WO2015040655A1 - スイッチング装置および蓄電池システム - Google Patents

スイッチング装置および蓄電池システム Download PDF

Info

Publication number
WO2015040655A1
WO2015040655A1 PCT/JP2013/005571 JP2013005571W WO2015040655A1 WO 2015040655 A1 WO2015040655 A1 WO 2015040655A1 JP 2013005571 W JP2013005571 W JP 2013005571W WO 2015040655 A1 WO2015040655 A1 WO 2015040655A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage battery
current path
electromagnetic contactor
signal
contactor
Prior art date
Application number
PCT/JP2013/005571
Other languages
English (en)
French (fr)
Inventor
久保 守
岡本 一晃
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to PCT/JP2013/005571 priority Critical patent/WO2015040655A1/ja
Publication of WO2015040655A1 publication Critical patent/WO2015040655A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/18Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for batteries; for accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/251Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for stationary devices, e.g. power plant buffering or backup power supplies
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/10Temperature sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/10Batteries in stationary systems, e.g. emergency power source in plant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a switching device and a storage battery system for opening and closing a current path connected to a storage battery.
  • a technology has been developed in which a storage battery and a system power supply are connected in parallel to a load, and the storage battery is used as a backup of power consumed by the load in case of a power failure of the system power supply.
  • Some of such technologies include a storage battery system including a large number of storage batteries as a backup power source for a system that requires a large capacity and a large output.
  • a large number of storage batteries are installed and operated.At this time, a plurality of storage batteries are connected in parallel to form one battery group, and further by connecting the battery groups in series, Large capacity and high output may be realized.
  • a breaker is used to shut off the output of a storage battery in a power storage system.
  • the interruption of the large-capacity and high-output power as described above may be a case where there is no circuit breaker certified by a third party or a high cost.
  • the present invention has been made in view of such a situation, and an object thereof is to provide an alternative technique for a breaker for cutting off electric power.
  • a switching device is arranged on a current path that can be connected to a storage battery, electrically connected to or disconnected from the current path, and operation of the electromagnetic contactor And a control unit for controlling.
  • the control unit When the control unit outputs (1) a disconnection signal for instructing to disconnect the current path when the magnetic contactor is connected to the current path, the control unit outputs the disconnection signal while being activated.
  • the magnetic contactor cuts off the current path, the magnetic contactor is restarted before outputting a connection signal for instructing connection of the current path.
  • a storage battery system includes a storage battery, a current path connectable to the storage battery, and an electromagnetic contactor that is disposed on the current path and electrically connects or disconnects the current path. And a control unit for controlling the operation of the electromagnetic contactor.
  • the control unit (1) when the electromagnetic contactor is connected to the current path, when the disconnection signal for instructing to disconnect the current path is output to the electromagnetic contactor, the control unit is disconnected while being activated. (2) when the electromagnetic contactor is cutting the current path, restart the connection before outputting a connection signal to the magnetic contactor to instruct the connection of the current path. .
  • FIG. 1 is a diagram schematically showing a power distribution system according to an embodiment. It is a figure which shows typically an example of the external appearance of the storage battery system which concerns on embodiment. It is a perspective view which shows the external appearance of the storage battery storage shelf which concerns on embodiment. It is a figure which shows the storage battery accommodation shelf of the state which accommodated the storage battery. It is a figure which shows typically the circuit structure of the switch module which concerns on embodiment. It is a figure which shows typically the circuit structure of the switch module which concerns on the modification of embodiment.
  • FIG. 1 is a diagram schematically showing a power distribution system 100 according to an embodiment of the present invention.
  • the power distribution system 100 includes a storage battery container 200 including a plurality of storage batteries, a solar battery 300 that is a power generator for renewable energy, a bidirectional power conditioner 400, a system power supply 500, and a load 600.
  • System power supply 500 is an AC power supply for supplying power from an electric power company.
  • the solar cell 300 is a power generation device that directly converts light energy into electric power using the photovoltaic effect.
  • As the solar cell 300 a silicon solar cell, a solar cell made of various compound semiconductors, a dye-sensitized type (organic solar cell), or the like is used.
  • the power distribution system 100 may include a fuel cell, wind power generation, and micro hydropower generation (not shown) instead of or in addition to the solar cell 300. Since the power generated by wind power generation or micro hydropower generation is generally AC power generation, when the power distribution system 100 includes wind power generation, an AC / DC converter (not shown) is installed before output to the bidirectional power conditioner 400. To do.
  • the storage battery container 200 includes a plurality of storage battery units 210 including a predetermined number of storage batteries. In the example shown in FIG. 1, there are four storage battery units up to the first storage battery unit 210a, the second storage battery unit 210b, the third storage battery unit 210c, and the fourth storage battery unit 210d. 210 ").
  • Each storage battery unit 210 includes a first storage battery management unit 260a, a second storage battery management unit 260b, a third storage battery management unit 260c, and a fourth storage battery management unit 260d (hereinafter, unless otherwise specifically distinguished, for managing storage batteries, respectively). (Collectively referred to as “storage battery management unit 260”).
  • the storage battery container 200 also includes a master storage battery management unit 220 for controlling each storage battery management unit 260 in an integrated manner.
  • the storage battery container 200 further includes a first switch module 250a, a second switch module 250b, a third switch module 250c, and a fourth switch that can cut off current paths between the storage battery units 210 and the bidirectional power conditioner 400, respectively.
  • a module 250d is provided. Hereinafter, these are collectively referred to as “switch module 250” unless otherwise specified.
  • the storage battery management unit 260 manages the storage battery unit 210.
  • One storage battery system is configured with one storage battery unit 210, switch module 250, and storage battery management unit 260 as a unit. Details of the storage battery system will be described later.
  • Bidirectional power conditioner 400 is connected to storage battery container 200 and solar battery 300 at one end and to system power supply 500 at the other end.
  • the bi-directional power conditioner 400 includes a bi-directional inverter 410, and converts DC power generated by the solar battery 300 or discharged from the storage battery container 200 into AC power under the control of the control unit 420, AC power from the system power supply 500 is converted into DC power.
  • the first DC / DC converter 430a is installed in a conductive path between the switch module 250a and the bidirectional power conditioner 400.
  • the second DC / DC converter 430b is installed in a conductive path between the second switch module 250b and the bidirectional power conditioner 400.
  • the third DC / DC converter 430c and the fourth DC / DC converter 430d are installed between the third switch module 250c and the bidirectional power conditioner 400, and between the fourth switch module 250d and the bidirectional power conditioner 400, respectively. Is done.
  • these DC / DC converters are collectively referred to as “DC / DC converters 430” unless otherwise specified.
  • the DC / DC converter 430 boosts or steps down the DC power converted by the bidirectional power conditioner, and charges / discharges the plurality of storage batteries.
  • the bidirectional power conditioner 400 is also provided with a solar cell DC / DC converter 440, converts the electric power generated by the solar cell 300, and outputs it to the bidirectional inverter 410.
  • the bidirectional power conditioner 400 the electric power of each storage battery unit 210 and the electric power generated by the solar battery 300 can be supplied to the load 600 in cooperation with the system power supply 500. Further, when the system power supply 500 fails, the power of each storage battery unit 210 and the power generated by the solar battery 300 can be supplied to the load 600 as a backup of the system power supply 500.
  • FIG. 2 is a diagram schematically showing an example of the appearance of the storage battery system 240 according to the embodiment.
  • the storage battery system 240 includes a storage battery unit 210, a switch module 250, and a storage battery management unit 260.
  • Storage battery unit 210 includes 70 storage battery packs 212.
  • Each storage battery pack 212 is a rechargeable secondary battery.
  • the storage battery pack 212 is realized by, for example, a lithium ion secondary battery.
  • the storage battery pack 212 is charged by the electric power of the system power source 500 converted into DC power by the bidirectional power conditioner 400.
  • the storage battery management unit 260 measures various physical quantities of the storage battery pack 212, such as the state of charge (State Of Charge; SOC), temperature, voltage, current, etc. of each storage battery pack 212, and the specified physical quantity is the bidirectional power conditioner 400. To provide.
  • the storage battery management unit 260 also performs control such as cooling the storage battery pack 212 by controlling a fan for cooling the storage battery pack 212.
  • a rectangle indicated by reference numeral 212 is one storage battery pack 212.
  • the storage battery pack 212 in the embodiment has a configuration in which cylindrical batteries are connected in 13 series and 24 parallel configurations. In order to avoid complication, not all symbols are attached, but all the rectangles similar to the rectangles denoted by the symbol 212 indicate the storage battery pack 212.
  • FIG. 3 is a perspective view showing an appearance of the storage battery storage shelf 214 according to the embodiment, and illustrates the storage battery storage shelf 214 in an empty state in which the storage battery pack 212 or the storage battery management unit 260 is not stored.
  • the storage battery storage shelf 214 includes a first partition 216a, a second partition 216b, and a third partition for partitioning the storage space between one storage space and another storage space. 216c.
  • FIG. 4 is a diagram showing the storage battery storage shelf 214 in a state in which the storage battery pack 212 is stored. As shown in FIG. 4, the length of the storage space in the Y direction is set so that the storage battery pack 212 just fits in the storage space.
  • the storage battery unit 210 has a power amount of 126 kWh and a large output. For this reason, it is assumed that it is difficult to obtain a breaker suitable for the output of the storage battery unit 210 or that the cost is increased.
  • a breaker Circuit breaker
  • the switch module 250 according to the embodiment replaces the function of the breaker by controlling the magnetic contactor.
  • the switch module 250 according to the embodiment will be described.
  • FIG. 5 is a diagram schematically showing a circuit configuration of the switch module 250 according to the embodiment.
  • the switch module 250 includes a current path including a first current path 257a connected to the positive terminal of the storage battery unit 210 and a second current path 257b connected to the negative terminal (hereinafter, the first current path 257a and the second current path 257b).
  • current path 257 is collectively referred to as “current path 257” unless otherwise specifically distinguished.
  • FIG. 5 the connection relationship of the electrical components in the switch module 250 will be described.
  • the first electromagnetic contactor 251 that electrically connects or disconnects the first current path 257a is connected to the first current path 257a.
  • a second electromagnetic contactor 252 that electrically connects or disconnects the first current path 257a is connected to the second current path 257b.
  • the second current path 257b is grounded.
  • an electromagnetic contactor is an electrical component that opens and closes a current path using the operation of an electromagnet. More specifically, in an electromagnetic contactor, in a normal state, the contact is connected to the current path by an urging force such as a spring, but when electric power is supplied to the electromagnet, the contact is electromagnetized by a magnetic force larger than the urging force. The current path is cut off. Since an electromagnetic contactor can open and close a current path with or without energization of an electromagnet, it is used for, for example, opening and closing of an electric circuit or automatic opening and closing of a remote operation.
  • a third electromagnetic contactor 253 connected in series with the first electromagnetic contactor 251 is further connected on the first current path 257a.
  • a fourth electromagnetic contactor 254 connected in series with the second electromagnetic contactor 252 is further connected on the second current path 257b.
  • the first node N1 exists between the first electromagnetic contactor 251 and the third electromagnetic contactor 253. Further, on the second current path 257b, a second node N2 exists between the second electromagnetic contactor 252 and the fourth electromagnetic contactor 254. A voltage sensor 255 is connected on a path connecting the first node N1 and the second node N2.
  • a third node N3 exists between the third electromagnetic contactor 253 and the positive terminal of the storage battery unit 210.
  • a fourth node N4 exists between the fourth electromagnetic contactor 254 and the negative terminal of the storage battery unit 210 on the second current path 257b.
  • a current-voltage sensor that measures a current flowing through the second current path 257b and measures a voltage between the third node N3 and the fourth node N4 between the fourth node N4 and the negative terminal of the storage battery unit 210. 256 is connected.
  • the first fuse 258a is connected between the first electromagnetic contactor 251 and the bidirectional power conditioner 400 on the first current path 257a.
  • a second fuse 258b is connected between the current / voltage sensor 256 and the negative terminal of the storage battery unit 210 on the second current path 257b.
  • the switch module 250 can open and close a current path between the storage battery unit 210 and the bidirectional power conditioner 400 by opening and closing each electromagnetic contactor.
  • the opening / closing of each electromagnetic contactor in the switch module 250 is basically controlled by the control unit 270 of the storage battery management unit 260. Therefore, the switch module 250 and the storage battery management unit 260 constitute a switching device that controls connection of the storage battery unit 210.
  • control part which controls opening and closing of each electromagnetic contactor in the switch module 250 is not restricted to the case in the storage battery management part 260.
  • it may be in the switch module 250 or in the master storage battery management unit 220.
  • the switch module 250 alone constitutes a switching device that controls connection of the storage battery unit 210.
  • the switch module 250 and the master storage battery management unit 220 constitute a switching device.
  • the control part which controls opening and closing of an electromagnetic contactor may be in the bidirectional
  • connection signal a signal for instructing to connect the current path 257 when the electromagnetic contactor cuts the current path 257. Restart before output to contactor.
  • the control unit 270 is configured not to output a connection signal to the electromagnetic contactor unless it has been restarted.
  • the output of the connection signal is specifically a signal for supplying electric power to the electromagnet in the electromagnetic contactor.
  • the control unit 270 is realized by using an arithmetic unit such as a microcomputer, for example, and requires an explicit instruction from the user for restarting. Therefore, an explicit instruction from the user is required for the control unit 270 to output a connection signal to the electromagnetic contactor. This corresponds to the fact that the breaker once tripped must be manually restored by the user.
  • control unit 270 provides a signal for instructing to disconnect the current path 257 when the first electromagnetic contactor 251 and the second electromagnetic contactor 252 are connected to the current path 257 (hereinafter referred to as “disconnection signal”). ”)" Is output to each electromagnetic contactor, a disconnection signal is output without being restarted. This corresponds to the breaker tripping automatically.
  • control unit 270 it is technically possible for the control unit 270 to output a connection signal without restarting.
  • the switch module 250 according to the embodiment must be after restarting in order to configure a breaker alternative means by combining the controller 270 with the first electromagnetic contactor 251 and the second electromagnetic contactor 252.
  • the control unit 270 is configured not to output a connection signal.
  • the user can also restart the control unit 270 by remote operation. Therefore, in another embodiment, unlike the case of the breaker, the interrupted current path can be restored without actually going to the place where the control unit 270 is installed.
  • Control unit 270 outputs a disconnection signal when detecting a signal suggesting abnormality of storage battery unit 210.
  • the “signal indicating abnormality” is an emergency stop signal from each storage battery pack 212 constituting the storage battery unit 210. For example, a signal indicating overdischarge of the storage battery pack 212, an overcharge of the storage battery pack 212 is performed. These signals are a signal indicating the temperature of the storage battery pack 212, a signal indicating that the storage battery pack 212 is overvoltage, and a signal indicating that the current flowing through the current path 257 is an overcurrent.
  • the “signal indicating abnormality” includes a signal transmitted when the emergency stop switch 280 provided in the storage battery management unit 260 is turned off, a stop signal from the master storage battery management unit 220, and the like. is there.
  • the control unit (not shown) of each storage battery pack 212 determines whether each storage battery pack 212 is overdischarged and whether each storage battery pack 212 is overcharged. It is calculated from the voltage and current of the storage battery obtained from the above. More specifically, the control unit of each storage battery pack 212 suggests overcharge when the calculated storage amount of each storage battery pack 212 is equal to or greater than an overcharge threshold determined to determine whether or not it is overcharge. Is determined to be an abnormal signal. In addition, the control unit of each storage battery pack 212 performs overdischarge when the amount of power stored in each storage battery pack 212 obtained from the SOC calculation unit is equal to or less than an overdischarge threshold determined to determine whether or not it is overdischarge. It is determined as an abnormal signal to suggest.
  • the overcharge threshold and the overdischarge threshold may be determined in consideration of the characteristics of each storage battery pack 212 and the like, for example, 98% and 20%, respectively.
  • the control unit of each storage battery pack 212 acquires a signal related to the temperature of each storage battery pack 212 from a temperature sensor (not shown) in each storage battery pack 212. More specifically, the control unit of each storage battery pack 212 determines that the signal acquired from the temperature sensor is a signal indicating a high temperature abnormality when the temperature acquired from the temperature sensor is equal to or higher than a high temperature threshold temperature determined to determine whether the temperature is abnormal. When the temperature is equal to or lower than a low temperature threshold temperature determined to determine whether or not there is a low temperature abnormality, the signal is determined to indicate a low temperature abnormality.
  • the control unit of each storage battery pack 212 sends a signal indicating that each storage battery pack 212 is overvoltage and a signal indicating that the current flowing through the current path 257 is overcurrent in each storage battery pack 212. Obtained from the current voltage sensor. More specifically, the control unit of each storage battery pack 212 indicates a signal indicating an overvoltage abnormality when the voltage value acquired from the current voltage sensor is equal to or higher than an overvoltage threshold determined to determine whether or not the voltage value is an overvoltage. Is determined. Similarly, the control unit of each storage battery pack 212 similarly indicates a signal indicating an overcurrent abnormality when the current value acquired from the current-voltage sensor is equal to or greater than an overcurrent threshold determined to determine whether or not the current value is an overcurrent. Is determined.
  • the master storage battery management unit 220 communicates with the bidirectional power conditioner 400 and controls the operation of each storage battery management unit 260 based on a control signal acquired from the bidirectional power conditioner 400. For this reason, if the master storage battery management unit 220 becomes unable to communicate with the bidirectional power conditioner 400 due to malfunction of the bidirectional power conditioner 400 or an abnormality in the communication path with the bidirectional power conditioner 400, A disconnection signal is output to the first electromagnetic contactor 251 and the second electromagnetic contactor 252 via the OR circuit 264. Thereby, between the storage battery unit 210 and the bidirectional
  • a disconnect signal is directly output to the first electromagnetic contactor 251 and the second electromagnetic contactor 252 via the OR circuit 264, and the storage battery unit 210 and the bidirectional power conditioner 400 are connected.
  • the gap is electrically disconnected.
  • the control unit 270 performs opening / closing control of the first electromagnetic contactor 251 and the second electromagnetic contactor 252 when detecting a signal suggesting an abnormality of the storage battery unit 210.
  • the first electromagnetic contactor 251 and the second electromagnetic contactor 252 are an emergency stop switch OFF signal, a stop signal from the master storage battery management unit 220, and an emergency from each storage battery pack 212 constituting the storage battery unit 210. It is shut off by the stop signal.
  • the stop signal in the master storage battery management part 220 is transmitted by receiving the signal which notifies the action
  • the control unit 270 performs the third electromagnetic contactor 253 or the fourth The open / close control of the magnetic contactor 254 is executed, and switching between cutoff and energization is performed for charge / discharge control of the storage battery unit 210. In the normal control, the control unit 270 does not require restarting for reconnection of the third electromagnetic contactor 253 and the fourth electromagnetic contactor 254.
  • the first electromagnetic contactor 251 and the third electromagnetic contactor 253 are connected to the first current path 257a, and both are used to electrically cut off the first current path 257a. Therefore, when one of the first electromagnetic contactor 251 and the third electromagnetic contactor 253 cannot cut off the first current path 257a due to, for example, contact welding or the like, the control unit 270 A cutting signal is output to the magnetic contactor.
  • the control unit 270 outputs a cutting signal to the first electromagnetic contactor 251. If the first electromagnetic contactor 251 operates normally and the first current path 257a can be electrically cut off, the first electromagnetic contactor 251 notifies the control unit 270 of a signal indicating a cut-off state. However, when the first electromagnetic contactor 251 maintains the energized state for contact welding or the like, the first electromagnetic contactor 251 notifies the control unit 270 of a signal indicating a state in which it is not interrupted.
  • the control unit 270 determines the operating state of the first electromagnetic contactor 251 based on the signal from the first electromagnetic contactor 251 before and after the output of the disconnection signal to the first electromagnetic contactor 251.
  • the control unit 270 passes through the OR circuit 264.
  • a cutting signal is output to the third electromagnetic contactor 253. Thereby, even if the first electromagnetic contactor 251 malfunctions, the first current path 257a can be electrically cut off.
  • the second electromagnetic contactor 252 and the fourth electromagnetic contactor 254 are connected to the second current path 257b, and both are used to electrically cut off the second current path 257b. Therefore, as in the case of the first electromagnetic contactor 251 and the third electromagnetic contactor 253 in the first current path 257a, when either the second electromagnetic contactor 252 or the fourth electromagnetic contactor 254 is contact-welded, A disconnect signal is output to one of them.
  • the control unit 270 in the case of detecting a signal due to turning off the emergency stop switch, a stop signal from the master storage battery management unit 220, and a signal suggesting an abnormality of the storage battery unit 210, the first electromagnetic contactor 251 and the first 2 Basically, the switching control of the electromagnetic contactor 252 is basically performed. However, when a malfunction occurs in these electromagnetic contactors, the current path is controlled by controlling the opening and closing of the third electromagnetic contactor 253 and the fourth electromagnetic contactor 254. The reliability of electrical disconnection of 257 can be increased.
  • the control unit 270 detects the first electromagnetic contactor 251 and the second electromagnetic contact when detecting a signal due to turning off the emergency stop switch, a stop signal from the master storage battery management unit 220, and a signal indicating an abnormality of the storage battery unit 210.
  • a disconnection signal is output to the device 252
  • the disconnection signal is first output to one of the first electromagnetic contactor 251 and the second electromagnetic contactor 252, and then the other electromagnetic contact A disconnect signal may be output to the device.
  • the control unit 270 outputs the disconnection signal to the second electromagnetic contactor 252 after outputting the disconnection signal to the first electromagnetic contactor 251.
  • a first electromagnetic contactor 251 provided in the first current path 257a and a second electromagnetic contactor 252 provided in the second current path 257b are respectively disposed.
  • the first electromagnetic contactor 251 and the second electromagnetic contactor 252 are arranged, and by blocking both, safety is ensured in both the first current path 257a and the second current path 257b. can do.
  • each of the first electromagnetic contactor 251, the second electromagnetic contactor 252, the third electromagnetic contactor 253, and the fourth electromagnetic contactor 254 is not a single electromagnetic contactor, but two electromagnetic contactors having different polarities. You may connect and comprise in parallel. Thereby, the interruption
  • the switching device including the switch module 250 and the control unit 270 according to the embodiment, it is possible to provide a breaker alternative technique for cutting off power.
  • the breaker is intended to cut off the excessive current, but the switching device according to the embodiment suggests various abnormalities other than the excessive current by substituting the function of the breaker with a combination of a magnetic contactor and a control unit.
  • the current path can be interrupted by the signal. Further, unlike the case where the breaker trips, the user can return the current path by remote control. Moreover, it contributes to space saving and cost reduction compared with the case where a breaker is used.
  • the control unit 270 receives a signal indicating a communication abnormality from the master storage battery management unit 220 and disconnects the first electromagnetic contactor 251 and the second electromagnetic contactor 252. A signal may be transmitted.
  • the opening / closing control of each electromagnetic contactor can be unified with the control unit 270, which is advantageous in that the opening / closing control is simplified.
  • the control unit 270 sends a disconnection signal to the third electromagnetic contactor 253 and the fourth electromagnetic contactor 254 when a signal indicating a communication abnormality is received. You may make it output.
  • a disconnection signal is transmitted to the first electromagnetic contactor 251 and the second electromagnetic contactor 252. Since the order of the switching control of each electromagnetic contactor is unified, there is an effect in that the switching control is simplified.
  • the contactor in the normal state, the contactor is connected to the current path by an urging force such as a spring in the normal state.
  • the case where the current path is disconnected has been described.
  • the electromagnetic contactor is not limited to this case.
  • the contactor In a normal state, the contactor is separated from the current path by the biasing force of a spring or the like.
  • electromagnetic contactors that are attracted and connected to the current path. Even if such an electromagnetic contactor is used, the present invention is established.
  • the third electromagnetic contactor 253 connected in series with the first electromagnetic contactor 251 is connected on the first current path 257a, and connected in series with the second electromagnetic contactor 252 on the second current path 257b.
  • the case where the 4th electromagnetic contactor 254 to be connected was demonstrated.
  • both the first current path 257a and the second current path 257b include two series electromagnetic contactors. It is only necessary to provide two in-line magnetic contactors on at least one of the current paths 257.
  • the control unit 270 controls the third electromagnetic contactor 253 or the normal electromagnetic signal when the emergency stop switch is turned off, the stop signal from the master storage battery management unit 220, and the signal suggesting an abnormality of the storage battery unit 210. Opening / closing control of the fourth electromagnetic contactor 254 is executed, and the charge / discharge control of the storage battery unit 210 is switched between cutoff and energization. As described above, if the purpose of the charge / discharge control of the storage battery unit 210 is to be used, the current path 257 may only be disconnected in at least one of the third electromagnetic contactor 253 and the fourth electromagnetic contactor 254.
  • FIG. 6 is a diagram schematically illustrating a circuit configuration of a switch module 250 according to a third modification of the embodiment.
  • the example shown in FIG. 6 differs from the example shown in FIG. 5 in that the fourth electromagnetic contactor 254 is not connected on the second current path 257b, but the other configurations are the same.
  • a third electromagnetic contactor 253 is connected in series to the first electromagnetic contactor 251 on the first current path 257a.
  • no electromagnetic contactor is connected in series to the second electromagnetic contactor 252 on the second current path 257b.
  • the control unit 270 includes a third electromagnetic contactor in a normal state in which a signal due to turning off the emergency stop switch, a stop signal from the master storage battery management unit 220, and a signal suggesting an abnormality of the storage battery unit 210 are not detected.
  • the charging / discharging of the storage battery unit 210 is controlled by controlling the opening and closing of the H.253. Further, when a signal indicating an abnormality of the storage battery unit 210 is detected, if the first current path 257a cannot be blocked due to contact welding with the first electromagnetic contactor 251, the third electromagnetic contactor 253 In response, a disconnection signal is output.
  • FIG. 6 is a diagram illustrating an example in which the first electromagnetic contactor 251 and the third electromagnetic contactor 253 are connected in series on the first current path 257a.
  • an electromagnetic contactor may be connected in series to the second electromagnetic contactor 252 on the second current path 257b, and no electromagnetic contactor may be connected in series to the first electromagnetic contactor 251.
  • the invention according to the present embodiment may be specified by the items described below.
  • (Item 1) An electromagnetic contactor disposed on a current path connectable to the storage battery and electrically connecting or disconnecting the current path; A controller for controlling the operation of the electromagnetic contactor, The controller is (1) When the magnetic contactor is connected to a current path, when outputting a disconnection signal for instructing to disconnect the current path to the magnetic contactor, the disconnection signal is output while being activated. , (2) Restarting before outputting a connection signal for instructing connection of the current path when the magnetic contactor is cutting off the current path; A switching device characterized by that.
  • the control unit outputs the disconnection signal when detecting a signal due to turning off an emergency stop switch, a stop signal from the master storage battery management unit 220, or a signal suggesting an abnormality of the storage battery.
  • Switching device (Item 3) 3. The switching device according to item 1 or 2, wherein the electromagnetic contactor is configured by connecting two electromagnetic contactors having different polarities in parallel.
  • the current path includes a first current path connected to the positive terminal of the storage battery, and a second current path connected to the negative terminal of the storage battery, The said electromagnetic contactor is provided with the 1st electromagnetic contactor arrange
  • the switching device according to any one of 1 to 3.
  • the current path includes a first current path connected to the positive terminal of the storage battery, and a second current path connected to the negative terminal of the storage battery,
  • the electromagnetic contactor includes a first electromagnetic contactor disposed on the first current path, and a second electromagnetic contactor disposed on the second current path,
  • the control unit detects a signal suggesting abnormality of the storage battery, the control unit outputs a disconnection signal to one of the first electromagnetic contactor and the second electromagnetic contactor, 5.
  • the switching device according to any one of items 1 to 4, wherein a cutting signal is output to the magnetic contactor.
  • Signals that indicate abnormalities in the storage battery are signals that indicate overdischarge of the storage battery, signals that indicate overcharge of the storage battery, signals regarding the temperature of the storage battery, signals that indicate that the storage battery is overvoltage, and current that flows through the current path 6.
  • the switching device according to any one of items 2 to 5, including at least one of signals indicating that is an overcurrent.
  • a storage battery A current path connectable to the storage battery; An electromagnetic contactor disposed on the current path and electrically connecting or disconnecting the current path; A controller for controlling the operation of the electromagnetic contactor, The controller is (1) When the magnetic contactor is connected to a current path, when outputting a disconnection signal for instructing to disconnect the current path to the magnetic contactor, the disconnection signal is output while being activated. , (2) Restarting before outputting a connection signal for instructing connection of the current path when the magnetic contactor is cutting off the current path; A storage battery system characterized by that.
  • the control unit outputs the disconnection signal when detecting a signal due to turning off an emergency stop switch, a stop signal from the master storage battery management unit 220, or a signal suggesting an abnormality of the storage battery.
  • Storage battery system. (Item 10)
  • the current path includes a first current path connected to the positive terminal of the storage battery, and a second current path connected to the negative terminal of the storage battery, Item 8 is characterized in that the electromagnetic contactor comprises a first electromagnetic contactor disposed on the first current path and a second electromagnetic contactor disposed on the second current path. Or the storage battery system of 9.
  • the current path includes a first current path connected to the positive terminal of the storage battery, and a second current path connected to the negative terminal of the storage battery,
  • the electromagnetic contactor includes a first electromagnetic contactor disposed on the first current path, and a second electromagnetic contactor disposed on the second current path,
  • the control unit detects a signal suggesting abnormality of the storage battery, the control unit outputs a disconnection signal to one of the first electromagnetic contactor and the second electromagnetic contactor, 11.
  • the storage battery system according to any one of items 8 to 10, wherein a cutting signal is output to the magnetic contactor.
  • the present invention can be used for a switching device that opens and closes a current path connected to a storage battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

 スイッチング装置において、電磁接触器は、蓄電池ユニット210と接続可能な電流経路257上に配置され、電流経路257を電気的に接続または切断する。制御部270は、(1)電磁接触器が電流経路257を接続している場合において電流経路257を切断させることを指示するための切断信号を電磁接触器に出力するときは、起動したまま切断信号を出力する。制御部270は、(2)電磁接触器が電流経路257を切断している場合において電流経路257を接続させることを指示するための接続信号を電磁接触器に出力する前に再起動する。

Description

スイッチング装置および蓄電池システム
 本発明は、蓄電池と接続する電流経路を開閉するスイッチング装置および蓄電池システムに関する。
 蓄電池と系統電源とを負荷に並列に接続し、系統電源の停電時に備えて負荷で消費される電力のバックアップとして蓄電池を用いる技術が開発されている。このような技術の中には、大容量および大出力を要するシステムのバックアップ電源として、多数の蓄電池を含む蓄電池システムを備えるものも存在する。このような蓄電池システムにおいては、多数の蓄電池を設置して運用されるが、このとき複数の蓄電池を並列に接続してひとつの電池群を構成し、さらに電池群を直列に接続することにより、大容量および大出力を実現する場合がある。
特開2013-70441号公報 特開2013-118786号公報
 一般に蓄電システムにおいて蓄電池の出力を遮断するためにブレーカが用いられる。しかしながら、上述のような大容量および大出力の電力の遮断には、第三者機関による認証されたブレーカが存在しない場合や、高コストとなる場合もあり得る。
 本発明はこうした状況に鑑みなされたものであり、その目的は、電力を遮断するためのブレーカの代替技術を提供することにある。
 上記課題を解決するために、本発明のある態様のスイッチング装置は、蓄電池と接続可能な電流経路上に配置され、電流経路を電気的に接続または切断する電磁接触器と、電磁接触器の動作を制御する制御部とを備える。制御部は、(1)電磁接触器が電流経路を接続している場合において電流経路を切断させることを指示するための切断信号を電磁接触器に出力するときは、起動したまま切断信号を出力し、(2)電磁接触器が電流経路を切断している場合において電流経路を接続させることを指示するための接続信号を電磁接触器に出力する前に再起動する。
 上記課題を解決するために、本発明のある態様の蓄電池システムは、蓄電池と、蓄電池と接続可能な電流経路と、電流経路上に配置され、電流経路を電気的に接続または切断する電磁接触器と、電磁接触器の動作を制御する制御部とを備える。制御部は、(1)前記電磁接触器が電流経路を接続している場合において前記電流経路を切断させることを指示するための切断信号を前記電磁接触器に出力するときは、起動したまま切断信号を出力し、(2)前記電磁接触器が前記電流経路を切断している場合において前記電流経路を接続させることを指示するための接続信号を前記電磁接触器に出力する前に再起動する。
 本発明によれば、電力を遮断するためのブレーカの代替技術を提供することができる。
実施の形態に係る配電システムを模式的に示す図である。 実施の形態に係る蓄電池システムの外観の一例を模式的に示す図である。 実施の形態に係る蓄電池収容棚の外観を示す斜視図である。 蓄電池を収容した状態の蓄電池収容棚を示す図である。 実施の形態に係るスイッチモジュールの回路構成を模式的に示す図である。 実施の形態の変形例に係るスイッチモジュールの回路構成を模式的に示す図である。
 図1は、本発明の実施の形態に係る配電システム100を模式的に示す図である。実施の形態に係る配電システム100は、複数の蓄電池を含む蓄電池コンテナ200、再生可能エネルギーの発電装置である太陽電池300、双方向パワーコンディショナ400、系統電源500、負荷600を含む。
 系統電源500は、電力会社からの電力を供給するための交流電源である。太陽電池300は、光起電力効果を利用し、光エネルギーを直接電力に変換する発電装置である。太陽電池300として、シリコン太陽電池、さまざまな化合物半導体などを素材にした太陽電池、色素増感型(有機太陽電池)等が使用される。なお、配電システム100は、太陽電池300に代えて、あるいはこれに加えて、図示しない燃料電池や風力発電、マイクロ水力発電を備えてもよい。風力発電やマイクロ水力発電が発電する電力は一般に交流発電であるため、配電システム100が風力発電を備える場合、双方向パワーコンディショナ400に出力する前にAC/DCコンバータ(図示せず)を設置する。
 蓄電池コンテナ200は、所定数の蓄電池を含む蓄電池ユニット210を複数備える。図1に示す例では、第1蓄電池ユニット210a、第2蓄電池ユニット210b、第3蓄電池ユニット210c、第4蓄電池ユニット210dまでの4つの蓄電池ユニット(以下、特に区別する場合を除き、単に「蓄電池ユニット210」と総称する。)が示されている。各蓄電池ユニット210は、それぞれ蓄電池を管理する第1蓄電池管理部260a、第2蓄電池管理部260b、第3蓄電池管理部260c、および第4蓄電池管理部260d(以下、特に区別する場合を除き、単に「蓄電池管理部260」と総称する。)を備える。蓄電池コンテナ200はまた、各蓄電池管理部260を統括的に制御するためのマスター蓄電池管理部220を備える。
 蓄電池コンテナ200はさらに、各蓄電池ユニット210と双方向パワーコンディショナ400との間の電流経路をそれぞれ遮断可能な第1スイッチモジュール250a、第2スイッチモジュール250b、第3スイッチモジュール250c、および第4スイッチモジュール250dを備える。以下、特に区別する場合を除き、これらを「スイッチモジュール250」と総称する。
 実施の形態に係る蓄電池管理部260は、蓄電池ユニット210を管理する。ひとつの蓄電池ユニット210、スイッチモジュール250、および蓄電池管理部260を単位として、ひとつの蓄電池システムを構成する。蓄電池システムの詳細は後述する。
 双方向パワーコンディショナ400は、一端において蓄電池コンテナ200および太陽電池300と接続するとともに、他端において系統電源500と接続する。双方向パワーコンディショナ400は双方向インバータ410を備え、制御部420の制御の下、太陽電池300が発電した電力、または蓄電池コンテナ200が放電した電力である直流電力を交流電力に変換するとともに、系統電源500からの交流電力を直流電力に変換する。
 第1DC/DCコンバータ430aは、スイッチモジュール250aと双方向パワーコンディショナ400との間の導電経路中に設置される。また、第2DC/DCコンバータ430bは、第2スイッチモジュール250bと双方向パワーコンディショナ400との間の導電経路中に設置される。第3DC/DCコンバータ430cおよび第4DC/DCコンバータ430dも同様に、それぞれ、第3スイッチモジュール250cと双方向パワーコンディショナ400、および第4スイッチモジュール250dと双方向パワーコンディショナ400との間に設置される。以下、特に区別する場合を除き、これらのDC/DCコンバータを「DC/DCコンバータ430」と総称する。DC/DCコンバータ430は、双方向パワーコンディショナで変換された直流電力を昇圧あるいは降圧し、複数の蓄電池に充放電を行わせる。
 双方向パワーコンディショナ400はまた、太陽電池用DC/DCコンバータ440を備え、太陽電池300が発電した電力を変換して双方向インバータ410に出力する。双方向パワーコンディショナ400を用いることにより、各蓄電池ユニット210の電力や太陽電池300が発電した電力を系統電源500と連携して負荷600に供給することができる。また、系統電源500が停電した場合には、各蓄電池ユニット210の電力や太陽電池300が発電した電力を、系統電源500のバックアップとして負荷600に供給することができる。
 図2は、実施の形態に係る蓄電池システム240の外観の一例を模式的に示す図である。蓄電池システム240は、蓄電池ユニット210、スイッチモジュール250、および蓄電池管理部260を備える。蓄電池ユニット210は、70個の蓄電池パック212を含む。各蓄電池パック212は、充電可能な2次電池である。蓄電池パック212は、例えばリチウムイオン2次電池によって実現される。
 蓄電池パック212は、双方向パワーコンディショナ400によって直流電力に変換された、系統電源500の電力によって充電される。蓄電池管理部260は、各蓄電池パック212の充電状態(State Of Charge;SOC)や温度、電圧、電流等、蓄電池パック212の様々な物理量を測定するとともに、特定した物理量を双方向パワーコンディショナ400に提供する。蓄電池管理部260は、蓄電池パック212を冷やすためのファンを制御して蓄電池パック212を冷やしたりする等の制御も行う。
 図2において、符号212で示す矩形がひとつの蓄電池パック212である。図示はしないが、実施の形態における蓄電池パック212は、円筒型電池を13直24並列に接続された構成である。煩雑となることを避けるために全てには符号を付していないが、符号212で示す矩形と同様の矩形は全て蓄電池パック212を示している。図2に示すように、蓄電池ユニット210は、第1蓄電池収容棚214aから第5蓄電池収容棚214eまでの5つの蓄電池収容棚214を備える。各蓄電池収容棚214は、5つの蓄電池パック212を収容可能な収容空間を、鉛直方向に3つ備える。したがって、蓄電池収容棚214はひとつで最大5×3=15個の蓄電池パック212を収容できる。ここで実施の形態に係る蓄電池ユニット210は、ひとつの蓄電池収容棚214が備えるひとつの収容空間に、蓄電池パック212に替えてスイッチモジュール250および蓄電池管理部260を収容している。このため、全体として14×5=70個の蓄電池パック212を収容する。
 実施の形態に係る蓄電池パック212は、ひとつあたり1.8kWhの電力量である。このため、蓄電池ユニット210の全体の電力量は、1.8kWh×70=126kWhとなる。蓄電池コンテナ200は4つの蓄電池ユニット210を備えるため、実施の形態に係る配電システム100は全体として126kWh×4=504kWhの電力量となる。なお、太陽電池300の発電量は250kWである。
 図3は、実施の形態に係る蓄電池収容棚214の外観を示す斜視図であり、蓄電池パック212または蓄電池管理部260を収容していない空の状態の蓄電池収容棚214を図示している。図3に示すように、蓄電池収容棚214は、ひとつの収容空間と別の収容空間との間に、収容空間を区分けするための第1仕切部216a、第2仕切部216bおよび第3仕切部216cを備える。
 蓄電池収容棚214の各収容空間は、蓄電池パック212をY方向に5つ並べて収容することができる。図4は、蓄電池パック212を収容した状態の蓄電池収容棚214を示す図である。図4に示すように、蓄電池パック212は収容空間にちょうど収まるように収容空間のY方向の長さが設定されている。
 以上説明したように、実施の形態に係る蓄電池ユニット210は126kWhの電力量があり、出力も大きい。このため、蓄電池ユニット210の出力に適合したブレーカの入手が難しかったり、コストアップとなったりすることも想定される。なお、ブレーカ(遮断器;Circuit Breaker)とは、電力回路に短絡等が生じることで過大電流が流れた場合に、その過大電流を遮断することで電力回路を保護するものをいう。このため実施の形態に係るスイッチモジュール250は、ブレーカの機能を電磁接触器を制御することで代替する。以下、実施の形態に係るスイッチモジュール250について説明する。
 図5は、実施の形態に係るスイッチモジュール250の回路構成を模式的に示す図である。スイッチモジュール250は、蓄電池ユニット210の正極端子と接続する第1電流経路257aと、負極端子と接続する第2電流経路257bとを含む電流経路(以下、第1電流経路257aと第2電流経路257bとを特に区別する場合を除き、単に「電流経路257」と総称する。)を備える。以下図5を参照しながら、スイッチモジュール250内の電機部品の接続関係について説明する。
 第1電流経路257a上には第1電流経路257aを電気的に接続または切断する第1電磁接触器251が接続される。同様に、第2電流経路257b上には第1電流経路257aを電気的に接続または切断する第2電磁接触器252が接続される。第2電流経路257bは接地されている。
 ここで電磁接触器(マグネットコンタクタ;Electromagnetic Contactor)は、電磁石の動作を利用して電流経路を開閉する電機部品のことを言う。より具体的に、電磁接触器は、通常状態ではバネ等の付勢力によって接触子が電流経路を接続しているが、電磁石に電力が供給されると付勢力よりも大きな磁力によって接触子が電磁石に引き寄せられ、電流経路が切断される。電磁接触器は電磁石への通電の有無で電流経路を開閉できるため、例えば遠隔操作での電気回路の開閉や自動開閉等に利用される。
 第1電流経路257a上にはさらに、第1電磁接触器251と直列に接続する第3電磁接触器253が接続されている。同様に、第2電流経路257b上にはさらに、第2電磁接触器252と直列に接続する第4電磁接触器254が接続されている。
 第1電流経路257a上において、第1電磁接触器251と第3電磁接触器253との間には第1ノードN1が存在する。また第2電流経路257b上において、第2電磁接触器252と第4電磁接触器254との間には第2ノードN2が存在する。第1ノードN1と第2ノードN2とを結ぶ経路上に、電圧センサ255が接続されている。
 第1電流経路257a上において、第3電磁接触器253と蓄電池ユニット210の正極端子との間に第3ノードN3が存在する。また第2電流経路257b上において、第4電磁接触器254と蓄電池ユニット210の負極端子との間に第4ノードN4が存在する。第4ノードN4と蓄電池ユニット210の負極端子との間には、第2電流経路257bを流れる電流を計測するとともに、第3ノードN3と第4ノードN4との間の電圧を計測する電流電圧センサ256が接続されている。
 第1電流経路257a上において、第1電磁接触器251と双方向パワーコンディショナ400との間には第1ヒューズ258aが接続されている。また第2電流経路257b上において、電流電圧センサ256と蓄電池ユニット210の負極端子との間には第2ヒューズ258bが接続されている。
 以上、スイッチモジュール250内の電機部品の接続関係について説明した。続いて、スイッチモジュール250の動作について説明する。
 スイッチモジュール250は、各電磁接触器を開閉することで、蓄電池ユニット210と双方向パワーコンディショナ400との間の電流経路を開閉可能である。実施の形態に係るスイッチモジュール250において、スイッチモジュール250内の各電磁接触器の開閉は、基本的に蓄電池管理部260の制御部270によって制御される。したがって、スイッチモジュール250と蓄電池管理部260とによって、蓄電池ユニット210の接続を制御するスイッチング装置を構成する。
 なお、スイッチモジュール250内の各電磁接触器の開閉を制御する制御部は蓄電池管理部260内にある場合に限られない。例えばスイッチモジュール250内にあってもよいし、マスター蓄電池管理部220内にあってもよい。前者の場合、スイッチモジュール250は単独で蓄電池ユニット210の接続を制御するスイッチング装置を構成する。後者の場合、スイッチモジュール250とマスター蓄電池管理部220とがスイッチング装置を構成する。この他、電磁接触器の開閉を制御する制御部は双方向パワーコンディショナ400中にあってもよいし、単独で存在してもよい。
 ブレーカは一般に、電流経路に過大電流が流れると自動的にブレーカトリップして電流経路を遮断する。一方、ひとたびブレーカトリップすると自動で復帰することはなく、ユーザが手動で復帰する必要がある。そこで実施の形態に係る制御部270は、電磁接触器が電流経路257を切断している場合において電流経路257を接続させることを指示するための信号(以下、「接続信号」という。)を電磁接触器に出力する前に再起動する。言い換えると、制御部270は、再起動した後でなければ、接続信号を電磁接触器に出力しないように構成されている。なお、接続信号の出力とは、具体的には電磁接触器内の電磁石に電力を供給させるための信号である。この結果、電磁接触器内の接触子を電流経路から離れ、電流経路が遮断される。
 制御部270は、例えばマイコン等の演算器を用いて実現されており、再起動にはユーザの明示的な指示を要する。したがって、制御部270が接続信号を電磁接触器に出力するためにはユーザの明示的な指示を要することになる。これは、ひとたびブレーカトリップしたブレーカはユーザが手動で復帰する必要があることと対応する。
 一方、制御部270は、第1電磁接触器251および第2電磁接触器252が電流経路257を接続している場合において電流経路257を切断させることを指示するための信号(以下、「切断信号」という。)を各電磁接触器に出力するときは、再起動を要さず起動したまま切断信号を出力する。これはブレーカが自動でブレーカトリップすることと対応する。
 なお、制御部270は再起動をすることなく接続信号を出力することも技術的に可能である。しかしながら、実施の形態に係るスイッチモジュール250は、制御部270と第1電磁接触器251および第2電磁接触器252との組み合わせでブレーカの代替手段を構成するために、再起動した後でなければ、制御部270は接続信号を出力しないように構成されている。ここで、他の実施の形態として、ユーザは遠隔操作によって制御部270を再起動させることもできる。したがって、他の実施の形態においては、ブレーカの場合とは異なり、制御部270が設置されている場所にユーザが実際に赴くことなく、遮断された電流経路を復帰させることができる。
 制御部270は、蓄電池ユニット210の異常を示唆する信号を検知した場合、切断信号を出力する。ここで「異常を示唆する信号」とは、蓄電池ユニット210を構成する各々の蓄電池パック212からの緊急停止信号であり、例えば蓄電池パック212の過放電を示唆する信号、蓄電池パック212の過充電を示唆する信号、蓄電池パック212の温度に関する信号、蓄電池パック212が過電圧であることを示唆する信号、および電流経路257を流れる電流が過電流であることを示唆する信号である。
 また、「異常を示唆する信号」としては、この他、蓄電池管理部260に設けられた緊急停止スイッチ280がオフになったことで発信される信号およびマスター蓄電池管理部220からの停止信号等もある。
 各々の蓄電池パック212の制御部(図示せず)は、各々の蓄電池パック212が過放電であるか否か、および各々の蓄電池パック212が過充電であるか否かを、各々の蓄電池パック212から取得した蓄電池の電圧や電流から算出する。より具体的に、各々の蓄電池パック212の制御部は算出した各々の蓄電池パック212の蓄電量が、過充電か否かを判定するために定められた過充電閾値以上の場合、過充電を示唆する異常信号と判定する。また各々の蓄電池パック212の制御部は、SOC算出部から取得した各々の蓄電池パック212の蓄電量が、過放電か否かを判定するために定められた過放電閾値以下の場合、過放電を示唆する異常信号と判定する。過充電閾値や過放電閾値は各々の蓄電池パック212の特性等を考慮して定めればよいが、例えばそれぞれ98%、20%である。
 各々の蓄電池パック212の制御部は、各々の蓄電池パック212の温度に関する信号を、各々の蓄電池パック212内の図示しない温度センサから取得する。より具体的に、各々の蓄電池パック212の制御部は、温度センサから取得した温度が高温異常か否かを判定するために定められた高温閾値温度以上の場合、高温異常を示唆する信号と判定し、低温異常か否かを判定するために定められた低温閾値温度以下の場合、低温異常を示唆する信号と判定する。
 各々の蓄電池パック212の制御部は、各々の蓄電池パック212が過電圧であることを示唆する信号、および電流経路257を流れる電流が過電流であることを示唆する信号を、各々の蓄電池パック212内の電流電圧センサから取得する。より具体的に、各々の蓄電池パック212の制御部は、電流電圧センサから取得した電圧値が過電圧であるか否かを判定するために定められた過電圧閾値以上の場合、過電圧異常を示唆する信号と判定する。各々の蓄電池パック212の制御部は同様に、電流電圧センサから取得した電流値が過電流であるか否かを判定するために定められた過電流閾値以上の場合、過電流異常を示唆する信号と判定する。
 なお、高温閾値温度、低温閾値温度、過電圧閾値、および過電流閾値の具体的な値は、蓄電池パック212の特性等を考慮して実験により定めればよい。
 マスター蓄電池管理部220は、双方向パワーコンディショナ400と通信し、双方向パワーコンディショナ400から取得した制御信号をもとに各蓄電池管理部260の動作を制御する。このため、マスター蓄電池管理部220は、双方向パワーコンディショナ400の動作不良または双方向パワーコンディショナ400との間の通信経路に異常が生じることで双方向パワーコンディショナ400と通信できなくなると、OR回路264を介して第1電磁接触器251および第2電磁接触器252に切断信号を出力する。これにより、蓄電池ユニット210と双方向パワーコンディショナ400との間を電気的に遮断する。またユーザが緊急停止スイッチ280を押下すると、OR回路264を介して第1電磁接触器251および第2電磁接触器252に切断信号が直接出力され、蓄電池ユニット210と双方向パワーコンディショナ400との間が電気的に遮断される。
 このように、制御部270は、蓄電池ユニット210の異常を示唆する信号を検知した場合第1電磁接触器251および第2電磁接触器252の開閉制御を実行する。また、第1電磁接触器251および第2電磁接触器252は、緊急停止スイッチのオフによる信号、マスター蓄電池管理部220からの停止信号、および蓄電池ユニット210を構成する各々の蓄電池パック212からの緊急停止信号によって、遮断される。また、マスター蓄電池管理部220における停止信号は、設備内の消火装置の作動を通知する信号を受信することで発信される。
 また、緊急停止スイッチのオフによる信号、マスター蓄電池管理部220からの停止信号、および蓄電池ユニット210の異常を示唆する信号を検知しない通常時には、制御部270は、第3電磁接触器253または第4電磁接触器254の開閉制御を実行し、蓄電池ユニット210の充放電制御のために遮断、通電等を切り替える。通常時の制御では、制御部270は、第3電磁接触器253および第4電磁接触器254の再接続に再起動を要しない。
 第1電磁接触器251および第3電磁接触器253は第1電流経路257aに接続されており、いずれも第1電流経路257aを電気的に遮断するために用いられる。そこで、制御部270は、第1電磁接触器251と第3電磁接触器253とのいずれか一方が、例えば接点溶着等の理由で第1電流経路257aの遮断ができなくなった場合、もう一方の電磁接触器に切断信号を出力する。
 例えば、制御部270が第1電磁接触器251に切断信号を出力したとする。第1電磁接触器251が正常に動作し第1電流経路257aを電気的に遮断できれば、第1電磁接触器251より制御部270に遮断状態を示す信号が通知される。しかしながら、第1電磁接触器251が接点溶着等の理由で通電状態を維持すると、第1電磁接触器251より制御部270に遮断できていない状態を示す信号が通知される。
 そこで制御部270は第1電磁接触器251に対する切断信号の出力の前後における第1電磁接触器251からの信号によって第1電磁接触器251の動作状態を判断する。第1電磁接触器251に対する切断信号の出力の前後において第1電磁接触器251からの信号によって、第1電磁接触器が遮断されていない状態の場合、制御部270は、OR回路264を介して第3電磁接触器253に切断信号を出力する。これにより、万が一第1電磁接触器251が動作不良となっても、第1電流経路257aを電気的に遮断することができる。
 第2電磁接触器252および第4電磁接触器254は第2電流経路257bに接続されており、いずれも第2電流経路257bを電気的に遮断するために用いられる。したがって、第1電流経路257aにおける第1電磁接触器251および第3電磁接触器253の場合と同様に、第2電磁接触器252または第4電磁接触器254のいずれか一方が接点溶着した場合もう一方に対して切断信号を出力する。
 このように、緊急停止スイッチのオフによる信号、マスター蓄電池管理部220からの停止信号、および蓄電池ユニット210の異常を示唆する信号を検知した場合における制御部270は、第1電磁接触器251および第2電磁接触器252の開閉制御を基本とするが、これらの電磁接触器に動作不良が生じた場合は第3電磁接触器253や第4電磁接触器254の開閉を制御することで、電流経路257の電気的な遮断の確実性を高めることができる。
 制御部270は、緊急停止スイッチのオフによる信号、マスター蓄電池管理部220からの停止信号、および蓄電池ユニット210の異常を示唆する信号を検知した場合において、第1電磁接触器251および第2電磁接触器252に対して切断信号を出力するときは、まず第1電磁接触器251と第2電磁接触器252とのいずれか一方の電磁接触器に切断信号を出力し、続いてもう一方の電磁接触器に切断信号を出力してもよい。例えば、制御部270は、第1電磁接触器251に切断信号を出力した後に、第2電磁接触器252に切断信号を出力する。電流経路257の切断順序を明確にすることにより、電圧センサ255や電流電圧センサ256の計測値の変動が予想しやすくなり、各電磁接触器の動作状態を推測しやすくなる。
 また、第1電流経路257aに設けられた第1電磁接触器251と第2電流経路257bに設けられた第2電磁接触器252とがそれぞれ配置されている。第1電磁接触器251と第2電磁接触器252とがそれぞれ配置され、両者を遮断することで、遮断した際の第1電流経路257aおよび第2電流経路257bの両方の経路における安全性を確保することができる。
 電磁接触器は一般に極性を持たないものが多く、極性を意識せずに電流経路に接続できる場合が多い。しかしながら、上述したように、実施の形態に係る蓄電池ユニット210は大容量であり、大出力が可能である。実施の形態に係る蓄電池ユニット210の出力を遮断するのに適した電磁接触器は、極性を持つものが多い。そこで、第1電磁接触器251、第2電磁接触器252、第3電磁接触器253、および第4電磁接触器254はそれぞれ、単独の電磁接触器ではなく、極性の異なったふたつ電磁接触器を並列に接続して構成してもよい。これにより、各電磁接触器の遮断精度を高めることができる。
 以上説明したように、実施の形態に係るスイッチモジュール250および制御部270から構成されるスイッチング装置によれば、電力を遮断するためのブレーカの代替技術を提供することができる。
 一般にブレーカは過大電流の遮断を目的とするが、実施の形態に係るスイッチング装置はブレーカの機能を電磁接触器と制御部との組み合わせで代替することで、過大電流以外の種々の異常を示唆する信号を契機として電流経路を遮断することができる。また、ブレーカがブレーカトリップした場合と異なり、ユーザは遠隔操作によって電流経路を復帰することが可能となる。また、ブレーカを使用する場合と比較して省スペース化やコスト削減に資する。
 以上、本発明を実施の形態をもとに説明した。この実施の形態は例示であり、それらの各構成要素や各処理プロセスの組み合わせにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
(第1の変形例)
 上記では、マスター蓄電池管理部220が、双方向パワーコンディショナ400との間の通信異常の場合に第1電磁接触器251および第2電磁接触器252に切断信号を送信する場合について説明した。配電システムの構成によっては、マスター蓄電池管理部220が存在しないことも想定される。そのようなシステム構成の場合、制御部270が双方向パワーコンディショナ400と通信をする。制御部270は、双方向パワーコンディショナ400との間の通信異常が生じた場合、第1電磁接触器251および第2電磁接触器252に切断信号を送信する。この意味で、双方向パワーコンディショナ400との間の通信異常も、上述した「異常を示唆する信号」のひとつとして考えることもできる。
 また、マスター蓄電池管理部220が存在する場合であっても、制御部270がマスター蓄電池管理部220から通信異常を示唆する信号を受け取り、第1電磁接触器251および第2電磁接触器252に切断信号を送信してもよい。各電磁接触器の開閉制御を制御部270に一元化でき、開閉制御が単純化される点で効果がある。
 また各電磁接触器の開閉制御を制御部270に一元化する場合、制御部270は、通信異常を示唆する信号を受け取った場合に第3電磁接触器253および第4電磁接触器254に切断信号を出力するようにしもよい。この場合、第3電磁接触器253および第4電磁接触器254が動作不良のときには第1電磁接触器251および第2電磁接触器252に切断信号を送信する。各電磁接触器の開閉制御の順序が一元化されるので、開閉制御が単純化される点で効果がある。
(第2の変形例)
 上記では、電磁接触器は、通常状態ではバネ等の付勢力によって接触子が電流経路を接続しているが、電磁石に電力が供給されると付勢力よりも大きな磁力によって接触子が電磁石に引き寄せられ、電流経路が切断される場合について説明した。電磁接触器はこの場合に限られず、通常状態ではバネ等の付勢力によって接触子が電流経路から離れているが、電磁石に電力が供給されると付勢力よりも大きな磁力によって接触子が電磁石に引き寄せられ、電流経路と接続される種類の電磁接触器存在する。このような電磁接触器を用いても、本発明は成立する。
(第3の変形例)
 上記では、第1電流経路257a上に第1電磁接触器251と直列に接続する第3電磁接触器253が接続されるとともに、第2電流経路257b上に第2電磁接触器252と直列に接続する第4電磁接触器254が接続されている場合について説明した。ここで、第1電流経路257aと第2電流経路257bとがともに、ふたつの直列した電磁接触器を備えることは必ずしも必要ではない。少なくともいずれか一方の電流経路257上においてふたつの直列した電磁接触器を備えていればよい。
 上述したとおり、緊急停止スイッチのオフによる信号、マスター蓄電池管理部220からの停止信号、および蓄電池ユニット210の異常を示唆する信号を検知しない通常時には、制御部270は、第3電磁接触器253または第4電磁接触器254の開閉制御を実行し、蓄電池ユニット210の充放電制御のために遮断、通電を切り替える。このように、蓄電池ユニット210の充放電制御の利用が目的であれば、第3電磁接触器253と第4電磁接触器254とのうち少なくともいずれか一方において電流経路257を切断するだけでもよい。
 図6は、実施の形態の第3の変形例に係るスイッチモジュール250の回路構成を模式的に示す図である。図6に示す例は、図5に示す例と比較して、第2電流経路257b上に第4電磁接触器254が接続されていない点で異なるが、他の構成は同様である。図6に示すように、第1電流経路257a上における第1電磁接触器251には、第3電磁接触器253が直列に接続されている。一方、第2電流経路257b上における第2電磁接触器252に対して、いずれの電磁接触器も直列に接続されていない。
 第3の変形例に係る制御部270は、緊急停止スイッチのオフによる信号、マスター蓄電池管理部220からの停止信号、および蓄電池ユニット210の異常を示唆する信号を検知しない通常時には第3電磁接触器253の開閉を制御して、蓄電池ユニット210の充放電を制御する。また蓄電池ユニット210の異常を示唆する信号を検知した場合において、第1電磁接触器251とが接点溶着等の理由で第1電流経路257aの遮断ができなくなった場合、第3電磁接触器253に対して切断信号を出力する。
 図6は、第1電流経路257a上において第1電磁接触器251と第3電磁接触器253とが直列に接続されている場合の例を示す図である。この他、第2電流経路257b上における第2電磁接触器252に電磁接触器が直列に接続し、第1電磁接触器251にはいずれの電磁接触器も直列に接続されなくてもよい。
 なお、本実施の形態に係る発明は、以下に記載する項目によって特定されてもよい。
(項目1)
 蓄電池と接続可能な電流経路上に配置され、電流経路を電気的に接続または切断する電磁接触器と、
 前記電磁接触器の動作を制御する制御部とを備え、
 前記制御部は、
 (1)前記電磁接触器が電流経路を接続している場合において前記電流経路を切断させることを指示するための切断信号を前記電磁接触器に出力するときは、起動したまま切断信号を出力し、
 (2)前記電磁接触器が前記電流経路を切断している場合において前記電流経路を接続させることを指示するための接続信号を前記電磁接触器に出力する前に再起動する、
 ことを特徴とするスイッチング装置。
(項目2)
 前記制御部は、緊急停止スイッチのオフによる信号又はマスター蓄電池管理部220からの停止信号又は蓄電池の異常を示唆する信号を検知した場合、前記切断信号を出力することを特徴とする項目1に記載のスイッチング装置。
(項目3)
 前記電磁接触器は、極性の異なったふたつ電磁接触器を並列に接続して構成されていることを特徴とする項目1または2に記載のスイッチング装置。
(項目4)
 前記電流経路は、蓄電池の正極端子と接続する第1電流経路と、蓄電池の負極端子と接続する第2電流経路とを備え、
 前記電磁接触器は、前記第1電流経路上に配置される第1電磁接触器と、前記第2電流経路上に配置される第2電磁接触器とを備えていることを特徴とする請求項1から3のいずれかに記載のスイッチング装置。
(項目5)
 前記電流経路は、蓄電池の正極端子と接続する第1電流経路と、蓄電池の負極端子と接続する第2電流経路とを備え、
 前記電磁接触器は、前記第1電流経路上に配置される第1電磁接触器と、前記第2電流経路上に配置される第2電磁接触器とを備え、
 前記制御部は、蓄電池の異常を示唆する信号を検知した場合、前記第1電磁接触器と前記第2電磁接触器とのいずれか一方の電磁接触器に切断信号を出力した後、もう一方の電磁接触器に切断信号を出力することを特徴とする項目1から4のいずれかに記載のスイッチング装置。
(項目6)
 前記第1電流経路上における前記第1電磁接触器か、または前記第2電流経路上における前記第2電磁接触器の少なくともいずれか一方の電磁接触器と直列に接続する第3電磁接触器をさらに備え、
 前記制御部は、前記第3電磁接触器と直列に接続する電磁接触器が接点溶着した場合、前記第3電磁接触器に対して切断信号を出力することを特徴とする項目5に記載のスイッチング装置。
(項目7)
 蓄電池の異常を示唆する信号は、蓄電池の過放電を示唆する信号、蓄電池の過充電を示唆する信号、蓄電池の温度に関する信号、蓄電池が過電圧であることを示唆する信号、および電流経路を流れる電流が過電流であることを示唆する信号の少なくとも1つを含むことを特徴とする項目2から5のいずれかに記載のスイッチング装置。
(項目8)
 蓄電池と、
 前記蓄電池と接続可能な電流経路と、
 前記電流経路上に配置され、電流経路を電気的に接続または切断する電磁接触器と、
 前記電磁接触器の動作を制御する制御部とを備え、
 前記制御部は、
 (1)前記電磁接触器が電流経路を接続している場合において前記電流経路を切断させることを指示するための切断信号を前記電磁接触器に出力するときは、起動したまま切断信号を出力し、
 (2)前記電磁接触器が前記電流経路を切断している場合において前記電流経路を接続させることを指示するための接続信号を前記電磁接触器に出力する前に再起動する、
 ことを特徴とする蓄電池システム。
(項目9)
 前記制御部は、緊急停止スイッチのオフによる信号又はマスター蓄電池管理部220からの停止信号又は蓄電池の異常を示唆する信号を検知した場合、前記切断信号を出力することを特徴とする項目8に記載の蓄電池システム。
(項目10)
 前記電流経路は、蓄電池の正極端子と接続する第1電流経路と、蓄電池の負極端子と接続する第2電流経路とを備え、
 前記電磁接触器は、前記第1電流経路上に配置される第1電磁接触器と、前記第2電流経路上に配置される第2電磁接触器とを備えていることを特徴とする項目8または9に記載の蓄電池システム。
(項目11)
 前記電流経路は、蓄電池の正極端子と接続する第1電流経路と、蓄電池の負極端子と接続する第2電流経路とを備え、
 前記電磁接触器は、前記第1電流経路上に配置される第1電磁接触器と、前記第2電流経路上に配置される第2電磁接触器とを備え、
 前記制御部は、蓄電池の異常を示唆する信号を検知した場合、前記第1電磁接触器と前記第2電磁接触器とのいずれか一方の電磁接触器に切断信号を出力した後、もう一方の電磁接触器に切断信号を出力することを特徴とする項目8から10のいずれかに記載の蓄電池システム。
 N1 第1ノード、 N2 第2ノード、 N3 第3ノード、 N4 第4ノード、 100 配電システム、 200 蓄電池コンテナ、 210 蓄電池ユニット、 210a 第1蓄電池ユニット、 210b 第2蓄電池ユニット、 210c 第3蓄電池ユニット、 210d 第4蓄電池ユニット、 212 蓄電池パック、 214 蓄電池収容棚、 216a 第1仕切部、 216b 第2仕切部、 216c 第3仕切部、 220 マスター蓄電池管理部、 240 蓄電池システム、 250 スイッチモジュール、 250a 第1スイッチモジュール、 250b 第2スイッチモジュール、 250c 第3スイッチモジュール、 250d 第4スイッチモジュール、 251 第1電磁接触器、 252 第2電磁接触器、 253 第3電磁接触器、 254 第4電磁接触器、 255 電圧センサ、 256 電流電圧センサ、 257 電流経路、 257a 第1電流経路、 257b 第2電流経路、 258a 第1ヒューズ、 258b 第2ヒューズ、 260 蓄電池管理部、 260a 第1蓄電池管理部、 260b 第2蓄電池管理部、 260c 第3蓄電池管理部、 260d 第4蓄電池管理部、 264 OR回路、 270 制御部、 280 緊急停止スイッチ、 300 太陽電池、 400 双方向パワーコンディショナ、 410 双方向インバータ、 420 制御部、 430 DC/DCコンバータ、 430a 第1DC/DCコンバータ、 430b 第2DC/DCコンバータ、 430c 第3DC/DCコンバータ、 430d 第4DC/DCコンバータ、 440 太陽電池用DC/DCコンバータ、 500 系統電源、 600 負荷。
 本発明は、蓄電池と接続する電流経路を開閉するスイッチング装置に利用可能である。

Claims (11)

  1.  蓄電池と接続可能な電流経路上に配置され、電流経路を電気的に接続または切断する電磁接触器と、
     前記電磁接触器の動作を制御する制御部とを備え、
     前記制御部は、
     (1)前記電磁接触器が電流経路を接続している場合において前記電流経路を切断させることを指示するための切断信号を前記電磁接触器に出力するときは、起動したまま切断信号を出力し、
     (2)前記電磁接触器が前記電流経路を切断している場合において前記電流経路を接続させることを指示するための接続信号を前記電磁接触器に出力する前に再起動する、
     ことを特徴とするスイッチング装置。
  2.  前記制御部は、緊急停止スイッチのオフによる信号又はマスター蓄電池管理部220からの停止信号又は蓄電池の異常を示唆する信号を検知した場合、前記切断信号を出力することを特徴とする請求項1に記載のスイッチング装置。
  3.  前記電磁接触器は、極性の異なったふたつ電磁接触器を並列に接続して構成されていることを特徴とする請求項1または2に記載のスイッチング装置。
  4.  前記電流経路は、蓄電池の正極端子と接続する第1電流経路と、蓄電池の負極端子と接続する第2電流経路とを備え、
     前記電磁接触器は、前記第1電流経路上に配置される第1電磁接触器と、前記第2電流経路上に配置される第2電磁接触器とを備えていることを特徴とする請求項1から3のいずれかに記載のスイッチング装置。
  5.  前記電流経路は、蓄電池の正極端子と接続する第1電流経路と、蓄電池の負極端子と接続する第2電流経路とを備え、
     前記電磁接触器は、前記第1電流経路上に配置される第1電磁接触器と、前記第2電流経路上に配置される第2電磁接触器とを備え、
     前記制御部は、蓄電池の異常を示唆する信号を検知した場合、前記第1電磁接触器と前記第2電磁接触器とのいずれか一方の電磁接触器に切断信号を出力した後、もう一方の電磁接触器に切断信号を出力することを特徴とする請求項1から4のいずれかに記載のスイッチング装置。
  6.  前記第1電流経路上における前記第1電磁接触器か、または前記第2電流経路上における前記第2電磁接触器の少なくともいずれか一方の電磁接触器と直列に接続する第3電磁接触器をさらに備え、
     前記制御部は、前記第3電磁接触器と直列に接続する電磁接触器が接点溶着した場合、前記第3電磁接触器に対して切断信号を出力することを特徴とする請求項5に記載のスイッチング装置。
  7.  蓄電池の異常を示唆する信号は、蓄電池の過放電を示唆する信号、蓄電池の過充電を示唆する信号、蓄電池の温度に関する信号、蓄電池が過電圧であることを示唆する信号、および電流経路を流れる電流が過電流であることを示唆する信号の少なくとも1つを含むことを特徴とする請求項2から5のいずれかに記載のスイッチング装置。
  8.  蓄電池と、
     前記蓄電池と接続可能な電流経路と、
     前記電流経路上に配置され、電流経路を電気的に接続または切断する電磁接触器と、
     前記電磁接触器の動作を制御する制御部とを備え、
     前記制御部は、
     (1)前記電磁接触器が電流経路を接続している場合において前記電流経路を切断させることを指示するための切断信号を前記電磁接触器に出力するときは、起動したまま切断信号を出力し、
     (2)前記電磁接触器が前記電流経路を切断している場合において前記電流経路を接続させることを指示するための接続信号を前記電磁接触器に出力する前に再起動する、
     ことを特徴とする蓄電池システム。
  9.  前記制御部は、緊急停止スイッチのオフによる信号又はマスター蓄電池管理部220からの停止信号又は蓄電池の異常を示唆する信号を検知した場合、前記切断信号を出力することを特徴とする請求項8に記載の蓄電池システム。
  10.  前記電流経路は、蓄電池の正極端子と接続する第1電流経路と、蓄電池の負極端子と接続する第2電流経路とを備え、
     前記電磁接触器は、前記第1電流経路上に配置される第1電磁接触器と、前記第2電流経路上に配置される第2電磁接触器とを備えていることを特徴とする請求項8または9に記載の蓄電池システム。
  11.  前記電流経路は、蓄電池の正極端子と接続する第1電流経路と、蓄電池の負極端子と接続する第2電流経路とを備え、
     前記電磁接触器は、前記第1電流経路上に配置される第1電磁接触器と、前記第2電流経路上に配置される第2電磁接触器とを備え、
     前記制御部は、蓄電池の異常を示唆する信号を検知した場合、前記第1電磁接触器と前記第2電磁接触器とのいずれか一方の電磁接触器に切断信号を出力した後、もう一方の電磁接触器に切断信号を出力することを特徴とする請求項8から10のいずれかに記載の蓄電池システム。
PCT/JP2013/005571 2013-09-20 2013-09-20 スイッチング装置および蓄電池システム WO2015040655A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/005571 WO2015040655A1 (ja) 2013-09-20 2013-09-20 スイッチング装置および蓄電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/005571 WO2015040655A1 (ja) 2013-09-20 2013-09-20 スイッチング装置および蓄電池システム

Publications (1)

Publication Number Publication Date
WO2015040655A1 true WO2015040655A1 (ja) 2015-03-26

Family

ID=52688344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/005571 WO2015040655A1 (ja) 2013-09-20 2013-09-20 スイッチング装置および蓄電池システム

Country Status (1)

Country Link
WO (1) WO2015040655A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018509868A (ja) * 2014-12-16 2018-04-05 エービービー シュヴァイツ アクチェンゲゼルシャフト エネルギーパネル装置の電力消費
JP2020501299A (ja) * 2017-07-31 2020-01-16 エルジー・ケム・リミテッド バッテリー管理装置及びそれを含むバッテリーパック
CN110771051A (zh) * 2017-06-29 2020-02-07 陈彦伯 可供电力线通讯网络跨相位的无熔丝开关
CN114122595A (zh) * 2021-11-02 2022-03-01 国网湖北省电力有限公司宜昌供电公司 变电站直流***蓄电池模组安装及更换维护方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63220729A (ja) * 1987-03-06 1988-09-14 富士通株式会社 直流電力供給方式
JPH02123918A (ja) * 1988-10-28 1990-05-11 Kyocera Corp 逆接続防止回路
JPH05284671A (ja) * 1992-03-31 1993-10-29 Toshiba Corp 商用同期並列システム
JP2000156983A (ja) * 1998-11-18 2000-06-06 Meidensha Corp 太陽光発電システム
JP2013070441A (ja) * 2011-09-20 2013-04-18 Toshiba Corp 蓄電池装置及び蓄電池装置の運転方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63220729A (ja) * 1987-03-06 1988-09-14 富士通株式会社 直流電力供給方式
JPH02123918A (ja) * 1988-10-28 1990-05-11 Kyocera Corp 逆接続防止回路
JPH05284671A (ja) * 1992-03-31 1993-10-29 Toshiba Corp 商用同期並列システム
JP2000156983A (ja) * 1998-11-18 2000-06-06 Meidensha Corp 太陽光発電システム
JP2013070441A (ja) * 2011-09-20 2013-04-18 Toshiba Corp 蓄電池装置及び蓄電池装置の運転方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018509868A (ja) * 2014-12-16 2018-04-05 エービービー シュヴァイツ アクチェンゲゼルシャフト エネルギーパネル装置の電力消費
CN110771051A (zh) * 2017-06-29 2020-02-07 陈彦伯 可供电力线通讯网络跨相位的无熔丝开关
JP2020501299A (ja) * 2017-07-31 2020-01-16 エルジー・ケム・リミテッド バッテリー管理装置及びそれを含むバッテリーパック
US11056732B2 (en) 2017-07-31 2021-07-06 Lg Chem, Ltd. Battery management apparatus and battery pack including the same
CN114122595A (zh) * 2021-11-02 2022-03-01 国网湖北省电力有限公司宜昌供电公司 变电站直流***蓄电池模组安装及更换维护方法
CN114122595B (zh) * 2021-11-02 2023-06-02 国网湖北省电力有限公司宜昌供电公司 变电站直流***蓄电池模组安装及更换维护方法

Similar Documents

Publication Publication Date Title
CN102959824B (zh) 电源装置
WO2012050210A1 (ja) 蓄電システム及び制御装置
JP3364836B2 (ja) 電圧イコライザ装置およびその方法
US8193773B2 (en) Electronic system for a battery
US8829716B2 (en) Energy storage device for a power compensator and a method for control thereof
CN102742066A (zh) 强电流电池***以及用于控制强电流电池***的方法
CN107370168B (zh) 电能存储设备
WO2018123494A1 (ja) 電力供給装置、電力供給装置の制御方法、電力供給システム及び通信基地局バックアップシステム
JP6087675B2 (ja) 電池モジュール
WO2015040655A1 (ja) スイッチング装置および蓄電池システム
JP2016506710A (ja) バッテリをインバータに組み込むための安全概念
JP2013135533A (ja) 蓄電システム及び蓄電システムにおける給電方法
WO2010109688A1 (ja) 電気自動車用充電システム
JP6848075B2 (ja) 蓄電池装置
CN108155695B (zh) 电池单柜组并联充放电***与保护方法
JP4758196B2 (ja) 電力貯蔵装置
US20220077764A1 (en) Electric energy conversion and control device and energy storage system having the same
JP2022014988A (ja) 配電モジュール
US11277007B2 (en) Power conversion device, power system and method of suppressing reactive power in power system
KR102345354B1 (ko) 에너지 저장 시스템
JP5845408B2 (ja) 太陽光発電の給電システム
JP6772931B2 (ja) 電池パックの放電制御装置
JPH07107859B2 (ja) 燃料電池の放電制御回路
CN116250055A (zh) 直流电路开闭装置
CN117411101A (zh) 用于储能***的控制***及控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13893904

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13893904

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP