WO2015039629A1 - 凿岩装置推进力单向延迟响应方法及实现该方法的装置 - Google Patents

凿岩装置推进力单向延迟响应方法及实现该方法的装置 Download PDF

Info

Publication number
WO2015039629A1
WO2015039629A1 PCT/CN2014/087118 CN2014087118W WO2015039629A1 WO 2015039629 A1 WO2015039629 A1 WO 2015039629A1 CN 2014087118 W CN2014087118 W CN 2014087118W WO 2015039629 A1 WO2015039629 A1 WO 2015039629A1
Authority
WO
WIPO (PCT)
Prior art keywords
propulsion
drilling
rock drilling
control module
propulsive force
Prior art date
Application number
PCT/CN2014/087118
Other languages
English (en)
French (fr)
Inventor
童深根
约翰松•安德斯
洛夫格伦•迈克尔
奥曼•弗雷德里克
王强
Original Assignee
阿特拉斯科普柯(南京)建筑矿山设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 阿特拉斯科普柯(南京)建筑矿山设备有限公司 filed Critical 阿特拉斯科普柯(南京)建筑矿山设备有限公司
Publication of WO2015039629A1 publication Critical patent/WO2015039629A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B44/00Automatic control systems specially adapted for drilling operations, i.e. self-operating systems which function to carry out or modify a drilling operation without intervention of a human operator, e.g. computer-controlled drilling systems; Systems specially adapted for monitoring a plurality of drilling variables or conditions
    • E21B44/02Automatic control of the tool feed
    • E21B44/04Automatic control of the tool feed in response to the torque of the drive ; Measuring drilling torque

Definitions

  • the invention relates to the field of rock drill control, in particular to a method for unidirectional delay response of a rock drilling device propulsion force, and to a device for realizing the method.
  • Impact, propulsion, rotation and slagging are the four basic steps of the drilling operation of the rock drilling machine, mainly through the propulsion guiding device, the propulsion generating device, the rotating control module, the propulsion control module, the impact control module, the rock drilling machine and the drilling tool,
  • the rock drill further includes a rotating device and an impact device to perform the drilling operation.
  • the propulsion guiding device plays a guiding role in drilling, and the propulsion generating device generates a propulsive force acting on the rock drilling machine, so that the drilling tool is in close contact with the rock at the bottom of the hole, and the impact device generates intermittent impact work, and the drilling device intermittently passes through the drilling tool.
  • the rotating device will generate the rotating torque to make the drilling tool continuously rotate during the drilling process to make a new rock formation interface in the next impact, thus completing the rock drilling action.
  • the slagging device cleans the broken rock out of the orifice by using high pressure water or compressed air.
  • the output torque of the rotating device controls the propulsion force of the propulsion generating device in an inverse ratio.
  • the output torque of the rotating device is proportional to the propulsive force of the propulsion generating device.
  • An efficient rock drilling process maintains a substantially constant torque of the rotating device by controlling the amount of propulsive force of the propulsion generating device.
  • the operator can set the maximum propulsive force during drilling operations.
  • the working pressure of the rotating device can also be controlled by the working pressure of the rotating device.
  • the working pressure of the rotating device is set to have a maximum working preset value and an anti-card preset value when the rotating pressure exceeds the maximum working preset.
  • the actual propulsive force starts to decrease from the maximum value (the maximum propulsion setting value does not change at this time, but the maximum value does not reach the set value).
  • the operating pressure of the rotating device begins to decrease. The rock drilling system returns to normal operation.
  • the propulsion force of the propulsion generating device is stepped, and the corresponding rotating pressure also has a step (the rotating pressure exceeds the maximum working).
  • the preset value reaches the preset value of the stuck drill. That is, the step of pushing the pressure will cause the drill to not drill and rotate normally, so the stuck drill will occur, and the propulsion guide will be directly advanced (drilled). It becomes a retreat state, which is generally called "anti-card”.
  • the retreat of the propulsion device the constraints of the rock formation on the drilling tool are gradually reduced until disappearing, thereby also reducing the rotational pressure.
  • the rotational pressure is less than the preset value of the anti-card, the working pressure of the rotating device controls the propulsive force generating device to be retracted. The state changes to the forward state again.
  • FIG. 3 is a schematic diagram showing changes in propulsive force and rotational torque with time in the prior art.
  • the drill in the first stage, since the drill has no load and is not in contact with the rock, the drill passes approximately when it advances again. In the "void" state, the propulsion generating device runs forward at high speed without load.
  • the pushing pressure will increase stepwise, and the step of pushing the pressure also causes the step of the rotating pressure.
  • the step of pushing the pressure is easy to reach the preset value of the anti-card.
  • the drill cannot drill and rotate properly.
  • the advancement guide is changed from the forward (drilled) state to the reversed state. If you don't control it, the anti-card process will repeat, that is, "anti-card" again.
  • Card drilling and repeated anti-cards can affect the normal drilling work of the rock drill, reduce the rock drilling speed and production efficiency, and also cause irreparable damage to the rock drill and the drill, which shortens the actual service life and requires frequent replacement of the drill and Rock drill maintenance. Frequent replacement of the drill and maintenance of the rock drill are bound to increase the cost of rock drilling, and the step of pushing the pressure will also cause deviations in the straightness of the drill.
  • the prior art generally adopts a limit of the maximum propulsion speed to avoid the step of propelling the pressure, that is, when the drilling tool enters the hard rock from the cavity (soft rock) or enters the cavity (soft rock) from the hard rock.
  • the propulsion speed and the like are controlled to achieve the purpose of preventing stuck drilling.
  • an object of the present invention is to provide a one-way delay response method for a propulsion force that can effectively solve the problem of stuck and repeated anti-carding of a rock drill and protect the rock drilling device.
  • the present invention provides a method for unidirectional delay response of a rock drilling device propulsion force, the device comprising a propulsion guiding device, a propulsion generating device, a rotation control module, a propulsion control module, an impact control module, a rock drilling machine and a drilling tool
  • the rock drill further includes a rotating device and an impact device, and the method comprises the following steps:
  • the "step” referred to in this document is an instantaneous change in the index value.
  • the pressure is proportional to the amount of force that produces the pressure.
  • the propulsion pressure is also increased when the propulsive force is increased.
  • the propulsive force has a maximum preset value, and when the propulsive force reaches the maximum preset value, stopping the slow increase of the propulsive force and performing normal drilling according to the propulsion force of the maximum preset value.
  • the advancement guide is controlled to apply an instantaneously reduced propulsive force to the drill when the drill enters an unloaded state from a loaded state.
  • the change of propulsion choose the appropriate impact energy change program to increase the protection of the rock drill.
  • Another object of the present invention is to provide a rock drilling apparatus that realizes the above-described propulsion delay response method.
  • the present invention provides a rock drilling apparatus for implementing the above-described propulsion delay response method, including a propulsion guiding device, a propulsion generating device, a rotation control module, a propulsion control module, an impact control module, a rock drilling machine and a drilling tool.
  • the rock drilling machine further includes a rotating device for guiding a direction of drilling, and an impact device for generating a propulsive force acting on the rock drilling machine, the propulsion force
  • the generating device has a propulsion control module controlled by a rotating pressure, and the propulsion control module and the propulsion generating device constitute a propulsion circuit; wherein the generating device further includes a function for entering the loaded state when the drilling tool enters a loaded state from an unloaded state And controlling the propulsion generating device to apply a slowly increasing propulsive force to the drilling tool, the delay response device being disposed on the propulsion generating device and coupled to the propulsion circuit.
  • the propulsive force has a maximum preset value
  • the delay response device stops the propulsive force that slowly increases the propulsive force according to the maximum preset value when the propulsive force reaches the maximum preset value. Perform normal drilling.
  • the time delay response device is a hydraulic accumulator or a hydraulic control module or an electrical control module.
  • the delay response device can increase the thrust pressure to the maximum value smoothly and slowly, and the rotating pressure will recover slowly and slowly. It can be called “secondary opening”, which has the advantages of solving the problem of stuck and repeated anti-card, ensuring normal drilling work of rock drill, improving rock drilling speed, drilling precision and production efficiency, and reducing the pair. The damage of the rock drill and the drilling tool greatly reduces the cost of rock drilling;
  • the present invention does not require rapid setting of the propulsion speed according to the condition of the rock formation, and the control method is simple and easy to operate.
  • FIG. 1 is a flow chart of a method for unidirectional delay response of a rock drilling device according to the present invention.
  • FIG. 2 is a schematic view showing the principle of a one-way delay response method of a rock drilling device according to the present invention.
  • Fig. 3 is a schematic view showing changes in propulsive force and rotational torque with time in the prior art.
  • Fig. 4 is a view showing changes in propulsive force and rotational torque with time after the propulsion unidirectional delay response method of the present invention is employed.
  • Figure 5 is a schematic view showing the composition of the rock drilling apparatus of the present invention.
  • Propulsion guiding device 2. Propulsion generating device, 202, propulsion control module, 3. Rock drilling machine, 301, impact device, 302, rotating device, 303, impact control module, 304, rotation control module, 4. Drilling tool, 5. Delay response device, 6. Pressure oil supply device.
  • the rock drilling apparatus for implementing the propulsion delay response method of the present invention comprises a propulsion guiding device 1, a propulsion generating device 2, a rock drilling machine 3 and a drilling tool 4, and the propulsion guiding device 1 is used.
  • the propulsion generating device 2 is configured to generate a function a propulsion force on the rock drilling machine 3, the propulsion force generating device 2 has a propulsion control module 202 controlled by a rotary pressure, and the propulsion control module 202 and the propulsion force generating device 2 constitute a propulsion circuit;
  • the delay guiding device 5 that applies the slowly increasing propulsive force to the drilling tool 4 is controlled, and the delay response device 5 is set.
  • the propulsion generating device 2 is connected to the propulsion circuit.
  • the propulsion guide 1 serves as a guide during drilling, and the propulsion generating device 2 generates a propulsive force acting on the rock drilling machine 3, so that the drilling tool 4 is in close contact with the rock at the bottom of the hole, and is disposed on the rock drilling machine.
  • the impact device 301 on 3 generates intermittent impact work, intermittently impacting the rock formation by the drill 4, while the rotating device 302 on the rock drill 3 generates a rotational torque to continuously rotate the drill 4 during the drilling process, thereby Complete the rock drilling action.
  • the rotation control module 304 in the present invention is for monitoring the rotational torque applied by the rotating device 302 to the drilling tool 4 and controlling the magnitude of the propulsion force of the propulsion control module 202, and the corresponding propulsion control module 202 is configured to monitor the propulsion pressure of the propulsion generating device 2
  • the size, direction, and pressure oil supply device 6 are used to provide the pressure oil required for the drilling operation.
  • FIG. 1 is a method for unidirectional delay response of a rock drilling device according to the present invention. As shown in FIG. 1, the method includes the following steps:
  • the propulsion guiding device 1 is controlled to apply a slowly increasing propulsive force to the drilling tool 4.
  • the propulsive force has a maximum preset value
  • the propulsion pressure also has a maximum preset value.
  • 4 is a schematic diagram showing changes in propulsive force and rotational torque with time after the propulsion unidirectional delay response method of the present invention is used. As shown in FIG. 4, when the propulsion pressure is a standby value, it is judged that the drilling tool 4 enters a cavity, and is in No load state (region 1 in Fig. 4 indicates no change in propulsive force); and when the magnitude of the rotational pressure increases, it is judged that the drill 4 has entered a loaded state from a no-load (void) state (hard Rock), the region 2 shown in Fig.
  • the delay response device 5 Stop the propulsive force that slowly increases the propulsive force and follows this maximum preset value Normal drilling is performed, corresponding to the area 3 in FIG.
  • the delay response device 5 provided on the propulsion circuit performs control, but does not affect the step reduction of the propulsion pressure, and the propulsive force generated by the propulsive force to the device 2 instantaneously decreases from the maximum preset value (S4)
  • the instantaneous decrease in propulsion force causes the rotation control module 304 to respond, causing the rotational torque of the rotating device 302 to also instantaneously decrease. Corresponds to area 4 in Figure 4.
  • the delay response device 5 of the present invention may be a hydraulic accumulator or a hydraulic control module or an electrical control module.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Earth Drilling (AREA)

Abstract

一种凿岩装置推进力单向延迟响应方法以及实现该推进力延时响应方法的凿岩装置,该凿岩装置包括推进导向装置(1)、推进控制模块(202)和钻具(4),该方法包含以下步骤:1)通过旋转控制模块(304)监测所述旋转装置(302)的扭矩的大小;2)由所述扭矩的大小变化确定钻具(4)的负载状态;3)当所述钻具(4)由无负载状态进入有负载状态时,控制推进力发生装置(2)对钻具(4)施加缓慢增加的推进力。所述凿岩装置及推进力延时响应方法解决了卡钻和反复反卡的问题,确保凿岩机(3)的正常钻进工作、提高了凿岩速度、钻孔精度和生产效率,降低了对凿岩机(3)和钻具(4)的损害,使凿岩成本大大降低。

Description

凿岩装置推进力单向延迟响应方法及实现该方法的装置 技术领域
本发明涉及凿岩机控制领域,尤其涉及一种凿岩装置推进力单向延迟响应方法,本发明还涉及一种实现该方法的装置。
背景技术
冲击、推进、回转和排渣是凿岩机钻孔工作的四个基本环节,其主要通过推进导向装置、推进力发生装置、旋转控制模块、推进控制模块、冲击控制模块、凿岩机和钻具,所述凿岩机又包括旋转装置和冲击装置来实现钻孔动作。推进导向装置在钻孔时起导向作用,推进力发生装置则产生作用于凿岩机上的推进力,从而使钻具与孔底岩石紧密地接触,冲击装置产生间歇性的冲击功,通过钻具间歇性的冲击岩层,与此同时旋转装置会产生旋转扭矩使钻具在钻孔过程中连续回转使下次冲击时为新的岩层界面,从而完成凿岩动作。排渣装置通过使用高压水或者压缩空气使破碎的岩石清理到孔口外。
一般的,旋转装置的输出扭矩以反比的方式控制推进力发生装置推进力的大小。旋转装置的输出扭矩和推进力发生装置的推进力成正比的关系。高效的凿岩过程是通过控制推进力发生装置的推进力的大小来保持旋转装置扭矩的基本恒定。在钻孔作业时,操作人员可以设定最大的推进力。在实际的应用中,还可以用旋转装置的工作压强控制推进力发生装置的推进压强旋转装置的工作压强设定有最大工作预设值和防卡预设值,当旋转压强超过最大工作预设值时,实际的推进力开始从最大值减小(此时最大的推进力设定值不变,只是最大值达不到设定值)。正常情况下,一旦推进力减小,旋转装置的工作压强就开始减小。凿岩***回归正常作业状态。
然而由于实际钻孔环境中岩层状况的不均匀,还存在以下问题:
当钻具从空洞、软岩、夹层(无负载)撞击到硬岩(有负载)时,推进力发生装置的推进压强发生阶跃,相应的旋转压强也会发生阶跃(旋转压强超过最大工作预设值)而达到卡钻预设值。即推进压强的阶跃会导致钻具不能正常钻进和旋转,因而发生卡钻,推进导向装置由前进(钻进)状态直接 变为后退状态,一般称这种情况称为“反卡”。在推进导向装置后退过程中,岩层对钻具的约束逐渐减小直至消失,从而也使旋转压强减小,旋转压强小于防卡预设值时,旋转装置的工作压强控制推进力发生装置由后退状态再次变为前进状态。
图3为现有技术中推进力、旋转扭矩随时间变化的示意图,如图2所示,在第①阶段时,由于钻具上无负载也未和岩石接触,因此钻具再次前进时近似通过“空洞”状态,推进力发生装置在无负载的情况下高速向前运行。在第②阶段时,当钻具再次撞击到硬岩,推进压强将阶跃升高,推进压强的阶跃也引起旋转压强的阶跃,推进压强的阶跃很容易达到防卡预设值导致钻具不能正常钻进和旋转。发生卡钻后的第③阶段,推进导向装置由前进(钻进)状态变为后退状态。如果不控制的话,反卡过程会重复出现,即再次“反卡”。
卡钻和重复的反卡会影响凿岩机的正常钻进工作、降低凿岩速度和生产效率,还会对凿岩机和钻具产生不可恢复的损害,使其实际使用寿命缩短,需要经常更换钻具和凿岩机维护。钻具的频繁更换和凿岩机维护势必会使凿岩成本增加,同时推进压强的阶跃还会导致钻孔直线度产生偏差。为了解决这一技术问题,现有技术中通常采用限制最大的推进速度来避免推进压强的阶跃,即在钻具由空洞(软岩)进入硬岩或者由硬岩进入空洞(软岩)时对推进速度等进行控制,从而达到防止卡钻的目的。但是这样的***设置往往比较复杂,成本较高,同一推进速度并不能适用于不同岩层状况下的钻进工作。当岩层状况变化时,需要随时根据岩层状况快速设定不同的推进速度,操作比较复杂,而且多数情况下只有经验丰富的操作人员才能胜任。
发明内容
鉴于现有技术存在的上述问题,本发明的目的在于提供一种可以有效解决凿岩机的卡钻及重复的反卡问题并保护凿岩装置的推进力单向延迟响应方法。
为了实现上述目的,本发明提供的一种凿岩装置推进力单向延迟响应方法,该装置包括推进导向装置、推进力发生装置、旋转控制模块、推进控制模块、冲击控制模块、凿岩机和钻具,所述凿岩机又包括旋转装置和冲击装置,该方法包含以下步骤:
1)通过所述旋转控制模块监测所述旋转装置的扭矩的大小以确定旋转压强的大小;
2)由所述旋转压强的大小变化确定所述钻具的负载状态:当所述旋转压强的大小发生增加时,即判断所述钻具已由无负载状态进入有负载状态;当所述旋转压强的大小发生阶跃减小时,即判断所述钻具已由有负载状态进入无负载状态;
3)当所述钻具由无负载状态进入有负载状态时,控制所述推进力发生装置对所述钻具施加缓慢增加的推进力。
本申请文件中所说的“阶跃”是指数值发生瞬间剧烈变化。而根据常识,压强与产生该压强的力的大小成正比。同样地,本申请中在确定推进压强时,依照的正是推进力增大时推进压强也会增大这一基本原理。
作为优选,所述推进力具有一最大预设值,当所述推进力达到此最大预设值时,停止缓慢增加所述推进力并按照此最大预设值的推进力进行正常钻孔。
作为优选,当所述钻具由有负载状态进入无负载状态时,控制所述推进导向装置对所述钻具施加瞬时减小的推进力。根据推进力的变化,选择合适冲击功变化方案,增加对凿岩机的保护。
本发明的另一个目的在于提供一种实现上述推进力延时响应方法的凿岩装置。
为了实现上述目的,本发明提供的一种实现上述推进力延时响应方法的凿岩装置,包括推进导向装置、推进力发生装置、旋转控制模块、推进控制模块、冲击控制模块、凿岩机和钻具,所述凿岩机又包括旋转装置和冲击装置,所述推进导向装置用于在钻孔时起导向作用,所述推进力发生装置用于产生作用于所述凿岩机上的推进力,所述推进力发生装置具有一由旋转压强控制的推进控制模块,所述推进控制模块与所述推进力发生装置构成推进回路;其中,还包括一用于在所述钻具由无负载状态进入有负载状态时,控制所述推进力发生装置对所述钻具施加缓慢增加的推进力的延时响应装置,所述延时响应装置设置在所述推进力发生装置上并连接入所述推进回路。
作为优选,所述推进力具有一最大预设值,所述延时响应装置在所述推进力达到此最大预设值时,停止缓慢增加所述推进力并按照此最大预设值的推进力进行正常钻孔。
作为优选,所述延时响应装置为液压蓄能器或者为一液压控制模块或一电器控制模块。
本发明的凿岩装置推进力单向延迟响应方法及实现该方法的装置具有以下有益效果:
(1)当钻具由空洞(无负载状态)撞击到硬岩(有负载状态),延时响应装置能使推进压强平稳缓慢的增加到最大值,此时旋转压强将平稳缓慢恢复,此过程可以称为“二次开孔”,其优势在于,解决了卡钻和重复的反卡的问题,确保凿岩机进行正常钻进工作、提高了凿岩速度、钻孔精度和生产效率,降低了对凿岩机和钻具的损害,使凿岩成本大大降低;
(2)当“反卡”消失,或者钻具(由硬岩)进入空洞或软岩时,推进压强迅速阶跃减小,钻进速度并不限制,可以提高钻孔效率;
(3)本发明不需要根据岩层情况对推进速度进行快速设定,控制方式简单易操作。
附图说明
图1为本发明的凿岩装置推进力单向延迟响应方法的流程图。
图2为本发明的凿岩装置推进力单向延迟响应方法的原理示意图。
图3为现有技术中推进力、旋转扭矩随时间变化的示意图。
图4为采用了本发明的推进力单向延迟响应方法后推进力、旋转扭矩随时间变化的示意图。
图5为本发明的凿岩装置组成示意图。
主要附图标记:
1、推进导向装置,2、推进力发生装置,202、推进控制模块,3、凿岩机,301、冲击装置,302、旋转装置,303、冲击控制模块,304、旋转控制模块,4、钻具,5、延时响应装置,6、压力油供给装置。
具体实施方式
以下结合附图对本发明的技术方案做进一步详细的说明。
如图5和图2所示,本发明的实现推进力延时响应方法的凿岩装置,包括推进导向装置1、推进力发生装置2、凿岩机3和钻具4,所述推进导向装置1用于在钻孔时起导向作用,所述推进力发生装置2用于产生作用于所述 凿岩机3上的推进力,所述推进力发生装置2具有一由旋转压强控制的推进控制模块202,所述推进控制模块202与所述推进力发生装置2构成推进回路;其中,还包括一用于在所述钻具由无负载状态进入有负载状态时,控制所述推进导向装置1对所述钻具4施加缓慢增加的推进力的延时响应装置5,所述延时响应装置5设置在所述推进力发生装置2上并连接入所述推进回路。如上所述,推进导向装置1在钻孔时起导向作用,推进力发生装置2则产生作用于凿岩机3上的推进力,从而使钻具4与孔底岩石紧密地接触,设置于所述凿岩机3上的冲击装置301产生间歇性的冲击功,通过钻具4间歇性的冲击岩层,与此同时凿岩机3上的旋转装置302会产生旋转扭矩使钻具4在钻孔过程中连续回转,从而完成凿岩动作。本发明中的旋转控制模块304用于监测旋转装置302向钻具4施加的旋转扭矩并控制推进控制模块202推进力的大小,相应的推进控制模块202用于监测推进力发生装置2的推进压强的大小、方向,压力油供应装置6用于提供钻孔作业所需的压力油。
图1所示为本发明的凿岩装置推进力单向延迟响应方法,如图1所示,该方法包含以下步骤:
1)通过所述旋转控制模块304监测所述旋转装置302的扭矩的大小以确定旋转压强的大小(S1);
2)由旋转控制模块304根据所述旋转压强的大小变化确定所述钻具4的负载状态(S2):当所述旋转压强的大小发生增加时,即判断所述钻具已由无负载状态进入有负载状态;当所述旋转压强的大小发生阶跃减小时,即判断所述钻具已由有负载状态进入无负载状态;
3)当所述钻具4由无负载状态(空洞或软岩)进入有负载状态(硬岩)时,控制所述推进导向装置1对所述钻具4施加缓慢增加的推进力。
在本发明中,推进力具有一最大预设值,同时推进压强也具有最大预设值。图4为采用了本发明的推进力单向延迟响应方法后推进力、旋转扭矩随时间变化的示意图,如图4所示,当推进压强为待机值时,即判断钻具4进入空洞,处于无负载状态(图4中区域①表示出推进力也无变化);而当所述旋转压强的大小发生增加时,即判断所述钻具4已由无负载(空洞)状态进入有负载状态(硬岩),图4中表示出的区域②已经过缓变处理,因此推进力出现缓慢上升的态势,并未发生阶跃;当判断所述推进力达到此最大预设值时,延迟响应装置5停止缓慢增加所述推进力并按照此最大预设值的推进力 进行正常钻孔,对应图4中的区域③;而当所述旋转压强的大小发生阶跃减小时,即判断所述钻具4已由有负载状态(硬岩)进入无负载状态(空洞或软岩),推进回路上设置的延时响应装置5进行控制,但并不影响推进压强的阶跃减小,推进力发生向装置2的推进力会从最大预设值瞬时减小(S4),推进力的瞬时减小会使旋转控制模块304响应,致使旋转装置302的旋转扭矩也瞬时减小。对应图4中的区域④。
具体的,本发明的所述的延时响应装置5可以为液压蓄能器或者为一液压控制模块或一电器控制模块。
以上所述仅是发明的优选实施方式的描述,应当指出,由于文字表达的有限性,而在客观上存在无限的具体结构,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (7)

  1. 一种凿岩装置推进力单向延迟响应方法,该凿岩装置包括推进导向装置、推进力发生装置、旋转控制模块、推进控制模块、冲击控制模块、凿岩机和钻具,所述凿岩机又包括旋转装置和冲击装置,,该方法包含以下步骤:
    1)通过所述旋转控制模块监测所述旋转装置的扭矩的大小以确定旋转压强的大小;
    2)由所述旋转压强的大小变化确定所述钻具的负载状态:当所述旋转压强的大小发生增加时,即判断所述钻具已由无负载状态进入有负载状态;当所述旋转压强的大小发生阶跃减小时,即判断所述钻具已由有负载状态进入无负载状态;
    3)当所述钻具由无负载状态进入有负载状态时,控制所述推进力发生装置对所述钻具施加缓慢增加的推进力。
  2. 如权利要求1所述的凿岩装置推进力单向延迟响应方法,其特征在于,所述推进力具有一最大预设值,当所述推进力达到此最大预设值时,停止缓慢增加所述推进力并按照此最大预设值的推进力进行正常钻孔。
  3. 如权利要求1所述的凿岩装置推进力单向延迟响应方法,其特征在于,当所述钻具由有负载状态进入无负载状态时,控制所述推进力发生装置对所述钻具施加瞬时减小的推进力。
  4. 一种实现权利要求1至4任一项所述的凿岩装置推进力延时响应方法的凿岩装置,包括推进导向装置、推进力发生装置、旋转控制模块、推进控制模块、冲击控制模块、凿岩机和钻具,所述凿岩机又包括旋转装置和冲击装置,所述推进导向装置用于在钻孔时起导向作用,所述推进力发生装置用于产生作用于所述凿岩机上的推进力,所述推进力发生装置具有一由旋转压强控制的推进控制模块,所述推进控制模块与所述推进力发生装置构成推进回路;其中,还包括一用于在所述钻具负载状态变化时,控制所述推进力发生装置对所述钻具施加单向缓慢增加的推进力的延时响应装置,所述延时响应装置设置在所述推进力发生装置上并连接入所述推进回路。
  5. 如权利要求4所述的凿岩装置,其特征在于,所述推进力具有一最大预设值,所述延时响应装置在所述推进力达到此最大预设值时,停止缓慢增加所述推进力并按照此最大预设值的推进力进行正常钻孔。
  6. 如权利要求4所述的凿岩装置,其特征在于,所述延时响应装置为一液压控制模块或一电器控制模块。
  7. 如权利要求4所述的凿岩装置,其特征在于,所述延时响应装置为液压蓄能器。
PCT/CN2014/087118 2013-09-23 2014-09-22 凿岩装置推进力单向延迟响应方法及实现该方法的装置 WO2015039629A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310436780.XA CN103470181B (zh) 2013-09-23 2013-09-23 凿岩装置推进力单向延迟响应方法及实现该方法的装置
CN201310436780.X 2013-09-23

Publications (1)

Publication Number Publication Date
WO2015039629A1 true WO2015039629A1 (zh) 2015-03-26

Family

ID=49795206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/087118 WO2015039629A1 (zh) 2013-09-23 2014-09-22 凿岩装置推进力单向延迟响应方法及实现该方法的装置

Country Status (2)

Country Link
CN (1) CN103470181B (zh)
WO (1) WO2015039629A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111720107A (zh) * 2020-06-29 2020-09-29 中国铁建重工集团股份有限公司 一种钻机推进控制***及方法、钻杆

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103470181B (zh) * 2013-09-23 2015-07-08 阿特拉斯科普柯(南京)建筑矿山设备有限公司 凿岩装置推进力单向延迟响应方法及实现该方法的装置
CN103821451B (zh) * 2014-02-28 2017-04-12 金川集团股份有限公司 凿岩机防卡钎液压控制***

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001033043A1 (en) * 1999-11-03 2001-05-10 Atlas Copco Rock Drills Ab Method and device of controlling a rock drilling machine
WO2003050388A1 (en) * 2001-12-07 2003-06-19 Sandvik Tamrock Oy Method and equipment for controlling operation of rock drilling apparatus
WO2010042050A1 (en) * 2008-10-10 2010-04-15 Atlas Copco Rock Drills Ab A method and an arrangement for controlling a rock drill
CN202531014U (zh) * 2012-01-20 2012-11-14 中船重工中南装备有限责任公司 一种液压凿岩机的可调凿岩控制***
CN202718623U (zh) * 2012-07-19 2013-02-06 山河智能装备股份有限公司 一种切削钻机关键凿岩动作单泵液压控制回路
CN102926657A (zh) * 2012-11-19 2013-02-13 无锡市京锡冶金液压机电有限公司 一种岩凿机液压推进回路与回转回路串联防卡方法
CN102943644A (zh) * 2012-11-19 2013-02-27 无锡市京锡冶金液压机电有限公司 一种岩凿机推进回路液压防卡方法
CN103470181A (zh) * 2013-09-23 2013-12-25 阿特拉斯科普柯(南京)建筑矿山设备有限公司 凿岩装置推进力单向延迟响应方法及实现该方法的装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1035926A (en) * 1962-05-04 1966-07-13 Wolstan C Ginies Entpr Proprie Earth drilling machine
US3910358A (en) * 1974-07-05 1975-10-07 Koehring Co Horizontal earth boring machine
CN201013351Y (zh) * 2007-01-29 2008-01-30 中国人民解放军63983部队 钻机防卡液压装置
WO2010151242A1 (en) * 2009-06-26 2010-12-29 Atlas Copco Rock Drills Ab Control system and rock drill rig
CN202867386U (zh) * 2012-11-14 2013-04-10 中煤科工集团重庆研究院 钻装机液压防卡钎控制***

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001033043A1 (en) * 1999-11-03 2001-05-10 Atlas Copco Rock Drills Ab Method and device of controlling a rock drilling machine
WO2003050388A1 (en) * 2001-12-07 2003-06-19 Sandvik Tamrock Oy Method and equipment for controlling operation of rock drilling apparatus
WO2010042050A1 (en) * 2008-10-10 2010-04-15 Atlas Copco Rock Drills Ab A method and an arrangement for controlling a rock drill
CN202531014U (zh) * 2012-01-20 2012-11-14 中船重工中南装备有限责任公司 一种液压凿岩机的可调凿岩控制***
CN202718623U (zh) * 2012-07-19 2013-02-06 山河智能装备股份有限公司 一种切削钻机关键凿岩动作单泵液压控制回路
CN102926657A (zh) * 2012-11-19 2013-02-13 无锡市京锡冶金液压机电有限公司 一种岩凿机液压推进回路与回转回路串联防卡方法
CN102943644A (zh) * 2012-11-19 2013-02-27 无锡市京锡冶金液压机电有限公司 一种岩凿机推进回路液压防卡方法
CN103470181A (zh) * 2013-09-23 2013-12-25 阿特拉斯科普柯(南京)建筑矿山设备有限公司 凿岩装置推进力单向延迟响应方法及实现该方法的装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111720107A (zh) * 2020-06-29 2020-09-29 中国铁建重工集团股份有限公司 一种钻机推进控制***及方法、钻杆

Also Published As

Publication number Publication date
CN103470181A (zh) 2013-12-25
CN103470181B (zh) 2015-07-08

Similar Documents

Publication Publication Date Title
RU2426872C1 (ru) Режим автоматического бурения с постоянным параметром с управлением по производной давления
US8388276B2 (en) Machine tool
WO2015039629A1 (zh) 凿岩装置推进力单向延迟响应方法及实现该方法的装置
WO2017005197A1 (zh) 液力柔振提速钻具
CN103506662A (zh) 一种钻孔深度自动控制的钻孔设备
JP2006035417A (ja) クリーニング作業が可能な正送り機械加工工具
WO2009062725A3 (en) Methods of drilling with a downhole drilling machine
US10413974B2 (en) Intuitive, adaptive drilling function
US10583582B2 (en) Intelligent surface detection and core drilling start
CN106468137A (zh) 一种提高旋挖钻机动力头工作速度的控制***及方法
CN104832298A (zh) 一种发动机档位控制***和旋挖钻机
CN104763329B (zh) 一种凿岩台车的推进梁正位随动机构
SE535418C2 (sv) Metod och system för styrning av en kompressor vid en bergborrningsanordning samt bergborrningsanordning
WO2018000211A8 (en) Drilling energy calculation based on transient dynamics simulation and its application to drilling optimization
WO2015067131A1 (zh) 根据推进力控制凿岩***的冲击功的方法以及装置
CN107017819A (zh) 一种高压变频器的暂态故障穿越控制方法及***
CN202417468U (zh) 一种旋挖钻机及其加压力与扭矩匹配装置
CN106949108A (zh) 凿岩机防空冲击液压***及控制方法
CN111636858A (zh) 一种防卡钎控制方法及***
CN203509124U (zh) 一种钻孔深度自动控制的钻孔设备
CN207723628U (zh) 简易手工回丝装置
CN103449269A (zh) 顶驱钻机卷扬恒压钻进***及其工作方法
JP2007038384A (ja) 自動ねじ締め装置およびねじ締め方法
WO2021012101A1 (zh) 凿岩钻机恒压推进***
CN220036571U (zh) 一种石油钻井顶驱软扭矩***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14845587

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14845587

Country of ref document: EP

Kind code of ref document: A1