WO2015041335A1 - Projection optical system, method for adjusting projection optical system, exposure apparatus, exposure method, and device production method - Google Patents

Projection optical system, method for adjusting projection optical system, exposure apparatus, exposure method, and device production method Download PDF

Info

Publication number
WO2015041335A1
WO2015041335A1 PCT/JP2014/074896 JP2014074896W WO2015041335A1 WO 2015041335 A1 WO2015041335 A1 WO 2015041335A1 JP 2014074896 W JP2014074896 W JP 2014074896W WO 2015041335 A1 WO2015041335 A1 WO 2015041335A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical system
reflecting mirror
imaging
concave reflecting
imaging optical
Prior art date
Application number
PCT/JP2014/074896
Other languages
French (fr)
Japanese (ja)
Inventor
陽介 柘植
拓郎 小野
大村 泰弘
吉晴 湯淺
啓佑 長谷川
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Publication of WO2015041335A1 publication Critical patent/WO2015041335A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70225Optical aspects of catadioptric systems, i.e. comprising reflective and refractive elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0825Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a flexible sheet or membrane, e.g. for varying the focus
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70258Projection system adjustments, e.g. adjustments during exposure or alignment during assembly of projection system
    • G03F7/70266Adaptive optics, e.g. deformable optical elements for wavefront control, e.g. for aberration adjustment or correction

Definitions

  • the present invention relates to a projection optical system, a projection optical system adjustment method, an exposure apparatus, an exposure method, and a device manufacturing method.
  • an exposure apparatus that projects and exposes a mask (reticle) pattern onto a photosensitive substrate (a wafer coated with a photoresist) via a projection optical system Is used.
  • the resolution (resolution) required for the projection optical system is increasing.
  • the optical characteristics fluctuate due to the influence of irradiation energy of light passing through the optical system during exposure.
  • the optical surface of the lens changes or the refractive index distribution of the lens changes due to light irradiation.
  • the lens interval changes due to deformation of the lens barrel due to light irradiation, or the density distribution (refractive index distribution) of the atmosphere changes due to light irradiation.
  • the fluctuation of the optical characteristics deteriorates the wavefront aberration of the projection optical system, and consequently the imaging performance such as the resolving power of the projection optical system.
  • the present invention has been made in view of the above-described problems, and an object thereof is to provide a projection optical system having high imaging performance, for example. It is another object of the present invention to provide an exposure apparatus that can project and expose a fine pattern onto a photosensitive substrate with high accuracy using a projection optical system having high imaging performance.
  • a first imaging optical portion disposed in an optical path between the first surface and the second surface and including a first concave reflecting mirror to form an intermediate image of the first surface;
  • a second imaging optical part that is arranged in an optical path between the first imaging optical part and the second surface, includes a second concave reflecting mirror, and forms an image of the intermediate image;
  • At least one of the first concave reflecting mirror and the second concave reflecting mirror has a deformable reflecting surface, and a projection optical system is provided.
  • a first imaging optical unit including a first concave reflecting mirror disposed in an optical path between the first surface and the second surface and having a deformable reflecting surface;
  • a second imaging optical unit including a second concave reflecting mirror disposed in an optical path between the first imaging optical unit and the second surface and having a deformable reflecting surface.
  • a first imaging optical unit that is disposed in an optical path between the first surface and the second surface includes a first concave reflecting mirror, and optically conjugates different surfaces to each other;
  • a second imaging optical unit that is disposed in the optical path between the first imaging optical unit and the second surface includes a second concave reflecting mirror, and makes different surfaces optically conjugate with each other.
  • the first concave reflecting mirror is disposed on the first surface side from a first pupil position that is optically Fourier-transformed with the position of the first surface in the optical path of the first imaging optical unit.
  • the second concave reflecting mirror is disposed on the second surface side from a second pupil position that is optically Fourier-transformed with the position of the first surface in the optical path of the second imaging optical unit.
  • a projection optical system is provided.
  • a first imaging optical unit that is disposed in an optical path between the first surface and the second surface includes a first concave reflecting mirror, and optically conjugates different surfaces to each other;
  • the first concave reflecting mirror is disposed on the second surface side from a first pupil position optically Fourier-transformed with the position of the first surface in the optical path of the first imaging optical unit.
  • the second concave reflecting mirror is disposed on the first surface side from a second pupil position that is optically Fourier-transformed with the position of the first surface in the optical path of the second imaging optical unit.
  • a projection optical system is provided.
  • a first imaging optical unit that is disposed in an optical path between the first surface and the second surface includes a first concave reflecting mirror, and optically conjugates different surfaces to each other;
  • the first concave reflecting mirror is disposed at a first pupil position that is optically Fourier-transformed with the position of the first surface in the optical path of the first imaging optical unit
  • the second concave reflecting mirror is located on the first surface side or the second surface from a second pupil position that is optically Fourier-transformed with the position of the first surface in the optical path of the second imaging optical unit.
  • a projection optical system characterized in that the projection optical system is arranged on the side.
  • a first imaging optical unit that is disposed in an optical path between the first surface and the second surface includes a first concave reflecting mirror, and optically conjugates different surfaces to each other;
  • a second imaging optical unit that is disposed in the optical path between the first imaging optical unit and the second surface includes a second concave reflecting mirror, and makes different surfaces optically conjugate with each other.
  • the first concave reflecting mirror is located on the first surface side or the second surface from a first pupil position optically Fourier-transformed with the position of the first surface in the optical path of the first imaging optical unit.
  • the second concave reflecting mirror is disposed at a second pupil position that is optically Fourier-transformed with the position of the first surface in the optical path of the second imaging optical unit.
  • An optical system is provided.
  • a first imaging optical unit that is disposed in an optical path between the first surface and the second surface includes a first concave reflecting mirror, and optically conjugates different surfaces to each other;
  • the first concave reflecting mirror is disposed at a first pupil position that is optically Fourier-transformed with the position of the first surface in the optical path of the first imaging optical unit
  • the second concave reflecting mirror is disposed at a second pupil position that is optically Fourier-transformed with the position of the first surface in the optical path of the second imaging optical unit.
  • a first imaging optical system disposed in an optical path between the first surface and the second surface and forming a first intermediate image of the first surface;
  • Optical system A fourth imaging optical system disposed in an optical path between the third imaging optical system and the second surface, and forming an image of the third intermediate image on the second surface;
  • the second imaging optical system includes a plurality of positive lenses disposed in an optical path between the first intermediate image and the first concave reflecting mirror,
  • the third image-forming optical system includes a plurality of positive lenses arranged in an optical path between the second intermediate image and the second concave reflecting mirror.
  • a first imaging optical system disposed in an optical path between the first surface and the second surface and forming a first intermediate image of the first surface;
  • Optical system A fourth imaging optical system disposed in an optical path between the third imaging optical system and the second surface, and forming an image of the third intermediate image on the second surface;
  • the fourth imaging optical system is provided with a projection optical system including a positive lens that is disposed closest to the third intermediate image and has a convex surface facing the second surface.
  • a first imaging optical system disposed in an optical path between the first surface and the second surface and forming a first intermediate image of the first surface;
  • Optical system A fourth imaging optical system disposed in an optical path between the third imaging optical system and the second surface, and forming an image of the third intermediate image on the second surface;
  • the second imaging optical system includes a positive meniscus lens that is disposed closest to the first intermediate image side and has a convex surface facing the first intermediate image side.
  • a first imaging optical system disposed in an optical path between the first surface and the second surface and forming a first intermediate image of the first surface
  • a second imaging that is disposed in an optical path between the first imaging optical system and the second surface includes a first concave reflecting mirror, and forms a second intermediate image that is an image of the first intermediate image.
  • a third imaging that is disposed in an optical path between the second imaging optical system and the second surface includes a second concave reflecting mirror, and forms a third intermediate image that is an image of the second intermediate image.
  • a fourth imaging optical system disposed in an optical path between the third imaging optical system and the second surface, and forming an image of the third intermediate image on the second surface;
  • the second imaging optical system is provided with a lens that is disposed closest to the first intermediate image side and that is disposed adjacent to the first concave reflecting mirror. To do.
  • a first imaging optical system disposed in an optical path between the first surface and the second surface and forming a first intermediate image of the first surface;
  • Optical system A fourth imaging optical system disposed in an optical path between the third imaging optical system and the second surface, and forming an image of the third intermediate image on the second surface;
  • the second imaging optical system includes a positive meniscus lens that is disposed closest to the first intermediate image side and has a convex surface facing the first intermediate image side.
  • a first imaging optical system disposed in an optical path between the first surface and the second surface and forming a first intermediate image of the first surface
  • a second imaging that is disposed in an optical path between the first imaging optical system and the second surface, includes a first concave reflecting mirror, and forms a second intermediate image that is an image of the first intermediate image.
  • a third imaging that is disposed in an optical path between the second imaging optical system and the second surface includes a second concave reflecting mirror, and forms a third intermediate image that is an image of the second intermediate image.
  • a fourth imaging optical system disposed in an optical path between the third imaging optical system and the second surface, and forming an image of the third intermediate image on the second surface;
  • the second imaging optical system is provided with a lens that is disposed closest to the first intermediate image side and that is disposed adjacent to the first concave reflecting mirror. To do.
  • a first imaging optical system disposed in an optical path between the first surface and the second surface and forming a first intermediate image of the first surface;
  • a fourth imaging optical system disposed in an optical path between the third imaging optical system and the second surface, and forming an image of the third intermediate image on the second surface;
  • a first deflecting mirror disposed in an optical path between the first imaging optical system and the second imaging optical system;
  • a projection optical system comprising a second deflecting mirror disposed between the third imaging optical system and the fourth imaging optical system is provided.
  • the first to fourteenth aspects for projecting the predetermined pattern onto a substrate set on the second surface based on light from the predetermined pattern set on the first surface.
  • An exposure apparatus comprising any one of the projection optical systems is provided.
  • the exposure apparatus of the sixteenth form or the exposure method of the seventeenth form exposing the predetermined pattern to the substrate; Developing the substrate to which the predetermined pattern is transferred, and forming a mask layer having a shape corresponding to the predetermined pattern on the surface of the substrate; And processing the surface of the substrate through the mask layer.
  • a device manufacturing method is provided.
  • FIG. 1 shows schematically the structure of the projection optical system concerning embodiment of this invention. It is a figure which shows roughly the effective image formation area in the image surface of a projection optical system. It is a figure which shows roughly the effective visual field area
  • (A) shows aberration components generated when the first concave reflecting mirror CM1 is deformed according to the function FZ 17 in the first embodiment, and (b) shows the second concave reflecting mirror CM2 in the first embodiment.
  • An aberration component generated when the same deformation as that of the first concave reflecting mirror CM1 is given is shown.
  • (A) shows a state in which the 0th-order aberration component is mainly generated in the first embodiment, and (b) shows a state in which the first-order aberration component is mainly generated in the first embodiment.
  • FIG. 1 is a diagram schematically showing a configuration of a projection optical system according to an embodiment of the present invention.
  • a four-fold imaging type catadioptric optical system PL comprising four imaging optical units K1, K2, K3, and K4 as shown in FIG. Is assumed.
  • the Z-axis is along the normal direction of the transfer surface (exposure surface) of the wafer W, which is a photosensitive substrate, and the Y-axis is in the direction parallel to the paper surface of FIG.
  • the X axis is set in a direction perpendicular to the paper surface of FIG.
  • the projection optical system PL of the present embodiment has an image surface (second surface) on which the exposure surface of the wafer W is installed from the object surface (first surface) OB on which the pattern surface of the mask M is installed.
  • Surface) a catadioptric optical system including a first imaging optical unit K1 serving as a refractive optical system, a first planar reflecting mirror FM1 serving as a deflecting mirror for bending an optical path, and a first concave reflecting mirror CM1 in the order of incidence of light on IM.
  • the first flat reflecting mirror FM1 and the second flat reflecting mirror FM2 are formed as an integrated optical member.
  • the first planar reflecting mirror FM1 and the second planar reflecting mirror FM2 may be separate optical members.
  • the imaging optical unit can be an imaging optical system that forms an image of a predetermined surface on the imaging surface.
  • the imaging optical unit can be an imaging optical system in which different predetermined surfaces are in an optically conjugate relationship.
  • the first imaging optical unit K1 and the second imaging optical unit K2 can be regarded as a first imaging optical part that forms an intermediate image of the object plane (first surface) OB.
  • the third imaging optical unit K3 and the fourth imaging optical unit K4 can be regarded as a second imaging optical portion that forms an intermediate image on the image plane (second surface).
  • the effective imaging region ER on the image plane IM of the projection optical system PL is a region away from the optical axis AX of the projection optical system PL.
  • the effective imaging region ER is a rectangular region separated from the optical axis AX by a distance Ra along the Y direction in the image field IF having a radius Rb centered on the optical axis AX, that is, in the X direction.
  • the effective field area FR on the object plane OB of the projection optical system PL is a rectangular area separated from the optical axis AX of the projection optical system PL in the Y direction.
  • the effective imaging region ER may be a region where light from the object plane OB is guided on the image plane IM of the projection optical system PL and the aberration is substantially corrected.
  • the effective imaging region ER may be a region where light from the object plane OB is guided on the image plane IM of the projection optical system PL.
  • the reflecting surface of the first concave reflecting mirror CM1 and the reflecting surface of the second concave reflecting mirror CM2 are configured to be deformable, and the first active deforming portion actively activates the reflecting surface of the first concave reflecting mirror CM1.
  • the second active deformation portion actively deforms the reflecting surface of the second concave reflecting mirror CM2.
  • an active deformation portion AD including a plurality of actuators AC provided on the back side of the concave reflecting mirror CM1 (CM2) can be used.
  • the plurality of actuators AC are arranged such that their action points ACa are distributed radially.
  • a plurality of actuators AC may be arranged such that their action points ACa are distributed in a two-dimensional matrix.
  • the active deformation unit AD deforms the reflecting surface CM1a (CM2a) into a desired surface shape by a plurality of actuators AC pushing and pulling the reflecting surface CM1a (CM2a) of the concave reflecting mirror CM1 (CM2) from the back side.
  • US Pat. No. 6,842,277 can be referred to for a specific configuration and action of the active deformation portion AD.
  • a deformation mechanism disclosed in Japanese Patent Publication No. 2010 / 0033704A1 can also be used. Further, at least one of the reflecting surfaces CM1a (CM2a) of the concave reflecting mirror CM1 (CM2) may be deformable.
  • the first concave reflecting mirror CM1 is optically Fourier-transformed with the position of the object plane OB in the optical path of the second imaging optical unit K2. It is arranged on the image plane IM side with respect to one pupil position.
  • the second concave reflecting mirror CM2 is disposed on the object plane OB side with respect to the second pupil position that is optically Fourier-transformed with the position of the object plane OB in the optical path of the third imaging optical unit K3. ing.
  • the first concave reflecting mirror CM1 is disposed on the object plane OB side with respect to the first pupil position, and the second concave reflecting mirror CM2 is disposed on the image plane IM side with respect to the second pupil position.
  • the first concave reflecting mirror CM1 is arranged on the image plane IM side with respect to the first pupil position, and the second concave reflecting mirror CM2 is arranged at a position substantially coincident with the second pupil position.
  • the first concave reflecting mirror CM1 is arranged at a position substantially coincident with the first pupil position, and the second concave reflecting mirror CM2 is arranged at a position almost coincident with the second pupil position.
  • the pupil position can be a position that is optically Fourier-transformed with the position of the object plane OB or the position of the image plane IM.
  • the pupil position is optically conjugate with the entrance pupil of the catadioptric optical system PL that can be regarded as a projection optical system and the exit pupil of the catadioptric optical system PL. It can be at least one of the conjugate positions.
  • an index G representing the positional relationship between an arbitrary optical surface (for example, the reflecting surfaces CM1a and CM2a of the concave reflecting mirrors CM1 and CM2) and the pupil position closest to the arbitrary optical surface is defined.
  • the index G is defined by the following equation (a).
  • G A / Re (a)
  • Re is a partial spot occupied by an arbitrary optical surface when the light beam from each point in the effective field area FR on the object plane OB reaches the arbitrary optical surface as shown in FIG.
  • the partial spot means a region occupied by an arbitrary optical surface when a light beam emitted from each point in the effective visual field region FR reaches an arbitrary optical surface with an opening angle corresponding to the maximum numerical aperture. is doing.
  • A circumscribes a partial spot PSa occupied by an arbitrary optical surface when a light beam from the center point FRa (see FIG. 3) of the effective visual field region FR reaches the arbitrary optical surface.
  • the center point FRa of the effective visual field region FR can be the center of gravity of the effective visual field region FR.
  • the index G1 related to the reflecting surface CM1a of the first concave reflecting mirror CM1 that is, the index G1 indicating the positional relationship between the reflecting surface CM1a and the first pupil position in the optical path of the second imaging optical unit K2
  • reflection is performed.
  • the surface CM1a is at the first pupil position, and the distance of the reflection surface CM1a from the first pupil position increases as the index G1 increases.
  • the index G2 related to the reflecting surface CM2a of the second concave reflecting mirror CM2 that is, the index G2 representing the positional relationship between the reflecting surface CM2a and the second pupil position in the optical path of the third imaging optical unit K3 is 0.
  • the reflection surface CM2a is at the second pupil position, and the distance of the reflection surface CM2a from the second pupil position increases as the index G2 increases.
  • the imaging optical system shown in FIG. 7 is similar to (modeled) the projection optical system according to the present embodiment as a simple imaging optical system.
  • the modeled imaging optical system shown in FIG. 7 is a one-time imaging type refractive optical system that optically conjugates the object plane OB and the image plane IM, and the object plane OB at the pupil position PP.
  • An optical surface correction mechanism MD1 is arranged on the side, and an optical surface correction mechanism MD2 is arranged on the image plane IM side of the pupil position PP.
  • the operations of the correction mechanisms MD1 and MD2 correspond to the operations of the concave reflecting mirrors CM1 and CM2 when the reflecting surfaces CM1a and CM2a are deformed in the projection optical system PL of the present embodiment.
  • the correction mechanisms MD1 and MD2 have a function of giving a given wavefront aberration component to the light beams passing through the respective optical surfaces.
  • deformations according to the same function display are applied to the reflecting surface CM1a of the first concave reflecting mirror CM1 and the reflecting surface CM2a of the second concave reflecting mirror CM2.
  • a deformation according to the function FZ 17 ⁇ 4 cos4 ⁇ according to the seventeenth term in a Zernike polynomial using a polar coordinate system is given.
  • is a normalized half-range when the radius of the circular effective reflection region of the reflection surfaces CM1a and CM2a is normalized to 1, and ⁇ is a radial angle of polar coordinates.
  • the action of the correction mechanism MD1 corresponds to the action of the concave reflecting mirror CM1 when the deformation according to the function FZ 17 is given to the reflecting surface CM1a.
  • the wavefront aberration related to the center position of the effective image forming region ER ERa see Figure 2
  • aberration components Z17 of 4 rotational symmetry that are displayed according to the function FZ 17 is generated. This can be easily understood from the fact that when the light beam reaching the center position ERa of the effective imaging region ER passes through the correction mechanism MD1, it passes through the region centered on the optical axis.
  • the correcting mechanism MD1 By the action of the correcting mechanism MD1, as the wavefront aberration related to the second peripheral position ERc along the -X direction from the center position ERa effective image forming region ER (see FIG. 2), as shown in FIG. 8, the function FZ 17 Therefore the aberration component Z17 of 4 rotational symmetry displayed, aberration components of 3-fold rotational symmetry, which is displayed according to the function FZ 10 according to Section 10 Z10 (-) and is generated. This is because when the light beam reaching the second peripheral position ERc of the effective imaging region ER passes through the correction mechanism MD1, it passes through a region decentered in the + X direction from the optical axis.
  • the sign of the coefficient of the function FZ 17 representing the aberration component Z17 is the same without depending on the position in the X direction in the effective image formation region ER, and the magnitude of the coefficient is the position in the X direction in the effective image formation region ER. It is almost constant without dependence.
  • the sign of the coefficient of the function FZ 10 representing the aberration component Z10 is opposite between the first peripheral position ERb and the second peripheral position ERc, and the magnitude of the coefficient depends on the position in the X direction in the effective imaging region ER. It is almost constant without.
  • the imaging optical system shown in FIG. 7 is configured symmetrically with respect to the pupil position PP, and the correction mechanisms MD1 and MD2 Are arranged symmetrically with respect to the pupil position PP. Furthermore, the effect of the correction mechanism MD1, MD2, the reflective surface CM 1, corresponds to the action of the concave reflecting mirror CM1, CM2 when only each other the same amount deformation according to the function FZ 17 granted to CM2a having the same surface shape as each other It shall be.
  • the wavefront aberration generated by the action of the correction mechanism MD1 at each point on the straight line extending in the X direction through the center position ERa of the effective imaging region ER is displayed according to the function FZ 17 4.
  • the aberration component Z17 times rotational symmetry
  • aberration components Z10 (1) of the 3-fold rotational symmetry which is displayed according to the function FZ 10 and is generated.
  • correction mechanisms MD1 and MD2 are arranged symmetrically with respect to pupil position PP, and the actions of correction mechanisms MD1 and MD2 correspond to the actions of concave reflecting mirrors CM1 and CM2 when the same amount of deformation is applied to each other , sign and magnitude of the coefficients of the function FZ 17 representing the aberration component Z17 is the same to each other in the correction mechanism MD1 and MD2, sign and magnitude of the coefficients of the function FZ 10 representing the aberration component Z10 is a correction mechanism MD1 MD2 And reverse.
  • the sign and magnitude of the coefficients of the function FZ 10 representing the aberration component Z10 is inverted by the correction mechanism MD1 and MD2, the region where the light flux reaching the point of the effective imaging region ER passes the correction mechanism MD1 and correction mechanism It can be easily understood from the fact that the region passing through MD2 is eccentric to the opposite side with respect to the optical axis.
  • the correction mechanisms MD1 and MD2 are arranged symmetrically with respect to the pupil position PP, and the action of the correction mechanisms MD1 and MD2 corresponds to the action of the concave reflecting mirrors CM1 and CM2 when the same sign and size are applied.
  • the aberration component Z10 is canceled by the cooperative action of the correction mechanisms MD1 and MD2, and only the doubled aberration component Z17 is generated as a wavefront aberration.
  • the cooperative action of the correction mechanisms MD1 and MD2 generating a zero-order aberration component that is a uniform aberration component for each point along the X direction in the effective imaging region ER on the image plane IM; As a result, the zero-order aberration component of the wavefront aberration can be adjusted.
  • the correction mechanisms MD1 and MD2 are arranged symmetrically with respect to the pupil position PP, and the actions of the concave reflecting mirrors CM1 and CM2 when the actions of the correction mechanisms MD1 and MD2 are given different deformations and the same size.
  • the aberration component Z17 is canceled by the cooperative action of the correction mechanisms MD1 and MD2, and only the doubled aberration component Z17 is generated as a wavefront aberration. This is because the aberration components Z17 and Z10 are also reversed when the sign of the applied deformation is reversed.
  • a primary aberration component that is an aberration component that linearly changes for each point along the X direction in the effective imaging region ER is generated, and thus the wavefront.
  • the primary aberration component of the aberration can be adjusted.
  • the function FZ 17 expressing the deformation to be applied to the correction mechanisms MD1 and MD2 if the correction mechanisms MD1 and MD2 are arranged across the pupil position PP. If the sign and the magnitude of the coefficient are appropriately set (or changed), the zero-order aberration component and the first-order aberration component are independently generated for each point along the X direction in the effective imaging region ER. This means that the zero-order aberration component and the first-order aberration component of the wavefront aberration can be adjusted independently.
  • the correction mechanism MD1 when the correction mechanism MD1 is arranged at a required distance from the pupil position PP and the correction mechanism MD2 is arranged at the position of the pupil position PP, the aberration component Z17 and the aberration component Z10 are generated by the action of the correction mechanism MD1. Only the aberration component Z17 is generated by the action of the correction mechanism MD2. This is because when one of the correction mechanisms is arranged at a required distance from the pupil position PP and the other correction mechanism is arranged at or near the pupil position PP, the deformation applied to the correction mechanisms MD1 and MD2.
  • the coefficient sign and the magnitude of the function FZ 17 expressing the value are appropriately set (or changed), and the zero-order aberration component and the first-order aberration component for each point along the X direction in the effective imaging region ER are set. This means that it is generated to some extent independently, and that the 0th-order aberration component and the first-order aberration component of the wavefront aberration can be independently adjusted to some extent.
  • both the correction mechanisms MD1 and MD2 are arranged at or near the pupil position PP, only the aberration component Z17 is generated by the action of the correction mechanism MD1, and only the aberration component Z17 is generated by the action of the correction mechanism MD2. Will do.
  • the sign and size of the coefficient of the function FZ 17 expressing the deformation to be applied to the correction mechanisms MD1 and MD2 are set appropriately. (Or changing) to generate only a required amount of the zero-order aberration component for each point along the X direction in the effective imaging region ER, and to adjust only the zero-order aberration component of the wavefront aberration. Means you can.
  • the index G1 related to the reflecting surface CM1a of the first concave reflecting mirror CM1 and the index G2 related to the reflecting surface CM2a of the second concave reflecting mirror CM2 are the following.
  • the first concave reflecting mirror CM1 from the pupil position (first pupil position) in the optical path of the second imaging optical unit K2 to the image plane IM side (or object) so that the conditional expressions (1) and (2) are satisfied
  • the second concave reflecting mirror CM2 is disposed at a position on the surface OB side, and the position on the object plane OB side (or image plane IM side) from the pupil position (second pupil position) in the optical path of the third imaging optical unit K3. Is arranged. 0.02 ⁇ G1 ⁇ 0.07 (1) 0.02 ⁇ G2 ⁇ 0.07 (2)
  • the reflecting surface CM1a of the first concave reflecting mirror CM1 and the reflecting surface CM2a of the second concave reflecting mirror CM2 are arranged.
  • the second-order aberration component can be generated independently, and the zero-order aberration component and the first-order aberration component of the wavefront aberration of the projection optical system PL can be adjusted independently.
  • the concave reflecting mirrors CM1 and CM2 are too close to the pupil position, so that the generation of the aberration component Z10 is reduced, and consequently the first-order wavefront aberration of the projection optical system PL. Adjustment of the aberration component becomes difficult.
  • the upper limit value of conditional expressions (1) and (2) is exceeded, the concave reflecting mirrors CM1 and CM2 are too far from the pupil position, and not only the generation of the aberration component Z17 is reduced, but also unnecessary aberrations that cannot be controlled. The generation of components will increase.
  • the lower limit value of conditional expressions (1) and (2) can be set to 0.03.
  • the upper limit of conditional expressions (1) and (2) can be set to 0.05.
  • aberration components Z05, Z10, and Z17 are generated as shown in FIG. 9 in accordance with the change of the index G1 related to the reflective surface CM1a (or the index G2 related to the reflective surface CM2a).
  • the horizontal axis indicates the value of the index G1 (G2)
  • the vertical axis indicates the amount of each aberration component generated (normalized aberration generation amount when the maximum value of the aberration component Z17 is normalized to 1). ing.
  • the aberration component Z05 is a two-fold rotationally symmetric aberration component displayed according to the function FZ 5 : ⁇ 2 cos2 ⁇ according to the fifth term, and is an unnecessary aberration component that cannot be controlled, that is, an aberration that is not intended to be generated. It is an ingredient. Referring to FIG. 9, it can be seen that when the value of the index G1 (G2) is equal to or greater than 0.07, the generation of unnecessary aberration component Z05 increases. It can also be seen that when the value of the index G1 (G2) is 0.02 or less, the aberration component Z10 necessary for adjusting the first-order aberration component of the wavefront aberration is not sufficiently large.
  • FIG. 9 illustrates a case where the deformation according to the function FZ 17 according to the seventeenth term is applied.
  • the function FZ 28 (6 ⁇ 6 ⁇ 5 ⁇ 4 ) cos 4 ⁇ according to the 28th term, as shown in FIG. 10, the appropriate index G 1 (G 2)
  • FIG. 10 shows a change in the index G1 (G2) when the deformation according to the function FZ 28 is applied to the reflecting surface CM1a of the first concave reflecting mirror CM1 (or the reflecting surface CM2a of the second concave reflecting mirror CM2).
  • the horizontal axis indicates the value of the index G1 (G2)
  • the vertical axis indicates the generation amount of each aberration component (normalized aberration generation amount when the maximum value of the aberration component Z28 is normalized to 1). ing.
  • the aberration component Z12 is a two-fold rotationally symmetric aberration component displayed according to the function FZ 12 : (4 ⁇ 2 ⁇ 3) ⁇ 2 cos 2 ⁇ according to the twelfth term.
  • the aberration component Z26 is a five-fold rotationally symmetric aberration component displayed according to the function FZ 26 : ⁇ 5 cos5 ⁇ according to the 26th term.
  • Aberration component Z28 is an aberration component of 4-fold rotational symmetry, which is displayed according to the function FZ 28 according to paragraph 28. Referring to FIG. 10, it can be seen that when the value of the index G1 (G2) is 0.07 or more, generation of unnecessary aberration components Z10 and Z12 that cannot be controlled increases. It can also be seen that when the value of the index G1 (G2) is 0.02 or less, the aberration components Z17 and Z26 necessary for adjusting the first-order aberration component of the wavefront aberration are not sufficiently large.
  • the index G1 related to the reflecting surface CM1a of the first concave reflecting mirror CM1 and the index G2 related to the reflecting surface CM2a of the second concave reflecting mirror CM2 are expressed by the following conditional expressions (1) and (3).
  • the first concave reflecting mirror CM1 is arranged at a position on the image plane IM side from the first pupil position
  • the second concave reflecting mirror CM2 is arranged at a position substantially coincident with the second pupil position. 0.02 ⁇ G1 ⁇ 0.07 (1) 0 ⁇ G2 ⁇ 0.02 (3)
  • the first concave reflecting mirror CM1 is disposed on the image plane IM side from the first pupil position.
  • the first concave reflecting mirror CM1 is disposed on the object plane OB side from the first pupil position. Even in this case, the same effect as in the third embodiment can be obtained.
  • the index G1 related to the reflecting surface CM1a of the first concave reflecting mirror CM1 and the index G2 related to the reflecting surface CM2a of the second concave reflecting mirror CM2 are expressed by the following conditional expressions (4) and (2).
  • the first concave reflecting mirror CM1 is arranged at a position substantially coinciding with the first pupil position, and the second concave reflecting mirror CM2 is positioned on the image plane IM side (or object plane OB side) from the second pupil position. You may arrange in. In this case, the same effect as in the third embodiment can be obtained. 0 ⁇ G1 ⁇ 0.02 (4) 0.02 ⁇ G2 ⁇ 0.07 (2)
  • the index G1 related to the reflecting surface CM1a of the first concave reflecting mirror CM1 and the index G2 related to the reflecting surface CM2a of the second concave reflecting mirror CM2 are expressed by the following conditional expressions (4) and (3).
  • the first concave reflecting mirror CM1 is disposed at a position substantially matching the first pupil position
  • the second concave reflecting mirror CM2 is disposed at a position approximately matching the second pupil position. 0 ⁇ G1 ⁇ 0.02 (4) 0 ⁇ G2 ⁇ 0.02 (3)
  • the pupil position position where the aperture stop AS is disposed
  • the power Pw unit: mm ⁇ 1
  • the power Pw of the partial optical system including a plurality of optical elements disposed between the surface IM satisfies the following conditional expression (5).
  • conditional expression (5) If the lower limit of conditional expression (5) is not reached, the lens diameter necessary to ensure the required image-side numerical aperture will be too large, and the projection optical system PL will be enlarged in the radial direction. In order to exhibit the effect of the embodiment more satisfactorily, the lower limit value of the conditional expression (5) can be set to 0.011.
  • conditional expression (6) is satisfied.
  • Rb is the maximum image height (see FIG. 2) of the effective imaging region ER on the image plane IM
  • Rm is the maximum lens effective radius in the fourth imaging optical unit K4.
  • conditional expression (6) If the lower limit value of conditional expression (6) is not reached, the lens power burden becomes too great, and the design of the projection optical system PL becomes difficult. In order to exhibit the effect of the embodiment more satisfactorily, the lower limit value of conditional expression (6) can be set to 10.0.
  • FIG. 11 is a view schematically showing a configuration of an exposure apparatus according to the present embodiment. Also in FIG. 11, as in FIG. 1, the Z-axis is parallel to the normal direction of the transfer surface (exposure surface) of the wafer W, which is a photosensitive substrate, and parallel to the paper surface of FIG. The Y-axis is set in one direction and the X-axis is set in the direction perpendicular to the paper surface of FIG.
  • the exposure apparatus of this embodiment includes an illumination optical system 1 including, for example, an optical integrator (homogenizer), a field stop, a condenser lens, and the like.
  • Exposure light (exposure beam) IL made up of ultraviolet pulsed light having a wavelength of 193 nm emitted from an ArF excimer laser light source that is an exposure light source passes through the illumination optical system 1 and illuminates a mask (reticle) M.
  • a pattern to be transferred is formed on the mask M, and a rectangular (slit-like) pattern region having a long side along the X direction and a short side along the Y direction is illuminated in the entire pattern region. Is done.
  • the light that has passed through the mask M forms a mask pattern at a predetermined projection magnification on an exposure area on a wafer (photosensitive substrate) W coated with a photoresist via an immersion type catadioptric projection optical system PL.
  • a mask pattern at a predetermined projection magnification on an exposure area on a wafer (photosensitive substrate) W coated with a photoresist via an immersion type catadioptric projection optical system PL.
  • Form That is, a rectangular still exposure having a long side along the X direction and a short side along the Y direction on the wafer W so as to optically correspond to the rectangular illumination area on the mask M.
  • a pattern image is formed in an area (effective exposure area; effective imaging area).
  • the mask M is held parallel to the XY plane on the mask stage MST, and a mechanism for finely moving the mask M in the X direction, the Y direction, and the rotation direction is incorporated in the mask stage MST.
  • positions in the X direction, the Y direction, and the rotational direction are measured and controlled in real time by a mask laser interferometer 13m using a moving mirror 12m provided on the mask stage MST.
  • the wafer W is fixed in parallel to the XY plane on the Z stage 9 via the wafer holder WH.
  • the Z stage 9 is fixed on an XY stage 10 that moves along an XY plane substantially parallel to the image plane of the projection optical system PL, and the focus position (position in the Z direction) and tilt of the wafer W are fixed. Control the corners.
  • the Z stage 9 is measured and controlled in real time in the X direction, the Y direction, and the rotational direction by a wafer laser interferometer 13 w using a moving mirror 12 w provided on the Z stage 9.
  • the XY stage 10 is placed on the base 11 and controls the X direction, Y direction, and rotation direction of the wafer W.
  • the main control system 14 provided in the exposure apparatus of the present embodiment adjusts the position of the mask M in the X direction, the Y direction, and the rotation direction based on the measurement values measured by the mask laser interferometer 13m. That is, the main control system 14 adjusts the position of the mask M by transmitting a control signal to a mechanism incorporated in the mask stage MST and finely moving the mask stage MST. The main control system 14 adjusts the focus position (position in the Z direction) and the tilt angle of the wafer W in order to adjust the surface on the wafer W to the image plane of the projection optical system PL by the auto focus method and the auto leveling method. I do.
  • the main control system 14 transmits a control signal to the wafer stage drive system 15 and drives the Z stage 9 by the wafer stage drive system 15 to adjust the focus position and tilt angle of the wafer W. Further, the main control system 14 adjusts the position of the wafer W in the X direction, the Y direction, and the rotation direction based on the measurement values measured by the wafer laser interferometer 13w. That is, the main control system 14 transmits a control signal to the wafer stage drive system 15 and drives the XY stage 10 by the wafer stage drive system 15 to adjust the position of the wafer W in the X direction, the Y direction, and the rotation direction. .
  • the main control system 14 transmits a control signal to a mechanism incorporated in the mask stage MST, and also transmits a control signal to the wafer stage drive system 15, and a speed ratio corresponding to the projection magnification of the projection optical system PL. Then, the mask stage MST and the XY stage 10 are driven to project and expose the pattern image of the mask M into a predetermined shot area on the wafer W. Thereafter, the main control system 14 transmits a control signal to the wafer stage drive system 15, and drives the XY stage 10 by the wafer stage drive system 15, thereby stepping another shot area on the wafer W to the exposure position.
  • the operation of scanning and exposing the pattern image of the mask M on the wafer W by the step-and-scan method is repeated. That is, in this embodiment, the position of the mask M and the wafer W is controlled using the wafer stage drive system 15 and the wafer laser interferometer 13w, etc., and the short side direction of the rectangular stationary exposure region and the stationary illumination region, that is, the Y direction.
  • the wafer W has a width equal to the long side LX of the static exposure region.
  • the mask pattern is scanned and exposed on a region having a length corresponding to the scanning amount (movement amount) of the wafer W.
  • FIG. 12 is a diagram schematically showing a configuration between the boundary lens and the wafer in each example of the present embodiment.
  • the optical path between the boundary lens Lb and the wafer W is filled with the liquid Lm having a refractive index larger than 1.5 with respect to the exposure light.
  • the boundary lens Lb is a positive lens having a convex surface facing the mask M and a flat surface facing the wafer W.
  • the liquid Lm is circulated in the optical path between the boundary lens Lb and the wafer W using the water supply / drainage mechanism 21.
  • a step-and-scan type exposure apparatus that performs scanning exposure while moving the wafer W relative to the projection optical system PL, between the boundary lens Lb of the projection optical system PL and the wafer W from the start to the end of the scanning exposure.
  • the liquid Lm in the optical path of, for example, the technology disclosed in US Patent Application Publication No. 2007/242247, etc., JP-A-10-303114, US Pat. No. 6,191,429, etc. Can be used.
  • an optical path between a boundary lens Lb and a wafer W is supplied from a liquid supply device to a liquid adjusted to a predetermined temperature via a supply pipe and a discharge nozzle. Then, the liquid is recovered from the wafer W via the recovery pipe and the inflow nozzle by the liquid supply device.
  • the wafer holder table is configured in a container shape so that liquid can be stored, At the center (in the liquid), the wafer W is positioned and held by vacuum suction. Further, the lens barrel tip of the projection optical system PL reaches the liquid, and the optical surface on the wafer side of the boundary lens Lb reaches the liquid. In this way, by circulating the liquid as the immersion liquid at a minute flow rate, it is possible to prevent the liquid from being altered by the effects of antiseptic and mildewproofing. In addition, it is possible to prevent aberration fluctuations due to heat absorption of exposure light.
  • US Patent Application Publication No. 2007/242247, US Pat. No. 6,191,429 and Japanese Patent Laid-Open No. 10-303114 are incorporated by reference.
  • the aspherical surface is along the optical axis from the tangential plane at the apex of the aspherical surface to the position on the aspherical surface at the height y, where y is the height in the direction perpendicular to the optical axis.
  • distance (sag amount) is z
  • a vertex radius of curvature is r
  • a conical coefficient is kappa
  • n-th order aspherical coefficient was C n is expressed by the following equation (a).
  • a lens surface formed in an aspherical shape is marked with an asterisk (*) on the right side of the surface number.
  • the light from the mask M passes through the first imaging optical system K1, and the first intermediate pattern of the mask pattern is away from the optical axis in the vicinity of the first planar reflecting mirror FM1.
  • the light from the first intermediate image forms a second intermediate image of the mask pattern at a position away from the optical axis via the second imaging optical system K2.
  • the light from the second intermediate image forms a third intermediate image of the mask pattern at a position away from the optical axis in the vicinity of the second plane reflecting mirror FM2 via the third imaging optical system K3.
  • the light from the third intermediate image forms a final image of the mask pattern on the wafer W at a position away from the optical axis via the fourth imaging optical system K4.
  • the position where the intermediate image of the mask pattern is formed can be referred to as an object plane or a conjugate position optically conjugate with the image plane.
  • the first flat reflecting mirror M1 and the second flat reflecting mirror M2 are integrally configured as one optical member.
  • the optical axis of the first imaging optical system K1 and the optical axis of the fourth imaging optical system K4 are parallel to each other, and the Y direction of the first planar reflecting mirror M1 and the second planar reflecting mirror M2 It is eccentric by the interval of.
  • the first planar reflecting mirror as the first deflecting mirror that deflects the light from the first imaging optical system K1 and directs it to the second imaging optical system K2 is the first planar reflecting surface along the first plane.
  • the second planar reflecting mirror as the second deflecting mirror that deflects the light from the third imaging optical system K3 and directs it toward the fourth imaging optical system K4 is a second planar reflection along the second plane.
  • the first plane and the second plane are parallel to each other.
  • the optical axis of the first imaging optical system K1 and the optical axis of the second imaging optical system K2 intersect on the first plane, and the optical axis of the third imaging optical system K3 and the fourth imaging optical system.
  • the optical axis of K4 intersects on the second plane.
  • the optical axis of the second imaging optical system K2 and the optical axis of the third imaging optical system K3 are coaxial with each other.
  • the second imaging optical system K2 and the third imaging optical system K3 have a common optical axis.
  • the projection optical system PL is substantially telecentric on both the object side and the image side.
  • FIG. 13 is a diagram showing a lens configuration of the projection optical system according to the first example of the present embodiment.
  • the first imaging optical system K1 is composed of a plane parallel plate P1 and eleven lenses L11 to L111 in this order from the mask side.
  • An aperture stop AS1 (not shown) is disposed in the optical path between the lens L15 and the lens L16 of the first imaging optical system K1.
  • the second imaging optical system K2 includes three lenses L21 to L23 and a concave reflecting mirror CM1 with a concave surface facing the light incident side in order from the light incident side along the light traveling path. .
  • the third imaging optical system K3 is composed of, in order from the light incident side, three lenses L31 to L33 and a concave reflecting mirror CM2 having a concave surface facing the light incident side.
  • the fourth imaging optical system K4 includes, in order from the light incident side, thirteen lenses L41 to L413 and a plano-convex lens L414 (boundary lens Lb) having a plane facing the wafer side.
  • an aperture stop AS is disposed in the optical path between the lens L410 and the lens L411.
  • a position optically conjugate with the position where the aperture stop AS is disposed can be referred to as a pupil position of each imaging optical system.
  • a liquid (for example, water) Lm is filled.
  • All the light transmitting members including the plane parallel plate P1 and the boundary lens Lb are formed of an optical material (for example, quartz glass (SiO 2 )) having a refractive index of 1.5603261 with respect to the center wavelength of the used light.
  • is the center wavelength of the exposure light
  • is the magnitude (absolute value) of the projection magnification (imaging magnification of the entire system)
  • NA is the image side (wafer side).
  • the numerical aperture, Rb is the radius of the image circle IF on the wafer W, that is, the maximum image height of the effective imaging region ER on the image plane IM
  • Ra is the off-axis amount of the static exposure region ER
  • LX is the static exposure region.
  • ER represents the dimension along the X direction (long side dimension)
  • LY represents the dimension along the Y direction of the static exposure region ER (short side dimension).
  • the surface number is along the path along which the light beam travels from the mask surface that is the object surface (first surface) to the wafer surface that is the image surface (second surface).
  • r is the radius of curvature of each surface (vertical curvature radius: mm in the case of an aspherical surface)
  • d is the on-axis spacing of each surface, that is, the surface spacing (mm)
  • n is The refractive index with respect to the center wavelength is shown.
  • the sign of the surface interval d changes every time light is reflected.
  • the sign of the surface interval d is negative in the optical path from the first flat reflecting mirror FM1 to the first concave reflecting mirror CM1 and in the optical path from the second concave reflecting mirror CM2 to the second flat reflecting mirror FM2. Positive in the light path.
  • the curvature radius of the convex surface toward the mask side is positive, and the curvature radius of the concave surface toward the mask side is negative.
  • the radius of curvature of the convex surface is negative toward the light incident side along the light traveling path, and the radius of curvature of the concave surface is positive toward the light incident side.
  • the radius of curvature of the concave surface is negative toward the light incident side along the light traveling path, and the radius of curvature of the convex surface is positive toward the light incident side.
  • the radius of curvature of the convex surface is positive toward the light incident side, and the radius of curvature of the concave surface is negative toward the light incident side.
  • Table (1) is the same in the following Table (2), Table (3), and Table (4).
  • FIG. 14 (a) shows the aberration component Z17 and Z10 occurs when imparted with deformed according to the function FZ 17 to the reflecting surface CM1a the first concave reflector CM1 in the first embodiment.
  • FIG. 14B shows aberration components Z17 and Z10 generated when the same deformation as that of the first concave reflecting mirror CM1 is applied to the reflecting surface CM2a of the second concave reflecting mirror CM2 in the first embodiment.
  • FIG. 15A shows the first embodiment of the first concave reflecting mirror CM1 and the second concave reflecting mirror CM2 in cooperation, that is, the reflecting surface CM1a and the second concave reflecting mirror CM2 of the first concave reflecting mirror CM1.
  • the coefficients of the function FZ 17 representing the deformation to be imparted to the reflecting surface CM2a sign and magnitude appropriate shows a state that caused mainly 0-order aberration component (Z17).
  • FIG. 15B shows a state in which the primary aberration component (Z10) is mainly generated by the cooperative action of the first concave reflecting mirror CM1 and the second concave reflecting mirror CM2 in the first embodiment.
  • the projection optical system of the first embodiment is disposed in the optical path between the first surface and the second surface, includes a first concave reflecting mirror, and makes different surfaces optically conjugate with each other.
  • a first imaging optical unit, and a second concave reflecting mirror disposed in an optical path between the first imaging optical unit and the second surface, wherein different surfaces are optically conjugate with each other.
  • the second concave reflecting mirror is disposed on the first surface side from the second pupil position that is optically Fourier-transformed with the position of the first surface in the optical path of the second imaging optical unit. Therefore, good imaging performance can be achieved.
  • the horizontal axis indicates the X-direction position along the straight line connecting the positions ERa, ERb, and ERc (see FIG. 2) of the effective imaging region ER, and the vertical axis indicates the Zernike coefficient (unit: aberration component).
  • FIG. 16 is a diagram showing a lens configuration of the projection optical system according to the second example of the present embodiment.
  • the first imaging optical system K1 is composed of a plane parallel plate P1 and twelve lenses L11 to L112 in this order from the mask side.
  • the second imaging optical system K2 includes two lenses L21 and L22 and a concave reflecting mirror CM1 having a concave surface facing the light incident side in order from the light incident side along the light traveling path. .
  • the third imaging optical system K3 is composed of two lenses L31 and L32 in order from the light incident side, and a concave reflecting mirror CM2 having a concave surface directed to the light incident side.
  • the fourth imaging optical system K4 includes, in order from the light incident side, thirteen lenses L41 to L413 and a plano-convex lens L414 (boundary lens Lb) having a plane facing the wafer side.
  • an aperture stop AS is disposed in the optical path between the lens L410 and the lens L411.
  • Table (2) lists the values of the specifications of the projection optical system PL according to the second example.
  • the projection optical system of the second embodiment is disposed in the optical path between the first surface and the second surface, includes a first concave reflecting mirror, and makes different surfaces optically conjugate with each other.
  • a first imaging optical unit, and a second concave reflecting mirror disposed in an optical path between the first imaging optical unit and the second surface, wherein different surfaces are optically conjugate with each other.
  • a first imaging optical unit, wherein the first concave reflecting mirror is first from a first pupil position that is optically Fourier-transformed with the position of the first surface in the optical path of the first imaging optical unit.
  • FIG. 17 is a diagram showing a lens configuration of the projection optical system according to the third example of the present embodiment.
  • the first imaging optical system K1 is composed of a plane parallel plate P1 and 14 lenses L11 to L114 in this order from the mask side.
  • the second imaging optical system K2 is composed of one lens L21 and a concave reflecting mirror CM1 having a concave surface facing the light incident side in order from the light incident side along the light traveling path.
  • the third imaging optical system K3 is composed of, in order from the light incident side, three lenses L31 to L33 and a concave reflecting mirror CM2 having a concave surface facing the light incident side.
  • the fourth imaging optical system K4 includes, in order from the light incident side, fifteen lenses L41 to L415 and a plano-convex lens L416 (boundary lens Lb) having a plane facing the wafer side.
  • an aperture stop AS is disposed in the optical path between the lens L412 and the lens L413.
  • Table (3) lists the values of the specifications of the projection optical system PL according to the third example.
  • the projection optical system of the third embodiment is disposed in an optical path between the first surface and the second surface, includes a first concave reflecting mirror, and makes different surfaces optically conjugate with each other.
  • a first imaging optical unit, and a second concave reflecting mirror disposed in an optical path between the first imaging optical unit and the second surface, wherein different surfaces are optically conjugate with each other.
  • a first imaging optical unit, wherein the first concave reflecting mirror is first from a first pupil position that is optically Fourier-transformed with the position of the first surface in the optical path of the first imaging optical unit.
  • FIG. 18 is a diagram showing a lens configuration of the projection optical system according to the fourth example of the present embodiment.
  • the first imaging optical system K1 is composed of a plane parallel plate P1 and ten lenses L11 to L110 in this order from the mask side.
  • the second imaging optical system K2 includes two lenses L21 and L22 and a concave reflecting mirror CM1 having a concave surface facing the light incident side in order from the light incident side along the light traveling path. .
  • the third imaging optical system K3 is composed of two lenses L31 and L32 in order from the light incident side, and a concave reflecting mirror CM2 having a concave surface directed to the light incident side.
  • the fourth imaging optical system K4 includes, in order from the light incident side, twelve lenses L41 to L412 and a plano-convex lens L413 (boundary lens Lb) having a plane directed to the wafer side.
  • an aperture stop AS is disposed in the optical path between the lens L410 and the lens L411.
  • the following table (4) lists the values of the specifications of the projection optical system PL according to the fourth example.
  • the projection optical system of the fourth embodiment is disposed in the optical path between the first surface and the second surface, includes the first concave reflecting mirror, and makes different surfaces optically conjugate with each other.
  • a first imaging optical unit, and a second concave reflecting mirror disposed in an optical path between the first imaging optical unit and the second surface, wherein different surfaces are optically conjugate with each other.
  • a second imaging optical unit, and the first concave reflecting mirror is disposed at a first pupil position that is optically Fourier-transformed with the position of the first surface in the optical path of the first imaging optical unit.
  • the second concave reflecting mirror is disposed on the first surface side or the second surface side from the second pupil position that is optically Fourier-transformed with the position of the first surface in the optical path of the second imaging optical unit.
  • the projection optical system PL of each embodiment since the required conditional expression is satisfied, a function that expresses deformation applied to the reflecting surface CM1a of the first concave reflecting mirror CM1 and the reflecting surface CM2a of the second concave reflecting mirror CM2.
  • the present invention is not limited to the specific function FZ 17 , and the deformation according to the same function display is applied to the reflecting surface CM1a of the first concave reflecting mirror CM1 and the reflecting surface CM2a of the second concave reflecting mirror CM2.
  • the wavefront aberration of the projection optical system PL can be adjusted.
  • the deformation represented by the Zernike polynomial is applied to the reflection surface CM1a of the first concave reflection mirror CM1 and the reflection surface CM2a of the second concave reflection mirror CM2.
  • the function to be displayed is not limited to the Zernike polynomial, and may be a polynomial such as a power series, for example.
  • both the reflecting surface CM1a of the first concave reflecting mirror CM1 and the reflecting surface CM2a of the second concave reflecting mirror CM2 are deformed, but the other reflecting surface with respect to one reflecting surface shape. Since the wavefront aberration of the projection optical system PL can be adjusted by adjusting the shape, it is sufficient that at least one of the reflecting surface CM1a of the first concave reflecting mirror CM1 and the reflecting surface CM2a of the second concave reflecting mirror CM2 can be deformed. .
  • the projection optical system PL of the present embodiment for example, wavefront aberration caused due to light irradiation can be actively adjusted.
  • the fine pattern of the mask M can be projected and exposed to the wafer W with high accuracy by using the projection optical system PL capable of actively adjusting the wavefront aberration, and thus a good device. Can be manufactured.
  • the projection optical system PL is configured as a four-fold imaging type optical system including four imaging optical units K1, K2, K3, and K4.
  • the present invention is not limited to this.
  • a projection optical system including a first imaging optical unit including a first concave reflecting mirror and a second imaging optical unit including a second concave reflecting mirror for example, U.S. Pat. 812, 028, No. 5,668,673, No. 7,030,965, etc., the present invention can be applied.
  • the effective image formation region ER and the effective visual field region FR are set as rectangular regions separated from the optical axis AX of the projection optical system PL.
  • the present invention is not limited to this, and various forms are possible for the positional relationship between the effective imaging region and effective field region and the optical axis of the projection optical system, and the shape of the effective imaging region and effective field region.
  • the effective imaging region ER and the effective visual field region FR may have a polygonal shape such as an arc shape, a parallelogram shape, a trapezoidal shape, or a hexagonal shape.
  • the optical axis of the first imaging optical system K1 or the optical axis of the fourth imaging optical system K4 and the optical axes of the second and third imaging optical systems K2 and K3 are orthogonal to each other.
  • the optical axes of the second and third imaging optical systems K2 and K3 may be inclined by a predetermined angle with respect to the Y axis.
  • the reflection surface CM1a of the first concave reflecting mirror CM1 and the reflecting surface CM2a of the second concave reflecting mirror CM2 are deformed to control the aberration of the projection optical system.
  • an aberration control mechanism for giving a required temperature distribution to such a light transmitting member US Pat. No. 6,198,579, US Pat. No. 6,781,668, 7,817,249, Reference may be made to US Patent Publication No. 2008/123066.
  • an aberration control mechanism for controlling the aberration of the projection optical system by changing the position and posture of the optical member constituting the projection optical system may be provided.
  • variable pattern forming apparatus that forms a predetermined pattern based on predetermined electronic data can be used instead of a mask.
  • a spatial light modulation element including a plurality of reflection elements driven based on predetermined electronic data can be used.
  • An exposure apparatus using a spatial light modulator is disclosed, for example, in US Patent Publication No. 2007/0296936.
  • a transmissive spatial light modulator may be used, or a self-luminous image display element may be used.
  • the exposure apparatus of the above-described embodiment is manufactured by assembling various subsystems including the respective constituent elements recited in the claims of the present application so as to maintain predetermined mechanical accuracy, electrical accuracy, and optical accuracy. Is done.
  • various optical systems are adjusted to achieve optical accuracy
  • various mechanical systems are adjusted to achieve mechanical accuracy
  • various electrical systems are Adjustments are made to achieve electrical accuracy.
  • the assembly process from the various subsystems to the exposure apparatus includes mechanical connection, electrical circuit wiring connection, pneumatic circuit piping connection and the like between the various subsystems. Needless to say, there is an assembly process for each subsystem before the assembly process from the various subsystems to the exposure apparatus. When the assembly process of the various subsystems to the exposure apparatus is completed, comprehensive adjustment is performed to ensure various accuracies as the entire exposure apparatus.
  • the exposure apparatus may be manufactured in a clean room where the temperature, cleanliness, etc. are controlled.
  • FIG. 19 is a flowchart showing a manufacturing process of a semiconductor device.
  • a metal film is vapor-deposited on a wafer W to be a semiconductor device substrate (step S40), and a photoresist, which is a photosensitive material, is applied on the vapor-deposited metal film.
  • Step S42 the pattern formed on the mask (reticle) M is transferred to each shot area on the wafer W (step S44: exposure process), and the transfer of the wafer W after the transfer is completed.
  • Development that is, development of the photoresist to which the pattern has been transferred is performed (step S46: development process).
  • step S48 processing step.
  • the resist pattern is a photoresist layer in which unevenness having a shape corresponding to the pattern transferred by the exposure apparatus of the above-described embodiment is generated, and the recess penetrates the photoresist layer. is there.
  • step S48 the surface of the wafer W is processed through this resist pattern.
  • the processing performed in step S48 includes, for example, at least one of etching of the surface of the wafer W or film formation of a metal film or the like.
  • the exposure apparatus of the above-described embodiment performs pattern transfer using the wafer W coated with the photoresist as a photosensitive substrate.
  • FIG. 20 is a flowchart showing a manufacturing process of a liquid crystal device such as a liquid crystal display element.
  • a pattern forming process step S50
  • a color filter forming process step S52
  • a cell assembling process step S54
  • a module assembling process step S56
  • a predetermined pattern such as a circuit pattern and an electrode pattern is formed on the glass substrate coated with a photoresist as the plate P using the exposure apparatus of the above-described embodiment.
  • an exposure process for transferring the pattern to the photoresist layer using the exposure apparatus of the above-described embodiment and development of the plate P to which the pattern is transferred, that is, development of the photoresist layer on the glass substrate are performed.
  • a developing step for generating a photoresist layer having a shape corresponding to the pattern, and a processing step for processing the surface of the glass substrate through the developed photoresist layer are performed.
  • a large number of sets of three dots corresponding to R (Red), G (Green), and B (Blue) are arranged in a matrix or three R, G, and B
  • a color filter is formed by arranging a plurality of stripe filter sets in the horizontal scanning direction.
  • a liquid crystal panel liquid crystal cell
  • a liquid crystal panel is assembled using the glass substrate on which the predetermined pattern is formed in step S50 and the color filter formed in step S52.
  • a liquid crystal panel is formed by injecting liquid crystal between a glass substrate and a color filter.
  • various components such as an electric circuit and a backlight for performing the display operation of the liquid crystal panel are attached to the liquid crystal panel assembled in step S54.
  • the present invention is not limited to application to an exposure apparatus for manufacturing a semiconductor device, for example, an exposure apparatus for a display device such as a liquid crystal display element formed on a square glass plate or a plasma display, It can also be widely applied to an exposure apparatus for manufacturing various devices such as an image sensor (CCD or the like), a micromachine, a thin film magnetic head, and a DNA chip. Furthermore, the present invention can also be applied to an exposure process (exposure apparatus) when manufacturing a mask (photomask, reticle, etc.) on which mask patterns of various devices are formed using a photolithography process.
  • an exposure apparatus for manufacturing a semiconductor device for example, an exposure apparatus for a display device such as a liquid crystal display element formed on a square glass plate or a plasma display
  • various devices such as an image sensor (CCD or the like), a micromachine, a thin film magnetic head, and a DNA chip.
  • the present invention can also be applied to an exposure process (exposure apparatus) when manufacturing a mask (photomask,
  • the ArF excimer laser light source is used.
  • the present invention is not limited to this, and other suitable light sources, for example, a KrF excimer laser light source for supplying laser light with a wavelength of 248 nm, a laser with a wavelength of 157 nm
  • a KrF excimer laser light source for supplying laser light with a wavelength of 248 nm, a laser with a wavelength of 157 nm
  • An F 2 laser light source that supplies light
  • an Ar 2 laser light source that supplies laser light with a wavelength of 126 nm, or the like can be used.
  • a CW (Continuous Wave) light source such as an ultrahigh pressure mercury lamp that emits bright lines such as g-line (wavelength 436 nm) and i-line (wavelength 365 nm).
  • a harmonic generator of a YAG laser or the like can also be used.
  • a single wavelength laser beam in an infrared region or a visible region oscillated from a DFB semiconductor laser or a fiber laser is used as vacuum ultraviolet light.
  • a harmonic that is amplified by a fiber amplifier doped with erbium (or both erbium and ytterbium) and wavelength-converted into ultraviolet light using a nonlinear optical crystal may be used.
  • the present invention is applied to the scanning exposure apparatus.
  • the present invention is not limited to this, and the mask and wafer (photosensitive substrate) are stationary with respect to the projection optical system.
  • the present invention can also be applied to a batch exposure type exposure apparatus that performs projection exposure in the above-described state.
  • the present invention is applied to an immersion type projection optical system mounted on the exposure apparatus.
  • the present invention is not limited to the immersion system and can be similarly applied to a dry projection optical system.
  • the present invention can be applied to an imaging optical system that forms an image of a first surface on a second surface.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

Provided is a projection optical system in which, for example, wave aberration caused by light irradiation can be adjusted. This projection optical system forms an image of a first surface on a second surface. The projection optical system comprises: a first image-forming optical unit that is arranged in an optical path between the first surface and the second surface, and that includes a first concave-surface reflection mirror having a deformable reflection surface; and a second image-forming optical unit that is arranged in an optical path between the first image-forming optical unit and the second surface, and that includes a second concave-surface reflection mirror having a deformable reflection surface.

Description

投影光学系、投影光学系の調整方法、露光装置、露光方法、およびデバイス製造方法Projection optical system, projection optical system adjustment method, exposure apparatus, exposure method, and device manufacturing method
 本発明は、投影光学系、投影光学系の調整方法、露光装置、露光方法、およびデバイス製造方法に関する。 The present invention relates to a projection optical system, a projection optical system adjustment method, an exposure apparatus, an exposure method, and a device manufacturing method.
 半導体素子等のデバイスを製造するためのフォトリソグラフィ工程において、マスク(レチクル)のパターンを、投影光学系を介して、感光性基板(フォトレジストが塗布されたウェハ等)上に投影露光する露光装置が使用される。露光装置では、マスクパターンの微細化が進むにつれて、投影光学系に要求される解像力(解像度)が益々高まっている。投影光学系の解像力に対する要求を満足するには、照明光(露光光)の波長λを短くするとともに、投影光学系の像側開口数NAを大きくする必要がある。 In a photolithography process for manufacturing a device such as a semiconductor element, an exposure apparatus that projects and exposes a mask (reticle) pattern onto a photosensitive substrate (a wafer coated with a photoresist) via a projection optical system Is used. In the exposure apparatus, as the mask pattern becomes finer, the resolution (resolution) required for the projection optical system is increasing. In order to satisfy the requirement for the resolution of the projection optical system, it is necessary to shorten the wavelength λ of the illumination light (exposure light) and increase the image-side numerical aperture NA of the projection optical system.
 そこで、投影光学系と感光性基板との間の光路中に屈折率の高い液体のような媒質を満たすことにより像側開口数の増大を図る液浸技術が知られている。一般に、像側開口数の大きな投影光学系では、液浸系に限定されることなく乾燥系においても、ペッツバール条件を成立させて像の平坦性を得るという観点から反射屈折光学系の採用が望ましい。従来、露光装置の投影光学系に好適な反射屈折光学系が種々提案されている(たとえば特許文献1を参照)。 Therefore, there is known an immersion technique for increasing the image-side numerical aperture by filling a medium such as a liquid having a high refractive index in the optical path between the projection optical system and the photosensitive substrate. In general, in a projection optical system having a large image-side numerical aperture, the use of a catadioptric optical system is desirable from the viewpoint of obtaining the flatness of the image by satisfying the Petzval condition even in a dry system without being limited to an immersion system. . Conventionally, various catadioptric optical systems suitable for a projection optical system of an exposure apparatus have been proposed (see, for example, Patent Document 1).
米国特許第7,301,605号US Pat. No. 7,301,605
 露光装置に搭載された投影光学系では、露光に際して光学系を通過する光の照射エネルギの影響を受けて光学特性が変動する。具体的には、光照射により、レンズの光学面が変化したり、レンズの屈折率分布が変化したりする。また、光照射による鏡筒の変形などに起因してレンズの間隔が変化したり、光照射により雰囲気の密度分布(屈折率分布)が変化したりする。光学特性の変動は、投影光学系の波面収差を悪化させ、ひいては投影光学系の解像力等の結像性能を低下させる。 In the projection optical system mounted on the exposure apparatus, the optical characteristics fluctuate due to the influence of irradiation energy of light passing through the optical system during exposure. Specifically, the optical surface of the lens changes or the refractive index distribution of the lens changes due to light irradiation. In addition, the lens interval changes due to deformation of the lens barrel due to light irradiation, or the density distribution (refractive index distribution) of the atmosphere changes due to light irradiation. The fluctuation of the optical characteristics deteriorates the wavefront aberration of the projection optical system, and consequently the imaging performance such as the resolving power of the projection optical system.
 本発明は、前述の課題に鑑みてなされたものであり、たとえば結像性能の高い投影光学系を提供することを目的とする。また、本発明は、結像性能の高い投影光学系を用いて、微細パターンを感光性基板に高精度に投影露光することのできる露光装置を提供することを目的とする。 The present invention has been made in view of the above-described problems, and an object thereof is to provide a projection optical system having high imaging performance, for example. It is another object of the present invention to provide an exposure apparatus that can project and expose a fine pattern onto a photosensitive substrate with high accuracy using a projection optical system having high imaging performance.
 前記課題を解決するために、第1形態では、第1面の像を第2面に形成する投影光学系において、
前記第1面と前記第2面との間の光路中に配置されて、第1凹面反射鏡を含み、前記第1面の中間像を形成する第1結像光学部分と、
 前記第1結像光学部分と前記第2面との間の光路中に配置されて、第2凹面反射鏡を含み、前記中間像の像を形成する第2結像光学部分とを備え、
 前記第1凹面反射鏡および前記第2凹面反射鏡のうち少なくとも一方は変形可能な反射面を有していることを特徴とする投影光学系を提供する。
 第2形態では、第1面の像を第2面に形成する投影光学系において、
 前記第1面と前記第2面との間の光路中に配置されて、変形可能な反射面を有する第1凹面反射鏡を含む第1結像光学ユニットと、
 前記第1結像光学ユニットと前記第2面との間の光路中に配置されて、変形可能な反射面を有する第2凹面反射鏡を含む第2結像光学ユニットとを備えていることを特徴とする投影光学系を提供する。
 第3形態では、第1面の像を第2面に形成する投影光学系において、
 前記第1面と前記第2面との間の光路中に配置されて、第1凹面反射鏡を含み、互いに異なる面同士を光学的に共役な関係にする第1結像光学ユニットと、
 前記第1結像光学ユニットと前記第2面との間の光路中に配置されて、第2凹面反射鏡を含み、互いに異なる面同士を光学的に共役な関係にする第2結像光学ユニットとを備え、 前記第1凹面反射鏡は、前記第1結像光学ユニットの光路中において前記第1面の位置と光学的にフーリエ変換の関係にある第1瞳位置から前記第1面側に配置され、
 前記第2凹面反射鏡は、前記第2結像光学ユニットの光路中において前記第1面の位置と光学的にフーリエ変換の関係にある第2瞳位置から前記第2面側に配置されていることを特徴とする投影光学系を提供する。
 第4形態では、第1面の像を第2面に形成する投影光学系において、
 前記第1面と前記第2面との間の光路中に配置されて、第1凹面反射鏡を含み、互いに異なる面同士を光学的に共役な関係にする第1結像光学ユニットと、
 前記第1結像光学ユニットと前記第2面との間の光路中に配置されて、第2凹面反射鏡を含み、互いに異なる面同士を光学的に共役な関係にする第2結像光学ユニットとを備え、 前記第1凹面反射鏡は、前記第1結像光学ユニットの光路中において前記第1面の位置と光学的にフーリエ変換の関係にある第1瞳位置から前記第2面側に配置され、
 前記第2凹面反射鏡は、前記第2結像光学ユニットの光路中において前記第1面の位置と光学的にフーリエ変換の関係にある第2瞳位置から前記第1面側に配置されていることを特徴とする投影光学系を提供する。
 第5形態では、第1面の像を第2面に形成する投影光学系において、
 前記第1面と前記第2面との間の光路中に配置されて、第1凹面反射鏡を含み、互いに異なる面同士を光学的に共役な関係にする第1結像光学ユニットと、
 前記第1結像光学ユニットと前記第2面との間の光路中に配置されて、第2凹面反射鏡を含み、互いに異なる面同士を光学的に共役な関係にする第2結像光学ユニットとを備え、 前記第1凹面反射鏡は、前記第1結像光学ユニットの光路中において前記第1面の位置と光学的にフーリエ変換の関係にある第1瞳位置に配置され、
 前記第2凹面反射鏡は、前記第2結像光学ユニットの光路中において前記第1面の位置と光学的にフーリエ変換の関係にある第2瞳位置から前記第1面側または前記第2面側に配置されていることを特徴とする投影光学系を提供する。
 第6形態では、第1面の像を第2面に形成する投影光学系において、
 前記第1面と前記第2面との間の光路中に配置されて、第1凹面反射鏡を含み、互いに異なる面同士を光学的に共役な関係にする第1結像光学ユニットと、
 前記第1結像光学ユニットと前記第2面との間の光路中に配置されて、第2凹面反射鏡を含み、互いに異なる面同士を光学的に共役な関係にする第2結像光学ユニットとを備え、
 前記第1凹面反射鏡は、前記第1結像光学ユニットの光路中において前記第1面の位置と光学的にフーリエ変換の関係にある第1瞳位置から前記第1面側または前記第2面側に配置され、
 前記第2凹面反射鏡は、前記第2結像光学ユニットの光路中において前記第1面の位置と光学的にフーリエ変換の関係にある第2瞳位置に配置されていることを特徴とする投影光学系を提供する。
 第7形態では、第1面の像を第2面に形成する投影光学系において、
 前記第1面と前記第2面との間の光路中に配置されて、第1凹面反射鏡を含み、互いに異なる面同士を光学的に共役な関係にする第1結像光学ユニットと、
 前記第1結像光学ユニットと前記第2面との間の光路中に配置されて、第2凹面反射鏡を含み、互いに異なる面同士を光学的に共役な関係にする第2結像光学ユニットとを備え、 前記第1凹面反射鏡は、前記第1結像光学ユニットの光路中において前記第1面の位置と光学的にフーリエ変換の関係にある第1瞳位置に配置され、
 前記第2凹面反射鏡は、前記第2結像光学ユニットの光路中において前記第1面の位置と光学的にフーリエ変換の関係にある第2瞳位置に配置されていることを特徴とする投影光学系を提供する。
In order to solve the above problem, in the first embodiment, in the projection optical system that forms the image of the first surface on the second surface,
A first imaging optical portion disposed in an optical path between the first surface and the second surface and including a first concave reflecting mirror to form an intermediate image of the first surface;
A second imaging optical part that is arranged in an optical path between the first imaging optical part and the second surface, includes a second concave reflecting mirror, and forms an image of the intermediate image;
At least one of the first concave reflecting mirror and the second concave reflecting mirror has a deformable reflecting surface, and a projection optical system is provided.
In the second embodiment, in the projection optical system that forms the image of the first surface on the second surface,
A first imaging optical unit including a first concave reflecting mirror disposed in an optical path between the first surface and the second surface and having a deformable reflecting surface;
A second imaging optical unit including a second concave reflecting mirror disposed in an optical path between the first imaging optical unit and the second surface and having a deformable reflecting surface. A characteristic projection optical system is provided.
In the third embodiment, in the projection optical system that forms the image of the first surface on the second surface,
A first imaging optical unit that is disposed in an optical path between the first surface and the second surface, includes a first concave reflecting mirror, and optically conjugates different surfaces to each other;
A second imaging optical unit that is disposed in the optical path between the first imaging optical unit and the second surface, includes a second concave reflecting mirror, and makes different surfaces optically conjugate with each other. The first concave reflecting mirror is disposed on the first surface side from a first pupil position that is optically Fourier-transformed with the position of the first surface in the optical path of the first imaging optical unit. Arranged,
The second concave reflecting mirror is disposed on the second surface side from a second pupil position that is optically Fourier-transformed with the position of the first surface in the optical path of the second imaging optical unit. A projection optical system is provided.
In the fourth embodiment, in the projection optical system that forms the image of the first surface on the second surface,
A first imaging optical unit that is disposed in an optical path between the first surface and the second surface, includes a first concave reflecting mirror, and optically conjugates different surfaces to each other;
A second imaging optical unit that is disposed in the optical path between the first imaging optical unit and the second surface, includes a second concave reflecting mirror, and makes different surfaces optically conjugate with each other. The first concave reflecting mirror is disposed on the second surface side from a first pupil position optically Fourier-transformed with the position of the first surface in the optical path of the first imaging optical unit. Arranged,
The second concave reflecting mirror is disposed on the first surface side from a second pupil position that is optically Fourier-transformed with the position of the first surface in the optical path of the second imaging optical unit. A projection optical system is provided.
In the fifth embodiment, in the projection optical system that forms the image of the first surface on the second surface,
A first imaging optical unit that is disposed in an optical path between the first surface and the second surface, includes a first concave reflecting mirror, and optically conjugates different surfaces to each other;
A second imaging optical unit that is disposed in the optical path between the first imaging optical unit and the second surface, includes a second concave reflecting mirror, and makes different surfaces optically conjugate with each other. The first concave reflecting mirror is disposed at a first pupil position that is optically Fourier-transformed with the position of the first surface in the optical path of the first imaging optical unit,
The second concave reflecting mirror is located on the first surface side or the second surface from a second pupil position that is optically Fourier-transformed with the position of the first surface in the optical path of the second imaging optical unit. Provided is a projection optical system characterized in that the projection optical system is arranged on the side.
In the sixth aspect, in the projection optical system that forms the image of the first surface on the second surface,
A first imaging optical unit that is disposed in an optical path between the first surface and the second surface, includes a first concave reflecting mirror, and optically conjugates different surfaces to each other;
A second imaging optical unit that is disposed in the optical path between the first imaging optical unit and the second surface, includes a second concave reflecting mirror, and makes different surfaces optically conjugate with each other. And
The first concave reflecting mirror is located on the first surface side or the second surface from a first pupil position optically Fourier-transformed with the position of the first surface in the optical path of the first imaging optical unit. Placed on the side
The second concave reflecting mirror is disposed at a second pupil position that is optically Fourier-transformed with the position of the first surface in the optical path of the second imaging optical unit. An optical system is provided.
In the seventh embodiment, in a projection optical system that forms an image of the first surface on the second surface,
A first imaging optical unit that is disposed in an optical path between the first surface and the second surface, includes a first concave reflecting mirror, and optically conjugates different surfaces to each other;
A second imaging optical unit that is disposed in the optical path between the first imaging optical unit and the second surface, includes a second concave reflecting mirror, and makes different surfaces optically conjugate with each other. The first concave reflecting mirror is disposed at a first pupil position that is optically Fourier-transformed with the position of the first surface in the optical path of the first imaging optical unit,
The second concave reflecting mirror is disposed at a second pupil position that is optically Fourier-transformed with the position of the first surface in the optical path of the second imaging optical unit. An optical system is provided.
 第8形態では、第1面の像を第2面に形成する投影光学系において、
 前記第1面と前記第2面との間の光路中に配置され、前記第1面の第1中間像を形成する第1結像光学系と、
 前記第1結像光学系と前記第2面との間の光路中に配置され、第1凹面反射鏡を含み、前記第1中間像の像である第2中間像を形成する第2結像光学系と、
 前記第2結像光学系と前記第2面との間の光路中に配置され、第2凹面反射鏡を含み、前記第2中間像の像である第3中間像を形成する第3結像光学系と、
 前記第3結像光学系と前記第2面との間の光路中に配置され、前記第3中間像の像を第2面に形成する第4結像光学系とを備え、
 前記第2結像光学系は、前記第1中間像と前記第1凹面反射鏡との間の光路中に配置された複数の正レンズを備え、
 前記第3結像光学系は、前記第2中間像と前記第2凹面反射鏡との間の光路中に配置された複数の正レンズを備えていることを特徴とする投影光学系を提供する。
 第9形態では、第1面の像を第2面に形成する投影光学系において、
 前記第1面と前記第2面との間の光路中に配置され、前記第1面の第1中間像を形成する第1結像光学系と、
 前記第1結像光学系と前記第2面との間の光路中に配置され、第1凹面反射鏡を含み、前記第1中間像の像である第2中間像を形成する第2結像光学系と、
 前記第2結像光学系と前記第2面との間の光路中に配置され、第2凹面反射鏡を含み、前記第2中間像の像である第3中間像を形成する第3結像光学系と、
 前記第3結像光学系と前記第2面との間の光路中に配置され、前記第3中間像の像を第2面に形成する第4結像光学系とを備え、
 前記第4結像光学系は、最も前記第3中間像側に配置されて前記第2面側に凸面を向けた正レンズを備えていることを特徴とする投影光学系を提供する。
 第10形態では、第1面の像を第2面に形成する投影光学系において、
 前記第1面と前記第2面との間の光路中に配置され、前記第1面の第1中間像を形成する第1結像光学系と、
 前記第1結像光学系と前記第2面との間の光路中に配置され、第1凹面反射鏡を含み、前記第1中間像の像である第2中間像を形成する第2結像光学系と、
 前記第2結像光学系と前記第2面との間の光路中に配置され、第2凹面反射鏡を含み、前記第2中間像の像である第3中間像を形成する第3結像光学系と、
 前記第3結像光学系と前記第2面との間の光路中に配置され、前記第3中間像の像を第2面に形成する第4結像光学系とを備え、
 前記第2結像光学系は、最も前記第1中間像側に配置されて、前記第1中間像側に凸面を向けた正メニスカスレンズを備えていることを特徴とする投影光学系を提供する。
 第11形態では、第1面の像を第2面に形成する投影光学系において、
 前記第1面と前記第2面との間の光路中に配置され、前記第1面の第1中間像を形成する第1結像光学系と、
 前記第1結像光学系と前記第2面との間の光路中に配置され、第1凹面反射鏡を含み、前記第1中間像の像である第2中間像を形成する第2結像光学系と、
 前記第2結像光学系と前記第2面との間の光路中に配置され、第2凹面反射鏡を含み、前記第2中間像の像である第3中間像を形成する第3結像光学系と、
 前記第3結像光学系と前記第2面との間の光路中に配置され、前記第3中間像の像を第2面に形成する第4結像光学系とを備え、
 前記第2結像光学系は、最も前記第1中間像側に配置されると共に、前記第1凹面反射鏡に隣接して配置されるレンズを備えていることを特徴とする投影光学系を提供する。
 第12形態では、第1面の像を第2面に形成する投影光学系において、
 前記第1面と前記第2面との間の光路中に配置され、前記第1面の第1中間像を形成する第1結像光学系と、
 前記第1結像光学系と前記第2面との間の光路中に配置され、第1凹面反射鏡を含み、前記第1中間像の像である第2中間像を形成する第2結像光学系と、
 前記第2結像光学系と前記第2面との間の光路中に配置され、第2凹面反射鏡を含み、前記第2中間像の像である第3中間像を形成する第3結像光学系と、
 前記第3結像光学系と前記第2面との間の光路中に配置され、前記第3中間像の像を第2面に形成する第4結像光学系とを備え、
 前記第2結像光学系は、最も前記第1中間像側に配置されて、前記第1中間像側に凸面を向けた正メニスカスレンズを備えていることを特徴とする投影光学系を提供する。
 第13形態では、第1面の像を第2面に形成する投影光学系において、
 前記第1面と前記第2面との間の光路中に配置され、前記第1面の第1中間像を形成する第1結像光学系と、
 前記第1結像光学系と前記第2面との間の光路中に配置され、第1凹面反射鏡を含み、前記第1中間像の像である第2中間像を形成する第2結像光学系と、
 前記第2結像光学系と前記第2面との間の光路中に配置され、第2凹面反射鏡を含み、前記第2中間像の像である第3中間像を形成する第3結像光学系と、
 前記第3結像光学系と前記第2面との間の光路中に配置され、前記第3中間像の像を第2面に形成する第4結像光学系とを備え、
 前記第2結像光学系は、最も前記第1中間像側に配置されると共に、前記第1凹面反射鏡に隣接して配置されるレンズを備えていることを特徴とする投影光学系を提供する。
 第14形態では、第1面の像を第2面に形成する投影光学系において、
 前記第1面と前記第2面との間の光路中に配置され、前記第1面の第1中間像を形成する第1結像光学系と、
 前記第1結像光学系と前記第2面との間の光路中に配置され、第1凹面反射鏡を含み、前記第1中間像の像である第2中間像を形成する第2結像光学系と、
 前記第2結像光学系と前記第2面との間の光路中に配置され、第2凹面反射鏡を含み、前記第2中間像の像である第3中間像を形成する第3結像光学系と、
 前記第3結像光学系と前記第2面との間の光路中に配置され、前記第3中間像の像を第2面に形成する第4結像光学系と、
 前記第1結像光学系と前記第2結像光学系との間の光路中に配置された第1偏向鏡と、
 前記第3結像光学系と前記第4結像光学系との間に配置された第2偏向鏡とを備えていることを特徴とする投影光学系を提供する。
In the eighth embodiment, in the projection optical system that forms the image of the first surface on the second surface,
A first imaging optical system disposed in an optical path between the first surface and the second surface and forming a first intermediate image of the first surface;
A second imaging that is disposed in an optical path between the first imaging optical system and the second surface, includes a first concave reflecting mirror, and forms a second intermediate image that is an image of the first intermediate image. Optical system,
A third imaging that is disposed in an optical path between the second imaging optical system and the second surface, includes a second concave reflecting mirror, and forms a third intermediate image that is an image of the second intermediate image. Optical system,
A fourth imaging optical system disposed in an optical path between the third imaging optical system and the second surface, and forming an image of the third intermediate image on the second surface;
The second imaging optical system includes a plurality of positive lenses disposed in an optical path between the first intermediate image and the first concave reflecting mirror,
The third image-forming optical system includes a plurality of positive lenses arranged in an optical path between the second intermediate image and the second concave reflecting mirror. .
In the ninth embodiment, in the projection optical system that forms the image of the first surface on the second surface,
A first imaging optical system disposed in an optical path between the first surface and the second surface and forming a first intermediate image of the first surface;
A second imaging that is disposed in an optical path between the first imaging optical system and the second surface, includes a first concave reflecting mirror, and forms a second intermediate image that is an image of the first intermediate image. Optical system,
A third imaging that is disposed in an optical path between the second imaging optical system and the second surface, includes a second concave reflecting mirror, and forms a third intermediate image that is an image of the second intermediate image. Optical system,
A fourth imaging optical system disposed in an optical path between the third imaging optical system and the second surface, and forming an image of the third intermediate image on the second surface;
The fourth imaging optical system is provided with a projection optical system including a positive lens that is disposed closest to the third intermediate image and has a convex surface facing the second surface.
In a tenth aspect, in a projection optical system that forms an image of a first surface on a second surface,
A first imaging optical system disposed in an optical path between the first surface and the second surface and forming a first intermediate image of the first surface;
A second imaging that is disposed in an optical path between the first imaging optical system and the second surface, includes a first concave reflecting mirror, and forms a second intermediate image that is an image of the first intermediate image. Optical system,
A third imaging that is disposed in an optical path between the second imaging optical system and the second surface, includes a second concave reflecting mirror, and forms a third intermediate image that is an image of the second intermediate image. Optical system,
A fourth imaging optical system disposed in an optical path between the third imaging optical system and the second surface, and forming an image of the third intermediate image on the second surface;
The second imaging optical system includes a positive meniscus lens that is disposed closest to the first intermediate image side and has a convex surface facing the first intermediate image side. .
In the eleventh aspect, in the projection optical system for forming the image of the first surface on the second surface,
A first imaging optical system disposed in an optical path between the first surface and the second surface and forming a first intermediate image of the first surface;
A second imaging that is disposed in an optical path between the first imaging optical system and the second surface, includes a first concave reflecting mirror, and forms a second intermediate image that is an image of the first intermediate image. Optical system,
A third imaging that is disposed in an optical path between the second imaging optical system and the second surface, includes a second concave reflecting mirror, and forms a third intermediate image that is an image of the second intermediate image. Optical system,
A fourth imaging optical system disposed in an optical path between the third imaging optical system and the second surface, and forming an image of the third intermediate image on the second surface;
The second imaging optical system is provided with a lens that is disposed closest to the first intermediate image side and that is disposed adjacent to the first concave reflecting mirror. To do.
In a twelfth aspect, in a projection optical system that forms an image of the first surface on the second surface,
A first imaging optical system disposed in an optical path between the first surface and the second surface and forming a first intermediate image of the first surface;
A second imaging that is disposed in an optical path between the first imaging optical system and the second surface, includes a first concave reflecting mirror, and forms a second intermediate image that is an image of the first intermediate image. Optical system,
A third imaging that is disposed in an optical path between the second imaging optical system and the second surface, includes a second concave reflecting mirror, and forms a third intermediate image that is an image of the second intermediate image. Optical system,
A fourth imaging optical system disposed in an optical path between the third imaging optical system and the second surface, and forming an image of the third intermediate image on the second surface;
The second imaging optical system includes a positive meniscus lens that is disposed closest to the first intermediate image side and has a convex surface facing the first intermediate image side. .
In the thirteenth aspect, in a projection optical system that forms an image of the first surface on the second surface,
A first imaging optical system disposed in an optical path between the first surface and the second surface and forming a first intermediate image of the first surface;
A second imaging that is disposed in an optical path between the first imaging optical system and the second surface, includes a first concave reflecting mirror, and forms a second intermediate image that is an image of the first intermediate image. Optical system,
A third imaging that is disposed in an optical path between the second imaging optical system and the second surface, includes a second concave reflecting mirror, and forms a third intermediate image that is an image of the second intermediate image. Optical system,
A fourth imaging optical system disposed in an optical path between the third imaging optical system and the second surface, and forming an image of the third intermediate image on the second surface;
The second imaging optical system is provided with a lens that is disposed closest to the first intermediate image side and that is disposed adjacent to the first concave reflecting mirror. To do.
In the fourteenth aspect, in a projection optical system that forms an image of the first surface on the second surface,
A first imaging optical system disposed in an optical path between the first surface and the second surface and forming a first intermediate image of the first surface;
A second imaging that is disposed in an optical path between the first imaging optical system and the second surface, includes a first concave reflecting mirror, and forms a second intermediate image that is an image of the first intermediate image. Optical system,
A third imaging that is disposed in an optical path between the second imaging optical system and the second surface, includes a second concave reflecting mirror, and forms a third intermediate image that is an image of the second intermediate image. Optical system,
A fourth imaging optical system disposed in an optical path between the third imaging optical system and the second surface, and forming an image of the third intermediate image on the second surface;
A first deflecting mirror disposed in an optical path between the first imaging optical system and the second imaging optical system;
A projection optical system comprising a second deflecting mirror disposed between the third imaging optical system and the fourth imaging optical system is provided.
 第15形態では、第1~第7形態のうちいずれかの投影光学系の調整方法において、
 前記第1凹面反射鏡の反射面および前記第2凹面反射鏡の反射面に対して、互いに同じ関数表示にしたがう変形を付与することにより、前記投影光学系の波面収差を調整することを含むことを特徴とする調整方法を提供する。
In the fifteenth aspect, in the adjustment method of the projection optical system of any one of the first to seventh aspects,
Adjusting the wavefront aberration of the projection optical system by applying deformation according to the same function display to the reflecting surface of the first concave reflecting mirror and the reflecting surface of the second concave reflecting mirror. An adjustment method characterized by the above is provided.
 第16形態では、前記第1面に設定された所定のパターンからの光に基づいて、前記所定のパターンを前記第2面に設定された基板上に投影するための第1~第14形態のうちいずれかの投影光学系を備えていることを特徴とする露光装置を提供する。 In a sixteenth aspect, the first to fourteenth aspects for projecting the predetermined pattern onto a substrate set on the second surface based on light from the predetermined pattern set on the first surface. An exposure apparatus comprising any one of the projection optical systems is provided.
 第17形態では、前記第1面に設定された所定のパターンからの光を投影光学系に導いて前記所定のパターンを前記第2面に設定された基板上に投影することと、
 第15形態の調整方法を用いて前記投影光学系を調整することと、を含むことを特徴とする露光方法を提供する。
In a seventeenth aspect, guiding light from a predetermined pattern set on the first surface to a projection optical system and projecting the predetermined pattern onto a substrate set on the second surface;
And adjusting the projection optical system using the adjustment method according to the fifteenth aspect.
 第18形態では、第16形態の露光装置または第17形態の露光方法を用いて、前記所定のパターンを前記基板に露光することと、
 前記所定のパターンが転写された前記基板を現像し、前記所定のパターンに対応する形状のマスク層を前記基板の表面に形成することと、
 前記マスク層を介して前記基板の表面を加工することと、を含むことを特徴とするデバイス製造方法を提供する。
In an eighteenth aspect, using the exposure apparatus of the sixteenth form or the exposure method of the seventeenth form, exposing the predetermined pattern to the substrate;
Developing the substrate to which the predetermined pattern is transferred, and forming a mask layer having a shape corresponding to the predetermined pattern on the surface of the substrate;
And processing the surface of the substrate through the mask layer. A device manufacturing method is provided.
本発明の実施形態にかかる投影光学系の構成を概略的に示す図である。It is a figure which shows schematically the structure of the projection optical system concerning embodiment of this invention. 投影光学系の像面における有効結像領域を概略的に示す図である。It is a figure which shows roughly the effective image formation area in the image surface of a projection optical system. 投影光学系の物体面における有効視野領域を概略的に示す図である。It is a figure which shows roughly the effective visual field area | region in the object surface of a projection optical system. 凹面反射鏡の背面側に設けられた複数のアクチュエータを備えた能動変形部を概略的に示す図である。It is a figure which shows schematically the active deformation | transformation part provided with the some actuator provided in the back side of the concave reflecting mirror. 複数のアクチュエータの作用点の分布を概略的に示す図である。It is a figure which shows roughly distribution of the action point of a some actuator. 光学面と瞳位置との位置関係を表す指標Gの定義を説明する図である。It is a figure explaining the definition of the parameter | index G showing the positional relationship of an optical surface and a pupil position. 本実施形態にかかる投影光学系における波面収差の調整について説明する第1の図である。It is a 1st figure explaining adjustment of the wavefront aberration in the projection optical system concerning this embodiment. 本実施形態にかかる投影光学系における波面収差の調整について説明する第2の図である。It is a 2nd figure explaining adjustment of the wavefront aberration in the projection optical system concerning this embodiment. 関数FZ17にしたがう変形を付与したときの指標Gの適切な範囲を示す図である。Is a diagram showing an appropriate range of index G when the applied deformation according to the function FZ 17. 関数FZ28にしたがう変形を付与したときの指標Gの適切な範囲を示す図である。Is a diagram showing an appropriate range of index G when the applied deformation according to the function FZ 28. 本実施形態にかかる露光装置の構成を概略的に示す図である。It is a figure which shows schematically the structure of the exposure apparatus concerning this embodiment. 本実施形態の各実施例における境界レンズとウェハとの間の構成を模式的に示す図である。It is a figure which shows typically the structure between the boundary lens and wafer in each Example of this embodiment. 本実施形態の第1実施例にかかる投影光学系のレンズ構成を示す図である。It is a figure which shows the lens structure of the projection optical system concerning the 1st Example of this embodiment. (a)は第1実施例において第1凹面反射鏡CM1に関数FZ17にしたがう変形を付与したときに発生する収差成分を、(b)は第1実施例において第2凹面反射鏡CM2に第1凹面反射鏡CM1と同じ変形を付与したときに発生する収差成分を示している。(A) shows aberration components generated when the first concave reflecting mirror CM1 is deformed according to the function FZ 17 in the first embodiment, and (b) shows the second concave reflecting mirror CM2 in the first embodiment. An aberration component generated when the same deformation as that of the first concave reflecting mirror CM1 is given is shown. (a)は第1実施例において主に0次収差成分を発生させた様子を、(b)は第1実施例において主に1次収差成分を発生させた様子を示している。(A) shows a state in which the 0th-order aberration component is mainly generated in the first embodiment, and (b) shows a state in which the first-order aberration component is mainly generated in the first embodiment. 本実施形態の第2実施例にかかる投影光学系のレンズ構成を示す図である。It is a figure which shows the lens structure of the projection optical system concerning 2nd Example of this embodiment. 本実施形態の第3実施例にかかる投影光学系のレンズ構成を示す図である。It is a figure which shows the lens structure of the projection optical system concerning 3rd Example of this embodiment. 本実施形態の第4実施例にかかる投影光学系のレンズ構成を示す図である。It is a figure which shows the lens structure of the projection optical system concerning 4th Example of this embodiment. 半導体デバイスの製造工程を示すフローチャートである。It is a flowchart which shows the manufacturing process of a semiconductor device. 液晶表示素子等の液晶デバイスの製造工程を示すフローチャートである。It is a flowchart which shows the manufacturing process of liquid crystal devices, such as a liquid crystal display element.
 以下、実施形態を、添付図面に基づいて説明する。図1は、本発明の実施形態にかかる投影光学系の構成を概略的に示す図である。本実施形態では、露光装置に搭載される投影光学系の一例として、図1に示すような4つの結像光学ユニットK1,K2,K3,K4からなる4回結像型の反射屈折光学系PLを想定している。図1において、感光性基板であるウェハWの転写面(露光面)の法線方向に沿ってZ軸を、ウェハWの転写面内において図1の紙面に平行な方向にY軸を、ウェハWの転写面内において図1の紙面に垂直な方向にX軸をそれぞれ設定している。 Hereinafter, embodiments will be described with reference to the accompanying drawings. FIG. 1 is a diagram schematically showing a configuration of a projection optical system according to an embodiment of the present invention. In the present embodiment, as an example of a projection optical system mounted on the exposure apparatus, a four-fold imaging type catadioptric optical system PL comprising four imaging optical units K1, K2, K3, and K4 as shown in FIG. Is assumed. In FIG. 1, the Z-axis is along the normal direction of the transfer surface (exposure surface) of the wafer W, which is a photosensitive substrate, and the Y-axis is in the direction parallel to the paper surface of FIG. In the W transfer surface, the X axis is set in a direction perpendicular to the paper surface of FIG.
 本実施形態の投影光学系PLは、露光装置に適用された場合にマスクMのパターン面が設置される物体面(第1面)OBからウェハWの露光面が設置される像面(第2面)IMへの光の入射順に、屈折光学系としての第1結像光学ユニットK1と、光路を折り曲げる偏向鏡としての第1平面反射鏡FM1と、第1凹面反射鏡CM1を含む反射屈折光学系としての第2結像光学ユニットK2と、第2凹面反射鏡CM2を含む反射屈折光学系としての第3結像光学ユニットK3と、光路を折り曲げる偏向鏡としての第2平面反射鏡FM2と、屈折光学系としての第4結像光学ユニットK4とを備えている。本実施形態の各実施例では、第1平面反射鏡FM1と第2平面反射鏡FM2とが一体の光学部材として形成されている。なお、第1平面反射鏡FM1と第2平面反射鏡FM2とを別々の光学部材としても良い。本実施形態において、結像光学ユニットは、所定面の像を結像面に形成する結像光学系とすることができる。また、本実施形態において、結像光学ユニットは、互いに異なる所定面同士を光学的に共役な関係にする結像光学系とすることができる。また、本実施形態において、第1結像光学ユニットK1および第2結像光学ユニットK2を、物体面(第1面)OBの中間像を形成する第1結像光学部分とみなすことができ、第3結像光学ユニットK3および第4結像光学ユニットK4を、中間像の像を像面(第2面)に形成する第2結像光学部分とみなすことができる。 When applied to an exposure apparatus, the projection optical system PL of the present embodiment has an image surface (second surface) on which the exposure surface of the wafer W is installed from the object surface (first surface) OB on which the pattern surface of the mask M is installed. Surface) a catadioptric optical system including a first imaging optical unit K1 serving as a refractive optical system, a first planar reflecting mirror FM1 serving as a deflecting mirror for bending an optical path, and a first concave reflecting mirror CM1 in the order of incidence of light on IM. A second imaging optical unit K2 as a system, a third imaging optical unit K3 as a catadioptric optical system including a second concave reflecting mirror CM2, a second planar reflecting mirror FM2 as a deflecting mirror for bending the optical path, And a fourth imaging optical unit K4 as a refractive optical system. In each example of the present embodiment, the first flat reflecting mirror FM1 and the second flat reflecting mirror FM2 are formed as an integrated optical member. Note that the first planar reflecting mirror FM1 and the second planar reflecting mirror FM2 may be separate optical members. In the present embodiment, the imaging optical unit can be an imaging optical system that forms an image of a predetermined surface on the imaging surface. In the present embodiment, the imaging optical unit can be an imaging optical system in which different predetermined surfaces are in an optically conjugate relationship. In the present embodiment, the first imaging optical unit K1 and the second imaging optical unit K2 can be regarded as a first imaging optical part that forms an intermediate image of the object plane (first surface) OB. The third imaging optical unit K3 and the fourth imaging optical unit K4 can be regarded as a second imaging optical portion that forms an intermediate image on the image plane (second surface).
 この場合、図2に示すように、投影光学系PLの像面IMにおける有効結像領域ERは、投影光学系PLの光軸AXから離れた領域になる。具体的に、有効結像領域ERは、光軸AXを中心とした半径RbのイメージフィールドIF内において、光軸AXからY方向に沿って距離Raだけ離れた矩形状の領域、すなわちX方向に沿って長辺(寸法LX)を有し且つY方向に沿って短辺(寸法LY)を有する長方形状の領域である。したがって、図3に示すように、投影光学系PLの物体面OBにおける有効視野領域FRは、投影光学系PLの光軸AXからY方向に離れた矩形状の領域になる。なお、有効結像領域ERは、投影光学系PLの像面IMにおいて物体面OBからの光が導かれる領域であって且つ収差が実質的に補正されている領域としても良い。また、有効結像領域ERは、投影光学系PLの像面IMにおいて物体面OBからの光が導かれる領域であっても良い。 In this case, as shown in FIG. 2, the effective imaging region ER on the image plane IM of the projection optical system PL is a region away from the optical axis AX of the projection optical system PL. Specifically, the effective imaging region ER is a rectangular region separated from the optical axis AX by a distance Ra along the Y direction in the image field IF having a radius Rb centered on the optical axis AX, that is, in the X direction. A rectangular region having a long side (dimension LX) along the Y direction and a short side (dimension LY) along the Y direction. Therefore, as shown in FIG. 3, the effective field area FR on the object plane OB of the projection optical system PL is a rectangular area separated from the optical axis AX of the projection optical system PL in the Y direction. The effective imaging region ER may be a region where light from the object plane OB is guided on the image plane IM of the projection optical system PL and the aberration is substantially corrected. The effective imaging region ER may be a region where light from the object plane OB is guided on the image plane IM of the projection optical system PL.
 本実施形態では、第1凹面反射鏡CM1の反射面および第2凹面反射鏡CM2の反射面が変形可能に構成され、第1能動変形部が第1凹面反射鏡CM1の反射面を能動的に変形させ、第2能動変形部が第2凹面反射鏡CM2の反射面を能動的に変形させる。一例として、図4に示すように、凹面反射鏡CM1(CM2)の背面側に設けられた複数のアクチュエータACを備えた能動変形部ADを用いることができる。複数のアクチュエータACは、例えば図5に示すように、それらの作用点ACaが放射状に分布するように配置される。また、複数のアクチュエータACを、それらの作用点ACaが2次元マトリクス状に分布するように配置しても良い。 In the present embodiment, the reflecting surface of the first concave reflecting mirror CM1 and the reflecting surface of the second concave reflecting mirror CM2 are configured to be deformable, and the first active deforming portion actively activates the reflecting surface of the first concave reflecting mirror CM1. The second active deformation portion actively deforms the reflecting surface of the second concave reflecting mirror CM2. As an example, as shown in FIG. 4, an active deformation portion AD including a plurality of actuators AC provided on the back side of the concave reflecting mirror CM1 (CM2) can be used. As shown in FIG. 5, for example, the plurality of actuators AC are arranged such that their action points ACa are distributed radially. A plurality of actuators AC may be arranged such that their action points ACa are distributed in a two-dimensional matrix.
 能動変形部ADは、複数のアクチュエータACが凹面反射鏡CM1(CM2)の反射面CM1a(CM2a)を背面側から押し引きすることにより、反射面CM1a(CM2a)を所望の面形状に変形させる。能動変形部ADの具体的な構成および作用については、米国特許第6,842,277号公報を参照することができる。能動変形部ADにおける複数のアクチュエータACの作用点ACaの配置については、米国特許第6,842,277号公報を参照することができる。また、能動変形部として、米国特許第5,115,351号、第6,398,373号、第6,411,426号、第6,803,994号、第6,880,942号や米国特許公開第2010/0033704A1号などに開示される変形機構を用いることもできる。また、凹面反射鏡CM1(CM2)の少なくとも一方の反射面CM1a(CM2a)が変形可能であっても良い。 The active deformation unit AD deforms the reflecting surface CM1a (CM2a) into a desired surface shape by a plurality of actuators AC pushing and pulling the reflecting surface CM1a (CM2a) of the concave reflecting mirror CM1 (CM2) from the back side. US Pat. No. 6,842,277 can be referred to for a specific configuration and action of the active deformation portion AD. For the arrangement of the action points ACa of the plurality of actuators AC in the active deformation portion AD, reference can be made to US Pat. No. 6,842,277. Moreover, as an active deformation part, U.S. Pat. Nos. 5,115,351, 6,398,373, 6,411,426, 6,803,994, 6,880,942, and U.S. Pat. A deformation mechanism disclosed in Japanese Patent Publication No. 2010 / 0033704A1 can also be used. Further, at least one of the reflecting surfaces CM1a (CM2a) of the concave reflecting mirror CM1 (CM2) may be deformable.
 本実施形態の第1実施例では、後述するように、第1凹面反射鏡CM1は、第2結像光学ユニットK2の光路中において物体面OBの位置と光学的にフーリエ変換の関係にある第1瞳位置に対して像面IM側に配置されている。また、第2凹面反射鏡CM2は、第3結像光学ユニットK3の光路中において物体面OBの位置と光学的にフーリエ変換の関係にある第2瞳位置に対して物体面OB側に配置されている。 In the first example of the present embodiment, as will be described later, the first concave reflecting mirror CM1 is optically Fourier-transformed with the position of the object plane OB in the optical path of the second imaging optical unit K2. It is arranged on the image plane IM side with respect to one pupil position. The second concave reflecting mirror CM2 is disposed on the object plane OB side with respect to the second pupil position that is optically Fourier-transformed with the position of the object plane OB in the optical path of the third imaging optical unit K3. ing.
 第2実施例では、第1凹面反射鏡CM1は第1瞳位置に対して物体面OB側に配置され、第2凹面反射鏡CM2は第2瞳位置に対して像面IM側に配置されている。第3実施例では、第1凹面反射鏡CM1は第1瞳位置に対して像面IM側に配置され、第2凹面反射鏡CM2は第2瞳位置とほぼ一致する位置に配置されている。第4実施例では、第1凹面反射鏡CM1は第1瞳位置とほぼ一致する位置に配置され、第2凹面反射鏡CM2は第2瞳位置とほぼ一致する位置に配置されている。
 なお、本実施形態および実施例において、瞳位置は、物体面OBの位置または像面IMの位置と光学的にフーリエ変換の関係にある位置とすることができる。
 また、本実施形態および実施例において、瞳位置は、投影光学系とみなすことができる反射屈折光学系PLの入射瞳と光学的に共役な位置および反射屈折光学系PLの射出瞳と光学的に共役な位置のうちの少なくとも一方の位置とすることができる。
In the second embodiment, the first concave reflecting mirror CM1 is disposed on the object plane OB side with respect to the first pupil position, and the second concave reflecting mirror CM2 is disposed on the image plane IM side with respect to the second pupil position. Yes. In the third embodiment, the first concave reflecting mirror CM1 is arranged on the image plane IM side with respect to the first pupil position, and the second concave reflecting mirror CM2 is arranged at a position substantially coincident with the second pupil position. In the fourth embodiment, the first concave reflecting mirror CM1 is arranged at a position substantially coincident with the first pupil position, and the second concave reflecting mirror CM2 is arranged at a position almost coincident with the second pupil position.
In the present embodiment and examples, the pupil position can be a position that is optically Fourier-transformed with the position of the object plane OB or the position of the image plane IM.
In the present embodiment and examples, the pupil position is optically conjugate with the entrance pupil of the catadioptric optical system PL that can be regarded as a projection optical system and the exit pupil of the catadioptric optical system PL. It can be at least one of the conjugate positions.
 本実施形態では、任意の光学面(例えば凹面反射鏡CM1,CM2の反射面CM1a,CM2a)と当該任意の光学面に最も近い瞳位置との位置関係を表す指標Gを定義している。具体的に、指標Gは次の式(a)により定義される。
G=A/Re    (a)
In the present embodiment, an index G representing the positional relationship between an arbitrary optical surface (for example, the reflecting surfaces CM1a and CM2a of the concave reflecting mirrors CM1 and CM2) and the pupil position closest to the arbitrary optical surface is defined. Specifically, the index G is defined by the following equation (a).
G = A / Re (a)
 式(a)において、Reは、図6に示すように、物体面OBにおける有効視野領域FR内の各点からの光束が任意の光学面に達したときにその任意の光学面において占めるパーシャルスポットの集合に外接する円PGの半径である。ここで、パーシャルスポットとは、最大開口数に対応する開き角で有効視野領域FR内の各点から射出される光束が任意の光学面に達したときにその任意の光学面において占める領域を意味している。 In Expression (a), Re is a partial spot occupied by an arbitrary optical surface when the light beam from each point in the effective field area FR on the object plane OB reaches the arbitrary optical surface as shown in FIG. The radius of the circle PG circumscribing the set of Here, the partial spot means a region occupied by an arbitrary optical surface when a light beam emitted from each point in the effective visual field region FR reaches an arbitrary optical surface with an opening angle corresponding to the maximum numerical aperture. is doing.
 Aは、図6に示すように、有効視野領域FRの中心点FRa(図3を参照)からの光束が任意の光学面に達したときにその任意の光学面において占めるパーシャルスポットPSaに外接する四角形であって有効視野領域FRの一辺に対応する方向に一辺を有する長方形RCaの中心位置RCacと、有効視野領域FR内の最大物体高の点FRb(図3を参照)からの光束が任意の光学面に達したときにその任意の光学面において占めるパーシャルスポットPSbに外接する四角形であって有効視野領域FRの一辺に対応する方向に一辺を有する長方形RCbの中心位置RCbcとの任意の光学面における距離である。なお、有効視野領域FRの中心点FRaは、当該有効視野領域FRの重心とすることができる。 As shown in FIG. 6, A circumscribes a partial spot PSa occupied by an arbitrary optical surface when a light beam from the center point FRa (see FIG. 3) of the effective visual field region FR reaches the arbitrary optical surface. A light beam from a center position RCac of a rectangle RCa that is rectangular and has one side in a direction corresponding to one side of the effective visual field region FR, and a point FRb (see FIG. 3) of the maximum object height in the effective visual field region FR Arbitrary optical surface with the center position RCbc of a rectangle RCb that is a rectangle circumscribing the partial spot PSb that occupies the arbitrary optical surface when it reaches the optical surface and has one side in a direction corresponding to one side of the effective visual field region FR The distance at. The center point FRa of the effective visual field region FR can be the center of gravity of the effective visual field region FR.
 したがって、第1凹面反射鏡CM1の反射面CM1aに関する指標G1、すなわち反射面CM1aと第2結像光学ユニットK2の光路中の第1瞳位置との位置関係を表す指標G1が0であれば反射面CM1aが第1瞳位置にあり、指標G1が大きくなるにつれて第1瞳位置からの反射面CM1aの距離が大きくなる。同様に、第2凹面反射鏡CM2の反射面CM2aに関する指標G2、すなわち反射面CM2aと第3結像光学ユニットK3の光路中の第2瞳位置との位置関係を表す指標G2が0であれば反射面CM2aが第2瞳位置にあり、指標G2が大きくなるにつれて第2瞳位置からの反射面CM2aの距離が大きくなる。 Therefore, if the index G1 related to the reflecting surface CM1a of the first concave reflecting mirror CM1, that is, the index G1 indicating the positional relationship between the reflecting surface CM1a and the first pupil position in the optical path of the second imaging optical unit K2 is 0, reflection is performed. The surface CM1a is at the first pupil position, and the distance of the reflection surface CM1a from the first pupil position increases as the index G1 increases. Similarly, if the index G2 related to the reflecting surface CM2a of the second concave reflecting mirror CM2, that is, the index G2 representing the positional relationship between the reflecting surface CM2a and the second pupil position in the optical path of the third imaging optical unit K3 is 0. The reflection surface CM2a is at the second pupil position, and the distance of the reflection surface CM2a from the second pupil position increases as the index G2 increases.
 次に、図7を参照して、本実施形態にかかる投影光学系PLにおける波面収差の調整について説明する。図7に示す結像光学系は、本実施形態にかかる投影光学系を単純な結像光学系に模した(モデル化した)ものである。以下、説明を簡単にするために、図7のモデル化された結像光学系における波面収差の調整について説明する。
 図7に示すモデル化された結像光学系は、物体面OBと像面IMとを光学的に共役にする1回結像型の屈折光学系であって、その瞳位置PPの物体面OB側には光学面の補正機構MD1が配置され、瞳位置PPの像面IM側には光学面の補正機構MD2が配置されている。補正機構MD1,MD2の作用は、本実施形態の投影光学系PLにおいて反射面CM1a,CM2aに変形が付与されたときの凹面反射鏡CM1,CM2の作用に対応している。言い換えると、補正機構MD1,MD2は、それぞれの光学面を通過する光束に所与の波面収差成分を与える作用を有している。
Next, adjustment of wavefront aberration in the projection optical system PL according to the present embodiment will be described with reference to FIG. The imaging optical system shown in FIG. 7 is similar to (modeled) the projection optical system according to the present embodiment as a simple imaging optical system. For the sake of simplicity, the adjustment of wavefront aberration in the modeled imaging optical system shown in FIG. 7 will be described below.
The modeled imaging optical system shown in FIG. 7 is a one-time imaging type refractive optical system that optically conjugates the object plane OB and the image plane IM, and the object plane OB at the pupil position PP. An optical surface correction mechanism MD1 is arranged on the side, and an optical surface correction mechanism MD2 is arranged on the image plane IM side of the pupil position PP. The operations of the correction mechanisms MD1 and MD2 correspond to the operations of the concave reflecting mirrors CM1 and CM2 when the reflecting surfaces CM1a and CM2a are deformed in the projection optical system PL of the present embodiment. In other words, the correction mechanisms MD1 and MD2 have a function of giving a given wavefront aberration component to the light beams passing through the respective optical surfaces.
 本実施形態では、第1凹面反射鏡CM1の反射面CM1aおよび第2凹面反射鏡CM2の反射面CM2aに対して、互いに同じ関数表示にしたがう変形を付与する。以下、一例として、極座標系を用いるツェルニケ(Zernike)多項式における第17項にかかる関数FZ17:ρcos4θにしたがう変形を付与する場合について考える。ここで、ρは反射面CM1a,CM2aの円形状の有効反射領域の半径を1に規格化したときの規格化半怪であり、θは極座標の動径角である。 In the present embodiment, deformations according to the same function display are applied to the reflecting surface CM1a of the first concave reflecting mirror CM1 and the reflecting surface CM2a of the second concave reflecting mirror CM2. Hereinafter, as an example, a case will be considered in which a deformation according to the function FZ 17 : ρ 4 cos4θ according to the seventeenth term in a Zernike polynomial using a polar coordinate system is given. Here, ρ is a normalized half-range when the radius of the circular effective reflection region of the reflection surfaces CM1a and CM2a is normalized to 1, and θ is a radial angle of polar coordinates.
 まず、一方の補正機構MD1の作用について考察する。補正機構MD1の作用は、反射面CM1aに関数FZ17にしたがう変形を付与したときの凹面反射鏡CM1の作用に対応している。この場合、有効結像領域ERの中心位置ERa(図2を参照)に関する波面収差として、関数FZ17にしたがって表示される4回回転対称の収差成分Z17が発生する。これは、有効結像領域ERの中心位置ERaに達する光束が補正機構MD1を通過する際に、光軸を中心とする領域を通過することから容易に理解することができる。 First, the operation of one correction mechanism MD1 will be considered. The action of the correction mechanism MD1 corresponds to the action of the concave reflecting mirror CM1 when the deformation according to the function FZ 17 is given to the reflecting surface CM1a. In this case, as the wavefront aberration related to the center position of the effective image forming region ER ERa (see Figure 2), aberration components Z17 of 4 rotational symmetry that are displayed according to the function FZ 17 is generated. This can be easily understood from the fact that when the light beam reaching the center position ERa of the effective imaging region ER passes through the correction mechanism MD1, it passes through the region centered on the optical axis.
 補正機構MD1の作用により、有効結像領域ERの中心位置ERaから+X方向に沿った第1周辺位置ERb(図2を参照)に関する波面収差として、図8に示すように、関数FZ17にしたがって表示される4回回転対称の収差成分Z17と、第10項にかかる関数FZ10:ρcos3θにしたがって表示される3回回転対称の収差成分Z10(+)とが発生する。これは、有効結像領域ERの第1周辺位置ERbに達する光束が補正機構MD1を通過する際に、光軸から-X方向に偏心した領域を通過するからである。 By the action of the correcting mechanism MD1, as the wavefront aberration related to the first peripheral position ERb along from the central position ERa effective image forming region ER in the + X direction (see FIG. 2), as shown in FIG. 8, according to the function FZ 17 The displayed four-fold rotationally symmetric aberration component Z17 and the three-fold rotationally symmetric aberration component Z10 (+) displayed according to the function FZ 10 : ρ 3 cos3θ according to the tenth term are generated. This is because when the light beam reaching the first peripheral position ERb of the effective imaging region ER passes through the correction mechanism MD1, it passes through a region decentered in the −X direction from the optical axis.
 補正機構MD1の作用により、有効結像領域ERの中心位置ERaから-X方向に沿った第2周辺位置ERc(図2を参照)に関する波面収差として、図8に示すように、関数FZ17にしたがって表示される4回回転対称の収差成分Z17と、第10項にかかる関数FZ10にしたがって表示される3回回転対称の収差成分Z10(-)とが発生する。これは、有効結像領域ERの第2周辺位置ERcに達する光束が補正機構MD1を通過する際に、光軸から+X方向に偏心した領域を通過するからである。 By the action of the correcting mechanism MD1, as the wavefront aberration related to the second peripheral position ERc along the -X direction from the center position ERa effective image forming region ER (see FIG. 2), as shown in FIG. 8, the function FZ 17 Therefore the aberration component Z17 of 4 rotational symmetry displayed, aberration components of 3-fold rotational symmetry, which is displayed according to the function FZ 10 according to Section 10 Z10 (-) and is generated. This is because when the light beam reaching the second peripheral position ERc of the effective imaging region ER passes through the correction mechanism MD1, it passes through a region decentered in the + X direction from the optical axis.
 ここで、収差成分Z17を表す関数FZ17の係数の符号は有効結像領域ERにおけるX方向位置に依存することなく同じであり、その係数の大きさは有効結像領域ERにおけるX方向位置に依存することなくほぼ一定である。一方、収差成分Z10を表す関数FZ10の係数の符号は第1周辺位置ERbと第2周辺位置ERcとで逆であり、その係数の大きさは有効結像領域ERにおけるX方向位置に依存することなくほぼ一定である。 Here, the sign of the coefficient of the function FZ 17 representing the aberration component Z17 is the same without depending on the position in the X direction in the effective image formation region ER, and the magnitude of the coefficient is the position in the X direction in the effective image formation region ER. It is almost constant without dependence. On the other hand, the sign of the coefficient of the function FZ 10 representing the aberration component Z10 is opposite between the first peripheral position ERb and the second peripheral position ERc, and the magnitude of the coefficient depends on the position in the X direction in the effective imaging region ER. It is almost constant without.
 一対の補正機構MD1とMD2との協働作用を理解するために、最も単純な例として、図7に示す結像光学系が瞳位置PPに関して対称的に構成され、且つ補正機構MD1とMD2とが瞳位置PPに関して対称に配置されているものとする。さらに、補正機構MD1,MD2の作用は、互いに同じ面形状を有する反射面CM1a,CM2aに関数FZ17にしたがう変形を互いに同じ量だけ付与されたときの凹面反射鏡CM1,CM2の作用に対応しているものとする。 In order to understand the cooperative action of the pair of correction mechanisms MD1 and MD2, as a simplest example, the imaging optical system shown in FIG. 7 is configured symmetrically with respect to the pupil position PP, and the correction mechanisms MD1 and MD2 Are arranged symmetrically with respect to the pupil position PP. Furthermore, the effect of the correction mechanism MD1, MD2, the reflective surface CM 1, corresponds to the action of the concave reflecting mirror CM1, CM2 when only each other the same amount deformation according to the function FZ 17 granted to CM2a having the same surface shape as each other It shall be.
 この場合、上述したように、有効結像領域ERの中心位置ERaを通りX方向に延びる直線上の各点について補正機構MD1の作用により発生する波面収差として、関数FZ17にしたがって表示される4回回転対称の収差成分Z17と、関数FZ10にしたがって表示される3回回転対称の収差成分Z10(1)とが発生する。同様に、有効結像領域ERの中心位置ERaを通りX方向に延びる直線上の各点について補正機構MD2の作用により発生する波面収差として、関数FZ17にしたがって表示される4回回転対称の収差成分Z17と、関数FZ10にしたがって表示される3回回転対称の収差成分Z10(2)とが発生する。 In this case, as described above, the wavefront aberration generated by the action of the correction mechanism MD1 at each point on the straight line extending in the X direction through the center position ERa of the effective imaging region ER is displayed according to the function FZ 17 4. the aberration component Z17 times rotational symmetry, aberration components Z10 (1) of the 3-fold rotational symmetry, which is displayed according to the function FZ 10 and is generated. Similarly, as the wavefront aberration produced by the action of the correcting mechanism MD2 for each point on a straight line extending as X-direction central position ERa effective image forming region ER, the aberration of the 4-fold rotational symmetry, which is displayed according to the function FZ 17 a component Z17, aberration component Z10 (2) of the 3-fold rotational symmetry, which is displayed according to the function FZ 10 and is generated.
 補正機構MD1とMD2とが瞳位置PPに関して対称に配置され、且つ補正機構MD1,MD2の作用が互いに同じ量の変形が付与されたときの凹面反射鏡CM1,CM2の作用に対応している場合、収差成分Z17を表す関数FZ17の係数の符号および大きさは補正機構MD1とMD2とで互いに同じであり、収差成分Z10を表す関数FZ10の係数の符号および大きさは補正機構MD1とMD2とで反転する。収差成分Z10を表す関数FZ10の係数の符号および大きさが補正機構MD1とMD2とで反転することは、有効結像領域ERの1点に達する光束が補正機構MD1を通過する領域と補正機構MD2を通過する領域とが光軸に関して互いに反対側に偏心していることから容易に理解することができる。 When correction mechanisms MD1 and MD2 are arranged symmetrically with respect to pupil position PP, and the actions of correction mechanisms MD1 and MD2 correspond to the actions of concave reflecting mirrors CM1 and CM2 when the same amount of deformation is applied to each other , sign and magnitude of the coefficients of the function FZ 17 representing the aberration component Z17 is the same to each other in the correction mechanism MD1 and MD2, sign and magnitude of the coefficients of the function FZ 10 representing the aberration component Z10 is a correction mechanism MD1 MD2 And reverse. The sign and magnitude of the coefficients of the function FZ 10 representing the aberration component Z10 is inverted by the correction mechanism MD1 and MD2, the region where the light flux reaching the point of the effective imaging region ER passes the correction mechanism MD1 and correction mechanism It can be easily understood from the fact that the region passing through MD2 is eccentric to the opposite side with respect to the optical axis.
 したがって、補正機構MD1とMD2とが瞳位置PPに関して対称に配置され、且つ補正機構MD1,MD2の作用が符合および大きさの同じ変形を付与したときの凹面反射鏡CM1,CM2の作用に対応している場合、補正機構MD1とMD2との協働作用により収差成分Z10は相殺され、倍化された収差成分Z17だけが波面収差として発生する。換言すると、補正機構MD1とMD2との協働作用により、像面IMにおける有効結像領域ER内のX方向に沿った各点について一様な収差成分である0次収差成分を発生させること、ひいては波面収差の0次収差成分を調整することができる。 Accordingly, the correction mechanisms MD1 and MD2 are arranged symmetrically with respect to the pupil position PP, and the action of the correction mechanisms MD1 and MD2 corresponds to the action of the concave reflecting mirrors CM1 and CM2 when the same sign and size are applied. In this case, the aberration component Z10 is canceled by the cooperative action of the correction mechanisms MD1 and MD2, and only the doubled aberration component Z17 is generated as a wavefront aberration. In other words, by the cooperative action of the correction mechanisms MD1 and MD2, generating a zero-order aberration component that is a uniform aberration component for each point along the X direction in the effective imaging region ER on the image plane IM; As a result, the zero-order aberration component of the wavefront aberration can be adjusted.
 一方、補正機構MD1とMD2とが瞳位置PPに関して対称に配置され、且つ補正機構MD1,MD2の作用が、符合が異なり且つ大きさの同じ変形を付与したときの凹面反射鏡CM1,CM2の作用に対応している場合、補正機構MD1とMD2との協働作用により収差成分Z17は相殺され、倍化された収差成分Z17だけが波面収差として発生する。これは、付与される変形の符号が反転すると、収差成分Z17およびZ10も反転するからである。換言すると、補正機構MD1とMD2との協働作用により、有効結像領域ER内のX方向に沿った各点について線形的に変化する収差成分である1次収差成分を発生させること、ひいては波面収差の1次収差成分を調整することができる。 On the other hand, the correction mechanisms MD1 and MD2 are arranged symmetrically with respect to the pupil position PP, and the actions of the concave reflecting mirrors CM1 and CM2 when the actions of the correction mechanisms MD1 and MD2 are given different deformations and the same size. , The aberration component Z17 is canceled by the cooperative action of the correction mechanisms MD1 and MD2, and only the doubled aberration component Z17 is generated as a wavefront aberration. This is because the aberration components Z17 and Z10 are also reversed when the sign of the applied deformation is reversed. In other words, by the cooperative action of the correction mechanisms MD1 and MD2, a primary aberration component that is an aberration component that linearly changes for each point along the X direction in the effective imaging region ER is generated, and thus the wavefront. The primary aberration component of the aberration can be adjusted.
 このことは、補正機構MD1とMD2とが瞳位置PPに関して対称に配置されていなくても瞳位置PPを挟んで配置されていれば、補正機構MD1およびMD2に付与する変形を表現する関数FZ17の係数の符号および大きさを適宜設定すれば(あるいは変化させれば)、有効結像領域ER内のX方向に沿った各点について0次収差成分および1次収差成分を独立的に発生させること、ひいては波面収差の0次収差成分および1次収差成分を独立的に調整することができることを意味する。 This means that if the correction mechanisms MD1 and MD2 are not arranged symmetrically with respect to the pupil position PP, the function FZ 17 expressing the deformation to be applied to the correction mechanisms MD1 and MD2 if the correction mechanisms MD1 and MD2 are arranged across the pupil position PP. If the sign and the magnitude of the coefficient are appropriately set (or changed), the zero-order aberration component and the first-order aberration component are independently generated for each point along the X direction in the effective imaging region ER. This means that the zero-order aberration component and the first-order aberration component of the wavefront aberration can be adjusted independently.
 また、補正機構MD1が瞳位置PPから所要距離だけ離れて配置され且つ補正機構MD2が瞳位置PPの位置に配置されている場合、補正機構MD1の作用により収差成分Z17と収差成分Z10とが発生し、補正機構MD2の作用により収差成分Z17だけが発生することになる。このことは、一方の補正機構が瞳位置PPから所要距離だけ離れて配置され且つ他方の補正機構が瞳位置PPの位置またはその近傍に配置されている場合、補正機構MD1およびMD2に付与する変形を表現する関数FZ17の係数の符号および大きさを適宜設定して(あるいは変化させて)、有効結像領域ER内のX方向に沿った各点について0次収差成分および1次収差成分をある程度独立的に発生させること、ひいては波面収差の0次収差成分および1次収差成分をある程度独立的に調整することができることを意味する。 Further, when the correction mechanism MD1 is arranged at a required distance from the pupil position PP and the correction mechanism MD2 is arranged at the position of the pupil position PP, the aberration component Z17 and the aberration component Z10 are generated by the action of the correction mechanism MD1. Only the aberration component Z17 is generated by the action of the correction mechanism MD2. This is because when one of the correction mechanisms is arranged at a required distance from the pupil position PP and the other correction mechanism is arranged at or near the pupil position PP, the deformation applied to the correction mechanisms MD1 and MD2. The coefficient sign and the magnitude of the function FZ 17 expressing the value are appropriately set (or changed), and the zero-order aberration component and the first-order aberration component for each point along the X direction in the effective imaging region ER are set. This means that it is generated to some extent independently, and that the 0th-order aberration component and the first-order aberration component of the wavefront aberration can be independently adjusted to some extent.
 また、補正機構MD1およびMD2がともに瞳位置PPの位置またはその近傍に配置されている場合、補正機構MD1の作用により収差成分Z17だけが発生し、補正機構MD2の作用により収差成分Z17だけが発生することになる。このことは、双方の補正機構が瞳位置PPの位置またはその近傍に配置されている場合、補正機構MD1およびMD2に付与する変形を表現する関数FZ17の係数の符号および大きさを適宜設定して(あるいは変化させて)、有効結像領域ER内のX方向に沿った各点について所要量の0次収差成分だけを発生させること、ひいては波面収差の0次収差成分だけを調整することができることを意味する。 When both the correction mechanisms MD1 and MD2 are arranged at or near the pupil position PP, only the aberration component Z17 is generated by the action of the correction mechanism MD1, and only the aberration component Z17 is generated by the action of the correction mechanism MD2. Will do. This means that when both correction mechanisms are arranged at or near the pupil position PP, the sign and size of the coefficient of the function FZ 17 expressing the deformation to be applied to the correction mechanisms MD1 and MD2 are set appropriately. (Or changing) to generate only a required amount of the zero-order aberration component for each point along the X direction in the effective imaging region ER, and to adjust only the zero-order aberration component of the wavefront aberration. Means you can.
 以上の考察に基づき、本実施形態の第1実施例および第2実施例では、第1凹面反射鏡CM1の反射面CM1aに関する指標G1および第2凹面反射鏡CM2の反射面CM2aに関する指標G2が次の条件式(1)および(2)を満足するように、第1凹面反射鏡CM1が第2結像光学ユニットK2の光路中の瞳位置(第1瞳位置)から像面IM側(または物体面OB側)の位置に配置され、第2凹面反射鏡CM2が第3結像光学ユニットK3の光路中の瞳位置(第2瞳位置)から物体面OB側(または)像面IM側の位置に配置されている。
0.02<G1<0.07   (1)
0.02<G2<0.07   (2)
Based on the above consideration, in the first and second examples of the present embodiment, the index G1 related to the reflecting surface CM1a of the first concave reflecting mirror CM1 and the index G2 related to the reflecting surface CM2a of the second concave reflecting mirror CM2 are the following. The first concave reflecting mirror CM1 from the pupil position (first pupil position) in the optical path of the second imaging optical unit K2 to the image plane IM side (or object) so that the conditional expressions (1) and (2) are satisfied The second concave reflecting mirror CM2 is disposed at a position on the surface OB side, and the position on the object plane OB side (or image plane IM side) from the pupil position (second pupil position) in the optical path of the third imaging optical unit K3. Is arranged.
0.02 <G1 <0.07 (1)
0.02 <G2 <0.07 (2)
 この構成では、図7において補正機構MD1とMD2とが瞳位置PPを挟んで配置されている場合と同様に、第1凹面反射鏡CM1の反射面CM1aおよび第2凹面反射鏡CM2の反射面CM2aに付与する変形を表現する関数FZ17の係数の符号および大きさを適宜設定する(あるいは変化させる)ことにより、有効結像領域ER内のX方向に沿った各点について0次収差成分および1次収差成分を独立的に発生させ、ひいては投影光学系PLの波面収差の0次収差成分および1次収差成分を独立的に調整することができる。 In this configuration, as in the case where the correction mechanisms MD1 and MD2 are arranged with the pupil position PP interposed therebetween in FIG. 7, the reflecting surface CM1a of the first concave reflecting mirror CM1 and the reflecting surface CM2a of the second concave reflecting mirror CM2 are arranged. By appropriately setting (or changing) the sign and size of the coefficient of the function FZ 17 expressing the deformation to be applied to the zero-order aberration component and 1 for each point along the X direction in the effective imaging region ER. The second-order aberration component can be generated independently, and the zero-order aberration component and the first-order aberration component of the wavefront aberration of the projection optical system PL can be adjusted independently.
 条件式(1),(2)の下限値を下回ると、凹面反射鏡CM1,CM2が瞳位置に近すぎて、収差成分Z10の発生が小さくなり、ひいては投影光学系PLの波面収差の1次収差成分の調整が困難になる。条件式(1),(2)の上限値を上回ると、凹面反射鏡CM1,CM2が瞳位置から離れ過ぎて、収差成分Z17の発生が小さくなるだけでなく、制御することのできない不要な収差成分の発生が大きくなってしまう。実施形態の効果をさらに良好に発揮するために、条件式(1)および(2)の下限値を0.03に設定することができる。また、実施形態の効果をさらに良好に発揮するために、条件式(1)および(2)の上限値を0.05に設定することができる。 If the lower limit value of the conditional expressions (1) and (2) is not reached, the concave reflecting mirrors CM1 and CM2 are too close to the pupil position, so that the generation of the aberration component Z10 is reduced, and consequently the first-order wavefront aberration of the projection optical system PL. Adjustment of the aberration component becomes difficult. When the upper limit value of conditional expressions (1) and (2) is exceeded, the concave reflecting mirrors CM1 and CM2 are too far from the pupil position, and not only the generation of the aberration component Z17 is reduced, but also unnecessary aberrations that cannot be controlled. The generation of components will increase. In order to exhibit the effect of the embodiment more satisfactorily, the lower limit value of conditional expressions (1) and (2) can be set to 0.03. Moreover, in order to exhibit the effect of embodiment more satisfactorily, the upper limit of conditional expressions (1) and (2) can be set to 0.05.
 具体的に、第1凹面反射鏡CM1の反射面CM1a(または第2凹面反射鏡CM2の反射面CM2a)に関数FZ17にしたがう変形を付与する場合、有効結像領域ER内の周辺位置ERb,ERc(図2を参照)に関する波面収差に着目すると、反射面CM1aに関する指標G1(または反射面CM2aに関する指標G2)の変化に応じて収差成分Z05,Z10,Z17が図9に示すように発生する。図9において、横軸は指標G1(G2)の値を、縦軸は各収差成分の発生量(収差成分Z17の最大値を1に規格化したときの規格化された収差発生量)を示している。 Specifically, when the deformation according to the function FZ 17 is applied to the reflecting surface CM1a of the first concave reflecting mirror CM1 (or the reflecting surface CM2a of the second concave reflecting mirror CM2), the peripheral position ERb in the effective imaging region ER, Focusing on the wavefront aberration related to ERc (see FIG. 2), aberration components Z05, Z10, and Z17 are generated as shown in FIG. 9 in accordance with the change of the index G1 related to the reflective surface CM1a (or the index G2 related to the reflective surface CM2a). . In FIG. 9, the horizontal axis indicates the value of the index G1 (G2), and the vertical axis indicates the amount of each aberration component generated (normalized aberration generation amount when the maximum value of the aberration component Z17 is normalized to 1). ing.
 収差成分Z05は、第5項にかかる関数FZ:ρcos2θにしたがって表示される2回回転対称の収差成分であって、制御することのできない不要な収差成分すなわち発生を企図していない収差成分である。図9を参照すると、指標G1(G2)の値が0.07以上になった場合、不要な収差成分Z05の発生が大きくなることがわかる。また、指標G1(G2)の値が0.02以下になった場合、波面収差の1次収差成分の調整に必要な収差成分Z10が十分に大きく発生しなくなることがわかる。 The aberration component Z05 is a two-fold rotationally symmetric aberration component displayed according to the function FZ 5 : ρ 2 cos2θ according to the fifth term, and is an unnecessary aberration component that cannot be controlled, that is, an aberration that is not intended to be generated. It is an ingredient. Referring to FIG. 9, it can be seen that when the value of the index G1 (G2) is equal to or greater than 0.07, the generation of unnecessary aberration component Z05 increases. It can also be seen that when the value of the index G1 (G2) is 0.02 or less, the aberration component Z10 necessary for adjusting the first-order aberration component of the wavefront aberration is not sufficiently large.
 図9では、第17項にかかる関数FZ17にしたがう変形を付与する場合について説明している。しかしながら、他の適当な関数、例えば第28項にかかる関数FZ28:(6ρ-5ρ)cos4θにしたがう変形を付与する場合においても、図10に示すように指標G1(G2)の適切な範囲について同様のことが言える。すなわち、図10は、第1凹面反射鏡CM1の反射面CM1a(または第2凹面反射鏡CM2の反射面CM2a)に関数FZ28にしたがう変形を付与する場合に、指標G1(G2)の変化に応じて、有効結像領域ER内の周辺位置ERb,ERcに関する波面収差の収差成分Z10,Z12,Z17,Z26,Z28がそれぞれ発生する様子を示している。図10において、横軸は指標G1(G2)の値を、縦軸は各収差成分の発生量(収差成分Z28の最大値を1に規格化したときの規格化された収差発生量)を示している。 FIG. 9 illustrates a case where the deformation according to the function FZ 17 according to the seventeenth term is applied. However, in the case of applying a deformation according to another appropriate function, for example, the function FZ 28 : (6ρ 6 −5ρ 4 ) cos 4θ according to the 28th term, as shown in FIG. 10, the appropriate index G 1 (G 2) The same can be said about the range. That is, FIG. 10 shows a change in the index G1 (G2) when the deformation according to the function FZ 28 is applied to the reflecting surface CM1a of the first concave reflecting mirror CM1 (or the reflecting surface CM2a of the second concave reflecting mirror CM2). Correspondingly, how the aberration components Z10, Z12, Z17, Z26, and Z28 of the wavefront aberration relating to the peripheral positions ERb and ERc in the effective imaging region ER are generated is shown. 10, the horizontal axis indicates the value of the index G1 (G2), and the vertical axis indicates the generation amount of each aberration component (normalized aberration generation amount when the maximum value of the aberration component Z28 is normalized to 1). ing.
 収差成分Z12は第12項にかかる関数FZ12:(4ρ-3)ρcos2θにしたがって表示される2回回転対称の収差成分である。収差成分Z26は第26項にかかる関数FZ26:ρcos5θにしたがって表示される5回回転対称の収差成分である。収差成分Z28は第28項にかかる関数FZ28にしたがって表示される4回回転対称の収差成分である。図10を参照すると、指標G1(G2)の値が0.07以上になった場合、制御することのできない不要な収差成分Z10およびZ12の発生が大きくなることがわかる。また、指標G1(G2)の値が0.02以下になった場合、波面収差の1次収差成分の調整に必要な収差成分Z17およびZ26が十分に大きく発生しなくなることがわかる。 The aberration component Z12 is a two-fold rotationally symmetric aberration component displayed according to the function FZ 12 : (4ρ 2 −3) ρ 2 cos 2θ according to the twelfth term. The aberration component Z26 is a five-fold rotationally symmetric aberration component displayed according to the function FZ 26 : ρ 5 cos5θ according to the 26th term. Aberration component Z28 is an aberration component of 4-fold rotational symmetry, which is displayed according to the function FZ 28 according to paragraph 28. Referring to FIG. 10, it can be seen that when the value of the index G1 (G2) is 0.07 or more, generation of unnecessary aberration components Z10 and Z12 that cannot be controlled increases. It can also be seen that when the value of the index G1 (G2) is 0.02 or less, the aberration components Z17 and Z26 necessary for adjusting the first-order aberration component of the wavefront aberration are not sufficiently large.
 本実施形態の第3実施例では、第1凹面反射鏡CM1の反射面CM1aに関する指標G1および第2凹面反射鏡CM2の反射面CM2aに関する指標G2が次の条件式(1)および(3)を満足するように、第1凹面反射鏡CM1が第1瞳位置から像面IM側の位置に配置され、第2凹面反射鏡CM2が第2瞳位置とほぼ一致する位置に配置されている。
0.02<G1<0.07   (1)
0<G2<0.02   (3)
In the third example of the present embodiment, the index G1 related to the reflecting surface CM1a of the first concave reflecting mirror CM1 and the index G2 related to the reflecting surface CM2a of the second concave reflecting mirror CM2 are expressed by the following conditional expressions (1) and (3). To be satisfied, the first concave reflecting mirror CM1 is arranged at a position on the image plane IM side from the first pupil position, and the second concave reflecting mirror CM2 is arranged at a position substantially coincident with the second pupil position.
0.02 <G1 <0.07 (1)
0 <G2 <0.02 (3)
 この構成では、図7において一方の補正機構が瞳位置PPから所要距離だけ離れて配置され且つ他方の補正機構が瞳位置PPの位置またはその近傍に配置されている場合と同様に、第1凹面反射鏡CM1の反射面CM1aおよび第2凹面反射鏡CM2の反射面CM2aに付与する変形を表現する関数FZ17の係数の符号および大きさを適宜設定する(あるいは変化させる)ことにより、有効結像領域ER内のX方向に沿った各点について0次収差成分および1次収差成分をある程度独立的に発生させ、ひいては投影光学系PLの波面収差の0次収差成分および1次収差成分をある程度独立的に調整することができる。 In this configuration, in the same manner as in the case where one correction mechanism is arranged at a required distance from the pupil position PP and the other correction mechanism is arranged at or near the pupil position PP in FIG. By appropriately setting (or changing) the sign and size of the coefficient of the function FZ 17 representing the deformation applied to the reflecting surface CM1a of the reflecting mirror CM1 and the reflecting surface CM2a of the second concave reflecting mirror CM2, the effective image formation is performed. A zero-order aberration component and a first-order aberration component are independently generated to some extent for each point along the X direction in the region ER, and consequently the zero-order aberration component and the first-order aberration component of the wavefront aberration of the projection optical system PL are somewhat independent. Can be adjusted.
 なお、第3実施例では第1凹面反射鏡CM1が第1瞳位置から像面IM側の位置に配置されているが、第1凹面反射鏡CM1を第1瞳位置から物体面OB側に配置しても第3実施例と同様の効果が得られる。また、詳細な説明は省略したが、第1凹面反射鏡CM1の反射面CM1aに関する指標G1および第2凹面反射鏡CM2の反射面CM2aに関する指標G2が次の条件式(4)および(2)を満足するように、第1凹面反射鏡CM1を第1瞳位置とほぼ一致する位置に配置し、第2凹面反射鏡CM2を第2瞳位置から像面IM側(または物体面OB側)の位置に配置しても良い。この場合も、第3実施例と同様の効果が得られる。
0<G1<0.02   (4)
0.02<G2<0.07   (2)
In the third embodiment, the first concave reflecting mirror CM1 is disposed on the image plane IM side from the first pupil position. However, the first concave reflecting mirror CM1 is disposed on the object plane OB side from the first pupil position. Even in this case, the same effect as in the third embodiment can be obtained. Although detailed explanation is omitted, the index G1 related to the reflecting surface CM1a of the first concave reflecting mirror CM1 and the index G2 related to the reflecting surface CM2a of the second concave reflecting mirror CM2 are expressed by the following conditional expressions (4) and (2). In order to satisfy, the first concave reflecting mirror CM1 is arranged at a position substantially coinciding with the first pupil position, and the second concave reflecting mirror CM2 is positioned on the image plane IM side (or object plane OB side) from the second pupil position. You may arrange in. In this case, the same effect as in the third embodiment can be obtained.
0 <G1 <0.02 (4)
0.02 <G2 <0.07 (2)
 本実施形態の第4実施例では、第1凹面反射鏡CM1の反射面CM1aに関する指標G1および第2凹面反射鏡CM2の反射面CM2aに関する指標G2が次の条件式(4)および(3)を満足するように、第1凹面反射鏡CM1が第1瞳位置とほぼ一致する位置に配置され、第2凹面反射鏡CM2が第2瞳位置とほぼ一致する位置に配置されている。
0<G1<0.02   (4)
0<G2<0.02   (3)
In the fourth example of the present embodiment, the index G1 related to the reflecting surface CM1a of the first concave reflecting mirror CM1 and the index G2 related to the reflecting surface CM2a of the second concave reflecting mirror CM2 are expressed by the following conditional expressions (4) and (3). To be satisfied, the first concave reflecting mirror CM1 is disposed at a position substantially matching the first pupil position, and the second concave reflecting mirror CM2 is disposed at a position approximately matching the second pupil position.
0 <G1 <0.02 (4)
0 <G2 <0.02 (3)
 この構成では、図7において双方の補正機構がともに瞳位置PPの位置またはその近傍に配置されている場合と同様に、第1凹面反射鏡CM1の反射面CM1aおよび第2凹面反射鏡CM2の反射面CM2aに付与する変形を表現する関数FZ17の係数の符号および大きさを適宜設定する(あるいは変化させる)ことにより、有効結像領域ER内のX方向に沿った各点について所要量の0次収差成分だけを発生させ、ひいては投影光学系PLの波面収差の0次収差成分だけを調整することができる。 In this configuration, in the same manner as in the case where both the correction mechanisms in FIG. 7 are arranged at or near the pupil position PP, the reflection surfaces CM1a and CM2 of the first concave reflecting mirror CM1 are reflected. By appropriately setting (or changing) the sign and size of the coefficient of the function FZ 17 expressing the deformation to be applied to the surface CM2a, the required amount of 0 for each point along the X direction in the effective imaging region ER is set. Only the second-order aberration component can be generated, and thus only the zero-order aberration component of the wavefront aberration of the projection optical system PL can be adjusted.
 本実施形態の各実施例では、第4結像光学ユニットK4の光路中において像面IMの位置と光学的にフーリエ変換の関係にある瞳位置(開口絞りASが配置されている位置)と像面IMとの間に配置された複数の光学素子からなる部分光学系のパワーPw(単位:mm-1)が、次の条件式(5)を満足している。なお、部分光学系のパワーPwの算出に際して、瞳位置が光学素子の内部に存在する場合には、当該光学素子は部分光学系に含まれるものとする。
Pw≧0.0100   (5)
In each example of the present embodiment, the pupil position (position where the aperture stop AS is disposed) and the image that are optically Fourier-transformed with the position of the image plane IM in the optical path of the fourth imaging optical unit K4. The power Pw (unit: mm −1 ) of the partial optical system including a plurality of optical elements disposed between the surface IM satisfies the following conditional expression (5). When calculating the power Pw of the partial optical system, if the pupil position exists inside the optical element, the optical element is included in the partial optical system.
Pw ≧ 0.0100 (5)
 条件式(5)の下限値を下回ると、所要の像側開口数を確保するのに必要なレンズ径が大きくなり過ぎて、投影光学系PLが径方向に大型化してしまう。実施形態の効果をさらに良好に発揮するために、条件式(5)の下限値を0.011に設定することができる。 If the lower limit of conditional expression (5) is not reached, the lens diameter necessary to ensure the required image-side numerical aperture will be too large, and the projection optical system PL will be enlarged in the radial direction. In order to exhibit the effect of the embodiment more satisfactorily, the lower limit value of the conditional expression (5) can be set to 0.011.
 また、本実施形態の各実施例では、次の条件式(6)を満足している。条件式(6)において、Rbは像面IMにおける有効結像領域ERの最大像高(図2を参照)であり、Rmは第4結像光学ユニットK4内の最大レンズ有効半径である。
Rm/Rb≧9.0   (6)
In each example of the present embodiment, the following conditional expression (6) is satisfied. In conditional expression (6), Rb is the maximum image height (see FIG. 2) of the effective imaging region ER on the image plane IM, and Rm is the maximum lens effective radius in the fourth imaging optical unit K4.
Rm / Rb ≧ 9.0 (6)
 条件式(6)の下限値を下回ると、レンズのパワー負担が大きくなり過ぎて、投影光学系PLの設計が困難になる。実施形態の効果をさらに良好に発揮するために、条件式(6)の下限値を10.0に設定することができる。 If the lower limit value of conditional expression (6) is not reached, the lens power burden becomes too great, and the design of the projection optical system PL becomes difficult. In order to exhibit the effect of the embodiment more satisfactorily, the lower limit value of conditional expression (6) can be set to 10.0.
 図11は、本実施形態にかかる露光装置の構成を概略的に示す図である。図11においても図1の場合と同様に、感光性基板であるウェハWの転写面(露光面)の法線方向に沿ってZ軸を、ウェハWの転写面内において図11の紙面に平行な方向にY軸を、ウェハWの転写面内において図11の紙面に垂直な方向にX軸をそれぞれ設定している。 FIG. 11 is a view schematically showing a configuration of an exposure apparatus according to the present embodiment. Also in FIG. 11, as in FIG. 1, the Z-axis is parallel to the normal direction of the transfer surface (exposure surface) of the wafer W, which is a photosensitive substrate, and parallel to the paper surface of FIG. The Y-axis is set in one direction and the X-axis is set in the direction perpendicular to the paper surface of FIG.
 本実施形態の露光装置は、図11に示すように、たとえばオプティカル・インテグレータ(ホモジナイザー)、視野絞り、コンデンサレンズ等から構成される照明光学系1を備えている。露光光源であるArFエキシマレーザ光源から射出された波長193nmの紫外パルス光からなる露光光(露光ビーム)ILは、照明光学系1を通過し、マスク(レチクル)Mを照明する。マスクMには転写すべきパターンが形成されており、パターン領域全体のうちX方向に沿って長辺を有し且つY方向に沿って短辺を有する矩形状(スリット状)のパターン領域が照明される。 As shown in FIG. 11, the exposure apparatus of this embodiment includes an illumination optical system 1 including, for example, an optical integrator (homogenizer), a field stop, a condenser lens, and the like. Exposure light (exposure beam) IL made up of ultraviolet pulsed light having a wavelength of 193 nm emitted from an ArF excimer laser light source that is an exposure light source passes through the illumination optical system 1 and illuminates a mask (reticle) M. A pattern to be transferred is formed on the mask M, and a rectangular (slit-like) pattern region having a long side along the X direction and a short side along the Y direction is illuminated in the entire pattern region. Is done.
 マスクMを通過した光は、液浸型で反射屈折型の投影光学系PLを介して、フォトレジストが塗布されたウェハ(感光性基板)W上の露光領域に所定の投影倍率でマスクパターンを形成する。すなわち、マスクM上での矩形状の照明領域に光学的に対応するように、ウェハW上ではX方向に沿って長辺を有し且つY方向に沿って短辺を有する矩形状の静止露光領域(実効露光領域;有効結像領域)にパターン像が形成される。 The light that has passed through the mask M forms a mask pattern at a predetermined projection magnification on an exposure area on a wafer (photosensitive substrate) W coated with a photoresist via an immersion type catadioptric projection optical system PL. Form. That is, a rectangular still exposure having a long side along the X direction and a short side along the Y direction on the wafer W so as to optically correspond to the rectangular illumination area on the mask M. A pattern image is formed in an area (effective exposure area; effective imaging area).
 マスクMはマスクステージMST上においてXY平面に平行に保持され、マスクステージMSTにはマスクMをX方向、Y方向および回転方向に微動させる機構が組み込まれている。マスクステージMSTは、マスクステージMST上に設けられた移動鏡12mを用いるマスクレーザ干渉計13mによってX方向、Y方向および回転方向の位置がリアルタイムに計測され、且つ制御される。ウェハWは、ウェハホルダWHを介してZステージ9上においてXY平面に平行に固定されている。 The mask M is held parallel to the XY plane on the mask stage MST, and a mechanism for finely moving the mask M in the X direction, the Y direction, and the rotation direction is incorporated in the mask stage MST. In the mask stage MST, positions in the X direction, the Y direction, and the rotational direction are measured and controlled in real time by a mask laser interferometer 13m using a moving mirror 12m provided on the mask stage MST. The wafer W is fixed in parallel to the XY plane on the Z stage 9 via the wafer holder WH.
 また、Zステージ9は、投影光学系PLの像面と実質的に平行なXY平面に沿って移動するXYステージ10上に固定されており、ウェハWのフォーカス位置(Z方向の位置)および傾斜角を制御する。Zステージ9は、Zステージ9上に設けられた移動鏡12wを用いるウェハレーザ干渉計13wによってX方向、Y方向および回転方向の位置がリアルタイムに計測され、且つ制御される。また、XYステージ10は、ベース11上に載置されており、ウェハWのX方向、Y方向および回転方向を制御する。 The Z stage 9 is fixed on an XY stage 10 that moves along an XY plane substantially parallel to the image plane of the projection optical system PL, and the focus position (position in the Z direction) and tilt of the wafer W are fixed. Control the corners. The Z stage 9 is measured and controlled in real time in the X direction, the Y direction, and the rotational direction by a wafer laser interferometer 13 w using a moving mirror 12 w provided on the Z stage 9. The XY stage 10 is placed on the base 11 and controls the X direction, Y direction, and rotation direction of the wafer W.
 一方、本実施形態の露光装置に設けられた主制御系14は、マスクレーザ干渉計13mにより計測された計測値に基づいてマスクMのX方向、Y方向および回転方向の位置の調整を行う。即ち、主制御系14は、マスクステージMSTに組み込まれている機構に制御信号を送信し、マスクステージMSTを微動させることによりマスクMの位置調整を行う。また、主制御系14は、オートフォーカス方式及びオートレベリング方式によりウェハW上の表面を投影光学系PLの像面に合わせ込むため、ウェハWのフォーカス位置(Z方向の位置)および傾斜角の調整を行う。 On the other hand, the main control system 14 provided in the exposure apparatus of the present embodiment adjusts the position of the mask M in the X direction, the Y direction, and the rotation direction based on the measurement values measured by the mask laser interferometer 13m. That is, the main control system 14 adjusts the position of the mask M by transmitting a control signal to a mechanism incorporated in the mask stage MST and finely moving the mask stage MST. The main control system 14 adjusts the focus position (position in the Z direction) and the tilt angle of the wafer W in order to adjust the surface on the wafer W to the image plane of the projection optical system PL by the auto focus method and the auto leveling method. I do.
 即ち、主制御系14は、ウェハステージ駆動系15に制御信号を送信し、ウェハステージ駆動系15によりZステージ9を駆動させることによりウェハWのフォーカス位置および傾斜角の調整を行う。更に、主制御系14は、ウェハレーザ干渉計13wにより計測された計測値に基づいてウェハWのX方向、Y方向および回転方向の位置の調整を行う。即ち、主制御系14は、ウェハステージ駆動系15に制御信号を送信し、ウェハステージ駆動系15によりXYステージ10を駆動させることによりウェハWのX方向、Y方向および回転方向の位置調整を行う。 That is, the main control system 14 transmits a control signal to the wafer stage drive system 15 and drives the Z stage 9 by the wafer stage drive system 15 to adjust the focus position and tilt angle of the wafer W. Further, the main control system 14 adjusts the position of the wafer W in the X direction, the Y direction, and the rotation direction based on the measurement values measured by the wafer laser interferometer 13w. That is, the main control system 14 transmits a control signal to the wafer stage drive system 15 and drives the XY stage 10 by the wafer stage drive system 15 to adjust the position of the wafer W in the X direction, the Y direction, and the rotation direction. .
 露光時には、主制御系14は、マスクステージMSTに組み込まれている機構に制御信号を送信すると共に、ウェハステージ駆動系15に制御信号を送信し、投影光学系PLの投影倍率に応じた速度比でマスクステージMSTおよびXYステージ10を駆動させつつ、マスクMのパターン像をウェハW上の所定のショット領域内に投影露光する。その後、主制御系14は、ウェハステージ駆動系15に制御信号を送信し、ウェハステージ駆動系15によりXYステージ10を駆動させることによりウェハW上の別のショット領域を露光位置にステップ移動させる。 At the time of exposure, the main control system 14 transmits a control signal to a mechanism incorporated in the mask stage MST, and also transmits a control signal to the wafer stage drive system 15, and a speed ratio corresponding to the projection magnification of the projection optical system PL. Then, the mask stage MST and the XY stage 10 are driven to project and expose the pattern image of the mask M into a predetermined shot area on the wafer W. Thereafter, the main control system 14 transmits a control signal to the wafer stage drive system 15, and drives the XY stage 10 by the wafer stage drive system 15, thereby stepping another shot area on the wafer W to the exposure position.
 このように、ステップ・アンド・スキャン方式によりマスクMのパターン像をウェハW上に走査露光する動作を繰り返す。すなわち、本実施形態では、ウェハステージ駆動系15およびウェハレーザ干渉計13wなどを用いてマスクMおよびウェハWの位置制御を行いながら、矩形状の静止露光領域および静止照明領域の短辺方向すなわちY方向に沿ってマスクステージMSTとXYステージ10とを、ひいてはマスクMとウェハWとを同期的に移動(走査)させることにより、ウェハW上には静止露光領域の長辺LXに等しい幅を有し且つウェハWの走査量(移動量)に応じた長さを有する領域に対してマスクパターンが走査露光される。 Thus, the operation of scanning and exposing the pattern image of the mask M on the wafer W by the step-and-scan method is repeated. That is, in this embodiment, the position of the mask M and the wafer W is controlled using the wafer stage drive system 15 and the wafer laser interferometer 13w, etc., and the short side direction of the rectangular stationary exposure region and the stationary illumination region, that is, the Y direction. By moving (scanning) the mask stage MST and the XY stage 10 along with the mask M and the wafer W synchronously, the wafer W has a width equal to the long side LX of the static exposure region. In addition, the mask pattern is scanned and exposed on a region having a length corresponding to the scanning amount (movement amount) of the wafer W.
 図12は、本実施形態の各実施例における境界レンズとウェハとの間の構成を模式的に示す図である。本実施形態では、図12に示すように、境界レンズLbとウェハWとの間の光路が、露光光に対して1.5よりも大きい屈折率を有する液体Lmで満たされている。境界レンズLbは、マスクM側に凸面を向け且つウェハW側に平面を向けた正レンズである。本実施形態では、図11に示すように、給排水機構21を用いて、境界レンズLbとウェハWとの間の光路中において液体Lmを循環させている。 FIG. 12 is a diagram schematically showing a configuration between the boundary lens and the wafer in each example of the present embodiment. In the present embodiment, as shown in FIG. 12, the optical path between the boundary lens Lb and the wafer W is filled with the liquid Lm having a refractive index larger than 1.5 with respect to the exposure light. The boundary lens Lb is a positive lens having a convex surface facing the mask M and a flat surface facing the wafer W. In the present embodiment, as shown in FIG. 11, the liquid Lm is circulated in the optical path between the boundary lens Lb and the wafer W using the water supply / drainage mechanism 21.
 投影光学系PLに対してウェハWを相対移動させつつ走査露光を行うステップ・アンド・スキャン方式の露光装置において、走査露光の開始から終了まで投影光学系PLの境界レンズLbとウェハWとの間の光路中に液体Lmを満たし続けるには、たとえば米国特許出願公開第2007/242247号明細書等に開示された技術や、特開平10-303114号公報や米国特許第6,191,429号公報に開示された技術などを用いることができる。米国特許出願公開第2007/242247号明細書に開示された技術では、液体供給装置から供給管および排出ノズルを介して所定の温度に調整された液体を境界レンズLbとウェハWとの間の光路を満たすように供給し、液体供給装置により回収管および流入ノズルを介してウェハW上から液体を回収する。 In a step-and-scan type exposure apparatus that performs scanning exposure while moving the wafer W relative to the projection optical system PL, between the boundary lens Lb of the projection optical system PL and the wafer W from the start to the end of the scanning exposure. In order to continue to fill the liquid Lm in the optical path of, for example, the technology disclosed in US Patent Application Publication No. 2007/242247, etc., JP-A-10-303114, US Pat. No. 6,191,429, etc. Can be used. In the technique disclosed in US Patent Application Publication No. 2007/242247, an optical path between a boundary lens Lb and a wafer W is supplied from a liquid supply device to a liquid adjusted to a predetermined temperature via a supply pipe and a discharge nozzle. Then, the liquid is recovered from the wafer W via the recovery pipe and the inflow nozzle by the liquid supply device.
 一方、特開平10-303114号公報や米国特許第6,191,429号公報に開示された技術では、液体を収容することができるようにウェハホルダテーブルを容器状に構成し、その内底部の中央において(液体中において)ウェハWを真空吸着により位置決め保持する。また、投影光学系PLの鏡筒先端部が液体中に達し、ひいては境界レンズLbのウェハ側の光学面が液体中に達するように構成する。このように、浸液としての液体を微小流量で循環させることにより、防腐、防カビ等の効果により液体の変質を防ぐことができる。また、露光光の熱吸収による収差変動を防ぐことができる。なお、ここでは米国特許出願公開第2007/242247号、米国特許第6,191,429号公報および特開平10-303114号公報を参照として援用する。 On the other hand, in the techniques disclosed in Japanese Patent Application Laid-Open No. 10-303114 and US Pat. No. 6,191,429, the wafer holder table is configured in a container shape so that liquid can be stored, At the center (in the liquid), the wafer W is positioned and held by vacuum suction. Further, the lens barrel tip of the projection optical system PL reaches the liquid, and the optical surface on the wafer side of the boundary lens Lb reaches the liquid. In this way, by circulating the liquid as the immersion liquid at a minute flow rate, it is possible to prevent the liquid from being altered by the effects of antiseptic and mildewproofing. In addition, it is possible to prevent aberration fluctuations due to heat absorption of exposure light. Here, US Patent Application Publication No. 2007/242247, US Pat. No. 6,191,429 and Japanese Patent Laid-Open No. 10-303114 are incorporated by reference.
 本実施形態の各実施例において、非球面は、光軸に垂直な方向の高さをyとし、非球面の頂点における接平面から高さyにおける非球面上の位置までの光軸に沿った距離(サグ量)をzとし、頂点曲率半径をrとし、円錐係数をκとし、n次の非球面係数をCとしたとき、以下の数式(a)で表される。後述の表(1)~表(4)において、非球面形状に形成されたレンズ面には面番号の右側に*印を付している。 In each example of the present embodiment, the aspherical surface is along the optical axis from the tangential plane at the apex of the aspherical surface to the position on the aspherical surface at the height y, where y is the height in the direction perpendicular to the optical axis. distance (sag amount) is z, a vertex radius of curvature is r, a conical coefficient is kappa, when the n-th order aspherical coefficient was C n, is expressed by the following equation (a). In Tables (1) to (4) to be described later, a lens surface formed in an aspherical shape is marked with an asterisk (*) on the right side of the surface number.
z=(y/r)/[1+{1-(1+κ)・y/r1/2]+C・y
  +C・y+C・y+C10・y10+C12・y12+C14・y14
  +C16・y16+C18・y18+C20・y20    (a)
z = (y 2 / r) / [1+ {1- (1 + κ) · y 2 / r 2 } 1/2 ] + C 4 · y 4
+ C 6 · y 6 + C 8 · y 8 + C 10 · y 10 + C 12 · y 12 + C 14 · y 14
+ C 16 · y 16 + C 18 · y 18 + C 20 · y 20 (a)
 各実施例の投影光学系PLでは、マスクMからの光が、第1結像光学系K1を介して、第1平面反射鏡FM1の近傍の光軸から離れた位置にマスクパターンの第1中間像を形成する。第1中間像からの光は、第2結像光学系K2を介して、光軸から離れた位置にマスクパターンの第2中間像を形成する。第2中間像からの光は、第3結像光学系K3を介して、第2平面反射鏡FM2の近傍の光軸から離れた位置にマスクパターンの第3中間像を形成する。第3中間像からの光は、第4結像光学系K4を介して、光軸から離れた位置にマスクパターンの最終像をウェハW上に形成する。なお、各実施例において、マスクパターンの中間像が形成される位置を物体面または像面と光学的に共役な共役位置と呼ぶことができる。各実施例では、第1平面反射鏡M1と第2平面反射鏡M2とは1つの光学部材として一体に構成されている。各実施例において、第1結像光学系K1の光軸と第4結像光学系K4の光軸とは互いに平行であり、第1平面反射鏡M1と第2平面反射鏡M2とのY方向における間隔の分だけ偏心している。ここで、第1結像光学系K1からの光を偏向して第2結像光学系K2へ向ける第1偏向鏡としての第1平面反射鏡は、第1平面に沿った第1平面反射面を有し、第3結像光学系K3からの光を偏向して第4結像光学系K4へ向ける第2偏向鏡としての第2平面反射鏡は、第2平面に沿った第2平面反射面を有する。これら第1平面および第2平面は互いに平行である。そして、第1結像光学系K1の光軸と第2結像光学系K2の光軸とは第1平面上で交差し、第3結像光学系K3の光軸と第4結像光学系K4の光軸とは第2平面上で交差している。第2結像光学系K2の光軸と第3結像光学系K3の光軸とは互いに共軸である。言い換えると、第2結像光学系K2と第3結像光学系K3とは共通の光軸を有する。また、各実施例において、投影光学系PLは、物体側および像側の双方にほぼテレセントリックに構成されている。 In the projection optical system PL of each embodiment, the light from the mask M passes through the first imaging optical system K1, and the first intermediate pattern of the mask pattern is away from the optical axis in the vicinity of the first planar reflecting mirror FM1. Form an image. The light from the first intermediate image forms a second intermediate image of the mask pattern at a position away from the optical axis via the second imaging optical system K2. The light from the second intermediate image forms a third intermediate image of the mask pattern at a position away from the optical axis in the vicinity of the second plane reflecting mirror FM2 via the third imaging optical system K3. The light from the third intermediate image forms a final image of the mask pattern on the wafer W at a position away from the optical axis via the fourth imaging optical system K4. In each embodiment, the position where the intermediate image of the mask pattern is formed can be referred to as an object plane or a conjugate position optically conjugate with the image plane. In each embodiment, the first flat reflecting mirror M1 and the second flat reflecting mirror M2 are integrally configured as one optical member. In each embodiment, the optical axis of the first imaging optical system K1 and the optical axis of the fourth imaging optical system K4 are parallel to each other, and the Y direction of the first planar reflecting mirror M1 and the second planar reflecting mirror M2 It is eccentric by the interval of. Here, the first planar reflecting mirror as the first deflecting mirror that deflects the light from the first imaging optical system K1 and directs it to the second imaging optical system K2 is the first planar reflecting surface along the first plane. The second planar reflecting mirror as the second deflecting mirror that deflects the light from the third imaging optical system K3 and directs it toward the fourth imaging optical system K4 is a second planar reflection along the second plane. Has a surface. The first plane and the second plane are parallel to each other. The optical axis of the first imaging optical system K1 and the optical axis of the second imaging optical system K2 intersect on the first plane, and the optical axis of the third imaging optical system K3 and the fourth imaging optical system. The optical axis of K4 intersects on the second plane. The optical axis of the second imaging optical system K2 and the optical axis of the third imaging optical system K3 are coaxial with each other. In other words, the second imaging optical system K2 and the third imaging optical system K3 have a common optical axis. In each embodiment, the projection optical system PL is substantially telecentric on both the object side and the image side.
[第1実施例]
 図13は、本実施形態の第1実施例にかかる投影光学系のレンズ構成を示す図である。第1実施例にかかる投影光学系PLにおいて第1結像光学系K1は、マスク側から順に、平行平面板P1と、11個のレンズL11~L111とにより構成されている。第1結像光学系K1のレンズL15とレンズL16との間の光路中には、開口絞りAS1(不図示)が配置されている。第2結像光学系K2は、光の進行往路に沿って光の入射側から順に、3つのレンズL21~L23と、光の入射側に凹面を向けた凹面反射鏡CM1とにより構成されている。
[First embodiment]
FIG. 13 is a diagram showing a lens configuration of the projection optical system according to the first example of the present embodiment. In the projection optical system PL according to the first example, the first imaging optical system K1 is composed of a plane parallel plate P1 and eleven lenses L11 to L111 in this order from the mask side. An aperture stop AS1 (not shown) is disposed in the optical path between the lens L15 and the lens L16 of the first imaging optical system K1. The second imaging optical system K2 includes three lenses L21 to L23 and a concave reflecting mirror CM1 with a concave surface facing the light incident side in order from the light incident side along the light traveling path. .
 第3結像光学系K3は、光の入射側から順に、3つのレンズL31~L33と、光の入射側に凹面を向けた凹面反射鏡CM2とにより構成されている。第4結像光学系K4は、光の入射側から順に、13個のレンズL41~L413と、ウェハ側に平面を向けた平凸レンズL414(境界レンズLb)とにより構成されている。第4結像光学系K4において、レンズL410とレンズL411との間の光路中には、開口絞りASが配置されている。なお、第1乃至第3結像光学系K1~K3において、開口絞りASが配置されている位置と光学的に共役な位置を各結像光学系の瞳位置と称することができる。 The third imaging optical system K3 is composed of, in order from the light incident side, three lenses L31 to L33 and a concave reflecting mirror CM2 having a concave surface facing the light incident side. The fourth imaging optical system K4 includes, in order from the light incident side, thirteen lenses L41 to L413 and a plano-convex lens L414 (boundary lens Lb) having a plane facing the wafer side. In the fourth imaging optical system K4, an aperture stop AS is disposed in the optical path between the lens L410 and the lens L411. In the first to third imaging optical systems K1 to K3, a position optically conjugate with the position where the aperture stop AS is disposed can be referred to as a pupil position of each imaging optical system.
 各実施例では、境界レンズLbとウェハWとの間の光路に、使用光(露光光)であるArFエキシマレーザ光(中心波長λ=193.306nm)に対して1.435876の屈折率を有する液体(たとえば水)Lmが満たされている。平行平面板P1および境界レンズLbを含むすべての光透過部材は、使用光の中心波長に対して1.5603261の屈折率を有する光学材料(たとえば石英ガラス(SiO))により形成されている。 In each embodiment, the optical path between the boundary lens Lb and the wafer W has a refractive index of 1.435876 with respect to ArF excimer laser light (center wavelength λ = 193.306 nm) that is used light (exposure light). A liquid (for example, water) Lm is filled. All the light transmitting members including the plane parallel plate P1 and the boundary lens Lb are formed of an optical material (for example, quartz glass (SiO 2 )) having a refractive index of 1.5603261 with respect to the center wavelength of the used light.
 次の表(1)に、第1実施例にかかる投影光学系PLの諸元の値を掲げる。表(1)の主要諸元の欄において、λは露光光の中心波長を、βは投影倍率(全系の結像倍率)の大きさ(絶対値)を、NAは像側(ウェハ側)開口数を、RbはウェハW上でのイメージサークルIFの半径、すなわち像面IMにおける有効結像領域ERの最大像高を、Raは静止露光領域ERの軸外し量を、LXは静止露光領域ERのX方向に沿った寸法(長辺の寸法)を、LYは静止露光領域ERのY方向に沿った寸法(短辺の寸法)をそれぞれ表している。 The following table (1) lists the values of the specifications of the projection optical system PL according to the first example. In the column of main specifications in Table (1), λ is the center wavelength of the exposure light, β is the magnitude (absolute value) of the projection magnification (imaging magnification of the entire system), and NA is the image side (wafer side). The numerical aperture, Rb is the radius of the image circle IF on the wafer W, that is, the maximum image height of the effective imaging region ER on the image plane IM, Ra is the off-axis amount of the static exposure region ER, and LX is the static exposure region. ER represents the dimension along the X direction (long side dimension), and LY represents the dimension along the Y direction of the static exposure region ER (short side dimension).
 また、表(1)の光学部材諸元の欄において、面番号は物体面(第1面)であるマスク面から像面(第2面)であるウェハ面への光線の進行する経路に沿ったマスク側からの面の順序を、rは各面の曲率半径(非球面の場合には頂点曲率半径:mm)を、dは各面の軸上間隔すなわち面間隔(mm)を、nは中心波長に対する屈折率をそれぞれ示している。面間隔dの符号は、光が反射される度に変化するものとする。すなわち、面間隔dの符号は、第1平面反射鏡FM1から第1凹面反射鏡CM1へ至る光路中および第2凹面反射鏡CM2から第2平面反射鏡FM2へ至る光路中では負とし、その他の光路中では正としている。 Further, in the column of the optical member specifications in Table (1), the surface number is along the path along which the light beam travels from the mask surface that is the object surface (first surface) to the wafer surface that is the image surface (second surface). The order of the surfaces from the mask side, r is the radius of curvature of each surface (vertical curvature radius: mm in the case of an aspherical surface), d is the on-axis spacing of each surface, that is, the surface spacing (mm), n is The refractive index with respect to the center wavelength is shown. The sign of the surface interval d changes every time light is reflected. That is, the sign of the surface interval d is negative in the optical path from the first flat reflecting mirror FM1 to the first concave reflecting mirror CM1 and in the optical path from the second concave reflecting mirror CM2 to the second flat reflecting mirror FM2. Positive in the light path.
 第1結像光学系K1では、マスク側(光の入射側)に向かって凸面の曲率半径を正とし、マスク側に向かって凹面の曲率半径を負としている。第2結像光学系K2では、光の進行往路に沿って光の入射側に向かって凸面の曲率半径を負とし、光の入射側に向かって凹面の曲率半径を正としている。第3結像光学系K3では、光の進行往路に沿って光の入射側に向かって凹面の曲率半径を負とし、光の入射側に向かって凸面の曲率半径を正としている。第4結像光学系K4では、光の入射側に向かって凸面の曲率半径を正とし、光の入射側に向かって凹面の曲率半径を負としている。なお、表(1)における表記は、以降の表(2),表(3)および表(4)においても同様である。 In the first imaging optical system K1, the curvature radius of the convex surface toward the mask side (light incident side) is positive, and the curvature radius of the concave surface toward the mask side is negative. In the second imaging optical system K2, the radius of curvature of the convex surface is negative toward the light incident side along the light traveling path, and the radius of curvature of the concave surface is positive toward the light incident side. In the third imaging optical system K3, the radius of curvature of the concave surface is negative toward the light incident side along the light traveling path, and the radius of curvature of the convex surface is positive toward the light incident side. In the fourth imaging optical system K4, the radius of curvature of the convex surface is positive toward the light incident side, and the radius of curvature of the concave surface is negative toward the light incident side. The notation in Table (1) is the same in the following Table (2), Table (3), and Table (4).
                表(1)
(主要諸元)
λ=193.306nm
β=1/4
NA=1.35
Ra=2.8mm
Rb=15.1605mm
LX=26mm
LY=5.0mm
 
(光学部材諸元)
面番号   r           d       n     光学部材
     (マスク面)     97.27184
1          ∞          8.00000     1.5603261      (P1)
2          ∞         12.85115
3      -434.75533     25.49306     1.5603261      (L11)
4      -202.73027      3.47319
5       469.48493     28.19249     1.5603261      (L12)
6     -1049.92264     22.90024
7       160.14353     31.39060     1.5603261      (L13)
8       284.15835     90.22676
9*      241.53725      9.66171     1.5603261      (L14)
10      259.25920      1.00000
11      114.42331     38.22670     1.5603261      (L15)
12     1505.12165      7.52866
13         ∞         50.72828                    (AS1)
14     -137.02156      9.50000     1.5603261      (L16)
15     -212.31460     69.52956
16      -81.76909     32.13169     1.5603261      (L17)
17     -123.79874      1.00000
18*    -682.90735     36.68825     1.5603261      (L18)
19     -163.91183      1.00000
20      574.78234     12.66783     1.5603261      (L19)
21      857.04903      3.93362
22     1407.42652     36.73341     1.5603261      (L110)
23*    -212.50197      1.00000
24      494.62795     11.13228     1.5603261      (L111)
25      574.55635    130.00000
26         ∞        -90.00000                    (FM1)
27*    -187.78662    -30.00000     1.5603261      (L21)
28     -783.67715     -1.00000
29     -477.46048    -30.00000     1.5603261      (L22)
30     1235.32235   -182.08815
31      110.13738    -15.00000     1.5603261      (L23)
32      661.10511    -23.61426
33      178.34839     23.61426                    (CM1)
34      661.10511     15.00000     1.5603261      (L23)
35      110.13738    182.08815
36     1235.32235     30.00000     1.5603261      (L22)
37     -477.46048      1.00000
38     -783.67715     30.00000     1.5603261      (L21)
39*    -187.78662    140.00000
40*   -1505.02206     30.00000     1.5603261      (L31)
41     -334.02065      1.00000
42      242.39535     30.00000     1.5603261      (L32)
43     -528.97001    169.69888
44     -128.22274     15.00000     1.5603261      (L33)
45     -402.68946     29.70842
46     -208.14226    -29.70842                    (CM2)
47     -402.68946    -15.00000     1.5603261      (L33)
48     -128.22274   -169.69888
49     -528.97001    -30.00000     1.5603261      (L32)
50      242.39535     -1.00000
51     -334.02065    -30.00000     1.5603261      (L31)
52*   -1505.02206    -30.00000
53         ∞        139.88582                    (FM2)
54   -10093.75878     29.76813     1.5603261      (L41)
55     -227.44275      2.00000
56      145.32871     42.97588     1.5603261      (L42)
57      386.55071     70.28324
58     -184.11011      9.50000     1.5603261      (L43)
59      456.14921     22.82659
60     -280.31603      9.50000     1.5603261      (L44)
61*     169.17808     23.78759
62      976.17142     28.50782     1.5603261      (L45)
63     -381.45785      1.40346
64     1329.52429      9.50016     1.5603261      (L46)
65*     329.32932     22.85117
66     2376.76330     51.33302     1.5603261      (L47)
67     -232.83333      1.00000
68     6905.90436     32.24128     1.5603261      (L48)
69*    -386.37040     11.37994
70*   -2999.63821     52.92628     1.5603261      (L49)
71     -413.73977     22.34031
72     3704.28195     25.71578     1.5603261      (L410)
73    -1091.50366      0.00000
74         ∞          1.00000                    (AS)
75      402.10696     56.39639     1.5603261      (L411)
76     -991.08114      1.00000
77      152.00500     65.34836     1.5603261      (L412)
78*     320.02147      1.00000
79      127.63375     36.10400     1.5603261      (L413)
80*     319.22224      1.00000
81       58.95212     53.16345     1.5603261      (L414:Lb)
82         ∞          3.00000     1.435876     (Lm)
    (ウェハ面)
 
(非球面データ)
9面
κ=0
=-1.051820×10-7   =1.383360×10-12
=-3.454140×10-16  C10=3.290040×10-20
12=8.181200×10-24  C14=-3.601700×10-27
16=6.029620×10-31  C18=-4.858940×10-35
20=1.569310×10-39
 
18面
κ=0
=-3.179420×10-8   =2.407830×10-12
=-2.980550×10-17  C10=1.185000×10-21
12=-3.932850×10-25  C14=3.108170×10-29
16=-3.405840×10-33  C18=2.716730×10-37
20=-8.920070×10-42
 
23面
κ=0
=1.573950×10-8   =8.692700×10-13
=-1.353270×10-18  C10=9.432250×10-21
12=-2.493950×10-24  C14=3.918600×10-28
16=-3.705310×10-32  C18=1.936620×10-36
20=-4.329220×10-41
 
27面
κ=0
=2.782310×10-8   =-1.310730×10-12
=6.972800×10-17  C10=-4.072700×10-21
12=2.239490×10-25  C14=-5.833820×10-30
16=1.210420×10-36   C18=0   C20=0
 
39面
κ=0
=2.782310×10-8   =-1.310730×10-12
=6.972800×10-17  C10=-4.072700×10-21
12=2.239490×10-25  C14=-5.833820×10-30
16=1.210420×10-36   C18=0   C20=0
 
40面
κ=0
=-3.040570×10-8   =-1.053060×10-12
=4.809690×10-17  C10=-1.843550×10-21
12=-4.111650×10-25  C14=5.300240×10-29
16=-2.167260×10-33   C18=0   C20=0
 
52面
κ=0
=-3.040570×10-8   =-1.053060×10-12
=4.809690×10-17  C10=-1.843550×10-21
12=-4.111650×10-25  C14=5.300240×10-29
16=-2.167260×10-33   C18=0   C20=0
 
61面
κ=0
=-3.195030×10-8   =-2.394070×10-12
=2.611840×10-17  C10=6.646270×10-21
12=-7.437340×10-25  C14=2.593180×10-29
16=0   C18=0   C20=0
 
65面
κ=0
=2.519990×10-8   =-1.378580×10-12
=-2.496630×10-17  C10=3.994940×10-21
12=-2.773840×10-25  C14=1.226960×10-29
16=-2.403220×10-34   C18=0   C20=0
 
69面
κ=0
=1.586260×10-8   =-5.011570×10-13
=3.055860×10-17  C10=-1.237770×10-21
12=8.022510×10-26  C14=-2.972310×10-30
16=9.126420×10-35   C18=-1.286290×10-39
20=3.989430×10-45
 
70面
κ=0
=3.869480×10-9   =-4.278380×10-13
=3.009980×10-17  C10=-1.415790×10-21
12=8.583190×10-26  C14=-3.737700×10-30
16=1.211520×10-34   C18=-2.461020×10-39
20=2.061880×10-44
 
78面
κ=0
=-5.142260×10-8   =2.773500×10-12
=-2.131510×10-16  C10=1.104720×10-20
12=-5.220970×10-26  C14=-2.444130×10-29
16=1.307090×10-33   C18=-2.923440×10-38
20=2.674890×10-43
 
80面
κ=0
=5.568340×10-8   =3.724930×10-12
=1.264720×10-16  C10=1.738370×10-20
12=-7.177830×10-24  C14=1.789880×10-27
16=-2.024570×10-31   C18=1.240100×10-35
20=-2.372920×10-40
 
(条件対応値)
A=2.89mm(反射面CM1a)
Re=82.27mm(反射面CM1a)
A=3.13mm(反射面CM2a)
Re=78.64mm(反射面CM2a)
Rm=165.0mm
(1)G1=0.035
(2)G2=0.040
(5)Pw=0.0115
(6)Rm/Rb=10.884
Table (1)
(Main specifications)
λ = 193.306 nm
β = 1/4
NA = 1.35
Ra = 2.8mm
Rb = 15.1605 mm
LX = 26mm
LY = 5.0mm

(Optical member specifications)
Surface number r dn optical member (mask surface) 97.27184
1 ∞ 8.00000 1.5603261 (P1)
2 ∞ 12.85115
3 -434.75533 25.49306 1.5603261 (L11)
4 -202.73027 3.47319
5 469.48493 28.19249 1.5603261 (L12)
6 -1049.92264 22.90024
7 160.14353 31.39060 1.5603261 (L13)
8 284.15835 90.22676
9 * 241.53725 9.66171 1.5603261 (L14)
10 259.25920 1.00000
11 114.42331 38.22670 1.5603261 (L15)
12 1505.12165 7.52866
13 ∞ 50.72828 (AS1)
14 -137.02156 9.50000 1.5603261 (L16)
15 -212.31460 69.52956
16 -81.76909 32.13169 1.5603261 (L17)
17 -123.79874 1.00000
18 * -682.90735 36.68825 1.5603261 (L18)
19 -163.91183 1.00000
20 574.78234 12.66783 1.5603261 (L19)
21 857.04903 3.93362
22 1407.42652 36.73341 1.5603261 (L110)
23 * -212.50197 1.00000
24 494.62795 11.13228 1.5603261 (L111)
25 574.55635 130.00000
26 ∞ -90.00000 (FM1)
27 * -187.78662 -30.00000 1.5603261 (L21)
28 -783.67715 -1.00000
29 -477.46048 -30.00000 1.5603261 (L22)
30 1235.32235 -182.08815
31 110.13738 -15.00000 1.5603261 (L23)
32 661.10511 -23.61426
33 178.34839 23.61426 (CM1)
34 661.10511 15.00000 1.5603261 (L23)
35 110.13738 182.08815
36 1235.32235 30.00000 1.5603261 (L22)
37 -477.46048 1.00000
38 -783.67715 30.00000 1.5603261 (L21)
39 * -187.78662 140.00000
40 * -1505.02206 30.00000 1.5603261 (L31)
41 -334.02065 1.00000
42 242.39535 30.00000 1.5603261 (L32)
43 -528.97001 169.69888
44 -128.22274 15.00000 1.5603261 (L33)
45 -402.68946 29.70842
46 -208.14226 -29.70842 (CM2)
47 -402.68946 -15.00000 1.5603261 (L33)
48 -128.22274 -169.69888
49 -528.97001 -30.00000 1.5603261 (L32)
50 242.39535 -1.00000
51 -334.02065 -30.00000 1.5603261 (L31)
52 * -1505.02206 -30.00000
53 ∞ 139.88582 (FM2)
54 -10093.75878 29.76813 1.5603261 (L41)
55 -227.44275 2.00000
56 145.32871 42.97588 1.5603261 (L42)
57 386.55071 70.28324
58 -184.11011 9.50000 1.5603261 (L43)
59 456.14921 22.82659
60 -280.31603 9.50000 1.5603261 (L44)
61 * 169.17808 23.78759
62 976.17142 28.50782 1.5603261 (L45)
63 -381.45785 1.40346
64 1329.52429 9.50016 1.5603261 (L46)
65 * 329.32932 22.85117
66 2376.76330 51.33302 1.5603261 (L47)
67 -232.83333 1.00000
68 6905.90436 32.24128 1.5603261 (L48)
69 * -386.37040 11.37994
70 * -2999.63821 52.92628 1.5603261 (L49)
71 -413.73977 22.34031
72 3704.28195 25.71578 1.5603261 (L410)
73 -1091.50366 0.00000
74 ∞ 1.00000 (AS)
75 402.10696 56.39639 1.5603261 (L411)
76 -991.08114 1.00000
77 152.00500 65.34836 1.5603261 (L412)
78 * 320.02147 1.00000
79 127.63375 36.10400 1.5603261 (L413)
80 * 319.22224 1.00000
81 58.95212 53.16345 1.5603261 (L414: Lb)
82 ∞ 3.00000 1.435876 (Lm)
(Wafer surface)

(Aspheric data)
9 faces κ = 0
C 4 = −1.051820 × 10 −7 C 6 = 1.383360 × 10 −12
C 8 = −3.4454 140 × 10 −16 C 10 = 3.2290040 × 10 −20
C 12 = 8.1811200 × 10 −24 C 14 = −3.6601 700 × 10 −27
C 16 = 6.029620 × 10 −31 C 18 = −4.885840 × 10 −35
C 20 = 1.569310 × 10 −39

18 faces κ = 0
C 4 = -3.179420 × 10 −8 C 6 = 2.407830 × 10 −12
C 8 = -2.980550 × 10 −17 C 10 = 1.185000 × 10 −21
C 12 = −3.93850 × 10 −25 C 14 = 3.1108170 × 10 −29
C 16 = -3.405840 × 10 −33 C 18 = 2.771630 × 10 −37
C 20 = −8.9920070 × 10 −42

23 κ = 0
C 4 = 1.573950 × 10 −8 C 6 = 8.692700 × 10 −13
C 8 = −1.353270 × 10 −18 C 10 = 9.432250 × 10 −21
C 12 = −2.493950 × 10 −24 C 14 = 3.918600 × 10 −28
C 16 = −3.705310 × 10 −32 C 18 = 1.936620 × 10 −36
C 20 = -4.329220 × 10 -41

27 faces κ = 0
C 4 = 2.782310 × 10 −8 C 6 = −1.310730 × 10 −12
C 8 = 6.972800 × 10 −17 C 10 = −4.072700 × 10 −21
C 12 = 2.239490 × 10 −25 C 14 = −5.838320 × 10 −30
C 16 = 1.210420 × 10 −36 C 18 = 0 C 20 = 0

39 surfaces κ = 0
C 4 = 2.782310 × 10 −8 C 6 = −1.310730 × 10 −12
C 8 = 6.972800 × 10 −17 C 10 = −4.072700 × 10 −21
C 12 = 2.239490 × 10 −25 C 14 = −5.838320 × 10 −30
C 16 = 1.210420 × 10 −36 C 18 = 0 C 20 = 0

40 faces κ = 0
C 4 = −3.040570 × 10 −8 C 6 = −1.053060 × 10 −12
C 8 = 4.809690 × 10 −17 C 10 = −1.8443550 × 10 −21
C 12 = −4.1111650 × 10 −25 C 14 = 5.300 240 × 10 −29
C 16 = −2.167260 × 10 −33 C 18 = 0 C 20 = 0

52 planes κ = 0
C 4 = −3.040570 × 10 −8 C 6 = −1.053060 × 10 −12
C 8 = 4.809690 × 10 −17 C 10 = −1.8443550 × 10 −21
C 12 = −4.1111650 × 10 −25 C 14 = 5.300 240 × 10 −29
C 16 = −2.167260 × 10 −33 C 18 = 0 C 20 = 0

61 plane κ = 0
C 4 = −3.195030 × 10 −8 C 6 = −2.394070 × 10 −12
C 8 = 2.611840 × 10 −17 C 10 = 6.646270 × 10 −21
C 12 = −7.4437340 × 10 −25 C 14 = 2.593180 × 10 −29
C 16 = 0 C 18 = 0 C 20 = 0

65 faces κ = 0
C 4 = 2.519990 × 10 −8 C 6 = −1.378580 × 10 −12
C 8 = −2.496630 × 10 −17 C 10 = 3.999440 × 10 −21
C 12 = -2.773840 × 10 −25 C 14 = 1.226960 × 10 −29
C 16 = −2.403220 × 10 −34 C 18 = 0 C 20 = 0

69 faces κ = 0
C 4 = 1.586260 × 10 −8 C 6 = −5.011570 × 10 −13
C 8 = 3.055860 × 10 −17 C 10 = −1.237770 × 10 −21
C 12 = 8.022510 × 10 −26 C 14 = −2.972310 × 10 −30
C 16 = 9.126420 × 10 −35 C 18 = −1.286290 × 10 −39
C 20 = 3.989430 × 10 −45

70 faces κ = 0
C 4 = 3.869480 × 10 −9 C 6 = −4.278380 × 10 −13
C 8 = 3.009980 × 10 −17 C 10 = −1.415790 × 10 −21
C 12 = 8.583190 × 10 −26 C 14 = −3.7737 700 × 10 −30
C 16 = 1.211520 × 10 −34 C 18 = −2.461020 × 10 −39
C 20 = 2.061880 × 10 −44

78 faces κ = 0
C 4 = −5.142260 × 10 −8 C 6 = 2.773500 × 10 −12
C 8 = -2.131510 × 10 −16 C 10 = 1.104720 × 10 −20
C 12 = −5.220970 × 10 −26 C 14 = −2.444 130 × 10 −29
C 16 = 1.3070090 × 10 −33 C 18 = −2.9293440 × 10 −38
C 20 = 2.674890 × 10 −43

80 faces κ = 0
C 4 = 5.568340 × 10 −8 C 6 = 3.724930 × 10 −12
C 8 = 1.264720 × 10 −16 C 10 = 1.738370 × 10 −20
C 12 = −7.177830 × 10 −24 C 14 = 1.778980 × 10 −27
C 16 = −2.024570 × 10 −31 C 18 = 1.240 100 × 10 −35
C 20 = −2.372920 × 10 −40

(Conditional value)
A = 2.89mm (reflective surface CM1a)
Re = 82.27mm (reflective surface CM1a)
A = 3.13 mm (reflective surface CM2a)
Re = 78.64mm (reflection surface CM2a)
Rm = 165.0mm
(1) G1 = 0.035
(2) G2 = 0.040
(5) Pw = 0.115
(6) Rm / Rb = 10.884
 図14(a)は、第1実施例において第1凹面反射鏡CM1の反射面CM1aに関数FZ17にしたがう変形を付与したときに発生する収差成分Z17およびZ10を示している。図14(b)は、第1実施例において第2凹面反射鏡CM2の反射面CM2aに第1凹面反射鏡CM1と同じ変形を付与したときに発生する収差成分Z17およびZ10を示している。 FIG. 14 (a) shows the aberration component Z17 and Z10 occurs when imparted with deformed according to the function FZ 17 to the reflecting surface CM1a the first concave reflector CM1 in the first embodiment. FIG. 14B shows aberration components Z17 and Z10 generated when the same deformation as that of the first concave reflecting mirror CM1 is applied to the reflecting surface CM2a of the second concave reflecting mirror CM2 in the first embodiment.
 図15(a)は、第1実施例において第1凹面反射鏡CM1と第2凹面反射鏡CM2との協働作用により、すなわち第1凹面反射鏡CM1の反射面CM1aおよび第2凹面反射鏡CM2の反射面CM2aに付与する変形を表現する関数FZ17の係数の符号および大きさを適宜設定することにより、主として0次収差成分(Z17)を発生させた様子を示している。図15(b)は、第1実施例において第1凹面反射鏡CM1と第2凹面反射鏡CM2との協働作用により、主として1次収差成分(Z10)を発生させた様子を示している。
 この第1実施例の投影光学系は、第1面と第2面との間の光路中に配置されて、第1凹面反射鏡を含み、互いに異なる面同士を光学的に共役な関係にする第1結像光学ユニットと、第1結像光学ユニットと第2面との間の光路中に配置されて、第2凹面反射鏡を含み、互いに異なる面同士を光学的に共役な関係にする第2結像光学ユニットとを備えており、第1凹面反射鏡が第1結像光学ユニットの光路中において第1面の位置と光学的にフーリエ変換の関係にある第1瞳位置から第2面側に配置され、第2凹面反射鏡が第2結像光学ユニットの光路中において第1面の位置と光学的にフーリエ変換の関係にある第2瞳位置から第1面側に配置されているため、良好な結像性能を達成できる。
FIG. 15A shows the first embodiment of the first concave reflecting mirror CM1 and the second concave reflecting mirror CM2 in cooperation, that is, the reflecting surface CM1a and the second concave reflecting mirror CM2 of the first concave reflecting mirror CM1. by setting the coefficients of the function FZ 17 representing the deformation to be imparted to the reflecting surface CM2a sign and magnitude appropriate shows a state that caused mainly 0-order aberration component (Z17). FIG. 15B shows a state in which the primary aberration component (Z10) is mainly generated by the cooperative action of the first concave reflecting mirror CM1 and the second concave reflecting mirror CM2 in the first embodiment.
The projection optical system of the first embodiment is disposed in the optical path between the first surface and the second surface, includes a first concave reflecting mirror, and makes different surfaces optically conjugate with each other. A first imaging optical unit, and a second concave reflecting mirror disposed in an optical path between the first imaging optical unit and the second surface, wherein different surfaces are optically conjugate with each other. A second imaging optical unit, wherein the first concave reflecting mirror is second from the first pupil position optically Fourier-transformed with the position of the first surface in the optical path of the first imaging optical unit. The second concave reflecting mirror is disposed on the first surface side from the second pupil position that is optically Fourier-transformed with the position of the first surface in the optical path of the second imaging optical unit. Therefore, good imaging performance can be achieved.
 図14および図15において、横軸は有効結像領域ERの位置ERa,ERb,ERc(図2を参照)を結ぶ直線に沿ったX方向位置を示し、縦軸は収差成分のツェルニケ係数(単位:露光光の中心波長λ)である。すなわち、図14および図15では、有効結像領域ERにおいてY=5.3mm(=Ra+LY/2)の中段領域に沿ったX方向位置に関する波面収差の各収差成分に着目している。 14 and 15, the horizontal axis indicates the X-direction position along the straight line connecting the positions ERa, ERb, and ERc (see FIG. 2) of the effective imaging region ER, and the vertical axis indicates the Zernike coefficient (unit: aberration component). : The center wavelength λ of the exposure light. That is, in FIG. 14 and FIG. 15, attention is paid to each aberration component of the wavefront aberration relating to the position in the X direction along the middle region of Y = 5.3 mm (= Ra + LY / 2) in the effective imaging region ER.
[第2実施例]
 図16は、本実施形態の第2実施例にかかる投影光学系のレンズ構成を示す図である。第2実施例にかかる投影光学系PLにおいて第1結像光学系K1は、マスク側から順に、平行平面板P1と、12個のレンズL11~L112とにより構成されている。第2結像光学系K2は、光の進行往路に沿って光の入射側から順に、2つのレンズL21およびL22と、光の入射側に凹面を向けた凹面反射鏡CM1とにより構成されている。
[Second Embodiment]
FIG. 16 is a diagram showing a lens configuration of the projection optical system according to the second example of the present embodiment. In the projection optical system PL according to the second example, the first imaging optical system K1 is composed of a plane parallel plate P1 and twelve lenses L11 to L112 in this order from the mask side. The second imaging optical system K2 includes two lenses L21 and L22 and a concave reflecting mirror CM1 having a concave surface facing the light incident side in order from the light incident side along the light traveling path. .
 第3結像光学系K3は、光の入射側から順に、2つのレンズL31およびL32と、光の入射側に凹面を向けた凹面反射鏡CM2とにより構成されている。第4結像光学系K4は、光の入射側から順に、13個のレンズL41~L413と、ウェハ側に平面を向けた平凸レンズL414(境界レンズLb)とにより構成されている。第4結像光学系K4において、レンズL410とレンズL411との間の光路中には、開口絞りASが配置されている。次の表(2)に、第2実施例にかかる投影光学系PLの諸元の値を掲げる。 The third imaging optical system K3 is composed of two lenses L31 and L32 in order from the light incident side, and a concave reflecting mirror CM2 having a concave surface directed to the light incident side. The fourth imaging optical system K4 includes, in order from the light incident side, thirteen lenses L41 to L413 and a plano-convex lens L414 (boundary lens Lb) having a plane facing the wafer side. In the fourth imaging optical system K4, an aperture stop AS is disposed in the optical path between the lens L410 and the lens L411. The following table (2) lists the values of the specifications of the projection optical system PL according to the second example.
                表(2)
(主要諸元)
λ=193.306nm
β=1/4
NA=1.35
Ra=2.8mm
Rb=15.1605mm
LX=26mm
LY=5.0mm
 
(光学部材諸元)
面番号   r           d       n     光学部材
      (マスク面)    50.00000
1          ∞          8.00000     1.5603261      (P1)
2          ∞         52.67655
3       956.99593     10.00000     1.5603261      (L11)
4       268.34560     24.08960
5*     3371.13689     43.12377     1.5603261      (L12)
6      -210.74353      1.00000
7       401.22496     74.01758     1.5603261      (L13)
8      -237.15092      1.00000
9*      110.11998     73.97631     1.5603261      (L14)
10       77.95672     50.55064
11*     271.64665     10.58591     1.5603261      (L15)
12      141.05587     28.14848
13     -184.98082     49.70695     1.5603261      (L16)
14     -112.43194     21.89084
15      -86.15110     18.84987     1.5603261      (L17)
16      -94.00391     33.87664
17     -237.21530     49.87494     1.5603261      (L18)
18     -137.91605      1.00000
19*    -402.00103     10.00000     1.5603261      (L19)
20     -338.32398      1.00000
21      621.22405     34.41434     1.5603261      (L110)
22     -717.65446     27.23038
23*    -243.70615     23.70706     1.5603261      (L111)
24     -191.12984      1.00000
25     -293.95763     19.17688     1.5603261      (L112)
26     -226.97432    155.00000
27         ∞       -120.00003                    (FM1)
28     -153.74064    -49.89941     1.5603261      (L21)
29*    -374.13392   -178.09846
30      114.31886    -27.72354     1.5603261      (L22)
31      402.84940    -31.07941
32      223.52103     31.07941                    (CM1)
33      402.84940     27.72354     1.5603261      (L22)
34      114.31886    178.09846
35*    -374.13392     49.89941     1.5603261      (L21)
36     -153.74064    170.00003
37*     216.03195     39.98157     1.5603261      (L31)
38     -279.87249    333.35481
39     -144.22676     10.00000     1.5603261      (L32)
40     -328.06971     14.07809
41     -232.73749    -14.07809                    (CM2)
42     -328.06971    -10.00000     1.5603261      (L32)
43     -144.22676   -333.35481
44     -279.87249    -39.98157     1.5603261      (L31)
45*     216.03195    -30.00000
46         ∞         99.99834                    (FM2)
47      734.62279     26.94164     1.5603261      (L41)
48     -354.86614      1.00000
49      270.78272     14.63772     1.5603261      (L42)
50      122.69492     27.65512
51      523.27593     17.99743     1.5603261      (L43)
52*    -917.96153     22.41541
53     -173.82539     10.00000     1.5603261      (L44)
54*     263.66488      4.67438
55      232.32415     24.78492     1.5603261      (L45)
56*     341.71467     25.03872
57      425.48686     42.27646     1.5603261      (L46)
58     -925.88925      3.43669
59*    -868.19313     24.39020     1.5603261      (L47)
60     -390.63210     10.95541
61     1112.84746     24.59098     1.5603261      (L48)
62*   -3794.30734     36.47679
63*    -523.57036     38.47006     1.5603261      (L49)
64     -254.24434      3.48871
65*  -12003.67904     22.89268     1.5603261      (L410)
66     -635.56833      1.00000
67         ∞          1.00000                    (AS)
68      285.29843     56.33918     1.5603261      (L411)
69*    3166.39262      1.00000
70      172.35136     70.86784     1.5603261      (L412)
71*     455.55044      1.00000
72      102.58247     57.63623     1.5603261      (L413)
73*     265.61659      1.00000
74       65.97964     51.13833     1.5603261      (L414:Lb)
75         ∞          3.00000     1.435876       (Lm)
    (ウェハ面)
 
(非球面データ)
5面
κ=0
=-6.518220×10-9   =-6.515560×10-13
=4.213030×10-17  C10=9.924030×10-22
12=-1.396870×10-25  C14=-2.493070×10-29
16=5.579320×10-33  C18=-3.979550×10-37
20=1.060880×10-41
 
9面
κ=0
=-1.467370×10-8   =-5.704230×10-13
=-1.973500×10-17  C10=-1.490700×10-20
12=3.604830×10-24  C14=-6.756860×10-28
16=7.099540×10-32  C18=-4.358560×10-36
20=1.057430×10-40
 
11面
κ=0
=9.528090×10-8   =-6.363720×10-12
=6.977930×10-16  C10=-5.524910×10-18
12=9.075970×10-22  C14=-4.318990×10-25
16=1.991030×10-28  C18=-7.933570×10-32
20=1.199210×10-35
 
19面
κ=0
=-4.881590×10-8   =-4.182940×10-13
=-3.769370×10-17  C10=8.732130×10-22
12=-4.612570×10-26  C14=-2.739800×10-30
16=1.863010×10-34  C18=4.445000×10-39
20=-3.827040×10-43
 
23面
κ=0
=7.258110×10-9   =-5.468990×10-13
=1.699680×10-17  C10=-2.155620×10-21
12=1.651010×10-25  C14=-9.667780×10-30
16=3.282730×10-34  C18=-5.022870×10-39
20=8.075080×10-45
 
29面
κ=0
=-1.191430×10-8   =-1.105180×10-12
=2.089990×10-16  C10=-3.974060×10-20
12=5.977430×10-24  C14=-6.121430×10-28
16=4.024790×10-32   C18=-1.503840×10-36
20=2.419470×10-41
 
35面
κ=0
=-1.191430×10-8   =-1.105180×10-12
=2.089990×10-16  C10=-3.974060×10-20
12=5.977430×10-24  C14=-6.121430×10-28
16=4.024790×10-32   C18=-1.503840×10-36
20=2.419470×10-41
 
37面
κ=0
=-3.986850×10-8   =6.055680×10-13
=-6.255930×10-16  C10=3.106950×10-19
12=-9.712950×10-23  C14=1.910830×10-26
16=-2.294720×10-30   C18=1.536250×10-34
20=-4.394870×10-39
 
45面
κ=0
=-3.986850×10-8   =6.055680×10-13
=-6.255930×10-16  C10=3.106950×10-19
12=-9.712950×10-23  C14=1.910830×10-26
16=-2.294720×10-30   C18=1.536250×10-34
20=-4.394870×10-39
 
52面
κ=0
=-5.207570×10-9   =4.543270×10-12
=2.311140×10-16  C10=-4.562410×10-21
12=3.405830×10-24  C14=-1.286090×10-27
16=3.178270×10-31   C18=-3.771280×10-35
20=1.870650×10-39
 
54面
κ=0
=6.323080×10-8   =-1.150910×10-11
=4.372410×10-16  C10=2.929670×10-21
12=-3.696000×10-24  C14=6.158830×10-28
16=-6.274200×10-32   C18=3.484140×10-36
20=-8.632930×10-41
 
56面
κ=0
=-1.248210×10-8   =6.630910×10-12
=-6.575920×10-16  C10=5.253970×10-20
12=-3.143330×10-24  C14=1.162190×10-28
16=-1.785520×10-33   C18=-1.868420×10-38
20=8.043030×10-43
 
59面
κ=0
=-6.091640×10-9   =3.458720×10-12
=-3.115830×10-16  C10=9.799420×10-21
12=-9.250000×10-27  C14=-1.126360×10-29
16=2.959360×10-34   C18=3.087090×10-39
20=-1.877470×10-43
 
62面
κ=0
=-1.385640×10-8   =3.625280×10-12
=-2.485970×10-16  C10=1.126710×10-20
12=-5.685270×10-25  C14=2.871030×10-29
16=-1.007360×10-33   C18=2.128850×10-38
20=-1.988890×10-43
 
63面
κ=0
=-3.336990×10-8   =2.382600×10-12
=-1.477920×10-16  C10=6.451690×10-21
12=-3.245000×10-25  C14=1.601990×10-29
16=-5.278100×10-34   C18=1.073760×10-38
20=-8.923070×10-44
 
65面
κ=0
=-8.507040×10-9   =-4.691460×10-13
=3.802050×10-17  C10=-1.912410×10-21
12=1.096940×10-25  C14=-5.228850×10-30
16=1.432580×10-34   C18=-1.911870×10-39
20=8.301610×10-45
 
69面
κ=0
=3.296010×10-9   =1.017380×10-13
=-3.125050×10-17  C10=1.249490×10-21
12=3.367610×10-26  C14=-3.989680×10-30
16=1.368530×10-34   C18=-2.351360×10-39
20=1.710970×10-44
 
71面
κ=0
=-3.248440×10-8   =2.002660×10-12
=-4.269190×10-18  C10=-8.593550×10-21
12=3.665260×10-25  C14=1.038290×10-29
16=-1.207970×10-33   C18=3.491290×10-38
20=-3.561350×10-43
 
73面
κ=0
=9.781470×10-8   =-7.174220×10-13
=1.593300×10-16  C10=1.903480×10-19
12=-4.264660×10-23  C14=5.364590×10-27
16=-3.173790×10-31   C18=3.927300×10-36
20=4.716730×10-40
 
(条件対応値)
A=7.54mm(反射面CM1a)
Re=124.06mm(反射面CM1a)
A=6.83mm(反射面CM2a)
Re=124.05mm(反射面CM2a)
Rm=164.5mm
(1)G1=0.055
(2)G2=0.061
(5)Pw=0.0104
(6)Rm/Rb=10.851
Table (2)
(Main specifications)
λ = 193.306 nm
β = 1/4
NA = 1.35
Ra = 2.8mm
Rb = 15.1605 mm
LX = 26mm
LY = 5.0mm

(Optical member specifications)
Surface number r dn Optical member (mask surface) 50.00000
1 ∞ 8.00000 1.5603261 (P1)
2 ∞ 52.67655
3 956.99593 10.00000 1.5603261 (L11)
4 268.34560 24.08960
5 * 3371.13689 43.12377 1.5603261 (L12)
6 -210.74353 1.00000
7 401.22496 74.01758 1.5603261 (L13)
8 -237.15092 1.00000
9 * 110.11998 73.97631 1.5603261 (L14)
10 77.95672 50.55064
11 * 271.64665 10.58591 1.5603261 (L15)
12 141.05587 28.14848
13 -184.98082 49.70695 1.5603261 (L16)
14 -112.43194 21.89084
15 -86.15110 18.84987 1.5603261 (L17)
16 -94.00391 33.87664
17 -237.21530 49.87494 1.5603261 (L18)
18 -137.91605 1.00000
19 * -402.00103 10.00000 1.5603261 (L19)
20 -338.32398 1.00000
21 621.22405 34.41434 1.5603261 (L110)
22 -717.65446 27.23038
23 * -243.70615 23.70706 1.5603261 (L111)
24 -191.12984 1.00000
25 -293.95763 19.17688 1.5603261 (L112)
26 -226.97432 155.00000
27 ∞ -120.00003 (FM1)
28 -153.74064 -49.89941 1.5603261 (L21)
29 * -374.13392 -178.09846
30 114.31886 -27.72354 1.5603261 (L22)
31 402.84940 -31.07941
32 223.52103 31.07941 (CM1)
33 402.84940 27.72354 1.5603261 (L22)
34 114.31886 178.09846
35 * -374.13392 49.89941 1.5603261 (L21)
36 -153.74064 170.00003
37 * 216.03195 39.98157 1.5603261 (L31)
38 -279.87249 333.35481
39 -144.22676 10.00000 1.5603261 (L32)
40 -328.06971 14.07809
41 -232.73749 -14.07809 (CM2)
42 -328.06971 -10.00000 1.5603261 (L32)
43 -144.22676 -333.35481
44 -279.87249 -39.98157 1.5603261 (L31)
45 * 216.03195 -30.00000
46 ∞ 99.99834 (FM2)
47 734.62279 26.94164 1.5603261 (L41)
48 -354.86614 1.00000
49 270.78272 14.63772 1.5603261 (L42)
50 122.69492 27.65512
51 523.27593 17.99743 1.5603261 (L43)
52 * -917.96153 22.41541
53 -173.82539 10.00000 1.5603261 (L44)
54 * 263.66488 4.67438
55 232.32415 24.78492 1.5603261 (L45)
56 * 341.71467 25.03872
57 425.48686 42.27646 1.5603261 (L46)
58 -925.88925 3.43669
59 * -868.19313 24.39020 1.5603261 (L47)
60 -390.63210 10.95541
61 1112.84746 24.59098 1.5603261 (L48)
62 * -3794.30734 36.47679
63 * -523.57036 38.47006 1.5603261 (L49)
64 -254.24434 3.48871
65 * -12003.67904 22.89268 1.5603261 (L410)
66 -635.56833 1.00000
67 ∞ 1.00000 (AS)
68 285.29843 56.33918 1.5603261 (L411)
69 * 3166.39262 1.00000
70 172.35136 70.86784 1.5603261 (L412)
71 * 455.55044 1.00000
72 102.58247 57.63623 1.5603261 (L413)
73 * 265.61659 1.00000
74 65.97964 51.13833 1.5603261 (L414: Lb)
75 ∞ 3.00000 1.435876 (Lm)
(Wafer surface)

(Aspheric data)
5 sides κ = 0
C 4 = −6.5518220 × 10 −9 C 6 = −6.5515560 × 10 −13
C 8 = 4.213030 × 10 −17 C 10 = 9.924030 × 10 −22
C 12 = -1.3396870 × 10 −25 C 14 = −2.493070 × 10 −29
C 16 = 5.579320 × 10 −33 C 18 = −3.997550 × 10 −37
C 20 = 1.060880 × 10 −41

9 faces κ = 0
C 4 = −1.467370 × 10 −8 C 6 = −5.704230 × 10 −13
C 8 = −1.973500 × 10 −17 C 10 = −1.490 700 × 10 −20
C 12 = 3.604830 × 10 −24 C 14 = −6.775660 × 10 −28
C 16 = 7.099540 × 10 −32 C 18 = −4.35.8560 × 10 −36
C 20 = 1.057430 × 10 −40

11 surfaces κ = 0
C 4 = 9.528090 × 10 −8 C 6 = −6.336320 × 10 −12
C 8 = 6.997930 × 10 −16 C 10 = −5.524910 × 10 −18
C 12 = 9.075970 × 10 −22 C 14 = −4.318990 × 10 −25
C 16 = 1.99930 × 10 −28 C 18 = −7.9333570 × 10 −32
C 20 = 1.199210 × 10 −35

19 faces κ = 0
C 4 = −4.881590 × 10 −8 C 6 = −4.182940 × 10 −13
C 8 = −3.769370 × 10 −17 C 10 = 8.732130 × 10 −22
C 12 = −4.612570 × 10 −26 C 14 = −2.739800 × 10 −30
C 16 = 1.886310 × 10 −34 C 18 = 4.445000 × 10 −39
C 20 = −3.827040 × 10 −43

23 κ = 0
C 4 = 7.258110 × 10 −9 C 6 = −5.4686990 × 10 −13
C 8 = 1.699680 × 10 −17 C 10 = −2.155620 × 10 −21
C 12 = 1.651010 × 10 −25 C 14 = −9.6667780 × 10 −30
C 16 = 3.2282730 × 10 −34 C 18 = −5.022870 × 10 −39
C 20 = 8.075080 × 10 −45

29 faces κ = 0
C 4 = −1.191430 × 10 −8 C 6 = −1.105 180 × 10 −12
C 8 = 2.0899990 × 10 −16 C 10 = −3.974060 × 10 −20
C 12 = 5.977430 × 10 −24 C 14 = −6.124130 × 10 −28
C 16 = 4.024790 × 10 −32 C 18 = −1.503840 × 10 −36
C 20 = 2.419470 × 10 −41

35 faces κ = 0
C 4 = −1.191430 × 10 −8 C 6 = −1.105 180 × 10 −12
C 8 = 2.0899990 × 10 −16 C 10 = −3.974060 × 10 −20
C 12 = 5.977430 × 10 −24 C 14 = −6.124130 × 10 −28
C 16 = 4.024790 × 10 −32 C 18 = −1.503840 × 10 −36
C 20 = 2.419470 × 10 −41

37 faces κ = 0
C 4 = −3.986850 × 10 −8 C 6 = 6.056580 × 10 −13
C 8 = −6.255530 × 10 −16 C 10 = 3.106950 × 10 −19
C 12 = −9.712950 × 10 −23 C 14 = 1.910830 × 10 −26
C 16 = −2.294720 × 10 −30 C 18 = 1.536250 × 10 −34
C 20 = -4.394870 × 10 −39

45 faces κ = 0
C 4 = −3.986850 × 10 −8 C 6 = 6.056580 × 10 −13
C 8 = −6.255530 × 10 −16 C 10 = 3.106950 × 10 −19
C 12 = −9.712950 × 10 −23 C 14 = 1.910830 × 10 −26
C 16 = −2.294720 × 10 −30 C 18 = 1.536250 × 10 −34
C 20 = -4.394870 × 10 −39

52 planes κ = 0
C 4 = −5.207570 × 10 −9 C 6 = 4.543270 × 10 −12
C 8 = 2.311140 × 10 −16 C 10 = −4.562410 × 10 −21
C 12 = 3.405830 × 10 −24 C 14 = −1.286090 × 10 −27
C 16 = 3.178270 × 10 −31 C 18 = −3.777280 × 10 −35
C 20 = 1.8870650 × 10 −39

54 faces κ = 0
C 4 = 6.3323080 × 10 −8 C 6 = −1.150910 × 10 −11
C 8 = 4.372410 × 10 −16 C 10 = 2.992970 × 10 −21
C 12 = −3.6696000 × 10 −24 C 14 = 6.158830 × 10 −28
C 16 = −6.274200 × 10 −32 C 18 = 3.484140 × 10 −36
C 20 = −8.632930 × 10 −41

56 faces κ = 0
C 4 = −1.248210 × 10 −8 C 6 = 6.630910 × 10 −12
C 8 = −6.575720 × 10 −16 C 10 = 5.253970 × 10 −20
C 12 = -3.143330 × 10 −24 C 14 = 1.162190 × 10 −28
C 16 = -1.785520 × 10 −33 C 18 = −1.868420 × 10 −38
C 20 = 8.043030 × 10 −43

59 surfaces κ = 0
C 4 = −6.091640 × 10 −9 C 6 = 3.445820 × 10 −12
C 8 = -3.115830 × 10 −16 C 10 = 9.799420 × 10 −21
C 12 = −9.250,000 × 10 −27 C 14 = −1.126360 × 10 −29
C 16 = 2.959360 × 10 −34 C 18 = 3.087090 × 10 −39
C 20 = −1.87777470 × 10 −43

62 plane κ = 0
C 4 = −1.385640 × 10 −8 C 6 = 3.625280 × 10 −12
C 8 = -2.485970 × 10 −16 C 10 = 1.126710 × 10 −20
C 12 = −5.685270 × 10 −25 C 14 = 2.88730 × 10 −29
C 16 = −1.007360 × 10 −33 C 18 = 2.128850 × 10 −38
C 20 = −1.988890 × 10 −43

63 plane κ = 0
C 4 = −3.333690 × 10 −8 C 6 = 2.382600 × 10 −12
C 8 = −1.477920 × 10 −16 C 10 = 6.4451690 × 10 −21
C 12 = -3.245000 × 10 −25 C 14 = 1.601990 × 10 −29
C 16 = −5.278100 × 10 −34 C 18 = 1.073760 × 10 −38
C 20 = −8.923070 × 10 −44

65 faces κ = 0
C 4 = −8.507040 × 10 −9 C 6 = −4.691460 × 10 −13
C 8 = 3.802050 × 10 −17 C 10 = −1.912410 × 10 −21
C 12 = 1.096940 × 10 −25 C 14 = −5.228850 × 10 −30
C 16 = 1.432580 × 10 −34 C 18 = −1.911870 × 10 −39
C 20 = 8.301610 × 10 −45

69 faces κ = 0
C 4 = 3.296010 × 10 −9 C 6 = 1.017380 × 10 −13
C 8 = −3.125050 × 10 −17 C 10 = 1.249490 × 10 −21
C 12 = 3.367610 × 10 −26 C 14 = −3.989680 × 10 −30
C 16 = 1.368530 × 10 −34 C 18 = −2.3351360 × 10 −39
C 20 = 1.710970 × 10 −44

71 surface κ = 0
C 4 = −3.248440 × 10 −8 C 6 = 2.002660 × 10 −12
C 8 = -4.269190 × 10 −18 C 10 = −8.5593550 × 10 −21
C 12 = 3.665260 × 10 −25 C 14 = 1.038290 × 10 −29
C 16 = −1.207970 × 10 −33 C 18 = 3.491290 × 10 −38
C 20 = −3.561350 × 10 −43

73 surface κ = 0
C 4 = 9.781470 × 10 −8 C 6 = −7.174220 × 10 −13
C 8 = 1.593300 × 10 −16 C 10 = 1.903480 × 10 −19
C 12 = -4.264660 × 10 −23 C 14 = 5.364590 × 10 −27
C 16 = -3.173790 × 10 −31 C 18 = 3.927300 × 10 −36
C 20 = 4.771630 × 10 −40

(Conditional value)
A = 7.54mm (reflective surface CM1a)
Re = 124.06 mm (reflection surface CM1a)
A = 6.83mm (reflective surface CM2a)
Re = 124.05mm (reflective surface CM2a)
Rm = 164.5mm
(1) G1 = 0.055
(2) G2 = 0.061
(5) Pw = 0.0104
(6) Rm / Rb = 10.851
 この第2実施例の投影光学系は、第1面と第2面との間の光路中に配置されて、第1凹面反射鏡を含み、互いに異なる面同士を光学的に共役な関係にする第1結像光学ユニットと、第1結像光学ユニットと第2面との間の光路中に配置されて、第2凹面反射鏡を含み、互いに異なる面同士を光学的に共役な関係にする第2結像光学ユニットとを備えており、第1凹面反射鏡が第1結像光学ユニットの光路中において第1面の位置と光学的にフーリエ変換の関係にある第1瞳位置から第1面側に配置され、第2凹面反射鏡が第2結像光学ユニットの光路中において第1面の位置と光学的にフーリエ変換の関係にある第2瞳位置から第2面側に配置されているため、良好な結像性能を達成できる。
[第3実施例]
 図17は、本実施形態の第3実施例にかかる投影光学系のレンズ構成を示す図である。第3実施例にかかる投影光学系PLにおいて第1結像光学系K1は、マスク側から順に、平行平面板P1と、14個のレンズL11~L114とにより構成されている。第2結像光学系K2は、光の進行往路に沿って光の入射側から順に、1つのレンズL21と、光の入射側に凹面を向けた凹面反射鏡CM1とにより構成されている。
The projection optical system of the second embodiment is disposed in the optical path between the first surface and the second surface, includes a first concave reflecting mirror, and makes different surfaces optically conjugate with each other. A first imaging optical unit, and a second concave reflecting mirror disposed in an optical path between the first imaging optical unit and the second surface, wherein different surfaces are optically conjugate with each other. A first imaging optical unit, wherein the first concave reflecting mirror is first from a first pupil position that is optically Fourier-transformed with the position of the first surface in the optical path of the first imaging optical unit. The second concave reflecting mirror is disposed on the surface side, and is disposed on the second surface side from the second pupil position that is optically Fourier-transformed with the position of the first surface in the optical path of the second imaging optical unit. Therefore, good imaging performance can be achieved.
[Third embodiment]
FIG. 17 is a diagram showing a lens configuration of the projection optical system according to the third example of the present embodiment. In the projection optical system PL according to the third example, the first imaging optical system K1 is composed of a plane parallel plate P1 and 14 lenses L11 to L114 in this order from the mask side. The second imaging optical system K2 is composed of one lens L21 and a concave reflecting mirror CM1 having a concave surface facing the light incident side in order from the light incident side along the light traveling path.
 第3結像光学系K3は、光の入射側から順に、3つのレンズL31~L33と、光の入射側に凹面を向けた凹面反射鏡CM2とにより構成されている。第4結像光学系K4は、光の入射側から順に、15個のレンズL41~L415と、ウェハ側に平面を向けた平凸レンズL416(境界レンズLb)とにより構成されている。第4結像光学系K4において、レンズL412とレンズL413との間の光路中には、開口絞りASが配置されている。次の表(3)に、第3実施例にかかる投影光学系PLの諸元の値を掲げる。 The third imaging optical system K3 is composed of, in order from the light incident side, three lenses L31 to L33 and a concave reflecting mirror CM2 having a concave surface facing the light incident side. The fourth imaging optical system K4 includes, in order from the light incident side, fifteen lenses L41 to L415 and a plano-convex lens L416 (boundary lens Lb) having a plane facing the wafer side. In the fourth imaging optical system K4, an aperture stop AS is disposed in the optical path between the lens L412 and the lens L413. The following table (3) lists the values of the specifications of the projection optical system PL according to the third example.
                表(3)
(主要諸元)
λ=193.306nm
β=1/4
NA=1.35
Ra=2.0mm
Rb=14.764823mm
LX=26mm
LY=5.0mm
 
(光学部材諸元)
面番号   r           d       n     光学部材
      (マスク面)    50.00000
1          ∞          8.00000     1.5603261      (P1)
2          ∞         29.78058
3      -127.30813     16.90000     1.5603261      (L11)
4      -213.96768     37.85278
5      -309.91658     34.00000     1.5603261      (L12)
6      -174.10735      1.00000
7       423.27805     54.75193     1.5603261      (L13)
8      -420.51673      1.00000
9       181.34518     39.99158     1.5603261      (L14)
10*     487.74740     35.52077
11     -970.15493     26.12991     1.5603261      (L15)
12     -310.86528      3.90431
13      131.85096     45.59478     1.5603261      (L16)
14*     137.13107      1.00000
15      122.58147     15.00000     1.5603261      (L17)
16       88.57951     14.61568
17*     140.17973     19.15803     1.5603261      (L18)
18      149.74240     15.18498
19     2429.92876      9.50000     1.5603261      (L19)
20      343.16306     32.41193
21      -62.82630     15.00000     1.5603261      (L110)
22     -113.37041      8.69329
23      -89.35211     43.32928     1.5603261      (L111)
24     -129.75751      1.00000
25     -917.79601     48.65198     1.5603261      (L112)
26     -160.05029      1.00000
27*   -1173.45002     49.27040     1.5603261      (L113)
28     -178.14331      1.00000
29*     281.86879     28.00000     1.5603261      (L114)
30   -59596.79538    120.00000
31         ∞        -85.00000                    (FM1)
32     -724.84397    -20.46255     1.5603261      (L21)
33      649.49668   -344.53745
34      468.64454    344.53745                    (CM1)
35      649.49668     20.46255     1.5603261      (L21)
36     -724.84397    138.15321
37*     632.72916     30.00000     1.5603261      (L31)
38     -222.37826    305.73229
39     -184.09838      9.00000     1.5603261      (L32)
40     -766.51612     37.54052
41     -154.11471      9.50000     1.5603261      (L33)
42     -345.44195     25.16160
43     -190.63911    -25.16160                    (CM2)
44     -345.44195     -9.50000     1.5603261      (L33)
45     -154.11471    -37.54052
46     -766.51612     -9.00000     1.5603261      (L32)
47     -184.09838   -305.73229
48     -222.37826    -30.00000     1.5603261      (L31)
49*     632.72916    -33.15321
50         ∞        115.00000                    (FM2)
51      201.51548     30.30016     1.5603261      (L41)
52     2271.81180      1.00000
53      212.87188     23.22810     1.5603261      (L42)
54      572.60417      1.00000
55      165.91358     13.00000     1.5603261      (L43)
56      160.64905      1.00000
57      156.53846     14.70000     1.5603261      (L44)
58*     140.12592     46.60665
59     -147.23563     13.50000     1.5603261      (L45)
60*     131.18894     28.26845
61    -1739.86221     15.00000     1.5603261      (L46)
62    -1640.79832      7.51927
63      457.82425     20.00000     1.5603261      (L47)
64*    5000.00000      0.91196
65      415.77430     33.09535     1.5603261      (L48)
66*    5000.00000      2.00598
67*   -2038.60809     33.27546     1.5603261      (L49)
68     -386.84098      1.00000
69    -1289.38962     27.50000     1.5603261      (L410)
70*    5000.00000     34.68163
71*    -759.04836     45.48136     1.5603261      (L411)
72     -206.49818      1.00000
73     -405.89317     43.53270     1.5603261      (L412)
74     -241.31258      0.00000
75         ∞          1.00000                    (AS)
76      264.21319     57.06367     1.5603261      (L413)
77     1334.84026      1.00000
78      167.67206     71.61148     1.5603261      (L414)
79*     369.23456      1.00000
80      118.51305     50.34182     1.5603261      (L415)
81*     464.07401      1.00000
82       64.24813     54.13376     1.5603261      (L416:Lb)
83         ∞          3.00000     1.435876       (Lm)
    (ウェハ面)
 
(非球面データ)
10面
κ=0
=3.019330×10-8   =1.049600×10-12
=6.915770×10-17  C10=-6.701530×10-21
12=9.937880×10-25  C14=-8.762510×10-29
16=5.421430×10-33  C18=-1.969010×10-37
20=3.385670×10-42
 
14面
κ=0
=1.219590×10-7   =-7.880830×10-12
=-9.373120×10-16  C10=-5.507030×10-19
12=1.666500×10-22  C14=-4.130870×10-26
16=8.251130×10-30  C18=-1.010770×10-33
20=5.131270×10-38
 
17面
κ=0
=4.608230×10-7   =1.108570×10-12
=1.084550×10-14  C10=-3.140760×10-18
12=-2.206940×10-21  C14=2.914130×10-24
16=-1.100090×10-27  C18=1.896490×10-31
20=-1.363840×10-35
 
27面
κ=0
=9.379590×10-9   =-2.292750×10-12
=1.502470×10-16  C10=-1.082960×10-20
12=7.255310×10-25  C14=-3.984510×10-29
16=1.576910×10-33  C18=-3.902520×10-38
20=4.456900×10-43
 
29面
κ=0
=-3.260560×10-8   =5.821880×10-13
=-3.640500×10-17  C10=1.680610×10-21
12=-1.651660×10-26  C14=-8.260310×10-30
16=9.116710×10-34  C18=-4.512790×10-38
20=9.108300×10-43
 
37面
κ=0
=-2.975120×10-8   =3.753260×10-13
=-6.868740×10-17  C10=2.865830×10-20
12=-8.581360×10-24  C14=1.617960×10-27
16=-1.833450×10-31   C18=1.137730×10-35
20=-2.951840×10-40
 
49面
κ=0
=-2.975120×10-8   =3.753260×10-13
=-6.868740×10-17  C10=2.865830×10-20
12=-8.581360×10-24  C14=1.617960×10-27
16=-1.833450×10-31   C18=1.137730×10-35
20=-2.951840×10-40
 
58面
κ=0
=5.942060×10-8   =1.104620×10-12
=-7.161690×10-17  C10=-2.406760×10-20
12=3.333170×10-23  C14=-1.365200×10-26
16=3.139860×10-30   C18=-3.829270×10-34
20=2.047710×10-38
 
60面
κ=0
=-1.431410×10-7   =1.386900×10-11
=-1.299750×10-15  C10=8.024180×10-20
12=-2.551080×10-23  C14=1.836510×10-27
16=1.494420×10-31   C18=-2.486280×10-35
20=9.829660×10-40
 
64面
κ=0
=1.422310×10-7   =-2.984300×10-12
=-3.668950×10-17  C10=-2.643720×10-20
12=-4.961130×10-25  C14=5.796880×10-28
16=-5.560440×10-32   C18=2.250480×10-36
20=-3.534380×10-41
 
66面
κ=0
=-9.926070×10-8   =1.429390×10-11
=-1.239860×10-15  C10=5.030440×10-20
12=3.413440×10-24  C14=-6.289230×10-28
16=3.947440×10-32   C18=-1.243360×10-36
20=1.751830×10-41
 
67面
κ=0
=-3.701360×10-8   =1.396870×10-11
=-1.265210×10-15  C10=2.072650×10-20
12=7.369620×10-24  C14=-9.853640×10-28
16=6.230660×10-32   C18=-2.092270×10-36
20=3.025230×10-41
 
70面
κ=0
=-2.633090×10-8   =4.422090×10-12
=-3.914150×10-16  C10=2.492550×10-20
12=-1.513830×10-24  C14=7.407980×10-29
16=-2.480660×10-33   C18=5.058120×10-38
20=-4.559480×10-43
 
71面
κ=0
=-6.291750×10-8   =2.200910×10-12
=-1.099060×10-16  C10=4.821050×10-21
12=-2.594680×10-25  C14=1.110100×10-29
16=-2.885920×10-34   C18=2.330820×10-39
20=9.181990×10-44
 
79面
κ=0
=-4.569880×10-8   =3.271870×10-12
=-2.091690×10-16  C10=3.464120×10-21
12=7.013050×10-25  C14=-6.351130×10-29
16=2.520380×10-33   C18=-5.108610×10-38
20=4.334700×10-43
 
81面
κ=0
=8.576300×10-8   =-7.163000×10-13
=1.237390×10-15  C10=-2.684410×10-19
12=4.386080×10-23  C14=-5.042610×10-27
16=4.152850×10-31   C18=-2.138250×10-35
20=5.505480×10-40
 
(条件対応値)
A=8.53mm(反射面CM1a)
Re=123.70mm(反射面CM1a)
A=0.93mm(反射面CM2a)
Re=124.02mm(反射面CM2a)
Rm=164.5mm
(1)G1=0.069
(3)G2=0.008
(5)Pw=0.0105
(6)Rm/Rb=11.141
Table (3)
(Main specifications)
λ = 193.306 nm
β = 1/4
NA = 1.35
Ra = 2.0mm
Rb = 14.764823 mm
LX = 26mm
LY = 5.0mm

(Optical member specifications)
Surface number r dn Optical member (mask surface) 50.00000
1 ∞ 8.00000 1.5603261 (P1)
2 ∞ 29.78058
3 -127.30813 16.90000 1.5603261 (L11)
4 -213.96768 37.85278
5 -309.91658 34.00000 1.5603261 (L12)
6 -174.10735 1.00000
7 423.27805 54.75193 1.5603261 (L13)
8 -420.51673 1.00000
9 181.34518 39.99158 1.5603261 (L14)
10 * 487.74740 35.52077
11 -970.15493 26.12991 1.5603261 (L15)
12 -310.86528 3.90431
13 131.85096 45.59478 1.5603261 (L16)
14 * 137.13107 1.00000
15 122.58147 15.00000 1.5603261 (L17)
16 88.57951 14.61568
17 * 140.17973 19.15803 1.5603261 (L18)
18 149.74240 15.18498
19 2429.92876 9.50000 1.5603261 (L19)
20 343.16306 32.41193
21 -62.82630 15.00000 1.5603261 (L110)
22 -113.37041 8.69329
23 -89.35211 43.32928 1.5603261 (L111)
24 -129.75751 1.00000
25 -917.79601 48.65198 1.5603261 (L112)
26 -160.05029 1.00000
27 * -1173.45002 49.27040 1.5603261 (L113)
28 -178.14331 1.00000
29 * 281.86879 28.00000 1.5603261 (L114)
30 -59596.79538 120.00000
31 ∞ -85.00000 (FM1)
32 -724.84397 -20.46255 1.5603261 (L21)
33 649.49668 -344.53745
34 468.64454 344.53745 (CM1)
35 649.49668 20.46255 1.5603261 (L21)
36 -724.84397 138.15321
37 * 632.72916 30.00000 1.5603261 (L31)
38 -222.37826 305.73229
39 -184.09838 9.00000 1.5603261 (L32)
40 -766.51612 37.54052
41 -154.11471 9.50000 1.5603261 (L33)
42 -345.44195 25.16160
43 -190.63911 -25.16160 (CM2)
44 -345.44195 -9.50000 1.5603261 (L33)
45 -154.11471 -37.54052
46 -766.51612 -9.00000 1.5603261 (L32)
47 -184.09838 -305.73229
48 -222.37826 -30.00000 1.5603261 (L31)
49 * 632.72916 -33.15321
50 ∞ 115.00000 (FM2)
51 201.51548 30.30016 1.5603261 (L41)
52 2271.81180 1.00000
53 212.87188 23.22810 1.5603261 (L42)
54 572.60417 1.00000
55 165.91358 13.00000 1.5603261 (L43)
56 160.64905 1.00000
57 156.53846 14.70000 1.5603261 (L44)
58 * 140.12592 46.60665
59 -147.23563 13.50000 1.5603261 (L45)
60 * 131.18894 28.26845
61 -1739.86221 15.00000 1.5603261 (L46)
62 -1640.79832 7.51927
63 457.82425 20.00000 1.5603261 (L47)
64 * 5000.00000 0.91196
65 415.77430 33.09535 1.5603261 (L48)
66 * 5000.00000 2.00598
67 * -2038.60809 33.27546 1.5603261 (L49)
68 -386.84098 1.00000
69 -1289.38962 27.50000 1.5603261 (L410)
70 * 5000.00000 34.68163
71 * -759.04836 45.48136 1.5603261 (L411)
72 -206.49818 1.00000
73 -405.89317 43.53270 1.5603261 (L412)
74 -241.31258 0.00000
75 ∞ 1.00000 (AS)
76 264.21319 57.06367 1.5603261 (L413)
77 1334.84026 1.00000
78 167.67206 71.61148 1.5603261 (L414)
79 * 369.23456 1.00000
80 118.51305 50.34182 1.5603261 (L415)
81 * 464.07401 1.00000
82 64.24813 54.13376 1.5603261 (L416: Lb)
83 ∞ 3.00000 1.435876 (Lm)
(Wafer surface)

(Aspheric data)
10 faces κ = 0
C 4 = 3.019330 × 10 −8 C 6 = 1.049600 × 10 −12
C 8 = 6.915770 × 10 −17 C 10 = −6.7701530 × 10 −21
C 12 = 9.993780 × 10 −25 C 14 = −8.762510 × 10 −29
C 16 = 5.421430 × 10 −33 C 18 = −1.969010 × 10 −37
C 20 = 3.385670 × 10 −42

14 faces κ = 0
C 4 = 1.219590 × 10 −7 C 6 = −7.888030 × 10 −12
C 8 = −9.373120 × 10 −16 C 10 = −5.507030 × 10 −19
C 12 = 1.666500 × 10 −22 C 14 = −4.130870 × 10 −26
C 16 = 8.251130 × 10 −30 C 18 = −1.010770 × 10 −33
C 20 = 5.1131270 × 10 −38

17 faces κ = 0
C 4 = 4.608230 × 10 −7 C 6 = 1.108570 × 10 −12
C 8 = 1.084550 × 10 −14 C 10 = −3.140760 × 10 −18
C 12 = −2.206940 × 10 −21 C 14 = 2.914130 × 10 −24
C 16 = −1.100090 × 10 −27 C 18 = 1.896490 × 10 −31
C 20 = −1.363840 × 10 −35

27 faces κ = 0
C 4 = 9.3379590 × 10 −9 C 6 = −2.2292750 × 10 −12
C 8 = 1.502470 × 10 −16 C 10 = −1.082960 × 10 −20
C 12 = 7.255310 × 10 −25 C 14 = −3.984510 × 10 −29
C 16 = 1.576910 × 10 −33 C 18 = −3.902520 × 10 −38
C 20 = 4.456900 × 10 −43

29 faces κ = 0
C 4 = −3.260560 × 10 −8 C 6 = 5.821880 × 10 −13
C 8 = −3.640 500 × 10 −17 C 10 = 1.680610 × 10 −21
C 12 = −1.651660 × 10 −26 C 14 = −8.260310 × 10 −30
C 16 = 9.116710 × 10 −34 C 18 = −4.512790 × 10 −38
C 20 = 9.108300 × 10 −43

37 faces κ = 0
C 4 = -2.975120 × 10 −8 C 6 = 3.753260 × 10 −13
C 8 = −6.868640 × 10 −17 C 10 = 2.865830 × 10 −20
C 12 = −8.581360 × 10 −24 C 14 = 1.617960 × 10 −27
C 16 = −1.833450 × 10 −31 C 18 = 1.137730 × 10 −35
C 20 = -2.951840 × 10 −40

49 faces κ = 0
C 4 = -2.975120 × 10 −8 C 6 = 3.753260 × 10 −13
C 8 = −6.868640 × 10 −17 C 10 = 2.865830 × 10 −20
C 12 = −8.581360 × 10 −24 C 14 = 1.617960 × 10 −27
C 16 = −1.833450 × 10 −31 C 18 = 1.137730 × 10 −35
C 20 = -2.951840 × 10 −40

58 surfaces κ = 0
C 4 = 5.9294020 × 10 −8 C 6 = 1.104620 × 10 −12
C 8 = −7.161690 × 10 −17 C 10 = −2.406760 × 10 −20
C 12 = 3.333 170 × 10 −23 C 14 = −1.365200 × 10 −26
C 16 = 3.139860 × 10 −30 C 18 = −3.829270 × 10 −34
C 20 = 2.047710 × 10 −38

60 faces κ = 0
C 4 = −1.431410 × 10 −7 C 6 = 1.386900 × 10 −11
C 8 = −1.299750 × 10 −15 C 10 = 8.024180 × 10 −20
C 12 = −2.551080 × 10 −23 C 14 = 1.836510 × 10 −27
C 16 = 1.494420 × 10 −31 C 18 = −2.4486280 × 10 −35
C 20 = 9.829660 × 10 −40

64 faces κ = 0
C 4 = 1.422310 × 10 −7 C 6 = −2.984300 × 10 −12
C 8 = −3.666850 × 10 −17 C 10 = −2.643720 × 10 −20
C 12 = −4.961130 × 10 −25 C 14 = 5.796880 × 10 −28
C 16 = −5.5560440 × 10 −32 C 18 = 2.250480 × 10 −36
C 20 = −3.534380 × 10 −41

66 faces κ = 0
C 4 = −9.926070 × 10 −8 C 6 = 1.429390 × 10 −11
C 8 = −1.239860 × 10 −15 C 10 = 5.030440 × 10 −20
C 12 = 3.413440 × 10 −24 C 14 = −6.289230 × 10 −28
C 16 = 3.994740 × 10 −32 C 18 = −1.243360 × 10 −36
C 20 = 1.751830 × 10 −41

67 faces κ = 0
C 4 = -3.701360 × 10 −8 C 6 = 1.3396870 × 10 −11
C 8 = −1.265210 × 10 −15 C 10 = 2.072650 × 10 −20
C 12 = 7.369620 × 10 −24 C 14 = −9.83640 × 10 −28
C 16 = 6.230660 × 10 −32 C 18 = −2.092270 × 10 −36
C 20 = 3.025230 × 10 −41

70 faces κ = 0
C 4 = −2.633090 × 10 −8 C 6 = 4.422090 × 10 −12
C 8 = −3.914150 × 10 −16 C 10 = 2.4492550 × 10 −20
C 12 = −1.513830 × 10 −24 C 14 = 7.407980 × 10 −29
C 16 = −2.4480660 × 10 −33 C 18 = 5.058 120 × 10 −38
C 20 = −4.559480 × 10 −43

71 surface κ = 0
C 4 = −6.291750 × 10 −8 C 6 = 2.200910 × 10 −12
C 8 = −1.099060 × 10 −16 C 10 = 4.8821050 × 10 −21
C 12 = −2.594680 × 10 −25 C 14 = 1.110100 × 10 −29
C 16 = −2.885920 × 10 −34 C 18 = 2.330820 × 10 −39
C 20 = 9.1181990 × 10 −44

79 faces κ = 0
C 4 = −4.569880 × 10 −8 C 6 = 3.271870 × 10 −12
C 8 = −2.091690 × 10 −16 C 10 = 3.464120 × 10 −21
C 12 = 7.013050 × 10 −25 C 14 = −6.3351130 × 10 −29
C 16 = 2.520380 × 10 −33 C 18 = −5.108610 × 10 −38
C 20 = 4.3334 700 × 10 −43

81 surface κ = 0
C 4 = 8.576300 × 10 −8 C 6 = −7.163000 × 10 −13
C 8 = 1.237390 × 10 −15 C 10 = −2.684410 × 10 −19
C 12 = 4.386080 × 10 −23 C 14 = −5.042610 × 10 −27
C 16 = 4.152850 × 10 −31 C 18 = −2.138250 × 10 −35
C 20 = 5.505480 × 10 −40

(Conditional value)
A = 8.53 mm (reflection surface CM1a)
Re = 123.70 mm (reflection surface CM1a)
A = 0.93mm (reflective surface CM2a)
Re = 124.02 mm (reflection surface CM2a)
Rm = 164.5mm
(1) G1 = 0.069
(3) G2 = 0.008
(5) Pw = 0.0105
(6) Rm / Rb = 11.141
 この第3実施例の投影光学系は、第1面と第2面との間の光路中に配置されて、第1凹面反射鏡を含み、互いに異なる面同士を光学的に共役な関係にする第1結像光学ユニットと、第1結像光学ユニットと第2面との間の光路中に配置されて、第2凹面反射鏡を含み、互いに異なる面同士を光学的に共役な関係にする第2結像光学ユニットとを備えており、第1凹面反射鏡が第1結像光学ユニットの光路中において第1面の位置と光学的にフーリエ変換の関係にある第1瞳位置から第1面側または第2面側に配置され、第2凹面反射鏡が第2結像光学ユニットの光路中において第1面の位置と光学的にフーリエ変換の関係にある第2瞳位置に配置されているため、良好な結像性能を達成できる。
[第4実施例]
 図18は、本実施形態の第4実施例にかかる投影光学系のレンズ構成を示す図である。第4実施例にかかる投影光学系PLにおいて第1結像光学系K1は、マスク側から順に、平行平面板P1と、10個のレンズL11~L110とにより構成されている。第2結像光学系K2は、光の進行往路に沿って光の入射側から順に、2つのレンズL21およびL22と、光の入射側に凹面を向けた凹面反射鏡CM1とにより構成されている。
The projection optical system of the third embodiment is disposed in an optical path between the first surface and the second surface, includes a first concave reflecting mirror, and makes different surfaces optically conjugate with each other. A first imaging optical unit, and a second concave reflecting mirror disposed in an optical path between the first imaging optical unit and the second surface, wherein different surfaces are optically conjugate with each other. A first imaging optical unit, wherein the first concave reflecting mirror is first from a first pupil position that is optically Fourier-transformed with the position of the first surface in the optical path of the first imaging optical unit. The second concave reflecting mirror is disposed on the surface side or the second surface side, and is disposed at the second pupil position that is optically Fourier-transformed with the position of the first surface in the optical path of the second imaging optical unit. Therefore, good imaging performance can be achieved.
[Fourth embodiment]
FIG. 18 is a diagram showing a lens configuration of the projection optical system according to the fourth example of the present embodiment. In the projection optical system PL according to the fourth example, the first imaging optical system K1 is composed of a plane parallel plate P1 and ten lenses L11 to L110 in this order from the mask side. The second imaging optical system K2 includes two lenses L21 and L22 and a concave reflecting mirror CM1 having a concave surface facing the light incident side in order from the light incident side along the light traveling path. .
 第3結像光学系K3は、光の入射側から順に、2つのレンズL31およびL32と、光の入射側に凹面を向けた凹面反射鏡CM2とにより構成されている。第4結像光学系K4は、光の入射側から順に、12個のレンズL41~L412と、ウェハ側に平面を向けた平凸レンズL413(境界レンズLb)とにより構成されている。第4結像光学系K4において、レンズL410とレンズL411との間の光路中には、開口絞りASが配置されている。次の表(4)に、第4実施例にかかる投影光学系PLの諸元の値を掲げる。 The third imaging optical system K3 is composed of two lenses L31 and L32 in order from the light incident side, and a concave reflecting mirror CM2 having a concave surface directed to the light incident side. The fourth imaging optical system K4 includes, in order from the light incident side, twelve lenses L41 to L412 and a plano-convex lens L413 (boundary lens Lb) having a plane directed to the wafer side. In the fourth imaging optical system K4, an aperture stop AS is disposed in the optical path between the lens L410 and the lens L411. The following table (4) lists the values of the specifications of the projection optical system PL according to the fourth example.
                表(4)
(主要諸元)
λ=193.306nm
β=1/4
NA=1.35
Ra=2.8mm
Rb=15.1605mm
LX=26mm
LY=5.0mm
 
(光学部材諸元)
面番号   r           d       n     光学部材
      (マスク面)    87.87079
1          ∞          8.00000     1.5603261      (P1)
2          ∞          6.00000
3       204.07445     52.84870     1.5603261      (L11)
4      -454.99806      1.00000
5*      471.88525     24.40695     1.5603261      (L12)
6      -425.52398     51.81117
7       209.78133      8.00000     1.5603261      (L13)
8       118.82226     61.73032
9       140.21318     37.84553     1.5603261      (L14)
10     -382.45670     39.26178
11     -132.06484      8.00000     1.5603261      (L15)
12     -202.28516      1.00000
13     1303.15296     20.25464     1.5603261      (L16)
14     -374.15619      6.95493
15     -333.97453     20.00626     1.5603261      (L17)
16     -167.20691     29.67942
17*    -187.92043      8.00000     1.5603261      (L18)
18     -671.24776    103.14358
19     -336.78775     37.10379     1.5603261      (L19)
20     -153.09684      1.00000
21    -1481.98166     27.07318     1.5603261      (L110)
22*    -244.36031    119.98802
23         ∞        -79.99998                    (FM1)
24     -354.52959    -43.17145     1.5603261      (L21)
25      637.49146   -338.81868
26*     129.95396     -8.00000     1.5603261      (L22)
27     1618.22540    -79.43153
28      254.58653     79.43153                    (CM1)
29     1618.22540      8.00000     1.5603261      (L22)
30*     129.95396    338.81868
31      637.49146     43.17145     1.5603261      (L21)
32     -354.52959    221.86624
33      339.43885     54.07128     1.5603261      (L31)
34     -813.62746    307.56083
35*    -127.52040      8.00000     1.5603261      (L32)
36    -2375.21500     80.57247
37     -254.59885    -80.57247                    (CM2)
38    -2375.21500     -8.00000     1.5603261      (L32)
39*    -127.52040   -307.56083
40     -813.62746    -54.07128     1.5603261      (L31)
41      339.43885   -121.86625
42         ∞        109.99991                    (FM2)
43*     251.17013     25.55009     1.5603261      (L41)
44      866.23983      1.00000
45      179.04527     40.08817     1.5603261      (L42)
46      683.89622    143.65934
47*    -245.93502      8.00000     1.5603261      (L43)
48      137.36695     40.74584
49     -207.19447     16.00000     1.5603261      (L44)
50     1757.98466      3.40928
51     1005.06285     26.00000     1.5603261      (L45)
52*    -228.13914      1.00000
53     -636.70227     36.00000     1.5603261      (L46)
54     -264.85022      1.00000
55  6746598.99230     24.92899     1.5603261      (L47)
56*    -662.29653     20.23738
57     -302.28751     46.11780     1.5603261      (L48)
58     -205.58670     17.55117
59*    -493.82767     37.39789     1.5603261      (L49)
60     -252.64751      1.00000
61      266.23062     67.54569     1.5603261      (L410)
62*   -1682.19133      0.50000
63         ∞          0.50000                    (AS)
64      186.30720     55.98724     1.5603261      (L411)
65*     605.67386      1.00000
66      147.77173     52.45431     1.5603261      (L412)
67*     449.51431      1.00000
68       64.09846     57.34783     1.5603261      (L413:Lb)
69         ∞          3.00000     1.435876       (Lm)
    (ウェハ面)
 
(非球面データ)
5面
κ=0
=-6.982550×10-8   =-9.437780×10-13
=-1.037460×10-17  C10=1.326310×10-21
12=-8.053140×10-26  C14=1.257480×10-29
16=1.340910×10-34  C18=-6.438950×10-38
20=2.041070×10-42
 
17面
κ=0
=-2.608030×10-7   =1.092420×10-12
=-1.254900×10-15  C10=1.304490×10-19
12=-9.052670×10-23  C14=2.664230×10-26
16=-5.873680×10-30  C18=6.995530×10-34
20=-4.013330×10-38
 
22面
κ=0
=1.545150×10-8   =3.951400×10-13
=-3.021100×10-19  C10=1.191630×10-21
12=-9.462770×10-26  C14=8.031000×10-30
16=-4.068030×10-34  C18=1.073160×10-38
20=0
 
26面
κ=0
=-2.645370×10-8   =-1.268140×10-12
=-4.940530×10-17  C10=-3.813450×10-21
12=9.791780×10-26  C14=-1.257850×10-29
16=-7.111880×10-34  C18=0   C20=0
 
30面
κ=0
=-2.645370×10-8   =-1.268140×10-12
=-4.940530×10-17  C10=-3.813450×10-21
12=9.791780×10-26  C14=-1.257850×10-29
16=-7.111880×10-34  C18=0   C20=0
 
35面
κ=0
=2.638530×10-8   =1.516730×10-12
=8.019360×10-17  C10=3.072480×10-22
12=6.891090×10-25  C14=-5.154990×10-29
16=3.477200×10-33   C18=0   C20=0
 
39面
κ=0
=2.638530×10-8   =1.516730×10-12
=8.019360×10-17  C10=3.072480×10-22
12=6.891090×10-25  C14=-5.154990×10-29
16=3.477200×10-33   C18=0   C20=0
 
43面
κ=0
=-1.184550×10-8   =-1.852890×10-13
=3.383830×10-18  C10=-2.498590×10-22
12=1.583360×10-27  C14=-3.621270×10-31
16=1.080160×10-35   C18=0   C20=0
 
47面
κ=0
=-1.350520×10-7   =1.261890×10-11
=4.695110×10-16  C10=-6.865110×10-20
12=-2.598210×10-24  C14=1.164180×10-27
16=-2.500690×10-31   C18=2.883920×10-35
20=-1.229890×10-39
 
52面
κ=0
=6.526650×10-8   =2.872130×10-12
=1.224350×10-16  C10=-4.386550×10-21
12=1.599090×10-24  C14=-2.042260×10-28
16=2.007870×10-32   C18=-9.322540×10-37
20=1.550770×10-41
 
56面
κ=0
=-1.973270×10-8   =1.033850×10-12
=1.949840×10-17  C10=4.721580×10-22
12=-2.771440×10-25  C14=2.559470×10-29
16=-1.644160×10-33   C18=5.636830×10-38
20=-7.322780×10-43
 
59面
κ=0
=-3.480820×10-8   =1.114220×10-12
=9.108670×10-18  C10=-3.761100×10-22
12=-4.473880×10-26  C14=4.222360×10-30
16=-1.937540×10-34   C18=4.656380×10-39
20=-4.444510×10-44
 
62面
κ=0
=1.062800×10-8   =2.605200×10-13
=8.729980×10-18  C10=-3.852360×10-21
12=2.847260×10-25  C14=-1.189480×10-29
16=3.118810×10-34   C18=-4.707590×10-39
20=3.128370×10-44
 
65面
κ=0
=-6.717180×10-8   =9.390120×10-12
=-7.232490×10-16  C10=5.263440×10-20
12=-3.371860×10-24  C14=1.774260×10-28
16=-6.787730×10-33   C18=1.646310×10-37
20=-1.898590×10-42
 
67面
κ=0
=-7.756760×10-8   =8.818670×10-12
=-4.918780×10-16  C10=-1.392350×10-20
12=5.830500×10-24  C14=-6.305730×10-28
16=3.950710×10-32   C18=-1.397770×10-36
20=2.192930×10-41
 
(条件対応値)
A=1.01mm(反射面CM1a)
Re=124.77mm(反射面CM1a)
A=1.67mm(反射面CM2a)
Re=124.59mm(反射面CM2a)
Rm=164.5mm
(4)G1=  0.008
(3)G2=0.013
(5)Pw=0.0107
(6)Rm/Rb=10.851
Table (4)
(Main specifications)
λ = 193.306 nm
β = 1/4
NA = 1.35
Ra = 2.8mm
Rb = 15.1605 mm
LX = 26mm
LY = 5.0mm

(Optical member specifications)
Surface number r dn optical member (mask surface) 87.87079
1 ∞ 8.00000 1.5603261 (P1)
2 ∞ 6.00000
3 204.07445 52.84870 1.5603261 (L11)
4 -454.99806 1.00000
5 * 471.88525 24.40695 1.5603261 (L12)
6 -425.52398 51.81117
7 209.78133 8.00000 1.5603261 (L13)
8 118.82226 61.73032
9 140.21318 37.84553 1.5603261 (L14)
10 -382.45670 39.26178
11 -132.06484 8.00000 1.5603261 (L15)
12 -202.28516 1.00000
13 1303.15296 20.25464 1.5603261 (L16)
14 -374.15619 6.95493
15 -333.97453 20.00626 1.5603261 (L17)
16 -167.20691 29.67942
17 * -187.92043 8.00000 1.5603261 (L18)
18 -671.24776 103.14358
19 -336.78775 37.10379 1.5603261 (L19)
20 -153.09684 1.00000
21 -1481.98166 27.07318 1.5603261 (L110)
22 * -244.36031 119.98802
23 ∞ -79.99998 (FM1)
24 -354.52959 -43.17145 1.5603261 (L21)
25 637.49146 -338.81868
26 * 129.95396 -8.00000 1.5603261 (L22)
27 1618.22540 -79.43153
28 254.58653 79.43153 (CM1)
29 1618.22540 8.00000 1.5603261 (L22)
30 * 129.95396 338.81868
31 637.49146 43.17145 1.5603261 (L21)
32 -354.52959 221.86624
33 339.43885 54.07128 1.5603261 (L31)
34 -813.62746 307.56083
35 * -127.52040 8.00000 1.5603261 (L32)
36 -2375.21500 80.57247
37 -254.59885 -80.57247 (CM2)
38 -2375.21500 -8.00000 1.5603261 (L32)
39 * -127.52040 -307.56083
40 -813.62746 -54.07128 1.5603261 (L31)
41 339.43885 -121.86625
42 ∞ 109.99991 (FM2)
43 * 251.17013 25.55009 1.5603261 (L41)
44 866.23983 1.00000
45 179.04527 40.08817 1.5603261 (L42)
46 683.89622 143.65934
47 * -245.93502 8.00000 1.5603261 (L43)
48 137.36695 40.74584
49 -207.19447 16.00000 1.5603261 (L44)
50 1757.98466 3.40928
51 1005.06285 26.00000 1.5603261 (L45)
52 * -228.13914 1.00000
53 -636.70227 36.00000 1.5603261 (L46)
54 -264.85022 1.00000
55 6746598.99230 24.92899 1.5603261 (L47)
56 * -662.29653 20.23738
57 -302.28751 46.11780 1.5603261 (L48)
58 -205.58670 17.55117
59 * -493.82767 37.39789 1.5603261 (L49)
60 -252.64751 1.00000
61 266.23062 67.54569 1.5603261 (L410)
62 * -1682.19133 0.50000
63 ∞ 0.50000 (AS)
64 186.30720 55.98724 1.5603261 (L411)
65 * 605.67386 1.00000
66 147.77173 52.45431 1.5603261 (L412)
67 * 449.51431 1.00000
68 64.09846 57.34783 1.5603261 (L413: Lb)
69 ∞ 3.00000 1.435876 (Lm)
(Wafer surface)

(Aspheric data)
5 sides κ = 0
C 4 = −6.982550 × 10 −8 C 6 = −9.4437780 × 10 −13
C 8 = −1.037460 × 10 −17 C 10 = 1.326310 × 10 −21
C 12 = −8.053 140 × 10 −26 C 14 = 1.257480 × 10 −29
C 16 = 1.340910 × 10 −34 C 18 = −6.438950 × 10 −38
C 20 = 2.041070 × 10 −42

17 faces κ = 0
C 4 = −2.660830 × 10 −7 C 6 = 1.092420 × 10 −12
C 8 = -1.254900 × 10 −15 C 10 = 1.304490 × 10 −19
C 12 = −9.052670 × 10 −23 C 14 = 2.664230 × 10 −26
C 16 = −5.883680 × 10 −30 C 18 = 6.959530 × 10 −34
C 20 = −4.013330 × 10 −38

22 planes κ = 0
C 4 = 1.545150 × 10 −8 C 6 = 3.951400 × 10 −13
C 8 = −3.021100 × 10 −19 C 10 = 1.191630 × 10 −21
C 12 = −9.42770 × 10 −26 C 14 = 8.031000 × 10 −30
C 16 = −4.068030 × 10 −34 C 18 = 1.073160 × 10 −38
C 20 = 0

26 surfaces κ = 0
C 4 = −2.6645370 × 10 −8 C 6 = −1.268 140 × 10 −12
C 8 = -4.940530 × 10 −17 C 10 = −3.813450 × 10 −21
C 12 = 9.791780 × 10 −26 C 14 = −1.257850 × 10 −29
C 16 = −7.1111880 × 10 −34 C 18 = 0 C 20 = 0

30 planes κ = 0
C 4 = −2.6645370 × 10 −8 C 6 = −1.268 140 × 10 −12
C 8 = -4.940530 × 10 −17 C 10 = −3.813450 × 10 −21
C 12 = 9.791780 × 10 −26 C 14 = −1.257850 × 10 −29
C 16 = −7.1111880 × 10 −34 C 18 = 0 C 20 = 0

35 faces κ = 0
C 4 = 2.638530 × 10 −8 C 6 = 1.516730 × 10 −12
C 8 = 8.019360 × 10 −17 C 10 = 3.072480 × 10 −22
C 12 = 6.891090 × 10 −25 C 14 = −5.154990 × 10 −29
C 16 = 3.477200 × 10 −33 C 18 = 0 C 20 = 0

39 surfaces κ = 0
C 4 = 2.638530 × 10 −8 C 6 = 1.516730 × 10 −12
C 8 = 8.019360 × 10 −17 C 10 = 3.072480 × 10 −22
C 12 = 6.891090 × 10 −25 C 14 = −5.154990 × 10 −29
C 16 = 3.477200 × 10 −33 C 18 = 0 C 20 = 0

43 planes κ = 0
C 4 = −1.184550 × 10 −8 C 6 = −1.852890 × 10 −13
C 8 = 3.338330 × 10 −18 C 10 = −2.4498590 × 10 −22
C 12 = 1.583360 × 10 −27 C 14 = −3.62270 × 10 −31
C 16 = 1.080160 × 10 −35 C 18 = 0 C 20 = 0

47 faces κ = 0
C 4 = −1.350520 × 10 −7 C 6 = 1.261890 × 10 −11
C 8 = 4.695110 × 10 −16 C 10 = −6.865110 × 10 −20
C 12 = −2.598210 × 10 −24 C 14 = 1.164180 × 10 −27
C 16 = −2.500690 × 10 −31 C 18 = 2.883920 × 10 −35
C 20 = −1.229890 × 10 −39

52 planes κ = 0
C 4 = 6.552650 × 10 −8 C 6 = 2.872130 × 10 −12
C 8 = 1.224350 × 10 −16 C 10 = −4.3386550 × 10 −21
C 12 = 1.599090 × 10 −24 C 14 = −2.042260 × 10 −28
C 16 = 2.007870 × 10 −32 C 18 = −9.332240 × 10 −37
C 20 = 1.5550770 × 10 −41

56 faces κ = 0
C 4 = −1.973270 × 10 −8 C 6 = 1.033850 × 10 −12
C 8 = 1.949840 × 10 −17 C 10 = 4.721580 × 10 −22
C 12 = −2.771440 × 10 −25 C 14 = 2.5559470 × 10 −29
C 16 = −1.644 160 × 10 −33 C 18 = 5.636830 × 10 −38
C 20 = −7.3322780 × 10 −43

59 surfaces κ = 0
C 4 = −3.4480820 × 10 −8 C 6 = 1.114220 × 10 −12
C 8 = 9.108670 × 10 −18 C 10 = −3.761100 × 10 −22
C 12 = −4.473880 × 10 −26 C 14 = 4.222360 × 10 −30
C 16 = -1.937540 × 10 −34 C 18 = 4.6656380 × 10 −39
C 20 = −4.444510 × 10 −44

62 plane κ = 0
C 4 = 1.062800 × 10 −8 C 6 = 2.605200 × 10 −13
C 8 = 8.727980 × 10 −18 C 10 = −3.8852360 × 10 −21
C 12 = 2.847260 × 10 −25 C 14 = −1.189480 × 10 −29
C 16 = 3.118810 × 10 −34 C 18 = −4.7707590 × 10 −39
C 20 = 3.128370 × 10 −44

65 faces κ = 0
C 4 = −6.717180 × 10 −8 C 6 = 9.390 120 × 10 −12
C 8 = −7.232490 × 10 −16 C 10 = 5.263440 × 10 −20
C 12 = -3.371860 × 10 −24 C 14 = 1.774260 × 10 −28
C 16 = −6.778730 × 10 −33 C 18 = 1.646310 × 10 −37
C 20 = −1.898590 × 10 −42

67 faces κ = 0
C 4 = −7.7756760 × 10 −8 C 6 = 8.881670 × 10 −12
C 8 = -4.918780 × 10 −16 C 10 = −1.392350 × 10 −20
C 12 = 5.830500 × 10 −24 C 14 = −6.305730 × 10 −28
C 16 = 3.950710 × 10 −32 C 18 = −1.397770 × 10 −36
C 20 = 2.192930 × 10 −41

(Conditional value)
A = 1.01mm (reflective surface CM1a)
Re = 124.77 mm (reflection surface CM1a)
A = 1.67mm (reflective surface CM2a)
Re = 124.59 mm (reflection surface CM2a)
Rm = 164.5mm
(4) G1 = 0.008
(3) G2 = 0.013
(5) Pw = 0.0107
(6) Rm / Rb = 10.851
 この第4実施例の投影光学系は、第1面と第2面との間の光路中に配置されて、第1凹面反射鏡を含み、互いに異なる面同士を光学的に共役な関係にする第1結像光学ユニットと、第1結像光学ユニットと第2面との間の光路中に配置されて、第2凹面反射鏡を含み、互いに異なる面同士を光学的に共役な関係にする第2結像光学ユニットとを備えており、第1凹面反射鏡が第1結像光学ユニットの光路中において第1面の位置と光学的にフーリエ変換の関係にある第1瞳位置に配置され、第2凹面反射鏡が第2結像光学ユニットの光路中において第1面の位置と光学的にフーリエ変換の関係にある第2瞳位置から第1面側または第2面側に配置されているため、良好な結像性能を達成できる。
 各実施例の投影光学系PLでは、所要の条件式を満足しているので、第1凹面反射鏡CM1の反射面CM1aおよび第2凹面反射鏡CM2の反射面CM2aに付与する変形を表現する関数FZ17の係数の符号および大きさを適宜設定する(あるいは変化させる)ことにより、投影光学系PLの波面収差の0次収差成分および1次収差成分のうちの少なくとも一方を調整することができる。一般的には、特定の関数FZ17に限定されることなく、第1凹面反射鏡CM1の反射面CM1aおよび第2凹面反射鏡CM2の反射面CM2aに対して、互いに同じ関数表示にしたがう変形を付与することにより、投影光学系PLの波面収差を調整することができる。
 上述の実施形態並びに実施例では、第1凹面反射鏡CM1の反射面CM1aおよび第2凹面反射鏡CM2の反射面CM2aに対して、ツェルニケ多項式で表現される変形を付与したが、付与する変形を表示する関数は、ツェルニケ多項式には限定されず、例えばべき級数等の多項式であっても良い。また、上述の実施形態並びに実施例では、第1凹面反射鏡CM1の反射面CM1aおよび第2凹面反射鏡CM2の反射面CM2aの双方を変形させたが、一方の反射面形状に対する他方の反射面形状を調整することにより投影光学系PLの波面収差が調整できるため、第1凹面反射鏡CM1の反射面CM1aおよび第2凹面反射鏡CM2の反射面CM2aのうち少なくとも一方が変形可能であれば良い。
The projection optical system of the fourth embodiment is disposed in the optical path between the first surface and the second surface, includes the first concave reflecting mirror, and makes different surfaces optically conjugate with each other. A first imaging optical unit, and a second concave reflecting mirror disposed in an optical path between the first imaging optical unit and the second surface, wherein different surfaces are optically conjugate with each other. A second imaging optical unit, and the first concave reflecting mirror is disposed at a first pupil position that is optically Fourier-transformed with the position of the first surface in the optical path of the first imaging optical unit. The second concave reflecting mirror is disposed on the first surface side or the second surface side from the second pupil position that is optically Fourier-transformed with the position of the first surface in the optical path of the second imaging optical unit. Therefore, good imaging performance can be achieved.
In the projection optical system PL of each embodiment, since the required conditional expression is satisfied, a function that expresses deformation applied to the reflecting surface CM1a of the first concave reflecting mirror CM1 and the reflecting surface CM2a of the second concave reflecting mirror CM2. By appropriately setting (or changing) the sign and size of the coefficient of FZ 17 , it is possible to adjust at least one of the zero-order aberration component and the first-order aberration component of the wavefront aberration of the projection optical system PL. In general, the present invention is not limited to the specific function FZ 17 , and the deformation according to the same function display is applied to the reflecting surface CM1a of the first concave reflecting mirror CM1 and the reflecting surface CM2a of the second concave reflecting mirror CM2. By applying, the wavefront aberration of the projection optical system PL can be adjusted.
In the above-described embodiments and examples, the deformation represented by the Zernike polynomial is applied to the reflection surface CM1a of the first concave reflection mirror CM1 and the reflection surface CM2a of the second concave reflection mirror CM2. The function to be displayed is not limited to the Zernike polynomial, and may be a polynomial such as a power series, for example. In the above-described embodiment and examples, both the reflecting surface CM1a of the first concave reflecting mirror CM1 and the reflecting surface CM2a of the second concave reflecting mirror CM2 are deformed, but the other reflecting surface with respect to one reflecting surface shape. Since the wavefront aberration of the projection optical system PL can be adjusted by adjusting the shape, it is sufficient that at least one of the reflecting surface CM1a of the first concave reflecting mirror CM1 and the reflecting surface CM2a of the second concave reflecting mirror CM2 can be deformed. .
 すなわち、本実施形態の投影光学系PLでは、たとえば光照射に起因して発生する波面収差をアクティブに調整することができる。その結果、本実施形態の露光装置では、波面収差がアクティブに調整可能な投影光学系PLを用いて、マスクMの微細パターンをウェハWに高精度に投影露光することができ、ひいては良好なデバイスを製造することができる。 That is, in the projection optical system PL of the present embodiment, for example, wavefront aberration caused due to light irradiation can be actively adjusted. As a result, in the exposure apparatus of the present embodiment, the fine pattern of the mask M can be projected and exposed to the wafer W with high accuracy by using the projection optical system PL capable of actively adjusting the wavefront aberration, and thus a good device. Can be manufactured.
 なお、上述の各実施例では、投影光学系PLが4つの結像光学ユニットK1,K2,K3,K4からなる4回結像型の光学系として構成されている。しかしながら、これに限定されることなく、第1凹面反射鏡を含む第1結像光学ユニットと第2凹面反射鏡を含む第2結像光学ユニットとを備えた投影光学系、例えば米国特許第4,812,028号公報、第5,668,673号公報、第7,030,965号公報等に開示される投影光学系に対して本発明を適用することができる。 In each of the above-described embodiments, the projection optical system PL is configured as a four-fold imaging type optical system including four imaging optical units K1, K2, K3, and K4. However, the present invention is not limited to this. A projection optical system including a first imaging optical unit including a first concave reflecting mirror and a second imaging optical unit including a second concave reflecting mirror, for example, U.S. Pat. 812, 028, No. 5,668,673, No. 7,030,965, etc., the present invention can be applied.
 また、上述の各実施例では、有効結像領域ERおよび有効視野領域FRが投影光学系PLの光軸AXから離れた矩形状の領域として設定されている。しかしながら、これに限定されることなく、有効結像領域および有効視野領域と投影光学系の光軸との位置関係、および有効結像領域および有効視野領域の形状については様々な形態が可能である。例えば有効結像領域ERおよび有効視野領域FRは、円弧状や平行四辺形状、台形状、六角形状などの多角形状としても良い。 Further, in each of the above-described embodiments, the effective image formation region ER and the effective visual field region FR are set as rectangular regions separated from the optical axis AX of the projection optical system PL. However, the present invention is not limited to this, and various forms are possible for the positional relationship between the effective imaging region and effective field region and the optical axis of the projection optical system, and the shape of the effective imaging region and effective field region. . For example, the effective imaging region ER and the effective visual field region FR may have a polygonal shape such as an arc shape, a parallelogram shape, a trapezoidal shape, or a hexagonal shape.
 上述の各実施例では、第1結像光学系K1の光軸または第4結像光学系K4の光軸と、第2および第3結像光学系K2,K3の光軸とが互いに直交していたが、この配置には限定されない。例えば、第2および第3結像光学系K2,K3の光軸をY軸に対して所定角度だけ傾斜させても良い。 In each of the above-described embodiments, the optical axis of the first imaging optical system K1 or the optical axis of the fourth imaging optical system K4 and the optical axes of the second and third imaging optical systems K2 and K3 are orthogonal to each other. However, it is not limited to this arrangement. For example, the optical axes of the second and third imaging optical systems K2 and K3 may be inclined by a predetermined angle with respect to the Y axis.
 また、上述の各実施例では、第1凹面反射鏡CM1の反射面CM1aおよび第2凹面反射鏡CM2の反射面CM2aを変形させて投影光学系の収差を制御したが、これに加えて、投影光学系を構成する光透過部材に所要の温度分布を与える収差制御機構を設けても良い。このような光透過部材に所要の温度分布を与える収差制御機構としては、米国特許第6,198,579号公報や米国特許第6,781,668号公報、第7,817,249号公報、米国特許公開第2008/123066号公報を参照することができる。また、投影光学系を構成する光学部材の位置、姿勢を変更して投影光学系の収差を制御する収差制御機構を設けても良い。 In each of the above-described embodiments, the reflection surface CM1a of the first concave reflecting mirror CM1 and the reflecting surface CM2a of the second concave reflecting mirror CM2 are deformed to control the aberration of the projection optical system. You may provide the aberration control mechanism which gives required temperature distribution to the light transmissive member which comprises an optical system. As an aberration control mechanism for giving a required temperature distribution to such a light transmitting member, US Pat. No. 6,198,579, US Pat. No. 6,781,668, 7,817,249, Reference may be made to US Patent Publication No. 2008/123066. In addition, an aberration control mechanism for controlling the aberration of the projection optical system by changing the position and posture of the optical member constituting the projection optical system may be provided.
 上述の実施形態では、マスクの代わりに、所定の電子データに基づいて所定パターンを形成する可変パターン形成装置を用いることができる。なお、可変パターン形成装置としては、たとえば所定の電子データに基づいて駆動される複数の反射素子を含む空間光変調素子を用いることができる。空間光変調素子を用いた露光装置は、たとえば米国特許公開第2007/0296936号公報に開示されている。また、上述のような非発光型の反射型空間光変調器以外に、透過型空間光変調器を用いても良く、自発光型の画像表示素子を用いても良い。 In the above-described embodiment, a variable pattern forming apparatus that forms a predetermined pattern based on predetermined electronic data can be used instead of a mask. As the variable pattern forming apparatus, for example, a spatial light modulation element including a plurality of reflection elements driven based on predetermined electronic data can be used. An exposure apparatus using a spatial light modulator is disclosed, for example, in US Patent Publication No. 2007/0296936. In addition to the non-light-emitting reflective spatial light modulator as described above, a transmissive spatial light modulator may be used, or a self-luminous image display element may be used.
 上述の実施形態の露光装置は、本願特許請求の範囲に挙げられた各構成要素を含む各種サブシステムを、所定の機械的精度、電気的精度、光学的精度を保つように、組み立てることで製造される。これら各種精度を確保するために、この組み立ての前後には、各種光学系については光学的精度を達成するための調整、各種機械系については機械的精度を達成するための調整、各種電気系については電気的精度を達成するための調整が行われる。各種サブシステムから露光装置への組み立て工程は、各種サブシステム相互の、機械的接続、電気回路の配線接続、気圧回路の配管接続等が含まれる。この各種サブシステムから露光装置への組み立て工程の前に、各サブシステム個々の組み立て工程があることはいうまでもない。各種サブシステムの露光装置への組み立て工程が終了したら、総合調整が行われ、露光装置全体としての各種精度が確保される。なお、露光装置の製造は温度およびクリーン度等が管理されたクリーンルームで行っても良い。 The exposure apparatus of the above-described embodiment is manufactured by assembling various subsystems including the respective constituent elements recited in the claims of the present application so as to maintain predetermined mechanical accuracy, electrical accuracy, and optical accuracy. Is done. In order to ensure these various accuracies, before and after assembly, various optical systems are adjusted to achieve optical accuracy, various mechanical systems are adjusted to achieve mechanical accuracy, and various electrical systems are Adjustments are made to achieve electrical accuracy. The assembly process from the various subsystems to the exposure apparatus includes mechanical connection, electrical circuit wiring connection, pneumatic circuit piping connection and the like between the various subsystems. Needless to say, there is an assembly process for each subsystem before the assembly process from the various subsystems to the exposure apparatus. When the assembly process of the various subsystems to the exposure apparatus is completed, comprehensive adjustment is performed to ensure various accuracies as the entire exposure apparatus. The exposure apparatus may be manufactured in a clean room where the temperature, cleanliness, etc. are controlled.
 次に、上述の実施形態にかかる露光装置を用いたデバイス製造方法について説明する。図19は、半導体デバイスの製造工程を示すフローチャートである。図19に示すように、半導体デバイスの製造工程では、半導体デバイスの基板となるウェハWに金属膜を蒸着し(ステップS40)、この蒸着した金属膜上に感光性材料であるフォトレジストを塗布する(ステップS42)。つづいて、上述の実施形態の露光装置を用い、マスク(レチクル)Mに形成されたパターンをウェハW上の各ショット領域に転写し(ステップS44:露光工程)、この転写が終了したウェハWの現像、つまりパターンが転写されたフォトレジストの現像を行う(ステップS46:現像工程)。 Next, a device manufacturing method using the exposure apparatus according to the above-described embodiment will be described. FIG. 19 is a flowchart showing a manufacturing process of a semiconductor device. As shown in FIG. 19, in the semiconductor device manufacturing process, a metal film is vapor-deposited on a wafer W to be a semiconductor device substrate (step S40), and a photoresist, which is a photosensitive material, is applied on the vapor-deposited metal film. (Step S42). Subsequently, using the exposure apparatus of the above-described embodiment, the pattern formed on the mask (reticle) M is transferred to each shot area on the wafer W (step S44: exposure process), and the transfer of the wafer W after the transfer is completed. Development, that is, development of the photoresist to which the pattern has been transferred is performed (step S46: development process).
 その後、ステップS46によってウェハWの表面に生成されたレジストパターンをマスクとし、ウェハWの表面に対してエッチング等の加工を行う(ステップS48:加工工程)。ここで、レジストパターンとは、上述の実施形態の露光装置によって転写されたパターンに対応する形状の凹凸が生成されたフォトレジスト層であって、その凹部がフォトレジスト層を貫通しているものである。ステップS48では、このレジストパターンを介してウェハWの表面の加工を行う。ステップS48で行われる加工には、例えばウェハWの表面のエッチングまたは金属膜等の成膜の少なくとも一方が含まれる。なお、ステップS44では、上述の実施形態の露光装置は、フォトレジストが塗布されたウェハWを、感光性基板としてパターンの転写を行う。 Thereafter, using the resist pattern generated on the surface of the wafer W in step S46 as a mask, processing such as etching is performed on the surface of the wafer W (step S48: processing step). Here, the resist pattern is a photoresist layer in which unevenness having a shape corresponding to the pattern transferred by the exposure apparatus of the above-described embodiment is generated, and the recess penetrates the photoresist layer. is there. In step S48, the surface of the wafer W is processed through this resist pattern. The processing performed in step S48 includes, for example, at least one of etching of the surface of the wafer W or film formation of a metal film or the like. In step S44, the exposure apparatus of the above-described embodiment performs pattern transfer using the wafer W coated with the photoresist as a photosensitive substrate.
 図20は、液晶表示素子等の液晶デバイスの製造工程を示すフローチャートである。図20に示すように、液晶デバイスの製造工程では、パターン形成工程(ステップS50)、カラーフィルタ形成工程(ステップS52)、セル組立工程(ステップS54)およびモジュール組立工程(ステップS56)を順次行う。ステップS50のパターン形成工程では、プレートPとしてフォトレジストが塗布されたガラス基板上に、上述の実施形態の露光装置を用いて回路パターンおよび電極パターン等の所定のパターンを形成する。このパターン形成工程には、上述の実施形態の露光装置を用いてフォトレジスト層にパターンを転写する露光工程と、パターンが転写されたプレートPの現像、つまりガラス基板上のフォトレジスト層の現像を行い、パターンに対応する形状のフォトレジスト層を生成する現像工程と、この現像されたフォトレジスト層を介してガラス基板の表面を加工する加工工程とが含まれている。 FIG. 20 is a flowchart showing a manufacturing process of a liquid crystal device such as a liquid crystal display element. As shown in FIG. 20, in the liquid crystal device manufacturing process, a pattern forming process (step S50), a color filter forming process (step S52), a cell assembling process (step S54), and a module assembling process (step S56) are sequentially performed. In the pattern forming process of step S50, a predetermined pattern such as a circuit pattern and an electrode pattern is formed on the glass substrate coated with a photoresist as the plate P using the exposure apparatus of the above-described embodiment. In this pattern formation process, an exposure process for transferring the pattern to the photoresist layer using the exposure apparatus of the above-described embodiment and development of the plate P to which the pattern is transferred, that is, development of the photoresist layer on the glass substrate are performed. And a developing step for generating a photoresist layer having a shape corresponding to the pattern, and a processing step for processing the surface of the glass substrate through the developed photoresist layer.
 ステップS52のカラーフィルタ形成工程では、R(Red)、G(Green)、B(Blue)に対応する3つのドットの組をマトリックス状に多数配列するか、またはR、G、Bの3本のストライプのフィルタの組を水平走査方向に複数配列したカラーフィルタを形成する。ステップS54のセル組立工程では、ステップS50によって所定パターンが形成されたガラス基板と、ステップS52によって形成されたカラーフィルタとを用いて液晶パネル(液晶セル)を組み立てる。具体的には、例えばガラス基板とカラーフィルタとの間に液晶を注入することで液晶パネルを形成する。ステップS56のモジュール組立工程では、ステップS54によって組み立てられた液晶パネルに対し、この液晶パネルの表示動作を行わせる電気回路およびバックライト等の各種部品を取り付ける。 In the color filter forming process in step S52, a large number of sets of three dots corresponding to R (Red), G (Green), and B (Blue) are arranged in a matrix or three R, G, and B A color filter is formed by arranging a plurality of stripe filter sets in the horizontal scanning direction. In the cell assembly process in step S54, a liquid crystal panel (liquid crystal cell) is assembled using the glass substrate on which the predetermined pattern is formed in step S50 and the color filter formed in step S52. Specifically, for example, a liquid crystal panel is formed by injecting liquid crystal between a glass substrate and a color filter. In the module assembling process in step S56, various components such as an electric circuit and a backlight for performing the display operation of the liquid crystal panel are attached to the liquid crystal panel assembled in step S54.
 また、本発明は、半導体デバイス製造用の露光装置への適用に限定されることなく、例えば、角型のガラスプレートに形成される液晶表示素子、若しくはプラズマディスプレイ等のディスプレイ装置用の露光装置や、撮像素子(CCD等)、マイクロマシーン、薄膜磁気ヘッド、及びDNAチップ等の各種デバイスを製造するための露光装置にも広く適用できる。更に、本発明は、各種デバイスのマスクパターンが形成されたマスク(フォトマスク、レチクル等)をフォトリソグラフィ工程を用いて製造する際の、露光工程(露光装置)にも適用することができる。 In addition, the present invention is not limited to application to an exposure apparatus for manufacturing a semiconductor device, for example, an exposure apparatus for a display device such as a liquid crystal display element formed on a square glass plate or a plasma display, It can also be widely applied to an exposure apparatus for manufacturing various devices such as an image sensor (CCD or the like), a micromachine, a thin film magnetic head, and a DNA chip. Furthermore, the present invention can also be applied to an exposure process (exposure apparatus) when manufacturing a mask (photomask, reticle, etc.) on which mask patterns of various devices are formed using a photolithography process.
 なお、上述の実施形態では、ArFエキシマレーザ光源を用いているが、これに限定されることなく、他の適当な光源、たとえば波長248nmのレーザ光を供給するKrFエキシマレーザ光源、波長157nmのレーザ光を供給するFレーザ光源、波長146nmのレーザ光を供給するKr2レーザ光源、波長126nmのレーザ光を供給するAr2レーザ光源などを用いることができる。また、g線(波長436nm)、i線(波長365nm)などの輝線を発する超高圧水銀ランプなどのCW(Continuous Wave)光源を用いることも可能である。また、YAGレーザの高調波発生装置などを用いることもできる。この他、例えば米国特許第7,023,610号明細書に開示されているように、真空紫外光としてDFB半導体レーザ又はファイバーレーザから発振される赤外域、又は可視域の単一波長レーザ光を、例えばエルビウム(又はエルビウムとイッテルビウムの両方)がドープされたファイバーアンプで増幅し、非線形光学結晶を用いて紫外光に波長変換した高調波を用いても良い。 In the above-described embodiment, the ArF excimer laser light source is used. However, the present invention is not limited to this, and other suitable light sources, for example, a KrF excimer laser light source for supplying laser light with a wavelength of 248 nm, a laser with a wavelength of 157 nm An F 2 laser light source that supplies light, a Kr 2 laser light source that supplies laser light with a wavelength of 146 nm, an Ar 2 laser light source that supplies laser light with a wavelength of 126 nm, or the like can be used. It is also possible to use a CW (Continuous Wave) light source such as an ultrahigh pressure mercury lamp that emits bright lines such as g-line (wavelength 436 nm) and i-line (wavelength 365 nm). A harmonic generator of a YAG laser or the like can also be used. In addition, as disclosed in, for example, US Pat. No. 7,023,610, a single wavelength laser beam in an infrared region or a visible region oscillated from a DFB semiconductor laser or a fiber laser is used as vacuum ultraviolet light. For example, a harmonic that is amplified by a fiber amplifier doped with erbium (or both erbium and ytterbium) and wavelength-converted into ultraviolet light using a nonlinear optical crystal may be used.
 また、上述の実施形態では、走査型の露光装置に対して本発明を適用しているが、これに限定されることなく、投影光学系に対してマスクおよびウェハ(感光性基板)を静止させた状態で投影露光を行う一括露光型の露光装置に対しても本発明を適用することができる。 In the above-described embodiment, the present invention is applied to the scanning exposure apparatus. However, the present invention is not limited to this, and the mask and wafer (photosensitive substrate) are stationary with respect to the projection optical system. The present invention can also be applied to a batch exposure type exposure apparatus that performs projection exposure in the above-described state.
 また、上述の実施形態では、露光装置に搭載される液浸型の投影光学系に対して本発明を適用している。しかしながら、液浸系に限定されることなく、乾燥型の投影光学系に対しても同様に本発明を適用することができる。一般に、第1面の像を第2面に形成する結像光学系に対して本発明を適用することができる。 In the above-described embodiment, the present invention is applied to an immersion type projection optical system mounted on the exposure apparatus. However, the present invention is not limited to the immersion system and can be similarly applied to a dry projection optical system. In general, the present invention can be applied to an imaging optical system that forms an image of a first surface on a second surface.
M マスク
MST マスクステージ
PL 投影光学系
K1,K2,K3,K4 結像光学ユニット
CM1,CM2 凹面反射鏡
FM1,FM2 平面反射鏡
Lb 境界レンズ
Lm 液体
W ウェハ
1 照明光学系
9 Zステージ
10 XYステージ
14 主制御系
21 給排水機構
M mask MST mask stage PL projection optical system K1, K2, K3, K4 imaging optical unit CM1, CM2 concave reflecting mirror FM1, FM2 planar reflecting mirror Lb boundary lens Lm liquid W wafer 1 illumination optical system 9 Z stage 10 XY stage 14 Main control system 21 Water supply / drainage mechanism

Claims (65)

  1. 第1面の像を第2面に形成する投影光学系において、
     前記第1面と前記第2面との間の光路中に配置されて、第1凹面反射鏡を含み、前記第1面の中間像を形成する第1結像光学部分と、
     前記第1結像光学部分と前記第2面との間の光路中に配置されて、第2凹面反射鏡を含み、前記中間像の像を形成する第2結像光学部分とを備え、
     前記第1凹面反射鏡および前記第2凹面反射鏡のうち少なくとも一方は変形可能な反射面を有していることを特徴とする投影光学系。
    In the projection optical system for forming an image of the first surface on the second surface,
    A first imaging optical portion disposed in an optical path between the first surface and the second surface and including a first concave reflecting mirror to form an intermediate image of the first surface;
    A second imaging optical part that is arranged in an optical path between the first imaging optical part and the second surface, includes a second concave reflecting mirror, and forms an image of the intermediate image;
    A projection optical system, wherein at least one of the first concave reflecting mirror and the second concave reflecting mirror has a deformable reflecting surface.
  2. 前記第1凹面反射鏡および前記第2凹面反射鏡は、それぞれ変形可能な反射面を有していることを特徴とする請求項1に記載の投影光学系。 The projection optical system according to claim 1, wherein each of the first concave reflecting mirror and the second concave reflecting mirror has a deformable reflecting surface.
  3. 前記第1結像光学部分は、前記第1凹面反射鏡を含み、且つ互いに異なる面同士を光学的に共役な関係にする第1結像光学ユニットを備え、
     前記第2結像光学部分は、前記第2反射鏡を含み、且つ互いに異なる面同士を光学的に共役な関係にする第2結像光学ユニットを備えていることを特徴とする請求項1または2に記載の投影光学系。
    The first imaging optical part includes a first imaging optical unit that includes the first concave reflecting mirror and that makes different surfaces optically conjugate with each other.
    The second imaging optical portion includes the second reflecting mirror, and includes a second imaging optical unit that makes different surfaces optically conjugate with each other. 3. The projection optical system according to 2.
  4. 第1面の像を第2面に形成する投影光学系において、
     前記第1面と前記第2面との間の光路中に配置されて、変形可能な反射面を有する第1凹面反射鏡を含む第1結像光学ユニットと、
     前記第1結像光学ユニットと前記第2面との間の光路中に配置されて、変形可能な反射面を有する第2凹面反射鏡を含む第2結像光学ユニットとを備えていることを特徴とする投影光学系。
    In the projection optical system for forming an image of the first surface on the second surface,
    A first imaging optical unit including a first concave reflecting mirror disposed in an optical path between the first surface and the second surface and having a deformable reflecting surface;
    A second imaging optical unit including a second concave reflecting mirror disposed in an optical path between the first imaging optical unit and the second surface and having a deformable reflecting surface. Characteristic projection optical system.
  5. 前記投影光学系は、4つの結像光学ユニットからなる4回結像型の光学系であることを特徴とする請求項3または4に記載の投影光学系。 5. The projection optical system according to claim 3, wherein the projection optical system is a four-time imaging type optical system including four imaging optical units.
  6. 前記第1面と前記第1結像光学ユニットとの間の光路中に配置された前側屈折結像光学ユニットと、前記第2結像光学ユニットと前記第2面との間の光路中に配置された後側屈折結像光学ユニットとをさらに備えていることを特徴とする請求項3乃至5のいずれか1項に記載の投影光学系。 A front-side refractive imaging optical unit disposed in the optical path between the first surface and the first imaging optical unit; and an optical path between the second imaging optical unit and the second surface. 6. The projection optical system according to claim 3, further comprising a rear-side refractive imaging optical unit.
  7. 前記第2面における有効結像領域は、前記投影光学系の光軸から離れた領域であることを特徴とする請求項3乃至6のいずれか1項に記載の投影光学系。 The projection optical system according to any one of claims 3 to 6, wherein the effective image formation area on the second surface is an area away from the optical axis of the projection optical system.
  8. 前記第1凹面反射鏡は、前記第1結像光学ユニットの光路中において前記第1面の位置と光学的にフーリエ変換の関係にある第1瞳位置から前記第1面側または前記第2面側に配置され、
     前記第2凹面反射鏡は、前記第2結像光学ユニットの光路中において前記第1面の位置と光学的にフーリエ変換の関係にある第2瞳位置から前記第2面側または前記第1面側に配置されていることを特徴とする請求項3乃至7のいずれか1項に記載の投影光学系。
    The first concave reflecting mirror is located on the first surface side or the second surface from a first pupil position optically Fourier-transformed with the position of the first surface in the optical path of the first imaging optical unit. Placed on the side
    The second concave reflecting mirror is located on the second surface side or the first surface from a second pupil position optically Fourier-transformed with the position of the first surface in the optical path of the second imaging optical unit. The projection optical system according to claim 3, wherein the projection optical system is disposed on a side of the projection optical system.
  9. 前記第1凹面反射鏡は前記第1瞳位置から前記第1面側に配置され、前記第2凹面反射鏡は前記第2瞳位置から前記第2面側に配置されていることを特徴とする請求項8に記載の投影光学系。 The first concave reflecting mirror is disposed on the first surface side from the first pupil position, and the second concave reflecting mirror is disposed on the second surface side from the second pupil position. The projection optical system according to claim 8.
  10. 前記第1凹面反射鏡は前記第1瞳位置から前記第2面側に配置され、前記第2凹面反射鏡は前記第2瞳位置から前記第1面側に配置されていることを特徴とする請求項8に記載の投影光学系。 The first concave reflecting mirror is disposed on the second surface side from the first pupil position, and the second concave reflecting mirror is disposed on the first surface side from the second pupil position. The projection optical system according to claim 8.
  11. 前記第1面における有効視野領域内の各点からの光束が任意の光学面において占めるパーシャルスポットの集合に外接する円の半径をReとし、前記有効視野領域の中心点からの光束が前記任意の光学面において占めるパーシャルスポットに外接する四角形であって前記有効視野領域の一辺に対応する方向に一辺を有する長方形の中心位置と、前記有効視野領域内の最大物体高の点からの光束が前記任意の光学面において占めるパーシャルスポットに外接する四角形であって前記有効視野領域の一辺に対応する方向に一辺を有する長方形の中心位置との前記任意の光学面における距離をAとし、前記任意の光学面に最も近い瞳位置と前記任意の光学面との位置関係を表す指標GがG=A/Reにより定義されるとき、
     前記第1凹面反射鏡の反射面に関する指標G1および前記第2凹面反射鏡の反射面に関する指標G2は、
    0.02<G1<0.07
    0.02<G2<0.07
    の条件を満足することを特徴とする請求項8乃至10のいずれか1項に記載の投影光学系。
    A radius of a circle circumscribing a set of partial spots occupied by a light beam from each point in the effective field area on the first surface on an arbitrary optical surface is Re, and a light beam from the center point of the effective field area is the arbitrary beam The center position of a rectangle that circumscribes a partial spot that occupies the optical surface and has one side in a direction corresponding to one side of the effective visual field region, and the light flux from the point of the maximum object height in the effective visual field region is the arbitrary The distance on the arbitrary optical surface to the center position of a rectangle that is a rectangle circumscribing the partial spot that occupies the optical surface and has one side in a direction corresponding to one side of the effective visual field region, and the arbitrary optical surface When an index G representing the positional relationship between the pupil position closest to the optical surface and the arbitrary optical surface is defined by G = A / Re,
    The index G1 related to the reflecting surface of the first concave reflecting mirror and the index G2 related to the reflecting surface of the second concave reflecting mirror are:
    0.02 <G1 <0.07
    0.02 <G2 <0.07
    The projection optical system according to claim 8, wherein the following condition is satisfied.
  12. 前記第1凹面反射鏡は、前記第1結像光学ユニットの光路中において前記第1面の位置と光学的にフーリエ変換の関係にある第1瞳位置に配置され、
     前記第2凹面反射鏡は、前記第2結像光学ユニットの光路中において前記第1面の位置と光学的にフーリエ変換の関係にある第2瞳位置から前記第1面側または前記第2面側に配置されていることを特徴とする請求項3乃至7のいずれか1項に記載の投影光学系。
    The first concave reflecting mirror is disposed at a first pupil position that is optically Fourier-transformed with the position of the first surface in the optical path of the first imaging optical unit;
    The second concave reflecting mirror is located on the first surface side or the second surface from a second pupil position that is optically Fourier-transformed with the position of the first surface in the optical path of the second imaging optical unit. The projection optical system according to claim 3, wherein the projection optical system is disposed on a side of the projection optical system.
  13. 前記第1面における有効視野領域内の各点からの光束が任意の光学面において占めるパーシャルスポットの集合に外接する円の半径をReとし、前記有効視野領域の中心点からの光束が前記任意の光学面において占めるパーシャルスポットに外接する四角形であって前記有効視野領域の一辺に対応する方向に一辺を有する長方形の中心位置と、前記有効視野領域内の最大物体高の点からの光束が前記任意の光学面において占めるパーシャルスポットに外接する四角形であって前記有効視野領域の一辺に対応する方向に一辺を有する長方形の中心位置との前記任意の光学面における距離をAとし、前記任意の光学面に最も近い瞳位置と前記任意の光学面との位置関係を表す指標GがG=A/Reにより定義されるとき、
     前記第1凹面反射鏡の反射面に関する指標G1および前記第2凹面反射鏡の反射面に関する指標G2は、
    0<G1<0.02
    0.02<G2<0.07
    の条件を満足することを特徴とする請求項12に記載の投影光学系。
    A radius of a circle circumscribing a set of partial spots occupied by a light beam from each point in the effective field area on the first surface on an arbitrary optical surface is Re, and a light beam from the center point of the effective field area is the arbitrary beam The center position of a rectangle that circumscribes a partial spot that occupies the optical surface and has one side in a direction corresponding to one side of the effective visual field region, and the light flux from the point of the maximum object height in the effective visual field region is the arbitrary The distance on the arbitrary optical surface to the center position of a rectangle that is a rectangle circumscribing the partial spot that occupies the optical surface and has one side in a direction corresponding to one side of the effective visual field region, and the arbitrary optical surface When an index G representing the positional relationship between the pupil position closest to the optical surface and the arbitrary optical surface is defined by G = A / Re,
    The index G1 related to the reflecting surface of the first concave reflecting mirror and the index G2 related to the reflecting surface of the second concave reflecting mirror are:
    0 <G1 <0.02
    0.02 <G2 <0.07
    The projection optical system according to claim 12, wherein the following condition is satisfied.
  14. 前記第1凹面反射鏡は、前記第1結像光学ユニットの光路中において前記第1面の位置と光学的にフーリエ変換の関係にある第1瞳位置から前記第1面側または前記第2面側に配置され、
     前記第2凹面反射鏡は、前記第2結像光学ユニットの光路中において前記第1面の位置と光学的にフーリエ変換の関係にある第2瞳位置に配置されていることを特徴とする請求項3乃至7のいずれか1項に記載の投影光学系。
    The first concave reflecting mirror is located on the first surface side or the second surface from a first pupil position optically Fourier-transformed with the position of the first surface in the optical path of the first imaging optical unit. Placed on the side
    The second concave reflecting mirror is disposed at a second pupil position that is optically Fourier-transformed with the position of the first surface in the optical path of the second imaging optical unit. Item 8. The projection optical system according to any one of Items 3 to 7.
  15. 前記第1面における有効視野領域内の各点からの光束が任意の光学面において占めるパーシャルスポットの集合に外接する円の半径をReとし、前記有効視野領域の中心点からの光束が前記任意の光学面において占めるパーシャルスポットに外接する四角形であって前記有効視野領域の一辺に対応する方向に一辺を有する長方形の中心位置と、前記有効視野領域内の最大物体高の点からの光束が前記任意の光学面において占めるパーシャルスポットに外接する四角形であって前記有効視野領域の一辺に対応する方向に一辺を有する長方形の中心位置との前記任意の光学面における距離をAとし、前記任意の光学面に最も近い瞳位置と前記任意の光学面との位置関係を表す指標GがG=A/Reにより定義されるとき、
     前記第1凹面反射鏡の反射面に関する指標G1および前記第2凹面反射鏡の反射面に関する指標G2は、
    0.02<G1<0.07
    0<G2<0.02
    の条件を満足することを特徴とする請求項14に記載の投影光学系。
    A radius of a circle circumscribing a set of partial spots occupied by a light beam from each point in the effective field area on the first surface on an arbitrary optical surface is Re, and a light beam from the center point of the effective field area is the arbitrary beam The center position of a rectangle that circumscribes a partial spot that occupies the optical surface and has one side in a direction corresponding to one side of the effective visual field region, and the light flux from the point of the maximum object height in the effective visual field region is the arbitrary The distance on the arbitrary optical surface to the center position of a rectangle that is a rectangle circumscribing the partial spot that occupies the optical surface and has one side in a direction corresponding to one side of the effective visual field region, and the arbitrary optical surface When an index G representing the positional relationship between the pupil position closest to the optical surface and the arbitrary optical surface is defined by G = A / Re,
    The index G1 related to the reflecting surface of the first concave reflecting mirror and the index G2 related to the reflecting surface of the second concave reflecting mirror are:
    0.02 <G1 <0.07
    0 <G2 <0.02
    The projection optical system according to claim 14, wherein the following condition is satisfied.
  16. 前記第1凹面反射鏡は、前記第1結像光学ユニットの光路中において前記第1面の位置と光学的にフーリエ変換の関係にある第1瞳位置に配置され、
     前記第2凹面反射鏡は、前記第2結像光学ユニットの光路中において前記第1面の位置と光学的にフーリエ変換の関係にある第2瞳位置に配置されていることを特徴とする請求項3乃至7のいずれか1項に記載の投影光学系。
    The first concave reflecting mirror is disposed at a first pupil position that is optically Fourier-transformed with the position of the first surface in the optical path of the first imaging optical unit;
    The second concave reflecting mirror is disposed at a second pupil position that is optically Fourier-transformed with the position of the first surface in the optical path of the second imaging optical unit. Item 8. The projection optical system according to any one of Items 3 to 7.
  17. 前記第1面における有効視野領域内の各点からの光束が任意の光学面において占めるパーシャルスポットの集合に外接する円の半径をReとし、前記有効視野領域の中心点からの光束が前記任意の光学面において占めるパーシャルスポットに外接する四角形であって前記有効視野領域の一辺に対応する方向に一辺を有する長方形の中心位置と、前記有効視野領域内の最大物体高の点からの光束が前記任意の光学面において占めるパーシャルスポットに外接する四角形であって前記有効視野領域の一辺に対応する方向に一辺を有する長方形の中心位置との前記任意の光学面における距離をAとし、前記任意の光学面に最も近い瞳位置と前記任意の光学面との位置関係を表す指標GがG=A/Reにより定義されるとき、
     前記第1凹面反射鏡の反射面に関する指標G1および前記第2凹面反射鏡の反射面に関する指標G2は、
    0<G1<0.02
    0<G2<0.02
    の条件を満足することを特徴とする請求項16に記載の投影光学系。
    A radius of a circle circumscribing a set of partial spots occupied by a light beam from each point in the effective field area on the first surface on an arbitrary optical surface is Re, and a light beam from the center point of the effective field area is the arbitrary beam The center position of a rectangle that circumscribes a partial spot that occupies the optical surface and has one side in a direction corresponding to one side of the effective visual field region, and the light flux from the point of the maximum object height in the effective visual field region is the arbitrary The distance on the arbitrary optical surface to the center position of a rectangle that is a rectangle circumscribing the partial spot that occupies the optical surface and has one side in a direction corresponding to one side of the effective visual field region, and the arbitrary optical surface When an index G representing the positional relationship between the pupil position closest to the optical surface and the arbitrary optical surface is defined by G = A / Re,
    The index G1 related to the reflecting surface of the first concave reflecting mirror and the index G2 related to the reflecting surface of the second concave reflecting mirror are:
    0 <G1 <0.02
    0 <G2 <0.02
    The projection optical system according to claim 16, wherein the following condition is satisfied.
  18. 前記後側屈折結像光学ユニットの光路中において前記第2面の位置と光学的にフーリエ変換の関係にある第4瞳位置と前記第2面との間に配置された複数の光学素子からなる部分光学系のパワーは0.0100(mm-1)以上であることを特徴とする請求項6乃至17のいずれか1項に記載の投影光学系。
    ただし、前記第4瞳位置が光学素子の内部に存在する場合には、当該光学素子は前記部分光学系に含まれるものとする。
    A plurality of optical elements arranged between the fourth pupil position and the second surface that are optically Fourier-transformed with the position of the second surface in the optical path of the rear refractive imaging optical unit; The projection optical system according to any one of claims 6 to 17, wherein the power of the partial optical system is 0.0100 (mm -1 ) or more.
    However, when the fourth pupil position is present inside the optical element, the optical element is included in the partial optical system.
  19. 前記第2面における有効結像領域の最大像高をRbとし、前記後側屈折結像光学ユニット内の最大レンズ有効半径をRmとするとき、
    Rm/Rb≧9.0
    の条件を満足することを特徴とする請求項6乃至18のいずれか1項に記載の投影光学系。
    When the maximum image height of the effective imaging region on the second surface is Rb, and the maximum lens effective radius in the rear refractive imaging optical unit is Rm,
    Rm / Rb ≧ 9.0
    The projection optical system according to claim 6, wherein the following condition is satisfied.
  20. 前記第1面における有効視野領域は矩形状であることを特徴とする請求項8乃至19のいずれか1項に記載の投影光学系。 The projection optical system according to any one of claims 8 to 19, wherein an effective visual field area on the first surface is rectangular.
  21. 前記第1凹面反射鏡の前記反射面を能動的に変形させる第1能動変形部と、前記第2凹面反射鏡の前記反射面を能動的に変形させる第2能動変形部とをさらに備えていることを特徴とする請求項2乃至20のいずれか1項に記載の投影光学系。 A first active deforming portion that actively deforms the reflecting surface of the first concave reflecting mirror; and a second active deforming portion that actively deforms the reflecting surface of the second concave reflecting mirror. The projection optical system according to claim 2, wherein the projection optical system is a projection optical system.
  22. 前記第1能動変形部および前記第2能動変形部は、前記第1凹面反射鏡の反射面および前記第2凹面反射鏡の反射面に対して、互いに同じ関数表示にしたがう変形を付与することにより、前記投影光学系の波面収差を調整することを特徴とする請求項21に記載の投影光学系。 The first active deforming portion and the second active deforming portion apply deformations according to the same function display to the reflecting surface of the first concave reflecting mirror and the reflecting surface of the second concave reflecting mirror. The projection optical system according to claim 21, wherein wavefront aberration of the projection optical system is adjusted.
  23. 前記第1能動変形部および前記第2能動変形部は、前記第2面における有効結像領域内の所定方向に沿った各点について一様な0次収差成分、および前記所定方向に沿った各点について線形的に変化する1次収差成分のうちの少なくとも一方を調整することを特徴とする請求項22に記載の投影光学系。 The first active deformation portion and the second active deformation portion are each a zero-order aberration component that is uniform for each point along a predetermined direction in the effective imaging region on the second surface, and each of the points along the predetermined direction. 23. The projection optical system according to claim 22, wherein at least one of primary aberration components that change linearly with respect to a point is adjusted.
  24. 第1面の像を第2面に形成する投影光学系において、
     前記第1面と前記第2面との間の光路中に配置されて、第1凹面反射鏡を含み、互いに異なる面同士を光学的に共役な関係にする第1結像光学ユニットと、
     前記第1結像光学ユニットと前記第2面との間の光路中に配置されて、第2凹面反射鏡を含み、互いに異なる面同士を光学的に共役な関係にする第2結像光学ユニットとを備え、
     前記第1凹面反射鏡は、前記第1結像光学ユニットの光路中において前記第1面の位置と光学的にフーリエ変換の関係にある第1瞳位置から前記第1面側に配置され、
     前記第2凹面反射鏡は、前記第2結像光学ユニットの光路中において前記第1面の位置と光学的にフーリエ変換の関係にある第2瞳位置から前記第2面側に配置されていることを特徴とする投影光学系。
    In the projection optical system for forming an image of the first surface on the second surface,
    A first imaging optical unit that is disposed in an optical path between the first surface and the second surface, includes a first concave reflecting mirror, and optically conjugates different surfaces to each other;
    A second imaging optical unit that is disposed in the optical path between the first imaging optical unit and the second surface, includes a second concave reflecting mirror, and makes different surfaces optically conjugate with each other. And
    The first concave reflecting mirror is disposed on the first surface side from a first pupil position that is optically Fourier-transformed with the position of the first surface in the optical path of the first imaging optical unit;
    The second concave reflecting mirror is disposed on the second surface side from a second pupil position that is optically Fourier-transformed with the position of the first surface in the optical path of the second imaging optical unit. A projection optical system characterized by that.
  25. 第1面の像を第2面に形成する投影光学系において、
     前記第1面と前記第2面との間の光路中に配置されて、第1凹面反射鏡を含み、互いに異なる面同士を光学的に共役な関係にする第1結像光学ユニットと、
     前記第1結像光学ユニットと前記第2面との間の光路中に配置されて、第2凹面反射鏡を含み、互いに異なる面同士を光学的に共役な関係にする第2結像光学ユニットとを備え、
     前記第1凹面反射鏡は、前記第1結像光学ユニットの光路中において前記第1面の位置と光学的にフーリエ変換の関係にある第1瞳位置から前記第2面側に配置され、
     前記第2凹面反射鏡は、前記第2結像光学ユニットの光路中において前記第1面の位置と光学的にフーリエ変換の関係にある第2瞳位置から前記第1面側に配置されていることを特徴とする投影光学系。
    In the projection optical system for forming an image of the first surface on the second surface,
    A first imaging optical unit that is disposed in an optical path between the first surface and the second surface, includes a first concave reflecting mirror, and optically conjugates different surfaces to each other;
    A second imaging optical unit that is disposed in the optical path between the first imaging optical unit and the second surface, includes a second concave reflecting mirror, and makes different surfaces optically conjugate with each other. And
    The first concave reflecting mirror is disposed on the second surface side from the first pupil position that is optically Fourier-transformed with the position of the first surface in the optical path of the first imaging optical unit,
    The second concave reflecting mirror is disposed on the first surface side from a second pupil position that is optically Fourier-transformed with the position of the first surface in the optical path of the second imaging optical unit. A projection optical system characterized by that.
  26. 前記第1面における有効視野領域内の各点からの光束が任意の光学面において占めるパーシャルスポットの集合に外接する円の半径をReとし、前記有効視野領域の中心点からの光束が前記任意の光学面において占めるパーシャルスポットに外接する四角形であって前記有効視野領域の一辺に対応する方向に一辺を有する長方形の中心位置と、前記有効視野領域内の最大物体高の点からの光束が前記任意の光学面において占めるパーシャルスポットに外接する四角形であって前記有効視野領域の一辺に対応する方向に一辺を有する長方形の中心位置との前記任意の光学面における距離をAとし、前記任意の光学面に最も近い瞳位置と前記任意の光学面との位置関係を表す指標GがG=A/Reにより定義されるとき、
     前記第1凹面反射鏡の反射面に関する指標G1および前記第2凹面反射鏡の反射面に関する指標G2は、
    0.02<G1<0.07
    0.02<G2<0.07
    の条件を満足することを特徴とする請求項24または25に記載の投影光学系。
    A radius of a circle circumscribing a set of partial spots occupied by a light beam from each point in the effective field area on the first surface on an arbitrary optical surface is Re, and a light beam from the center point of the effective field area is the arbitrary beam The center position of a rectangle that circumscribes a partial spot that occupies the optical surface and has one side in a direction corresponding to one side of the effective visual field region, and the light flux from the point of the maximum object height in the effective visual field region is the arbitrary The distance on the arbitrary optical surface to the center position of a rectangle that is a rectangle circumscribing the partial spot that occupies the optical surface and has one side in a direction corresponding to one side of the effective visual field region, and the arbitrary optical surface When an index G representing the positional relationship between the pupil position closest to the optical surface and the arbitrary optical surface is defined by G = A / Re,
    The index G1 related to the reflecting surface of the first concave reflecting mirror and the index G2 related to the reflecting surface of the second concave reflecting mirror are:
    0.02 <G1 <0.07
    0.02 <G2 <0.07
    The projection optical system according to claim 24, wherein the following condition is satisfied.
  27. 第1面の像を第2面に形成する投影光学系において、
     前記第1面と前記第2面との間の光路中に配置されて、第1凹面反射鏡を含み、互いに異なる面同士を光学的に共役な関係にする第1結像光学ユニットと、
     前記第1結像光学ユニットと前記第2面との間の光路中に配置されて、第2凹面反射鏡を含み、互いに異なる面同士を光学的に共役な関係にする第2結像光学ユニットとを備え、
     前記第1凹面反射鏡は、前記第1結像光学ユニットの光路中において前記第1面の位置と光学的にフーリエ変換の関係にある第1瞳位置に配置され、
     前記第2凹面反射鏡は、前記第2結像光学ユニットの光路中において前記第1面の位置と光学的にフーリエ変換の関係にある第2瞳位置から前記第1面側または前記第2面側に配置されていることを特徴とする投影光学系。
    In the projection optical system for forming an image of the first surface on the second surface,
    A first imaging optical unit that is disposed in an optical path between the first surface and the second surface, includes a first concave reflecting mirror, and optically conjugates different surfaces to each other;
    A second imaging optical unit that is disposed in the optical path between the first imaging optical unit and the second surface, includes a second concave reflecting mirror, and makes different surfaces optically conjugate with each other. And
    The first concave reflecting mirror is disposed at a first pupil position that is optically Fourier-transformed with the position of the first surface in the optical path of the first imaging optical unit;
    The second concave reflecting mirror is located on the first surface side or the second surface from a second pupil position that is optically Fourier-transformed with the position of the first surface in the optical path of the second imaging optical unit. A projection optical system characterized by being arranged on the side.
  28. 前記第1面における有効視野領域内の各点からの光束が任意の光学面において占めるパーシャルスポットの集合に外接する円の半径をReとし、前記有効視野領域の中心点からの光束が前記任意の光学面において占めるパーシャルスポットに外接する四角形であって前記有効視野領域の一辺に対応する方向に一辺を有する長方形の中心位置と、前記有効視野領域内の最大物体高の点からの光束が前記任意の光学面において占めるパーシャルスポットに外接する四角形であって前記有効視野領域の一辺に対応する方向に一辺を有する長方形の中心位置との前記任意の光学面における距離をAとし、前記任意の光学面に最も近い瞳位置と前記任意の光学面との位置関係を表す指標GがG=A/Reにより定義されるとき、
     前記第1凹面反射鏡の反射面に関する指標G1および前記第2凹面反射鏡の反射面に関する指標G2は、
    0<G1<0.02
    0.02<G2<0.07
    の条件を満足することを特徴とする請求項27に記載の投影光学系。
    A radius of a circle circumscribing a set of partial spots occupied by a light beam from each point in the effective field area on the first surface on an arbitrary optical surface is Re, and a light beam from the center point of the effective field area is the arbitrary beam The center position of a rectangle that circumscribes a partial spot that occupies the optical surface and has one side in a direction corresponding to one side of the effective visual field region, and the light flux from the point of the maximum object height in the effective visual field region is the arbitrary The distance on the arbitrary optical surface to the center position of a rectangle that is a rectangle circumscribing the partial spot that occupies the optical surface and has one side in a direction corresponding to one side of the effective visual field region, and the arbitrary optical surface When an index G representing the positional relationship between the pupil position closest to the optical surface and the arbitrary optical surface is defined by G = A / Re,
    The index G1 related to the reflecting surface of the first concave reflecting mirror and the index G2 related to the reflecting surface of the second concave reflecting mirror are:
    0 <G1 <0.02
    0.02 <G2 <0.07
    The projection optical system according to claim 27, wherein the following condition is satisfied.
  29. 第1面の像を第2面に形成する投影光学系において、
     前記第1面と前記第2面との間の光路中に配置されて、第1凹面反射鏡を含み、互いに異なる面同士を光学的に共役な関係にする第1結像光学ユニットと、
     前記第1結像光学ユニットと前記第2面との間の光路中に配置されて、第2凹面反射鏡を含み、互いに異なる面同士を光学的に共役な関係にする第2結像光学ユニットとを備え、
     前記第1凹面反射鏡は、前記第1結像光学ユニットの光路中において前記第1面の位置と光学的にフーリエ変換の関係にある第1瞳位置から前記第1面側または前記第2面側に配置され、
     前記第2凹面反射鏡は、前記第2結像光学ユニットの光路中において前記第1面の位置と光学的にフーリエ変換の関係にある第2瞳位置に配置されていることを特徴とする投影光学系。
    In the projection optical system for forming an image of the first surface on the second surface,
    A first imaging optical unit that is disposed in an optical path between the first surface and the second surface, includes a first concave reflecting mirror, and optically conjugates different surfaces to each other;
    A second imaging optical unit that is disposed in the optical path between the first imaging optical unit and the second surface, includes a second concave reflecting mirror, and makes different surfaces optically conjugate with each other. And
    The first concave reflecting mirror is located on the first surface side or the second surface from a first pupil position optically Fourier-transformed with the position of the first surface in the optical path of the first imaging optical unit. Placed on the side
    The second concave reflecting mirror is disposed at a second pupil position that is optically Fourier-transformed with the position of the first surface in the optical path of the second imaging optical unit. Optical system.
  30. 前記第1面における有効視野領域内の各点からの光束が任意の光学面において占めるパーシャルスポットの集合に外接する円の半径をReとし、前記有効視野領域の中心点からの光束が前記任意の光学面において占めるパーシャルスポットに外接する四角形であって前記有効視野領域の一辺に対応する方向に一辺を有する長方形の中心位置と、前記有効視野領域内の最大物体高の点からの光束が前記任意の光学面において占めるパーシャルスポットに外接する四角形であって前記有効視野領域の一辺に対応する方向に一辺を有する長方形の中心位置との前記任意の光学面における距離をAとし、前記任意の光学面に最も近い瞳位置と前記任意の光学面との位置関係を表す指標GがG=A/Reにより定義されるとき、
     前記第1凹面反射鏡の反射面に関する指標G1および前記第2凹面反射鏡の反射面に関する指標G2は、
    0.02<G1<0.07
    0<G2<0.02
    の条件を満足することを特徴とする請求項29に記載の投影光学系。
    A radius of a circle circumscribing a set of partial spots occupied by a light beam from each point in the effective field area on the first surface on an arbitrary optical surface is Re, and a light beam from the center point of the effective field area is the arbitrary beam The center position of a rectangle that circumscribes a partial spot that occupies the optical surface and has one side in a direction corresponding to one side of the effective visual field region, and the light flux from the point of the maximum object height in the effective visual field region is the arbitrary The distance on the arbitrary optical surface to the center position of a rectangle that is a rectangle circumscribing the partial spot that occupies the optical surface and has one side in a direction corresponding to one side of the effective visual field region, and the arbitrary optical surface When an index G representing the positional relationship between the pupil position closest to the optical surface and the arbitrary optical surface is defined by G = A / Re,
    The index G1 related to the reflecting surface of the first concave reflecting mirror and the index G2 related to the reflecting surface of the second concave reflecting mirror are:
    0.02 <G1 <0.07
    0 <G2 <0.02
    The projection optical system according to claim 29, wherein the following condition is satisfied.
  31. 第1面の像を第2面に形成する投影光学系において、
     前記第1面と前記第2面との間の光路中に配置されて、第1凹面反射鏡を含み、互いに異なる面同士を光学的に共役な関係にする第1結像光学ユニットと、
     前記第1結像光学ユニットと前記第2面との間の光路中に配置されて、第2凹面反射鏡を含み、互いに異なる面同士を光学的に共役な関係にする第2結像光学ユニットとを備え、
     前記第1凹面反射鏡は、前記第1結像光学ユニットの光路中において前記第1面の位置と光学的にフーリエ変換の関係にある第1瞳位置に配置され、
     前記第2凹面反射鏡は、前記第2結像光学ユニットの光路中において前記第1面の位置と光学的にフーリエ変換の関係にある第2瞳位置に配置されていることを特徴とする投影光学系。
    In the projection optical system for forming an image of the first surface on the second surface,
    A first imaging optical unit that is disposed in an optical path between the first surface and the second surface, includes a first concave reflecting mirror, and optically conjugates different surfaces to each other;
    A second imaging optical unit that is disposed in the optical path between the first imaging optical unit and the second surface, includes a second concave reflecting mirror, and makes different surfaces optically conjugate with each other. And
    The first concave reflecting mirror is disposed at a first pupil position that is optically Fourier-transformed with the position of the first surface in the optical path of the first imaging optical unit;
    The second concave reflecting mirror is disposed at a second pupil position that is optically Fourier-transformed with the position of the first surface in the optical path of the second imaging optical unit. Optical system.
  32. 前記第1面における有効視野領域内の各点からの光束が任意の光学面において占めるパーシャルスポットの集合に外接する円の半径をReとし、前記有効視野領域の中心点からの光束が前記任意の光学面において占めるパーシャルスポットに外接する四角形であって前記有効視野領域の一辺に対応する方向に一辺を有する長方形の中心位置と、前記有効視野領域内の最大物体高の点からの光束が前記任意の光学面において占めるパーシャルスポットに外接する四角形であって前記有効視野領域の一辺に対応する方向に一辺を有する長方形の中心位置との前記任意の光学面における距離をAとし、前記任意の光学面に最も近い瞳位置と前記任意の光学面との位置関係を表す指標GがG=A/Reにより定義されるとき、
     前記第1凹面反射鏡の反射面に関する指標G1および前記第2凹面反射鏡の反射面に関する指標G2は、
    0<G1<0.02
    0<G2<0.02
    の条件を満足することを特徴とする請求項31に記載の投影光学系。
    A radius of a circle circumscribing a set of partial spots occupied by a light beam from each point in the effective field area on the first surface on an arbitrary optical surface is Re, and a light beam from the center point of the effective field area is the arbitrary beam The center position of a rectangle that circumscribes a partial spot that occupies the optical surface and has one side in a direction corresponding to one side of the effective visual field region, and the light flux from the point of the maximum object height in the effective visual field region is the arbitrary The distance on the arbitrary optical surface to the center position of a rectangle that is a rectangle circumscribing the partial spot that occupies the optical surface and has one side in a direction corresponding to one side of the effective visual field region, and the arbitrary optical surface When an index G representing the positional relationship between the pupil position closest to the optical surface and the arbitrary optical surface is defined by G = A / Re,
    The index G1 related to the reflecting surface of the first concave reflecting mirror and the index G2 related to the reflecting surface of the second concave reflecting mirror are:
    0 <G1 <0.02
    0 <G2 <0.02
    32. The projection optical system according to claim 31, wherein the following condition is satisfied.
  33. 前記第1面と前記第1結像光学ユニットとの間の光路中に配置された前側屈折結像光学ユニットと、前記第2結像光学ユニットと前記第2面との間の光路中に配置された後側屈折結像光学ユニットとをさらに備えていることを特徴とする請求項24乃至32のいずれか1項に記載の投影光学系。 A front-side refractive imaging optical unit disposed in the optical path between the first surface and the first imaging optical unit; and an optical path between the second imaging optical unit and the second surface. 33. The projection optical system according to claim 24, further comprising a rear-side refractive imaging optical unit.
  34. 前記後側屈折結像光学ユニットの光路中において前記第2面の位置と光学的にフーリエ変換の関係にある第4瞳位置と前記第2面との間に配置された複数の光学素子からなる部分光学系のパワーは0.0100(mm-1)以上であることを特徴とする請求項33に記載の投影光学系。
    ただし、前記第4瞳位置が光学素子の内部に存在する場合には、当該光学素子は前記部分光学系に含まれるものとする。
    A plurality of optical elements arranged between the fourth pupil position and the second surface that are optically Fourier-transformed with the position of the second surface in the optical path of the rear refractive imaging optical unit; The projection optical system according to claim 33, wherein the power of the partial optical system is 0.0100 (mm -1 ) or more.
    However, when the fourth pupil position is present inside the optical element, the optical element is included in the partial optical system.
  35. 前記第2面における有効結像領域の最大像高をRbとし、前記後側屈折結像光学ユニット内の最大レンズ有効半径をRmとするとき、
    Rm/Rb≧9.0
    の条件を満足することを特徴とする請求項33または34に記載の投影光学系。
    When the maximum image height of the effective imaging region on the second surface is Rb, and the maximum lens effective radius in the rear refractive imaging optical unit is Rm,
    Rm / Rb ≧ 9.0
    The projection optical system according to claim 33 or 34, wherein the following condition is satisfied.
  36. 前記第2面における有効結像領域は、前記投影光学系の光軸から離れた領域であることを特徴とする請求項24乃至35のいずれか1項に記載の投影光学系。 36. The projection optical system according to claim 24, wherein the effective image formation area on the second surface is an area away from the optical axis of the projection optical system.
  37. 前記第1面における有効視野領域は矩形状であることを特徴とする請求項24乃至36のいずれか1項に記載の投影光学系。 37. The projection optical system according to claim 24, wherein the effective field area on the first surface is rectangular.
  38. 第1面の像を第2面に形成する投影光学系において、
     前記第1面と前記第2面との間の光路中に配置され、前記第1面の第1中間像を形成する第1結像光学系と、
     前記第1結像光学系と前記第2面との間の光路中に配置され、第1凹面反射鏡を含み、前記第1中間像の像である第2中間像を形成する第2結像光学系と、
     前記第2結像光学系と前記第2面との間の光路中に配置され、第2凹面反射鏡を含み、前記第2中間像の像である第3中間像を形成する第3結像光学系と、
     前記第3結像光学系と前記第2面との間の光路中に配置され、前記第3中間像の像を第2面に形成する第4結像光学系とを備え、
     前記第2結像光学系は、前記第1中間像と前記第1凹面反射鏡との間の光路中に配置された複数の正レンズを備え、
     前記第3結像光学系は、前記第2中間像と前記第2凹面反射鏡との間の光路中に配置された複数の正レンズを備えていることを特徴とする投影光学系。
    In the projection optical system for forming an image of the first surface on the second surface,
    A first imaging optical system disposed in an optical path between the first surface and the second surface and forming a first intermediate image of the first surface;
    A second imaging that is disposed in an optical path between the first imaging optical system and the second surface, includes a first concave reflecting mirror, and forms a second intermediate image that is an image of the first intermediate image. Optical system,
    A third imaging that is disposed in an optical path between the second imaging optical system and the second surface, includes a second concave reflecting mirror, and forms a third intermediate image that is an image of the second intermediate image. Optical system,
    A fourth imaging optical system disposed in an optical path between the third imaging optical system and the second surface, and forming an image of the third intermediate image on the second surface;
    The second imaging optical system includes a plurality of positive lenses disposed in an optical path between the first intermediate image and the first concave reflecting mirror,
    The third imaging optical system includes a plurality of positive lenses arranged in an optical path between the second intermediate image and the second concave reflecting mirror.
  39. 前記第3結像光学系の前記複数の正レンズは、最も前記第2中間像側に配置されて前記第2中間像に凹面を向けた正メニスカスレンズを有することを特徴とする請求項38に記載の投影光学系。 The plurality of positive lenses of the third imaging optical system includes positive meniscus lenses that are disposed closest to the second intermediate image and have a concave surface facing the second intermediate image. The projection optical system described.
  40. 前記第4結像光学系は、最も前記第3中間像側に配置されて前記第2面側に凸面を向けた正レンズを備えていることを特徴とする請求項38または39に記載の投影光学系。 The projection according to claim 38 or 39, wherein the fourth imaging optical system includes a positive lens disposed closest to the third intermediate image and having a convex surface facing the second surface. Optical system.
  41. 前記第4結像光学系は、前記第4結像光学系の前記正レンズの前記第2面側に隣接して配置され、前記第3中間像側に凸面を向けた正レンズを備えていることを特徴とする請求項40に記載の投影光学系。 The fourth imaging optical system includes a positive lens that is disposed adjacent to the second surface side of the positive lens of the fourth imaging optical system and has a convex surface facing the third intermediate image side. 41. The projection optical system according to claim 40.
  42. 前記第4結像光学系は、前記第3中間像側に凸面を向けた前記正レンズの前記第2面側に隣接して配置され、前記第3中間像側に凹面を向けた負レンズを備えていることを特徴とする請求項41に記載の投影光学系。 The fourth imaging optical system is disposed adjacent to the second surface side of the positive lens having a convex surface directed to the third intermediate image side, and a negative lens having a concave surface directed to the third intermediate image side. 42. The projection optical system according to claim 41, comprising: a projection optical system.
  43. 前記第4結像光学系は、前記第3中間像側に凸面を向けた前記正レンズの前記第2面側に隣接して配置され、前記第3中間像側に凹面を向けた複数の負レンズを備えていることを特徴とする請求項41に記載の投影光学系。 The fourth imaging optical system is disposed adjacent to the second surface side of the positive lens with the convex surface facing the third intermediate image side, and has a plurality of negative surfaces with the concave surface facing the third intermediate image side. 42. The projection optical system according to claim 41, comprising a lens.
  44. 第1面の像を第2面に形成する投影光学系において、
     前記第1面と前記第2面との間の光路中に配置され、前記第1面の第1中間像を形成する第1結像光学系と、
     前記第1結像光学系と前記第2面との間の光路中に配置され、第1凹面反射鏡を含み、前記第1中間像の像である第2中間像を形成する第2結像光学系と、
     前記第2結像光学系と前記第2面との間の光路中に配置され、第2凹面反射鏡を含み、前記第2中間像の像である第3中間像を形成する第3結像光学系と、
     前記第3結像光学系と前記第2面との間の光路中に配置され、前記第3中間像の像を第2面に形成する第4結像光学系とを備え、
     前記第4結像光学系は、最も前記第3中間像側に配置されて前記第2面側に凸面を向けた正レンズを備えていることを特徴とする投影光学系。
    In the projection optical system for forming an image of the first surface on the second surface,
    A first imaging optical system disposed in an optical path between the first surface and the second surface and forming a first intermediate image of the first surface;
    A second imaging that is disposed in an optical path between the first imaging optical system and the second surface, includes a first concave reflecting mirror, and forms a second intermediate image that is an image of the first intermediate image. Optical system,
    A third imaging that is disposed in an optical path between the second imaging optical system and the second surface, includes a second concave reflecting mirror, and forms a third intermediate image that is an image of the second intermediate image. Optical system,
    A fourth imaging optical system disposed in an optical path between the third imaging optical system and the second surface, and forming an image of the third intermediate image on the second surface;
    The projection optical system, wherein the fourth imaging optical system includes a positive lens that is disposed closest to the third intermediate image and has a convex surface facing the second surface.
  45. 前記第4結像光学系は、前記第4結像光学系の前記正レンズの前記第2面側に隣接して配置され、前記第3中間像側に凸面を向けた正レンズを備えていることを特徴とする請求項44に記載の投影光学系。 The fourth imaging optical system includes a positive lens that is disposed adjacent to the second surface side of the positive lens of the fourth imaging optical system and has a convex surface facing the third intermediate image side. 45. The projection optical system according to claim 44.
  46. 前記第4結像光学系は、前記第3中間像側に凸面を向けた前記正レンズの前記第2面側に隣接して配置され、前記第3中間像側に凹面を向けた負レンズを備えていることを特徴とする請求項45に記載の投影光学系。 The fourth imaging optical system is disposed adjacent to the second surface side of the positive lens having a convex surface directed to the third intermediate image side, and a negative lens having a concave surface directed to the third intermediate image side. 46. The projection optical system according to claim 45, comprising: a projection optical system.
  47. 前記第4結像光学系は、前記第3中間像側に凸面を向けた前記正レンズの前記第2面側に隣接して配置され、前記第3中間像側に凹面を向けた複数の負レンズを備えていることを特徴とする請求項45に記載の投影光学系。 The fourth imaging optical system is disposed adjacent to the second surface side of the positive lens with the convex surface facing the third intermediate image side, and has a plurality of negative surfaces with the concave surface facing the third intermediate image side. 46. The projection optical system according to claim 45, comprising a lens.
  48. 第1面の像を第2面に形成する投影光学系において、
     前記第1面と前記第2面との間の光路中に配置され、前記第1面の第1中間像を形成する第1結像光学系と、
     前記第1結像光学系と前記第2面との間の光路中に配置され、第1凹面反射鏡を含み、前記第1中間像の像である第2中間像を形成する第2結像光学系と、
     前記第2結像光学系と前記第2面との間の光路中に配置され、第2凹面反射鏡を含み、前記第2中間像の像である第3中間像を形成する第3結像光学系と、
     前記第3結像光学系と前記第2面との間の光路中に配置され、前記第3中間像の像を第2面に形成する第4結像光学系とを備え、
     前記第2結像光学系は、最も前記第1中間像側に配置されて、前記第1中間像側に凸面を向けた正メニスカスレンズを備えていることを特徴とする投影光学系。
    In the projection optical system for forming an image of the first surface on the second surface,
    A first imaging optical system disposed in an optical path between the first surface and the second surface and forming a first intermediate image of the first surface;
    A second imaging that is disposed in an optical path between the first imaging optical system and the second surface, includes a first concave reflecting mirror, and forms a second intermediate image that is an image of the first intermediate image. Optical system,
    A third imaging that is disposed in an optical path between the second imaging optical system and the second surface, includes a second concave reflecting mirror, and forms a third intermediate image that is an image of the second intermediate image. Optical system,
    A fourth imaging optical system disposed in an optical path between the third imaging optical system and the second surface, and forming an image of the third intermediate image on the second surface;
    The projection optical system, wherein the second imaging optical system includes a positive meniscus lens disposed closest to the first intermediate image side and having a convex surface directed toward the first intermediate image side.
  49. 前記第2結像光学系は、前記第1中間像側に凸面を向けた前記正メニスカスレンズと前記第1凹面反射鏡との間に配置されて、前記第1中間像側に凸面を向けた前記正メニスカスレンズ側に凹面を向けた負メニスカスレンズを備えていることを特徴とする請求項48に記載の投影光学系。 The second imaging optical system is disposed between the positive meniscus lens having a convex surface directed to the first intermediate image side and the first concave reflecting mirror, and has a convex surface directed to the first intermediate image side. 49. The projection optical system according to claim 48, further comprising a negative meniscus lens having a concave surface facing the positive meniscus lens side.
  50. 前記第1凹面反射鏡と前記負メニスカスレンズとは隣接して配置されていることを特徴とする請求項49に記載の投影光学系。 The projection optical system according to claim 49, wherein the first concave reflecting mirror and the negative meniscus lens are disposed adjacent to each other.
  51. 前記負メニスカスレンズと前記正メニスカスレンズとは隣接して配置されていることを特徴とする請求項50に記載の投影光学系。 51. The projection optical system according to claim 50, wherein the negative meniscus lens and the positive meniscus lens are disposed adjacent to each other.
  52. 第1面の像を第2面に形成する投影光学系において、
     前記第1面と前記第2面との間の光路中に配置され、前記第1面の第1中間像を形成する第1結像光学系と、
     前記第1結像光学系と前記第2面との間の光路中に配置され、第1凹面反射鏡を含み、前記第1中間像の像である第2中間像を形成する第2結像光学系と、
     前記第2結像光学系と前記第2面との間の光路中に配置され、第2凹面反射鏡を含み、前記第2中間像の像である第3中間像を形成する第3結像光学系と、
     前記第3結像光学系と前記第2面との間の光路中に配置され、前記第3中間像の像を第2面に形成する第4結像光学系とを備え、
     前記第2結像光学系は、最も前記第1中間像側に配置されると共に、前記第1凹面反射鏡に隣接して配置されるレンズを備えていることを特徴とする投影光学系。
    In the projection optical system for forming an image of the first surface on the second surface,
    A first imaging optical system disposed in an optical path between the first surface and the second surface and forming a first intermediate image of the first surface;
    A second imaging that is disposed in an optical path between the first imaging optical system and the second surface, includes a first concave reflecting mirror, and forms a second intermediate image that is an image of the first intermediate image. Optical system,
    A third imaging that is disposed in an optical path between the second imaging optical system and the second surface, includes a second concave reflecting mirror, and forms a third intermediate image that is an image of the second intermediate image. Optical system,
    A fourth imaging optical system disposed in an optical path between the third imaging optical system and the second surface, and forming an image of the third intermediate image on the second surface;
    The projection optical system, wherein the second imaging optical system includes a lens disposed closest to the first intermediate image side and adjacent to the first concave reflecting mirror.
  53. 第1面の像を第2面に形成する投影光学系において、
     前記第1面と前記第2面との間の光路中に配置され、前記第1面の第1中間像を形成する第1結像光学系と、
     前記第1結像光学系と前記第2面との間の光路中に配置され、第1凹面反射鏡を含み、前記第1中間像の像である第2中間像を形成する第2結像光学系と、
     前記第2結像光学系と前記第2面との間の光路中に配置され、第2凹面反射鏡を含み、前記第2中間像の像である第3中間像を形成する第3結像光学系と、
     前記第3結像光学系と前記第2面との間の光路中に配置され、前記第3中間像の像を第2面に形成する第4結像光学系と、
     前記第1結像光学系と前記第2結像光学系との間の光路中に配置された第1偏向鏡と、
     前記第3結像光学系と前記第4結像光学系との間に配置された第2偏向鏡とを備えていることを特徴とする投影光学系。
    In the projection optical system for forming an image of the first surface on the second surface,
    A first imaging optical system disposed in an optical path between the first surface and the second surface and forming a first intermediate image of the first surface;
    A second imaging that is disposed in an optical path between the first imaging optical system and the second surface, includes a first concave reflecting mirror, and forms a second intermediate image that is an image of the first intermediate image. Optical system,
    A third imaging that is disposed in an optical path between the second imaging optical system and the second surface, includes a second concave reflecting mirror, and forms a third intermediate image that is an image of the second intermediate image. Optical system,
    A fourth imaging optical system disposed in an optical path between the third imaging optical system and the second surface, and forming an image of the third intermediate image on the second surface;
    A first deflecting mirror disposed in an optical path between the first imaging optical system and the second imaging optical system;
    A projection optical system, comprising: a second deflecting mirror disposed between the third imaging optical system and the fourth imaging optical system.
  54. 前記第2結像光学系と前記第3結像光学系とは互いに共軸であることを特徴とする請求項53に記載の投影光学系。 54. The projection optical system according to claim 53, wherein the second imaging optical system and the third imaging optical system are coaxial with each other.
  55. 前記第1結像光学系の光軸と前記第4結像光学系の光軸とは互いに平行であることを特徴とする請求項53または54に記載の投影光学系。 55. The projection optical system according to claim 53, wherein an optical axis of the first imaging optical system and an optical axis of the fourth imaging optical system are parallel to each other.
  56. 前記第1偏向鏡は、第1平面に沿った第1平面反射面を有し、
     前記第2偏向鏡は、第2平面に沿った第2平面反射面を有し、
     前記第1および第2平面は互いに平行であることを特徴とする請求項53乃至55のいずれか1項に記載の投影光学系。
    The first deflecting mirror has a first plane reflecting surface along a first plane,
    The second deflecting mirror has a second plane reflecting surface along the second plane,
    The projection optical system according to any one of claims 53 to 55, wherein the first and second planes are parallel to each other.
  57. 前記第1偏向鏡は、第1平面に沿った第1平面反射面を有し、
     前記第2偏向鏡は、第2平面に沿った第2平面反射面を有し、
     前記第1結像光学系の光軸と前記第2結像光学系の光軸とは前記第1平面上で交差し、
     前記第3結像光学系の光軸と前記第4結像光学系の光軸とは前記第2平面上で交差することを特徴とする請求項53乃至56のいずれか1項に記載の投影光学系。
    The first deflecting mirror has a first plane reflecting surface along a first plane,
    The second deflecting mirror has a second plane reflecting surface along the second plane,
    The optical axis of the first imaging optical system and the optical axis of the second imaging optical system intersect on the first plane,
    57. The projection according to claim 53, wherein an optical axis of the third imaging optical system and an optical axis of the fourth imaging optical system intersect on the second plane. Optical system.
  58. 請求項2乃至21のいずれか1項に記載の投影光学系の調整方法において、
     前記第1凹面反射鏡の反射面および前記第2凹面反射鏡の反射面に対して、互いに同じ関数表示にしたがう変形を付与することにより、前記投影光学系の波面収差を調整することを含むことを特徴とする調整方法。
    The method for adjusting a projection optical system according to any one of claims 2 to 21,
    Adjusting the wavefront aberration of the projection optical system by applying deformation according to the same function display to the reflecting surface of the first concave reflecting mirror and the reflecting surface of the second concave reflecting mirror. An adjustment method characterized by.
  59. 前記波面収差を調整することは、前記第2面における有効結像領域内の所定方向に沿った各点について一様な0次収差成分、および前記所定方向に沿った各点について線形的に変化する1次収差成分のうちの少なくとも一方を調整することを含むことを特徴とする請求項58に記載の調整方法。 Adjusting the wavefront aberration is a uniform zero-order aberration component for each point along a predetermined direction in the effective imaging region on the second surface, and a linear change for each point along the predetermined direction. 59. The adjustment method according to claim 58, comprising adjusting at least one of the first-order aberration components.
  60. 第1面の像を第2面に形成する投影光学系の調整方法において、
     前記第1面と前記第2面との間の光路中に配置される第1結像光学ユニットの中の第1凹面反射鏡を変形させることと、
     前記第1結像光学ユニットと前記第2面との間の光路中に配置される第2結像光学ユニットの中の第2凹面反射鏡を変形させることと、
    を含み、
     前記第1凹面反射鏡の反射面および前記第2凹面反射鏡の反射面に対して、互いに同じ関数表示にしたがう変形を付与することにより、前記投影光学系の波面収差を調整することを特徴とする調整方法。
    In the adjustment method of the projection optical system for forming the image of the first surface on the second surface,
    Deforming a first concave reflecting mirror in a first imaging optical unit disposed in an optical path between the first surface and the second surface;
    Deforming a second concave reflecting mirror in a second imaging optical unit disposed in an optical path between the first imaging optical unit and the second surface;
    Including
    The wavefront aberration of the projection optical system is adjusted by applying deformation according to the same function display to the reflecting surface of the first concave reflecting mirror and the reflecting surface of the second concave reflecting mirror. How to adjust.
  61. 前記第2面における有効結像領域内の所定方向に沿った各点について一様な0次収差成分、および前記所定方向に沿った各点について線形的に変化する1次収差成分のうちの少なくとも一方を調整して、前記波面収差を調整することを特徴とする請求項60に記載の調整方法。 At least one of a zero-order aberration component that is uniform for each point along a predetermined direction in the effective imaging region on the second surface and a first-order aberration component that varies linearly for each point along the predetermined direction. The adjustment method according to claim 60, wherein the wavefront aberration is adjusted by adjusting one side.
  62. 前記第1面に設定された所定のパターンからの光に基づいて、前記所定のパターンを前記第2面に設定された基板上に投影するための請求項1乃至57のいずれか1項に記載の投影光学系を備えていることを特徴とする露光装置。 58. The method according to claim 1, for projecting the predetermined pattern onto a substrate set on the second surface based on light from the predetermined pattern set on the first surface. An exposure apparatus comprising the projection optical system.
  63. 前記第1面に設定された所定のパターンからの光を投影光学系に導いて前記所定のパターンを前記第2面に設定された基板上に投影することと、
     請求項58乃至61のいずれか1項に記載の調整方法を用いて前記投影光学系を調整することとを含むことを特徴とする露光方法。
    Guiding light from a predetermined pattern set on the first surface to a projection optical system to project the predetermined pattern onto a substrate set on the second surface;
    62. An exposure method comprising adjusting the projection optical system using the adjustment method according to any one of claims 58 to 61.
  64. 請求項62に記載の露光装置を用いて、前記所定のパターンを前記基板に露光することと、
     前記所定のパターンが転写された前記基板を現像し、前記所定のパターンに対応する形状のマスク層を前記基板の表面に形成することと、
     前記マスク層を介して前記基板の表面を加工することと、を含むことを特徴とするデバイス製造方法。
    The exposure apparatus according to claim 62, exposing the predetermined pattern to the substrate;
    Developing the substrate to which the predetermined pattern is transferred, and forming a mask layer having a shape corresponding to the predetermined pattern on the surface of the substrate;
    Processing the surface of the substrate through the mask layer. A device manufacturing method comprising:
  65. 請求項63に記載の露光方法を用いて、前記所定のパターンを前記基板に露光することと、
     前記所定のパターンが転写された前記基板を現像し、前記所定のパターンに対応する形状のマスク層を前記基板の表面に形成することと、
     前記マスク層を介して前記基板の表面を加工することと、を含むことを特徴とするデバイス製造方法。
    Using the exposure method of claim 63 to expose the predetermined pattern to the substrate;
    Developing the substrate to which the predetermined pattern is transferred, and forming a mask layer having a shape corresponding to the predetermined pattern on the surface of the substrate;
    Processing the surface of the substrate through the mask layer. A device manufacturing method comprising:
PCT/JP2014/074896 2013-09-19 2014-09-19 Projection optical system, method for adjusting projection optical system, exposure apparatus, exposure method, and device production method WO2015041335A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013194129 2013-09-19
JP2013-194129 2013-09-19

Publications (1)

Publication Number Publication Date
WO2015041335A1 true WO2015041335A1 (en) 2015-03-26

Family

ID=52688982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/074896 WO2015041335A1 (en) 2013-09-19 2014-09-19 Projection optical system, method for adjusting projection optical system, exposure apparatus, exposure method, and device production method

Country Status (2)

Country Link
TW (1) TW201514541A (en)
WO (1) WO2015041335A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017102273A (en) * 2015-12-02 2017-06-08 株式会社ニコン Projection optical system, projection method, adjustment method of projection optical system, exposure apparatus, exposure method, and method for manufacturing device
JP2017102275A (en) * 2015-12-02 2017-06-08 株式会社ニコン Projection optical system, adjustment method of projection optical system, exposure apparatus, exposure method, and method for manufacturing device
JP2017102274A (en) * 2015-12-02 2017-06-08 株式会社ニコン Projection optical system, projection method, adjustment method of projection optical system, exposure apparatus, exposure method, and method for manufacturing device
CN110582224A (en) * 2017-04-28 2019-12-17 株式会社尼康 Ophthalmic device
JP2021056461A (en) * 2019-10-01 2021-04-08 キヤノン株式会社 Projection optical system, scanning exposure apparatus, and article manufacturing method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004317534A (en) * 2003-04-11 2004-11-11 Nikon Corp Catadioptric image-formation optical system, exposure device, and exposure method
JP2005107362A (en) * 2003-10-01 2005-04-21 Canon Inc Projection optical system, aligner and manufacturing method of device
JP2007005558A (en) * 2005-06-23 2007-01-11 Canon Inc Catadioptric projection optical system and exposure device having it
JP2007013179A (en) * 2005-07-01 2007-01-18 Carl Zeiss Smt Ag Method of correcting lithography projection objective, and the objective
JP2007508591A (en) * 2003-10-17 2007-04-05 カール・ツァイス・エスエムティー・アーゲー Catadioptric projection objective
JP2008177575A (en) * 2007-01-17 2008-07-31 Carl Zeiss Smt Ag Projection optical system for micro lithography
JP2011013681A (en) * 2006-08-14 2011-01-20 Carl Zeiss Smt Gmbh Catadioptric projection objective with pupil mirror, projection exposure apparatus and projection exposure method
WO2012041459A2 (en) * 2010-09-30 2012-04-05 Carl Zeiss Smt Gmbh Imaging optical system for microlithography

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004317534A (en) * 2003-04-11 2004-11-11 Nikon Corp Catadioptric image-formation optical system, exposure device, and exposure method
JP2005107362A (en) * 2003-10-01 2005-04-21 Canon Inc Projection optical system, aligner and manufacturing method of device
JP2007508591A (en) * 2003-10-17 2007-04-05 カール・ツァイス・エスエムティー・アーゲー Catadioptric projection objective
JP2007005558A (en) * 2005-06-23 2007-01-11 Canon Inc Catadioptric projection optical system and exposure device having it
JP2007013179A (en) * 2005-07-01 2007-01-18 Carl Zeiss Smt Ag Method of correcting lithography projection objective, and the objective
JP2011013681A (en) * 2006-08-14 2011-01-20 Carl Zeiss Smt Gmbh Catadioptric projection objective with pupil mirror, projection exposure apparatus and projection exposure method
JP2008177575A (en) * 2007-01-17 2008-07-31 Carl Zeiss Smt Ag Projection optical system for micro lithography
WO2012041459A2 (en) * 2010-09-30 2012-04-05 Carl Zeiss Smt Gmbh Imaging optical system for microlithography

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017102273A (en) * 2015-12-02 2017-06-08 株式会社ニコン Projection optical system, projection method, adjustment method of projection optical system, exposure apparatus, exposure method, and method for manufacturing device
JP2017102275A (en) * 2015-12-02 2017-06-08 株式会社ニコン Projection optical system, adjustment method of projection optical system, exposure apparatus, exposure method, and method for manufacturing device
JP2017102274A (en) * 2015-12-02 2017-06-08 株式会社ニコン Projection optical system, projection method, adjustment method of projection optical system, exposure apparatus, exposure method, and method for manufacturing device
CN110582224A (en) * 2017-04-28 2019-12-17 株式会社尼康 Ophthalmic device
JP2021056461A (en) * 2019-10-01 2021-04-08 キヤノン株式会社 Projection optical system, scanning exposure apparatus, and article manufacturing method
JP7332415B2 (en) 2019-10-01 2023-08-23 キヤノン株式会社 Projection optical system, scanning exposure apparatus and article manufacturing method

Also Published As

Publication number Publication date
TW201514541A (en) 2015-04-16

Similar Documents

Publication Publication Date Title
TW503466B (en) Reflection/refraction optical system and projection exposure apparatus comprising the optical system, exposure method and manufacturing method of micro-device
US6235438B1 (en) Projection exposure method and apparatus
KR100387003B1 (en) Projection optical system and projection exposure apparatus
TWI443471B (en) Projection optical system, exposure apparatus, and device manufacturing method
JP2003092253A (en) Illumination optical system, projection aligner, and manufacturing method of microdevice
JP2004205698A (en) Projection optical system, exposure device and exposing method
JP5253081B2 (en) Projection optical system, exposure apparatus, and device manufacturing method
WO2015041335A1 (en) Projection optical system, method for adjusting projection optical system, exposure apparatus, exposure method, and device production method
KR20070117488A (en) Mirror array for lithography
JPWO2009125511A1 (en) Spatial light modulation unit, illumination optical system, exposure apparatus, and device manufacturing method
JP2016510142A (en) Projection lens with wavefront manipulator
JP2008085328A (en) Liquid immersion objective optical system, exposure apparatus, device manufacturing method, and border optical element
JP2013004547A (en) Wavefront aberration measuring device, calibration method of the same, exposure device, exposure method, and device manufacturing method
JPWO2009078224A1 (en) Illumination optical system, exposure apparatus, and device manufacturing method
KR100992302B1 (en) Optical system, exposure apparatus and device manufacturing method
JP2004031808A (en) Projection optical system of aligner, aligner equipped with the same, and method for exposure using the aligner
JP4147574B2 (en) Wavefront aberration measurement method, projection optical system adjustment method and exposure method, and exposure apparatus manufacturing method
JP4376227B2 (en) Projection apparatus for lithographic apparatus
JP2007250723A (en) Evaluation method and regulation method of imaging optical system, exposure device and exposure method
WO2012043130A1 (en) Projection optical assembly, projection optical assembly adjustment method, exposure device, exposure method, and device manufacturing method
JP2007287885A (en) Illuminating optical apparatus, aligner, and method of manufacturing device
JP2002139406A (en) Mask for measuring optical characteristic, method of measuring optical characteristic and production method of exposer
JP2002151397A (en) Projection optical system, aligner and exposure method
JP2005079470A (en) Adjustment method of illumination optical system, method and device for exposure, device manufacturing method
WO2013115208A1 (en) Transmission optical system, illumination optical system, exposure device, and device manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14846568

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14846568

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP