WO2015041097A1 - Secondary battery and method for producing secondary battery - Google Patents

Secondary battery and method for producing secondary battery Download PDF

Info

Publication number
WO2015041097A1
WO2015041097A1 PCT/JP2014/073743 JP2014073743W WO2015041097A1 WO 2015041097 A1 WO2015041097 A1 WO 2015041097A1 JP 2014073743 W JP2014073743 W JP 2014073743W WO 2015041097 A1 WO2015041097 A1 WO 2015041097A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
unsubstituted
group
active material
secondary battery
Prior art date
Application number
PCT/JP2014/073743
Other languages
French (fr)
Japanese (ja)
Inventor
則彦 丸山
佐藤 正春
英司 国府
照久 高田
風人 梁田
英久 目代
鋤柄 宜
Original Assignee
株式会社村田製作所
カーリットホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所, カーリットホールディングス株式会社 filed Critical 株式会社村田製作所
Publication of WO2015041097A1 publication Critical patent/WO2015041097A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a secondary battery and a method for manufacturing a secondary battery, and more particularly, has an electrode active material mainly composed of a multi-electron organic compound, and is charged and discharged using a battery electrode reaction of the electrode active material.
  • the present invention relates to a repetitive secondary battery and a manufacturing method thereof.
  • the electrode active material is a substance that directly contributes to the battery electrode reaction such as the charge reaction and the discharge reaction, and has the central role of the secondary battery. That is, the battery electrode reaction is a reaction that occurs with the transfer of electrons by applying a voltage to an electrode active material that is electrically connected to an electrode disposed in the electrolyte, and proceeds during charging and discharging of the battery. To do. Therefore, as described above, the electrode active material has a central role of the secondary battery in terms of system.
  • organic materials having redox activity have attracted attention as this type of electrode active material. Since organic materials can involve multiple electrons of two or more electrons in an oxidation-reduction reaction, by utilizing such characteristics for battery electrode reactions, two-dimensional materials having a larger capacity density than inorganic materials can be used. It is considered that a secondary battery can be realized.
  • Patent Document 1 discloses a general formula (1 ′): -(NH-CS-CS-NH) ... (1 ') Or general formula (2 ') R 1- (NH-CS-CS-NH) n -R 2 ... (2 ')
  • a nonaqueous solution having a battery electrode containing rubeanic acid or a rubeanic acid polymer capable of binding to lithium ions as a positive electrode and an electrode containing an active material capable of occluding and releasing lithium ions as a negative electrode System batteries have been proposed.
  • R 1 and R 2 represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 3 carbon atoms, an amino group, a hydroxyl group, or a sulfone group, and n is 1 to 20 Indicates an integer.
  • FIG. 4 is a cross-sectional view schematically showing the structure of the nonaqueous solution battery described in Patent Document 1.
  • the positive electrode active material layer 102 mainly composed of active material particles 102a made of rubeanic acid or rubeanic acid polymer is formed on the surface of the positive electrode current collector 101 formed of aluminum foil or the like, and the positive electrode current collector is formed.
  • a positive electrode 103 is constituted by the electric conductor 101 and the positive electrode active material layer 102.
  • a negative electrode 104 is disposed on the opposite side of the positive electrode 103.
  • the negative electrode 104 includes a negative electrode current collector 105 made of copper or the like, and a negative electrode active material layer 106 containing metallic lithium formed on the surface of the negative electrode current collector 105 so as to face the positive electrode active material layer 102. have.
  • a separator 107 made of a resin sheet containing an electrolytic solution or a gel or solid containing an electrolytic solution (hereinafter referred to as “solid matter etc.”) is interposed between the positive electrode active material layer 102 and the negative electrode active material layer 105.
  • the battery can (not shown) is filled with an electrolyte solution (electrolyte solution) 108 that is further interposed between the electrolyte salt and the electrolyte salt dissolved in a solvent.
  • the rubeanic acid or rubeanic acid polymer containing the dithione structure represented by general formula (1 ') or (2') couple
  • Charging / discharging is performed by utilizing such a reversible oxidation-reduction reaction of rubeanic acid or rubeanic acid polymer.
  • Patent Document 1 describes that a solid electrolyte in which an electrolyte salt is contained in a solid substance or the like may be used instead of the electrolyte solution.
  • Patent Document 2 discloses a battery including a positive electrode, a negative electrode, and an electrolyte solution containing an electrolyte interposed between the positive electrode and the negative electrode, wherein the positive electrode is rubeanic acid or a rubeanic acid derivative as an active material. And a battery in which the molar concentration of the electrolyte in the electrolytic solution is higher than 1.0 mol / L has been proposed.
  • the battery of Patent Document 2 also has the same structure as that of Patent Document 1, and for example, a resin sheet or a solid material containing an electrolytic solution is used for the separator.
  • the electrolyte salt concentration in the electrolyte solution is increased to increase the molar amount of anion derived from the electrolyte salt, thereby obtaining a high charge / discharge capacity density.
  • JP 2008-147015 A (Claim 4, paragraph numbers [0011], [0013], [0026], FIGS. 3 and 5)
  • JP 2012-164480 A (Claim 1, paragraph numbers [0008], [0028])
  • lithium ions can freely move to the negative electrode side during charging and freely move to the positive electrode side during discharging. It is important to be able to do it.
  • the separator 107 uses a resin sheet or a solid material containing an electrolytic solution, but the electrolyte solution 108 is on the surface of the positive electrode active material layer 102. Therefore, the active material particles 102 a in the positive electrode active material layer 102 may be eluted into the electrolyte solution 108.
  • charging / discharging is performed by utilizing a redox reaction of the molecule itself, so that the lithium ion secondary battery is charged / discharged while maintaining a crystal system.
  • the active material particles 102a that is, the positive electrode active material is easily dissolved in the electrolyte solution.
  • the positive electrode active material When the positive electrode active material is eluted into the electrolyte solution 108 in this way, the positive electrode active material is eluted into the electrolyte solution 108 and then reaches the negative electrode, thereby causing an unintended redox reaction and taking out a desired current to the outside. There is a risk of disappearing.
  • a negatively active polymer is formed on the surface of the negative electrode, which leads to a decrease in lithium ion and electron transfer efficiency, resulting in charge / discharge efficiency. There is a risk that the battery capacity will deteriorate due to deterioration.
  • this Patent Document 1 describes that a solid electrolyte may be used instead of the electrolyte solution 108, which can prevent elution of the positive electrode active material that is the active material particles 102 a.
  • a solid electrolyte may be used instead of the electrolyte solution 108, which can prevent elution of the positive electrode active material that is the active material particles 102 a.
  • the positive electrode active material layer 102 contains a conductive additive such as carbon black and a binder in addition to the active material particles 102a described above, and the positive electrode active material layer 102 is very microscopic.
  • a current collector having a complicated uneven shape and a thickness of about several tens of ⁇ m is formed.
  • the solid electrolyte is simply brought into contact with the positive electrode active material layer 102, even if the surface area of the positive electrode active material layer 102 is increased, the lithium ions that have moved from the negative electrode 106 are only electrons at the contact portion with the solid electrolyte. Therefore, it is difficult to allow lithium ions to reach the inside of the positive electrode active material layer 102, which may cause a significant decrease in ion conduction efficiency.
  • the solid electrolyte currently in practical use is inferior in ionic conductivity compared to the liquid electrolyte solution, in order to obtain the desired ionic conductivity, the solid electrolyte is used in combination with the electrolyte solution. It is necessary to reduce the usage rate as much as possible, which may lead to complication of the battery configuration.
  • This invention is made
  • a secondary battery according to the present invention includes an electrolyte interposed between a first electrode and a second electrode, and includes the first and second electrodes and the electrolyte.
  • the electrode active material is coated with an inorganic active material on at least one of the surface of the active material substrate containing the organic compound and the surface of the particles of the organic compound. It is characterized by having.
  • the inorganic active material contains a lithium compound containing at least one of cobalt, manganese, and nickel.
  • the lithium compound preferably contains lithium cobaltate, lithium manganate, lithium nickelate, and nickel-manganese-lithium cobaltate.
  • the inorganic active material contains lithium iron phosphate.
  • the organic compound has in its constituent unit at least one selected from a dithione compound having a dithione structure, a dione compound having a dione structure, and a diamine compound having a diamine structure. It is preferable.
  • the dithione compound has the general formula: Or It is preferable to be represented by
  • n is an integer of 1 or more
  • R 1 to R 3 and R 5 are a substituted or unsubstituted amino group, a substituted or unsubstituted imino group, a substituted or unsubstituted alkyl group.
  • R 4 represents at least one of a substituted or unsubstituted alkylene group, a substituted or unsubstituted arylene group, and a substituted or unsubstituted imino group, and the imino groups are linked to each other. Including.
  • the dione compound has the general formula: Or It is preferable to be represented by
  • n is an integer of 1 or more
  • R 6 to R 8 and R 10 are a substituted or unsubstituted amino group, a substituted or unsubstituted imino group, a substituted or unsubstituted alkyl group.
  • R 9 represents at least one of a substituted or unsubstituted alkylene group, a substituted or unsubstituted arylene group, and a substituted or unsubstituted imino group, and the imino groups are linked to each other. Including.
  • the diamine compound has the general formula: It is preferable to be represented by
  • R 11 and R 12 are a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkylene group, a substituted or unsubstituted arylene group, a substituted or unsubstituted carbonyl group, substituted or unsubstituted Substituted acyl group, substituted or unsubstituted alkoxycarbonyl group, substituted or unsubstituted ester group, substituted or unsubstituted ether group, substituted or unsubstituted thioether group, substituted or unsubstituted amino group, substituted or unsubstituted An amide group, a substituted or unsubstituted sulfone group, a substituted or unsubstituted thiosulfonyl group, a substituted or unsubstituted sulfonamido group, a substituted or unsubstituted imino group
  • X 1 to X 4 are a hydrogen atom, a halogen atom, a hydroxyl group, a nitro group, a cyano group, a carboxyl group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted cycloalkyl group, Substituted or unsubstituted aryl group, substituted or unsubstituted aromatic heterocyclic group, substituted or unsubstituted aralkyl group, substituted or unsubstituted amino group, substituted or unsubstituted alkoxy group, substituted or unsubstituted aryloxy At least one of a group, a substituted or unsubstituted alkoxycarbonyl group, a substituted or unsubstituted aryloxycarbonyl group, a substituted or unsubstituted acyl group, and a
  • the electrode active material is included in at least one of a reaction starting material, a product, and an intermediate product in the discharge reaction of the battery electrode reaction.
  • either one of the first and second electrodes forms a positive electrode, and the positive electrode has the electrode active material.
  • an electrode active material mainly composed of a multi-electron organic compound is used as the first and second electrodes, with an electrolyte interposed between the first electrode and the second electrode.
  • an electrode active material mainly composed of a multi-electron organic compound is used as the first and second electrodes, with an electrolyte interposed between the first electrode and the second electrode.
  • the electrolyte is interposed between the first electrode and the second electrode, and at least one of the first and second electrodes and the electrolyte is lithium.
  • one of the first and second electrodes is an electrode mainly composed of a multi-electron organic compound in which two or more electrons are involved in the battery electrode reaction. Since the electrode active material has an active material, at least one of the surface of the active material substrate containing the organic compound and the particle surface of the organic compound is coated with the inorganic active material.
  • the organic compound which is the main component of the electrode active material, is supported on the electrode surface or inside the electrode to suppress the elution of the organic compound into the electrolyte. You It is possible. Since the inorganic active material has electronic conductivity and lithium ion conductivity, the active material substrate can transfer desired electrons within the electrode or on the electrode surface while suppressing the elution of the active material substrate into the electrolyte. Therefore, even if charging / discharging is repeated for a long time, it is possible to suppress a decrease in battery capacity.
  • the electrode active material mainly composed of a multi-electron organic compound is provided with the electrolyte between the first electrode and the second electrode.
  • a method of manufacturing a secondary battery contained in at least one of the second electrodes wherein the active material manufacturing step of manufacturing the electrode active material binds at least the organic compound to a conductive material.
  • the electrode active material mainly composed of a multi-electron organic compound is provided with the electrolyte between the first electrode and the second electrode.
  • a method of manufacturing a secondary battery contained in at least one of the second electrodes wherein the active material preparation step of preparing the electrode active material is performed using an inorganic active material on the particle surface of the organic compound.
  • the particle surface is coated with an inorganic active material, and in this case as well, it is possible to obtain a secondary battery with good charge and discharge efficiency by suppressing the organic compound from eluting into the electrolyte.
  • FIG. 1 is a cross-sectional view schematically showing an embodiment (first embodiment) of a secondary battery according to the present invention. It is sectional drawing which shows typically 2nd Embodiment of the secondary battery which concerns on this invention. It is a figure which shows the charging / discharging characteristic of an Example. It is sectional drawing which showed the conventional example of the secondary battery typically.
  • FIG. 1 is a cross-sectional view schematically showing one embodiment (first embodiment) of a secondary battery according to the present invention.
  • an active material substrate 2 is formed on the surface of a positive electrode current collector 1 formed of aluminum foil or the like, and the surface of the active material substrate 2 is covered with an inorganic active material layer 3.
  • the active material substrate 2 and the inorganic active material layer 3 form a positive electrode active material 4, and the positive electrode active material 4 and the positive electrode current collector 1 constitute a positive electrode (first electrode) 5.
  • a negative electrode (second electrode) 6 is disposed on the opposite side of the positive electrode 5.
  • the negative electrode 6 includes a negative electrode current collector 7 formed of copper or the like, and a negative electrode active material 8 containing metallic lithium formed on the surface of the negative electrode current collector 6 so as to face the positive electrode active material 4.
  • a separator 9 made of a porous resin material or a gel or solid material is interposed between the positive electrode 5 and the negative electrode 6, and an electrolyte solution 10 in which an electrolyte salt is dissolved in a solvent is a battery can (not shown). Have been charged.
  • the active material substrate 2 contains active material particles 11 made of a multi-electron organic compound that is the main component of the battery electrode reaction.
  • electrode active materials mainly composed of organic compounds have attracted attention, and among them, multi-electron organic compounds in which multiple electrons of two or more electrons are involved in battery electrode reactions, such as dithion compounds, dione compounds, and diamine compounds Is promising as an active material capable of realizing a high capacity density with good charge / discharge efficiency.
  • active material particles 11 made of a multi-electron organic compound are contained in the active material substrate 2.
  • organic compounds are used mainly as electrode active materials, for example, positive electrode active materials, the organic compounds are easily eluted into the electrolyte solution 10 as described in [Problems to be Solved by the Invention]. And since this organic compound elutes in the electrolyte solution 10 and reaches the negative electrode 6, an unintended oxidation-reduction reaction occurs, so that there is a possibility that current cannot be taken out to the outside.
  • the organic compound reaches the negative electrode 6, a polymer having low electrochemical activity is formed on the surface of the negative electrode 6, which may inhibit the movement of lithium ions and electrons.
  • the active material substrate 2 contains a conductive auxiliary agent and a binder in addition to the active material particles 11 which are the main components of the battery electrode reaction, and has a very complicated uneven shape at a microscopic level. A current collector of several tens of ⁇ m is formed. Therefore, even if a solid electrolyte is used instead of the electrolyte solution 10, lithium ions from the negative electrode 6 can reach the inside of the active material substrate 2 only by bringing the solid electrolyte into contact with the active material substrate 2. Therefore, the ion conduction efficiency is low, which may cause a decrease in charge / discharge efficiency.
  • the active material substrate 2 is made of the inorganic active material layer 3 that has an electronic conductivity and an ionic conductivity and has an action of suppressing the dissolution of the organic compound contained in the active material substrate 2 into the electrolyte solution 10.
  • the lithium ion from the negative electrode 6 can effectively reach the surface and the inside of the active material substrate 2 while covering the surface and thereby suppressing the elution of the active material substrate 2 into the electrolyte solution 10.
  • the conduction efficiency of electrons is improved.
  • the charge / discharge efficiency is improved, and it is possible to suppress a decrease in battery capacity even after repeated charge / discharge.
  • the inorganic active material layer 3 is sufficient if it can prevent elution of the active material substrate 2 into the electrolyte solution 10. Therefore, the thickness is preferably as thin as possible, and is desirably formed to be about 5 to 20 ⁇ m.
  • lithium ion conductivity is not particularly limited as long, usually cobalt, manganese, and lithium compound containing at least one kind of the nickel, for example, lithium cobalt oxide (LiCoO 2), lithium manganate (LiMn 2 O 4) Lithium nickelate (LiNiO 2 ), nickel-manganese-lithium cobaltate (LiNiMnO 2 ) can be preferably used, and lithium iron phosphate (LiFePO 4 ) can be preferably used.
  • the lithium compounds described above can be used alone or in combination of two or more.
  • the active material substrate 2 contains the conductive material and the binder as described above in addition to the active material particles 11.
  • the conductive auxiliary agent is not particularly limited, for example, carbonaceous fine particles such as graphite, carbon black, and acetylene black, vapor grown carbon fibers, carbon nanotubes, carbon fibers such as carbon nanohorns, polyaniline, Conductive polymers such as polypyrrole, polythiophene, polyacetylene, and polyacene can be used. Further, two or more kinds of conductive assistants can be mixed and used.
  • the content of the conductive auxiliary agent in the active material substrate 2 is preferably 10 to 80% by weight.
  • the binder is not particularly limited, and various resins such as polyethylene, polyvinylidene fluoride, polyhexafluoropropylene, polytetrafluoroethylene, polyethylene oxide, carboxymethylcellulose, and the like can be used.
  • the electrolyte solution 10 is interposed between the positive electrode 5 and the negative electrode 6 and transports the charge carriers between the two electrodes.
  • Such an electrolyte solution 10 has 10 ⁇ 5 to 10 ⁇ 1 S / s at room temperature.
  • Those having an ionic conductivity of cm can be used, and the electrolyte salt can be used by dissolving in an organic solvent.
  • electrolyte salt for example, LiPF 6 , LiClO 4 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 or the like can be used.
  • organic solvent ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, ⁇ -butyrolactone, tetrahydrofuran, dioxolane, sulfolane, dimethylformamide, dimethylacetamide, 1-methyl-2-pyrrolidone, etc. are used. be able to.
  • the positive electrode 5 has the active material substrate 2 mainly composed of a multi-electron organic compound in which two or more electrons are involved in the battery electrode reaction, and the active material substrate 2 is active.
  • the surface of the material substrate 2 is covered with the inorganic active material layer 3.
  • this inorganic active material layer 3 has an electronic conductivity and lithium ion conductivity, it has the effect
  • the active material particles 11 are not eluted into the electrolyte solution 10, and desired electrons are effectively exchanged inside the positive electrode 5 and on the surface of the positive electrode 5. Since this can improve the lithium ion conduction efficiency, it is possible to suppress a decrease in discharge capacity, it is possible to obtain a secondary battery having good charge and discharge efficiency and a desired battery capacity, Even if charging / discharging is repeated for a long time, a decrease in battery capacity can be suppressed.
  • Dithione compound is excellent in stability during charge and discharge (oxidized state and reduced state), and can perform a multi-electron reaction of two or more electrons by an oxidation-reduction reaction. And by covering the surface of the active material base 2 with the inorganic active material layer 3, the charge and discharge efficiency is improved, so that the charge and discharge of the multi-electron reaction can be stably repeated, and a secondary with a high capacity density. A battery can be obtained.
  • Such a dithione compound is not particularly limited as long as it has a dithione structure in the structural unit, but preferably uses a compound represented by the following general formula (1) or (2). Can do.
  • R 1 ⁇ R 3 and R 5 is a substituted or unsubstituted amino group, a substituted or unsubstituted imino groups, Substituted or unsubstituted alkyl group, substituted or unsubstituted alkylene group, substituted or unsubstituted aryl group, substituted or unsubstituted aralkyl group, substituted or unsubstituted cycloalkyl group, substituted or unsubstituted alkoxyl group, substituted Or an unsubstituted alkenyl group, a substituted or unsubstituted aryloxy group, a substituted or unsubstituted arylamino group, a substituted or unsubstituted alkylamino group, a substituted or unsubstituted thioaryl group, a substituted or unsubstituted thioalky
  • R 4 represents at least one of a substituted or unsubstituted alkylene group, a substituted or unsubstituted arylene group, and a substituted or unsubstituted imino group, including the case where the imino groups are linked to each other. .
  • dithione compound belonging to the category of the general formula (1) examples include organic compounds represented by the following chemical formulas (1a) to (1i).
  • the following chemical reaction formula (I) shows an example of a charge / discharge reaction expected when the dithione compound shown in the chemical formula (1a) is used as the positive electrode active material and Li is used as the cation of the electrolyte salt.
  • examples of the dithione compound belonging to the category of the general formula (2) include organic compounds represented by the following chemical formulas (2a) to (2g).
  • the following chemical reaction formula (II) shows an example of a charge / discharge reaction expected when the dithione compound shown in the chemical formula (2a) is used as the positive electrode active material and Li is used as the cation of the electrolyte salt.
  • the molecular weight of the organic compound constituting the positive electrode active material is not particularly limited. However, when the portion other than the dithione structure is increased, the molecular weight is increased, so that the storage capacity per unit mass, that is, the capacity density is reduced. Therefore, it is preferable that the molecular weight of the portion other than the dithione structure is small.
  • the dione compound is excellent in stability during charge and discharge (oxidized state and reduced state), and can perform a multi-electron reaction of two or more electrons by an oxidation-reduction reaction. And by covering the surface of the active material base 2 with the inorganic active material layer 3, the charge and discharge efficiency is improved, so that the charge and discharge of the multi-electron reaction can be stably repeated, and a secondary with a high capacity density. A battery can be obtained.
  • the dione compound is not particularly limited as long as it has a dione structure in the structural unit, but preferably uses a compound represented by the following general formula (3) or (4). Can do.
  • n is an integer of 1 or more
  • R 6 to R 8 and R 10 are a substituted or unsubstituted amino group, a substituted or unsubstituted imino group, Substituted or unsubstituted alkyl group, substituted or unsubstituted alkylene group, substituted or unsubstituted aryl group, substituted or unsubstituted aralkyl group, substituted or unsubstituted cycloalkyl group, substituted or unsubstituted alkoxyl group, substituted Or an unsubstituted alkenyl group, a substituted or unsubstituted aryloxy group, a substituted or unsubstituted arylamino group, a substituted or unsubstituted alkylamino group, a substituted or unsubstituted thioaryl group, a substituted or unsubstituted thio
  • R 9 represents at least one of a substituted or unsubstituted alkylene group, a substituted or unsubstituted arylene group, and a substituted or unsubstituted imino group, including the case where the imino groups are linked to each other. .
  • dione compounds belonging to the category of the general formula (3) include organic compounds represented by the following chemical formulas (3a) to (3e).
  • the following chemical reaction formula (III) shows an example of a charge / discharge reaction expected when the dione compound represented by the chemical formula (3a) is used as the positive electrode active material and Li is used as the cation of the electrolyte salt. .
  • examples of the dione compound belonging to the category of the general formula (4) include organic compounds represented by the following chemical formulas (4a) to (4f).
  • the following chemical reaction formula (IV) shows an example of a charge / discharge reaction expected when the dione compound shown in the chemical formula (4a) is used as the positive electrode active material and Li is used as the cation of the electrolyte salt.
  • the molecular weight of the organic compound constituting the positive electrode active material is not particularly limited. However, when the portion other than the dione structure is increased, the molecular weight is increased, so that the storage capacity per unit mass, that is, the capacity density is reduced. Therefore, the molecular weight of the portion other than the dione structure is preferably small.
  • the diamine compound is excellent in stability at the time of charge and discharge (oxidized state and reduced state), and a multi-electron reaction of two or more electrons is possible by the oxidation-reduction reaction. . And by covering the surface of the active material base 2 with the inorganic active material layer 3, the charge and discharge efficiency is improved, so that the charge and discharge of the multi-electron reaction can be stably repeated, and a secondary with a high capacity density. A battery can be obtained.
  • Such a diamine compound is not particularly limited as long as it has a diamine structure in the structural unit, but an organic compound represented by the following general formula (5) can be preferably used.
  • R 11 and R 12 are a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkylene group, a substituted or unsubstituted arylene group, a substituted or unsubstituted carbonyl group, Substituted or unsubstituted acyl group, substituted or unsubstituted alkoxycarbonyl group, substituted or unsubstituted ester group, substituted or unsubstituted ether group, substituted or unsubstituted thioether group, substituted or unsubstituted amine group, substituted Or an unsubstituted amide group, a substituted or unsubstituted sulfone group, a substituted or unsubstituted thiosulfonyl group, a substituted or unsubstituted sulfonamido group, a substituted or unsubstituted imine group,
  • X 1 to X 4 are a hydrogen atom, a halogen atom, a hydroxyl group, a nitro group, a cyano group, a carboxyl group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted cycloalkyl group, Substituted or unsubstituted aryl group, substituted or unsubstituted aromatic heterocyclic group, substituted or unsubstituted aralkyl group, substituted or unsubstituted amino group, substituted or unsubstituted alkoxy group, substituted or unsubstituted aryloxy At least one of a group, a substituted or unsubstituted alkoxycarbonyl group, a substituted or unsubstituted aryloxycarbonyl group, a substituted or unsubstituted acyl group, and a
  • the organic compound included in the category of the general formula (5) is more preferably an organic compound including a phenazine structure in which an aryl group is bonded with a pyrazine ring interposed therebetween, in the structural unit, for example, the chemical formulas (5a) to (5)
  • the organic compounds shown in 5f) can be preferably used.
  • the following chemical reaction formula (V) shows an example of a charge / discharge reaction expected when the organic compound shown in the chemical formula (5b) is used as the electrode active material and Li is used as the cation of the electrolyte salt.
  • the molecular weight of the diamine compound is not particularly limited. However, when the portion other than the diamine structure is increased, the molecular weight increases, so that the storage capacity per unit mass, that is, the capacity density is reduced. Accordingly, the molecular weight of the portion other than the diamine structure is preferably small.
  • the substituents listed in the general formulas (1) to (5) are not limited as long as they belong to the respective categories. However, as the molecular weight increases, the substituents accumulate per unit mass of the positive electrode active material. Since the amount of charge that can be reduced, it is preferable to select a desired substituent so that the molecular weight is about 250.
  • the positive electrode active material Since the positive electrode active material is reversibly oxidized or reduced by charge / discharge, the positive electrode active material takes a different structure and state depending on the charged state, discharged state, or intermediate state. Is contained in at least one of a reaction starting material (a substance that causes a chemical reaction in a battery electrode reaction), a product (a substance resulting from a chemical reaction), and an intermediate product.
  • a reaction starting material a substance that causes a chemical reaction in a battery electrode reaction
  • a product a substance resulting from a chemical reaction
  • an intermediate product A secondary battery having a positive electrode active material with good discharge efficiency and high capacity density can be realized.
  • the active material base 2 is formed into an electrode shape. That is, any of the organic compounds described above is preferably prepared as a material that becomes the active material particles 11. Then, this organic compound is mixed with the above-described conductive auxiliary agent and binder, and a solvent is added to produce an active material slurry. The active material slurry is applied to the positive electrode current collector 1 by any coating method. The active material substrate 2 is formed on the positive electrode current collector 1 by coating with, forming into an electrode shape, and drying.
  • the solvent used for producing the slurry for active material is not particularly limited, and examples thereof include dimethyl sulfoxide, dimethylformamide, N-methylpyrrolidone, propylene carbonate, diethyl carbonate, dimethyl carbonate, ⁇ -butyrolactone, and the like.
  • Basic solvents, acetonitrile, tetrahydrofuran, nitrobenzene, non-aqueous solvents such as acetone, and protic solvents such as methanol and ethanol can be used.
  • the type of solvent, the compounding ratio of the organic compound and the solvent, the type of conductive agent and binder, and the amount added thereof can be arbitrarily set in consideration of the required characteristics and productivity of the secondary battery. it can.
  • an inorganic active material slurry is prepared. That is, an inorganic compound such as a lithium compound is prepared, a predetermined amount of the inorganic compound is weighed and pulverized, and the pulverized product is mixed with a binder and a solvent such as pure water, whereby an inorganic active material slurry is prepared. Is made. Then, the inorganic active material slurry is applied to the entire surface of the active material substrate 2 and dried, thereby covering the surface of the active material substrate 2 with the inorganic active material layer 3 having a predetermined thickness (for example, 5 to 10 ⁇ m), The positive electrode 5 is formed.
  • the binder similar to the slurry for active material can also be used for the binder for inorganic active material slurry formation.
  • an electrolyte solution 10 is prepared.
  • the positive electrode 5 is impregnated with the electrolyte solution 10 so that the positive electrode 5 is impregnated with the electrolyte solution 10, and then the separator 9 impregnated with the electrolyte solution 10 is laminated on the positive electrode 5 and further formed with metal Li or the like.
  • the negative electrode active material 8 and the negative electrode current collector 7 formed of copper foil or the like are sequentially laminated, and then the electrolyte solution 10 is injected into the internal space. Then, the battery is sealed with a battery can (not shown), thereby producing a secondary battery.
  • the active material preparation step for preparing the positive electrode active material 4 includes a substrate for preparing the active material substrate 2 containing at least an organic compound and a conductive additive and a binder. Since the manufacturing process and the coating process of coating the surface of the active material substrate 2 with the inorganic active material layer 3 are included, the surface of the active material substrate 2 is coated with the inorganic active material layer 3. Can be prevented from eluting into the electrolyte solution 10 and a secondary battery with good charge / discharge efficiency can be obtained.
  • FIG. 2 is a cross-sectional view schematically showing a second embodiment of the secondary battery according to the present invention.
  • the surface of the active material substrate 2 is covered with the inorganic active material layer 3, but in the second embodiment, the surface of the active material particles 11 made of an organic compound is inorganic.
  • the active material film 13 is covered.
  • the positive electrode 13 is formed by the positive electrode active material 12 and the positive electrode current collector 1.
  • the positive electrode active material layer 12 contains active material particles 11 made of an organic compound that is the main component of the battery electrode reaction, and the surface of the active material particles 11 is covered with an inorganic active material film 14.
  • the inorganic active material film 14 is sufficient if it can prevent elution of the active material substrate 2 into the electrolyte solution 10. Therefore, the thickness is preferably as thin as possible, and is desirably formed to be about 5 to 20 ⁇ m.
  • the active material particles 11 are controlled by the inorganic active material film 14 that suppresses the elution of the active material particles 11, which are organic compounds, into the electrolyte solution 10 and has good electron conductivity and ion conductivity. Since the surface of 11 is covered, the active material particles 11 are supported on the inorganic active material film 14. Therefore, the elution of the active material particles 11 into the electrolyte solution 10 can be suppressed, and a secondary battery with good lithium ion and electron conduction efficiency and good charge / discharge efficiency can be obtained as described above.
  • the secondary battery of the second embodiment can be easily manufactured by the following method.
  • the organic compound and the inorganic active material described above are prepared, and the surface of the active material particles 11 is covered with the inorganic active material film 14 by the following method.
  • the inorganic active material is finely pulverized using a pulverizer such as a jet mill until the diameter becomes 1 ⁇ m or less.
  • the active material particles which are organic compounds and the finely pulverized inorganic active material are put into a stirrer and stirred.
  • the finely divided inorganic active material adheres to the surface of the active material particle 11, and the surface of the active material particle 11 is covered with the inorganic active material film 14.
  • an organic compound composed of the active material particles 11 whose surface is coated with the inorganic active material film 14 is mixed with the above-described conductive auxiliary agent and binder, and a solvent is added to prepare an active material slurry. Then, the active material slurry is applied onto the positive electrode current collector 1 by an arbitrary coating method and dried to form the active material substrate 12 into an electrode shape on the positive electrode current collector 1, whereby the positive electrode 13 Is made.
  • a secondary battery can be manufactured by the same method and procedure as in the first embodiment.
  • the active material preparation step for preparing the positive electrode active material 12 includes a coating step for covering the surfaces of the active material particles 11 with the inorganic active material film 14, and at least the inorganic active material film. 14 is formed by mixing the active material particles 11 coated with 14, the conductive auxiliary agent and the binder, and forming the positive electrode active material 12, so that the surface of the active material particles 11 is an inorganic active material film. 14, and in this case as well, it is possible to suppress the organic compound from eluting into the electrolyte and to obtain a secondary battery with good charge / discharge efficiency.
  • the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the invention.
  • a liquid electrolyte solution in which an electrolyte salt is dissolved in a solvent is used as the electrolyte.
  • the ion conductivity is inferior to that of the electrolyte solution, it is also possible to use a solid electrolyte.
  • examples of the polymer compound used for the solid electrolyte include polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-ethylene copolymer, and vinylidene fluoride-monofluoroethylene copolymer.
  • electrolyte a solid electrolyte, an ionic liquid combining a cation and an anion, a symmetric glycol diether such as glymes, a chain sulfone, or the like can be used.
  • the organic compound is used as the main body of the positive electrode active material, but may be used as the negative electrode active material.
  • the battery shape is not particularly limited, and can be applied to a coin type, a cylindrical type, a square type, a sheet type, and the like.
  • the exterior method is not particularly limited, and a metal case, mold resin, aluminum laminate film, or the like may be used.
  • Example shown below is an example and this invention is not limited to the following Example.
  • Rubeanic acid represented by the chemical formula (1a) was prepared as an organic compound that is the main component of the active material substrate.
  • rubeanic acid 300 mg
  • graphite powder as a conductive agent 600 mg
  • polytetrafluoroethylene resin as a binder 100 mg were weighed and kneaded while mixing so as to obtain a uniform mixture. It was.
  • this mixture was coated on an aluminum foil as a positive electrode current collector and subjected to pressure molding to produce a sheet-like member having a thickness of about 150 ⁇ m.
  • this sheet-like member was dried in a vacuum at 70 ° C. for 1 hour, and then punched into a circle having a diameter of 12 mm to form an active material substrate mainly composed of rubeanic acid on an aluminum foil.
  • LiNiMnCoO 2 was prepared as an inorganic active material. Then, a predetermined amount of this LiNiMnCoO 2 was weighed and pulverized, and the pulverized product was mixed with pure water together with a binder, thereby preparing an inorganic active material slurry.
  • polyacrylic acid was used as the binder.
  • the inorganic active material slurry was applied to the outer surface of the active material substrate so as to have a film thickness of 10 ⁇ m, and then vacuum dried at 100 ° C., thereby obtaining a positive electrode.
  • a 20 ⁇ m-thick separator made of a polypropylene porous film impregnated with this electrolyte solution is laminated on the positive electrode, and a negative electrode in which lithium is pasted on a negative electrode current collector made of copper foil is laminated on the separator. Formed body.
  • a metal spring is placed on the negative electrode current collector, and the negative electrode case is joined to the positive electrode case with a gasket disposed on the periphery, and the outer battery is sealed with a caulking machine, thereby Produced.
  • a battery cell of a comparative example was produced by the same method and procedure as in the above example except that the active material substrate was not coated with the inorganic active material layer.
  • FIG. 3 shows the measurement results.
  • the horizontal axis is the capacity density (Ah / kg)
  • the vertical axis is the voltage (V)
  • the solid line shows the charge / discharge curve of the example
  • the broken line shows the charge / discharge curve of the comparative example.
  • the comparative example does not form a voltage flat portion during charging and discharging, and the capacity density is about 70 Ah / kg during charging, so that a sufficient capacity density can be obtained.
  • the voltage decreased rapidly and the capacity density decreased to 56 Ah / kg.
  • a voltage flat portion (plateau) is formed at about 2.3 V at the time of charging, the capacity density is about 210 Ah / kg, and a voltage flat portion is formed at about 2 V at the time of discharging.
  • the capacity density was 168 Ah / kg, and a large capacity density could be secured.
  • the surface of the active material substrate mainly composed of rubeanic acid is coated with an inorganic active material, so that rubeanic acid does not dissolve in the electrolyte solution, and lithium ions are generated on the surface of the active material substrate with good ion conduction efficiency. This seems to be because the desired charge / discharge reaction was performed between these lithium ions and rubeanic acid.
  • a secondary battery Even if a multi-electron organic compound is used as the main component of the active material substrate, a secondary battery is realized that has good charge / discharge efficiency and can suppress a decrease in battery capacity even after repeated charge / discharge.
  • Active material substrate 3 Inorganic active material layer (inorganic active material) 4 Positive electrode active material (electrode active material) 5 Positive electrode (first electrode) 6 Negative electrode (second electrode) 10 Electrolyte Solution 11 Active Material Particles 12 Positive Electrode Active Material (Electrode Active Material) 13 Positive electrode (first electrode) 14 Inorganic active material film (inorganic active material)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

An active material substrate (2) having a many-electron organic compound (dithione compound, dione compound, diamine compound, or the like) as the main body thereof is formed at the surface of a cathode collector (1) formed from aluminum foil or the like, and furthermore, the surface of the active material substrate (2) is covered by an inorganic active material layer (3) such as LiNiMnCoO2. A cathode active material (4) is formed by the active material substrate (2) and the inorganic active material layer (3), and a cathode (4) is configured from the cathode active material (4) and the cathode collector (1). In place of the inorganic active material layer (3), active material particles (11) may be covered by an inorganic active material film. As a result, a secondary battery able to obtain a desired battery capacity and having increased charging/discharging efficiency and a method for producing the secondary battery are achieved.

Description

二次電池、及び二次電池の製造方法Secondary battery and method for manufacturing secondary battery
 本発明は二次電池、及び二次電池の製造方法に関し、より詳しくは多電子系有機化合物を主体とした電極活物質を有し、該電極活物質の電池電極反応を利用して充放電を繰り返す二次電池とその製造方法に関する。 The present invention relates to a secondary battery and a method for manufacturing a secondary battery, and more particularly, has an electrode active material mainly composed of a multi-electron organic compound, and is charged and discharged using a battery electrode reaction of the electrode active material. The present invention relates to a repetitive secondary battery and a manufacturing method thereof.
 携帯電話、ノートパソコン、デジタルカメラ等の携帯用電子機器の市場拡大に伴い、これら電子機器のコードレス電源としてエネルギー密度が大きく長寿命の二次電池の開発が盛んに行なわれている。 With the expansion of the market for portable electronic devices such as mobile phones, notebook computers, and digital cameras, secondary batteries with high energy density and long life have been actively developed as cordless power sources for these electronic devices.
 二次電池の構成要素のうち電極活物質は、充電反応、放電反応という電池電極反応に直接寄与する物質であり、二次電池の中心的役割を有する。すなわち、電池電極反応は、電解質中に配された電極と電気的に接続された電極活物質に対し電圧を印加することにより、電子の授受を伴って生じる反応であり、電池の充放電時に進行する。したがって、上述したように電極活物質は、システム的には、二次電池の中心的役割を有する。 Among the constituent elements of the secondary battery, the electrode active material is a substance that directly contributes to the battery electrode reaction such as the charge reaction and the discharge reaction, and has the central role of the secondary battery. That is, the battery electrode reaction is a reaction that occurs with the transfer of electrons by applying a voltage to an electrode active material that is electrically connected to an electrode disposed in the electrolyte, and proceeds during charging and discharging of the battery. To do. Therefore, as described above, the electrode active material has a central role of the secondary battery in terms of system.
 この種の電極活物質用材料として、近年、酸化還元活性を有する有機系材料が注目されている。有機系材料は、酸化還元反応で二電子以上の多電子の関与が可能であることから、斯かる特性を電池電極反応に利用することにより、無機系材料に比べ、より大きな容量密度を有する二次電池の実現が可能になると考えられる。 In recent years, organic materials having redox activity have attracted attention as this type of electrode active material. Since organic materials can involve multiple electrons of two or more electrons in an oxidation-reduction reaction, by utilizing such characteristics for battery electrode reactions, two-dimensional materials having a larger capacity density than inorganic materials can be used. It is considered that a secondary battery can be realized.
 そして、例えば、特許文献1には、一般式(1′):
 -(NH-CS-CS-NH)...(1′)
 又は、一般式(2′)
 R-(NH-CS-CS-NH)-R ...(2′)
で示される構造単位を有し、リチウムイオンと結合可能なルベアン酸又はルベアン酸ポリマーを含む電池用電極を正極とし、リチウムイオンの吸蔵及び放出が可能な活物質を含む電極を負極とした非水溶液系電池が提案されている。
For example, Patent Document 1 discloses a general formula (1 ′):
-(NH-CS-CS-NH) ... (1 ')
Or general formula (2 ')
R 1- (NH-CS-CS-NH) n -R 2 ... (2 ')
A nonaqueous solution having a battery electrode containing rubeanic acid or a rubeanic acid polymer capable of binding to lithium ions as a positive electrode and an electrode containing an active material capable of occluding and releasing lithium ions as a negative electrode System batteries have been proposed.
 尚、上記一般式(2′)中、R及びRは、水素原子、ハロゲン原子、炭素数が1~3のアルキル基、アミノ基、水酸基、スルホン基を示し、nは1~20の整数を示している。 In the general formula (2 ′), R 1 and R 2 represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 3 carbon atoms, an amino group, a hydroxyl group, or a sulfone group, and n is 1 to 20 Indicates an integer.
 図4は、特許文献1に記載された非水溶液電池の構造を模式的に示す断面図である。 FIG. 4 is a cross-sectional view schematically showing the structure of the nonaqueous solution battery described in Patent Document 1.
 すなわち、この非水溶液電池は、アルミ箔等で形成された正極集電体101の表面にルベアン酸又はルベアン酸ポリマーからなる活物質粒子102aを主体とした正極活物質層102が形成され、正極集電体101と正極活物質層102とで正極103を構成している。また、正極103の対向側には負極104が配されている。この負極104は、銅等で形成された負極集電体105と、正極活物質層102と対向するように負極集電体105の表面に形成された金属リチウムを含有した負極活物質層106とを有している。 That is, in this non-aqueous battery, the positive electrode active material layer 102 mainly composed of active material particles 102a made of rubeanic acid or rubeanic acid polymer is formed on the surface of the positive electrode current collector 101 formed of aluminum foil or the like, and the positive electrode current collector is formed. A positive electrode 103 is constituted by the electric conductor 101 and the positive electrode active material layer 102. A negative electrode 104 is disposed on the opposite side of the positive electrode 103. The negative electrode 104 includes a negative electrode current collector 105 made of copper or the like, and a negative electrode active material layer 106 containing metallic lithium formed on the surface of the negative electrode current collector 105 so as to face the positive electrode active material layer 102. have.
 また、電解液を含む樹脂製シートや電解液を含むゲル状物又は固形物(以下、「固形物等」という。)からなるセパレータ107が正極活物質層102と負極活物質層105との間に介在され、さらに電解質塩を溶媒に溶解させた電解質溶液(電解液)108が電池缶(図示せず。)に満たされている。 A separator 107 made of a resin sheet containing an electrolytic solution or a gel or solid containing an electrolytic solution (hereinafter referred to as “solid matter etc.”) is interposed between the positive electrode active material layer 102 and the negative electrode active material layer 105. The battery can (not shown) is filled with an electrolyte solution (electrolyte solution) 108 that is further interposed between the electrolyte salt and the electrolyte salt dissolved in a solvent.
 そして、特許文献1では、一般式(1′)又は(2′)で表されるジチオン構造を含有したルベアン酸又はルベアン酸ポリマーが、還元時にリチウムイオンと結合し、酸化時に前記結合したリチウムイオンを放出する。このようなルベアン酸又はルベアン酸ポリマーの可逆的な酸化還元反応を利用することによって充放電を行っている。 And in patent document 1, the rubeanic acid or rubeanic acid polymer containing the dithione structure represented by general formula (1 ') or (2') couple | bonds with the lithium ion at the time of a reduction | restoration, and the said combined lithium ion at the time of oxidation Release. Charging / discharging is performed by utilizing such a reversible oxidation-reduction reaction of rubeanic acid or rubeanic acid polymer.
 また、この特許文献1では、電解質溶液に代えて電解質塩を固形物等に含有させた固体電解質を使用してもよいことが記載されている。 Further, this Patent Document 1 describes that a solid electrolyte in which an electrolyte salt is contained in a solid substance or the like may be used instead of the electrolyte solution.
 また、特許文献2には、正極と、負極と、これら正極と負極との間に介在する電解質を含む電解液とを備える電池であって、前記正極は、活物質としてルベアン酸又はルベアン酸誘導体を含み、前記電解液中における前記電解質のモル濃度を1.0mol/Lよりも高くした電池が提案されている。 Patent Document 2 discloses a battery including a positive electrode, a negative electrode, and an electrolyte solution containing an electrolyte interposed between the positive electrode and the negative electrode, wherein the positive electrode is rubeanic acid or a rubeanic acid derivative as an active material. And a battery in which the molar concentration of the electrolyte in the electrolytic solution is higher than 1.0 mol / L has been proposed.
 特許文献2の電池も、特許文献1と同様の構造を有しており、例えば、セパレータには電解液を含有した樹脂製シートや固形物等が使用されている。 The battery of Patent Document 2 also has the same structure as that of Patent Document 1, and for example, a resin sheet or a solid material containing an electrolytic solution is used for the separator.
 そして、特許文献2では、電解質溶液中の電解質塩濃度を高めて、電解質塩由来のアニオンのモル量を増加させ、これにより高い充放電容量密度を得ようとしている。 In Patent Document 2, the electrolyte salt concentration in the electrolyte solution is increased to increase the molar amount of anion derived from the electrolyte salt, thereby obtaining a high charge / discharge capacity density.
特開2008-147015号公報(請求項4、段落番号〔0011〕、〔0013〕、〔0026〕、図3、図5)JP 2008-147015 A (Claim 4, paragraph numbers [0011], [0013], [0026], FIGS. 3 and 5) 特開2012-164480号公報(請求項1、段落番号〔0008〕、〔0028〕)JP 2012-164480 A (Claim 1, paragraph numbers [0008], [0028])
 ところで、上述した二次電池では、正極と負極との間でリチウムイオンを介した電子の授受を行なうことから、リチウムイオンが充電時には負極側に自由に移動でき、放電時には正極側に自由に移動できることが重要である。 By the way, in the secondary battery described above, since electrons are exchanged between the positive electrode and the negative electrode through lithium ions, lithium ions can freely move to the negative electrode side during charging and freely move to the positive electrode side during discharging. It is important to be able to do it.
 しかしながら、特許文献1や2では、上記図4に示すように、セパレータ107に電解液を含有した樹脂製シートや固形物等を使用しているものの、電解質溶液108が正極活物質層102の表面と接触しているため、正極活物質層102中の活物質粒子102aが電解質溶液108に溶出するおそれがある。特に、有機化合物を活物質粒子102aに使用した二次電池では、分子自体の酸化還元反応を利用して充放電を行なうことから、結晶系を維持した状態で充放電を行なうリチウムイオン二次電池とは異なり、活物質粒子102a、すなわち正極活物質の電解質溶液への溶解が起こり易い。 However, in Patent Documents 1 and 2, as shown in FIG. 4, the separator 107 uses a resin sheet or a solid material containing an electrolytic solution, but the electrolyte solution 108 is on the surface of the positive electrode active material layer 102. Therefore, the active material particles 102 a in the positive electrode active material layer 102 may be eluted into the electrolyte solution 108. In particular, in a secondary battery using an organic compound as the active material particle 102a, charging / discharging is performed by utilizing a redox reaction of the molecule itself, so that the lithium ion secondary battery is charged / discharged while maintaining a crystal system. Unlike the case, the active material particles 102a, that is, the positive electrode active material is easily dissolved in the electrolyte solution.
 そして、このように正極活物質が電解質溶液108に溶出すると、正極活物質は電解質溶液108に溶出した後、負極に到達することから、意図しない酸化還元反応を引き起こし、所望の電流を外部に取り出せなくなるおそれがある。また、上述したように正極活物質が負極に到達することから、負極表面では電気化学的に活性の低いポリマーを形成し、このためリチウムイオンや電子の移動効率の低下を招き、充放電効率が劣化し、電池容量の低下を招くおそれがある。 When the positive electrode active material is eluted into the electrolyte solution 108 in this way, the positive electrode active material is eluted into the electrolyte solution 108 and then reaches the negative electrode, thereby causing an unintended redox reaction and taking out a desired current to the outside. There is a risk of disappearing. In addition, as described above, since the positive electrode active material reaches the negative electrode, a negatively active polymer is formed on the surface of the negative electrode, which leads to a decrease in lithium ion and electron transfer efficiency, resulting in charge / discharge efficiency. There is a risk that the battery capacity will deteriorate due to deterioration.
 また、この特許文献1には、電解質溶液108に代えて固体電解質を使用してもよいことが記載されており、これにより活物質粒子102aである正極活物質の溶出を防止することが可能とも考えられるが、具体的な手法については言及されていない。しかも、固体電解質を正極活物質層102に接触させただけでは、リチウムイオンを正極活物質層102の内部に到達させるのは困難である。すなわち、正極活物質層102には上述した活物質粒子102aの他、カーボンブラック等の導電補助剤や結着剤が含有されており、正極活物質層102は、微視的なレベルで非常に複雑な凹凸形状を有する厚さが数十μm程度の集電体を形成している。このため、固体電解質を正極活物質層102に接触させただけでは、たとえ正極活物質層102の表面積を増加させても、負極106から移動してきたリチウムイオンは固体電解質との接触部でしか電子の授受を行うことができず、リチウムイオンを正極活物質層102の内部に到達させるのが困難であり、イオン伝導効率の著しい低下を招くおそれがある。 In addition, this Patent Document 1 describes that a solid electrolyte may be used instead of the electrolyte solution 108, which can prevent elution of the positive electrode active material that is the active material particles 102 a. Though possible, no specific method is mentioned. Moreover, it is difficult to allow lithium ions to reach the inside of the positive electrode active material layer 102 only by bringing the solid electrolyte into contact with the positive electrode active material layer 102. That is, the positive electrode active material layer 102 contains a conductive additive such as carbon black and a binder in addition to the active material particles 102a described above, and the positive electrode active material layer 102 is very microscopic. A current collector having a complicated uneven shape and a thickness of about several tens of μm is formed. Therefore, if the solid electrolyte is simply brought into contact with the positive electrode active material layer 102, even if the surface area of the positive electrode active material layer 102 is increased, the lithium ions that have moved from the negative electrode 106 are only electrons at the contact portion with the solid electrolyte. Therefore, it is difficult to allow lithium ions to reach the inside of the positive electrode active material layer 102, which may cause a significant decrease in ion conduction efficiency.
 しかも、現在実用化されている固体電解質は、液状の電解質溶液に比べるとイオン伝導性に劣ることから、所望のイオン伝導性を得るためには、固体電解質を電解質溶液と併用し、固体電解質の使用割合を極力減らす必要があり、このため電池構成の煩雑化を招くおそれがある。 Moreover, since the solid electrolyte currently in practical use is inferior in ionic conductivity compared to the liquid electrolyte solution, in order to obtain the desired ionic conductivity, the solid electrolyte is used in combination with the electrolyte solution. It is necessary to reduce the usage rate as much as possible, which may lead to complication of the battery configuration.
 本発明はこのような事情に鑑みてなされたものであって、充放電効率を向上させて所望の電池容量を得ることができる二次電池、及び二次電池の製造方法を提供することを目的とする。 This invention is made | formed in view of such a situation, Comprising: It aims at providing the secondary battery which can improve a charging / discharging efficiency, and can obtain desired battery capacity, and the manufacturing method of a secondary battery. And
 上記目的を達成するために本発明に係る二次電池は、第1の電極と第2の電極との間に電解質が介在されると共に、前記第1及び前記第2の電極、前記電解質のうちの少なくともいずれかにリチウムを含有した二次電池であって、前記第1及び前記第2の電極のうちの一方の電極は、電池電極反応で2つ以上の電子が関与する多電子系の有機化合物を主体とした電極活物質を有すると共に、前記電極活物質は、前記有機化合物を含有した活物質基体の表面及び前記有機化合物の粒子表面のうちの少なくともいずれか一方が無機活物質で被覆されていることを特徴としている。 In order to achieve the above object, a secondary battery according to the present invention includes an electrolyte interposed between a first electrode and a second electrode, and includes the first and second electrodes and the electrolyte. A secondary battery containing lithium in at least one of the first electrode and the second electrode, a multi-electron organic material in which two or more electrons are involved in a battery electrode reaction. In addition to having an electrode active material mainly composed of a compound, the electrode active material is coated with an inorganic active material on at least one of the surface of the active material substrate containing the organic compound and the surface of the particles of the organic compound. It is characterized by having.
 また、本発明の二次電池は、前記無機活物質が、コバルト、マンガン、及びニッケルのうちの少なくとも一種以上を含有したリチウム化合物を含むのが好ましい。 In the secondary battery of the present invention, it is preferable that the inorganic active material contains a lithium compound containing at least one of cobalt, manganese, and nickel.
 また、本発明の二次電池は、具体的には、前記リチウム化合物は、コバルト酸リチウム、マンガン酸リチウム、ニッケル酸リチウム、及びニッケル-マンガン-コバルト酸リチウムを含むのが好ましい。 In the secondary battery of the present invention, specifically, the lithium compound preferably contains lithium cobaltate, lithium manganate, lithium nickelate, and nickel-manganese-lithium cobaltate.
 また、本発明の二次電池は、前記無機活物質は、リン酸鉄リチウムを含むのが好ましい。 In the secondary battery of the present invention, it is preferable that the inorganic active material contains lithium iron phosphate.
 さらに、本発明の二次電池は、前記有機化合物が、ジチオン構造を有するジチオン化合物、ジオン構造を有するジオン化合物、及びジアミン構造を有するジアミン化合物の中から選択された少なくとも一種を構成単位中に有しているのが好ましい。   Furthermore, in the secondary battery of the present invention, the organic compound has in its constituent unit at least one selected from a dithione compound having a dithione structure, a dione compound having a dione structure, and a diamine compound having a diamine structure. It is preferable. *
 そして、本発明の二次電池は、前記ジチオン化合物が、一般式
Figure JPOXMLDOC01-appb-C000006
 又は
Figure JPOXMLDOC01-appb-C000007
 で表されるのが好ましい。 
In the secondary battery of the present invention, the dithione compound has the general formula:
Figure JPOXMLDOC01-appb-C000006
Or
Figure JPOXMLDOC01-appb-C000007
It is preferable to be represented by
 ここで、上記一般式中、nは1以上の整数であり、R~R及びRは、置換若しくは非置換のアミノ基、置換若しくは非置換のイミノ基、置換若しくは非置換のアルキル基、置換若しくは非置換のアルキレン基、置換若しくは非置換のアリール基、置換若しくは非置換のアラルキル基、置換若しくは非置換のシクロアルキル基、置換若しくは非置換のアルコキシル基、置換若しくは非置換のアルケニル基、置換若しくは非置換のアリールオキシ基、置換若しくは非置換のアリールアミノ基、置換若しくは非置換のアルキルアミノ基、置換若しくは非置換のチオアリール基、置換若しくは非置換のチオアルキル基、置換若しくは非置換の複素環基、置換若しくは非置換のホルミル基、置換若しくは非置換のシリル基、置換若しくは非置換のシアノ基、置換若しくは非置換のニトロ基、置換若しくは非置換のニトロソ基、置換若しくは非置換のカルボキシル基、置換若しくは非置換のアルコキシカルボニル基、及びこれらの1以上の組み合わせからなる連結基のいずれかを示し、これらR~R及びRは同一の場合、及び互いに連結して飽和若しくは又は不飽和の環構造を形成する場合を含んでいる。また、Rは、置換若しくは非置換のアルキレン基、置換若しくは非置換のアリーレン基、及び置換若しくは非置換のイミノ基のうちの少なくとも一種を示し、前記イミノ基同士が互いに連結している場合を含む。 Here, in the above general formula, n is an integer of 1 or more, and R 1 to R 3 and R 5 are a substituted or unsubstituted amino group, a substituted or unsubstituted imino group, a substituted or unsubstituted alkyl group. Substituted or unsubstituted alkylene group, substituted or unsubstituted aryl group, substituted or unsubstituted aralkyl group, substituted or unsubstituted cycloalkyl group, substituted or unsubstituted alkoxyl group, substituted or unsubstituted alkenyl group, Substituted or unsubstituted aryloxy group, substituted or unsubstituted arylamino group, substituted or unsubstituted alkylamino group, substituted or unsubstituted thioaryl group, substituted or unsubstituted thioalkyl group, substituted or unsubstituted heterocyclic ring Group, substituted or unsubstituted formyl group, substituted or unsubstituted silyl group, substituted or unsubstituted A cyano group, a substituted or unsubstituted nitro group, a substituted or unsubstituted nitroso group, a substituted or unsubstituted carboxyl group, a substituted or unsubstituted alkoxycarbonyl group, and a linking group comprising one or more combinations thereof R 1 to R 3 and R 5 are the same, and include cases where they are linked to each other to form a saturated or unsaturated ring structure. R 4 represents at least one of a substituted or unsubstituted alkylene group, a substituted or unsubstituted arylene group, and a substituted or unsubstituted imino group, and the imino groups are linked to each other. Including.
 また、本発明の二次電池は、前記ジオン化合物が、一般式
Figure JPOXMLDOC01-appb-C000008
又は、
Figure JPOXMLDOC01-appb-C000009
で表されるのが好ましい。
Further, in the secondary battery of the present invention, the dione compound has the general formula:
Figure JPOXMLDOC01-appb-C000008
Or
Figure JPOXMLDOC01-appb-C000009
It is preferable to be represented by
 ここで、上記一般式中、nは1以上の整数であり、R~R及びR10は、置換若しくは非置換のアミノ基、置換若しくは非置換のイミノ基、置換若しくは非置換のアルキル基、置換若しくは非置換のアルキレン基、置換若しくは非置換のアリール基、置換若しくは非置換のアラルキル基、置換若しくは非置換のシクロアルキル基、置換若しくは非置換のアルコキシル基、置換若しくは非置換のアルケニル基、置換若しくは非置換のアリールオキシ基、置換若しくは非置換のアリールアミノ基、置換若しくは非置換のアルキルアミノ基、置換若しくは非置換のチオアリール基、置換若しくは非置換のチオアルキル基、置換若しくは非置換の複素環基、置換若しくは非置換のホルミル基、置換若しくは非置換のシリル基、置換若しくは非置換のシアノ基、置換若しくは非置換のニトロ基、置換若しくは非置換のニトロソ基、置換若しくは非置換のカルボキシル基、置換若しくは非置換のアルコキシカルボニル基、及びこれらの1以上の組み合わせからなる連結基のいずれかを示し、これらR~R及びR10は同一の場合、及び互いに連結して飽和若しくは又は不飽和の環構造を形成する場合を含んでいる。また、Rは、置換若しくは非置換のアルキレン基、置換若しくは非置換のアリーレン基、及び置換若しくは非置換のイミノ基のうちの少なくとも一種を示し、前記イミノ基同士が互いに連結している場合を含む。 In the above general formula, n is an integer of 1 or more, and R 6 to R 8 and R 10 are a substituted or unsubstituted amino group, a substituted or unsubstituted imino group, a substituted or unsubstituted alkyl group. Substituted or unsubstituted alkylene group, substituted or unsubstituted aryl group, substituted or unsubstituted aralkyl group, substituted or unsubstituted cycloalkyl group, substituted or unsubstituted alkoxyl group, substituted or unsubstituted alkenyl group, Substituted or unsubstituted aryloxy group, substituted or unsubstituted arylamino group, substituted or unsubstituted alkylamino group, substituted or unsubstituted thioaryl group, substituted or unsubstituted thioalkyl group, substituted or unsubstituted heterocyclic ring Group, substituted or unsubstituted formyl group, substituted or unsubstituted silyl group, substituted or unsubstituted Any one of a cyano group, a substituted or unsubstituted nitro group, a substituted or unsubstituted nitroso group, a substituted or unsubstituted carboxyl group, a substituted or unsubstituted alkoxycarbonyl group, and a linking group comprising one or more combinations thereof R 6 to R 8 and R 10 are the same, and include cases where they are linked to each other to form a saturated or unsaturated ring structure. R 9 represents at least one of a substituted or unsubstituted alkylene group, a substituted or unsubstituted arylene group, and a substituted or unsubstituted imino group, and the imino groups are linked to each other. Including.
 さらに、本発明の二次電池は、前記ジアミン化合物が、一般式
Figure JPOXMLDOC01-appb-C000010
 で表されるのが好ましい。
Furthermore, in the secondary battery of the present invention, the diamine compound has the general formula:
Figure JPOXMLDOC01-appb-C000010
It is preferable to be represented by
 ここで、上記一般式中、R11及びR12は、置換若しくは非置換のアルキル基、置換若しくは非置換のアルキレン基、置換若しくは非置換のアリーレン基、置換若しくは非置換のカルボニル基、置換若しくは非置換のアシル基、置換若しくは非置換のアルコキシカルボニル基、置換若しくは非置換のエステル基、置換若しくは非置換のエーテル基、置換若しくは非置換のチオエーテル基、置換若しくは非置換のアミノ基、置換若しくは非置換のアミド基、置換若しくは非置換のスルホン基、置換若しくは非置換のチオスルホニル基、置換若しくは非置換のスルホンアミド基、置換若しくは非置換のイミノ基、置換若しくは非置換のアゾ基、及びこれらの1以上の組み合わせからなる連結基のいずれかを示す。X~Xは、水素原子、ハロゲン原子、ヒドロキシル基、ニトロ基、シアノ基、カルボキシル基、置換若しくは非置換のアルキル基、置換若しくは非置換のアルケニル基、置換若しくは非置換のシクロアルキル基、置換若しくは非置換のアリール基、置換若しくは非置換の芳香族複素環基、置換若しくは非置換のアラルキル基、置換若しくは非置換のアミノ基、置換若しくは非置換のアルコキシ基、置換若しくは非置換のアリールオキシ基、置換若しくは非置換のアルコキシカルボニル基、置換若しくは非置換のアリールオキシカルボニル基、置換若しくは非置換のアシル基、及び置換若しくは非置換のアシルオキシ基のうちの少なくとも1種を示し、これらの置換基は置換基同士で環構造を形成する場合を含んでいる。 In the above general formula, R 11 and R 12 are a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkylene group, a substituted or unsubstituted arylene group, a substituted or unsubstituted carbonyl group, substituted or unsubstituted Substituted acyl group, substituted or unsubstituted alkoxycarbonyl group, substituted or unsubstituted ester group, substituted or unsubstituted ether group, substituted or unsubstituted thioether group, substituted or unsubstituted amino group, substituted or unsubstituted An amide group, a substituted or unsubstituted sulfone group, a substituted or unsubstituted thiosulfonyl group, a substituted or unsubstituted sulfonamido group, a substituted or unsubstituted imino group, a substituted or unsubstituted azo group, and one of these One of the linking groups consisting of the above combinations is shown. X 1 to X 4 are a hydrogen atom, a halogen atom, a hydroxyl group, a nitro group, a cyano group, a carboxyl group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted cycloalkyl group, Substituted or unsubstituted aryl group, substituted or unsubstituted aromatic heterocyclic group, substituted or unsubstituted aralkyl group, substituted or unsubstituted amino group, substituted or unsubstituted alkoxy group, substituted or unsubstituted aryloxy At least one of a group, a substituted or unsubstituted alkoxycarbonyl group, a substituted or unsubstituted aryloxycarbonyl group, a substituted or unsubstituted acyl group, and a substituted or unsubstituted acyloxy group, and these substituents Includes the case where a substituent forms a ring structure.
 さらに、本発明の二次電池は、前記電極活物質が、前記電池電極反応の少なくとも放電反応における反応出発物、生成物及び中間生成物のうちのいずれかに含まれるのが好ましい。 Furthermore, in the secondary battery of the present invention, it is preferable that the electrode active material is included in at least one of a reaction starting material, a product, and an intermediate product in the discharge reaction of the battery electrode reaction.
 また、本発明の二次電池は、前記第1及び前記第2の電極のうちのいずれか一方が正極を形成し、該正極が前記電極活物質を有しているのが好ましい。 In the secondary battery of the present invention, it is preferable that either one of the first and second electrodes forms a positive electrode, and the positive electrode has the electrode active material.
 また、本発明に係る二次電池の製造方法は、第1の電極と第2の電極との間に電解質が介在し、多電子系の有機化合物を主体とする電極活物質を前記第1及び前記第2の電極のうちの少なくとも一方の電極に含有した二次電池の製造方法であって、前記電極活物質を作製する活物質作製工程が、少なくとも前記有機化合物を導電性物質と結着剤とを含有した活物質基体を作製する基体作製工程と、前記活物質基体の表面を無機活物質で被覆する被覆工程とを含むことを特徴としている。 Also, in the method for manufacturing a secondary battery according to the present invention, an electrode active material mainly composed of a multi-electron organic compound is used as the first and second electrodes, with an electrolyte interposed between the first electrode and the second electrode. A method of manufacturing a secondary battery contained in at least one of the second electrodes, wherein the active material preparation step of preparing the electrode active material includes at least the organic compound and a conductive material. And a coating step of coating the surface of the active material substrate with an inorganic active material.
 また、本発明に係る二次電池の製造方法は、第1の電極と第2の電極との間に電解質が介在し、多電子系の有機化合物を主体とする電極活物質を前記第1及び前記第2の電極のうちの少なくとも一方の電極に含有した二次電池の製造方法であって、前記電極活物質を作製する活物質作製工程が、前記有機化合物の粒子表面を無機活物質で被覆する被覆工程と、前記無機活物質で被覆された有機化合物と導電性物質と結着剤とを混合して成形し、前記電極活物質を作製する成形工程とを含むことを特徴としている。 Also, in the method for manufacturing a secondary battery according to the present invention, an electrode active material mainly composed of a multi-electron organic compound is used as the first and second electrodes, with an electrolyte interposed between the first electrode and the second electrode. A method of manufacturing a secondary battery contained in at least one of the second electrodes, wherein the active material preparation step of preparing the electrode active material covers the surface of the organic compound particles with an inorganic active material And a forming step of forming the electrode active material by mixing and molding an organic compound coated with the inorganic active material, a conductive material, and a binder.
 本発明の二次電池によれば、第1の電極と第2の電極との間に電解質が介在されると共に、前記第1及び前記第2の電極、前記電解質のうちの少なくともいずれかにリチウムを含有した二次電池であって、前記第1及び前記第2の電極のうちの一方の電極は、電池電極反応で2つ以上の電子が関与する多電子系の有機化合物を主体とした電極活物質を有すると共に、前記電極活物質は、前記有機化合物を含有した活物質基体の表面及び前記有機化合物の粒子表面のうちの少なくともいずれか一方が無機活物質で被覆されているので、無機活物質は有機化合物の電解質への溶出を抑制する作用を有することから、電極活物質の主体となる有機化合物を電極表面又は電極内部に担持することにより、該有機化合物が電解質に溶出するのを抑制することができる。そして、無機活物質は、電子伝導性及びリチウムイオン伝導性を有することから、活物質基体が電解質に溶出するのを抑制しつつ、該活物質基体は電極内或いは電極表面で所望の電子の授受を行うことができ、長時間繰り返し充放電を行っても、電池容量の低下を抑制することが可能となる。 According to the secondary battery of the present invention, the electrolyte is interposed between the first electrode and the second electrode, and at least one of the first and second electrodes and the electrolyte is lithium. In which one of the first and second electrodes is an electrode mainly composed of a multi-electron organic compound in which two or more electrons are involved in the battery electrode reaction. Since the electrode active material has an active material, at least one of the surface of the active material substrate containing the organic compound and the particle surface of the organic compound is coated with the inorganic active material. Since the substance has the action of suppressing the elution of the organic compound into the electrolyte, the organic compound, which is the main component of the electrode active material, is supported on the electrode surface or inside the electrode to suppress the elution of the organic compound into the electrolyte. You It is possible. Since the inorganic active material has electronic conductivity and lithium ion conductivity, the active material substrate can transfer desired electrons within the electrode or on the electrode surface while suppressing the elution of the active material substrate into the electrolyte. Therefore, even if charging / discharging is repeated for a long time, it is possible to suppress a decrease in battery capacity.
 また、本発明の二次電池の製造方法によれば、第1の電極と第2の電極との間に電解質が介在し、多電子系の有機化合物を主体とする電極活物質を前記第1及び前記第2の電極のうちの少なくとも一方の電極に含有した二次電池の製造方法であって、前記電極活物質を作製する活物質作製工程が、少なくとも前記有機化合物を導電性物質と結着剤とを含有した活物質基体を作製する基体作製工程と、前記活物質基体の表面を無機活物質で被覆する被覆工程とを含むので、活物質基体の表面が無機活物質で被覆されることとなり、有機化合物が電解質に溶出するのを抑制して充放電効率の良好な二次電池を得ることができる。 Further, according to the method for manufacturing a secondary battery of the present invention, the electrode active material mainly composed of a multi-electron organic compound is provided with the electrolyte between the first electrode and the second electrode. And a method of manufacturing a secondary battery contained in at least one of the second electrodes, wherein the active material manufacturing step of manufacturing the electrode active material binds at least the organic compound to a conductive material. A substrate preparation step for producing an active material substrate containing an agent and a coating step for coating the surface of the active material substrate with an inorganic active material, so that the surface of the active material substrate is coated with an inorganic active material Thus, it is possible to obtain a secondary battery with good charge and discharge efficiency by suppressing the organic compound from eluting into the electrolyte.
 また、本発明の二次電池の製造方法によれば、第1の電極と第2の電極との間に電解質が介在し、多電子系の有機化合物を主体とする電極活物質を前記第1及び前記第2の電極のうちの少なくとも一方の電極に含有した二次電池の製造方法であって、前記電極活物質を作製する活物質作製工程が、前記有機化合物の粒子表面を無機活物質で被覆する被覆工程と、少なくとも前記無機活物質で被覆された有機化合物と導電性物質と結着剤とを混合して成形し、前記電極活物質を作製する成形工程とを含むので、有機化合物の粒子表面が無機活物質で被覆されることとなり、この場合も有機化合物が電解質に溶出するのを抑制して充放電効率の良好な二次電池を得ることができる。 Further, according to the method for manufacturing a secondary battery of the present invention, the electrode active material mainly composed of a multi-electron organic compound is provided with the electrolyte between the first electrode and the second electrode. And a method of manufacturing a secondary battery contained in at least one of the second electrodes, wherein the active material preparation step of preparing the electrode active material is performed using an inorganic active material on the particle surface of the organic compound. A coating step for coating, and a molding step for preparing the electrode active material by mixing and molding at least the organic compound coated with the inorganic active material, the conductive material, and the binder. The particle surface is coated with an inorganic active material, and in this case as well, it is possible to obtain a secondary battery with good charge and discharge efficiency by suppressing the organic compound from eluting into the electrolyte.
本発明に係る二次電池の一実施の形態(第1の実施の形態)を模式的に示す断面図である。1 is a cross-sectional view schematically showing an embodiment (first embodiment) of a secondary battery according to the present invention. 本発明に係る二次電池の第2の実施の形態を模式的に示す断面図である。It is sectional drawing which shows typically 2nd Embodiment of the secondary battery which concerns on this invention. 実施例の充放電特性を示す図である。It is a figure which shows the charging / discharging characteristic of an Example. 二次電池の従来例を模式的に示した断面図である。It is sectional drawing which showed the conventional example of the secondary battery typically.
 次に、本発明の実施の形態を詳説する。 Next, an embodiment of the present invention will be described in detail.
 図1は、本発明に係る二次電池の一実施の形態(第1の実施の形態)を模式的に示す断面図である。 FIG. 1 is a cross-sectional view schematically showing one embodiment (first embodiment) of a secondary battery according to the present invention.
 この二次電池は、アルミ箔等で形成された正極集電体1の表面に活物質基体2が形成され、活物質基体2の表面が、無機活物質層3で被覆されている。そして、活物質基体2と無機活物質層3とで正極活物質4を形成し、該正極活物質4と正極集電体1とで正極(第1の電極)5を構成している。 In this secondary battery, an active material substrate 2 is formed on the surface of a positive electrode current collector 1 formed of aluminum foil or the like, and the surface of the active material substrate 2 is covered with an inorganic active material layer 3. The active material substrate 2 and the inorganic active material layer 3 form a positive electrode active material 4, and the positive electrode active material 4 and the positive electrode current collector 1 constitute a positive electrode (first electrode) 5.
 また、正極5の対向側には負極(第2の電極)6が配されている。この負極6は、銅等で形成された負極集電体7と、正極活物質4と対向するように前記負極集電体6の表面に形成された金属リチウムを含有した負極活物質8とを有している。  Also, a negative electrode (second electrode) 6 is disposed on the opposite side of the positive electrode 5. The negative electrode 6 includes a negative electrode current collector 7 formed of copper or the like, and a negative electrode active material 8 containing metallic lithium formed on the surface of the negative electrode current collector 6 so as to face the positive electrode active material 4. Have. *
 正極5と負極6との間には多孔性樹脂材料やゲル状又は固形状材料からなるセパレータ9が介在され、さらに電解質塩を溶媒に溶解させた電解質溶液10が電池缶(図示せず。)に充満されている。 A separator 9 made of a porous resin material or a gel or solid material is interposed between the positive electrode 5 and the negative electrode 6, and an electrolyte solution 10 in which an electrolyte salt is dissolved in a solvent is a battery can (not shown). Have been charged.
 そして、活物質基体2は、電池電極反応の主体となる多電子系の有機化合物からなる活物質粒子11が含有されている。 The active material substrate 2 contains active material particles 11 made of a multi-electron organic compound that is the main component of the battery electrode reaction.
 すなわち、近年、有機化合物を主体とした電極活物質が注目されており、その中でも電池電極反応で二電子以上の多電子が関与する多電子系有機化合物、例えばジチオン化合物、ジオン化合物、及びジアミン化合物は、充放電効率が良好で高容量密度の実現が可能な活物質材料として有望視されている。 That is, in recent years, electrode active materials mainly composed of organic compounds have attracted attention, and among them, multi-electron organic compounds in which multiple electrons of two or more electrons are involved in battery electrode reactions, such as dithion compounds, dione compounds, and diamine compounds Is promising as an active material capable of realizing a high capacity density with good charge / discharge efficiency.
 そこで、本実施の形態では、多電子系の有機化合物からなる活物質粒子11が活物質基体2に含有されている。 Therefore, in the present embodiment, active material particles 11 made of a multi-electron organic compound are contained in the active material substrate 2.
 しかしながら、これらの有機化合物を電極活物質、例えば正極活物質の主体に使用した場合、〔発明が解決しようとする課題〕でも述べたように、有機化合物は容易に電解質溶液10に溶出する。そして、この有機化合物は電解質溶液10に溶出した後、負極6に到達することから、意図しない酸化還元反応が生じ、このため電流が外部に取り出せなくなるおそれがある。 However, when these organic compounds are used mainly as electrode active materials, for example, positive electrode active materials, the organic compounds are easily eluted into the electrolyte solution 10 as described in [Problems to be Solved by the Invention]. And since this organic compound elutes in the electrolyte solution 10 and reaches the negative electrode 6, an unintended oxidation-reduction reaction occurs, so that there is a possibility that current cannot be taken out to the outside.
 さらに、有機化合物が負極6に到達すると、負極6の表面で電気化学的に活性の低いポリマーが形成されることから、リチウムイオンや電子の移動を阻害するおそれがある。 Furthermore, when the organic compound reaches the negative electrode 6, a polymer having low electrochemical activity is formed on the surface of the negative electrode 6, which may inhibit the movement of lithium ions and electrons.
 一方、活物質基体2は、電池電極反応の主体となる活物質粒子11の他、導電補助剤や結着剤が含有されており、微視的なレベルで非常に複雑な凹凸形状を有する厚さ数十μmの集電体を形成している。したがって、電解質溶液10に代えて固体電解質を使用したとしても、固体電解質を活物質基体2と接触させただけでは、負極6からのリチウムイオンを活物質基体2の内部にまで到達させることができず、イオンの伝導効率が低く、このため充放電効率の低下を招くおそれがある。 On the other hand, the active material substrate 2 contains a conductive auxiliary agent and a binder in addition to the active material particles 11 which are the main components of the battery electrode reaction, and has a very complicated uneven shape at a microscopic level. A current collector of several tens of μm is formed. Therefore, even if a solid electrolyte is used instead of the electrolyte solution 10, lithium ions from the negative electrode 6 can reach the inside of the active material substrate 2 only by bringing the solid electrolyte into contact with the active material substrate 2. Therefore, the ion conduction efficiency is low, which may cause a decrease in charge / discharge efficiency.
 そこで、本実施の形態では、電子伝導性及びイオン伝導性を有し、活物質基体2に含まれる有機化合物の電解質溶液10への溶出抑制作用を有する無機活物質層3で活物質基体2の表面を被覆し、これにより活物質基体2の電解質溶液10への溶出を抑制しつつ、負極6からのリチウムイオンを効果的に活物質基体2の表面及び内部に到達できるようにして前記リチウムイオン及び電子の伝導効率を向上させている。そしてこれにより、充放電効率が向上し、充放電を繰り返しても電池容量が低下するのを抑制することができる。 Therefore, in the present embodiment, the active material substrate 2 is made of the inorganic active material layer 3 that has an electronic conductivity and an ionic conductivity and has an action of suppressing the dissolution of the organic compound contained in the active material substrate 2 into the electrolyte solution 10. The lithium ion from the negative electrode 6 can effectively reach the surface and the inside of the active material substrate 2 while covering the surface and thereby suppressing the elution of the active material substrate 2 into the electrolyte solution 10. In addition, the conduction efficiency of electrons is improved. Thus, the charge / discharge efficiency is improved, and it is possible to suppress a decrease in battery capacity even after repeated charge / discharge.
 尚、無機活物質層3は、活物質基体2の電解質溶液10への溶出を防止できれば十分であり、したがって厚みは極力薄いのが好ましく、5~20μm程度に形成するのが望ましい。 The inorganic active material layer 3 is sufficient if it can prevent elution of the active material substrate 2 into the electrolyte solution 10. Therefore, the thickness is preferably as thin as possible, and is desirably formed to be about 5 to 20 μm.
 このような無機活物質層3としては、活物質基体2に含まれる有機化合物(活物質粒子11)の電解質溶液10への溶出を抑制でき、かつ電子伝導性及びリチウムイオン伝導性を有するものであれば特に限定されるものではないが、通常はコバルト、マンガン、及びニッケルのうちの少なくとも一種以上を含有したリチウム化合物、例えば、コバルト酸リチウム(LiCoO)、マンガン酸リチウム(LiMn)、ニッケル酸リチウム(LiNiO)、ニッケル-マンガン-コバルト酸リチウム(LiNiMnO)を好んで使用することができ、また、リン酸鉄リチウム(LiFePO)を好んで使用することができる。このように上述したリチウム化合物を単独或いは二種以上組み合わせて使用することができる。 As such an inorganic active material layer 3, elution of the organic compound (active material particles 11) contained in the active material substrate 2 into the electrolyte solution 10 can be suppressed, and it has electron conductivity and lithium ion conductivity. is not particularly limited as long, usually cobalt, manganese, and lithium compound containing at least one kind of the nickel, for example, lithium cobalt oxide (LiCoO 2), lithium manganate (LiMn 2 O 4) Lithium nickelate (LiNiO 2 ), nickel-manganese-lithium cobaltate (LiNiMnO 2 ) can be preferably used, and lithium iron phosphate (LiFePO 4 ) can be preferably used. Thus, the lithium compounds described above can be used alone or in combination of two or more.
 また、活物質基体2は、活物質粒子11の他、上述したように導電補助剤及び結着剤が含有されている。 Further, the active material substrate 2 contains the conductive material and the binder as described above in addition to the active material particles 11.
 ここで、導電補助剤としては、特に限定されるものでなく、例えば、グラファイト、カーボンブラック、アセチレンブラック等の炭素質微粒子、気相成長炭素繊維、カーボンナノチューブ、カーボンナノホーン等の炭素繊維、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリアセン等の導電性高分子などを使用することができる。また、導電補助剤を2種類以上混合して用いることもできる。尚、導電補助剤の活物質基体2中の含有率は10~80重量%が好ましい。 Here, the conductive auxiliary agent is not particularly limited, for example, carbonaceous fine particles such as graphite, carbon black, and acetylene black, vapor grown carbon fibers, carbon nanotubes, carbon fibers such as carbon nanohorns, polyaniline, Conductive polymers such as polypyrrole, polythiophene, polyacetylene, and polyacene can be used. Further, two or more kinds of conductive assistants can be mixed and used. The content of the conductive auxiliary agent in the active material substrate 2 is preferably 10 to 80% by weight.
 また、結着剤も特に限定されるものではなく、ポリエチレン、ポリフッ化ビニリデン、ポリヘキサフルオロプロピレン、ポリテトラフルオロエチレン、ポリエチレンオキサイド、カルボキシメチルセルロース等の各種樹脂を使用することができる。 Also, the binder is not particularly limited, and various resins such as polyethylene, polyvinylidene fluoride, polyhexafluoropropylene, polytetrafluoroethylene, polyethylene oxide, carboxymethylcellulose, and the like can be used.
 また、電解質溶液10は、正極5と負極6との間に介在されて両電極間の荷電担体輸送を行うが、このような電解質溶液10としては、室温で10-5~10-1S/cmのイオン伝導度を有するものを使用することができ、電解質塩を有機溶媒に溶解させて使用することができる。 The electrolyte solution 10 is interposed between the positive electrode 5 and the negative electrode 6 and transports the charge carriers between the two electrodes. Such an electrolyte solution 10 has 10 −5 to 10 −1 S / s at room temperature. Those having an ionic conductivity of cm can be used, and the electrolyte salt can be used by dissolving in an organic solvent.
 ここで、電解質塩としては、例えば、LiPF、LiClO、LiBF、LiCFSO、LiN(CFSO、LiN(CSO、LiC(CFSO、LiC(CSO等を使用することができる。 Here, as the electrolyte salt, for example, LiPF 6 , LiClO 4 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 or the like can be used.
 また、有機溶媒としては、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、γ-ブチロラクトン、テトラヒドロフラン、ジオキソラン、スルホラン、ジメチルホルムアミド、ジメチルアセトアミド、1-メチル-2-ピロリドン等を使用することができる。 As the organic solvent, ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, γ-butyrolactone, tetrahydrofuran, dioxolane, sulfolane, dimethylformamide, dimethylacetamide, 1-methyl-2-pyrrolidone, etc. are used. be able to.
 このように本第1の実施の形態によれば、正極5が、電池電極反応で2つ以上の電子が関与する多電子系の有機化合物を主体とした活物質基体2を有すると共に、該活物質基体2の表面が、無機活物質層3で被覆されている。そして、この無機活物質層3は、電子伝導性及びリチウムイオン伝導性を有する一方で、有機化合物で形成された活物質粒子11の電解質溶液10への溶出を抑制する作用を有することから、活物質粒子11が電解質溶液10に溶出するのを抑制しつつ、リチウムイオンを活物質基体2の表面及び内部に容易に到達させることができる。 As described above, according to the first embodiment, the positive electrode 5 has the active material substrate 2 mainly composed of a multi-electron organic compound in which two or more electrons are involved in the battery electrode reaction, and the active material substrate 2 is active. The surface of the material substrate 2 is covered with the inorganic active material layer 3. And since this inorganic active material layer 3 has an electronic conductivity and lithium ion conductivity, it has the effect | action which suppresses the elution to the electrolyte solution 10 of the active material particle 11 formed with the organic compound, Therefore Lithium ions can easily reach the surface and inside of the active material substrate 2 while suppressing the elution of the material particles 11 into the electrolyte solution 10.
 すなわち、活物質基体2を正極5内に担持することにより、活物質粒子11は電解質溶液10に溶出することもなく、正極5の内部及び正極5の表面で効果的に所望の電子の授受を行うことができ、これによりリチウムイオンの伝導効率が向上することから、放電容量の低下を抑制することができ、充放電効率が良好で所望の電池容量を有する二次電池を得ることができ、長時間繰り返し充放電を行っても、電池容量の低下を抑制することができる。 That is, by supporting the active material substrate 2 in the positive electrode 5, the active material particles 11 are not eluted into the electrolyte solution 10, and desired electrons are effectively exchanged inside the positive electrode 5 and on the surface of the positive electrode 5. Since this can improve the lithium ion conduction efficiency, it is possible to suppress a decrease in discharge capacity, it is possible to obtain a secondary battery having good charge and discharge efficiency and a desired battery capacity, Even if charging / discharging is repeated for a long time, a decrease in battery capacity can be suppressed.
 次に、活物質基体2に含有される有機化合物のうち、特に実用化が期待されているジチオン化合物、ジオン化合物、及びジアミン化合物について、詳述する。 Next, among the organic compounds contained in the active material substrate 2, dithion compounds, dione compounds, and diamine compounds that are expected to be put to practical use will be described in detail.
(1)ジチオン化合物
 ジチオン化合物は、充放電時(酸化状態及び還元状態)の安定性に優れており、酸化還元反応で二電子以上の多電子反応が可能である。そして、活物質基体2の表面を無機活物質層3で被覆することにより、充放電効率が向上することから、多電子反応の充放電を安定的に繰り返すことができ、高容量密度の二次電池を得ることが可能となる。
(1) Dithione compound The dithione compound is excellent in stability during charge and discharge (oxidized state and reduced state), and can perform a multi-electron reaction of two or more electrons by an oxidation-reduction reaction. And by covering the surface of the active material base 2 with the inorganic active material layer 3, the charge and discharge efficiency is improved, so that the charge and discharge of the multi-electron reaction can be stably repeated, and a secondary with a high capacity density. A battery can be obtained.
 このようなジチオン化合物としては、構成単位中にジチオン構造を有するものであれば特に限定されるものではないが、下記一般式(1)又は(2)で表される化合物を好んで使用することができる。 Such a dithione compound is not particularly limited as long as it has a dithione structure in the structural unit, but preferably uses a compound represented by the following general formula (1) or (2). Can do.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 ここで、上記一般式(1)、(2)中、nは1以上の整数であり、R~R及びRは、置換若しくは非置換のアミノ基、置換若しくは非置換のイミノ基、置換若しくは非置換のアルキル基、置換若しくは非置換のアルキレン基、置換若しくは非置換のアリール基、置換若しくは非置換のアラルキル基、置換若しくは非置換のシクロアルキル基、置換若しくは非置換のアルコキシル基、置換若しくは非置換のアルケニル基、置換若しくは非置換のアリールオキシ基、置換若しくは非置換のアリールアミノ基、置換若しくは非置換のアルキルアミノ基、置換若しくは非置換のチオアリール基、置換若しくは非置換のチオアルキル基、置換若しくは非置換の複素環基、置換若しくは非置換のホルミル基、置換若しくは非置換のシリル基、置換若しくは非置換のシアノ基、置換若しくは非置換のニトロ基、置換若しくは非置換のニトロソ基、置換若しくは非置換のカルボキシル基、置換若しくは非置換のアルコキシカルボニル基、及びこれらの1以上の組み合わせからなる連結基のいずれかを示し、これらR~R及びRは同一の場合、及び互いに連結して飽和若しくは又は不飽和の環構造を形成する場合を含む。また、Rは、置換若しくは非置換のアルキレン基、置換若しくは非置換のアリーレン基、及び置換若しくは非置換のイミノ基のうちの少なくとも一種を示し、前記イミノ基同士が連結している場合を含む。 Here, the general formula (1), (2), n is an integer of 1 or more, R 1 ~ R 3 and R 5 is a substituted or unsubstituted amino group, a substituted or unsubstituted imino groups, Substituted or unsubstituted alkyl group, substituted or unsubstituted alkylene group, substituted or unsubstituted aryl group, substituted or unsubstituted aralkyl group, substituted or unsubstituted cycloalkyl group, substituted or unsubstituted alkoxyl group, substituted Or an unsubstituted alkenyl group, a substituted or unsubstituted aryloxy group, a substituted or unsubstituted arylamino group, a substituted or unsubstituted alkylamino group, a substituted or unsubstituted thioaryl group, a substituted or unsubstituted thioalkyl group, Substituted or unsubstituted heterocyclic group, substituted or unsubstituted formyl group, substituted or unsubstituted silyl group, substituted Or a linkage composed of an unsubstituted cyano group, a substituted or unsubstituted nitro group, a substituted or unsubstituted nitroso group, a substituted or unsubstituted carboxyl group, a substituted or unsubstituted alkoxycarbonyl group, and one or more combinations thereof Any of the groups, and R 1 to R 3 and R 5 are the same, and include cases where they are linked to each other to form a saturated or unsaturated ring structure. R 4 represents at least one of a substituted or unsubstituted alkylene group, a substituted or unsubstituted arylene group, and a substituted or unsubstituted imino group, including the case where the imino groups are linked to each other. .
 そして、上記一般式(1)の範疇に属するジチオン化合物としては、下記化学式(1a)~(1i)に示す有機化合物を挙げることができる。 And examples of the dithione compound belonging to the category of the general formula (1) include organic compounds represented by the following chemical formulas (1a) to (1i).
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 下記化学反応式(I)は、化学式(1a)に示すジチオン化合物を正極活物質に使用し、Liを電解質塩のカチオンに使用した場合に予想される充放電反応の一例を示している。 The following chemical reaction formula (I) shows an example of a charge / discharge reaction expected when the dithione compound shown in the chemical formula (1a) is used as the positive electrode active material and Li is used as the cation of the electrolyte salt.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 また、上記一般式(2)の範疇に属するジチオン化合物としては、下記化学式(2a)~(2g)に示す有機化合物を挙げることができる。 In addition, examples of the dithione compound belonging to the category of the general formula (2) include organic compounds represented by the following chemical formulas (2a) to (2g).
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 下記化学反応式(II)は、化学式(2a)に示すジチオン化合物を正極活物質に使用し、Liを電解質塩のカチオンに使用した場合に予想される充放電反応の一例を示している。 The following chemical reaction formula (II) shows an example of a charge / discharge reaction expected when the dithione compound shown in the chemical formula (2a) is used as the positive electrode active material and Li is used as the cation of the electrolyte salt.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 尚、上記正極活物質を構成する有機化合物の分子量は、特に限定されないが、ジチオン構造以外の部分が大きくなると、分子量が増加するため単位質量当たりの蓄電容量、すなわち容量密度が小さくなる。したがって、ジチオン構造以外の部分の分子量は小さいのが好ましい。 The molecular weight of the organic compound constituting the positive electrode active material is not particularly limited. However, when the portion other than the dithione structure is increased, the molecular weight is increased, so that the storage capacity per unit mass, that is, the capacity density is reduced. Therefore, it is preferable that the molecular weight of the portion other than the dithione structure is small.
(2)ジオン化合物
 ジオン化合物も、ジチオン化合物と同様、充放電時(酸化状態及び還元状態)の安定性に優れており、酸化還元反応で二電子以上の多電子反応が可能である。そして、活物質基体2の表面を無機活物質層3で被覆することにより、充放電効率が向上することから、多電子反応の充放電を安定的に繰り返すことができ、高容量密度の二次電池を得ることが可能となる。
(2) Dione Compound Like the dithione compound, the dione compound is excellent in stability during charge and discharge (oxidized state and reduced state), and can perform a multi-electron reaction of two or more electrons by an oxidation-reduction reaction. And by covering the surface of the active material base 2 with the inorganic active material layer 3, the charge and discharge efficiency is improved, so that the charge and discharge of the multi-electron reaction can be stably repeated, and a secondary with a high capacity density. A battery can be obtained.
 このようなジオン化合物としては、構成単位中にジオン構造を有するものであれば特に限定されるものではないが、下記一般式(3)又は(4)で表される化合物を好んで使用することができる。 The dione compound is not particularly limited as long as it has a dione structure in the structural unit, but preferably uses a compound represented by the following general formula (3) or (4). Can do.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 ここで、上記一般式(3)又は(4)中、nは1以上の整数であり、R~R及びR10は、置換若しくは非置換のアミノ基、置換若しくは非置換のイミノ基、置換若しくは非置換のアルキル基、置換若しくは非置換のアルキレン基、置換若しくは非置換のアリール基、置換若しくは非置換のアラルキル基、置換若しくは非置換のシクロアルキル基、置換若しくは非置換のアルコキシル基、置換若しくは非置換のアルケニル基、置換若しくは非置換のアリールオキシ基、置換若しくは非置換のアリールアミノ基、置換若しくは非置換のアルキルアミノ基、置換若しくは非置換のチオアリール基、置換若しくは非置換のチオアルキル基、置換若しくは非置換の複素環基、置換若しくは非置換のホルミル基、置換若しくは非置換のシリル基、置換若しくは非置換のシアノ基、置換若しくは非置換のニトロ基、置換若しくは非置換のニトロソ基、置換若しくは非置換のカルボキシル基、置換若しくは非置換のアルコキシカルボニル基、及びこれらの1以上の組み合わせからなる連結基のいずれかを示し、これらR~R及びR10は同一の場合、及び互いに連結して飽和若しくは又は不飽和の環構造を形成する場合を含む。また、Rは、置換若しくは非置換のアルキレン基、置換若しくは非置換のアリーレン基、及び置換若しくは非置換のイミノ基のうちの少なくとも一種を示し、前記イミノ基同士が連結している場合を含む。 Here, in the general formula (3) or (4), n is an integer of 1 or more, and R 6 to R 8 and R 10 are a substituted or unsubstituted amino group, a substituted or unsubstituted imino group, Substituted or unsubstituted alkyl group, substituted or unsubstituted alkylene group, substituted or unsubstituted aryl group, substituted or unsubstituted aralkyl group, substituted or unsubstituted cycloalkyl group, substituted or unsubstituted alkoxyl group, substituted Or an unsubstituted alkenyl group, a substituted or unsubstituted aryloxy group, a substituted or unsubstituted arylamino group, a substituted or unsubstituted alkylamino group, a substituted or unsubstituted thioaryl group, a substituted or unsubstituted thioalkyl group, Substituted or unsubstituted heterocyclic group, substituted or unsubstituted formyl group, substituted or unsubstituted silyl group, Or a linkage composed of an unsubstituted cyano group, a substituted or unsubstituted nitro group, a substituted or unsubstituted nitroso group, a substituted or unsubstituted carboxyl group, a substituted or unsubstituted alkoxycarbonyl group, and one or more combinations thereof Any of the groups, and R 6 to R 8 and R 10 are the same, and include cases where they are linked to each other to form a saturated or unsaturated ring structure. R 9 represents at least one of a substituted or unsubstituted alkylene group, a substituted or unsubstituted arylene group, and a substituted or unsubstituted imino group, including the case where the imino groups are linked to each other. .
 そして、上記一般式(3)の範疇に属するジオン化合物としては、下記化学式(3a)~(3e)に示す有機化合物を挙げることができる。 And examples of the dione compounds belonging to the category of the general formula (3) include organic compounds represented by the following chemical formulas (3a) to (3e).
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 下記化学反応式(III)は、化学式(3a)で表されるジオン化合物を正極活物質に使用し、Liを電解質塩のカチオンに使用した場合に予想される充放電反応の一例を示している。 The following chemical reaction formula (III) shows an example of a charge / discharge reaction expected when the dione compound represented by the chemical formula (3a) is used as the positive electrode active material and Li is used as the cation of the electrolyte salt. .
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 また、上記一般式(4)の範疇に属するジオン化合物としては、下記化学式(4a)~(4f)に示す有機化合物を挙げることができる。 In addition, examples of the dione compound belonging to the category of the general formula (4) include organic compounds represented by the following chemical formulas (4a) to (4f).
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 下記化学反応式(IV)は、化学式(4a)に示すジオン化合物を正極活物質に使用し、Liを電解質塩のカチオンに使用した場合に予想される充放電反応の一例を示している。 The following chemical reaction formula (IV) shows an example of a charge / discharge reaction expected when the dione compound shown in the chemical formula (4a) is used as the positive electrode active material and Li is used as the cation of the electrolyte salt.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 上記正極活物質を構成する有機化合物の分子量は、特に限定されないが、ジオン構造以外の部分が大きくなると、分子量が増加するため単位質量当たりの蓄電容量、すなわち容量密度が小さくなる。したがって、ジオン構造以外の部分の分子量は小さいのが好ましい。 The molecular weight of the organic compound constituting the positive electrode active material is not particularly limited. However, when the portion other than the dione structure is increased, the molecular weight is increased, so that the storage capacity per unit mass, that is, the capacity density is reduced. Therefore, the molecular weight of the portion other than the dione structure is preferably small.
(3)ジアミン化合物
 ジアミン化合物も、ジチオン化合物やジオン化合物と同様、充放電時(酸化状態及び還元状態)の安定性に優れており、酸化還元反応で二電子以上の多電子反応が可能である。そして、活物質基体2の表面を無機活物質層3で被覆することにより、充放電効率が向上することから、多電子反応の充放電を安定的に繰り返すことができ、高容量密度の二次電池を得ることが可能となる。
(3) Diamine compound Like the dithione compound and dione compound, the diamine compound is excellent in stability at the time of charge and discharge (oxidized state and reduced state), and a multi-electron reaction of two or more electrons is possible by the oxidation-reduction reaction. . And by covering the surface of the active material base 2 with the inorganic active material layer 3, the charge and discharge efficiency is improved, so that the charge and discharge of the multi-electron reaction can be stably repeated, and a secondary with a high capacity density. A battery can be obtained.
 このようなジアミン化合物としては、構成単位中にジアミン構造を有するものであれば特に限定されるものではないが、下記一般式(5)で表される有機化合物を好んで使用することができる。 Such a diamine compound is not particularly limited as long as it has a diamine structure in the structural unit, but an organic compound represented by the following general formula (5) can be preferably used.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 ここで、上記一般式(5)中、R11及びR12は、置換若しくは非置換のアルキル基、置換若しくは非置換のアルキレン基、置換若しくは非置換のアリーレン基、置換若しくは非置換のカルボニル基、置換若しくは非置換のアシル基、置換若しくは非置換のアルコキシカルボニル基、置換若しくは非置換のエステル基、置換若しくは非置換のエーテル基、置換若しくは非置換のチオエーテル基、置換若しくは非置換のアミン基、置換若しくは非置換のアミド基、置換若しくは非置換のスルホン基、置換若しくは非置換のチオスルホニル基、置換若しくは非置換のスルホンアミド基、置換若しくは非置換のイミン基、置換若しくは非置換のアゾ基、及びこれらの1以上の組み合わせからなる連結基のいずれかを示す。X~Xは、水素原子、ハロゲン原子、ヒドロキシル基、ニトロ基、シアノ基、カルボキシル基、置換若しくは非置換のアルキル基、置換若しくは非置換のアルケニル基、置換若しくは非置換のシクロアルキル基、置換若しくは非置換のアリール基、置換若しくは非置換の芳香族複素環基、置換若しくは非置換のアラルキル基、置換若しくは非置換のアミノ基、置換若しくは非置換のアルコキシ基、置換若しくは非置換のアリールオキシ基、置換若しくは非置換のアルコキシカルボニル基、置換若しくは非置換のアリールオキシカルボニル基、置換若しくは非置換のアシル基、及び置換若しくは非置換のアシルオキシ基のうちの少なくとも1種を示し、これらの置換基は置換基同士で環構造を形成する場合を含んでいる。 In the general formula (5), R 11 and R 12 are a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkylene group, a substituted or unsubstituted arylene group, a substituted or unsubstituted carbonyl group, Substituted or unsubstituted acyl group, substituted or unsubstituted alkoxycarbonyl group, substituted or unsubstituted ester group, substituted or unsubstituted ether group, substituted or unsubstituted thioether group, substituted or unsubstituted amine group, substituted Or an unsubstituted amide group, a substituted or unsubstituted sulfone group, a substituted or unsubstituted thiosulfonyl group, a substituted or unsubstituted sulfonamido group, a substituted or unsubstituted imine group, a substituted or unsubstituted azo group, and Any one of these linking groups consisting of one or more combinations is shown. X 1 to X 4 are a hydrogen atom, a halogen atom, a hydroxyl group, a nitro group, a cyano group, a carboxyl group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted cycloalkyl group, Substituted or unsubstituted aryl group, substituted or unsubstituted aromatic heterocyclic group, substituted or unsubstituted aralkyl group, substituted or unsubstituted amino group, substituted or unsubstituted alkoxy group, substituted or unsubstituted aryloxy At least one of a group, a substituted or unsubstituted alkoxycarbonyl group, a substituted or unsubstituted aryloxycarbonyl group, a substituted or unsubstituted acyl group, and a substituted or unsubstituted acyloxy group, and these substituents Includes the case where a substituent forms a ring structure.
 そして、上記一般式(5)の範疇に含まれる有機化合物としては、ピラジン環を挟んでアリール基が結合したフェナジン構造を構成単位中に含む有機化合物がより好ましく、例えば、化学式(5a)~(5f)に示す有機化合物を好んで使用することができる。 The organic compound included in the category of the general formula (5) is more preferably an organic compound including a phenazine structure in which an aryl group is bonded with a pyrazine ring interposed therebetween, in the structural unit, for example, the chemical formulas (5a) to (5) The organic compounds shown in 5f) can be preferably used.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 下記化学反応式(V)は、化学式(5b)に示す有機化合物を電極活物質に使用し、Liを電解質塩のカチオンに使用した場合に予想される充放電反応の一例を示している。 The following chemical reaction formula (V) shows an example of a charge / discharge reaction expected when the organic compound shown in the chemical formula (5b) is used as the electrode active material and Li is used as the cation of the electrolyte salt.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 上記ジアミン化合物の分子量は、特に限定されないが、ジアミン構造以外の部分が大きくなると、分子量が増加するため単位質量当たりの蓄電容量、すなわち容量密度が小さくなる。したがって、ジアミン構造以外の部分の分子量は小さいのが好ましい。 The molecular weight of the diamine compound is not particularly limited. However, when the portion other than the diamine structure is increased, the molecular weight increases, so that the storage capacity per unit mass, that is, the capacity density is reduced. Accordingly, the molecular weight of the portion other than the diamine structure is preferably small.
 尚、上記一般式(1)~(5)で列挙した各置換基は、それぞれの範疇に属するものであれば限定されるものではないが、分子量が大きくなると正極活物質の単位質量当たりに蓄積できる電荷量が小さくなるので、分子量が250程度となるように所望の置換基を選択するのが好ましい。 The substituents listed in the general formulas (1) to (5) are not limited as long as they belong to the respective categories. However, as the molecular weight increases, the substituents accumulate per unit mass of the positive electrode active material. Since the amount of charge that can be reduced, it is preferable to select a desired substituent so that the molecular weight is about 250.
 そして、正極活物質は、充放電により可逆的に酸化もしくは還元されるため、充電状態、放電状態、あるいはその途中の状態で異なる構造、状態を取るが、本実施の形態では、前記正極活物質は、少なくとも放電反応における反応出発物(電池電極反応で化学反応を起こす物質)、生成物(化学反応の結果生じる物質)、及び中間生成物のうちのいずれかに含まれており、これにより充放電効率が良好で高容量密度の正極活物質を有する二次電池を実現することができる。 Since the positive electrode active material is reversibly oxidized or reduced by charge / discharge, the positive electrode active material takes a different structure and state depending on the charged state, discharged state, or intermediate state. Is contained in at least one of a reaction starting material (a substance that causes a chemical reaction in a battery electrode reaction), a product (a substance resulting from a chemical reaction), and an intermediate product. A secondary battery having a positive electrode active material with good discharge efficiency and high capacity density can be realized.
 次に、上記二次電池の製造方法の一例を詳述する。 Next, an example of a method for manufacturing the secondary battery will be described in detail.
 まず、活物質基体2を電極形状に形成する。すなわち、好ましくは活物質粒子11となる素材として上述したいずれかの有機化合物を用意する。そして、この有機化合物を上述した導電補助剤、及び結着剤と共に混合し、溶媒を加えて活物質用スラリーを作製し、該活物質用スラリーを正極集電体1上に任意の塗工方法で塗工し、電極形状に成形し、乾燥することにより正極集電体1上に活物質基体2を形成する。 First, the active material base 2 is formed into an electrode shape. That is, any of the organic compounds described above is preferably prepared as a material that becomes the active material particles 11. Then, this organic compound is mixed with the above-described conductive auxiliary agent and binder, and a solvent is added to produce an active material slurry. The active material slurry is applied to the positive electrode current collector 1 by any coating method. The active material substrate 2 is formed on the positive electrode current collector 1 by coating with, forming into an electrode shape, and drying.
 ここで、活物質用スラリーの作製に使用される溶媒は、特に限定されるものではなく、例えば、ジメチルスルホキシド、ジメチルホルムアミド、N-メチルピロリドン、プロピレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、γ-ブチロラクトン等の塩基性溶媒、アセトニトリル、テトラヒドロフラン、ニトロベンゼン、アセトン等の非水溶媒、メタノール、エタノール等のプロトン性溶媒等を使用することができる。 Here, the solvent used for producing the slurry for active material is not particularly limited, and examples thereof include dimethyl sulfoxide, dimethylformamide, N-methylpyrrolidone, propylene carbonate, diethyl carbonate, dimethyl carbonate, γ-butyrolactone, and the like. Basic solvents, acetonitrile, tetrahydrofuran, nitrobenzene, non-aqueous solvents such as acetone, and protic solvents such as methanol and ethanol can be used.
 尚、溶媒の種類、有機化合物と溶媒との配合比、導電剤や結着剤の種類及びその添加量等は、二次電池の要求特性や生産性等を考慮し、任意に設定することができる。 Note that the type of solvent, the compounding ratio of the organic compound and the solvent, the type of conductive agent and binder, and the amount added thereof can be arbitrarily set in consideration of the required characteristics and productivity of the secondary battery. it can.
 次に、無機活物質スラリーを作製する。すなわち、リチウム化合物等の無機化合物を用意し、該無機化合物を所定量秤量して粉砕し、斯かる粉砕物を結着剤と共に純水等の溶媒を加えて混合し、これにより無機活物質スラリーを作製する。そして、この無機活物質スラリーを活物質基体2の表面全域に塗布し、乾燥させ、これにより活物質基体2の表面を所定厚み(例えば、5~10μm)の無機活物質層3で被覆し、正極5を形成する。 Next, an inorganic active material slurry is prepared. That is, an inorganic compound such as a lithium compound is prepared, a predetermined amount of the inorganic compound is weighed and pulverized, and the pulverized product is mixed with a binder and a solvent such as pure water, whereby an inorganic active material slurry is prepared. Is made. Then, the inorganic active material slurry is applied to the entire surface of the active material substrate 2 and dried, thereby covering the surface of the active material substrate 2 with the inorganic active material layer 3 having a predetermined thickness (for example, 5 to 10 μm), The positive electrode 5 is formed.
 尚、無機活物質スラリー形成用の結着剤も、活物質用スラリーと同様の結着剤を使用することができる。 In addition, the binder similar to the slurry for active material can also be used for the binder for inorganic active material slurry formation.
 次に、電解質溶液10を用意する。そして、正極5を電解質溶液10に含浸させて該正極5に前記電解質溶液10を染み込ませ、その後、前記電解質溶液10を含浸させたセパレータ9を正極5上に積層し、さらに金属Li等で形成された負極活物質8及び銅箔等で形成された負極集電体7を順次積層し、その後、内部空間に電解質溶液10を注入する。そして、その後電池缶(図示せず。)で外装封止し、これにより二次電池が作製される。 Next, an electrolyte solution 10 is prepared. Then, the positive electrode 5 is impregnated with the electrolyte solution 10 so that the positive electrode 5 is impregnated with the electrolyte solution 10, and then the separator 9 impregnated with the electrolyte solution 10 is laminated on the positive electrode 5 and further formed with metal Li or the like. The negative electrode active material 8 and the negative electrode current collector 7 formed of copper foil or the like are sequentially laminated, and then the electrolyte solution 10 is injected into the internal space. Then, the battery is sealed with a battery can (not shown), thereby producing a secondary battery.
 このように本第1の実施の形態によれば、正極活物質4を作製する活物質作製工程が、少なくとも有機化合物を導電補助剤と結着剤とを含有した活物質基体2を作製する基体作製工程と、前記活物質基体2の表面を無機活物質層3で被覆する被覆工程とを含むので、活物質基体2の表面が無機活物質層3で被覆されることとなり、活物質基体2が電解質溶液10に溶出するのを抑制して充放電効率の良好な二次電池を得ることができる。 As described above, according to the first embodiment, the active material preparation step for preparing the positive electrode active material 4 includes a substrate for preparing the active material substrate 2 containing at least an organic compound and a conductive additive and a binder. Since the manufacturing process and the coating process of coating the surface of the active material substrate 2 with the inorganic active material layer 3 are included, the surface of the active material substrate 2 is coated with the inorganic active material layer 3. Can be prevented from eluting into the electrolyte solution 10 and a secondary battery with good charge / discharge efficiency can be obtained.
 図2は、本発明に係る二次電池の第2の実施の形態を模式的に示す断面図である。 FIG. 2 is a cross-sectional view schematically showing a second embodiment of the secondary battery according to the present invention.
 上記第1の実施の形態では、活物質基体2の表面を無機活物質層3で被覆していたが、本第2の実施の形態では、有機化合物からなる活物質粒子11の表面が、無機活物質膜13で被覆されている。 In the first embodiment, the surface of the active material substrate 2 is covered with the inorganic active material layer 3, but in the second embodiment, the surface of the active material particles 11 made of an organic compound is inorganic. The active material film 13 is covered.
 すなわち、この第2の実施の形態では、正極活物質12と正極集電体1とで正極13を形成している。そして、正極活物質層12には電池電極反応の主体となる有機化合物からなる活物質粒子11が含有されると共に、活物質粒子11の表面は無機活物質膜14で被覆されている。 That is, in the second embodiment, the positive electrode 13 is formed by the positive electrode active material 12 and the positive electrode current collector 1. The positive electrode active material layer 12 contains active material particles 11 made of an organic compound that is the main component of the battery electrode reaction, and the surface of the active material particles 11 is covered with an inorganic active material film 14.
 尚、無機活物質膜14は、活物質基体2の電解質溶液10への溶出を防止できれば十分であり、したがって厚みは極力薄いのが好ましく、5~20μm程度に形成するのが望ましい。 The inorganic active material film 14 is sufficient if it can prevent elution of the active material substrate 2 into the electrolyte solution 10. Therefore, the thickness is preferably as thin as possible, and is desirably formed to be about 5 to 20 μm.
 そして、この第2の実施の形態では、有機化合物である活物質粒子11の電解質溶液10への溶出を抑制し、かつ電子伝導性及びイオン伝導性が良好な無機活物質膜14で活物質粒子11の表面が被覆されていることから、活物質粒子11は無機活物質膜14に担持されることとなる。したがって活物質粒子11が電解質溶液10に溶出するのを抑制でき、上述と同様、リチウムイオン及び電子の伝導効率が良好で充放電効率が良好な二次電池を得ることができる。 In the second embodiment, the active material particles 11 are controlled by the inorganic active material film 14 that suppresses the elution of the active material particles 11, which are organic compounds, into the electrolyte solution 10 and has good electron conductivity and ion conductivity. Since the surface of 11 is covered, the active material particles 11 are supported on the inorganic active material film 14. Therefore, the elution of the active material particles 11 into the electrolyte solution 10 can be suppressed, and a secondary battery with good lithium ion and electron conduction efficiency and good charge / discharge efficiency can be obtained as described above.
 この第2の実施の形態の二次電池は以下の方法で容易に製造することができる。 The secondary battery of the second embodiment can be easily manufactured by the following method.
 まず、上述した有機化合物と無機活物質を用意し、以下の方法で活物質粒子11の表面を無機活物質膜14で被覆する。 First, the organic compound and the inorganic active material described above are prepared, and the surface of the active material particles 11 is covered with the inorganic active material film 14 by the following method.
 すなわち、無機活物質をジェットミル等の粉砕機を使用して直径が1μm以下になるまで微粉砕する。次いで、有機化合物である活物質粒子と前記微粉砕した無機活物質とを撹拌機に投入し、撹拌する。これにより微粒子となった無機活物質が活物質粒子11の表面に付着し、該活物質粒子11の表面は無機活物質膜14で被覆される。 That is, the inorganic active material is finely pulverized using a pulverizer such as a jet mill until the diameter becomes 1 μm or less. Next, the active material particles which are organic compounds and the finely pulverized inorganic active material are put into a stirrer and stirred. As a result, the finely divided inorganic active material adheres to the surface of the active material particle 11, and the surface of the active material particle 11 is covered with the inorganic active material film 14.
 次いで、表面が無機活物質膜14で被覆された活物質粒子11からなる有機化合物を上述した導電補助剤、及び結着剤と共に混合し、溶媒を加えて活物質用スラリーを作製する。そして、活物質用スラリーを正極集電体1上に任意の塗工方法で塗工し、乾燥することにより正極集電体1上に活物質基体12を電極形状に成形し、これにより正極13を作製する。 Next, an organic compound composed of the active material particles 11 whose surface is coated with the inorganic active material film 14 is mixed with the above-described conductive auxiliary agent and binder, and a solvent is added to prepare an active material slurry. Then, the active material slurry is applied onto the positive electrode current collector 1 by an arbitrary coating method and dried to form the active material substrate 12 into an electrode shape on the positive electrode current collector 1, whereby the positive electrode 13 Is made.
 その後は、上記第1の実施の形態と同様の方法・手順で二次電池を作製することができる。 Thereafter, a secondary battery can be manufactured by the same method and procedure as in the first embodiment.
 このように本第2の実施の形態では、正極活物質12を作製する活物質作製工程が、活物質粒子11の表面を無機活物質膜14で被覆する被覆工程と、少なくとも前記無機活物質膜14で被覆された活物質粒子11と導電補助剤と結着剤とを混合して成形し、正極活物質12を作製する成形工程とを含むので、活物質粒子11の表面が無機活物質膜14で被覆されることとなり、この場合も有機化合物が電解質に溶出するのを抑制して充放電効率の良好な二次電池を得ることができる。 As described above, in the second embodiment, the active material preparation step for preparing the positive electrode active material 12 includes a coating step for covering the surfaces of the active material particles 11 with the inorganic active material film 14, and at least the inorganic active material film. 14 is formed by mixing the active material particles 11 coated with 14, the conductive auxiliary agent and the binder, and forming the positive electrode active material 12, so that the surface of the active material particles 11 is an inorganic active material film. 14, and in this case as well, it is possible to suppress the organic compound from eluting into the electrolyte and to obtain a secondary battery with good charge / discharge efficiency.
 尚、本発明は上記実施の形態に限定されるものではなく、要旨を逸脱しない範囲において種々の変形が可能である。上記実施の形態では、電解質として電解質塩を溶媒に溶解させた液状の電解質溶液を使用しているが、電解質溶液に比べてイオン伝導性は劣るものの、固体電解質を使用することも可能である。 The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the invention. In the above embodiment, a liquid electrolyte solution in which an electrolyte salt is dissolved in a solvent is used as the electrolyte. However, although the ion conductivity is inferior to that of the electrolyte solution, it is also possible to use a solid electrolyte.
 ここで、固体電解質に用いられる高分子化合物としては、例えば、ポリフッ化ビニリデン、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体、フッ化ビニリデン-エチレン共重合体、フッ化ビニリデン-モノフルオロエチレン共重合体、フッ化ビニリデン-トリフルオロエチレン共重合体、フッ化ビニリデン-テトラフルオロエチレン共重合体、フッ化ビニリデン-ヘキサフルオロプロピレン-テトラフルオロエチレン三元共重合体等のフッ化ビニリデン系重合体、アクリロニトリル-メチルメタクリレート共重合体、アクリロニトリル-メチルアクリレート共重合体、アクリロニトリル-エチルメタクリレート共重合体、アクリロニトリル-エチルアタリレート共重合体、アクリロニトリル-メタクリル酸共重合体、アクリロニトリル-アクリル酸共重合体、アクリロニトリル-ビニルアセテート共重合体等のアクリルニトリル系重合体、更にはポリエチレンオキサイド、エチレンオキサイド-プロピレンオキサイド共重合体、及びこれらのアクリレート体やメタクリレート体の重合体等を挙げることができる。 Here, examples of the polymer compound used for the solid electrolyte include polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-ethylene copolymer, and vinylidene fluoride-monofluoroethylene copolymer. , Vinylidene fluoride-trifluoroethylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene terpolymer, etc., acrylonitrile- Methyl methacrylate copolymer, acrylonitrile-methyl acrylate copolymer, acrylonitrile-ethyl methacrylate copolymer, acrylonitrile-ethyl acrylate copolymer, acrylonitrile-methacrylic acid copolymer, acrylonite Acrylic nitrile polymers such as ru-acrylic acid copolymer, acrylonitrile-vinyl acetate copolymer, polyethylene oxide, ethylene oxide-propylene oxide copolymer, and polymers of these acrylates and methacrylates. Can be mentioned.
 また、これらの高分子化合物に電解質溶液を含ませてゲル状にしたものや、電解質塩を含有させた高分子化合物のみを使用することもできる。 Further, it is also possible to use only those polymer compounds obtained by adding an electrolyte solution to these polymer compounds to form a gel, or polymer compounds containing an electrolyte salt.
 さらに、電解質には、固体電解質やカチオンとアニオンを組み合わせたイオン性液体、グライム類などの対称グリコールジエーテル、鎖状スルホン類等を使用することができる。 Furthermore, as the electrolyte, a solid electrolyte, an ionic liquid combining a cation and an anion, a symmetric glycol diether such as glymes, a chain sulfone, or the like can be used.
 また、上記実施の形態では、有機化合物を正極活物質の主体として使用したが、負極活物質に使用してもよい。 In the above embodiment, the organic compound is used as the main body of the positive electrode active material, but may be used as the negative electrode active material.
 さらに、電池形状についても、特に限定されるものではなく、コイン型、円筒型、角型、シート型等にも適用できる。また、外装方法も特に限定されず、金属ケースや、モールド樹脂、アルミラミネートフイルム等を使用してもよい。 Further, the battery shape is not particularly limited, and can be applied to a coin type, a cylindrical type, a square type, a sheet type, and the like. Also, the exterior method is not particularly limited, and a metal case, mold resin, aluminum laminate film, or the like may be used.
 次に、本発明の実施例を具体的に説明する。 Next, specific examples of the present invention will be described.
 尚、以下に示す実施例は一例であり、本発明は下記の実施例に限定されるものではない。 In addition, the Example shown below is an example and this invention is not limited to the following Example.
〔電池セルの作製〕
 活物質基体の主体となる有機化合物として、化学式(1a)で表されるルベアン酸を用意した。
[Production of battery cells]
Rubeanic acid represented by the chemical formula (1a) was prepared as an organic compound that is the main component of the active material substrate.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 そして、ルベアン酸:300mg、導電剤としてのグラファイト粉末:600mg、結着剤としてのポリテトラフルオロエチレン樹脂:100mgをそれぞれ秤量し、全体が均一になるように混合しながら混練し、混合体を得た。 Then, rubeanic acid: 300 mg, graphite powder as a conductive agent: 600 mg, and polytetrafluoroethylene resin as a binder: 100 mg were weighed and kneaded while mixing so as to obtain a uniform mixture. It was.
 次いで、この混合体を正極集電体としてのアルミ箔上に塗工し、加圧成形し、厚さ約150μmのシート状部材を作製した。次に、このシート状部材を、真空中70℃で1時間乾燥した後、直径12mmの円形に打ち抜き、ルベアン酸を主体とする活物質基体をアルミ箔上に形成した。 Next, this mixture was coated on an aluminum foil as a positive electrode current collector and subjected to pressure molding to produce a sheet-like member having a thickness of about 150 μm. Next, this sheet-like member was dried in a vacuum at 70 ° C. for 1 hour, and then punched into a circle having a diameter of 12 mm to form an active material substrate mainly composed of rubeanic acid on an aluminum foil.
 次に、無機活物質用材料としてLiNiMnCoOを用意した。そして、このLiNiMnCoOを所定量秤量して粉砕し、斯かる粉砕物を結着剤と共に純水を加えて混合し、これにより無機活物質スラリーを作製した。ここで、結着剤としてはポリアクリル酸を使用した。 Next, LiNiMnCoO 2 was prepared as an inorganic active material. Then, a predetermined amount of this LiNiMnCoO 2 was weighed and pulverized, and the pulverized product was mixed with pure water together with a binder, thereby preparing an inorganic active material slurry. Here, polyacrylic acid was used as the binder.
 そして、無機活物質スラリーを膜厚が10μmとなるように上記活物質基体の外表面に塗布し、その後、100℃で真空乾燥し、これにより正極を得た。 Then, the inorganic active material slurry was applied to the outer surface of the active material substrate so as to have a film thickness of 10 μm, and then vacuum dried at 100 ° C., thereby obtaining a positive electrode.
 次に、LiPF(電解質塩)のモル濃度が1.0mol/Lとなるように、有機溶剤であるエチレンカーボネート/ジエチルカーボネートにLiPFを溶解させ、これにより電解質溶液を作製した。尚、エチレンカーボネートとジエチルカーボネートの混合比率は、体積%でエチレンカーボネート:ジエチルカーボネート=30:70とした。 Then, the molar concentration of LiPF 6 (electrolyte salt) such that 1.0 mol / L, dissolved LiPF 6 in ethylene carbonate / diethyl carbonate is an organic solvent, thereby to prepare an electrolyte solution. The mixing ratio of ethylene carbonate and diethyl carbonate was ethylene carbonate: diethyl carbonate = 30: 70 in volume%.
 次いで、この電解質溶液を含浸させたポリプロピレン多孔質フイルムからなる厚さ20μmのセパレータを正極上に積層し、さらに銅箔からなる負極集電体にリチウムを貼付した負極をセパレータ上に積層し、積層体を形成した。 Next, a 20 μm-thick separator made of a polypropylene porous film impregnated with this electrolyte solution is laminated on the positive electrode, and a negative electrode in which lithium is pasted on a negative electrode current collector made of copper foil is laminated on the separator. Formed body.
 そして、この電解質溶液を前記積層体に0.2mL滴下し、含浸させた。 Then, 0.2 mL of this electrolyte solution was dropped on the laminate and impregnated.
 その後、負極集電体上に金属製ばねを載置すると共に、周縁にガスケットを配置した状態で負極ケースを正極ケースに接合し、かしめ機によって外装封止し、これにより実施例の電池セルを作製した。 After that, a metal spring is placed on the negative electrode current collector, and the negative electrode case is joined to the positive electrode case with a gasket disposed on the periphery, and the outer battery is sealed with a caulking machine, thereby Produced.
 また、活物質基体を無機活物質層で被覆しなかった以外は、上記実施例と同様の方法・手順で比較例の電池セルを作製した。 Further, a battery cell of a comparative example was produced by the same method and procedure as in the above example except that the active material substrate was not coated with the inorganic active material layer.
〔電池セルの動作確認〕
 以上のようにして作製した実施例及び比較例の電池セルを、0.1mAの定電流で3時間充電し、その後、0.1mAの定電流で電圧が1.5Vに低下するまで放電し、充放電特性を調べた。
[Battery cell operation check]
The battery cells of Examples and Comparative Examples produced as described above were charged with a constant current of 0.1 mA for 3 hours, and then discharged until the voltage dropped to 1.5 V with a constant current of 0.1 mA. The charge / discharge characteristics were examined.
 図3は、その測定結果を示している。横軸は容量密度(Ah/kg)、縦軸は電圧(V)であり、実線が実施例、破線が比較例の充放電曲線を示している。 FIG. 3 shows the measurement results. The horizontal axis is the capacity density (Ah / kg), the vertical axis is the voltage (V), the solid line shows the charge / discharge curve of the example, and the broken line shows the charge / discharge curve of the comparative example.
 この図3から明らかなように、比較例は、充電時、放電時共、電圧平坦部を形成することはなく、容量密度は充電時で約70Ah/kgであり、十分な容量密度を得ることができず、放電を行うと、電圧は急激に減少し、容量密度は56Ah/kgに低下した。 As is clear from FIG. 3, the comparative example does not form a voltage flat portion during charging and discharging, and the capacity density is about 70 Ah / kg during charging, so that a sufficient capacity density can be obtained. However, when discharging was performed, the voltage decreased rapidly and the capacity density decreased to 56 Ah / kg.
 これに対し実施例は、充電時は約2.3Vで電圧平坦部(プラトー)が形成され、容量密度は約210Ah/kgであり、放電時にも約2Vで電圧平坦部が形成され、放電が終了する1.5Vの電圧で、容量密度は168Ah/kgとなり、大きな容量密度を確保することができた。これはルベアン酸を主体とする活物質基体の表面を無機活物質で被覆したことから、ルベアン酸が電解質溶液に溶解することもなく、良好なイオン伝導効率でもってリチウムイオンが活物質基体の表面及び内部に到達し、これらリチウムイオンとルベアン酸との間で所望の充放電反応が行なわれたためと思われる。 On the other hand, in the embodiment, a voltage flat portion (plateau) is formed at about 2.3 V at the time of charging, the capacity density is about 210 Ah / kg, and a voltage flat portion is formed at about 2 V at the time of discharging. At a voltage of 1.5 V, the capacity density was 168 Ah / kg, and a large capacity density could be secured. This is because the surface of the active material substrate mainly composed of rubeanic acid is coated with an inorganic active material, so that rubeanic acid does not dissolve in the electrolyte solution, and lithium ions are generated on the surface of the active material substrate with good ion conduction efficiency. This seems to be because the desired charge / discharge reaction was performed between these lithium ions and rubeanic acid.
 活物質基体の主体に多電子系の有機化合物を使用しても、充放電効率が良好で、充放電を繰り返しても電池容量の低下を抑制できる二次電池を実現する。 Even if a multi-electron organic compound is used as the main component of the active material substrate, a secondary battery is realized that has good charge / discharge efficiency and can suppress a decrease in battery capacity even after repeated charge / discharge.
2 活物質基体
3 無機活物質層(無機活物質)
4 正極活物質(電極活物質)
5 正極(第1の電極)
6 負極(第2の電極)
10 電解質溶液
11 活物質粒子
12 正極活物質(電極活物質)
13 正極(第1の電極)
14 無機活物質膜(無機活物質)
2 Active material substrate 3 Inorganic active material layer (inorganic active material)
4 Positive electrode active material (electrode active material)
5 Positive electrode (first electrode)
6 Negative electrode (second electrode)
10 Electrolyte Solution 11 Active Material Particles 12 Positive Electrode Active Material (Electrode Active Material)
13 Positive electrode (first electrode)
14 Inorganic active material film (inorganic active material)

Claims (14)

  1.  第1の電極と第2の電極との間に電解質が介在されると共に、前記第1及び前記第2の電極、前記電解質のうちの少なくともいずれかにリチウムを含有した二次電池であって、
     前記第1及び前記第2の電極のうちの一方の電極は、電池電極反応で2つ以上の電子が関与する多電子系の有機化合物を主体とした電極活物質を有すると共に、
     前記電極活物質は、前記有機化合物を含有した活物質基体の表面及び前記有機化合物の粒子表面のうちの少なくともいずれか一方が無機活物質で被覆されていることを特徴とする二次電池。
    An electrolyte is interposed between the first electrode and the second electrode, and the secondary battery includes lithium in at least one of the first and second electrodes and the electrolyte,
    One of the first and second electrodes has an electrode active material mainly composed of a multi-electron organic compound in which two or more electrons are involved in the battery electrode reaction,
    The electrode active material is a secondary battery, wherein at least one of a surface of an active material substrate containing the organic compound and a particle surface of the organic compound is coated with an inorganic active material.
  2.  前記無機活物質は、コバルト、マンガン、及びニッケルのうちの少なくとも一種以上を含有したリチウム化合物を含むことを特徴とする請求項1記載の二次電池。 The secondary battery according to claim 1, wherein the inorganic active material contains a lithium compound containing at least one of cobalt, manganese, and nickel.
  3.  前記リチウム化合物は、コバルト酸リチウム、マンガン酸リチウム、ニッケル酸リチウム、及びニッケル-マンガン-コバルト酸リチウムを含むことを特徴とする請求項2記載の二次電池。 3. The secondary battery according to claim 2, wherein the lithium compound includes lithium cobaltate, lithium manganate, lithium nickelate, and nickel-manganese-lithium cobaltate.
  4.  前記無機活物質は、リン酸鉄リチウムを含むことを特徴とする請求項1乃至請求項3のいずれかに記載の二次電池。 The secondary battery according to any one of claims 1 to 3, wherein the inorganic active material includes lithium iron phosphate.
  5.  前記有機化合物は、ジチオン構造を有するジチオン化合物、ジオン構造を有するジオン化合物、及びジアミン構造を有するジアミン化合物の中から選択された少なくとも一種を構成単位中に有していることを特徴とする請求項1乃至請求項4のいずれかに記載の二次電池。 The organic compound has at least one selected from a dithione compound having a dithione structure, a dione compound having a dione structure, and a diamine compound having a diamine structure in a structural unit. The secondary battery according to any one of claims 1 to 4.
  6.  前記ジチオン化合物は、一般式
    Figure JPOXMLDOC01-appb-C000001
     [式中、nは1以上の整数であり、R及びRは、置換若しくは非置換のアミノ基、置換若しくは非置換のイミノ基、置換若しくは非置換のアルキル基、置換若しくは非置換のアルキレン基、置換若しくは非置換のアリール基、置換若しくは非置換のアラルキル基、置換若しくは非置換のシクロアルキル基、置換若しくは非置換のアルコキシル基、置換若しくは非置換のアルケニル基、置換若しくは非置換のアリールオキシ基、置換若しくは非置換のアリールアミノ基、置換若しくは非置換のアルキルアミノ基、置換若しくは非置換のチオアリール基、置換若しくは非置換のチオアルキル基、置換若しくは非置換の複素環基、置換若しくは非置換のホルミル基、置換若しくは非置換のシリル基、置換若しくは非置換のシアノ基、置換若しくは非置換のニトロ基、置換若しくは非置換のニトロソ基、置換若しくは非置換のカルボキシル基、置換若しくは非置換のアルコキシカルボニル基、及びこれらの1以上の組み合わせからなる連結基のいずれかを示し、これらR及びRは同一の場合、及び互いに連結して飽和若しくは又は不飽和の環構造を形成する場合を含む。]
     で表わされることを特徴とする請求項5記載の二次電池。
    The dithione compound has the general formula
    Figure JPOXMLDOC01-appb-C000001
    Wherein n is an integer of 1 or more, and R 1 and R 2 are a substituted or unsubstituted amino group, a substituted or unsubstituted imino group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkylene Group, substituted or unsubstituted aryl group, substituted or unsubstituted aralkyl group, substituted or unsubstituted cycloalkyl group, substituted or unsubstituted alkoxyl group, substituted or unsubstituted alkenyl group, substituted or unsubstituted aryloxy Group, substituted or unsubstituted arylamino group, substituted or unsubstituted alkylamino group, substituted or unsubstituted thioaryl group, substituted or unsubstituted thioalkyl group, substituted or unsubstituted heterocyclic group, substituted or unsubstituted Formyl group, substituted or unsubstituted silyl group, substituted or unsubstituted cyano group, substituted or unsubstituted Unsubstituted nitro group, a substituted or unsubstituted nitroso group, a substituted or unsubstituted carboxyl group, a substituted or unsubstituted alkoxycarbonyl group, and indicates one of the linking group comprising a combination of one or more of these, these R 1 and R 2 include the same case and the case where they are linked to each other to form a saturated or unsaturated ring structure. ]
    The secondary battery according to claim 5, represented by:
  7.  前記ジチオン化合物は、一般式
    Figure JPOXMLDOC01-appb-C000002
     [式中、nは1以上の整数であり、R及びRは、置換若しくは非置換のアミノ基、置換若しくは非置換のイミノ基、置換若しくは非置換のアルキル基、置換若しくは非置換のアルキレン基、置換若しくは非置換のアリール基、置換若しくは非置換のアラルキル基、置換若しくは非置換のシクロアルキル基、置換若しくは非置換のアルコキシル基、置換若しくは非置換のアルケニル基、置換若しくは非置換のアリールオキシ基、置換若しくは非置換のアリールアミノ基、置換若しくは非置換のアルキルアミノ基、置換若しくは非置換のチオアリール基、置換若しくは非置換のチオアルキル基、置換若しくは非置換の複素環基、置換若しくは非置換のホルミル基、置換若しくは非置換のシリル基、置換若しくは非置換のシアノ基、置換若しくは非置換のニトロ基、置換若しくは非置換のニトロソ基、置換若しくは非置換のカルボキシル基、置換若しくは非置換のアルコキシカルボニル基、及びこれらの1以上の組み合わせからなる連結基のいずれかを示し、これらR及びRは同一の場合、及び互いに連結して飽和若しくは又は不飽和の環構造を形成する場合を含み、Rは、置換若しくは非置換のアルキレン基、置換若しくは非置換のアリーレン基、及び置換若しくは非置換のイミド基のうちの少なくとも1種を示し、前記イミノ基同士が互いに連結している場合を含む。]
     で表わされることを特徴とする請求項5記載の二次電池。
    The dithione compound has the general formula
    Figure JPOXMLDOC01-appb-C000002
    Wherein n is an integer of 1 or more, and R 3 and R 5 are a substituted or unsubstituted amino group, a substituted or unsubstituted imino group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkylene, Group, substituted or unsubstituted aryl group, substituted or unsubstituted aralkyl group, substituted or unsubstituted cycloalkyl group, substituted or unsubstituted alkoxyl group, substituted or unsubstituted alkenyl group, substituted or unsubstituted aryloxy Group, substituted or unsubstituted arylamino group, substituted or unsubstituted alkylamino group, substituted or unsubstituted thioaryl group, substituted or unsubstituted thioalkyl group, substituted or unsubstituted heterocyclic group, substituted or unsubstituted Formyl group, substituted or unsubstituted silyl group, substituted or unsubstituted cyano group, substituted or unsubstituted Unsubstituted nitro group, a substituted or unsubstituted nitroso group, a substituted or unsubstituted carboxyl group, a substituted or unsubstituted alkoxycarbonyl group, and indicates one of the linking group comprising a combination of one or more of these, these R 3 and R 5 are the same and include the case where they are linked to each other to form a saturated or unsaturated ring structure, and R 4 represents a substituted or unsubstituted alkylene group, a substituted or unsubstituted arylene group, and It represents at least one of substituted or unsubstituted imide groups, and includes cases where the imino groups are linked to each other. ]
    The secondary battery according to claim 5, represented by:
  8.  前記ジオン化合物は、一般式
    Figure JPOXMLDOC01-appb-C000003
     [式中、nは1以上の整数であり、R及びRは、置換若しくは非置換のアミノ基、置換若しくは非置換のイミノ基、置換若しくは非置換のアルキル基、置換若しくは非置換のアルキレン基、置換若しくは非置換のアリール基、置換若しくは非置換のアラルキル基、置換若しくは非置換のシクロアルキル基、置換若しくは非置換のアルコキシル基、置換若しくは非置換のアルケニル基、置換若しくは非置換のアリールオキシ基、置換若しくは非置換のアリールアミノ基、置換若しくは非置換のアルキルアミノ基、置換若しくは非置換のチオアリール基、置換若しくは非置換のチオアルキル基、置換若しくは非置換の複素環基、置換若しくは非置換のホルミル基、置換若しくは非置換のシリル基、置換若しくは非置換のシアノ基、置換若しくは非置換のニトロ基、置換若しくは非置換のニトロソ基、置換若しくは非置換のカルボキシル基、置換若しくは非置換のアルコキシカルボニル基、及びこれらの1以上の組み合わせからなる連結基のいずれかを示し、これらR及びRは同一の場合、及び互いに連結して飽和若しくは又は不飽和の環構造を形成する場合を含む。]
     で表わされることを特徴とする請求項5記載の二次電池。
    The dione compound has the general formula
    Figure JPOXMLDOC01-appb-C000003
    [Wherein n is an integer of 1 or more, and R 6 and R 7 are a substituted or unsubstituted amino group, a substituted or unsubstituted imino group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkylene, Group, substituted or unsubstituted aryl group, substituted or unsubstituted aralkyl group, substituted or unsubstituted cycloalkyl group, substituted or unsubstituted alkoxyl group, substituted or unsubstituted alkenyl group, substituted or unsubstituted aryloxy Group, substituted or unsubstituted arylamino group, substituted or unsubstituted alkylamino group, substituted or unsubstituted thioaryl group, substituted or unsubstituted thioalkyl group, substituted or unsubstituted heterocyclic group, substituted or unsubstituted Formyl group, substituted or unsubstituted silyl group, substituted or unsubstituted cyano group, substituted or unsubstituted Unsubstituted nitro group, a substituted or unsubstituted nitroso group, a substituted or unsubstituted carboxyl group, a substituted or unsubstituted alkoxycarbonyl group, and indicates one of the linking group comprising a combination of one or more of these, these R 6 and R 7 include the same case and the case where they are linked to each other to form a saturated or unsaturated ring structure. ]
    The secondary battery according to claim 5, represented by:
  9.  前記ジオン化合物は、一般式
    Figure JPOXMLDOC01-appb-C000004
     [式中、nは1以上の整数であり、R及びR10は、置換若しくは非置換のアミノ基、置換若しくは非置換のイミノ基、置換若しくは非置換のアルキル基、置換若しくは非置換のアルキレン基、置換若しくは非置換のアリール基、置換若しくは非置換のアラルキル基、置換若しくは非置換のシクロアルキル基、置換若しくは非置換のアルコキシル基、置換若しくは非置換のアルケニル基、置換若しくは非置換のアリールオキシ基、置換若しくは非置換のアリールアミノ基、置換若しくは非置換のアルキルアミノ基、置換若しくは非置換のチオアリール基、置換若しくは非置換のチオアルキル基、置換若しくは非置換の複素環基、置換若しくは非置換のホルミル基、置換若しくは非置換のシリル基、置換若しくは非置換のシアノ基、置換若しくは非置換のニトロ基、置換若しくは非置換のニトロソ基、置換若しくは非置換のカルボキシル基、置換若しくは非置換のアルコキシカルボニル基、及びこれらの1以上の組み合わせからなる連結基のいずれかを示し、これらR及びR10は同一の場合、及び互いに連結して飽和若しくは又は不飽和の環構造を形成する場合を含み、Rは、置換若しくは非置換のアルキレン基、置換若しくは非置換のアリーレン基、及び置換若しくは非置換のイミノ基のうちの少なくとも一種を示し、前記イミノ基同士が互いに連結している場合を含む。]
      で表わされることを特徴とする請求項5記載の二次電池。
    The dione compound has the general formula
    Figure JPOXMLDOC01-appb-C000004
    Wherein n is an integer of 1 or more, and R 8 and R 10 are a substituted or unsubstituted amino group, a substituted or unsubstituted imino group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkylene Group, substituted or unsubstituted aryl group, substituted or unsubstituted aralkyl group, substituted or unsubstituted cycloalkyl group, substituted or unsubstituted alkoxyl group, substituted or unsubstituted alkenyl group, substituted or unsubstituted aryloxy Group, substituted or unsubstituted arylamino group, substituted or unsubstituted alkylamino group, substituted or unsubstituted thioaryl group, substituted or unsubstituted thioalkyl group, substituted or unsubstituted heterocyclic group, substituted or unsubstituted Formyl group, substituted or unsubstituted silyl group, substituted or unsubstituted cyano group, substituted or unsubstituted Unsubstituted nitro group, a substituted or unsubstituted nitroso group, a substituted or unsubstituted carboxyl group, a substituted or unsubstituted alkoxycarbonyl group, and indicates one of the linking group comprising a combination of one or more of these, these R 8 and R 10 are the same and include the case where they are linked to each other to form a saturated or unsaturated ring structure, and R 9 is a substituted or unsubstituted alkylene group, a substituted or unsubstituted arylene group, and It represents at least one of substituted or unsubstituted imino groups, and includes cases where the imino groups are linked to each other. ]
    The secondary battery according to claim 5, represented by:
  10.  前記ジアミン化合物は、一般式
    Figure JPOXMLDOC01-appb-C000005
     [式中、R11及びR12は、置換若しくは非置換のアルキル基、置換若しくは非置換のアルキレン基、置換若しくは非置換のアリーレン基、置換若しくは非置換のカルボニル基、置換若しくは非置換のアシル基、置換若しくは非置換のアルコキシカルボニル基、置換若しくは非置換のエステル基、置換若しくは非置換のエーテル基、置換若しくは非置換のチオエーテル基、置換若しくは非置換のアミノ基、置換若しくは非置換のアミド基、置換若しくは非置換のスルホン基、置換若しくは非置換のチオスルホニル基、置換若しくは非置換のスルホンアミド基、置換若しくは非置換のイミノ基、置換若しくは非置換のアゾ基、及びこれらの1以上の組み合わせからなる連結基のいずれかを示す。X~Xは、水素原子、ハロゲン原子、ヒドロキシル基、ニトロ基、シアノ基、カルボキシル基、置換若しくは非置換のアルキル基、置換若しくは非置換のアルケニル基、置換若しくは非置換のシクロアルキル基、置換若しくは非置換のアリール基、置換若しくは非置換の芳香族複素環基、置換若しくは非置換のアラルキル基、置換若しくは非置換のアミノ基、置換若しくは非置換のアルコキシ基、置換若しくは非置換のアリールオキシ基、置換若しくは非置換のアルコキシカルボニル基、置換若しくは非置換のアリールオキシカルボニル基、置換若しくは非置換のアシル基、及び置換若しくは非置換のアシルオキシ基のうちの少なくとも1種を示し、これらの置換基は置換基同士で環構造を形成する場合を含む。]
     で表わされることを特徴とする請求項5記載の二次電池。
    The diamine compound has the general formula
    Figure JPOXMLDOC01-appb-C000005
    [Wherein R 11 and R 12 are a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkylene group, a substituted or unsubstituted arylene group, a substituted or unsubstituted carbonyl group, a substituted or unsubstituted acyl group, Substituted or unsubstituted alkoxycarbonyl group, substituted or unsubstituted ester group, substituted or unsubstituted ether group, substituted or unsubstituted thioether group, substituted or unsubstituted amino group, substituted or unsubstituted amide group, From a substituted or unsubstituted sulfone group, a substituted or unsubstituted thiosulfonyl group, a substituted or unsubstituted sulfonamido group, a substituted or unsubstituted imino group, a substituted or unsubstituted azo group, and combinations of one or more of these Any one of the following linking groups is shown. X 1 to X 4 are a hydrogen atom, a halogen atom, a hydroxyl group, a nitro group, a cyano group, a carboxyl group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted cycloalkyl group, Substituted or unsubstituted aryl group, substituted or unsubstituted aromatic heterocyclic group, substituted or unsubstituted aralkyl group, substituted or unsubstituted amino group, substituted or unsubstituted alkoxy group, substituted or unsubstituted aryloxy At least one of a group, a substituted or unsubstituted alkoxycarbonyl group, a substituted or unsubstituted aryloxycarbonyl group, a substituted or unsubstituted acyl group, and a substituted or unsubstituted acyloxy group, and these substituents Includes the case where a substituent forms a ring structure. ]
    The secondary battery according to claim 5, represented by:
  11.  前記電極活物質が、前記電池電極反応の少なくとも放電反応における反応出発物、生成物及び中間生成物のうちのいずれかに含まれることを特徴とする請求項1乃至請求項10のいずれかに記載の二次電池。 11. The electrode active material according to claim 1, wherein the electrode active material is included in any one of a reaction starting material, a product, and an intermediate product in at least a discharge reaction of the battery electrode reaction. Secondary battery.
  12.  前記第1及び前記第2の電極のうちのいずれか一方が正極を形成し、該正極が前記電極活物質を有していることを特徴とする請求項1乃至請求項11のいずれかに記載の二次電池。 12. One of the first and second electrodes forms a positive electrode, and the positive electrode has the electrode active material. Secondary battery.
  13.  第1の電極と第2の電極との間に電解質が介在し、多電子系の有機化合物を主体とする電極活物質を前記第1及び前記第2の電極のうちの少なくとも一方の電極に含有した二次電池の製造方法であって、
     前記電極活物質を作製する活物質作製工程が、少なくとも前記有機化合物を導電性物質と結着剤とを含有した活物質基体を作製する基体作製工程と、前記活物質基体の表面を無機活物質で被覆する被覆工程とを含むことを特徴とする二次電池の製造方法。
    An electrolyte is interposed between the first electrode and the second electrode, and an electrode active material mainly composed of a multi-electron organic compound is contained in at least one of the first and second electrodes A method for manufacturing a secondary battery, comprising:
    The active material preparation step for preparing the electrode active material includes a substrate preparation step for preparing an active material substrate containing at least the organic compound as a conductive material and a binder, and the surface of the active material substrate as an inorganic active material. And a coating step of coating with a secondary battery.
  14.  第1の電極と第2の電極との間に電解質が介在し、多電子系の有機化合物を主体とする電極活物質を前記第1及び前記第2の電極のうちの少なくとも一方の電極に含有した二次電池の製造方法であって、
     前記電極活物質を作製する活物質作製工程が、前記有機化合物の粒子表面を無機活物質で被覆する被覆工程と、少なくとも前記無機活物質で被覆された有機化合物と導電性物質と結着剤とを混合して成形し、前記電極活物質を作製する成形工程とを含むことを特徴とする二次電池の製造方法。
    An electrolyte is interposed between the first electrode and the second electrode, and an electrode active material mainly composed of a multi-electron organic compound is contained in at least one of the first and second electrodes A method for manufacturing a secondary battery, comprising:
    The active material preparation step of preparing the electrode active material includes a coating step of coating the surface of the organic compound particles with an inorganic active material, an organic compound coated with at least the inorganic active material, a conductive material, and a binder. And a forming step of forming the electrode active material by mixing and forming the electrode active material.
PCT/JP2014/073743 2013-09-17 2014-09-09 Secondary battery and method for producing secondary battery WO2015041097A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013192142A JP6071819B2 (en) 2013-09-17 2013-09-17 Secondary battery and method for manufacturing secondary battery
JP2013-192142 2013-09-17

Publications (1)

Publication Number Publication Date
WO2015041097A1 true WO2015041097A1 (en) 2015-03-26

Family

ID=52688748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/073743 WO2015041097A1 (en) 2013-09-17 2014-09-09 Secondary battery and method for producing secondary battery

Country Status (2)

Country Link
JP (1) JP6071819B2 (en)
WO (1) WO2015041097A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008147015A (en) * 2006-12-11 2008-06-26 Honda Motor Co Ltd Electrode for battery, nonaqueous solution based battery, and manufacturing method of nonaqueous solution based battery
JP2010212152A (en) * 2009-03-11 2010-09-24 Murata Mfg Co Ltd Electrode active material, and secondary battery using the same
JP2011124017A (en) * 2009-12-08 2011-06-23 Murata Mfg Co Ltd Electrode active material, and secondary battery using the same
WO2012105438A1 (en) * 2011-02-01 2012-08-09 株式会社 村田製作所 Electrode active material, electrode, and secondary battery
JP2012164480A (en) * 2011-02-04 2012-08-30 Honda Motor Co Ltd Battery
WO2013035829A1 (en) * 2011-09-07 2013-03-14 本田技研工業株式会社 Battery
WO2014021431A1 (en) * 2012-08-02 2014-02-06 本田技研工業株式会社 Battery
WO2014073561A1 (en) * 2012-11-09 2014-05-15 株式会社村田製作所 Secondary battery and method for producing secondary battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5223166B2 (en) * 2006-02-07 2013-06-26 日産自動車株式会社 Battery active material and secondary battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008147015A (en) * 2006-12-11 2008-06-26 Honda Motor Co Ltd Electrode for battery, nonaqueous solution based battery, and manufacturing method of nonaqueous solution based battery
JP2010212152A (en) * 2009-03-11 2010-09-24 Murata Mfg Co Ltd Electrode active material, and secondary battery using the same
JP2011124017A (en) * 2009-12-08 2011-06-23 Murata Mfg Co Ltd Electrode active material, and secondary battery using the same
WO2012105438A1 (en) * 2011-02-01 2012-08-09 株式会社 村田製作所 Electrode active material, electrode, and secondary battery
JP2012164480A (en) * 2011-02-04 2012-08-30 Honda Motor Co Ltd Battery
WO2013035829A1 (en) * 2011-09-07 2013-03-14 本田技研工業株式会社 Battery
WO2014021431A1 (en) * 2012-08-02 2014-02-06 本田技研工業株式会社 Battery
WO2014073561A1 (en) * 2012-11-09 2014-05-15 株式会社村田製作所 Secondary battery and method for producing secondary battery

Also Published As

Publication number Publication date
JP2015060659A (en) 2015-03-30
JP6071819B2 (en) 2017-02-01

Similar Documents

Publication Publication Date Title
JP5531424B2 (en) Electrode active material and secondary battery using the same
JP5488799B2 (en) Electrode active material and secondary battery
JP2010080343A (en) Electrode active material and secondary battery
JP5527882B2 (en) Electrode active material and secondary battery using the same
WO2012121145A1 (en) Electrode active material, electrode, and secondary battery
JP5692741B2 (en) Electrode active material and secondary battery
WO2014092016A1 (en) Electric storage device
JP5645319B2 (en) Secondary battery
WO2012117941A1 (en) Electrode active material, electrode, and secondary cell
JP5800444B2 (en) Secondary battery and method for manufacturing secondary battery
JP5818689B2 (en) Lithium ion secondary battery
JP6179233B2 (en) Non-aqueous electrolyte secondary battery
JP2013134947A (en) Electrode active material and secondary battery containing the same
WO2013157458A1 (en) Electrode and method for manufacturing said electrode, and secondary cell
WO2012105439A1 (en) Electrode active material, electrode, and secondary battery
JP5633949B2 (en) Electrode active material, method for producing electrode active material, electrode, and secondary battery
JP6071819B2 (en) Secondary battery and method for manufacturing secondary battery
JP5800443B2 (en) Secondary battery and secondary battery charging / discharging method
JP5536519B2 (en) Electrode active material and secondary battery
JP5633948B2 (en) Electrode active material, electrode, and secondary battery
JP2010113840A (en) Electrode active material and battery
JP5716934B2 (en) Electrode active material, electrode, and secondary battery
WO2013114785A1 (en) Electricity storage device
JPWO2012105438A1 (en) Electrode active material, electrode, and secondary battery
WO2013172323A1 (en) Electrode active material, electrode, and secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14846365

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14846365

Country of ref document: EP

Kind code of ref document: A1