WO2015041324A1 - Laminated glass - Google Patents

Laminated glass Download PDF

Info

Publication number
WO2015041324A1
WO2015041324A1 PCT/JP2014/074860 JP2014074860W WO2015041324A1 WO 2015041324 A1 WO2015041324 A1 WO 2015041324A1 JP 2014074860 W JP2014074860 W JP 2014074860W WO 2015041324 A1 WO2015041324 A1 WO 2015041324A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass plate
young
modulus
thickness
core layer
Prior art date
Application number
PCT/JP2014/074860
Other languages
French (fr)
Japanese (ja)
Inventor
神吉 哲
貴弘 浅井
Original Assignee
日本板硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本板硝子株式会社 filed Critical 日本板硝子株式会社
Priority to JP2014561647A priority Critical patent/JP5744355B1/en
Publication of WO2015041324A1 publication Critical patent/WO2015041324A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10761Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing vinyl acetal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers

Definitions

  • the present invention relates to a laminated glass used for a windshield of an automobile.
  • Patent Document 1 discloses a laminated glass in which an intermediate film is disposed between a pair of glass plates, and a sound having a frequency of 5000 Hz is insulated while reducing the surface density.
  • the brake sound and wind noise include sounds having a frequency of 5000 Hz or more, which are factors that hinder the comfort in the vehicle. Therefore, even a sound with a frequency higher than 5000 Hz has a large influence on the inside of the vehicle, and a laminated glass for automobiles corresponding to such a frequency has been demanded.
  • the motor frequency is 5000 Hz or more, and a technique for improving the sound insulation performance in such a frequency band is required. In particular, since these vehicles hardly hear the engine sound or there is no engine sound, the sound insulation performance of the sound in the frequency band of 5000 Hz or more is important.
  • the present invention has been made to solve the above-described problems, and has an object to provide a laminated glass that can improve sound insulation for high frequency sound higher than 5000 Hz.
  • a laminated glass according to the present invention comprises an outer glass plate, an inner glass plate disposed opposite to the outer glass plate, and an intermediate film sandwiched between the outer glass plate and the inner glass plate, and the intermediate film is A core layer and at least one outer layer disposed on at least the outer glass plate side of the outer glass plate side and the inner glass plate side having higher rigidity than the core layer and sandwiching the core layer; And at least one Young's modulus of the outer layer is 560 MPa or more at a frequency of 100 Hz and a temperature of 20 ° C.
  • the Young's modulus of the core layer can be 25 MPa or less at a frequency of 100 Mz and a temperature of 20 ° C.
  • the Young's modulus of the core layer can be 14 MPa or less at a wave number of 100 Mz and a temperature of 20 ° C.
  • the tan ⁇ of the core layer can be 0.8 or less at a frequency of 100 Mz and a temperature of 20 ° C.
  • any of the above laminated glasses may include at least a pair of outer layers sandwiching the core layer.
  • the Young's modulus of the outer layer arranged on the outer glass plate side can be made larger than the Young's modulus of the outer layer arranged on the inner glass plate side.
  • the thickness of the outer glass can be made different from the thickness of the inner glass plate.
  • the total of the thickness of the outer glass plate and the thickness of the inner glass plate can be 3.8 mm or less.
  • any of the above laminated glasses is used as a windshield of an automobile, and the mounting angle from the vertical to the automobile can be 45 degrees or more.
  • a laminated glass composed of glasses having different thicknesses which can improve the sound insulation against high frequency sound higher than 5000 Hz and can contribute to making the infrared transmittance within a predetermined range. Can do.
  • FIG. 1 is a cross-sectional view of a laminated glass according to the present embodiment.
  • the laminated glass according to this embodiment includes an outer glass plate 1, an inner glass plate 2, and an intermediate film 3 sandwiched between these glasses.
  • the intermediate film 3 can be comprised by the core layer 31 and a pair of outer layer 32 which clamps this, this is an example and it mentions later for details.
  • the outer glass plate 1 is a glass plate disposed on the side susceptible to disturbance
  • the inner glass plate 2 is a glass plate disposed on the opposite side.
  • this laminated glass when used as a glass of an automobile, the glass plate on the outside of the vehicle becomes an outer glass plate, and when used as a building material, the side facing outward becomes an outer glass plate.
  • the arrangement may be opposite.
  • each member will be described.
  • Outer glass plate and inner glass plate As the outer glass plate 1 and the inner glass plate 2, known glass plates can be used, and they can be formed of heat ray absorbing glass, general clear glass, green glass, or UV green glass. However, when this laminated glass is used for an automobile window, it is necessary to realize a visible light transmittance in accordance with the safety standard of the country where the automobile is used. For example, the required solar radiation absorption rate can be secured by the outer glass plate 1, and the visible light transmittance can be adjusted by the inner glass plate 2 so as to satisfy the safety standard. Below, an example of clear glass, heat ray absorption glass, and soda-lime-type glass is shown.
  • the thickness is more preferably 2.6 to 3.4 mm, and particularly preferably 2.7 to 3.2 mm.
  • the thickness of each glass plate is not particularly limited,
  • the thickness of the outer glass plate 1 and the inner glass plate 2 can be determined as follows.
  • the outer glass plate 1 mainly needs durability and impact resistance against external obstacles. For example, when this laminated glass is used as a windshield of an automobile, the outer glass plate 1 has impact resistance performance against flying objects such as pebbles. is necessary. On the other hand, as the thickness is larger, the weight increases, which is not preferable. From this viewpoint, the thickness of the outer glass plate 1 is preferably 1.8 mm or more, 1.9 mm or more, 2.0 mm or more, 2.1 mm or more, or 2.2 mm or more. On the other hand, the upper limit of the thickness of the outer glass is preferably 5.0 mm or less, 4.0 mm or less, 3.1 mm or less, 2.5 mm or less, 2.4 mm or less. Among these, it is preferably larger than 2.1 mm and not larger than 2.5 mm, particularly preferably not smaller than 2.2 mm and not larger than 2.4 mm. Which thickness is adopted can be determined according to the application of the glass.
  • the thickness of the inner glass plate can be made equal to that of the outer glass plate 1, but the thickness can be made smaller than that of the outer glass plate 1, for example, in order to reduce the weight of the laminated glass.
  • the thickness of the inner glass plate 2 is preferably in the order of 0.6 mm or more, 0.8 mm or more, 1.0 mm or more, and 1.3 mm or more.
  • the upper limit of the thickness of the inner glass plate 2 is 5.0 mm or less, 4.0 mm or less, 3.1 mm or less, 2.5 m or less, 2.0 mm or less, 1.6 mm or less, 1.4 mm or less, 1.3 mm.
  • Which thickness is used for the inner glass plate 2 can also be determined according to the purpose of the glass.
  • FIG. 2A is a graph in which sound transmission loss (STL: Sound Transmission Loss) is calculated under the following conditions (the calculation method follows the method of an embodiment described later).
  • the outer glass plate 1 and the inner glass plate 2 were flat clear glass having a width of 800 mm and a length of 500 mm.
  • the intermediate film 3 is composed of three layers in which the core layer 31 is sandwiched between a pair of outer layers 32.
  • the thickness of the core layer is 0.10 mm
  • the thickness of the outer layer is 0.33 mm
  • the total is 0.76 mm.
  • the Young's modulus (measured at a frequency of 100 Hz and a temperature of 20 ° C.) of the core layer 31 is 25 MPa
  • the Young's modulus of the outer layer 32 (measured at a frequency of 100 Hz and a temperature of 20 ° C.) is 560 MPa.
  • FIG.2 (b) it is the same conditions as Fig.2 (a) except the Young's modulus of an outer layer being 441 Mpa.
  • the specifications and measurement conditions of the core layer 31 and the outer layer 32 are the same as described above unless otherwise specified.
  • clear glass is used, but is not limited thereto. This is because the sound insulation performance is determined by the Young's modulus, Poisson's ratio, and density of the glass, and clear glass and, for example, green glass have the same value.
  • the difference in thickness between the outer glass plate 1 and the inner glass plate 2 is preferably 0.7 mm or less, and more preferably 0.5 mm or less.
  • the shape of the outer glass plate 1 and the inner glass plate 2 according to the present embodiment may be either a planar shape or a curved shape.
  • the sound transmission loss (STL: Sound Transmission Loss) of glass which will be described later, is lower in the curved shape, the curved glass particularly requires an acoustic measure. The reason why the STL value is lower in the curved shape than in the planar shape is that the curved shape is more influenced by the resonance mode.
  • the amount of double is an amount indicating the bending of the glass plate.
  • a virtual straight line L connecting the left and right centers of the glass plate that is, the center of the upper side and the center of the lower side of the glass plate.
  • FIG. 4 is a graph showing a relationship between a general frequency and sound transmission loss of a curved glass plate and a planar glass plate.
  • the curved glass plate has no significant difference in sound transmission loss in the range of the doubly amount of 30 to 38 mm, but compared with the planar glass plate, it transmits sound in a frequency band of 4000 Hz or less. It can be seen that the loss is decreasing. Therefore, when producing a curved glass plate, the amount of double is better, but for example, when the amount of double exceeds 30 mm, the Young's modulus of the core layer 31 of the intermediate film 3 is reduced as described later.
  • the pressure is preferably 25 MPa (frequency 100 Hz, temperature 20 ° C.) or less.
  • FIG. 5 shows the result of simulating the relationship between the frequency and the STL at different doubling amounts.
  • the thicknesses of the outer glass plate 1 and the inner glass plate 2 are both 1.75 mm, and only the line connecting the upper and lower sides of both glass plates 1 and 2 is curved.
  • 5A the Young's modulus of the outer layer is 560 MPa
  • FIG. 5B the Young's modulus of the outer layer is 441 MPa.
  • Other conditions are the same as those in the graph of FIG.
  • FIG. 5 in this laminated glass, it can be seen that the STL decreases in the frequency range of 4000 Hz or less as the amount of doubling increases.
  • the amount of doubling is preferably 30 mm or less, and more preferably 20 mm or less.
  • the difference in thickness between the glass plate 1 and the inner glass plate 2 is 0.7 mm or less and the amount of doubling is 30 mm or less.
  • a method for measuring the thickness when the glass plate is curved will be described.
  • the measuring instrument is not particularly limited, and for example, a thickness gauge such as SM-112 manufactured by Teclock Co., Ltd. can be used.
  • SM-112 manufactured by Teclock Co., Ltd.
  • Teclock Co., Ltd. Teclock Co., Ltd.
  • it is arranged so that the curved surface of the glass plate is placed on a flat surface, and the end of the glass plate is sandwiched by the thickness gauge and measured. Even when the glass plate is flat, it can be measured in the same manner as when the glass plate is curved.
  • the intermediate film 3 is formed of a plurality of layers.
  • the intermediate film 3 includes three layers in which a soft core layer 31 is sandwiched between hard outer layers 32 having higher rigidity. be able to.
  • it is not limited to this configuration, and may be formed of a plurality of layers having the core layer 31 and at least one outer layer 32 disposed on the outer glass plate 1 side.
  • the intermediate film 3 may include the intermediate film 3 in which the odd number of outer layers 32 are disposed on one side and the even number of outer layers 32 are disposed on the other side.
  • the outer layer 32 is provided on the outer glass plate 1 side as described above, but this is to improve the resistance to breakage against external force from outside the vehicle or outdoors. Further, when the number of outer layers 32 is large, the sound insulation performance is also improved.
  • the hardness thereof is not particularly limited.
  • the material can be selected based on the Young's modulus. Specifically, it is preferably 1 MPa or more at a frequency of 100 Hz and a temperature of 20 degrees.
  • the upper limit is not particularly limited. For example, it is preferably 25 MP or less, more preferably 20 MPa or less, particularly preferably 18 MPa or less, more preferably 14 MPa or less, and more preferably 10 MPa or less. Even more preferably. With such a range, it is possible to prevent the STL from decreasing in a low frequency range of approximately 3500 Hz or less.
  • Table 1 below shows the sound insulation performance of the laminated glass having an intermediate film composed of an outer glass plate and an inner glass plate made of clear glass, and an outer layer located on both sides of the core layer and the core layer. Show.
  • the thickness of the outer glass plate is 2.0 mm
  • the thickness of the inner glass plate is 1.3 mm
  • the thickness of the intermediate film is 0.10 mm for the core layer and 0.33 mm for the outer layer, for a total of 0.76 mm.
  • Table 1 below shows sound transmission loss when the frequency is between 1250 and 10,000 Hz.
  • sound transmission loss is calculated when the Young's modulus (measured at a frequency of 100 Hz and a temperature of 20 ° C.) of the core layer of the interlayer film is 25 MPa, 12.5 MPa, and 6.25 MPa (a calculation method will be described later).
  • the difference in sound transmission loss when the Young's modulus is 12.5 MPa and 6.25 MPa (unit: 0 in the following table, based on the case where the Young's modulus is 25 MPa) Indicates dB).
  • the Young's modulus of the outer layer is 560 MPa, and tan ⁇ is 0.26 (temperature 20 ° C., frequency 100 Hz).
  • Table 1 when the frequency is between 3150 and 5000 Hz, the sound transmission loss improves as the Young's modulus of the core layer of the intermediate film decreases from 25 MPa to 12.5 MPa and 6.25 MPa. I understand.
  • frequency dispersion measurement can be performed with a strain amount of 0.05% using a solid viscoelasticity measuring device DMA 50 manufactured by Metravib.
  • the Young's modulus is a value measured by the above method.
  • the measurement when the frequency is 200 Hz or less uses an actual measurement value.
  • a calculation value based on the actual measurement value is used. This calculated value is based on a master curve calculated by using the WLF method from the actually measured value.
  • the Young's modulus of the outer layer 32 is preferably large in order to improve the sound insulation performance in a high frequency region, and is 560 MPa or more, 600 MPa or more, 650 MPa or more, 700 MPa or more at a frequency of 100 Hz and a temperature of 20 degrees. It is preferable in the order of 750 MPa or more, 880 MPa or more, or 1300 MPa or more.
  • the upper limit of the Young's modulus of the outer layer 32 is not particularly limited, but can be set from the viewpoint of workability, for example. For example, it is empirically known that when it becomes 1750 MPa or more, workability, particularly cutting becomes difficult.
  • tan ⁇ of the core layer 31 can be set to 0.1 to 0.9 at a frequency of 100 Hz and a temperature of 20 ° C.
  • tan ⁇ is in the above range, the sound insulation performance is improved.
  • Table 2 shows the sound insulation performance of laminated glass having an intermediate film composed of an outer glass plate and an inner glass plate made of clear glass, and a core layer and outer layers positioned on both sides of the core layer. Is shown.
  • the thickness of the outer glass plate is 2.0 mm
  • the thickness of the inner glass plate is 1.3 mm
  • the thickness of the intermediate film is 0.10 mm for the core layer and 0.33 mm for the outer layer, for a total of 0.76 mm.
  • the Young's modulus of the core layer and the outer layer at this time is 12.5 MPa and 560 MPa, respectively (measured at a frequency of 100 Hz and a temperature of 20 ° C.).
  • Table 2 below shows sound transmission loss when the frequency is between 1250 and 10000 Hz. Specifically, sound transmission loss is calculated when tan ⁇ (measured at a frequency of 100 Hz and a temperature of 20 ° C.) of the interlayer film is 0.8, 1.2, and 1.6 (a calculation method is described in an example described later). The difference in sound transmission loss when tan ⁇ is 1.2 and 1.6 (unit is dB), based on the case where tan ⁇ is 0.8 (in the following table, it is 0). ).
  • tan ⁇ of the outer layer is 0.26.
  • Table 2 when the frequency is between 5000 and 10,000 Hz, the sound transmission loss is improved as the tan ⁇ of the intermediate film increases from 0.8 to 1.2, 1.6. . It can also be seen that the sound transmission loss decreases with increasing values from 0.8 to 1.2 and 1.6 at 1600 to 3150 Hz. In other words, by setting it to 0.8 or less, it can be said that the sound transmission loss is improved at 1600-3150 Hz.
  • the material constituting each of the layers 31 and 32 is not particularly limited, but it is necessary that the material has at least a Young's modulus in the above range, for example, a resin material.
  • the outer layer 32 can be comprised by polyvinyl butyral resin (PVB). Polyvinyl butyral resin is preferable because it is excellent in adhesiveness and penetration resistance with each glass plate.
  • the core layer 31 can be made of an ethylene vinyl acetate resin (EVA) or a polyvinyl acetal resin softer than the polyvinyl butyral resin constituting the outer layer. By sandwiching the soft core layer between them, the sound insulation performance can be greatly improved while maintaining the same adhesion and penetration resistance as the single-layer resin intermediate film.
  • the hardness of the polyvinyl acetal resin is controlled by (a) the degree of polymerization of the starting polyvinyl alcohol, (b) the degree of acetalization, (c) the type of plasticizer, (d) the addition ratio of the plasticizer, etc. Can do. Accordingly, by appropriately adjusting at least one selected from these conditions, a hard polyvinyl butyral resin used for the outer layer 32 and a soft polyvinyl butyral resin used for the core layer 31 even if the same polyvinyl butyral resin is used. Can be made separately.
  • the hardness of the polyvinyl acetal resin can also be controlled by the type of aldehyde used for acetalization, coacetalization with a plurality of aldehydes or pure acetalization with a single aldehyde. Although it cannot generally be said, the polyvinyl acetal resin obtained by using an aldehyde having a large number of carbon atoms tends to be softer.
  • the core layer 31 has an aldehyde having 5 or more carbon atoms (for example, n-hexylaldehyde, 2-ethylbutyraldehyde, n-heptylaldehyde, n-octylaldehyde) and a polyvinyl acetal resin obtained by acetalization with polyvinyl alcohol can be used.
  • a predetermined Young's modulus it is not limited to the said resin.
  • the total thickness of the intermediate film 3 is not particularly limited, but is preferably 0.3 to 6.0 mm, more preferably 0.5 to 4.0 mm, and 0.6 to 2.0 mm. It is particularly preferred.
  • the thickness of the core layer 31 is preferably 0.1 to 2.0 mm, and more preferably 0.1 to 0.6 mm. In particular, the lower limit is preferably 0.1 mm or more, more preferably 0.15 mm or more, and particularly preferably 0.2 mm or more.
  • the thickness of each outer layer 32 is preferably 0.1 to 2.0 mm, and more preferably 0.1 to 1.0 mm.
  • the total thickness of the intermediate film 3 can be made constant, and the thickness of the core layer 31 can be adjusted therein.
  • the thickness of the core layer 31 and the outer layer 32 can be measured as follows, for example. First, the cross section of the laminated glass is enlarged and displayed by 175 times using a microscope (for example, VH-5500 manufactured by Keyence Corporation). And the thickness of the core layer 31 and the outer layer 32 is specified by visual observation, and this is measured. At this time, in order to eliminate visual variation, the number of measurements is set to 5 times, and the average value is defined as the thickness of the core layer 31 and the outer layer 32. For example, an enlarged photograph of a laminated glass as shown in FIG. 7 is taken, and the core layer and outer layer 32 are specified in this and the thickness is measured.
  • the thickness of the core layer 31 and the outer layer 32 of the intermediate film 3 does not need to be constant over the entire surface, and can be a wedge shape for laminated glass used for a head-up display, for example.
  • the thickness of the core layer 31 and the outer layer 32 of the intermediate film 3 is measured at the position where the thickness is the smallest, that is, the lowermost side portion of the laminated glass.
  • the intermediate film 3 is wedge-shaped, the outer glass plate and the inner glass plate are not arranged in parallel, but such an arrangement is also included in the “opposing arrangement” between the outer glass plate and the inner glass plate in the present invention. .
  • the “opposing arrangement” of the present invention is, for example, an outer glass plate and an inner glass plate when the intermediate film 3 using the core layer 31 and the outer layer 32 whose thickness is increased at a change rate of 3 mm or less per 1 m is used. Including the arrangement.
  • the manufacturing method of the intermediate film 3 is not particularly limited, for example, after blending resin components such as the above-mentioned polyvinyl acetal resin, a plasticizer, and other additives as necessary, and uniformly kneading, each layer is collectively And a method of laminating two or more resin films prepared by this method by a pressing method, a laminating method or the like.
  • the resin film before lamination used in a method of laminating by a press method, a laminating method or the like may have a single layer structure or a multilayer structure.
  • the manufacturing method of the laminated glass which concerns on this embodiment is not specifically limited, The manufacturing method of a conventionally well-known laminated glass is employable.
  • the intermediate film 3 is sandwiched between the outer glass plate 1 and the inner glass plate 2, placed in a rubber bag, and pre-bonded at about 70 to 110 ° C. while sucking under reduced pressure.
  • Other pre-adhesion methods are possible.
  • the intermediate film 3 is sandwiched between the outer glass plate 1 and the inner glass plate 2 and heated at 45 to 65 ° C. in an oven. Subsequently, this laminated glass is pressed by a roll at 0.45 to 0.55 MPa.
  • the laminated glass is again heated at 80 to 105 ° C. in an oven and then pressed again with a roll at 0.45 to 0.55 MPa.
  • preliminary adhesion is completed.
  • the pre-bonded laminated glass is subjected to main bonding by an autoclave at 8 to 15 atm and 100 to 150 ° C. Specifically, the main bonding can be performed under the conditions of 14 atm and 145 ° C. Thus, the laminated glass according to the present embodiment is manufactured.
  • the laminated glass according to the present embodiment When the laminated glass according to the present embodiment is attached to an automobile, it can be applied to window glasses of various automobiles. Among these, the laminated glass according to the present embodiment is excellent in sound insulation performance with respect to sound in a frequency band of 5000 Hz or more, as will be described later, and therefore, particularly when attached to a hybrid vehicle or an EV vehicle, the sound insulation effect is large. This is because a motor used in a hybrid vehicle or an EV vehicle is driven at a high frequency, so that a high-frequency sound is likely to be generated.
  • the laminated glass according to the present embodiment can be applied to a window glass at any position of an automobile. Among these, it is particularly desirable to use it for a windshield.
  • the laminated glass which concerns on this embodiment is not limited to a windshield, It can be used also for a side glass and a rear glass.
  • the laminated glass mentioned above can be attached to attachment structures, such as a car and a building, for example. At this time, the laminated glass is attached to the attachment structure via the attachment portion.
  • the attachment portion corresponds to, for example, a frame such as a urethane frame for attachment to an automobile, an adhesive, a clamp, or the like.
  • pins 50 are attached to both ends of the laminated glass 10, and an adhesive 60 is applied to the automobile frame 70 to be attached. .
  • a through hole 80 into which a pin is inserted is formed in the frame.
  • the laminated glass 10 is attached to the flame
  • the pin 50 is inserted into the through hole 80 and the laminated glass 10 is temporarily fixed to the frame 70. At this time, since a step is formed in the pin 50, the pin 50 is inserted only halfway through the through-hole 80, whereby a gap is generated between the frame 70 and the laminated glass 10. And since the adhesive material 60 mentioned above is apply
  • FIG. 9 is a graph showing the result of simulating the relationship between frequency and sound transmission loss (STL).
  • laminated glass with a resin intermediate film sandwiched between two glass plates with thicknesses of 2.0 mm and 1.5 mm is used, and the vertical mounting angle is set to 5 types between 0 and 75 degrees.
  • the result of setting and simulation is shown.
  • the core layer has a thickness of 0.1 mm
  • the outer layer has a thickness of 0.33 mm
  • the core layer has a Young's modulus of 25 MPa.
  • the outer Young's modulus is 560 MPa
  • FIG. 9A the outer Young's modulus
  • the outer Young's modulus is 441 MPa.
  • the simulation method follows the method described in the examples. According to this graph, it can be seen that when the mounting angle is larger than 45 degrees, the sound transmission loss is reduced in a frequency range of 2500 to 5000 Hz which is easy for humans to hear. Thereby, sound insulation performance falls and the problem that a vehicle interior environment deteriorates generate
  • the attachment angle of the laminated glass 10 is preferably 45 degrees or less from the vertical N as shown in FIG.
  • the above-described doubling amount also contributes to suppressing a decrease in sound insulation performance at a frequency of 2000 to 5000 Hz, particularly around 3150 Hz.
  • the mounting angle is set to 45 degrees or less.
  • the mounting angle is preferably 30 degrees or less.
  • the attachment angle of the laminated glass may be larger than 45 degrees, and in that case, the sound insulation performance is lowered. Therefore, in order to suppress a decrease in sound insulation performance at a frequency of 2000 to 5000 Hz even when the mounting angle is large, as will be described later, the Young's modulus of the core layer 31 is reduced or the thickness of the core layer 31 is increased. It is preferable. In this way, it has been found that the sound insulation performance is improved in a frequency range in which the sound insulation performance is lowered by increasing the mounting angle, and in a frequency region almost the same. In this case, the outer glass plate 1 and the inner glass plate 2 may have the same thickness.
  • FIG. 10 is a graph showing the relationship between the frequency and STL at different core layer thicknesses when the mounting angle is 60 degrees.
  • the outer glass plate has a thickness of 2.0 mm
  • the inner glass plate has a thickness of 1.5 mm
  • the outer layer has a thickness of 0.33 mm
  • the core layer has a Young's modulus of 25 MPa
  • the outer layer has a Young's modulus of 441 MPa.
  • the STL at 2000 to 5000 Hz increases as the thickness of the core layer 31 increases, but the STL decreases at 5000 to 8000 Hz.
  • FIG. 11 (a) shows that when the mounting angle is 60 degrees, the thickness of the outer glass plate is 2.0 mm, the thickness of the inner glass plate is 1.5 mm, and the Young's modulus of the outer layer is 560 MPa, the Young of different core layers. It is a graph which shows the relationship between the frequency in a rate, and STL.
  • FIG. 11B is a graph of 441 MPa, which is different only in the Young's modulus of the outer layer.
  • the STL at 2000 to 5000 Hz increases as the Young's modulus of the core layer 31 decreases, but the STL decreases at 5000 to 8000 Hz. This point is almost the same even if the Young's modulus of the outer layer is different, but as the Young's modulus of the outer layer is higher, the upper and lower peaks of the STL are slightly shifted to the high frequency side.
  • FIG. 12 is a graph showing the relationship between the frequency and STL when the mounting angle is 60 degrees and the Young's modulus of the core layer 31 is 10 MPa (frequency 100 Hz, temperature 20 degrees).
  • the thickness of the outer layer 32 was 441 MPa, 560 MPa, and 800 MPa.
  • the outer layer 32 has a large Young's modulus, for example, 560 MPa or more, whereby the core layer 31 has a Young's modulus of, for example, 1 to It was found that the STL of 5000 to 8000 Hz is improved even when the pressure is as low as 25 MPa. Further, as shown in FIG. 11, it is preferable that the Young's modulus of the core layer is low because STL is improved at 2000 to 5000 Hz.
  • the following effects can be obtained by setting the Young's modulus of the outer layer 32 constituting a part of the intermediate film 3 to 560 MPa or more at a frequency of 100 Hz and a temperature of 20 degrees.
  • the present inventor has found that when the Young's modulus of the outer layer 32 of the intermediate film 3 is improved, the sound insulation performance in a frequency range of about 4000 Hz or more is improved.
  • the Young's modulus of the outer layer 32 of the intermediate film 3 is improved, the sound insulation performance in a frequency range of about 4000 Hz or more is improved.
  • an outer layer 32 having a Young's modulus of 560 MPa (20 ° C., 100 Hz) is used with respect to a generally used outer layer having a Young's modulus of 441 MPa (20 ° C., 100 Hz)
  • an STL of 0.1 is obtained at a frequency of about 6300 Hz. It was found to improve 3 dB.
  • the coincidence frequency is generally shifted to the higher frequency side as the thickness and Young's modulus of glass become smaller.
  • the laminated glass has a small thickness, it is advantageous to use the outer layer 32 having a high Young's modulus as described above.
  • the sound insulation performance in a specific frequency range falls. ing. For example, as shown in FIG. 13, it was found that the sound insulation performance in the frequency range of 2000 to 5000 Hz, which is easy for humans to hear, is lower than in the case of the same thickness.
  • the figure is a graph showing the result of simulating the relationship between frequency and sound transmission loss (STL).
  • This graph shows a laminated glass composed of a glass plate having a thickness of 1.5 mm (hereinafter referred to as a first laminated glass) and a laminated glass composed of different glass plates having a thickness of 2.0 mm and 1.0 mm.
  • the second laminated glass is displayed.
  • a resin intermediate film is disposed between glass plates.
  • the present inventor has found that the STL at 2000 to 5000 Hz does not decrease as the thickness of the core layer 31 constituting a part of the intermediate film 3 decreases or as the Young's modulus decreases.
  • the pressure is 25 MPa or less, preferably 20 MPa or less, more preferably 18 MPa or less, and particularly preferably 14 MPa or less, the sound insulation performance may not be lowered at a frequency that is easily heard by humans. I found it.
  • the properties of the hard outer layer 32 are mainly increased in the intermediate film 3. That is, the outer glass plate 1 and the inner glass plate 2 are connected by the hard intermediate film 3, and thus, even if it is a laminated glass, the total thickness of the outer glass plate 1 and the inner glass plate 2. As a single plate of the same thickness, the properties become stronger. Moreover, as shown in the above-mentioned formula 1, generally, the coincidence frequency shifts to the high frequency side as the thickness and Young's modulus of glass decrease.
  • the intermediate film 3 is hard, that is, if the Young's modulus is large, even if it is a laminated glass having a total thickness of 4 mm, the coincidence frequency is 3 as in the case of a single plate having a thickness of 4 mm. It becomes ⁇ 4 kHz, and the performance decreases in a frequency band that is easy for humans to hear.
  • the intermediate film 3 is soft, that is, if the Young's modulus decreases, the performance of the laminated glass is the sum of the two glass plates. For example, if it is a laminated glass consisting of a 2 mm glass plate and a 1 mm glass plate, its performance tends to be the sum of the performances of the two glass plates.
  • FIG. 14 is a graph which shows the result of having simulated the relationship between the frequency and STL of the single plate which is not a laminated glass.
  • the thickness of the core layer 31 constituting a part of the intermediate film 3 is increased, the influence of the soft core layer 31 is increased, and the laminated glass is provided 2 with the core layer 31 of the intermediate film 3 interposed therebetween.
  • the combined properties of the two glass plates appear.
  • the thickness of the outer side glass plate 1 and the inner side glass plate 2 is different, for example, even if the thickness of the inner side glass plate 2 is reduced, the sound insulation performance is not lowered at a frequency that is easy for humans to hear. That is, the coincidence frequency is shifted to the high frequency side by reducing the thickness of the inner glass plate 2.
  • the sound insulation performance in the frequency range of 2000 to 5000 Hz, it is necessary to increase the thickness of the soft core layer 31. As described above, if the difference in thickness between the outer glass 1 and the inner glass plate 2 is small, the sound insulation performance can be further improved.
  • the above knowledge relates to the thickness of the core layer 31 that is softer than the outer layer 32, the same effect can be obtained by setting the Young's modulus range of the core layer 31 as described above. it can.
  • Test A Laminated glasses according to Example 1 and Comparative Example 1 were prepared as follows. The difference between Example 1 and Comparative Example 1 is only the Young's modulus of the outer layer.
  • the outer and inner glass plates were formed with the above-described clear glass.
  • the thickness of the outer glass plate was 2.0 mm, and the thickness of the inner glass plate was 1.3 mm.
  • the intermediate film was comprised with the core layer and a pair of outer layer which clamps this.
  • the thickness of the intermediate film was 0.76 mm, the thickness of the core layer was 0.1 mm, and the thicknesses of both outer layers were 0.33 mm.
  • the Young's modulus of the core layer was adjusted to 19 MPa (20 ° C., 100 Hz).
  • the Young's modulus of the outer layer in Example 1 was 882 MPa (20 ° C., 100 Hz), and the Young's modulus of the outer layer in Comparative Example 1 was 441 MPa (20 ° C., 100 Hz).
  • Example 1 For the above Example 1 and Comparative Example 1, the sound transmission loss was evaluated by simulation.
  • the simulation conditions are as follows.
  • the simulation was performed using acoustic analysis software (ACTRAN, manufactured by Free Field technology).
  • ACTRAN acoustic analysis software
  • the sound transmission loss (transmitted sound pressure level / incident sound pressure level) of the laminated glass can be calculated by solving the following wave equation using the finite element method.
  • Model setting The model of the laminated glass used in this simulation is shown in FIG.
  • a laminated glass is defined in which an outer glass plate, an intermediate film, an inner glass plate, and a urethane frame are laminated in this order from the sound source side.
  • the reason why the urethane frame is added to the model is that there is a considerable influence on the calculation result of sound transmission loss due to the presence or absence of the urethane frame, and between the laminated glass and the vehicle windshield. This is because it is generally considered that a urethane frame is used and bonded.
  • Input condition 1 (dimensions, etc.)
  • the size of the glass plate 800 ⁇ 500 mm
  • the STL value tends to deteriorate. This is because, as the size increases, the constrained portion increases and the resonance mode increases accordingly.
  • the tendency of the relative value for each frequency that is, the laminated glass made of glass plates with different thicknesses becomes worse in a predetermined frequency band than the laminated glass made of glass plates with the same thickness. The trend is the same.
  • the mesh formed on the glass plate was a rectangular parallelepiped having a side of 5 mm. This is generally said to be accurate if it is 1/6 or less of the maximum wavelength to be analyzed, and 5 mm used this time corresponds to about 1/7 of the wavelength at 10000 Hz. Therefore, the accuracy of simulation is guaranteed.
  • the random diffused sound wave in Table 1 is a sound wave having a predetermined frequency transmitted with an incident angle in any direction with respect to the outer glass plate, and a sound source in a reverberation chamber for measuring sound transmission loss. Is assumed.
  • the plane wave is a wave having a wavefront perpendicular to a certain traveling direction, and a sound wave having a predetermined frequency is incident on the outer glass plate and propagates perpendicularly.
  • the effect of the sound insulation performance can be evaluated even using a plane wave.
  • Input condition 2 (property value)
  • the horizontal axis represents frequency (Hz)
  • the vertical axis represents STL difference (dB) between Example 1 and Comparative Example 1 at each frequency.
  • Example 1 the STL is approximately 0 to 0.2 dB lower than that in Comparative Example 1 in the frequency range of 1000 to 3500 Hz.
  • a human can recognize a difference in sound if there is a change of about 0.3 dB. Therefore, if there is a difference in STL of about 0.2 dB, it is highly possible that a human cannot recognize. Therefore, when the Young's modulus of the outer layer is increased, the STL decreases at a low frequency of about 3500 Hz or less, but the decrease is negligible.
  • the frequency range of about 3500 Hz or more, particularly 5000 Hz or more It was found that the sound can be effectively insulated.
  • Test B Laminated glasses according to Examples 2 to 4 and Comparative Example 2 were prepared as follows. The difference between Examples 2 to 4 and Comparative Example 2 is only the Young's modulus of the outer layer.
  • the outer and inner glass plates were formed from the clear glass described above.
  • the thickness of the outer glass plate was 2.0 mm, and the thickness of the inner glass plate was 1.3 mm.
  • the intermediate film was comprised with the core layer and a pair of outer layer which clamps this.
  • the thickness of the intermediate film was 0.76 mm, the thickness of the core layer was 0.1 mm, and the thicknesses of both outer layers were 0.33 mm.
  • the Young's modulus of the core layer was adjusted to 9.5 MPa (20 ° C., 100 Hz).
  • the Young's modulus of the outer layer in Examples 2 to 4 was 882, 1764 and 3528 MPa (20 ° C., 100 Hz), respectively, and the Young's modulus of the outer layer in Comparative Example 2 was 441 MPa (20 ° C., 100 Hz).
  • Other test conditions are the same as those in Test A.
  • Results are as shown in FIG.
  • this test B the Young's modulus of the core layer is reduced.
  • Test A when the Young's modulus of the outer layer is increased, the STL in the high frequency range greatly increases, and the sound insulation performance in this frequency range. It can be seen that is greatly improved.
  • Test B the Young's modulus of the core layer is halved compared to Test A, and it can be seen that the STL slightly increases in the frequency range of 1000 to 3500 Hz.
  • Test C evaluation regarding the attachment angle of a laminated glass and the thickness of an outer layer was performed. As shown in Tables 6 to 8, laminated glasses according to Examples and Comparative Examples were prepared. However, the thickness of the outer glass plate was 2.0 mm, the thickness of the inner glass plate was 1.5 mm, the thickness of the core layer was 0.1 mm, the thickness of the outer layer was 0.33 mm, and the amount of doubling was 0 mm.
  • the STL is generally the same at 2000 to 5000 Hz, but when it exceeds 5000 Hz, the Young's modulus of the outer layer It was found that the larger the value, the better the STL. Moreover, as shown in FIG. 19, this tendency is the same even when the Young's modulus of the core layer is reduced. However, when the Young's modulus of the core layer is reduced, the STL is improved at 2000 to 5000 Hz as compared with FIG. 18, but the STL is decreased when it is higher than 5000 Hz. Therefore, it was found that regardless of the Young's modulus of the core layer, the Young's modulus of the outer layer is high, particularly preferably 560 MPa or more.
  • Test D evaluation regarding the Young's modulus of a core layer and an outer layer was performed.
  • Tables 9 to 12 laminated glasses according to Examples and Comparative Examples were prepared.
  • the thickness of the outer glass plate is 2.0 mm
  • the thickness of the inner glass plate is 1.0 mm
  • the thickness of the core layer is 0.1 mm
  • the thickness of the outer layer is 0.33 mm
  • the amount of doubling is 0 mm
  • the mounting angle is 0 degree. It was.
  • the Young's modulus of the core layer was made constant, and the Young's modulus of the outer layer was changed.
  • the results are as shown in FIG. 21 and FIG.
  • the Young's modulus of the outer layer was made constant and the Young's modulus of the core layer was changed.
  • the results are as shown in FIGS.
  • the tendency for STL to improve in a high frequency region including 5000 Hz or more is the same even when the Young's modulus of the core layer is greatly changed.
  • the Young's modulus of the core layer is 2000 to 5000 Hz.
  • the STL is improved as the value is lower, but the STL is improved as the Young's modulus of the core layer is higher and the Young's modulus of the outer layer is higher at 5000 Hz or higher. Therefore, it was found that regardless of the value of the Young's modulus of the core layer, the STL at 5000 Hz or higher is improved when the Young's modulus of the outer layer is high.
  • Test E evaluation regarding the thickness of a glass plate was performed. As shown in Table 13 and Table 14, laminated glasses according to Examples and Comparative Examples were prepared. However, the thickness of the outer glass plate is 1.5 mm, the thickness of the inner glass plate is 1.5 mm, the thickness of the core layer is 0.1 mm, the thickness of the outer layer is 0.33 mm, the amount of doubling is 0 mm, and the mounting angle is 0 degree. It was. The results are as shown in FIG. 25 and FIG.
  • the STL at 5000 Hz or higher improves as the Young's modulus of the outer layer increases. Further, comparing FIG. 25 with FIG. 26, it was found that the STL increases as the Young's modulus of the core layer decreases at 2000 to 5000 Hz, but there is no significant difference at 5000 Hz or higher. Further, for example, comparing FIG. 21 and FIG. 25, when the thickness of the outer glass plate is different from that of the inner glass plate at 2000 to 5000 Hz, the STL is lowered. It was found that the STL was almost the same regardless of the thickness of the plate.
  • Test F evaluation about the amount of double was performed. As shown in Table 15, the laminated glass which concerns on an Example was prepared. However, the thickness of the outer glass plate was 2.0 mm, the thickness of the inner glass plate was 1.5 mm, the thickness of the core layer was 0.1 mm, the thickness of the outer layer was 0.33 mm, and the mounting angle was 0 degree. The results are as shown in FIG.

Landscapes

  • Joining Of Glass To Other Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

[Problem] To provide a laminated glass that can improve sound insulation, particularly against sounds at high frequencies greater than 5000 Hz. [Solution] This laminated glass is provided with an outside glass plate, an inside glass plate that is disposed in opposition to the outside glass plate, and an intermediate film that is held between the outside glass plate and the inside glass plate. The intermediate film is provided with a core layer and at least one outer layer that is disposed on, selected from between the outside glass plate side and the inside glass plate side that sandwich the core layer, at least the outside glass plate side. The Young's modulus of at least one of the outer layers is at least 560 MPa at a core frequency of 100 Hz and a temperature of 20°C.

Description

合わせガラスLaminated glass
 本発明は、自動車のウインドシールドなどに用いられる合わせガラスに関する。 The present invention relates to a laminated glass used for a windshield of an automobile.
 近年、自動車の燃費性向上の観点から、装着されるウインドシールドなどのガラスの軽量化が求められ、それに伴い厚みの小さいガラスの開発が進められている。しかしながら、厚みを小さくすると、遮音性能が低下するため、車外の音が車内に流入し、車内環境が悪化するという問題がある。特に、コインシデンス効果と呼ばれる特定の周波数での共振による音響透過損失が生じることが知られており、これにより、遮音性能が大きく低下することが知られている。また、このコインシデンス効果は、ガラスの厚みが小さくなると、高周波数側にシフトすることから、車外で発生した高周波数のノイズが車内に流入するおそれがあった。 In recent years, from the viewpoint of improving the fuel efficiency of automobiles, it has been required to reduce the weight of glass such as windshields to be mounted, and accordingly, development of glass with a small thickness has been promoted. However, if the thickness is reduced, the sound insulation performance is lowered, so that there is a problem that sound outside the vehicle flows into the vehicle interior and the vehicle interior environment deteriorates. In particular, it is known that sound transmission loss due to resonance at a specific frequency called a coincidence effect occurs, and as a result, it is known that the sound insulation performance is greatly reduced. In addition, since the coincidence effect is shifted to the high frequency side when the glass thickness is reduced, high frequency noise generated outside the vehicle may flow into the vehicle.
 これを解決するため、例えば、特許文献1には、一対のガラス板の間に中間膜を配置した合わせガラスが開示されており、面密度を低下させつつ、周波数5000Hzの音を遮音するようにしている。 In order to solve this, for example, Patent Document 1 discloses a laminated glass in which an intermediate film is disposed between a pair of glass plates, and a sound having a frequency of 5000 Hz is insulated while reducing the surface density. .
特開2002-326847号公報JP 2002-326847 A
 しかしながら、車内で問題となる音には種々のものがあり、これらの中には周波数が5000Hzを超えるものも多い。例えば、ブレーキ音、風切り音は5000Hz以上の周波数の音を含み、車内の快適性を阻害する要因となっていた。したがって、5000Hzより高い周波数の音でも車内に与える影響は大きく、このような周波数に対応する自動車用合わせガラスが要望されていた。例えば、ハイブリッド車やEV車においては、モーターの周波数が5000Hz以上であり、このような周波数帯域の遮音性能を向上させる技術が求められる。特に、これらの車は、エンジン音がほとんど聞こえなかったり、あるいはエンジン音がないため、5000Hz以上の周波数帯域の音の遮音性能が重要となる。 However, there are various sounds that cause problems in the car, and many of them have a frequency exceeding 5000 Hz. For example, the brake sound and wind noise include sounds having a frequency of 5000 Hz or more, which are factors that hinder the comfort in the vehicle. Therefore, even a sound with a frequency higher than 5000 Hz has a large influence on the inside of the vehicle, and a laminated glass for automobiles corresponding to such a frequency has been demanded. For example, in a hybrid vehicle or an EV vehicle, the motor frequency is 5000 Hz or more, and a technique for improving the sound insulation performance in such a frequency band is required. In particular, since these vehicles hardly hear the engine sound or there is no engine sound, the sound insulation performance of the sound in the frequency band of 5000 Hz or more is important.
 本発明は、上記問題を解決するためになされたものであり、特に、5000Hzよりも高い高周波数の音に対する遮音性を向上できる、合せガラスを提供することを目的とする。 The present invention has been made to solve the above-described problems, and has an object to provide a laminated glass that can improve sound insulation for high frequency sound higher than 5000 Hz.
[規則91に基づく訂正 11.12.2014] 
 本発明に係る合わせガラスは、外側ガラス板と、前記外側ガラス板と対向配置された内側ガラス板と、前記外側ガラス板及び内側ガラス板の間に挟持された中間膜と、を備え、前記中間膜は、コア層と、前記コア層よりも剛性が高く、当該コア層を挟む前記外側ガラス板側及び前記内側ガラス板側のうち、少なくとも前記外側ガラス板側に配置される少なくとも1つのアウター層と、を備え、前記アウター層の少なくとも1つのヤング率は、周波数100Hz,温度20℃において、560MPa以上である。
[Correction 11.12.2014 under Rule 91]
A laminated glass according to the present invention comprises an outer glass plate, an inner glass plate disposed opposite to the outer glass plate, and an intermediate film sandwiched between the outer glass plate and the inner glass plate, and the intermediate film is A core layer and at least one outer layer disposed on at least the outer glass plate side of the outer glass plate side and the inner glass plate side having higher rigidity than the core layer and sandwiching the core layer; And at least one Young's modulus of the outer layer is 560 MPa or more at a frequency of 100 Hz and a temperature of 20 ° C.
 上記合わせガラスにおいては、前記コア層のヤング率を、周波数100Mz,温度20℃において、25MPa以下とすることができる。 In the laminated glass, the Young's modulus of the core layer can be 25 MPa or less at a frequency of 100 Mz and a temperature of 20 ° C.
 上記合わせガラスにおいては、前記コア層のヤング率を、波数100Mz,温度20℃において、14MPa以下とすることができる。 In the laminated glass, the Young's modulus of the core layer can be 14 MPa or less at a wave number of 100 Mz and a temperature of 20 ° C.
 上記いずれかの合わせガラスにおいては、前記コア層のtanδを周波数100Mz,温度20℃において、0.8以下とすることができる。 In any of the above laminated glasses, the tan δ of the core layer can be 0.8 or less at a frequency of 100 Mz and a temperature of 20 ° C.
 上記いずれかの合わせガラスにおいては、前記コア層を挟む少なくとも一対の前記アウター層を備えることができる。 Any of the above laminated glasses may include at least a pair of outer layers sandwiching the core layer.
 上記合わせガラスにおいては、前記外側ガラス板側に配置される前記アウター層のヤング率を前記内側ガラス板側に配置される前記アウター層のヤング率よりも大きくすることができる。 In the laminated glass, the Young's modulus of the outer layer arranged on the outer glass plate side can be made larger than the Young's modulus of the outer layer arranged on the inner glass plate side.
 上記いずれかの合わせガラスにおいては、前記外側ガラスの厚みを、前記内側ガラス板の厚みと相違させることができる。 In any one of the above laminated glasses, the thickness of the outer glass can be made different from the thickness of the inner glass plate.
 上記いずれかの合わせガラスにおいては、前記外側ガラス板の厚みと前記内側ガラス板の厚みとの合計を、3.8mm以下とすることができる。 In any one of the above laminated glasses, the total of the thickness of the outer glass plate and the thickness of the inner glass plate can be 3.8 mm or less.
 上記いずれかの合わせガラスは、自動車のウインドシールドとして用いられ、前記自動車に対して、垂直からの取付け角度が45度以上とすることができる。 Any of the above laminated glasses is used as a windshield of an automobile, and the mounting angle from the vertical to the automobile can be 45 degrees or more.
 本発明によれば、5000Hzよりも高い高周波数の音に対する遮音性を向上できるとともに、赤外線の透過率を所定範囲にすることが寄与できる、異なる厚みのガラスで構成された合せガラスを提供することができる。 According to the present invention, it is possible to provide a laminated glass composed of glasses having different thicknesses, which can improve the sound insulation against high frequency sound higher than 5000 Hz and can contribute to making the infrared transmittance within a predetermined range. Can do.
本発明に係る合わせガラスの一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the laminated glass which concerns on this invention. 外側ガラス板と内側ガラス板の厚みが相違する場合の周波数と音響透過損失の関係を示すグラフである。It is a graph which shows the relationship between the frequency and sound transmission loss in case the thickness of an outer side glass plate and an inner side glass plate differs. 湾曲状の合わせガラスのダブリ量を示す正面図(a)及び断面図(b)である。It is the front view (a) and sectional view (b) which show the amount of doubles of a curved laminated glass. 湾曲形状のガラス板と、平面形状のガラス板の、一般的な周波数と音響透過損失の関係を示すグラフである。It is a graph which shows the relationship between the general frequency and sound transmission loss of a curved glass plate and a planar glass plate. 異なるダブり量における、周波数と音響透過損失との関係を示すグラフである。It is a graph which shows the relationship between a frequency and sound transmission loss in different amount of doubling. 合わせガラスの厚みの測定位置を示す概略平面図である。It is a schematic plan view which shows the measurement position of the thickness of a laminated glass. 中間膜の測定に用いる画像の例である。It is an example of the image used for the measurement of an intermediate film. 合わせガラスの取付方法を示す概略図である。It is the schematic which shows the attachment method of a laminated glass. 取付角度に関して評価したグラフである。It is the graph evaluated regarding the attachment angle. 取付角度が60度のとき、異なるコア層の厚みにおける周波数とSTLとの関係を示すグラフである。It is a graph which shows the relationship between the frequency and STL in the thickness of a different core layer when an attachment angle is 60 degree | times. 取付角度が60度であり、外側ガラス板の厚みが2.0mm、内側ガラス板の厚みが1.5mmのとき、異なるコア層のヤング率における周波数とSTLとの関係を示すグラフである。It is a graph which shows the relationship between the frequency in the Young's modulus of a different core layer, and STL when an attachment angle is 60 degree | times, the thickness of an outer side glass plate is 2.0 mm, and the thickness of an inner side glass plate is 1.5 mm. 取付角度を60度、コア層31のヤング率を10MPaしたときの周波数とSTLとの関係を示すグラフである。It is a graph which shows the relationship between a frequency and STL when an attachment angle is 60 degree | times and the Young's modulus of the core layer 31 is 10 Mpa. 合わせガラスにおける周波数と音響透過損失の関係を示すグラフである。It is a graph which shows the relationship between the frequency and sound transmission loss in a laminated glass. 単板ガラスの厚さを変化させたときの周波数と音響透過損失の関係を示すグラフである。It is a graph which shows the relationship between the frequency when changing the thickness of a single plate glass, and sound transmission loss. 音響透過損失を出力するためのシミュレーションのモデル図である。It is a model figure of the simulation for outputting sound transmission loss. 中間膜のヤング率に関する評価の結果を示すグラフである。It is a graph which shows the result of evaluation about the Young's modulus of an interlayer film. 中間膜のヤング率に関する評価の結果を示すグラフである。It is a graph which shows the result of evaluation about the Young's modulus of an interlayer film. 中間膜のヤング率に関する評価の結果を示すグラフである。It is a graph which shows the result of evaluation about the Young's modulus of an interlayer film. 中間膜のヤング率に関する評価の結果を示すグラフである。It is a graph which shows the result of evaluation about the Young's modulus of an interlayer film. 中間膜のヤング率に関する評価の結果を示すグラフである。It is a graph which shows the result of evaluation about the Young's modulus of an interlayer film. 中間膜のヤング率に関する評価の結果を示すグラフである。It is a graph which shows the result of evaluation about the Young's modulus of an interlayer film. 中間膜のヤング率に関する評価の結果を示すグラフである。It is a graph which shows the result of evaluation about the Young's modulus of an interlayer film. 中間膜のヤング率に関する評価の結果を示すグラフである。It is a graph which shows the result of evaluation about the Young's modulus of an interlayer film. 中間膜のヤング率に関する評価の結果を示すグラフである。It is a graph which shows the result of evaluation about the Young's modulus of an interlayer film. 中間膜のヤング率に関する評価の結果を示すグラフである。It is a graph which shows the result of evaluation about the Young's modulus of an interlayer film. 中間膜のヤング率に関する評価の結果を示すグラフである。It is a graph which shows the result of evaluation about the Young's modulus of an interlayer film. ダブリ量に関する評価の結果を示すグラフである。It is a graph which shows the result of evaluation about the amount of double.
 以下、本発明に係る合わせガラスの一実施形態について、図面を参照しつつ説明する。図1は、本実施形態に係る合わせガラスの断面図である。同図に示すように、本実施形態に係る合わせガラスは、外側ガラス板1、内側ガラス板2、及びこれらのガラスの間に挟持される中間膜3で構成されている。また、中間膜3は、コア層31と、これを挟持する一対のアウター層32により構成することができるが、これは一例であり、詳細は後述する。外側ガラス板1とは、外乱を受けやすい側に配置されるガラス板であり、内側ガラス板2は、その反対側に配置されるガラス板である。したがって、例えば、この合わせガラスを自動車のガラスとして用いる場合には、車外側のガラス板が外側ガラス板になり、建築材として用いる場合には、屋外を向く側が外側ガラス板になる。但し、受け得る外乱によっては、これとは反対の配置になることもある。以下、各部材について説明する。 Hereinafter, an embodiment of a laminated glass according to the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view of a laminated glass according to the present embodiment. As shown in the figure, the laminated glass according to this embodiment includes an outer glass plate 1, an inner glass plate 2, and an intermediate film 3 sandwiched between these glasses. Moreover, although the intermediate film 3 can be comprised by the core layer 31 and a pair of outer layer 32 which clamps this, this is an example and it mentions later for details. The outer glass plate 1 is a glass plate disposed on the side susceptible to disturbance, and the inner glass plate 2 is a glass plate disposed on the opposite side. Therefore, for example, when this laminated glass is used as a glass of an automobile, the glass plate on the outside of the vehicle becomes an outer glass plate, and when used as a building material, the side facing outward becomes an outer glass plate. However, depending on the disturbance that can be received, the arrangement may be opposite. Hereinafter, each member will be described.
 <1.外側ガラス板及び内側ガラス板>
 外側ガラス板1及び内側ガラス板2は、公知のガラス板を用いることができ、熱線吸収ガラス、一般的なクリアガラスやグリーンガラス、またはUVグリーンガラスで形成することもできる。但し、この合わせガラスを自動車の窓に用いる場合には、自動車が使用される国の安全規格に沿った可視光線透過率を実現する必要がある。例えば、外側ガラス板1により必要な日射吸収率を確保し、内側ガラス板2により可視光線透過率が安全規格を満たすように調整することができる。以下に、クリアガラス、熱線吸収ガラス、及びソーダ石灰系ガラスの一例を示す。
<1. Outer glass plate and inner glass plate>
As the outer glass plate 1 and the inner glass plate 2, known glass plates can be used, and they can be formed of heat ray absorbing glass, general clear glass, green glass, or UV green glass. However, when this laminated glass is used for an automobile window, it is necessary to realize a visible light transmittance in accordance with the safety standard of the country where the automobile is used. For example, the required solar radiation absorption rate can be secured by the outer glass plate 1, and the visible light transmittance can be adjusted by the inner glass plate 2 so as to satisfy the safety standard. Below, an example of clear glass, heat ray absorption glass, and soda-lime-type glass is shown.
 (クリアガラス)
SiO2:70~73質量%
Al23:0.6~2.4質量%
CaO:7~12質量%
MgO:1.0~4.5質量%
2O:13~15質量%(Rはアルカリ金属)
Fe23に換算した全酸化鉄(T-Fe23):0.08~0.14質量%
 (熱線吸収ガラス)
 熱線吸収ガラスの組成は、例えば、クリアガラスの組成を基準として、Fe23に換算した全酸化鉄(T-Fe23)の比率を0.4~1.3質量%とし、CeO2の比率を0~2質量%とし、TiO2の比率を0~0.5質量%とし、ガラスの骨格成分(主に、SiO2やAl23)をT-Fe23、CeO2およびTiO2の増加分だけ減じた組成とすることができる。
(Clear glass)
SiO 2 : 70 to 73% by mass
Al 2 O 3 : 0.6 to 2.4% by mass
CaO: 7 to 12% by mass
MgO: 1.0 to 4.5% by mass
R 2 O: 13 to 15% by mass (R is an alkali metal)
Total iron oxide converted to Fe 2 O 3 (T-Fe 2 O 3 ): 0.08 to 0.14% by mass
(Heat ray absorbing glass)
The composition of the heat-absorbing glass, for example, based on the composition of the clear glass, the proportion of the total iron oxide in terms of Fe 2 O 3 (T-Fe 2 O 3) and 0.4 to 1.3 wt%, CeO The ratio of 2 is 0 to 2% by mass, the ratio of TiO 2 is 0 to 0.5% by mass, and the glass skeleton components (mainly SiO 2 and Al 2 O 3 ) are T-Fe 2 O 3 , CeO. The composition can be reduced by an increase of 2 and TiO 2 .
 (ソーダ石灰系ガラス)
SiO2:65~80質量%
Al23:0~5質量%
CaO:5~15質量%
MgO:2質量%以上
NaO:10~18質量%
2O:0~5質量%
MgO+CaO:5~15質量%
Na2O+K2O:10~20質量%
SO3:0.05~0.3質量%
23:0~5質量%
Fe23に換算した全酸化鉄(T-Fe23):0.02~0.03質量%
 本実施形態に係る合わせガラスの厚みは特には限定されないが、軽量化の観点からは、外側ガラス板1と内側ガラス板2の厚みの合計を、2.4~3.8mmとすることが好ましく、2.6~3.4mmとすることがさらに好ましく、2.7~3.2mmとすることが特に好ましい。このように、軽量化のためには、外側ガラス板1と内側ガラス板2との合計の厚みを小さくすることが必要であるので、各ガラス板のそれぞれの厚みは、特には限定されないが、例えば、以下のように、外側ガラス板1と内側ガラス板2の厚みを決定することができる。
(Soda-lime glass)
SiO 2 : 65-80% by mass
Al 2 O 3 : 0 to 5% by mass
CaO: 5 to 15% by mass
MgO: 2% by mass or more NaO: 10-18% by mass
K 2 O: 0 to 5% by mass
MgO + CaO: 5-15% by mass
Na 2 O + K 2 O: 10 to 20% by mass
SO 3 : 0.05 to 0.3% by mass
B 2 O 3 : 0 to 5% by mass
Fe total iron oxide in terms of 2 O 3 (T-Fe 2 O 3): 0.02 ~ 0.03 wt%
The thickness of the laminated glass according to this embodiment is not particularly limited, but from the viewpoint of weight reduction, the total thickness of the outer glass plate 1 and the inner glass plate 2 is preferably 2.4 to 3.8 mm. The thickness is more preferably 2.6 to 3.4 mm, and particularly preferably 2.7 to 3.2 mm. Thus, since it is necessary to reduce the total thickness of the outer glass plate 1 and the inner glass plate 2 for weight reduction, the thickness of each glass plate is not particularly limited, For example, the thickness of the outer glass plate 1 and the inner glass plate 2 can be determined as follows.
 外側ガラス板1は、主として、外部からの障害に対する耐久性、耐衝撃性が必要であり、例えば、この合わせガラスを自動車のウインドシールドとして用いる場合には、小石などの飛来物に対する耐衝撃性能が必要である。他方、厚みが大きいほど重量が増し好ましくない。この観点から、外側ガラス板1の厚みは1.8mm以上、1.9mm以上、2.0mm以上、2.1mm以上、2.2mm以上の順で好ましい。一方、外側ガラスの厚みの上限は、5.0mm以下、4.0mm以下、3.1mm以下、2.5mm以下、2.4mm以下の順で好ましい。この中で、2.1mmより大きく2.5mm以下、特に、2.2mm以上2.4mm以下が好ましい。何れの厚みを採用するかは、ガラスの用途に応じて決定することができる。 The outer glass plate 1 mainly needs durability and impact resistance against external obstacles. For example, when this laminated glass is used as a windshield of an automobile, the outer glass plate 1 has impact resistance performance against flying objects such as pebbles. is necessary. On the other hand, as the thickness is larger, the weight increases, which is not preferable. From this viewpoint, the thickness of the outer glass plate 1 is preferably 1.8 mm or more, 1.9 mm or more, 2.0 mm or more, 2.1 mm or more, or 2.2 mm or more. On the other hand, the upper limit of the thickness of the outer glass is preferably 5.0 mm or less, 4.0 mm or less, 3.1 mm or less, 2.5 mm or less, 2.4 mm or less. Among these, it is preferably larger than 2.1 mm and not larger than 2.5 mm, particularly preferably not smaller than 2.2 mm and not larger than 2.4 mm. Which thickness is adopted can be determined according to the application of the glass.
 内側ガラス板の厚みは、外側ガラス板1と同等にすることができるが、例えば、合わせガラスの軽量化のため、外側ガラス板1よりも厚みを小さくすることができる。具体的には、ガラスの強度を考慮すると、内側ガラス板2の厚みは、0.6mm以上、0.8mm以上、1.0mm以上、1.3mm以上の順で好ましい。一方、内側ガラス板2の厚みの上限は、5.0mm以下、4.0mm以下、3.1mm以下、2.5m以下、2.0mm以下、1.6mm以下、1.4mm以下、1.3mm以下、1.1mm未満の順で好ましい。この中で、例えば、0.6mm以上1.1mm未満、または2.1mmより大きく2.5mm以下、特に、2.2mm以上2.4mm以下が好ましい。内側ガラス板2についても、何れの厚みを採用するかは、ガラスの用途に応じて決定することができる。 The thickness of the inner glass plate can be made equal to that of the outer glass plate 1, but the thickness can be made smaller than that of the outer glass plate 1, for example, in order to reduce the weight of the laminated glass. Specifically, considering the strength of the glass, the thickness of the inner glass plate 2 is preferably in the order of 0.6 mm or more, 0.8 mm or more, 1.0 mm or more, and 1.3 mm or more. On the other hand, the upper limit of the thickness of the inner glass plate 2 is 5.0 mm or less, 4.0 mm or less, 3.1 mm or less, 2.5 m or less, 2.0 mm or less, 1.6 mm or less, 1.4 mm or less, 1.3 mm. Hereinafter, it is preferable in the order of less than 1.1 mm. Among these, for example, 0.6 mm or more and less than 1.1 mm, or greater than 2.1 mm and 2.5 mm or less, and particularly preferably 2.2 mm or more and 2.4 mm or less. Which thickness is used for the inner glass plate 2 can also be determined according to the purpose of the glass.
 この点、本発明者は、外側ガラス板1と内側ガラス板2とを異なる厚みにする場合、厚みの差について、次のような検討結果を得た。すなわち、図2に示すように、外側ガラス板1と内側ガラス板2との厚みの差が大きくなるほど、遮音性能が低下することが見出した。図2(a)は、次のような条件で、音響透過損失(STL:Sound Transmission Loss)を算出した(算出方法は後述する実施例の方法に従う)グラフである。まず、外側ガラス板1及び内側ガラス板2は、横が800mm、縦が500mmの平坦なクリアガラスとした。中間膜3は、コア層31を一対のアウター層32で挟持した3層で構成され、コア層の厚みが0.10mm、アウター層の厚みが0.33mmであり、合計0.76mmである。また、コア層31のヤング率(周波数100Hz、温度20℃で測定)は25MPaであり、アウター層32のヤング率(周波数100Hz、温度20℃で測定)は560MPaである。また、図2(b)においては、アウター層のヤング率が441MPaであること以外は、図2(a)と同じ条件である。なお、図5のシミュレーションなど、以下の説明において、特に断りがない限りは、コア層31及びアウター層32の仕様、測定条件などは上述したものと同じである。さらに、特に断りのない限りは、クリアガラスを用いることとするが、これに限定されるものではない。それは、遮音性能は、ガラスのヤング率、ポアソン比、および密度により決定されるところ、クリアガラスと、例えば、グリーンガラスはこれらの値が同じであるであるからである。 In this regard, the present inventor obtained the following examination results on the difference in thickness when the outer glass plate 1 and the inner glass plate 2 are made to have different thicknesses. That is, as shown in FIG. 2, it has been found that the sound insulation performance decreases as the difference in thickness between the outer glass plate 1 and the inner glass plate 2 increases. FIG. 2A is a graph in which sound transmission loss (STL: Sound Transmission Loss) is calculated under the following conditions (the calculation method follows the method of an embodiment described later). First, the outer glass plate 1 and the inner glass plate 2 were flat clear glass having a width of 800 mm and a length of 500 mm. The intermediate film 3 is composed of three layers in which the core layer 31 is sandwiched between a pair of outer layers 32. The thickness of the core layer is 0.10 mm, the thickness of the outer layer is 0.33 mm, and the total is 0.76 mm. The Young's modulus (measured at a frequency of 100 Hz and a temperature of 20 ° C.) of the core layer 31 is 25 MPa, and the Young's modulus of the outer layer 32 (measured at a frequency of 100 Hz and a temperature of 20 ° C.) is 560 MPa. Moreover, in FIG.2 (b), it is the same conditions as Fig.2 (a) except the Young's modulus of an outer layer being 441 Mpa. In the following description such as the simulation of FIG. 5, the specifications and measurement conditions of the core layer 31 and the outer layer 32 are the same as described above unless otherwise specified. Further, unless otherwise specified, clear glass is used, but is not limited thereto. This is because the sound insulation performance is determined by the Young's modulus, Poisson's ratio, and density of the glass, and clear glass and, for example, green glass have the same value.
 図2に示すように、外側ガラス板1と内側ガラス板2との厚みの差が0.7mmより大きくなると、2500~5000Hzの周波数域でSTLが低下していることが分かる。また、3000Hz以下における低周波域においてもSTLの低下が顕著である。この点は、アウター層のヤング率が相違しても概ね同じである。この観点から、外側ガラス板1と内側ガラス板2との厚みの差は、0.7mm以下であることが好ましく、0.5mm以下であることがさらに好ましい。 As shown in FIG. 2, when the difference in thickness between the outer glass plate 1 and the inner glass plate 2 is larger than 0.7 mm, it can be seen that the STL decreases in the frequency range of 2500 to 5000 Hz. Further, the STL is remarkably reduced even in a low frequency range of 3000 Hz or less. This point is generally the same even if the Young's modulus of the outer layer is different. From this viewpoint, the difference in thickness between the outer glass plate 1 and the inner glass plate 2 is preferably 0.7 mm or less, and more preferably 0.5 mm or less.
 また、本実施形態に係る外側ガラス板1及び内側ガラス板2の形状は、平面形状及び湾曲形状のいずれであってもよい。しかしながら、後述するガラスの音響透過損失(STL:Sound Transmission Loss)は湾曲形状の方が低下するため、湾曲形状ガラスは特に音響対策が必要である。湾曲形状の方が平面形状よりSTL値が低下するのは湾曲形状の方が共振モードによる影響が大きいためと考えられる。 Further, the shape of the outer glass plate 1 and the inner glass plate 2 according to the present embodiment may be either a planar shape or a curved shape. However, since the sound transmission loss (STL: Sound Transmission Loss) of glass, which will be described later, is lower in the curved shape, the curved glass particularly requires an acoustic measure. The reason why the STL value is lower in the curved shape than in the planar shape is that the curved shape is more influenced by the resonance mode.
 さらに、合わせガラスが湾曲形状である場合には、外側ガラス板1と内側ガラス板2の厚みが同じであっても、ダブリ量が大きくなると遮音性能が低下するとされている。ダブリ量とは、ガラス板の曲げを示す量であり、例えば、図3に示すように、ガラス板の左右の中心、つまりガラス板の上辺の中央と下辺の中央とを結ぶ仮想の直線Lを設定したとき、この直線Lとガラス板の表面(凹面側の表面)との距離のうち最も大きいものをダブリ量Dと定義する。 Furthermore, when the laminated glass has a curved shape, even if the outer glass plate 1 and the inner glass plate 2 have the same thickness, the sound insulation performance decreases as the amount of double increases. The amount of double is an amount indicating the bending of the glass plate. For example, as shown in FIG. 3, a virtual straight line L connecting the left and right centers of the glass plate, that is, the center of the upper side and the center of the lower side of the glass plate. When set, the largest amount of the distance between the straight line L and the surface of the glass plate (the surface on the concave surface side) is defined as a double amount D.
 図4は、湾曲形状のガラス板と、平面形状のガラス板の、一般的な周波数と音響透過損失の関係を示すグラフである。図4によれば、湾曲形状のガラス板は、ダブリ量が30~38mmの範囲では、音響透過損失に大きな差はないが、平面形状のガラス板と比べると、4000Hz以下の周波数帯域で音響透過損失が低下していることが分かる。したがって、湾曲形状のガラス板を作製する場合、ダブリ量は小さい方がよいが、例えば、ダブリ量が30mmを超える場合には、後述するように、中間膜3のコア層31のヤング率を小さくすること、例えば、25MPa(周波数100Hz,温度20℃)以下とすることが好ましい。 FIG. 4 is a graph showing a relationship between a general frequency and sound transmission loss of a curved glass plate and a planar glass plate. According to FIG. 4, the curved glass plate has no significant difference in sound transmission loss in the range of the doubly amount of 30 to 38 mm, but compared with the planar glass plate, it transmits sound in a frequency band of 4000 Hz or less. It can be seen that the loss is decreasing. Therefore, when producing a curved glass plate, the amount of double is better, but for example, when the amount of double exceeds 30 mm, the Young's modulus of the core layer 31 of the intermediate film 3 is reduced as described later. For example, the pressure is preferably 25 MPa (frequency 100 Hz, temperature 20 ° C.) or less.
 また、本発明者は、より詳細な試験結果も得た。図5は、異なるダブり量における、周波数とSTLとの関係をシミュレーションした結果である。このシミュレーションでは、外側ガラス板1及び内側ガラス板2の厚みをともに1.75mmとし、両ガラス板1,2における上下を結ぶ線のみが湾曲している態様とした。また、図5(a)ではアウター層のヤング率を560MPaとし、図5(b)ではアウター層のヤング率を441MPaとしている。その他の条件は、図2のグラフと同じである。図5に示すように、この合わせガラスでは、ダブり量が大きくなるにしたがって、4000Hz以下の周波数域でSTLが低下していることが分かる。特に、ダブり量が30mmより大きくなると、STLの低下が顕著になっている。これは、ダブり量が大きくなると、合わせガラスに対する音の入射角が大きくなりやすく、これによって、合わせガラスが共振しやすくなることによると考えられる。この点は、アウター層のヤング率が相違しても概ね同じである。この観点から、ダブり量は、30mm以下であることが好ましく、20mm以下であることがさらに好ましい。 The inventor has also obtained more detailed test results. FIG. 5 shows the result of simulating the relationship between the frequency and the STL at different doubling amounts. In this simulation, the thicknesses of the outer glass plate 1 and the inner glass plate 2 are both 1.75 mm, and only the line connecting the upper and lower sides of both glass plates 1 and 2 is curved. 5A, the Young's modulus of the outer layer is 560 MPa, and in FIG. 5B, the Young's modulus of the outer layer is 441 MPa. Other conditions are the same as those in the graph of FIG. As shown in FIG. 5, in this laminated glass, it can be seen that the STL decreases in the frequency range of 4000 Hz or less as the amount of doubling increases. In particular, when the amount of doubling is larger than 30 mm, the STL is significantly reduced. This is considered to be due to the fact that when the amount of doubling increases, the incident angle of sound to the laminated glass tends to increase, and this makes it easier for the laminated glass to resonate. This point is generally the same even if the Young's modulus of the outer layer is different. In this respect, the amount of doubling is preferably 30 mm or less, and more preferably 20 mm or less.
 以上の検討より、外側ガラス板1の厚みと内側ガラス板2の厚みとが相違する場合には、遮音性能が低下するが、遮音性能の低下を抑制するためには、上記のように、外側ガラス板1と内側ガラス板2との厚みの差を0.7mm以下とし、且つダブり量を30mm以下とすることが好ましい。 From the above examination, when the thickness of the outer glass plate 1 and the thickness of the inner glass plate 2 are different, the sound insulation performance is deteriorated. However, in order to suppress the deterioration of the sound insulation performance, as described above, It is preferable that the difference in thickness between the glass plate 1 and the inner glass plate 2 is 0.7 mm or less and the amount of doubling is 30 mm or less.
 ここで、ガラス板が湾曲している場合の厚みの測定方法の一例について説明する。まず、測定位置については、図6に示すように、ガラス板の左右方向の中央を上下方向に延びる中央線S上の上下2箇所である。測定機器は、特には限定されないが、例えば、株式会社テクロック製のSM-112のようなシックネスゲージを用いることができる。測定時には、平らな面にガラス板の湾曲面が載るように配置し、上記シックネスゲージでガラス板の端部を挟持して測定する。なお、ガラス板が平坦な場合でも、湾曲している場合と同様に測定することができる。 Here, an example of a method for measuring the thickness when the glass plate is curved will be described. First, about a measurement position, as shown in FIG. 6, it is two places up and down on the center line S extended in the up-down direction at the center of the left-right direction of a glass plate. The measuring instrument is not particularly limited, and for example, a thickness gauge such as SM-112 manufactured by Teclock Co., Ltd. can be used. At the time of measurement, it is arranged so that the curved surface of the glass plate is placed on a flat surface, and the end of the glass plate is sandwiched by the thickness gauge and measured. Even when the glass plate is flat, it can be measured in the same manner as when the glass plate is curved.
 <2.中間膜>
 中間膜3は、複数の層で形成されており、一例として、図1に示すように、軟質のコア層31を、これよりも剛性の高い硬質のアウター層32で挟持した3層で構成することができる。但し、この構成に限定されるものではなく、コア層31と、外側ガラス板1側に配置される少なくとも1つのアウター層32とを有する複数層で形成されていればよい。例えば、コア層31と、外側ガラス板1側に配置される1つのアウター層32を含む2層の中間膜3、またはコア層31を中心に両側にそれぞれ2層以上の偶数の数のアウター層32を配置した中間膜3、あるいはコア層31を挟んで一方に奇数の数のアウター層32、他方の側に偶数の数のアウター層32を配置した中間膜3とすることもできる。なお、アウター層32を1つだけ設ける場合には、上記のように外側ガラス板1側に設けているが、これは、車外や屋外からの外力に対する耐破損性能を向上するためである。また、アウター層32の数が多いと、遮音性能も高くなる。
<2. Interlayer>
The intermediate film 3 is formed of a plurality of layers. As an example, as shown in FIG. 1, the intermediate film 3 includes three layers in which a soft core layer 31 is sandwiched between hard outer layers 32 having higher rigidity. be able to. However, it is not limited to this configuration, and may be formed of a plurality of layers having the core layer 31 and at least one outer layer 32 disposed on the outer glass plate 1 side. For example, two layers of the intermediate film 3 including the core layer 31 and one outer layer 32 disposed on the outer glass plate 1 side, or an even number of outer layers each having two or more layers on both sides around the core layer 31. Alternatively, the intermediate film 3 may include the intermediate film 3 in which the odd number of outer layers 32 are disposed on one side and the even number of outer layers 32 are disposed on the other side. In the case where only one outer layer 32 is provided, the outer layer 32 is provided on the outer glass plate 1 side as described above, but this is to improve the resistance to breakage against external force from outside the vehicle or outdoors. Further, when the number of outer layers 32 is large, the sound insulation performance is also improved.
 コア層31はアウター層32よりも軟質であるかぎり、その硬さは特には限定されないが、例えば、ヤング率を基準として材料を選択することができる。具体的には、周波数100Hz,温度20度において、1MPa以上であることが好ましい。上限については、特には限定されないが、例えば、25MP以下であることが好ましく、20MPa以下であることが、さらに好ましく、18MPa以下であることが特に好ましく、14MPa以下であることがより好ましく、10MPa以下であることがさらにより好ましい。このような範囲にすると、概ね3500Hz以下の低周波数域で、STLが低下するのを防止することができる。 As long as the core layer 31 is softer than the outer layer 32, the hardness thereof is not particularly limited. For example, the material can be selected based on the Young's modulus. Specifically, it is preferably 1 MPa or more at a frequency of 100 Hz and a temperature of 20 degrees. The upper limit is not particularly limited. For example, it is preferably 25 MP or less, more preferably 20 MPa or less, particularly preferably 18 MPa or less, more preferably 14 MPa or less, and more preferably 10 MPa or less. Even more preferably. With such a range, it is possible to prevent the STL from decreasing in a low frequency range of approximately 3500 Hz or less.
 この点について、本発明者により、一般的にコア層のヤング率を低下させると、3000~5000Hzの周波数域で遮音性能が向上することが見出されている。この点について、以下の表1には、クリアガラスからなる外側ガラス板と内側ガラス板、及びコア層とコア層の両側に位置するアウター層で構成された中間膜を有する合わせガラスの遮音性能を示している。外側ガラス板の厚みは2.0mm、内側ガラス板の厚みは1.3mm、中間膜の厚みは、コア層が0.10mm、アウター層が0.33mmであり、合計0.76mmである。以下の表1では、周波数が1250~10000Hzの間での音響透過損失を示している。具体的には、中間膜のコア層のヤング率(周波数100Hz、温度20℃で測定)を25MPa,12.5MPa,及び6.25MPaとした場合の音響透過損失を算出し(算出方法は後述する実施例の方法に従う)、ヤング率が25MPaの場合を基準として(以下の表では基準であるため0としている)、ヤング率が12.5MPa,6.25MPaのときの音響透過損失の差(単位はdB)を示している。このとき、アウター層のヤング率は560MPa、tanδは0.26(温度20℃、周波数100Hz)である。表1によれば、周波数が、3150~5000Hzの間では、中間膜のコア層のヤング率が25MPaから12.5MPa,6.25MPaへと低下するのにしたがって音響透過損失が向上していることが分かる。 In this regard, it has been found by the present inventor that the sound insulation performance is improved in the frequency range of 3000 to 5000 Hz when the Young's modulus of the core layer is generally lowered. In this regard, Table 1 below shows the sound insulation performance of the laminated glass having an intermediate film composed of an outer glass plate and an inner glass plate made of clear glass, and an outer layer located on both sides of the core layer and the core layer. Show. The thickness of the outer glass plate is 2.0 mm, the thickness of the inner glass plate is 1.3 mm, and the thickness of the intermediate film is 0.10 mm for the core layer and 0.33 mm for the outer layer, for a total of 0.76 mm. Table 1 below shows sound transmission loss when the frequency is between 1250 and 10,000 Hz. Specifically, sound transmission loss is calculated when the Young's modulus (measured at a frequency of 100 Hz and a temperature of 20 ° C.) of the core layer of the interlayer film is 25 MPa, 12.5 MPa, and 6.25 MPa (a calculation method will be described later). According to the method of the embodiment), the difference in sound transmission loss when the Young's modulus is 12.5 MPa and 6.25 MPa (unit: 0 in the following table, based on the case where the Young's modulus is 25 MPa) Indicates dB). At this time, the Young's modulus of the outer layer is 560 MPa, and tan δ is 0.26 (temperature 20 ° C., frequency 100 Hz). According to Table 1, when the frequency is between 3150 and 5000 Hz, the sound transmission loss improves as the Young's modulus of the core layer of the intermediate film decreases from 25 MPa to 12.5 MPa and 6.25 MPa. I understand.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 測定方法としては、例えば、Metravib社製固体粘弾性測定装置DMA 50を用い、ひずみ量0.05%にて周波数分散測定を行うことができる。以下、本明細書においては、特に断りのない限り、ヤング率は上記方法での測定値とする。但し、周波数が200Hz以下の場合の測定は実測値を用いるが、200Hzより大きい場合には実測値に基づく算出値を用いる。この算出値とは、実測値からWLF法を用いることで算出されるマスターカーブに基づくものである。 As a measuring method, for example, frequency dispersion measurement can be performed with a strain amount of 0.05% using a solid viscoelasticity measuring device DMA 50 manufactured by Metravib. Hereinafter, unless otherwise specified, in this specification, the Young's modulus is a value measured by the above method. However, the measurement when the frequency is 200 Hz or less uses an actual measurement value. When the frequency is higher than 200 Hz, a calculation value based on the actual measurement value is used. This calculated value is based on a master curve calculated by using the WLF method from the actually measured value.
 一方、アウター層32のヤング率は、後述するように、高周波域における遮音性能の向上のために、大きいことが好ましく、周波数100Hz,温度20度において560MPa以上、600MPa以上、650MPa以上、700MPa以上、750MPa以上、880MPa以上、または1300MPa以上の順で好ましい。一方、アウター層32のヤング率の上限は特には限定されないが、例えば、加工性の観点から設定することができる。例えば、1750MPa以上となると、加工性、特に切断が困難になることが経験的に知られている。また、コア層31を挟む一対のアウター層32を設ける場合、外側ガラス板1側のアウター層32のヤング率を、内側ガラス板2側のアウター層32のヤング率よりも大きくすることが好ましい。これにより、車外や屋外からの外力に対する耐破損性能が向上する。 On the other hand, as will be described later, the Young's modulus of the outer layer 32 is preferably large in order to improve the sound insulation performance in a high frequency region, and is 560 MPa or more, 600 MPa or more, 650 MPa or more, 700 MPa or more at a frequency of 100 Hz and a temperature of 20 degrees. It is preferable in the order of 750 MPa or more, 880 MPa or more, or 1300 MPa or more. On the other hand, the upper limit of the Young's modulus of the outer layer 32 is not particularly limited, but can be set from the viewpoint of workability, for example. For example, it is empirically known that when it becomes 1750 MPa or more, workability, particularly cutting becomes difficult. Moreover, when providing a pair of outer layer 32 which pinches | interposes the core layer 31, it is preferable to make the Young's modulus of the outer layer 32 by the side of the outer side glass plate 1 larger than the Young's modulus of the outer layer 32 by the side of the inner side glass plate 2. Thereby, the damage resistance performance with respect to the external force from the outside of a vehicle or the outdoors improves.
 また、コア層31のtanδは、周波数100Hz,温度20℃において、0.1~0.9とすることができる。tanδが上記範囲にあると、遮音性能が向上する。 Further, tan δ of the core layer 31 can be set to 0.1 to 0.9 at a frequency of 100 Hz and a temperature of 20 ° C. When tan δ is in the above range, the sound insulation performance is improved.
 この点について、本発明者により、一般的にコア層のtanδを大きくすると、5000~10000Hzの周波数域で遮音性能が向上することが見出されている。この点について、以下の表2には、クリアガラスからなる外側ガラス板と内側ガラス板、及びコア層とこのコア層の両側に位置するアウター層で構成された中間膜を有する合わせガラスの遮音性能を示している。外側ガラス板の厚みは2.0mm、内側ガラス板の厚みは1.3mm、中間膜の厚みは、コア層が0.10mm、アウター層が0.33mmであり、合計0.76mmである。なお、このときのコア層、及びアウター層のヤング率はそれぞれ12.5MPa,560MPaである(周波数100Hz,温度20℃で測定)。以下の表2では、周波数が1250~10000Hzの間での音響透過損失を示している。具体的には、中間膜のtanδ(周波数100Hz、温度20℃で測定)を0.8,1.2,及び1.6とした場合の音響透過損失を算出し(算出方法は後述する実施例の方法に従う)、tanδが0.8の場合を基準として(以下の表では基準であるため0としている)、tanδが1.2,1.6のときの音響透過損失の差(単位はdB)を示している。なお、アウター層のtanδは、0.26である。表2によれば、周波数が、5000~10000Hzの間では、中間膜のtanδが0.8から1.2,1.6へと大きくなるのにしたがって音響透過損失が向上していることが分かる。また、1600~3150Hzにおいては、0.8から1.2,1.6へと大きくなるのにしたがって音響透過損失が低下していることが分かる。換言すると、0.8以下にすることで、1600-3150Hzにおいて、音響透過損失が向上するといえる。 In this regard, it has been found by the present inventor that the sound insulation performance is improved in the frequency range of 5000 to 10000 Hz when the tan δ of the core layer is generally increased. In this regard, Table 2 below shows the sound insulation performance of laminated glass having an intermediate film composed of an outer glass plate and an inner glass plate made of clear glass, and a core layer and outer layers positioned on both sides of the core layer. Is shown. The thickness of the outer glass plate is 2.0 mm, the thickness of the inner glass plate is 1.3 mm, and the thickness of the intermediate film is 0.10 mm for the core layer and 0.33 mm for the outer layer, for a total of 0.76 mm. The Young's modulus of the core layer and the outer layer at this time is 12.5 MPa and 560 MPa, respectively (measured at a frequency of 100 Hz and a temperature of 20 ° C.). Table 2 below shows sound transmission loss when the frequency is between 1250 and 10000 Hz. Specifically, sound transmission loss is calculated when tan δ (measured at a frequency of 100 Hz and a temperature of 20 ° C.) of the interlayer film is 0.8, 1.2, and 1.6 (a calculation method is described in an example described later). The difference in sound transmission loss when tan δ is 1.2 and 1.6 (unit is dB), based on the case where tan δ is 0.8 (in the following table, it is 0). ). Note that tan δ of the outer layer is 0.26. According to Table 2, when the frequency is between 5000 and 10,000 Hz, the sound transmission loss is improved as the tan δ of the intermediate film increases from 0.8 to 1.2, 1.6. . It can also be seen that the sound transmission loss decreases with increasing values from 0.8 to 1.2 and 1.6 at 1600 to 3150 Hz. In other words, by setting it to 0.8 or less, it can be said that the sound transmission loss is improved at 1600-3150 Hz.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 また、各層31,32を構成する材料は、特には限定されないが、少なくともヤング率が上記のような範囲とすることができる材料、例えば、樹脂材料であることが必要である。例えば、アウター層32は、ポリビニルブチラール樹脂(PVB)によって構成することができる。ポリビニルブチラール樹脂は、各ガラス板との接着性や耐貫通性に優れるので好ましい。一方、コア層31は、エチレンビニルアセテート樹脂(EVA)、またはアウター層を構成するポリビニルブチラール樹脂よりも軟質なポリビニルアセタール樹脂によって構成することができる。軟質なコア層を間に挟むことにより、単層の樹脂中間膜と同等の接着性や耐貫通性を保持しながら、遮音性能を大きく向上させることができる。 Further, the material constituting each of the layers 31 and 32 is not particularly limited, but it is necessary that the material has at least a Young's modulus in the above range, for example, a resin material. For example, the outer layer 32 can be comprised by polyvinyl butyral resin (PVB). Polyvinyl butyral resin is preferable because it is excellent in adhesiveness and penetration resistance with each glass plate. On the other hand, the core layer 31 can be made of an ethylene vinyl acetate resin (EVA) or a polyvinyl acetal resin softer than the polyvinyl butyral resin constituting the outer layer. By sandwiching the soft core layer between them, the sound insulation performance can be greatly improved while maintaining the same adhesion and penetration resistance as the single-layer resin intermediate film.
 一般に、ポリビニルアセタール樹脂の硬度は、(a)出発物質であるポリビニルアルコールの重合度、(b)アセタール化度、(c)可塑剤の種類、(d)可塑剤の添加割合などにより制御することができる。したがって、それらの条件から選ばれる少なくとも1つを適切に調整することにより、同じポリビニルブチラール樹脂であっても、アウター層32に用いる硬質なポリビニルブチラール樹脂と、コア層31に用いる軟質なポリビニルブチラール樹脂との作り分けが可能である。さらに、アセタール化に用いるアルデヒドの種類、複数種類のアルデヒドによる共アセタール化か単種のアルデヒドによる純アセタール化かによっても、ポリビニルアセタール樹脂の硬度を制御することができる。一概には言えないが、炭素数の多いアルデヒドを用いて得られるポリビニルアセタール樹脂ほど、軟質となる傾向がある。したがって、例えば、アウター層32がポリビニルブチラール樹脂で構成されている場合、コア層31には、炭素数が5以上のアルデヒド(例えばn-ヘキシルアルデヒド、2-エチルブチルアルデヒド、n-へプチルアルデヒド、n-オクチルアルデヒド)、をポリビニルアルコールでアセタール化して得られるポリビニルアセタール樹脂を用いることができる。なお、所定のヤング率が得られる場合は、上記樹脂等に限定されることはい。 In general, the hardness of the polyvinyl acetal resin is controlled by (a) the degree of polymerization of the starting polyvinyl alcohol, (b) the degree of acetalization, (c) the type of plasticizer, (d) the addition ratio of the plasticizer, etc. Can do. Accordingly, by appropriately adjusting at least one selected from these conditions, a hard polyvinyl butyral resin used for the outer layer 32 and a soft polyvinyl butyral resin used for the core layer 31 even if the same polyvinyl butyral resin is used. Can be made separately. Furthermore, the hardness of the polyvinyl acetal resin can also be controlled by the type of aldehyde used for acetalization, coacetalization with a plurality of aldehydes or pure acetalization with a single aldehyde. Although it cannot generally be said, the polyvinyl acetal resin obtained by using an aldehyde having a large number of carbon atoms tends to be softer. Therefore, for example, when the outer layer 32 is made of polyvinyl butyral resin, the core layer 31 has an aldehyde having 5 or more carbon atoms (for example, n-hexylaldehyde, 2-ethylbutyraldehyde, n-heptylaldehyde, n-octylaldehyde) and a polyvinyl acetal resin obtained by acetalization with polyvinyl alcohol can be used. In addition, when a predetermined Young's modulus is obtained, it is not limited to the said resin.
 また、中間膜3の総厚は、特に規定されないが、0.3~6.0mmであることが好ましく、0.5~4.0mmであることがさらに好ましく、0.6~2.0mmであることが特に好ましい。また、コア層31の厚みは、0.1~2.0mmであることが好ましく、0.1~0.6mmであることがさらに好ましい。特に、下限については、0.1mm以上であることが好ましく、0.15mm以上であることがさらに好ましく、0.2mm以上であることが特に好ましい。一方、各アウター層32の厚みは、0.1~2.0mmであることが好ましく、0.1~1.0mmであることがさらに好ましい。その他、中間膜3の総厚を一定とし、この中でコア層31の厚みを調整することもできる。 The total thickness of the intermediate film 3 is not particularly limited, but is preferably 0.3 to 6.0 mm, more preferably 0.5 to 4.0 mm, and 0.6 to 2.0 mm. It is particularly preferred. The thickness of the core layer 31 is preferably 0.1 to 2.0 mm, and more preferably 0.1 to 0.6 mm. In particular, the lower limit is preferably 0.1 mm or more, more preferably 0.15 mm or more, and particularly preferably 0.2 mm or more. On the other hand, the thickness of each outer layer 32 is preferably 0.1 to 2.0 mm, and more preferably 0.1 to 1.0 mm. In addition, the total thickness of the intermediate film 3 can be made constant, and the thickness of the core layer 31 can be adjusted therein.
 コア層31及びアウター層32の厚みは、例えば、以下のように測定することができる。まず、マイクロスコープ(例えば、キーエンス社製VH-5500)によって合わせガラスの断面を175倍に拡大して表示する。そして、コア層31及びアウター層32の厚みを目視により特定し、これを測定する。このとき、目視によるばらつきを排除するため、測定回数を5回とし、その平均値をコア層31、アウター層32の厚みとする。例えば、図7に示すような合わせガラスの拡大写真を撮影し、このなかでコア層やアウター層32を特定して厚みを測定する。 The thickness of the core layer 31 and the outer layer 32 can be measured as follows, for example. First, the cross section of the laminated glass is enlarged and displayed by 175 times using a microscope (for example, VH-5500 manufactured by Keyence Corporation). And the thickness of the core layer 31 and the outer layer 32 is specified by visual observation, and this is measured. At this time, in order to eliminate visual variation, the number of measurements is set to 5 times, and the average value is defined as the thickness of the core layer 31 and the outer layer 32. For example, an enlarged photograph of a laminated glass as shown in FIG. 7 is taken, and the core layer and outer layer 32 are specified in this and the thickness is measured.
 なお、中間膜3のコア層31、アウター層32の厚みは全面に亘って一定である必要はなく、例えば、ヘッドアップディスプレイに用いられる合わせガラス用に楔形にすることもできる。この場合、中間膜3のコア層31やアウター層32の厚みは、最も厚みの小さい箇所、つまり合わせガラスの最下辺部を測定する。中間膜3が楔形の場合、外側ガラス板及び内側ガラス板は、平行に配置されないが、このような配置も本発明における外側ガラス板と内側ガラス板との「対向配置」に含まれるものとする。すなわち、本発明の「対向配置」は、例えば、1m当たり3mm以下の変化率で厚みが大きくなるコア層31やアウター層32を用いた中間膜3を使用した時の外側ガラス板と内側ガラス板の配置を含む。 In addition, the thickness of the core layer 31 and the outer layer 32 of the intermediate film 3 does not need to be constant over the entire surface, and can be a wedge shape for laminated glass used for a head-up display, for example. In this case, the thickness of the core layer 31 and the outer layer 32 of the intermediate film 3 is measured at the position where the thickness is the smallest, that is, the lowermost side portion of the laminated glass. When the intermediate film 3 is wedge-shaped, the outer glass plate and the inner glass plate are not arranged in parallel, but such an arrangement is also included in the “opposing arrangement” between the outer glass plate and the inner glass plate in the present invention. . That is, the “opposing arrangement” of the present invention is, for example, an outer glass plate and an inner glass plate when the intermediate film 3 using the core layer 31 and the outer layer 32 whose thickness is increased at a change rate of 3 mm or less per 1 m is used. Including the arrangement.
 中間膜3の製造方法は特には限定されないが、例えば、上述したポリビニルアセタール樹脂等の樹脂成分、可塑剤及び必要に応じて他の添加剤を配合し、均一に混練りした後、各層を一括で押出し成型する方法、この方法により作成した2つ以上の樹脂膜をプレス法、ラミネート法等により積層する方法が挙げられる。プレス法、ラミネート法等により積層する方法に用いる積層前の樹脂膜は単層構造でも多層構造でもよい。 Although the manufacturing method of the intermediate film 3 is not particularly limited, for example, after blending resin components such as the above-mentioned polyvinyl acetal resin, a plasticizer, and other additives as necessary, and uniformly kneading, each layer is collectively And a method of laminating two or more resin films prepared by this method by a pressing method, a laminating method or the like. The resin film before lamination used in a method of laminating by a press method, a laminating method or the like may have a single layer structure or a multilayer structure.
 <4.合わせガラスの製造方法>
 本実施形態に係る合わせガラスの製造方法は、特に限定されず、従来公知の合わせガラスの製造方法を採用することができる。例えば、まず、中間膜3を外側ガラス板1及び内側ガラス板2の間に挟み、これをゴムバッグに入れ、減圧吸引しながら約70~110℃で予備接着する。予備接着の方法は、これ以外でも可能である。例えば、中間膜3を外側ガラス板1及び内側ガラス板2の間に挟み、オーブンにより45~65℃で加熱する。続いて、この合わせガラスを0.45~0.55MPaでロールにより押圧する。次に、この合わせガラスを、再度オーブンにより80~105℃で加熱した後、0.45~0.55MPaでロールにより再度押圧する。こうして、予備接着が完了する。
<4. Manufacturing method of laminated glass>
The manufacturing method of the laminated glass which concerns on this embodiment is not specifically limited, The manufacturing method of a conventionally well-known laminated glass is employable. For example, first, the intermediate film 3 is sandwiched between the outer glass plate 1 and the inner glass plate 2, placed in a rubber bag, and pre-bonded at about 70 to 110 ° C. while sucking under reduced pressure. Other pre-adhesion methods are possible. For example, the intermediate film 3 is sandwiched between the outer glass plate 1 and the inner glass plate 2 and heated at 45 to 65 ° C. in an oven. Subsequently, this laminated glass is pressed by a roll at 0.45 to 0.55 MPa. Next, the laminated glass is again heated at 80 to 105 ° C. in an oven and then pressed again with a roll at 0.45 to 0.55 MPa. Thus, preliminary adhesion is completed.
 次に、本接着を行う。予備接着がなされた合わせガラスを、オートクレーブにより、8~15気圧で、100~150℃によって、本接着を行う。具体的には、14気圧で145℃の条件で本接着を行うことができる。こうして、本実施形態に係る合わせガラスが製造される。 Next, this bonding is performed. The pre-bonded laminated glass is subjected to main bonding by an autoclave at 8 to 15 atm and 100 to 150 ° C. Specifically, the main bonding can be performed under the conditions of 14 atm and 145 ° C. Thus, the laminated glass according to the present embodiment is manufactured.
 <5.車体>
 本実施形態に係る合わせガラスは、自動車に取り付ける場合、種々の自動車の窓ガラスに適用することができる。この中でも、本実施形態に係る合わせガラスは、後述するように、5000Hz以上の周波数帯域の音に対する遮音性能に優れているため、特に、ハイブリッド車やEV車に取り付けると、遮音効果が大きい。これは、ハイブリッド車やEV車において使用しているモーターは、高周波数で駆動するため、高周波数の音が発生しやすいからである。
<5. Body>
When the laminated glass according to the present embodiment is attached to an automobile, it can be applied to window glasses of various automobiles. Among these, the laminated glass according to the present embodiment is excellent in sound insulation performance with respect to sound in a frequency band of 5000 Hz or more, as will be described later, and therefore, particularly when attached to a hybrid vehicle or an EV vehicle, the sound insulation effect is large. This is because a motor used in a hybrid vehicle or an EV vehicle is driven at a high frequency, so that a high-frequency sound is likely to be generated.
 <6.車体に用いられる位置>
 本実施形態に係る合わせガラスは、自動車のいずれの位置の窓ガラスにも適用することができる。この中でも、特に、ウインドシールドに用いることが望ましい。但し、本実施形態に係る合わせガラスは、ウインドシールドに限定されず、サイドガラス、リアガラスにも用いることができる。
<6. Position used for car body>
The laminated glass according to the present embodiment can be applied to a window glass at any position of an automobile. Among these, it is particularly desirable to use it for a windshield. However, the laminated glass which concerns on this embodiment is not limited to a windshield, It can be used also for a side glass and a rear glass.
 <7.合わせガラスの取付構造>
 上述した合わせガラスは、例えば、自動車、建築物などの取付構造体に取付けることができる。このとき、合わせガラスは、取付部を介して取付構造物に取付けられる。取付部とは、例えば、自動車に取付けるためのウレタン枠などのフレーム、接着材、クランプなどが該当する。自動車への取付の一例を挙げると、図8(a)に示すように、まず、合わせガラス10の両端にピン50を取付けておき、取付対象となる自動車のフレーム70に接着材60を塗布する。フレームには、ピンが挿入される貫通孔80が形成されている。そして、図8(b)に示すように、合わせガラス10をフレーム70に取付ける。まず、ピン50を貫通孔80に挿入し、合わせガラス10をフレーム70に対して仮止めする。このとき、ピン50には段差が形成されているため、ピン50は貫通孔80の途中までしか挿入されず、これにより、フレーム70と合わせガラス10との間に隙間が生じる。そして、この隙間には上述した接着材60が塗布されているため、時間の経過とともに接着材60を介して合わせガラス10とフレーム70が固定される。
<7. Laminated glass mounting structure>
The laminated glass mentioned above can be attached to attachment structures, such as a car and a building, for example. At this time, the laminated glass is attached to the attachment structure via the attachment portion. The attachment portion corresponds to, for example, a frame such as a urethane frame for attachment to an automobile, an adhesive, a clamp, or the like. As an example of attachment to an automobile, as shown in FIG. 8A, first, pins 50 are attached to both ends of the laminated glass 10, and an adhesive 60 is applied to the automobile frame 70 to be attached. . A through hole 80 into which a pin is inserted is formed in the frame. And the laminated glass 10 is attached to the flame | frame 70 as shown in FIG.8 (b). First, the pin 50 is inserted into the through hole 80 and the laminated glass 10 is temporarily fixed to the frame 70. At this time, since a step is formed in the pin 50, the pin 50 is inserted only halfway through the through-hole 80, whereby a gap is generated between the frame 70 and the laminated glass 10. And since the adhesive material 60 mentioned above is apply | coated to this clearance gap, the laminated glass 10 and the flame | frame 70 are fixed via the adhesive material 60 with progress of time.
 ところで、本発明者は、ウインドシールドの取付角度が大きいほど、遮音性能が低下することを見出した。図9は、周波数と音響透過損失(STL)との関係をシミュレーションした結果を示すグラフである。このグラフでは、厚みが2.0mmと1.5mmの2枚のガラス板で樹脂製の中間膜を挟持した合わせガラスを用い、垂直からの取付角度を、0~75度の間で5種類に設定して、シミュレーションを行った結果を示している。コア層の厚みは0.1mm,アウター層の厚みは0.33mm、コア層のヤング率は25MPaである。また、図9(a)においては、アウターのヤング率が560MPaであり、図9(b)においては、アウターのヤング率が441MPaである。シミュレーションの方法は実施例に記載の方法に従う。このグラフによれば、取付角度が45度より大きくなると、人間が聞き取りやすい2500~5000Hzの周波数域において、音響透過損失が低下していることが分かる。これにより、遮音性能が低下し、車内環境が悪化するという問題が発生する。これは、取付角度が大きくなると、水平方向に対する合わせガラスへの音の入射角が大きくなりやすく、これによって、合わせガラスが共振しやすくなることによると考えられる。この点は、アウター層のヤング率が相違しても概ね同じであるが、アウター層のヤング率が高いほど、STLの上限及び下限のピークが高周波側にややシフトしている。したがって、このような合わせガラスの取付構造体への取付において、合わせガラス10の取付角度はθは、図8(c)に示すように、垂直Nから45度以下にすることが好ましい。 By the way, the present inventor has found that the sound insulation performance decreases as the mounting angle of the windshield increases. FIG. 9 is a graph showing the result of simulating the relationship between frequency and sound transmission loss (STL). In this graph, laminated glass with a resin intermediate film sandwiched between two glass plates with thicknesses of 2.0 mm and 1.5 mm is used, and the vertical mounting angle is set to 5 types between 0 and 75 degrees. The result of setting and simulation is shown. The core layer has a thickness of 0.1 mm, the outer layer has a thickness of 0.33 mm, and the core layer has a Young's modulus of 25 MPa. In FIG. 9A, the outer Young's modulus is 560 MPa, and in FIG. 9B, the outer Young's modulus is 441 MPa. The simulation method follows the method described in the examples. According to this graph, it can be seen that when the mounting angle is larger than 45 degrees, the sound transmission loss is reduced in a frequency range of 2500 to 5000 Hz which is easy for humans to hear. Thereby, sound insulation performance falls and the problem that a vehicle interior environment deteriorates generate | occur | produces. This is considered to be due to the fact that when the mounting angle is increased, the incident angle of sound to the laminated glass with respect to the horizontal direction is likely to be increased, which makes it easier for the laminated glass to resonate. This point is almost the same even if the Young's modulus of the outer layer is different, but as the Young's modulus of the outer layer is higher, the upper and lower peaks of the STL are slightly shifted to the high frequency side. Accordingly, in the attachment of the laminated glass to the attachment structure, the attachment angle of the laminated glass 10 is preferably 45 degrees or less from the vertical N as shown in FIG.
 また、上述したダブり量も、周波数2000~5000Hz、特に3150Hz付近での遮音性能の低下を抑制することに寄与し、例えば、ダブり量が20mm以下であるときには、取付角度を45度以下とすることが好ましく、ダブり量が20mm以上40mm以下であるときには、取付角度を30度以下とすることが好ましい。 In addition, the above-described doubling amount also contributes to suppressing a decrease in sound insulation performance at a frequency of 2000 to 5000 Hz, particularly around 3150 Hz. For example, when the doubling amount is 20 mm or less, the mounting angle is set to 45 degrees or less. When the amount of doubling is 20 mm or more and 40 mm or less, the mounting angle is preferably 30 degrees or less.
 しかしながら、自動車の車種によっては、合わせガラスの取付角度が45度よりも大きくなることがあり、その場合には、遮音性能が低下する。したがって、取付角度が大きくても、周波数2000~5000Hzでの遮音性能の低下を抑制するには、後述するように、コア層31のヤング率を小さくしたり、あるいはコア層31の厚みを大きくすることが好ましい。このようにすると、取付角度を大きくすることによって遮音性能が低下する周波数域と、ほほ同じ周波数域で遮音性能が向上されることが見出されている。この場合、外側ガラス板1と内側ガラス板2の厚みは同じであってもよい。 However, depending on the type of automobile, the attachment angle of the laminated glass may be larger than 45 degrees, and in that case, the sound insulation performance is lowered. Therefore, in order to suppress a decrease in sound insulation performance at a frequency of 2000 to 5000 Hz even when the mounting angle is large, as will be described later, the Young's modulus of the core layer 31 is reduced or the thickness of the core layer 31 is increased. It is preferable. In this way, it has been found that the sound insulation performance is improved in a frequency range in which the sound insulation performance is lowered by increasing the mounting angle, and in a frequency region almost the same. In this case, the outer glass plate 1 and the inner glass plate 2 may have the same thickness.
 その一方で、本発明者は、合わせガラスの取付角度を大きくし、コア層31の厚みを大きくしたとき、周波数が5000~8000Hz付近で、遮音性が低下することを見出した。図10は、取付角度が60度のとき、異なるコア層の厚みにおける周波数とSTLとの関係を示すグラフである。なお、外側ガラス板の厚みは2.0mm、内側ガラス板の厚みは1.5mm、アウター層の厚みは0.33mm、コア層のヤング率は25MPa、アウター層のヤング率は441MPaである。同図によれば、コア層31の厚みが大きいほど、2000~5000HzでのSTLは高くなるものの、5000~8000Hzでは、STLが低下している。 On the other hand, the present inventor has found that when the mounting angle of the laminated glass is increased and the thickness of the core layer 31 is increased, the sound insulation performance decreases at a frequency of about 5000 to 8000 Hz. FIG. 10 is a graph showing the relationship between the frequency and STL at different core layer thicknesses when the mounting angle is 60 degrees. The outer glass plate has a thickness of 2.0 mm, the inner glass plate has a thickness of 1.5 mm, the outer layer has a thickness of 0.33 mm, the core layer has a Young's modulus of 25 MPa, and the outer layer has a Young's modulus of 441 MPa. According to the figure, the STL at 2000 to 5000 Hz increases as the thickness of the core layer 31 increases, but the STL decreases at 5000 to 8000 Hz.
 同様に、本発明者は、合わせガラスの取付角度を大きくし、コア層31のヤング率を小さくしたとき、周波数が5000~8000Hz付近で、遮音性が低下することを見出した。図11(a)は、取付角度が60度であり、外側ガラス板の厚みが2.0mm、内側ガラス板の厚みが1.5mm、アウター層のヤング率が560MPaのとき、異なるコア層のヤング率における周波数とSTLとの関係を示すグラフである。また、図11(b)は、アウター層のヤング率のみが相違し、これが441MPaのグラフである。同図によれば、コア層31のヤング率が小さいほど、2000~5000HzでのSTLは高くなるものの、5000~8000Hzでは、STLが低下していることが分かる。この点は、アウター層のヤング率が相違しても概ね同じであるが、アウター層のヤング率が高いほど、STLの上限及び下限のピークが高周波側にややシフトしている。 Similarly, the present inventor has found that the sound insulation performance decreases when the frequency is around 5000 to 8000 Hz when the mounting angle of the laminated glass is increased and the Young's modulus of the core layer 31 is decreased. FIG. 11 (a) shows that when the mounting angle is 60 degrees, the thickness of the outer glass plate is 2.0 mm, the thickness of the inner glass plate is 1.5 mm, and the Young's modulus of the outer layer is 560 MPa, the Young of different core layers. It is a graph which shows the relationship between the frequency in a rate, and STL. FIG. 11B is a graph of 441 MPa, which is different only in the Young's modulus of the outer layer. As can be seen from the figure, the STL at 2000 to 5000 Hz increases as the Young's modulus of the core layer 31 decreases, but the STL decreases at 5000 to 8000 Hz. This point is almost the same even if the Young's modulus of the outer layer is different, but as the Young's modulus of the outer layer is higher, the upper and lower peaks of the STL are slightly shifted to the high frequency side.
 これに対して、本発明者は、アウター層のヤング率を大きくすることで、5000~8000HzでのSTLが向上することを見出した。図12は、取付角度を60度、コア層31のヤング率を10MPa(周波数100Hz,温度20度)としたときの周波数とSTLとの関係を示すグラフである。そして、このグラフでは、コア層31のヤング率を10MPaとしつつ、アウター層32のヤング率が異なる3種類の合わせガラスを準備した。すなわち、アウター層32の厚みを441MPa,560MPa,800MPaとした。その結果、2000~5000Hzでは、アウター層のヤング率が大きいとSTLが低いものの、他の合わせガラスとは大きい差は生じていない。一方、5000~8000Hzでは、アウター層32のヤング率が大きい合わせガラスのSTLが最も大きくなっている。 In contrast, the present inventors have found that the STL at 5000 to 8000 Hz is improved by increasing the Young's modulus of the outer layer. FIG. 12 is a graph showing the relationship between the frequency and STL when the mounting angle is 60 degrees and the Young's modulus of the core layer 31 is 10 MPa (frequency 100 Hz, temperature 20 degrees). In this graph, three types of laminated glasses having different Young's moduli of the outer layer 32 were prepared while setting the Young's modulus of the core layer 31 to 10 MPa. That is, the thickness of the outer layer 32 was 441 MPa, 560 MPa, and 800 MPa. As a result, at 2000 to 5000 Hz, although the STL is low when the Young's modulus of the outer layer is large, there is no significant difference from other laminated glasses. On the other hand, at 5000 to 8000 Hz, the STL of the laminated glass having a large Young's modulus of the outer layer 32 is the largest.
 この観点から、取付角度が45度以上の大きい場合には、アウター層32のヤング率が大きいこと、例えば、560MPa以上であることが好ましく、これにより、コア層31のヤング率が、例えば1~25MPaのように低くても、5000~8000HzのSTLが向上することが見出された。また、図11に示すように、コア層のヤング率が低ければ、2000~5000Hzにおいて、STLが向上するため、好ましい。 From this point of view, when the mounting angle is as large as 45 degrees or more, it is preferable that the outer layer 32 has a large Young's modulus, for example, 560 MPa or more, whereby the core layer 31 has a Young's modulus of, for example, 1 to It was found that the STL of 5000 to 8000 Hz is improved even when the pressure is as low as 25 MPa. Further, as shown in FIG. 11, it is preferable that the Young's modulus of the core layer is low because STL is improved at 2000 to 5000 Hz.
 <8.特徴>
 本実施形態によれば、中間膜3の一部を構成するアウター層32のヤング率を周波数100Hz,温度20度において560MPa以上とすることで、次の効果を得ることができる。
<8. Features>
According to the present embodiment, the following effects can be obtained by setting the Young's modulus of the outer layer 32 constituting a part of the intermediate film 3 to 560 MPa or more at a frequency of 100 Hz and a temperature of 20 degrees.
 すなわち、本発明者は、中間膜3のアウター層32のヤング率を向上すると、約4000Hz以上の周波数域での遮音性能が向上することを見出した。例えば、一般的に用いられるヤング率が441MPa(20℃、100Hz)のアウター層に対し、ヤング率が560MPa(20℃、100Hz)のアウター層32を用いると、周波数約6300Hzにおいて、STLが0.3dB向上することを見出した。一般的に、人間は0.3dB以上の音の変化を認識できるとされているため、ヤング率を高めることで、高周波数域において、人間が認識できるほどの遮音効果を得ることができる。また、アウター層32のヤング率は高くなるほど、遮音性能が高くなることが見出されている。 That is, the present inventor has found that when the Young's modulus of the outer layer 32 of the intermediate film 3 is improved, the sound insulation performance in a frequency range of about 4000 Hz or more is improved. For example, when an outer layer 32 having a Young's modulus of 560 MPa (20 ° C., 100 Hz) is used with respect to a generally used outer layer having a Young's modulus of 441 MPa (20 ° C., 100 Hz), an STL of 0.1 is obtained at a frequency of about 6300 Hz. It was found to improve 3 dB. In general, since it is assumed that a human can recognize a change in sound of 0.3 dB or more, by increasing the Young's modulus, a sound insulation effect that can be recognized by a human can be obtained in a high frequency range. It has also been found that the sound insulation performance increases as the Young's modulus of the outer layer 32 increases.
 一方、1000~3500Hzの低周波数域では、アウター層のヤング率を向上すると、STLが低下することが分かっている。しかしながら、その低下は小さいことも見出されている。 On the other hand, in the low frequency range of 1000 to 3500 Hz, it is known that the STL decreases when the Young's modulus of the outer layer is improved. However, it has also been found that the decrease is small.
 また、以下の数式に示すように、ガラスは一般的に厚みやヤング率が小さくなるほどコインシデンス周波数は高周波側にシフトする。 In addition, as shown in the following formula, the coincidence frequency is generally shifted to the higher frequency side as the thickness and Young's modulus of glass become smaller.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 したがって、厚みの小さい合わせガラスであれば、上述したように、ヤング率の高いアウター層32を用いることが有利である。 Therefore, if the laminated glass has a small thickness, it is advantageous to use the outer layer 32 having a high Young's modulus as described above.
 また、合わせガラスの総厚が同じでも、外側ガラス板1と内側ガラス板2の厚みが相違する場合には、特定の周波数域での遮音性能が低下することが、本発明者によって見出されている。例えば、図13に示すように、同厚の場合に比して、人間が聞き取りやすい2000~5000Hzの周波数領域の遮音性能が低下することを見出した。同図は、周波数と音響透過損失(STL)との関係をシミュレーションした結果を示すグラフである。このグラフには、厚みが1.5mmのガラス板で構成された合わせガラス(以下、第1合わせガラスという)と、厚みが2.0mmと1.0mmの異なるガラス板で構成された合わせガラス(以下、第2合わせガラスという)が表示されている。いずれの合わせガラスも、ガラス板の間に樹脂製の中間膜が配置されている。このグラフによれば、3000~5000Hzの周波数領域において、第2合わせガラスの音響透過損失は、第1合わせガラスに比べて低下していることが分かる。すなわち、厚みの異なるガラス板を用いることで、人間が聞き取りやすい2000~5000Hzの周波数領域の遮音性能が低下することが分かった。 Moreover, even if the total thickness of laminated glass is the same, when the thickness of the outer side glass plate 1 and the inner side glass plate 2 is different, it was discovered by this inventor that the sound insulation performance in a specific frequency range falls. ing. For example, as shown in FIG. 13, it was found that the sound insulation performance in the frequency range of 2000 to 5000 Hz, which is easy for humans to hear, is lower than in the case of the same thickness. The figure is a graph showing the result of simulating the relationship between frequency and sound transmission loss (STL). This graph shows a laminated glass composed of a glass plate having a thickness of 1.5 mm (hereinafter referred to as a first laminated glass) and a laminated glass composed of different glass plates having a thickness of 2.0 mm and 1.0 mm. Hereinafter, the second laminated glass is displayed. In any laminated glass, a resin intermediate film is disposed between glass plates. According to this graph, it can be seen that the sound transmission loss of the second laminated glass is lower than that of the first laminated glass in the frequency region of 3000 to 5000 Hz. That is, it has been found that the use of glass plates having different thicknesses reduces the sound insulation performance in the frequency range of 2000 to 5000 Hz that is easy for humans to hear.
 これに対して、本発明者は、中間膜3の一部を構成するコア層31の厚みが小さいほど、あるいはヤング率が小さいほど、2000~5000HzでのSTLが低下しないことを見出した。例えば、周波数100Hz,温度20度において、25MPa以下、好ましくは、20MPa以下、より好ましくは18MPa以下、特に好ましくは、14MPa以下とすれば、人間が聞き取りやすい周波数においては、遮音性能は低下しないことも見出した。 On the other hand, the present inventor has found that the STL at 2000 to 5000 Hz does not decrease as the thickness of the core layer 31 constituting a part of the intermediate film 3 decreases or as the Young's modulus decreases. For example, at a frequency of 100 Hz and a temperature of 20 degrees, if the pressure is 25 MPa or less, preferably 20 MPa or less, more preferably 18 MPa or less, and particularly preferably 14 MPa or less, the sound insulation performance may not be lowered at a frequency that is easily heard by humans. I found it.
 これは、以下の理由からであると考えられる。まず、コア層31の厚みが小さいと、軟質のコア層31の影響がほとんどなくなるため、中間膜3は、主として、硬質のアウター層32の性質が大きくなる。すなわち、外側ガラス板1と内側ガラス板2は、硬質の中間膜3により連結されることになり、これにより、合わせガラスであっても、外側ガラス板1と内側ガラス板2の厚みの合計値と同厚の単板として性質が強くなる。また、上述した数1に示すように、ガラスは一般的に厚みやヤング率が小さくなるほどコインシデンス周波数は高周波側にシフトする。 This is thought to be due to the following reasons. First, since the influence of the soft core layer 31 is almost eliminated when the thickness of the core layer 31 is small, the properties of the hard outer layer 32 are mainly increased in the intermediate film 3. That is, the outer glass plate 1 and the inner glass plate 2 are connected by the hard intermediate film 3, and thus, even if it is a laminated glass, the total thickness of the outer glass plate 1 and the inner glass plate 2. As a single plate of the same thickness, the properties become stronger. Moreover, as shown in the above-mentioned formula 1, generally, the coincidence frequency shifts to the high frequency side as the thickness and Young's modulus of glass decrease.
 これらを考慮すると、中間膜3が硬質であると、つまり、ヤング率が大きいと、合計の厚みが4mmの合わせガラスであっても、4mmの厚みを有する単板と同様に、コインシデンス周波数が3~4kHzとなり、人が聞きやすい周波数帯で性能が低下する。一方、中間膜3が軟質であれば、つまりヤング率が小さくなれば、合わせガラスの性能は2枚のガラス板の合算になる。例えば、2mmのガラス板と1mmのガラス板からなる合わせガラスであれば、その性能は、2枚のガラス板の性能の合算となる傾向がある。すなわち、例えば、図14に示す各ガラス板の厚みは4mmよりも小さいため、コインシデンス周波数は高周波側にシフトし、2mmのガラス板は5000Hzあたりにコインシデンス周波数が存在するとともに、1mmのガラス板は8000Hzにコインシデンス周波数が存在する。そして、これら1mmと2mmの厚さのガラス板の合わせガラスの性能はその合算であるため、コインシデンス周波数は、5000~8000Hzの間に存在することになる。なお、図14は、合わせガラスではない単板の、周波数とSTLとの関係をシミュレーションした結果を示すグラフである。 Considering these, if the intermediate film 3 is hard, that is, if the Young's modulus is large, even if it is a laminated glass having a total thickness of 4 mm, the coincidence frequency is 3 as in the case of a single plate having a thickness of 4 mm. It becomes ˜4 kHz, and the performance decreases in a frequency band that is easy for humans to hear. On the other hand, if the intermediate film 3 is soft, that is, if the Young's modulus decreases, the performance of the laminated glass is the sum of the two glass plates. For example, if it is a laminated glass consisting of a 2 mm glass plate and a 1 mm glass plate, its performance tends to be the sum of the performances of the two glass plates. That is, for example, since the thickness of each glass plate shown in FIG. 14 is smaller than 4 mm, the coincidence frequency is shifted to the high frequency side, and the 2 mm glass plate has a coincidence frequency around 5000 Hz, and the 1 mm glass plate has 8000 Hz. There is a coincidence frequency. And since the performance of the laminated glass of these 1 mm and 2 mm thick glass plates is the sum of them, the coincidence frequency exists between 5000 and 8000 Hz. In addition, FIG. 14 is a graph which shows the result of having simulated the relationship between the frequency and STL of the single plate which is not a laminated glass.
 そこで、中間膜3の一部を構成するコア層31の厚みを大きくすると、軟質であるコア層31の影響が大きくなり、合わせガラスは、中間膜3のコア層31を挟んで設けられた2つのガラス板の性質を合算した性質が表れる。これにより、外側ガラス板1と内側ガラス板2の厚みが相違するとき、例えば、内側ガラス板2の厚みを小さくしても、人間が聞き取りやすい周波数においては遮音性能は低下しない。すなわち、内側ガラス板2の厚みを小さくすることでコインシデンス周波数が高周波側にシフトする。そのため、上述したように、内側ガラス板2の薄厚化に起因して2000~5000Hzの周波数領域において低下した音響透過損失を上昇させることが可能となる。その結果、合わせガラスの軽量化とともに、人間が聞き取りやすい2000~5000Hzの周波数領域での遮音性能を向上することができる。 Therefore, when the thickness of the core layer 31 constituting a part of the intermediate film 3 is increased, the influence of the soft core layer 31 is increased, and the laminated glass is provided 2 with the core layer 31 of the intermediate film 3 interposed therebetween. The combined properties of the two glass plates appear. Thereby, when the thickness of the outer side glass plate 1 and the inner side glass plate 2 is different, for example, even if the thickness of the inner side glass plate 2 is reduced, the sound insulation performance is not lowered at a frequency that is easy for humans to hear. That is, the coincidence frequency is shifted to the high frequency side by reducing the thickness of the inner glass plate 2. Therefore, as described above, it is possible to increase the sound transmission loss that is reduced in the frequency region of 2000 to 5000 Hz due to the thinning of the inner glass plate 2. As a result, it is possible to improve the sound insulation performance in the frequency range of 2000 to 5000 Hz that is easy for humans to hear, as well as reducing the weight of the laminated glass.
 したがって、2000~5000Hzの周波数域での遮音性能を向上するには、軟質であるコア層31の厚みを大きくする必要がある。また、上述したように、外側ガラス1と内側ガラス板2の厚みの差が小さければ、さらに遮音性能を向上することができる。 Therefore, in order to improve the sound insulation performance in the frequency range of 2000 to 5000 Hz, it is necessary to increase the thickness of the soft core layer 31. As described above, if the difference in thickness between the outer glass 1 and the inner glass plate 2 is small, the sound insulation performance can be further improved.
 なお、以上の知見は、アウター層32よりも軟質のコア層31の厚みに関するものであるが、コア層31のヤング率の範囲を、上述したものにすることでも、同様の効果を得ることができる。 Although the above knowledge relates to the thickness of the core layer 31 that is softer than the outer layer 32, the same effect can be obtained by setting the Young's modulus range of the core layer 31 as described above. it can.
 以下、本発明の実施例について説明する。但し、本発明は以下の実施例に限定されない。 Hereinafter, examples of the present invention will be described. However, the present invention is not limited to the following examples.
 1.試験A
 以下の通り、実施例1及び比較例1に係る合わせガラスを準備した。実施例1と比較例1の相違は、アウター層のヤング率のみである。
1. Test A
Laminated glasses according to Example 1 and Comparative Example 1 were prepared as follows. The difference between Example 1 and Comparative Example 1 is only the Young's modulus of the outer layer.
 まず、外側及び内側ガラス板を、上述したクリアガラスで形成した。外側ガラス板の厚みは2.0mm、内側ガラス板の厚みは1.3mmとした。そして、中間膜はコア層とこれを挟持する一対のアウター層で構成した。中間膜の厚みは0.76mm、コア層の厚みは0.1mm、両アウター層の厚みはそれぞれ0.33mmとした。そして、コア層のヤング率は19MPa(20℃、100Hz)に調整した。また、実施例1におけるアウター層のヤング率を882MPa(20℃、100Hz)とし、比較例1におけるアウター層のヤング率を441MPa(20℃、100Hz)とした。 First, the outer and inner glass plates were formed with the above-described clear glass. The thickness of the outer glass plate was 2.0 mm, and the thickness of the inner glass plate was 1.3 mm. And the intermediate film was comprised with the core layer and a pair of outer layer which clamps this. The thickness of the intermediate film was 0.76 mm, the thickness of the core layer was 0.1 mm, and the thicknesses of both outer layers were 0.33 mm. The Young's modulus of the core layer was adjusted to 19 MPa (20 ° C., 100 Hz). The Young's modulus of the outer layer in Example 1 was 882 MPa (20 ° C., 100 Hz), and the Young's modulus of the outer layer in Comparative Example 1 was 441 MPa (20 ° C., 100 Hz).
 上記実施例1及び比較例1について、音響透過損失をシミュレーションにより、評価した。シミュレーション条件は、以下の通りである。 For the above Example 1 and Comparative Example 1, the sound transmission loss was evaluated by simulation. The simulation conditions are as follows.
 まず、シミュレーションは、音響解析ソフト(ACTRAN、Free Field technology社製)を用いて行った。このソフトでは、有限要素法を用いて次の波動方程式を解くことにより、合わせガラスの音響透過損失(透過音圧レベル/入射音圧レベル)を算出することができる。 First, the simulation was performed using acoustic analysis software (ACTRAN, manufactured by Free Field technology). In this software, the sound transmission loss (transmitted sound pressure level / incident sound pressure level) of the laminated glass can be calculated by solving the following wave equation using the finite element method.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 次に、算出条件について説明する。
(1) モデルの設定
 本シミュレーションで用いた合わせガラスのモデルを図15に示す。このモデルでは、音の発生源側から外側ガラス板、中間膜、内側ガラス板、ウレタン枠の順で積層した合わせガラスを規定している。ここで、ウレタン枠をモデルに追加しているのは、ウレタン枠の有無により音響透過損失の算出結果に少なからず影響があると考えられる点、及び、合わせガラスと車両のウインドシールドの間にはウレタン枠が用いられて接着していることが一般的である点を考慮したためである。
(2) 入力条件1(寸法等)
Next, calculation conditions will be described.
(1) Model setting The model of the laminated glass used in this simulation is shown in FIG. In this model, a laminated glass is defined in which an outer glass plate, an intermediate film, an inner glass plate, and a urethane frame are laminated in this order from the sound source side. Here, the reason why the urethane frame is added to the model is that there is a considerable influence on the calculation result of sound transmission loss due to the presence or absence of the urethane frame, and between the laminated glass and the vehicle windshield. This is because it is generally considered that a urethane frame is used and bonded.
(2) Input condition 1 (dimensions, etc.)
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 なお、ガラス板の寸法である800×500mmは、実際の車両で用いられるサイズよりも小さい。ガラスサイズが大きくなるとSTL値は悪くなる傾向にあるが、これは、サイズが大きいほど拘束箇所が大きくなり、それにともない共振モードが大きくなるからである。但し、ガラスサイズが異なっても、周波数毎の相対的値の傾向、つまり、異なる厚みのガラス板からなる合わせガラスが同厚のガラス板からなる合わせガラスに比して所定の周波数帯で悪くなる傾向は同じである。 Note that the size of the glass plate, 800 × 500 mm, is smaller than the size used in an actual vehicle. As the glass size increases, the STL value tends to deteriorate. This is because, as the size increases, the constrained portion increases and the resonance mode increases accordingly. However, even if the glass size is different, the tendency of the relative value for each frequency, that is, the laminated glass made of glass plates with different thicknesses becomes worse in a predetermined frequency band than the laminated glass made of glass plates with the same thickness. The trend is the same.
 また、有限要素法において、ガラス板に形成されるメッシュは、一辺が5mmの直方体とした。これは、一般的に、解析する最大波長の1/6以下であれば、精度が良いといわれており、今回用いた5mmは、10000Hz時の波長の約1/7に相当する。したがって、シミュレーションの精度は担保されている。 Further, in the finite element method, the mesh formed on the glass plate was a rectangular parallelepiped having a side of 5 mm. This is generally said to be accurate if it is 1/6 or less of the maximum wavelength to be analyzed, and 5 mm used this time corresponds to about 1/7 of the wavelength at 10000 Hz. Therefore, the accuracy of simulation is guaranteed.
 また、上記表1のランダム拡散音波とは、所定の周波数の音波が外側ガラス板に対してあらゆる方向の入射角をもって伝番していく音波であり、音響透過損失を測定する残響室での音源を想定したものとなっている。一方、平面波とは、一定の進行方向に垂直な波面をもつ波であり、所定の周波数の音波が外側ガラス板に対して垂直に入射して伝播していく音波である。なお、平面波を用いても遮音性能の効果が評価できる。
(3) 入力条件2(物性値)
The random diffused sound wave in Table 1 is a sound wave having a predetermined frequency transmitted with an incident angle in any direction with respect to the outer glass plate, and a sound source in a reverberation chamber for measuring sound transmission loss. Is assumed. On the other hand, the plane wave is a wave having a wavefront perpendicular to a certain traveling direction, and a sound wave having a predetermined frequency is incident on the outer glass plate and propagates perpendicularly. In addition, the effect of the sound insulation performance can be evaluated even using a plane wave.
(3) Input condition 2 (property value)
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
[コア層及び両アウター層のヤング率及び損失係数について]
 主な周波数毎に異なった値を用いた。これは、コア層及び両アウター層は粘弾性体のため、粘性効果によりヤング率は周波数依存性が強いためである。なお、温度依存性も大きいが、今回は温度一定(20℃)を想定した物性値を用いた。
[About Young's modulus and loss factor of core layer and both outer layers]
Different values were used for each main frequency. This is because the Young's modulus is strongly frequency dependent due to the viscous effect because the core layer and both outer layers are viscoelastic bodies. In addition, although the temperature dependence is large, the physical property value which assumed temperature constant (20 degreeC) was used this time.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 結果は、図16のグラフに示すとおりである。このグラフは、横軸が周波数(Hz)であり、縦軸は各周波数における実施例1と比較例1とのSTLの差(dB)である。この結果によれば、実施例1のように、アウター層のヤング率を大きくすることで、比較例1に比べ概ね4000Hz以上の周波数域におけるSTLを向上することができる。つまり、遮音性能を向上させることができる。例えば、約5000~10000Hzにおいて、実施例1と比較例1とは0.6dB以上のSTLの差が生じており、実施例1において遮音性能が大きく向上していることが分かる。したがって、このような合わせガラスを自動車に用いた場合、ブレーキ音、風切り音などの高周波の音が車内に流入するのを効果的に遮断することができる。一方、実施例1は、1000~3500Hzの周波数域で、比較例1と比べ、STLが概ね0~0.2dB低下している。しかしながら、一般的に、人間は約0.3dBの変化があれば、音の相違を認識することができるため、0.2dB程度のSTLの差であれば、人間は認識できない可能性が高い。したがって、アウター層のヤング率を高くすると、約3500Hz以下の低周波でSTLは低下するものの、その低下は無視できるほどのものであり、その一方で、約3500Hz以上、特に、5000Hz以上の周波数域の音に対しては、効果的に遮音することができることが分かった。 The results are as shown in the graph of FIG. In this graph, the horizontal axis represents frequency (Hz), and the vertical axis represents STL difference (dB) between Example 1 and Comparative Example 1 at each frequency. According to this result, the STL in a frequency region of approximately 4000 Hz or more can be improved by increasing the Young's modulus of the outer layer as in Example 1 as compared with Comparative Example 1. That is, the sound insulation performance can be improved. For example, at about 5000 to 10000 Hz, there is a difference in STL of 0.6 dB or more between Example 1 and Comparative Example 1, and it can be seen that the sound insulation performance is greatly improved in Example 1. Therefore, when such a laminated glass is used in an automobile, it is possible to effectively block high-frequency sounds such as brake noise and wind noise from flowing into the vehicle. On the other hand, in Example 1, the STL is approximately 0 to 0.2 dB lower than that in Comparative Example 1 in the frequency range of 1000 to 3500 Hz. However, generally, a human can recognize a difference in sound if there is a change of about 0.3 dB. Therefore, if there is a difference in STL of about 0.2 dB, it is highly possible that a human cannot recognize. Therefore, when the Young's modulus of the outer layer is increased, the STL decreases at a low frequency of about 3500 Hz or less, but the decrease is negligible. On the other hand, the frequency range of about 3500 Hz or more, particularly 5000 Hz or more. It was found that the sound can be effectively insulated.
 2.試験B
 以下の通り、実施例2~4及び比較例2に係る合わせガラスを準備した。実施例2~4と比較例2の相違は、アウター層のヤング率のみである。
2. Test B
Laminated glasses according to Examples 2 to 4 and Comparative Example 2 were prepared as follows. The difference between Examples 2 to 4 and Comparative Example 2 is only the Young's modulus of the outer layer.
 外側及び内側ガラス板を、上述したクリアガラスで形成した。外側ガラス板の厚みは2.0mm、内側ガラス板の厚みは1.3mmとした。そして、中間膜はコア層とこれを挟持する一対のアウター層で構成した。中間膜の厚みは0.76mm、コア層の厚みは0.1mm、両アウター層の厚みはそれぞれ0.33mmとした。そして、コア層のヤング率は9.5MPa(20℃、100Hz)に調整した。また、実施例2~4におけるアウター層のヤング率は、それぞれ882、1764、3528MPa(20℃、100Hz)とし、比較例2におけるアウター層のヤング率を441MPa(20℃、100Hz)とした。その他の試験条件は、試験Aと同じである。 The outer and inner glass plates were formed from the clear glass described above. The thickness of the outer glass plate was 2.0 mm, and the thickness of the inner glass plate was 1.3 mm. And the intermediate film was comprised with the core layer and a pair of outer layer which clamps this. The thickness of the intermediate film was 0.76 mm, the thickness of the core layer was 0.1 mm, and the thicknesses of both outer layers were 0.33 mm. The Young's modulus of the core layer was adjusted to 9.5 MPa (20 ° C., 100 Hz). The Young's modulus of the outer layer in Examples 2 to 4 was 882, 1764 and 3528 MPa (20 ° C., 100 Hz), respectively, and the Young's modulus of the outer layer in Comparative Example 2 was 441 MPa (20 ° C., 100 Hz). Other test conditions are the same as those in Test A.
 結果は、図17に示すとおりである。この試験Bでは、コア層のヤング率を小さくしているが、試験Aと同様に、アウター層のヤング率が大きくなると、高周波数域でのSTLが大きく上昇し、この周波数域での遮音性能が大きく向上していることが分かる。また、この試験Bでは、コア層のヤング率を試験Aと比べ半分にしているが、これにより、1000~3500Hzの周波数域でのSTLが若干増加していることが分かる。 Results are as shown in FIG. In this test B, the Young's modulus of the core layer is reduced. As in Test A, when the Young's modulus of the outer layer is increased, the STL in the high frequency range greatly increases, and the sound insulation performance in this frequency range. It can be seen that is greatly improved. In Test B, the Young's modulus of the core layer is halved compared to Test A, and it can be seen that the STL slightly increases in the frequency range of 1000 to 3500 Hz.
 したがって、アウター層のヤング率を増大することで、高周波域でのSTLが増加し、遮音性能が向上していることが分かった。また、コア層のヤング率を低下させることで、1000~3500Hzの周波数域での遮音性能が向上していることも確認できた。 Therefore, it was found that increasing the Young's modulus of the outer layer increased the STL in the high frequency range and improved the sound insulation performance. It was also confirmed that the sound insulation performance in the frequency range of 1000 to 3500 Hz was improved by lowering the Young's modulus of the core layer.
 3.試験C
 以下では、合わせガラスの取付角度とアウター層の厚みに関する評価を行った。表6~表8に示す通り、実施例及び比較例に係る合わせガラスを準備した。但し、外側ガラス板の厚みは2.0mm、内側ガラス板の厚みは1.5mm、コア層の厚みは0.1mm、アウター層の厚みは0.33mm、ダブり量は0mmとした。
3. Test C
Below, evaluation regarding the attachment angle of a laminated glass and the thickness of an outer layer was performed. As shown in Tables 6 to 8, laminated glasses according to Examples and Comparative Examples were prepared. However, the thickness of the outer glass plate was 2.0 mm, the thickness of the inner glass plate was 1.5 mm, the thickness of the core layer was 0.1 mm, the thickness of the outer layer was 0.33 mm, and the amount of doubling was 0 mm.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 図18に示すように、取付角度が45度以上と大きいと、アウター層のヤング率が変化しても、2000~5000HzではSTLが概ね同じであるが、5000Hzより大きくなると、アウター層のヤング率が大きいほど、STLが向上していることが分かった。また、図19に示すように、この傾向は、コア層のヤング率が小さくなっても同様である。但し、コア層のヤング率が小さくなると、図18と比べ、2000~5000Hzでは、STLが向上するが、5000Hzより大きくなると、STLが低下している。したがって、コア層のヤング率にかかわらず、アウター層のヤング率は高いこと、特に、560MPa以上が好ましいことが分かった。 As shown in FIG. 18, when the mounting angle is as large as 45 degrees or more, even if the Young's modulus of the outer layer changes, the STL is generally the same at 2000 to 5000 Hz, but when it exceeds 5000 Hz, the Young's modulus of the outer layer It was found that the larger the value, the better the STL. Moreover, as shown in FIG. 19, this tendency is the same even when the Young's modulus of the core layer is reduced. However, when the Young's modulus of the core layer is reduced, the STL is improved at 2000 to 5000 Hz as compared with FIG. 18, but the STL is decreased when it is higher than 5000 Hz. Therefore, it was found that regardless of the Young's modulus of the core layer, the Young's modulus of the outer layer is high, particularly preferably 560 MPa or more.
 また、図20に示すように、取付角度が45度よりも大きい場合、コア層のヤング率が大きくても、アウター層のヤング率が大きいほど、5000Hz以上を含む高周波域でのSTLが向上することが分かった。特に、図18及び図19と比べ、5000Hz以上において、アウター層のヤング率が高くなることの効果がより明確に表れた。 As shown in FIG. 20, when the mounting angle is larger than 45 degrees, even if the Young's modulus of the core layer is large, the STL in a high frequency region including 5000 Hz or more is improved as the Young's modulus of the outer layer is large. I understood that. In particular, compared with FIGS. 18 and 19, the effect of increasing the Young's modulus of the outer layer appeared more clearly at 5000 Hz or higher.
 4.試験D
 以下では、コア層及びアウター層のヤング率に関する評価を行った。表9~表12に示す通り、実施例及び比較例に係る合わせガラスを準備した。但し、外側ガラス板の厚みは2.0mm、内側ガラス板の厚みは1.0mm、コア層の厚みは0.1mm、アウター層の厚みは0.33mm、ダブり量は0mm、取付角度は0度とした。表9及び表10に係る実施例及び比較例おいては、コア層のヤング率を一定とし、アウター層のヤング率を変化させた。結果は、図21及び図22に示すとおりである。また、表11及び表12に係る実施例においては、アウター層のヤング率を一定とし、コア層のヤング率を変化させた。結果は、図23及び図24に示すとおりである。
4). Test D
Below, evaluation regarding the Young's modulus of a core layer and an outer layer was performed. As shown in Tables 9 to 12, laminated glasses according to Examples and Comparative Examples were prepared. However, the thickness of the outer glass plate is 2.0 mm, the thickness of the inner glass plate is 1.0 mm, the thickness of the core layer is 0.1 mm, the thickness of the outer layer is 0.33 mm, the amount of doubling is 0 mm, and the mounting angle is 0 degree. It was. In the examples and comparative examples according to Table 9 and Table 10, the Young's modulus of the core layer was made constant, and the Young's modulus of the outer layer was changed. The results are as shown in FIG. 21 and FIG. Moreover, in the Example which concerns on Table 11 and Table 12, the Young's modulus of the outer layer was made constant and the Young's modulus of the core layer was changed. The results are as shown in FIGS.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 図21及び図22に示すとおり、コア層のヤング率が低いほど、2000~5000HzでのSTLは、向上するものの、コア層のヤング率が相違しても、アウター層のヤング率が高くなるほど、5000Hz以上でSTLが向上する傾向が確認された。特に、コア層のヤング率が低くても、アウター層のヤング率が高いと、例えば、実施例13と実施例17とを比較して分かるように、5000Hz以上でのSTLが向上している。 As shown in FIGS. 21 and 22, although the STL at 2000 to 5000 Hz improves as the Young's modulus of the core layer decreases, the higher the Young's modulus of the outer layer, the higher the Young's modulus of the outer layer. The tendency for STL to improve at 5000 Hz or higher was confirmed. In particular, even when the Young's modulus of the core layer is low, if the Young's modulus of the outer layer is high, for example, as can be seen by comparing Example 13 and Example 17, the STL at 5000 Hz or higher is improved.
 また、図23及び図24に示すとおり、5000Hz以上を含む高周波域でのSTLが向上する傾向は、コア層のヤング率が大きく変化しても同じであり、2000~5000Hzではコア層のヤング率が低いほど、STLが向上するものの、5000Hz以上では、コア層のヤング率が高く、またアウター層のヤング率が高いほど、STLが向上している。したがって、コア層のヤング率がいずれの値であっても、アウター層のヤング率が高いと、5000Hz以上でのSTLが向上することが分かった。 Further, as shown in FIGS. 23 and 24, the tendency for STL to improve in a high frequency region including 5000 Hz or more is the same even when the Young's modulus of the core layer is greatly changed. The Young's modulus of the core layer is 2000 to 5000 Hz. The STL is improved as the value is lower, but the STL is improved as the Young's modulus of the core layer is higher and the Young's modulus of the outer layer is higher at 5000 Hz or higher. Therefore, it was found that regardless of the value of the Young's modulus of the core layer, the STL at 5000 Hz or higher is improved when the Young's modulus of the outer layer is high.
 5.試験E
 以下では、ガラス板の厚みに関する評価を行った。表13及び表14に示す通り、実施例及び比較例に係る合わせガラスを準備した。但し、外側ガラス板の厚みは1.5mm、内側ガラス板の厚みは1.5mm、コア層の厚みは0.1mm、アウター層の厚みは0.33mm、ダブり量は0mm、取付角度は0度とした。結果は、図25及び図26に示すとおりである。
5. Test E
Below, evaluation regarding the thickness of a glass plate was performed. As shown in Table 13 and Table 14, laminated glasses according to Examples and Comparative Examples were prepared. However, the thickness of the outer glass plate is 1.5 mm, the thickness of the inner glass plate is 1.5 mm, the thickness of the core layer is 0.1 mm, the thickness of the outer layer is 0.33 mm, the amount of doubling is 0 mm, and the mounting angle is 0 degree. It was. The results are as shown in FIG. 25 and FIG.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 図25及び図26に示すとおり、外側ガラス板と内側ガラス板の厚みが同じであっても、アウター層のヤング率が高いほど、5000Hz以上でのSTLは向上することが分かった。また、図25と図26とを比較すると、2000~5000Hzでは、コア層のヤング率が低いほど、STLが高くなっているが、5000Hz以上では、大きい相違がないことが分かった。さらに、例えば、図21と図25とを比較すると、2000~5000Hzでは、外側ガラス板と内側ガラス板の厚みが相違すると、STLが低くなっているが、5000Hz以上では、外側ガラス板と内側ガラス板の厚みに関わらず、STLがほぼ同じであることが分かった。 As shown in FIG. 25 and FIG. 26, it was found that even when the outer glass plate and the inner glass plate have the same thickness, the STL at 5000 Hz or higher improves as the Young's modulus of the outer layer increases. Further, comparing FIG. 25 with FIG. 26, it was found that the STL increases as the Young's modulus of the core layer decreases at 2000 to 5000 Hz, but there is no significant difference at 5000 Hz or higher. Further, for example, comparing FIG. 21 and FIG. 25, when the thickness of the outer glass plate is different from that of the inner glass plate at 2000 to 5000 Hz, the STL is lowered. It was found that the STL was almost the same regardless of the thickness of the plate.
 6.試験F
 以下では、ダブリ量に関する評価を行った。表15に示す通り、実施例に係る合わせガラスを準備した。但し、外側ガラス板の厚みは2.0mm、内側ガラス板の厚みは1.5mm、コア層の厚みは0.1mm、アウター層の厚みは0.33mm、取付角度は0度とした。結果は、図27に示すとおりである。
6). Test F
Below, evaluation about the amount of double was performed. As shown in Table 15, the laminated glass which concerns on an Example was prepared. However, the thickness of the outer glass plate was 2.0 mm, the thickness of the inner glass plate was 1.5 mm, the thickness of the core layer was 0.1 mm, the thickness of the outer layer was 0.33 mm, and the mounting angle was 0 degree. The results are as shown in FIG.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
 図27に示すとおり、ダブリ量が大きくなるほど、4000Hz以下で、STLが小さくなっていることが分かった。 As shown in FIG. 27, it was found that the STL was decreased at 4000 Hz or lower as the amount of double was increased.
1 外側ガラス板
2 内側ガラス板
3 中間膜
31 コア層
32 アウター層
DESCRIPTION OF SYMBOLS 1 Outer glass plate 2 Inner glass plate 3 Intermediate film 31 Core layer 32 Outer layer

Claims (9)

  1. [規則91に基づく訂正 11.12.2014] 
     外側ガラス板と、
     前記外側ガラス板と対向配置された内側ガラス板と、
     前記外側ガラス板及び内側ガラス板の間に挟持された中間膜と、
    を備え、
     前記中間膜は、コア層と、前記コア層よりも剛性が高く、当該コア層を挟む前記外側ガラス板側及び前記内側ガラス板側のうち、少なくとも前記外側ガラス板側に配置される少なくとも1つのアウター層と、を備え、
     前記アウター層の少なくとも1つのヤング率は、周波数100Hz,温度20℃において、560MPa以上である、合わせガラス。
    [Correction 11.12.2014 under Rule 91]
    An outer glass plate,
    An inner glass plate disposed opposite to the outer glass plate;
    An intermediate film sandwiched between the outer glass plate and the inner glass plate;
    With
    The intermediate film is higher in rigidity than the core layer and the core layer, and is arranged at least on the outer glass plate side among the outer glass plate side and the inner glass plate side sandwiching the core layer. An outer layer,
    Laminated glass in which at least one Young's modulus of the outer layer is 560 MPa or more at a frequency of 100 Hz and a temperature of 20 ° C.
  2.  前記コア層のヤング率は、周波数100Hz,温度20℃において、25MPa以下である、請求項1に記載の合わせガラス。 The laminated glass according to claim 1, wherein the Young's modulus of the core layer is 25 MPa or less at a frequency of 100 Hz and a temperature of 20 ° C.
  3.  前記コア層のヤング率は、周波数100Hz,温度20℃において、14MPa以下である、請求項1に記載の合わせガラス。 The laminated glass according to claim 1, wherein the Young's modulus of the core layer is 14 MPa or less at a frequency of 100 Hz and a temperature of 20 ° C.
  4.  前記コア層のtanδは、周波数100Hz,温度20℃において、0.8以下である、請求項1から3のいずれに記載の合わせガラス。 The laminated glass according to any one of claims 1 to 3, wherein tan δ of the core layer is 0.8 or less at a frequency of 100 Hz and a temperature of 20 ° C.
  5.  前記コア層を挟む少なくとも一対の前記アウター層を備えている、請求項1から4のいずれかに記載の合わせガラス。 The laminated glass according to any one of claims 1 to 4, comprising at least a pair of the outer layers sandwiching the core layer.
  6.  前記外側ガラス板側に配置される前記アウター層のヤング率が、前記内側ガラス板側に配置される前記アウター層のヤング率よりも大きい、請求項5に記載の合わせガラス。 The laminated glass according to claim 5, wherein the Young's modulus of the outer layer arranged on the outer glass plate side is larger than the Young's modulus of the outer layer arranged on the inner glass plate side.
  7.  前記外側ガラス板の厚みは、前記内側ガラス板の厚みと相違する、請求項1から6のいずれかに記載の合わせガラス。 The laminated glass according to any one of claims 1 to 6, wherein a thickness of the outer glass plate is different from a thickness of the inner glass plate.
  8.  前記外側ガラス板の厚みと前記内側ガラス板の厚みとの合計が3.8mm以下である、請求項1から7のいずれかに記載の合わせガラス。 The laminated glass according to any one of claims 1 to 7, wherein the total thickness of the outer glass plate and the inner glass plate is 3.8 mm or less.
  9.  自動車のウインドシールドとして用いられ、
     前記自動車に対して、垂直からの取付け角度が45度以上である、請求項2に記載の合わせガラス。
    Used as a windshield for automobiles,
    The laminated glass of Claim 2 whose attachment angle from perpendicular | vertical is 45 degrees or more with respect to the said motor vehicle.
PCT/JP2014/074860 2013-09-19 2014-09-19 Laminated glass WO2015041324A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014561647A JP5744355B1 (en) 2013-09-19 2014-09-19 Laminated glass

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2013-194721 2013-09-19
JP2013194721 2013-09-19
JP2014028105 2014-02-18
JP2014-028105 2014-02-18
JP2014-168006 2014-08-20
JP2014168006 2014-08-20

Publications (1)

Publication Number Publication Date
WO2015041324A1 true WO2015041324A1 (en) 2015-03-26

Family

ID=52688971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/074860 WO2015041324A1 (en) 2013-09-19 2014-09-19 Laminated glass

Country Status (2)

Country Link
JP (2) JP5744355B1 (en)
WO (1) WO2015041324A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015122507A1 (en) * 2014-02-14 2015-08-20 日本板硝子株式会社 Laminated glass
JP2015151308A (en) * 2014-02-14 2015-08-24 日本板硝子株式会社 Glass laminate, and fitted structure fitted with the same
JP2015160779A (en) * 2014-02-27 2015-09-07 日本板硝子株式会社 Glass laminate and attachment structure attached with the same
WO2016024625A1 (en) * 2014-08-15 2016-02-18 日本板硝子株式会社 Laminated glass
JP2018520043A (en) * 2015-06-11 2018-07-26 サン−ゴバン グラス フランスSaint−Gobain Glass France Projection system for head-up display (HUD)
US10350861B2 (en) 2015-07-31 2019-07-16 Corning Incorporated Laminate structures with enhanced damping properties

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008037668A (en) * 2006-08-02 2008-02-21 Asahi Glass Co Ltd Laminated glass for window
WO2008075604A1 (en) * 2006-12-20 2008-06-26 As R & D Llc Organic damping material
JP2009522136A (en) * 2005-12-30 2009-06-11 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Multilayer polymer laminate and high-strength laminate produced therefrom
JP2012519646A (en) * 2009-03-06 2012-08-30 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Lightweight glass laminate
WO2014126251A1 (en) * 2013-02-18 2014-08-21 日本板硝子株式会社 Laminated glass, and structure having same mounted thereto

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003192402A (en) * 2001-12-25 2003-07-09 Central Glass Co Ltd Laminated glass having excellent impact resistance and peeling resistance
JP4339745B2 (en) * 2003-08-22 2009-10-07 積水化学工業株式会社 Laminated glass and interlayer film for laminated glass
JP2013006731A (en) * 2011-06-23 2013-01-10 Sekisui Chem Co Ltd Interlayer for laminated glass and laminated glass
WO2013181484A1 (en) * 2012-05-31 2013-12-05 Corning Incorporated Stiff interlayers for laminated glass structures

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009522136A (en) * 2005-12-30 2009-06-11 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Multilayer polymer laminate and high-strength laminate produced therefrom
JP2008037668A (en) * 2006-08-02 2008-02-21 Asahi Glass Co Ltd Laminated glass for window
WO2008075604A1 (en) * 2006-12-20 2008-06-26 As R & D Llc Organic damping material
JP2012519646A (en) * 2009-03-06 2012-08-30 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Lightweight glass laminate
WO2014126251A1 (en) * 2013-02-18 2014-08-21 日本板硝子株式会社 Laminated glass, and structure having same mounted thereto

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015122507A1 (en) * 2014-02-14 2015-08-20 日本板硝子株式会社 Laminated glass
JP2015151308A (en) * 2014-02-14 2015-08-24 日本板硝子株式会社 Glass laminate, and fitted structure fitted with the same
US10252492B2 (en) 2014-02-14 2019-04-09 Nippon Sheet Glass Company, Limited Laminated glass
US11065844B2 (en) 2014-02-14 2021-07-20 Nippon Sheet Glass Company, Limited Laminated glass
JP2015160779A (en) * 2014-02-27 2015-09-07 日本板硝子株式会社 Glass laminate and attachment structure attached with the same
WO2016024625A1 (en) * 2014-08-15 2016-02-18 日本板硝子株式会社 Laminated glass
JP2018520043A (en) * 2015-06-11 2018-07-26 サン−ゴバン グラス フランスSaint−Gobain Glass France Projection system for head-up display (HUD)
US10656414B2 (en) 2015-06-11 2020-05-19 Saint-Gobain Glass France Projection arrangement for a head-up display (HUD)
US10350861B2 (en) 2015-07-31 2019-07-16 Corning Incorporated Laminate structures with enhanced damping properties

Also Published As

Publication number Publication date
JP2016041646A (en) 2016-03-31
JP5744355B1 (en) 2015-07-08
JPWO2015041324A1 (en) 2017-03-02
JP6392166B2 (en) 2018-09-19

Similar Documents

Publication Publication Date Title
JP6629809B2 (en) Laminated glass mounting structure
JP6392166B2 (en) Laminated glass
WO2016024625A1 (en) Laminated glass
US11065844B2 (en) Laminated glass
JP6267007B2 (en) Laminated glass
JP6193777B2 (en) Laminated glass and mounting structure to which the glass is mounted
US11130316B2 (en) Laminated glass
JP2017149604A (en) Interlayer for laminated glass, and laminated glass
JP2000272936A (en) Interlayer for laminated glass, and laminated glass
JP6947176B2 (en) Laminated glass
JP6267006B2 (en) Laminated glass
JP6295104B2 (en) Laminated glass and mounting structure to which the glass is mounted
JP4986312B2 (en) Laminated glass interlayer film and laminated glass
JP6223375B2 (en) Laminated glass and mounting structure to which the glass is mounted
JP6178738B2 (en) Laminated glass and mounting structure to which the glass is mounted
JP6295096B2 (en) Laminated glass
JP6267008B2 (en) Laminated glass
JP2015168598A (en) laminated glass
JP2015168599A (en) Glass laminate production method and glass laminate
JP2001206741A (en) Intermediate film for sandwich glass, sandwich glass and method for manufacturing sandwich glass

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014561647

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14846252

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14846252

Country of ref document: EP

Kind code of ref document: A1