse potential, to deplete the electrode
  • V 0 volts
  • FIG. 5 is a conceptual view illustrating a desalination apparatus according to a second embodiment of the present invention
  • FIG. 6 is a conceptual view illustrating a structure in which the filter module of FIG. 5 is stacked.
  • the desalination apparatus may further include a filter module 200 capable of filtering heavy metal ions and bacterial substances installed at the other end of the purified water discharge.
  • the filter module 200 may be installed at the other end of the desalination apparatus to remove heavy metal ions and bacterial substances such as bacteria and microorganisms.
  • Figure 5 is a conceptual view, it is shown that the filter module 200 is spaced apart from the other end of the desalination apparatus, but is not limited to this, between the first and second capacitive desalination electrode module (160,170) It should consist of a structure to basically prevent the leakage of the first purified water passed.
  • the filter module 200 may be in close contact with the other end of the desalination apparatus through which the first purified water is discharged, or a guide for preventing leakage of the first purified water may be provided with the first and second capacitive desalination electrode modules 160 and 170 and the filter. It may be installed between the modules 200.
  • the filter module 200 includes a silver mesh module 220 for removing heavy metal ions from the first purified water from which ions are removed from the first and second capacitive desalination electrode modules 160 and 170, and a silver mesh module 220. And a nanofiber web 210 for filtering bacterial substances in a second purified water (not shown) in which heavy metal ions are removed.
  • the nanofiber web 210 has fine pores, so that the bacterial material is collected in the nanofiber web while the second purified water passes through the nanofiber web 210.
  • the filter module 200 may be implemented in a structure in which the laminated structure of the silver mesh module 220 and the nanofiber web 210 is repeatedly stacked.
  • the nanofiber web 210 may be implemented as a nanofiber web in which nanofibers containing silver nanomaterials are stacked. That is, the purified water passing through the nanofiber webs containing silver nanomaterials prevents bacterial propagation. Thereby increasing the antimicrobial properties.
  • a silver nano material and a polymer material are dissolved in an organic solvent to prepare a spinning solution, followed by electrospinning to stack nanofibers to prepare a nanofiber web.
  • the present invention employs a conductive support made of a porous substrate having carbon electrode powder fixed to fine pores, and an ultra-thin capacitive desalination electrode module composed of a plating layer as a current collector, thereby providing an ultra-thin desalting apparatus.

Abstract

The present invention relates to an electrical-storage type desalination electrode module, to a production method therefor and to a desalination device using same, and the electrical-storage type desalination electrode module comprises: an electrically conductive support wherein a carbon electrode powder is introduced and fixed in micropores in a porous substrate material; and a plated layer which is plated onto one surface of the electrically conductive support, such that the invention can provide a current collector for a desalination device which is rendered ultra-thin-filmed and rendered slim and is outstandingly flexible.

Description

축전식 탈염 전극 모듈, 그의 제조 방법 및 이를 이용한 탈염 장치Capacitive desalination electrode module, manufacturing method thereof and desalination apparatus using the same
본 발명은 축전식 탈염 전극 모듈에 관한 것으로, 더욱 상세하게는, 나노섬유 웹 또는 부직포를 전도성 지지체로 적용하여, 초박막화 및 슬림화가 가능하고, 가요성이 우수한 축전식 탈염 전극 모듈, 그의 제조 방법 및 이를 이용한 탈염 장치에 관한 것이다.The present invention relates to a capacitive desalination electrode module, and more particularly, by applying a nanofiber web or a nonwoven fabric as a conductive support, ultra-thin and slim, capacitive desalination electrode module having excellent flexibility, a method of manufacturing the same And a desalination apparatus using the same.
일반적으로, 지구의 모든 물 중 우리가 사용할 수 있는 양은 고작 0.0086%에 지나지 않는다. 이는 기후변화로 인한 재해를 염두에 둔다면 과히 넉넉한 편은 못된다. In general, we can only use 0.0086% of the world's water. This is not too generous given the disasters caused by climate change.
물은 인간 생활에 있어 매우 중요하고, 생활용수나 산업용수로서 물은 다양하게 이용된다. 산업 발전으로 물이 중금속, 질산성 질소, 불소 이온 등으로 오염되고 있고, 오염된 물을 음용했을 때 건강에 매우 해롭다. Water is very important for human life, and water is widely used as living water or industrial water. Due to industrial development, water is contaminated with heavy metals, nitrate nitrogen, fluorine ions, etc., and it is very harmful to health when drinking contaminated water.
최근, 오염된 물을 정화하고, 해수를 정화하여 용수로 사용하기 위한 탈염 기술이 다양하게 연구되고 있다.Recently, desalination techniques for purifying contaminated water, purifying seawater and using them as water have been studied in various ways.
이러한 탈염 기술은, 해수나 폐수 등와 같은 오염수에 함유되는 각종 부유물질이나 이온성분을 제거하여 담수화하는 기술로, 화석연료나 전기 등의 열원을 이용하여 수분을 증발하는 증발법과, 분리막을 이용한 이물질을 걸러 제거하는 여과법과, 전극셀의 전기분해작용을 이용하여 이온들을 제거하는 전기투석법이 있다.The desalination technology is a technique for desalination by removing various suspended substances or ionic components contained in contaminated water such as seawater and wastewater, and the evaporation method of evaporating moisture using a heat source such as fossil fuel or electricity, and foreign matter using a separator. Filtration to remove the filtration and electrodialysis to remove ions using the electrolysis of the electrode cells.
증발법은, 화석연료나 전기 등을 열원으로 사용하여 수분을 증발시키는 것으로, 탈염장치의 부피가 커서 비효율적이고, 에너지의 소모량이 증대되어 제조단가가 증대될 뿐만 아니라, 화석연료의 사용으로 인한 대기오염의 원인이 된다.The evaporation method is to evaporate water by using fossil fuel or electricity as a heat source. The volume of the desalination unit is large, inefficient, the consumption of energy is increased, and the manufacturing cost is increased. It may cause contamination.
여과법은 분리막에 고압을 가하여 이물질을 제거해야하므로 에너지의 비용이 증대되고, 전기투석법은 지속적으로 전극셀을 교체해야 하므로 전극셀의 교체에 따른 낭비요인이 발생될 뿐만 아니라 전극셀의 교체에 따른 인적 및 물적 부대비용이 증대되는 단점이 있다.Since the filtration method removes foreign substances by applying high pressure to the membrane, the cost of energy increases, and the electrodialysis method requires the replacement of electrode cells continuously. Therefore, wasteful factors are caused by the replacement of electrode cells. There is a disadvantage that the human and material incidental costs are increased.
한국 등록특허공보 제501417호에는 소정의 압력으로 유입되는 처리수에 대해 1차로 염성분을 제거하는 역삼투막장치; 스페이서, 양전극, 음전극이 원통형의 탱크내에 순차적으로 설치되어 상기 역삼투막장치로에서 1차 처리된 처리수로부터 재차 염성분을 제거하는 전극탈염장치; 상기 역삼투막장치의 브라인측 압력을 전극탈염장치의 입구수 가압용으로 활용하기 위한 에너지회수장치; 상기 전극탈염장치에 구비된 양전극과 음전극에 전원을 공급하는 전원공급수단; 및 상기 전극탈염장치로 유입되는 처리수를 탈염하는 탈염과정과 탈염과정중에 전극에 흡착된 이온들을 탈리시키는 재생과정을 수행하기 위해 처리수가 유동하는 배관들에 구비된 밸브들을 제어하는 제어수단;을 포함하는 역삼투막법/전극법을 이용한 폐수 탈염장치가 개시되어 있다. 그러나, 이러한 폐수 탈염장치는 역삼투막장치 및 전극탈염장치가 개별적으로 구비되어 있어, 탈염 장치의 크기가 크고, 많은 제조 비용이 소요되는 문제점이 있다.Korean Patent Publication No. 501417 includes a reverse osmosis membrane device for firstly removing a salt component with respect to treated water flowing at a predetermined pressure; An electrode desalination device, in which a spacer, a positive electrode, and a negative electrode are sequentially installed in a cylindrical tank to remove salt components from the treated water firstly treated in the reverse osmosis membrane apparatus; An energy recovery device for utilizing the brine side pressure of the reverse osmosis membrane device to pressurize the inlet water of the electrode desalination device; Power supply means for supplying power to the positive electrode and the negative electrode provided in the electrode desalination device; And control means for controlling valves provided in pipes through which the treated water flows to perform a desalting process of desalting the treated water flowing into the electrode desalting apparatus and a regeneration process of desorbing ions adsorbed to the electrode during the desalting process. Disclosed is a wastewater desalination apparatus using a reverse osmosis membrane method / electrode method. However, the wastewater desalination apparatus is provided with a reverse osmosis membrane apparatus and an electrode desalination apparatus separately, so that the size of the desalination apparatus is large and a large manufacturing cost is required.
따라서, 본 발명자들은 탈염 장치를 슬림화시키고, 제조 경비를 감소시킬 수 있는 기술에 대한 연구를 지속적으로 진행하여 고 축전용량을 가짐과 동시에 초박막형의 집전체를 구현할 수 있는 집전체 모듈의 구조적인 특징을 도출하여 발명함으로써, 보다 경제적이고, 활용 가능하고 경쟁력있는 본 발명을 완성하였다.Therefore, the present inventors continue to study the technology to slim the desalination apparatus and reduce the manufacturing cost, the structural characteristics of the current collector module capable of realizing an ultra-thin current collector while having a high storage capacity By deriving and inventing, the present invention has completed the more economical, usable and competitive invention.
본 발명은 종래기술의 문제점을 감안하여 안출된 것으로, 그 목적은 탄소계 전극 분말을 다공성 기재의 미세 기공에 고정시킨 전도성 지지체를 집전체로 채용하여, 제조 경비를 줄일 수 있고, 고 축전용량을 가질 수 있는 축전식 탈염 전극 모듈, 그의 제조 방법 및 이를 이용한 탈염 장치를 제공하는 데 있다.The present invention has been made in view of the problems of the prior art, the object of which is to adopt a conductive support in which the carbon-based electrode powder is fixed to the fine pores of the porous substrate as a current collector, to reduce the manufacturing cost, high capacity The present invention provides a capacitive desalination electrode module, a method of manufacturing the same, and a desalination apparatus using the same.
본 발명의 다른 목적은 집전체를 초박막화하여 탈염 장치를 슬림화시킬 수 있는 축전식 탈염 전극 모듈, 그의 제조 방법 및 이를 이용한 탈염 장치를 제공하는 데 있다.It is another object of the present invention to provide a capacitive desalination electrode module capable of slimming a desalination apparatus by making the current collector ultra-thin, a manufacturing method thereof, and a desalination apparatus using the same.
본 발명의 또 다른 목적은 플렉서블한 집전체 모듈을 구현할 수 있는 축전식 탈염 전극 모듈, 그의 제조 방법 및 이를 이용한 탈염 장치를 제공하는 데 있다.Still another object of the present invention is to provide a capacitive desalination electrode module capable of implementing a flexible current collector module, a manufacturing method thereof, and a desalination apparatus using the same.
상술된 목적을 달성하기 위한, 본 발명의 일 실시예는, 다공성 기재의 미세 기공에 탄소 전극 분말이 주입되어 고정된 전도성 지지체; 및 상기 전도성 지지체의 일 표면에 도금된 도금층;을 포함하는 축전식 탈염 전극 모듈을 제공한다.In order to achieve the above object, an embodiment of the present invention, the carbon electrode powder is injected into the fine pores of the porous substrate is fixed to the conductive support; It provides a capacitive desalination electrode module comprising a; and a plating layer plated on one surface of the conductive support.
또한, 본 발명의 일 실시예는, 미세 기공을 갖는 다공성 기재를 준비하는 단계; 탄소 전극 분말을 바인더와 함께 용매와 혼합한 탄소 전극 분말 슬러리를 상기 다공성 기재의 미세 기공에 주입하는 단계; 상기 탄소 전극 분말을 상기 다공성 기재의 미세 기공에 고정시키는 단계; 및 상기 탄소 전극 분말이 미세 기공에 고정된 다공성 기재에 도금층을 형성하는 단계;를 포함하는 축전식 탈염 전극 모듈의 제조 방법을 제공한다.In addition, an embodiment of the present invention, preparing a porous substrate having fine pores; Injecting a carbon electrode powder slurry obtained by mixing the carbon electrode powder with a solvent together with a solvent into the fine pores of the porous substrate; Fixing the carbon electrode powder to the fine pores of the porous substrate; And forming a plating layer on the porous substrate on which the carbon electrode powder is fixed to the micro pores.
아울러, 본 발명의 일 실시예는, 다공성 기재의 미세 기공에 탄소 전극 분말이 주입되어 고정된 제1 전도성 지지체, 및 상기 제1 전도성 지지체의 일 표면에 도금된 제1 도금층을 포함하는 제1 축전식 탈염 전극 모듈; 상기 제1 축전식 탈염 전극 모듈과 공간을 사이에 두고 대향하고 있으며, 다공성 기재의 미세 기공에 탄소 전극 분말이 주입되어 고정된 제2 전도성 지지체, 및 상기 제2 전도성 지지체의 일 표면에 도금된 제2 도금층을 포함하는 제2 축전식 탈염 전극 모듈; 및 상기 제1 및 제2 축전식 탈염 전극 모듈 사이 공간에 위치되어, 처리수가 통과하는 부직포;를 포함하는 탈염 장치를 제공한다.In addition, an embodiment of the present invention, the first storage of electricity including a first conductive support, the carbon electrode powder is injected and fixed to the fine pores of the porous substrate, and a first plating layer plated on one surface of the first conductive support Type desalination electrode module; A second conductive support facing the first capacitive desalination electrode module with a space therebetween and fixed with carbon electrode powder injected into the micropores of the porous substrate, and a plated on one surface of the second conductive support A second capacitive desalination electrode module including a second plating layer; And a nonwoven fabric positioned in a space between the first and second capacitive desalination electrode modules to allow the treated water to pass therethrough.
상기한 바와 같이, 본 발명에서는 탄소 전극 분말이 미세 기공에 고정된 다공성 기재로 이루어진 전도성 지지체, 및 도금층으로 축전식 탈염 전극 모듈을 구성하여, 초박막화하여 슬림화시킬 수 있는 장점이 있다.As described above, in the present invention, the carbon electrode powder is composed of a conductive support made of a porous substrate fixed to micropores, and a capacitive desalination electrode module is formed of a plating layer, thereby having an ultra-thin and slimmer structure.
또한, 본 발명에서는 가요성이 우수한 나노섬유 웹 또는 부직포를 전도성 지지체로 제작하여 플렉서블한 축전식 탈염 전극 모듈을 구현할 수 있고, 이와 동시에, 휘어진 극한 형상의 탈염장치에도 모듈을 장착할 수 있는 잇점이 있다.In addition, in the present invention, a flexible capacitive desalination electrode module can be realized by fabricating a nanofiber web or nonwoven fabric having excellent flexibility as a conductive support, and at the same time, the module can be mounted in a curved desalination apparatus having a curved extreme shape. have.
더불어, 본 발명에서는 비표면적이 높으면서 전기전도도가 우수한 탄소계 전극 분말을 다공성 기재의 미세 기공에 고정시켜 전도성 지지체를 제작함으로써, 제조 경비를 감소시키고, 고 축전용량을 가질 수 있는 효과가 있다.In addition, in the present invention, the carbon-based electrode powder having a high specific surface area and excellent electrical conductivity is fixed to the micropores of the porous substrate to prepare a conductive support, thereby reducing manufacturing costs and having a high storage capacity.
도 1은 본 발명의 일실시예에 따른 축전식 탈염 전극 모듈을 설명하기 위한 개념적인 단면도, 1 is a conceptual cross-sectional view for explaining a capacitive desalination electrode module according to an embodiment of the present invention;
도 2는 본 발명의 일실시예에 적용된 나노섬유 웹에 탄소 전극 분말이 분산되어 있는 것을 설명하기 위한 개념적인 도면,2 is a conceptual view for explaining that the carbon electrode powder is dispersed in the nanofiber web applied to an embodiment of the present invention,
도 3a 내지 도 3c는 본 발명의 일실시예에 따른 축전식 탈염 전극 모듈의 제조 방법을 설명하기 위한 개념적인 단면도,3A to 3C are conceptual cross-sectional views illustrating a method of manufacturing a capacitive desalination electrode module according to an embodiment of the present invention;
도 4는 본 발명의 제1실시예에 따른 탈염 장치를 설명하기 위한 개념적인 도면, 4 is a conceptual view illustrating a desalination apparatus according to a first embodiment of the present invention;
도 5는 본 발명의 제2실시예에 따른 탈염 장치를 설명하기 위한 개념적인 도면,5 is a conceptual view illustrating a desalination apparatus according to a second embodiment of the present invention;
도 6은 도 5의 필터 모듈이 적층된 구조를 설명하기 위한 개념적인 도면이다.FIG. 6 is a conceptual view illustrating a structure in which the filter module of FIG. 5 is stacked.
도 1은 본 발명의 일실시예에 따른 축전식 탈염 전극 모듈을 설명하기 위한 개념적인 단면도이고, 도 2는 본 발명의 일실시예에 적용된 나노섬유 웹에 탄소 전극 분말이 분산되어 있는 것을 설명하기 위한 개념적인 도면이다.1 is a conceptual cross-sectional view for explaining a capacitive desalination electrode module according to an embodiment of the present invention, Figure 2 is to explain that the carbon electrode powder is dispersed in the nanofiber web applied to an embodiment of the present invention Conceptual drawing.
도 1을 참고하면, 본 발명의 바람직한 실시예에 따른 축전식 탈염 전극 모듈(100)은 다공성 나노섬유 웹 또는 부직포와 같은 다공성 기재(110)의 미세 기공에 탄소 전극 분말(120)이 주입되어 고정된 전도성 지지체(130); 및 전도성 지지체(130)의 일 표면에 도금된 도금층(150)을 포함하고 있다.Referring to Figure 1, the capacitive desalination electrode module 100 according to a preferred embodiment of the present invention is fixed to the carbon electrode powder 120 is injected into the fine pores of the porous substrate 110, such as porous nanofiber web or nonwoven fabric Conductive support 130; And a plating layer 150 plated on one surface of the conductive support 130.
여기서, 탄소 전극 분말(120)은 바인더 및 용매와 혼합하여 탄소 전극 분말(120)이 분산된 탄소 전극 분말 슬러리를 제조하고, 그 슬러리를 다공성 기재(110)의 미세 기공에 주입시켜 고정시킨다.Here, the carbon electrode powder 120 is mixed with a binder and a solvent to prepare a carbon electrode powder slurry in which the carbon electrode powder 120 is dispersed, and the slurry is injected and fixed into the fine pores of the porous substrate 110.
이때, 탄소 전극 분말(120)은 다공성 기재(110)의 미세 기공에 갖혀 고정되어 있다. 이때, 바인더는 탄소 전극 분말(120)과 다공성 기재(110) 사이에 개재되어 있을 수 있으며, 바인더는 탄소 전극 분말(120)을 다공성 기재(110)에 고정시키는 결합력을 증가시킨다.At this time, the carbon electrode powder 120 is fixed to the fine pores of the porous substrate 110. In this case, the binder may be interposed between the carbon electrode powder 120 and the porous substrate 110, the binder increases the bonding force for fixing the carbon electrode powder 120 to the porous substrate 110.
그리고, 후술된 바와 같이, 전도성 지지체(130)는 전기 방사가 가능한 고분자를 용매에 용해시켜 방사용액을 형성한 후, 방사용액을 콜렉터 또는 트랜스퍼 시트 위에 전기방사하여 방사된 나노섬유가 축적되어 미세 기공을 갖는 다공성 나노섬유 웹, 또는 부직포와 같은 다공성 기재(110)에, 전도성을 확보하도록 미세한 탄소 전극 분말(120)이 주입되어 고정된 구조를 갖는다.As described below, the conductive support 130 forms a spinning solution by dissolving a polymer capable of electrospinning in a solvent, followed by electrospinning the spinning solution on the collector or the transfer sheet to accumulate the nanofibers that are spun onto the micropores. To the porous substrate 110, such as a porous nanofiber web, or a non-woven fabric having a fine carbon electrode powder 120 is injected to secure the conductivity has a fixed structure.
이러한 축전식 탈염 전극 모듈(100)은 전도성 지지체(130)가 전기방사된 나노섬유가 축적되어 형성된 미세 기공을 갖는 다공성 나노섬유 웹, 또는 부직포로 이루어지는 다공성 기재(110)에, 전도성을 확보하도록 미세한 탄소 전극 분말(120)이 주입되어 고정된 구조를 갖기 때문에 가요성을 가지면서도 우수한 전기전도도를 가질 수 있다. 그러므로, 본 발명의 축전식 탈염 전극 모듈(100)은 플렉시블한 집전체로 기능한다.The capacitive desalination electrode module 100 is a conductive support 130, the porous nanofiber web having a micropores formed by the accumulation of the electrospun nanofibers, or a porous substrate 110 made of a nonwoven fabric, the fine to ensure conductivity Since the carbon electrode powder 120 is injected to have a fixed structure, the carbon electrode powder 120 may have flexibility and excellent electrical conductivity. Therefore, the capacitive desalination electrode module 100 of the present invention functions as a flexible current collector.
또한, 본 발명의 축전식 탈염 전극 모듈(100)은 전도성 지지체(130)에 도금층(150)이 형성되어 있어, 초박막이 가능하여 탈염장치를 소형화시킬 수 있고, 우수한 전기전도도를 가질 수 있다.In addition, in the capacitive desalination electrode module 100 of the present invention, since the plating layer 150 is formed on the conductive support 130, the thin film can be made ultra-thin and the size of the desalination apparatus can be reduced.
다공성 나노섬유 웹을 전도성 지지체(130)의 다공성 기재(110)로 적용하는 경우, 도 2에 도시된 바와 같이, 다공성 나노섬유 웹에 주입된 탄소 전극 분말(120)은 나노섬유(111) 외측에 분산된다. 이때, 다공성 나노섬유 웹은 나노섬유(111)가 적층되어 이루어진 것이고, 미세 기공은 적층된 나노 섬유(111)에 의해 형성되는 것이어서, 주입된 탄소 전극 분말(120)은 미세 기공을 따라 다공성 나노섬유 웹 내측으로 주입되어 고정된다. 한편, 탄소 전극 분말(120)은 바인더에 의해 나노섬유(111) 외측의 미세 기공 입구에 고정되어 있을 수도 있다. 결국, 탄소 전극 분말(120) 대부분은 나노섬유(111)로 이루어진 미세 기공에 고정되어 다공성 나노섬유 웹 상에 분포된다. When the porous nanofiber web is applied to the porous substrate 110 of the conductive support 130, as shown in FIG. 2, the carbon electrode powder 120 injected into the porous nanofiber web is disposed outside the nanofibers 111. Is dispersed. At this time, the porous nanofiber web is made of a stack of nanofibers 111, the fine pores are formed by the stacked nanofibers 111, the injected carbon electrode powder 120 is a porous nanofiber along the micropores It is injected into the web and fixed. Meanwhile, the carbon electrode powder 120 may be fixed to the inlet of the micropores outside the nanofibers 111 by a binder. As a result, most of the carbon electrode powder 120 is fixed to micropores made of the nanofibers 111 and distributed on the porous nanofiber web.
본 발명에서는 미세 기공에 탄소 전극 분말이 고정된 다공성 기재로 이루어진 전도성 지지체, 및 도금층으로 구성하여, 축전식 탈염 전극 모듈을 초박막화하여 슬림화시킬 수 있는 장점이 있다.In the present invention, the conductive support made of a porous substrate having a carbon electrode powder fixed to fine pores, and a plating layer have an advantage of making the capacitive desalination electrode module ultra-thin and slim.
또한, 본 발명에서는 가요성이 우수한 나노섬유 웹 또는 부직포를 전도성 지지체로 제작하여 플렉서블한 축전식 탈염 전극 모듈을 구현할 수 있고, 이와 동시에, 휘어진 극한 형상의 탈염장치에도 모듈을 장착할 수 있는 잇점이 있다.In addition, in the present invention, a flexible capacitive desalination electrode module can be realized by fabricating a nanofiber web or nonwoven fabric having excellent flexibility as a conductive support, and at the same time, the module can be mounted in a curved desalination apparatus having a curved extreme shape. have.
게다가, 본 발명에서는 비표면적이 높으면서 전기전도도가 우수한 탄소계 전극 분말을 다공성 기재의 미세 기공에 고정시켜 전도성 지지체를 제작함으로써, 제조 경비를 감소시키고, 저렴한 비용으로 고 축전용량을 가질 수 있는 축전식 탈염 전극 모듈을 제공할 수 있다.Furthermore, in the present invention, the carbon-based electrode powder having a high specific surface area and excellent electrical conductivity is fixed to the micropores of the porous substrate to produce a conductive support, thereby reducing manufacturing costs and having a high storage capacity at a low cost. A desalting electrode module can be provided.
도 3a 내지 도 3c는 본 발명의 일실시예에 따른 축전식 탈염 전극 모듈의 제조 방법을 설명하기 위한 개념적인 단면도이다.3A to 3C are conceptual cross-sectional views for describing a method of manufacturing a capacitive desalination electrode module according to an embodiment of the present invention.
도 3a 내지 도 3c를 참고하면, 본 발명의 일실시예에 따른 축전식 탈염 전극 모듈의 제조 방법은 먼저, 고분자 물질을 에어 전기방사하여 얻어진 나노섬유가 적층되어 있고 미세 기공을 갖는 다공성 나노섬유 웹 또는 미세 기공을 갖는 부직포와 같은 다공성 기재를 준비한다(도 3a). 3A to 3C, a method of manufacturing a capacitive desalination electrode module according to an embodiment of the present invention first includes a porous nanofiber web in which nanofibers obtained by air electrospinning a polymer material are stacked and have micropores. Alternatively, a porous substrate such as a nonwoven fabric having fine pores is prepared (FIG. 3A).
다공성 나노섬유 웹은 단일 종류의 고분자 또는 적어도 2 종류의 고분자를 혼합하여 용매에 용해시킨 혼합 방사용액을 전기방사하거나, 또는 서로 다른 고분자를 각각 용매에 용해시킨 후 각각 서로 다른 방사 노즐을 통하여 교차방사하여 얻어질 수 있다.Porous nanofiber webs are either electrospun a single spinning polymer or a mixed spinning solution in which at least two polymers are mixed and dissolved in a solvent, or cross-spinning through different spinning nozzles after dissolving different polymers in a solvent. Can be obtained.
2 종류의 고분자를 사용하여 혼합 방사용액을 형성하는 경우, 예를 들어, 내열성 고분자로서 PAN과 접착성 고분자(또는 팽윤성 고분자)로서 PVDF를 혼합하는 경우, 8:2 내지 5:5 중량% 범위로 혼합하는 것이 바람직하다.In the case of forming a mixed spinning solution using two kinds of polymers, for example, in the case of mixing PAN as a heat resistant polymer and PVDF as an adhesive polymer (or swellable polymer), it is in the range of 8: 2 to 5: 5% by weight. It is preferable to mix.
내열성 고분자와 접착성 고분자의 혼합비가 중량비로 5:5보다 작은 경우 내열성이 떨어져서 요구되는 고온 특성을 갖지 못하며, 혼합비가 중량비로 8:2보다 큰 경우 강도가 떨어지고 방사 트러블이 발생하게 된다.When the mixing ratio of the heat-resistant polymer and the adhesive polymer is less than 5: 5 by weight, the heat resistance is poor and does not have the required high temperature characteristics. When the mixing ratio is larger than 8: 2 by weight, the strength drops and the radiation trouble occurs.
본 발명에서는 방사용액을 준비할 때 내열성 고분자 물질과 팽윤성 고분자 물질의 혼합 고분자인 경우, 단일 용매 또는 고비등점 용매와 저비등점 용매를 혼합한 2성분계 혼합용매를 사용할 수 있다. 이 경우, 2성분계 혼합용매와 전체 고분자 물질 사이의 혼합비율은 중량비로 약 8:2로 설정되는 것이 바람직하다. In the present invention, when preparing a spinning solution, in the case of a mixed polymer of a heat resistant polymer material and a swellable polymer material, a single solvent or a two-component mixed solvent in which a high boiling point solvent and a low boiling point solvent are mixed may be used. In this case, the mixing ratio between the two-component mixed solvent and the entire polymeric material is preferably set to about 8: 2 by weight.
본 발명에서는 단일 용매를 사용할 때는 고분자의 종류에 따라 용매의 휘발이 잘 이루어지지 못하는 경우가 있다는 것을 고려하여 방사공정 이후에 후술하는 바와 같이 프리히터에 의한 선 건조구간(Pre-Air Dry Zone)을 통과하면서 다공성 나노섬유 웹의 표면에 잔존해 있는 용매와 수분의 양을 조절하는 공정을 거칠 수 있다.In the present invention, when using a single solvent, considering that the solvent may not be well volatilized depending on the type of the polymer, after the spinning process as described below after the pre-air dry zone (Pre-Air Dry Zone) As it passes, the process may control the amount of solvent and water remaining on the surface of the porous nanofiber web.
고분자는 용매에 용해되어 방사용액을 형성한 후 전기방사 방법으로 방사되어 나노섬유를 형성할 수 있는 섬유성형성 폴리머라면 어떤 것도 사용 가능하다. Any polymer may be used as long as the polymer is dissolved in a solvent to form a spinning solution and then spun by an electrospinning method to form nanofibers.
본 발명에서 사용 가능한 내열성 고분자 수지는 전기방사를 위해 유기용매에 용해될 수 있고 융점이 180℃ 이상인 수지로서, 예를 들어, 폴리아크릴로니트릴(PAN), 폴리아마이드, 폴리이미드, 폴리아마이드이미드, 폴리(메타-페닐렌 이소프탈아미이드), 폴리설폰, 폴리에테르케톤, 폴리에틸렌텔레프탈레이트, 폴리트리메틸렌텔레프탈레이트, 폴리에틸렌 나프탈레이트 등과 같은 방향족 폴리에스터, 폴리테트라플루오로에틸렌, 폴리디페녹시포스파젠, 폴리{비스[2-(2-메톡시에톡시)포스파젠]} 같은 폴리포스파젠류, 폴리우레탄 및 폴리에테르우레탄을 포함하는 폴리우레탄공중합체, 셀룰로오스 아세테이트, 셀룰로오스 아세테이트 부틸레이트, 셀룰로오스 아세테이트 프로피오네이트 등을 사용할 수 있다. The heat resistant polymer resin usable in the present invention is a resin that can be dissolved in an organic solvent for electrospinning and has a melting point of 180 ° C. or higher, for example, polyacrylonitrile (PAN), polyamide, polyimide, polyamideimide, Aromatic polyesters such as poly (meth-phenylene isophthalamide), polysulfones, polyetherketones, polyethylene terephthalates, polytrimethylene terephthalates, polyethylene naphthalates, and the like, polytetrafluoroethylene, polydiphenoxyphosphazenes Polyphosphazenes, such as poly {bis [2- (2-methoxyethoxy) phosphazene]}, polyurethane copolymers including polyurethanes and polyetherurethanes, cellulose acetates, cellulose acetate butyrates, cellulose acetate pros Cypionate and the like can be used.
본 발명에 사용 가능한 팽윤성 고분자 수지는 전해액에 팽윤이 일어나는 수지로서 전기 방사법에 의하여 초극세 섬유로 형성 가능한 것으로, 예를 들어, 폴리비닐리덴플루오라이드(PVDF), 폴리(비닐리덴플루오라이드-코-헥사플루오로프로필렌), 퍼풀루오로폴리머, 폴리비닐클로라이드 또는 폴리비닐리덴 클로라이드 및 이들의 공중합체 및 폴리에틸렌글리콜 디알킬에테르 및 폴리에틸렌글리콜 디알킬에스터를 포함하는 폴리에틸렌글리콜 유도체, 폴리(옥시메틸렌-올리 고-옥시에틸렌), 폴리에틸렌옥사이드 및 폴리프로필렌옥사이드를 포함하는 폴리옥사이드, 폴리비닐아세테이트, 폴리(비닐피롤리돈-비닐아세테이트), 폴리스티렌 및 폴리스티렌 아크릴로니트릴 공중합체, 폴리아크릴로니트릴 메틸메타크릴레이트 공중합체를 포함하는 폴리아크릴로니트릴 공중합체, 폴리메틸메타크릴레이트, 폴리메틸메타크릴레이트 공중합체 및 이들의 혼합물을 들 수 있다. The swellable polymer resin usable in the present invention is a resin that swells in an electrolyte and can be formed into ultrafine fibers by electrospinning. For example, polyvinylidene fluoride (PVDF), poly (vinylidene fluoride-co-hexa) Fluoropropylene), perfuluropolymer, polyvinylchloride or polyvinylidene chloride and copolymers thereof and polyethylene glycol derivatives including polyethylene glycol dialkyl ether and polyethylene glycol dialkyl ester, poly (oxymethylene-oligo- Oxyethylene), polyoxides including polyethylene oxide and polypropylene oxide, polyvinylacetate, poly (vinylpyrrolidone-vinylacetate), polystyrene and polystyrene acrylonitrile copolymers, polyacrylonitrile methyl methacrylate copolymers Polyacrylic containing Casting reel can be given to the copolymer, polymethyl methacrylate, polymethyl methacrylate copolymers and mixtures thereof.
다공성 나노섬유 웹은 단일 또는 혼합 고분자를 용매에 용해시켜 방사용액을 형성한 후, 방사용액을 방사하여 초극세 나노섬유로 이루어진 다공성 나노섬유 웹을 형성하고, 고분자의 융점 이하의 온도에서 캘린더링하여 기공 사이즈와 웹의 두께를 조절하여 형성된다. Porous nanofiber web forms a spinning solution by dissolving a single or mixed polymer in a solvent to form a spinning solution, and then spinning the spinning solution to form a porous nanofiber web made of ultra-fine nanofibers, and calendering pores at a temperature below the melting point of the polymer It is formed by adjusting the size and thickness of the web.
다공성 나노섬유 웹은 예를 들어, 0.3 내지 1.5um의 직경을 갖는 나노섬유에 의해 형성되고, 10 내지 70um 두께, 바람직하게는 20 내지 25um 두께로 설정된다. 상기 미세 기공의 크기는 수십 um로 설정되고, 기공도는 50 내지 90%로 설정된다.The porous nanofiber web is formed, for example, by nanofibers having a diameter of 0.3 to 1.5 um and is set to 10 to 70 um thick, preferably 20 to 25 um thick. The size of the fine pores is set to several tens of um, the porosity is set to 50 to 90%.
이 경우, 다공성 기재(110)는 다공성 부직포 단독으로 사용하거나 필요에 따라 다공성 나노섬유 웹과 지지체의 강도를 보강하기 위해 다공성 부직포가 합지되어 사용될 수 있다. 다공성 부직포는 예를 들어, 코어로서 PP 섬유의 외주에 PE가 코팅된 이중 구조의 PP/PE 섬유로 이루어진 부직포, 또는 폴리에틸렌테레프탈레이트(PET: polyethyleneterephthalate) 섬유로 이루어진 PET 부직포, 셀룰로즈 섬유로 이루어진 부직포 중 어느 하나를 사용할 수 있다.In this case, the porous substrate 110 may be used alone or a porous nonwoven fabric may be laminated to reinforce the strength of the porous nanofiber web and the support if necessary. The porous nonwoven fabric is, for example, a nonwoven fabric made of a double structured PP / PE fiber coated with PE on the outer circumference of the PP fiber as a core, or a PET nonwoven fabric made of polyethyleneterephthalate (PET) fibers and a nonwoven fabric made of cellulose fibers. Either one can be used.
그후, 탄소 전극 분말(120)을 바인더와 함께 용매와 혼합한 탄소 전극 분말 슬러리를 다공성 기재(110)의 미세 기공에 주입하고, 다공성 기재(110)의 미세 기공에 탄소 전극 분말(120)을 고정시킨다(도 3b). 즉, 전도성 지지체(130)를 형성하기 위해 다공성 기재(110)의 미세 기공에 주입되는 탄소 전극 분말(120)은 미세 기공의 크기보다 작은 수 um 크기로 이루어진 탄소 전극 분말(120)을 바인더와 함께 용매와 혼합하여 탄소 전극 분말 슬러리를 형성한 후, 다공성 기재(110)의 양면에 코팅, 스프레이하거나, 탄소 전극 분말 슬러리에 다공성 기재(110)를 디핑하여 미세 기공에 슬러리를 주입하고, 열풍 건조 및 열 압착 중 선택된 하나 또는 양자 모두를 수행하여 용매를 휘발시켜 탄소 전극 분말(120)을 다공성 기재(110)의 미세 기공에 고정시킨다.Thereafter, the carbon electrode powder slurry in which the carbon electrode powder 120 is mixed with the solvent together with the binder is injected into the micropores of the porous substrate 110, and the carbon electrode powder 120 is fixed to the micropores of the porous substrate 110. (FIG. 3B). That is, the carbon electrode powder 120 injected into the micropores of the porous substrate 110 to form the conductive support 130 includes a carbon electrode powder 120 having a size of several um smaller than the size of the micropores together with the binder. After mixing with the solvent to form a carbon electrode powder slurry, coating or spraying on both sides of the porous substrate 110, or dipped the porous substrate 110 in the carbon electrode powder slurry to inject the slurry into the fine pores, hot air drying and One or both selected during thermocompression is performed to volatilize the solvent to fix the carbon electrode powder 120 to the micropores of the porous substrate 110.
탄소 전극 분말(120)은 탄소계 전극 분말을 적용하는 것이 바람직하며, 특히, 활성탄소분말(ACP ; Activated Carbon Powder), 탄소나노튜브(CNT ; Carbon Nano Tube) 분말, 흑연 분말, 기상성장 탄소섬유(VGCF ; Vapor Grown Carbon Fiber) 분말, 탄소 에어로겔(Carbon aerogel) 분말, 폴리아크릴로나이트릴(PAN ; Poly acrylonitrile)이나 폴리비닐리덴플로라이드(PVdF ; Poly vinylidenefluoride)와 같은 폴리머를 탄화하여 제조하는 탄소나노섬유(CNF ; Carbon Nano Fiber) 분말 중 적어도 하나를 사용할 수 있다. Carbon electrode powder 120 is preferably to apply a carbon-based electrode powder, in particular, activated carbon powder (ACP; Activated Carbon Powder), carbon nanotube (CNT; Carbon Nano Tube) powder, graphite powder, vapor growth carbon fiber Carbon produced by carbonizing (VGCF; Vapor Grown Carbon Fiber) powder, Carbon aerogel powder, Poly acrylonitrile (PAN) or Polyvinylidene fluoride (PVdF) At least one of nano carbon (CNF) powders may be used.
그리고, 도전성을 향상시키기 위해 탄소 전극 분말(120)에는 금속 분말이 더 포함될 수 있다.In addition, the carbon electrode powder 120 may further include a metal powder to improve conductivity.
여기서, 금속 분말은 전기전도도가 우수한 금속을 모두 사용할 수 있으며, 예를 들어, 니켈(Ni), 구리(Cu), 스텐레스 스틸(SUS), 티타늄(Ti), 크롬(Cr), 망간(Mn), 철(Fe), 코발트(Co), 아연(Zn), 몰리브덴(Mo), 텅스텐(W), 은(Ag), 금(Au), 알루미늄(Al) 등의 금속을 사용할 수 있다.Here, the metal powder may be any metal having excellent electrical conductivity, for example, nickel (Ni), copper (Cu), stainless steel (SUS), titanium (Ti), chromium (Cr), manganese (Mn) , Metals such as iron (Fe), cobalt (Co), zinc (Zn), molybdenum (Mo), tungsten (W), silver (Ag), gold (Au) and aluminum (Al) may be used.
계속, 탄소 전극 분말(120)이 미세 기공에 고정된 다공성 기재(110)에 전해 도금 또는 무전해 도금 방법으로 도금층(150)을 형성한다(도 3c). 도금층(150)의 일부는 다공성 기재(110)의 일면에 형성되고, 다공성 기재(110)의 일면에 위치된 미세 기공으로 도금층(150)의 도금 물질이 침투된다.Subsequently, the carbon electrode powder 120 forms the plating layer 150 on the porous substrate 110 fixed to the fine pores by electrolytic plating or electroless plating (FIG. 3C). A portion of the plating layer 150 is formed on one surface of the porous substrate 110, and the plating material of the plating layer 150 penetrates into fine pores located on one surface of the porous substrate 110.
여기서, 도금층(150)을 형성하기 전에, 도금층(150)의 형성을 쉽게하기 위하여, 다공성 기재(110)에 전도성 접착층(미도시)를 더 형성하는 공정을 수행할 수 있다. 전도성 접착층은 접착층 역할의 기능을 갖고, 도금층(150)의 전도성을 더 확보하기 위함이다.Here, before forming the plating layer 150, in order to facilitate the formation of the plating layer 150, a process of further forming a conductive adhesive layer (not shown) on the porous substrate 110 may be performed. The conductive adhesive layer has a function of an adhesive layer and is to further secure the conductivity of the plating layer 150.
전도성 접착층은 도금층과 동일한 재료로 이루어지는 것이 바람직하며, 스퍼터링, 진공 증착, 이온 플레이팅과 같은 PVD(Physical Vapor Deposition) 방법에 의해 1㎛이하의 두께로 형성하는 것이 좋다. The conductive adhesive layer is preferably made of the same material as the plating layer, and may be formed to a thickness of 1 μm or less by PVD (Physical Vapor Deposition) methods such as sputtering, vacuum deposition, and ion plating.
도 4는 본 발명의 제1실시예에 따른 탈염 장치를 설명하기 위한 개념적인 도면이다.4 is a conceptual view illustrating a desalination apparatus according to a first embodiment of the present invention.
도 4를 참고하면, 본 발명의 제1실시예에 따른 탈염 장치는 다공성 기재의 미세 기공에 탄소 전극 분말이 주입되어 고정된 제1 전도성 지지체(161), 및 제1 전도성 지지체(161)의 일 표면에 도금된 제1 도금층(162)을 포함하는 제1 축전식 탈염 전극 모듈(160); 제1 축전식 탈염 전극 모듈(160)과 공간을 사이에 두고 대향하고 있으며, 다공성 기재의 미세 기공에 탄소 전극 분말이 주입되어 고정된 제2 전도성 지지체(171), 및 제2 전도성 지지체(171)의 일 표면에 도금된 제2 도금층(172)을 포함하는 제2 축전식 탈염 전극 모듈(170); 및 제1 및 제2 축전식 탈염 전극 모듈(160,170) 사이 공간에 위치되어, 처리수가 통과하는 부직포(180)를 포함한다.Referring to FIG. 4, in the desalination apparatus according to the first embodiment of the present invention, one of the first conductive support 161 and the first conductive support 161 fixed with the carbon electrode powder injected into the micropores of the porous substrate is fixed. A first capacitive desalination electrode module 160 including a first plating layer 162 plated on a surface thereof; A second conductive support 171 and a second conductive support 171 which face the first capacitive desalination electrode module 160 with a space therebetween and are fixed by injecting carbon electrode powder into micropores of the porous substrate; A second capacitive desalination electrode module 170 including a second plating layer 172 plated on one surface thereof; And a nonwoven fabric 180 positioned in a space between the first and second capacitive desalination electrode modules 160 and 170 and passing through the treated water.
제1 및 제2 축전식 탈염 전극 모듈(160,170)은 서로 다른 극성의 집전체 또는 전위가 발생될 수 있는 집전체로, 예컨대, 제1 축전식 탈염 전극 모듈(160)은 음극 집전체이고, 제2 축전식 탈염 전극 모듈(170)은 양극 집전체이다. The first and second capacitive desalination electrode modules 160 and 170 may be current collectors having different polarities or current collectors in which potentials may be generated. For example, the first capacitive desalination electrode module 160 may be a negative electrode current collector. The bipolar desalting electrode module 170 is a positive electrode current collector.
부직포(180)에는 불규칙한 형상의 다수의 기공이 형성되어 있어, 제1 및 제2 축전식 탈염 전극 모듈(160,170) 사이에서 통과되는 처리수의 유동 방향을 다양하게 가변시켜, 제1 및 제2 축전식 탈염 전극 모듈(160,170) 사이에 인가된 전위에 의해 이온들의 흡착 효율을 증가시킬 수 있다.The nonwoven fabric 180 is formed with a plurality of irregularly shaped pores to vary the flow direction of the treated water passing between the first and second capacitive desalination electrode modules 160 and 170, thereby to vary the first and second power storage Adsorption efficiency of the ions may be increased by the potential applied between the desalination electrode modules 160 and 170.
제1 및 제2 축전식 탈염 전극 모듈(160,170) 사이에 전위를 인가하게 되면, 제1 및 제2 축전식 탈염 전극 모듈(160,170)의 표면에 형성되는 전기이중층에서 전기적 인력에 의하여, 탈염 장치의 일측으로 유입되는 해수나 폐수등의 처리수에 포함된 이온들이 제1 및 제2 축전식 탈염 전극 모듈(160,170)의 표면에 흡착되어 제거됨으로써, 탈염 장치의 타측으로 정화된 정화수가 배출된다. 이때, 전기적인 인력에 의해, 다공성 기재의 미세 기공에 고정된 탄소 전극 분말은 해수나 폐수등의 처리수에 포함된 이온을 흡착한다.When an electric potential is applied between the first and second capacitive desalination electrode modules 160 and 170, the depolarization apparatus may be formed by electrical attraction in an electric double layer formed on the surfaces of the first and second capacitive desalination electrode modules 160 and 170. The ions contained in the treated water, such as seawater or wastewater, which are introduced to one side are adsorbed and removed on the surfaces of the first and second capacitive desalination electrode modules 160 and 170, thereby purifying purified water to the other side of the desalination apparatus. At this time, the carbon electrode powder fixed to the micropores of the porous substrate by the electrical attraction attracts ions contained in the treated water such as seawater or wastewater.
그러므로, 본 발명의 제1실시예에 따른 탈염 장치는 제1 및 제2 축전식 탈염 전극 모듈에 인가된 전위로 부직포로 통과되는 처리수에서 이온을 흡착함으로써, 축전식 탈염을 구현한다.Therefore, the desalination apparatus according to the first embodiment of the present invention implements capacitive desalination by adsorbing ions in the treated water passing through the nonwoven fabric at the potentials applied to the first and second capacitive desalination electrode modules.
그리고, 본 발명의 제1실시예에 따른 탈염 장치는 미세 기공에 탄소 전극 분말이 고정된 다공성 기재로 이루어진 전도성 지지체, 및 도금층으로 구성된 초박형의 축전식 탈염 전극 모듈을 집전체로 채용하여, 초박형 탈염 장치를 구현할 수 있다.In addition, the desalting apparatus according to the first embodiment of the present invention employs an ultra-thin capacitive desalination electrode module composed of a conductive support made of a porous substrate having carbon electrode powder fixed to fine pores, and a plating layer as a current collector, and thus ultra-thin desalting The device can be implemented.
한편, 본 발명의 제1실시예에 따른 탈염 장치는 흡착된 이온이 축전식 탈염 전극 모듈의 축전용량에 도달하게 되면, 전극전위를 0 볼트(V), 또는 역 전위로 전환하여 축전식 탈염 전극 모듈에 흡착된 이온들을 탈착시켜 역세척함으로써, 탈염 장치를 재생하여 사용할 수 있다.On the other hand, in the desalination apparatus according to the first embodiment of the present invention, when the adsorbed ions reach the capacitance of the capacitive desalination electrode module, the electrode potential is switched to 0 volts (V), or the reverse potential, to deplete the electrode By desorbing and backwashing the ions adsorbed to the module, the desalting apparatus can be regenerated and used.
도 5는 본 발명의 제2실시예에 따른 탈염 장치를 설명하기 위한 개념적인 도면이고, 도 6은 도 5의 필터 모듈이 적층된 구조를 설명하기 위한 개념적인 도면이다.FIG. 5 is a conceptual view illustrating a desalination apparatus according to a second embodiment of the present invention, and FIG. 6 is a conceptual view illustrating a structure in which the filter module of FIG. 5 is stacked.
도 5를 참고하면, 본 발명의 제2실시예에 따른 탈염 장치는 정화수가 배출되는 타단에 설치된 중금속 이온 및 세균성 물질을 필터링할 수 있는 필터 모듈(200)을 더 포함할 수 있다.Referring to FIG. 5, the desalination apparatus according to the second embodiment of the present invention may further include a filter module 200 capable of filtering heavy metal ions and bacterial substances installed at the other end of the purified water discharge.
필터 모듈(200)은 탈염 장치의 타단에 설치되어, 중금속 이온 및 박테리아, 미생물 등의 세균성 물질을 제거할 수 있다. 이때, 도 5는 개념적인 도면으로, 필터 모듈(200)이 탈염 장치의 타단으로부터 이격되어 있는 것으로 도시되어 있지만, 이에 한정되는 것은 아니며, 제1 및 제2 축전식 탈염 전극 모듈(160,170) 사이를 통과한 제1정화수의 누수를 기본적으로 방지하기 위한 구조로 이루어져 있어야 한다. 예컨대, 필터 모듈(200)이 제1정화수가 배출되는 탈염 장치의 타단에 밀착될 수 있거나, 제1정화수의 누수를 방지하기 위한 가이드가 제1 및 제2 축전식 탈염 전극 모듈(160,170)과 필터 모듈(200) 사이에 설치될 수 있다.The filter module 200 may be installed at the other end of the desalination apparatus to remove heavy metal ions and bacterial substances such as bacteria and microorganisms. At this time, Figure 5 is a conceptual view, it is shown that the filter module 200 is spaced apart from the other end of the desalination apparatus, but is not limited to this, between the first and second capacitive desalination electrode module (160,170) It should consist of a structure to basically prevent the leakage of the first purified water passed. For example, the filter module 200 may be in close contact with the other end of the desalination apparatus through which the first purified water is discharged, or a guide for preventing leakage of the first purified water may be provided with the first and second capacitive desalination electrode modules 160 and 170 and the filter. It may be installed between the modules 200.
필터 모듈(200)은 제1 및 제2 축전식 탈염 전극 모듈(160,170)에서 이온이 제거된 제1정화수에서 중금속 이온을 제거하기 위한 은(Ag) 메쉬 모듈(220), 및 은 메쉬 모듈(220)에 고정되어, 중금속 이온이 제거된 제2정화수(미도시)에서 세균성 물질을 필터링하기 위한 나노섬유 웹(210)을 포함하여 구성된다.The filter module 200 includes a silver mesh module 220 for removing heavy metal ions from the first purified water from which ions are removed from the first and second capacitive desalination electrode modules 160 and 170, and a silver mesh module 220. And a nanofiber web 210 for filtering bacterial substances in a second purified water (not shown) in which heavy metal ions are removed.
나노섬유 웹(210)은 미세 기공이 형성되어 있어, 제2정화수가 나노섬유 웹(210)을 통과하는 동안 세균성 물질은 나노섬유 웹에 포집된다.The nanofiber web 210 has fine pores, so that the bacterial material is collected in the nanofiber web while the second purified water passes through the nanofiber web 210.
그리고, 도 6에 도시된 바와 같이, 필터 모듈(200)은 은 메쉬 모듈(220) 및 나노섬유 웹(210)의 적층 구조가 반복적으로 적층된 구조로 구현할 수 있다.And, as shown in Figure 6, the filter module 200 may be implemented in a structure in which the laminated structure of the silver mesh module 220 and the nanofiber web 210 is repeatedly stacked.
따라서, 본 발명에서는 탈염 장치에 필터 모듈을 더 포함시켜, 중금속 이온과 세균성 물질을 필터링할 수 있는 것이다.Therefore, in the present invention, by further including a filter module in the desalination apparatus, it is possible to filter heavy metal ions and bacterial substances.
한편, 본 발명에서는 나노섬유 웹(210)이 은나노 물질이 포함되어 있는 나노 섬유가 적층된 나노섬유 웹으로 구현할 수 있고, 즉, 은나노 물질이 포함된 나노섬유 웹을 통과한 정화수는 세균 번식을 방지하여 항균 특성을 증가시킬 수 있다.Meanwhile, in the present invention, the nanofiber web 210 may be implemented as a nanofiber web in which nanofibers containing silver nanomaterials are stacked. That is, the purified water passing through the nanofiber webs containing silver nanomaterials prevents bacterial propagation. Thereby increasing the antimicrobial properties.
이경우, 은나노 물질, 고분자 물질을 유기용매에 용해하여 방사용액을 제조한 후, 전기방사를 수행하여 나노 섬유를 적층하여 나노섬유 웹을 제조한다. In this case, a silver nano material and a polymer material are dissolved in an organic solvent to prepare a spinning solution, followed by electrospinning to stack nanofibers to prepare a nanofiber web.
이상에서는 본 발명을 특정의 바람직한 실시예를 예를 들어 도시하고 설명하였으나, 본 발명은 상기한 실시예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변경과 수정이 가능할 것이다.In the above, the present invention has been illustrated and described with reference to specific preferred embodiments, but the present invention is not limited to the above-described embodiments, and the present invention is not limited to the spirit of the present invention. Various changes and modifications will be possible by those who have the same.
본 발명은 미세 기공에 탄소 전극 분말이 고정된 다공성 기재로 이루어진 전도성 지지체, 및 도금층으로 구성된 초박형의 축전식 탈염 전극 모듈을 집전체로 채용하여, 초박형 탈염 장치를 제공한다.The present invention employs a conductive support made of a porous substrate having carbon electrode powder fixed to fine pores, and an ultra-thin capacitive desalination electrode module composed of a plating layer as a current collector, thereby providing an ultra-thin desalting apparatus.

Claims (15)

  1. 다공성 기재의 미세 기공에 탄소 전극 분말이 주입되어 고정된 전도성 지지체; 및 A conductive support in which carbon electrode powder is injected and fixed to fine pores of the porous substrate; And
    상기 전도성 지지체의 일 표면에 도금된 도금층;을 포함하는 축전식 탈염 전극 모듈.Capacitive desalination electrode module comprising a; plating layer plated on one surface of the conductive support.
  2. 제1항에 있어서, 상기 다공성 기재는,The method of claim 1, wherein the porous substrate,
    전기 방사된 나노섬유가 축적되어 형성된 나노섬유 웹, 또는 부직포인 축전식 탈염 전극 모듈.A capacitive desalination electrode module which is a nanofiber web or nonwoven fabric formed by accumulating electrospun nanofibers.
  3. 제1항에 있어서, 상기 탄소 전극 분말과 다공성 기재 사이에 개재된 바인더를 더 포함하는 축전식 탈염 전극 모듈.The capacitive desalination electrode module of claim 1, further comprising a binder interposed between the carbon electrode powder and the porous substrate.
  4. 제1항에 있어서, 상기 탄소 전극 분말은,The method of claim 1, wherein the carbon electrode powder,
    활성탄소분말(ACP ; Activated Carbon Powder), 탄소나노튜브(CNT ; Carbon Nano Tube) 분말, 흑연 분말, 기상성장 탄소섬유(VGCF ; Vapor Grown Carbon Fiber) 분말, 탄소 에어로겔(Carbon aerogel) 분말, 폴리머를 탄화하여 제조하는 탄소나노섬유(CNF ; Carbon Nano Fiber) 분말 중 적어도 하나인 축전식 탈염 전극 모듈.Activated Carbon Powder (ACP), Carbon Nano Tube (CNT) Powder, Graphite Powder, Vapor Grown Carbon Fiber (VGCF) Powder, Carbon Aerogel Powder, Polymer Capacitive desalination electrode module which is at least one of carbon nanofibers (CNF) powder produced by carbonization.
  5. 제4항에 있어서, 상기 탄소 전극 분말에,The method of claim 4, wherein the carbon electrode powder,
    금속 분말이 더 포함되어 있는 축전식 탈염 전극 모듈.Capacitive desalination electrode module further comprises a metal powder.
  6. 제1항에 있어서, 상기 다공성 기재의 미세 기공으로 상기 도금층의 도금 물질이 침투되어 있는 축전식 탈염 전극 모듈.The capacitive desalination electrode module according to claim 1, wherein the plating material of the plating layer penetrates into the micropores of the porous substrate.
  7. 미세 기공을 갖는 다공성 기재를 준비하는 단계; Preparing a porous substrate having fine pores;
    탄소 전극 분말을 바인더와 함께 용매와 혼합한 탄소 전극 분말 슬러리를 상기 다공성 기재의 미세 기공에 주입하는 단계;Injecting a carbon electrode powder slurry obtained by mixing the carbon electrode powder with a solvent together with a solvent into the fine pores of the porous substrate;
    상기 탄소 전극 분말을 상기 다공성 기재의 미세 기공에 고정시키는 단계; 및Fixing the carbon electrode powder to the fine pores of the porous substrate; And
    상기 탄소 전극 분말이 미세 기공에 고정된 다공성 기재에 도금층을 형성하는 단계;를 포함하는 축전식 탈염 전극 모듈의 제조 방법.Forming a plating layer on the porous substrate is fixed to the fine pores of the carbon electrode powder; manufacturing method of a capacitive desalination electrode module comprising a.
  8. 제7항에 있어서, 상기 다공성 기재는,The method of claim 7, wherein the porous substrate,
    전기 방사된 나노섬유가 축적되어 형성된 나노섬유 웹, 또는 부직포인 축전식 탈염 전극 모듈의 제조 방법.A method for producing a capacitive desalination electrode module which is a nanofiber web or a nonwoven fabric formed by accumulation of electrospun nanofibers.
  9. 제7항에 있어서, 상기 탄소 전극 분말 슬러리를 상기 다공성 기재의 미세 기공에 주입하는 단계는,The method of claim 7, wherein injecting the carbon electrode powder slurry into the fine pores of the porous substrate,
    상기 다공성 기재의 양면에 코팅 공정 또는 스프레이 공정을 수행하거나, 또는 상기 다공성 기재를 상기 탄소 전극 분말 슬러리에 디핑하는 공정을 수행하여 주입하는 단계인 축전식 탈염 전극 모듈의 제조 방법.Method of manufacturing a capacitive desalination electrode module which is a step of performing a coating process or a spray process on both sides of the porous substrate, or performing a step of dipping the porous substrate in the carbon electrode powder slurry.
  10. 제7항에 있어서, 상기 탄소 전극 분말을 다공성 기재의 미세 기공에 고정시키는 단계는, The method of claim 7, wherein fixing the carbon electrode powder to the fine pores of the porous substrate,
    상기 주입된 탄소 전극 분말 슬러리를, 열풍 건조 및 열 압착 중 선택된 하나 또는 양자 모두를 수행하여, 상기 용매를 휘발시켜 상기 탄소 전극 분말을 상기 다공성 기재의 미세 기공에 고정시키는 단계인 축전식 탈염 전극 모듈의 제조 방법.Capacitive desalination electrode module is a step of fixing the carbon electrode powder to the fine pores of the porous substrate by volatilizing the solvent by performing one or both of the injected carbon electrode powder slurry, hot air drying and thermocompression Method of preparation.
  11. 다공성 기재의 미세 기공에 탄소 전극 분말이 주입되어 고정된 제1 전도성 지지체, 및 상기 제1 전도성 지지체의 일 표면에 도금된 제1 도금층을 포함하는 제1 축전식 탈염 전극 모듈; A first capacitive desalination electrode module including a first conductive support in which carbon electrode powder is injected and fixed into fine pores of a porous substrate, and a first plating layer plated on one surface of the first conductive support;
    상기 제1 축전식 탈염 전극 모듈과 공간을 사이에 두고 대향하고 있으며, 다공성 기재의 미세 기공에 탄소 전극 분말이 주입되어 고정된 제2 전도성 지지체, 및 상기 제2 전도성 지지체의 일 표면에 도금된 제2 도금층을 포함하는 제2 축전식 탈염 전극 모듈; 및 A second conductive support facing the first capacitive desalination electrode module with a space therebetween and fixed with carbon electrode powder injected into the micropores of the porous substrate, and a plated on one surface of the second conductive support A second capacitive desalination electrode module including a second plating layer; And
    상기 제1 및 제2 축전식 탈염 전극 모듈 사이 공간에 위치되어, 처리수가 통과하는 부직포;를 포함하는 탈염 장치.And a nonwoven fabric disposed in a space between the first and second capacitive desalination electrode modules, through which treated water passes.
  12. 제11항에 있어서, 상기 처리수에 포함된 이온이 상기 제1 및 제2 축전식 탈염 전극 모듈에서 흡착되어 정화된 정화수가 배출되는 영역에, 상기 정화수에서 중금속 이온 및 세균성 물질을 필터링할 수 있는 필터 모듈을 더 포함하는 탈염 장치.12. The method of claim 11, wherein the ions contained in the treated water is adsorbed in the first and second capacitive desalination electrode module to filter the heavy metal ions and bacterial substances in the purified water in the region discharged. Desalting apparatus further comprising a filter module.
  13. 제12항에 있어서, 상기 필터 모듈은,The method of claim 12, wherein the filter module,
    상기 정화수에서 중금속 이온을 제거하기 위한 은(Ag) 메쉬 모듈; 및 A silver mesh module for removing heavy metal ions from the purified water; And
    상기 은 메쉬 모듈에 고정되어, 상기 중금속 이온이 제거된 정화수에서 세균성 물질을 필터링하기 위한 나노섬유 웹을 포함하는 탈염 장치.And a nanofiber web fixed to the silver mesh module to filter bacterial substances in the purified water from which the heavy metal ions have been removed.
  14. 제13항에 있어서, 상기 필터 모듈은,The method of claim 13, wherein the filter module,
    상기 은 메쉬 모듈 및 상기 나노섬유 웹의 적층 구조가 반복적으로 적층된 구조를 갖는 탈염 장치.Desalting apparatus having a structure in which the laminated structure of the silver mesh module and the nanofiber web is repeatedly laminated.
  15. 제13항에 있어서, 상기 나노섬유 웹은,The method of claim 13, wherein the nanofiber web,
    은나노 물질이 포함되어 있는 나노 섬유가 적층된 나노섬유 웹인 탈염 장치.A desalting apparatus that is a nanofiber web in which nanofibers containing silver nano material are laminated.
PCT/KR2014/008636 2013-09-17 2014-09-17 Electrical-storage type desalination electrode module, production method therefor and desalination device using same WO2015041453A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480042503.3A CN105408260B (en) 2013-09-17 2014-09-17 Energy storage type desalination electrode module and its manufacturing method and utilize its desalter
US15/045,452 US10472262B2 (en) 2013-09-17 2016-02-17 Electrical-storage type desalination electrode module, production method therefor and desalination device using same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20130111546 2013-09-17
KR10-2013-0111546 2013-09-17
KR10-2014-0123315 2014-09-17
KR20140123315A KR20150032221A (en) 2013-09-17 2014-09-17 Capacitive Deionization Electrode Module, Manufacturing Method thereof and Deionization Equipment using the Same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/045,452 Continuation-In-Part US10472262B2 (en) 2013-09-17 2016-02-17 Electrical-storage type desalination electrode module, production method therefor and desalination device using same

Publications (1)

Publication Number Publication Date
WO2015041453A1 true WO2015041453A1 (en) 2015-03-26

Family

ID=52689065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/008636 WO2015041453A1 (en) 2013-09-17 2014-09-17 Electrical-storage type desalination electrode module, production method therefor and desalination device using same

Country Status (1)

Country Link
WO (1) WO2015041453A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10472262B2 (en) 2013-09-17 2019-11-12 Amogreentech Co., Ltd. Electrical-storage type desalination electrode module, production method therefor and desalination device using same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050075811A (en) * 2004-01-16 2005-07-22 한국과학기술연구원 Carbon-porous media composite electrode and preparation method thereof
KR20090041637A (en) * 2007-10-24 2009-04-29 삼성전자주식회사 Manufacturing method for polyimide-based carbon nanofiber electrode and carbon nanotube composite electrode and cdi apparatus using the same
KR100988032B1 (en) * 2008-11-06 2010-10-18 보드 오브 리전츠 오브 더 유니버시티 오브 텍사스 시스템 Carbon nano-fiber with skin-core structure, method for producing the same and products comprising the same
KR20110016213A (en) * 2009-08-11 2011-02-17 (주) 시온텍 Capacitive deionization electrode using ion-exchangeable engineering plastic and its manufacturing method thereof
KR101147156B1 (en) * 2010-12-30 2012-05-25 한국에너지기술연구원 Preparation method of carbon aerogel sheet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050075811A (en) * 2004-01-16 2005-07-22 한국과학기술연구원 Carbon-porous media composite electrode and preparation method thereof
KR20090041637A (en) * 2007-10-24 2009-04-29 삼성전자주식회사 Manufacturing method for polyimide-based carbon nanofiber electrode and carbon nanotube composite electrode and cdi apparatus using the same
KR100988032B1 (en) * 2008-11-06 2010-10-18 보드 오브 리전츠 오브 더 유니버시티 오브 텍사스 시스템 Carbon nano-fiber with skin-core structure, method for producing the same and products comprising the same
KR20110016213A (en) * 2009-08-11 2011-02-17 (주) 시온텍 Capacitive deionization electrode using ion-exchangeable engineering plastic and its manufacturing method thereof
KR101147156B1 (en) * 2010-12-30 2012-05-25 한국에너지기술연구원 Preparation method of carbon aerogel sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10472262B2 (en) 2013-09-17 2019-11-12 Amogreentech Co., Ltd. Electrical-storage type desalination electrode module, production method therefor and desalination device using same

Similar Documents

Publication Publication Date Title
KR102289676B1 (en) Capacitive Deionization Electrode Module, Manufacturing Method thereof and Deionization Equipment using the Same
WO2015060655A1 (en) Composite electrode for desalination comprising ion-exchange membrane, manufacturing method thereof, and desalination apparatus using same
CN104674382B (en) Preparation method of porous carbon nanofiber for capacitive deionization
WO2013147380A1 (en) Specific ion-selective composite carbon electrode for capacitive deionization, and preparation method thereof
WO2015072731A1 (en) Ion exchange membrane and filter module using same
WO2011016662A2 (en) Capacitive electrode for deionization, and electrolytic cell using same
JP5062630B2 (en) Composite fiber body, method for producing the same, filter, and fluid filtration method
US20190337824A1 (en) Deionizing device
KR101976590B1 (en) Complex Electrode for Desalination having Ion Exchange Membrane, Manufacturing Method thereof and Deionization Equipment using the Same
Osali et al. Electrospun nanomembranes at the liquid–liquid and solid–liquid interface-a review
KR101306966B1 (en) Air filters with ionizing electrode
WO2015041453A1 (en) Electrical-storage type desalination electrode module, production method therefor and desalination device using same
WO2015053556A1 (en) Flexible composite electrode for desalting, method for manufacturing same, and desalting device using same
US11014050B2 (en) Ion exchange membrane and filter module using same
KR20150131654A (en) Deionization and sterilization system including silver electrode and methods of deionization and sterilization using the same
KR101655364B1 (en) Complex Electrode for Desalination having Ion Exchange Membrane, Manufacturing Method thereof and Deionization Equipment using the Same
KR102068344B1 (en) Highly electrically conductive flat-type membrane using carbon-based nanomaterials, preparation method of thereof and operating methods of electro-oxidation reactor using the same
KR20150046929A (en) Complex Electrode for Desalination having Ion Exchange Membrane, Manufacturing Method thereof and Deionization Equipment using the Same
Long et al. Applications of Electrospun Nanofibers
Baghali et al. The Role of Electrospun Nanomaterials in the Future of Energy and Environment. Materials 2021, 14, 558
Haizhen et al. Preparation and application research of electrospinning PANI based nanofiber.
KR101682122B1 (en) Air filter material and a method of manufacturing the same for fuel cell
CN113697911A (en) Electro-adsorption desalination device
KR20160086316A (en) Ion exchange membrane and filter module using the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480042503.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14845374

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14845374

Country of ref document: EP

Kind code of ref document: A1