WO2015039273A1 - 一种激光器、光信号调制方法和光网络*** - Google Patents

一种激光器、光信号调制方法和光网络*** Download PDF

Info

Publication number
WO2015039273A1
WO2015039273A1 PCT/CN2013/083601 CN2013083601W WO2015039273A1 WO 2015039273 A1 WO2015039273 A1 WO 2015039273A1 CN 2013083601 W CN2013083601 W CN 2013083601W WO 2015039273 A1 WO2015039273 A1 WO 2015039273A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
area
different wavelengths
light
grating
Prior art date
Application number
PCT/CN2013/083601
Other languages
English (en)
French (fr)
Inventor
王磊
周小平
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201380001772.0A priority Critical patent/CN104756332B/zh
Priority to PCT/CN2013/083601 priority patent/WO2015039273A1/zh
Publication of WO2015039273A1 publication Critical patent/WO2015039273A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/0625Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in multi-section lasers
    • H01S5/06255Controlling the frequency of the radiation
    • H01S5/06258Controlling the frequency of the radiation with DFB-structure

Definitions

  • the present invention relates to the field of optical communications, and more particularly to a laser, an optical signal modulation method, and an optical network system.
  • One is a low-turn laser implemented with a hybrid integrated DBR (Distributed Bragg Reflector) structure.
  • the laser uses DBR as a laser cavity mirror for laser mode selection, which uses the deviation of the laser wavelength and the DBR reflection wavelength to suppress enthalpy during modulation.
  • DBR Distributed Bragg Reflector
  • This type of laser requires a narrow DBR reflection spectrum width, it can only be realized by hybrid integration, which is costly and lacks practicality.
  • One is a laser consisting of a gain-coupled DFB (Distributed Feedback Bragg) region and a grating-free feedback region.
  • the gain-coupled DFB region is a anterior region for generating gain and loading modulated signals.
  • the feedback region without grating is the back region, and its refractive index can be adjusted by the phase control current. When the phase of the feedback zone is within a certain range, the frequency variation caused by the DFB area modulation is compressed, thereby reducing the ripple of the output signal.
  • the DBF region in order to ensure the single mode operation of the laser, the DBF region must use the gain with A gain-coupling structure with a periodically varying length, but using a gain-coupled structure results in a decrease in the reliability of the laser.
  • Embodiments of the present invention provide a laser, an optical signal modulation method, and an optical network system, which provide a mechanism for modulating an optical signal, thereby reducing the amount of optical signal modulation in optical signal modulation, and ensuring a single mode of the laser. Operation, increasing the reliability of the laser.
  • a laser comprising: a laser generating region, a regulating region, and a laser reflecting region;
  • a laser generating region configured to generate at least two different wavelengths of light, the at least two different wavelengths of light passing through the adjustment region to the laser reflective region;
  • a laser reflection area configured to reflect one of the at least two different wavelengths of light to generate reflected light, and the reflected light returns to the laser generation area through the adjustment area, and the wavelength of the reflected light
  • the lasing mode of the laser generating region corresponds to the same wavelength.
  • the method includes:
  • the common substrate for protecting the laser, the laser generating region, the adjusting region and the laser reflecting region sharing the common substrate;
  • a common cladding layer is disposed on a top layer of the laser, the common cladding layer is for protecting the laser, and the laser generation region, the adjustment region, and the laser reflection region share the common cladding layer.
  • the laser generating region includes:
  • a waveguide layer a grating is etched on the waveguide layer, and the waveguide layer is disposed on the common substrate;
  • the laser generating region includes: a quantum well layer, the quantum well layer being disposed between the common cladding layer and the common substrate;
  • a grating is etched on the quantum well layer.
  • the quantum well layer is configured to generate a plurality of different wavelengths of light, the grating being used to Filtering a plurality of different wavelengths of light generated by the quantum well layer to obtain the at least two different wavelengths of light;
  • the gratings are gratings that are both even and distributed.
  • the adjustment area includes:
  • the waveguide layer being disposed between the common cladding layer and the common substrate.
  • the laser reflective area includes:
  • the waveguide layer is etched with a grating on the waveguide layer, and the waveguide layer is disposed on the grating in which the grating is uniformly distributed.
  • the laser further includes:
  • an adjustment module configured to adjust a refractive index of the adjustment area when a quantity of emitted light does not satisfy a preset condition.
  • a second aspect provides an optical signal modulation method, the method comprising: generating a region to generate light of at least two different wavelengths, wherein the at least two different wavelengths of light pass through a regulatory region to reach a laser reflective region;
  • the lasing mode corresponds to the same wavelength
  • the emitted light is generated based on the reflected light.
  • the generating at least two Lights of different wavelengths include:
  • a plurality of different wavelengths of light are generated, and a plurality of different wavelengths of light produced by the quantum well layer are screened to obtain the at least two different wavelengths of light.
  • the method further includes:
  • the refractive index of the adjustment zone is adjusted when the amount of emitted light does not satisfy the preset condition.
  • a third aspect provides an optical network system, where the optical network system includes at least: an optical line terminal and a plurality of optical network units, and the optical line terminal and/or the plurality of optical network units include the first aspect The laser described.
  • Embodiments of the present invention provide a laser, an optical signal modulation method, and an optical network system.
  • the light of the at least two different wavelengths of light reflects the reflected light, and the reflected light returns to the laser generating region through the adjustment region, and then the laser generating region generates the emitted light according to the reflected light. Therefore, a mechanism for modulating the optical signal is provided, which reduces the amount of the optical signal in the modulation of the optical signal, ensures the single mode operation of the laser, and increases the reliability of the laser.
  • FIG. 1 is a schematic flow chart of an optical signal modulation method according to an embodiment of the present invention.
  • FIG. 2 is a schematic flow chart of an optical signal modulation method according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a laser according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a laser according to an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of a laser according to an embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of a laser according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram showing a relationship between a ⁇ compression ratio and a refractive index change of an adjustment area according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of an optical network system according to an embodiment of the present invention.
  • An optical signal modulation method is applied to a laser, which includes a laser generating area, an adjustment area, and a laser reflection area. As shown in FIG. 1, the method includes:
  • the laser generating region generates light of at least two different wavelengths, and the at least two different wavelengths of light pass through the adjustment region to reach the laser reflecting region.
  • the laser reflection region reflects one of the at least two different wavelengths of light to generate reflected light, and the reflected light returns to the laser generation region through the adjustment region, and the wavelength of the reflected light is the same as the wavelength corresponding to the lasing mode of the laser generation region. .
  • the laser generating region generates emitted light according to the reflected light.
  • the method further includes:
  • the amount of enthalpy refers to the amount of offset when the center wavelength is shifted during the transmission of the transmitted light.
  • the adjustment zone is devoid of a grating.
  • Embodiments of the present invention provide an optical signal modulation method, in which a laser generating region generates light of at least two different wavelengths, the at least two different wavelengths of light pass through a regulatory region to reach a laser reflecting region, and then the laser reflecting region has the at least two different wavelengths.
  • One of the light reflections produces reflected light that is returned to the laser generating region through the adjustment region, and then the laser generating region generates the emitted light based on the reflected light.
  • a mechanism for modulating the optical signal is provided, which reduces the amount of optical signal modulation in the modulation of the optical signal, ensures the single mode operation of the laser, and increases the reliability of the laser.
  • the laser generating region 11 is for generating light of at least two different wavelengths, and the light of the at least two different wavelengths passes through the adjustment region 12 to reach the laser reflecting region 13.
  • the laser reflection area 13 is configured to reflect one of the at least two different wavelengths of light to generate reflected light, and the reflected light returns to the laser generation area 11 through the adjustment area 12, and the wavelength of the reflected light corresponds to the lasing mode of the laser generation area 11.
  • the wavelength is the same.
  • the laser generating region 11 is also used to generate emitted light based on the reflected light.
  • the adjustment zone is devoid of a grating and may also be referred to as a grating-free zone.
  • a common substrate 14 is disposed on the bottom layer of the laser 1, the common substrate 14 is used to protect the laser 1, and the laser generating region 11, the adjustment region 12, and the laser reflection region 13 share a common substrate 14. ;
  • a common cladding layer 15 is provided on the top layer of the laser 1, and a common cladding layer 15 is used to protect the laser 1, and the laser generating region 11, the adjustment region 12, and the laser reflection region 13 share a common cladding layer 15.
  • the laser generating region 11, the adjusting region 12, and the laser reflecting region 13 may also employ a non-common substrate and cladding, that is, the laser generating region 11, the adjusting region 12, and the laser reflecting region 13. Use separate substrates and claddings.
  • the laser generating region 11 includes: a waveguide layer 111.
  • the waveguide layer 111 is etched with a grating 1111, and the waveguide layer 111 is disposed.
  • the quantum well layer 112, the quantum well layer 112 is disposed between the common cladding layer 15 and the waveguide layer 111.
  • the quantum well layer 112 is configured to generate a plurality of different wavelengths of light
  • the grating 1111 is configured to filter a plurality of different wavelengths of light generated by the quantum well layer 112 to obtain at least two different wavelengths of light
  • the grating 1111 is a uniformly distributed grating.
  • the adjustment area 12 includes:
  • the waveguide layer 121, the waveguide layer 121 is disposed between the common cladding 15 and the common substrate 14.
  • the laser reflection area 13 includes:
  • the waveguide layer 131 is etched with a grating 1311 on the waveguide layer 131, and the waveguide layer 131 is disposed between the common cladding layer 15 and the common substrate 14.
  • the grating 1311 is a uniformly distributed grating.
  • the laser generating region 11 includes: a quantum well layer 113 disposed between the common cladding layer 15 and the common substrate 14;
  • a grating 1131 is etched on the quantum well layer 113.
  • the quantum well layer 113 is configured to generate a plurality of different wavelengths of light
  • the grating 1131 is configured to filter a plurality of different wavelengths of light generated by the quantum well layer 113 to obtain at least two different wavelengths of light
  • the grating 1131 is a uniformly distributed grating.
  • the structure of the adjustment region 12 and the laser reflection region 13 is the same as that of the adjustment region 12 and the laser reflection region 13 in the laser 1 shown in Fig. 5, and will not be described again.
  • the laser 1 further includes:
  • the adjustment module 16 is configured to adjust the refractive index of the adjustment region 12 when the amount of emitted light does not satisfy the preset condition.
  • the adjustment module 16 can be externally connected to the laser 1 or integrated in the laser 1 , the adjustment module 16 can automatically adjust the refractive index of the adjustment area 12 according to the amount of emitted light, or can remind the administrator when the amount of emitted light does not meet the preset condition, so as to adjust the instruction according to the administrator.
  • the refractive index of the adjustment zone 12 is adjusted.
  • the preset condition may be a threshold value or a threshold value of the ⁇ compression ratio, which is the ⁇ quantity of the current emitted light and the emitted light generated when the laser only has the laser generating area. The ratio of the amount, the smaller the compression ratio, the stronger the suppression ability.
  • the adjustment zone is devoid of a grating and may also be referred to as a grating-free zone.
  • the laser 1 provided in the embodiment of the present invention may be DML
  • the laser generating region in the laser 1 may be a DFB region
  • the laser reflecting region may be a DBR region.
  • the specific process of the laser 1 modulating the optical signal may be:
  • the laser generating region simultaneously generates three different wavelengths of light, which are a first beam of wavelength A, a second beam of wavelength B, and a third beam of wavelength C; wherein, the wavelength The first beam of light A, the second beam of wavelength B, and the third beam of wavelength C are not specifically meant, but are merely exemplary.
  • the quantum well layer 112 in the laser generating region 11 simultaneously generates a first beam of wavelength A, a second beam of wavelength B, and a third beam of wavelength C, and then the wavelength is The first beam of A, the second beam of wavelength B, and the third beam of wavelength C simultaneously enter the waveguide layer 111.
  • the first beam of the wavelength A, the second beam of the wavelength B, and the third beam of the wavelength C pass through the grating 1111 of the waveguide layer 111, and the grating 1111 filters the wavelength according to a preset filtering mode.
  • the third beam of light C retains the first beam of wavelength A and the second beam of wavelength B, and then the first beam of light of wavelength A and the second beam of wavelength of B simultaneously enter adjustment zone 12 .
  • the setting of the filtering mode of the grating 1111 of the waveguide layer 111 can be realized by the structural design of the grating, which is not limited herein. Or:
  • the first beam of the wavelength A, the second beam of the wavelength B, and the third beam of the wavelength C pass through the grating 1131 of the quantum well layer 113.
  • the grating 1131 filters the wavelength according to a predetermined filtering method.
  • the third beam of C, retaining the first beam of wavelength A And the second light of wavelength B, and then the first beam of wavelength A and the second beam of wavelength B enter the adjustment zone 12 simultaneously.
  • the method of setting the grating 1131 of the quantum well layer 113 is the same as or different from the method of setting the grating 1111 of the waveguide layer 111.
  • the first beam of the wavelength A and the second beam of the wavelength B are simultaneously passed through the adjustment zone 12 by the waveguide layer 121.
  • the refractive index of the waveguide layer 121 in the adjustment region 12 is adjustable to reduce the amount of emitted light by adjusting the refractive index; the emitted light is the last light output by the laser 1.
  • the laser reflection zone 13 After the first beam of light A and the second beam of wavelength B pass through the adjustment zone 12 simultaneously, the laser reflection zone 13 is reached, and then the first beam of wavelength A and the second beam of wavelength B are The light passes through the grating 1311 of the waveguide layer 131 at the same time.
  • the grating 1311 filters the second beam of the wavelength B according to a preset filtering mode, retains the first beam of the wavelength A, and sets the wavelength to the first of the A.
  • the beam of light is reflected back to the conditioning zone 12.
  • the method of setting the grating 1311 of the waveguide layer 131 is the same as or different from the method of setting the grating 1111 of the waveguide layer 111.
  • the first light of the wavelength A is passed through the adjustment layer 12 to the laser emission region 11 by the waveguide layer 121.
  • the laser emitting region 11 After the first beam of the wavelength A reaches the laser emitting region 11, the laser emitting region 11 generates the emitted light by using the first beam of the wavelength A.
  • the wavelength of the emitted light is the same as the wavelength of the first beam of the wavelength A.
  • the above process is a self-feedback process in which the reduction in the amount of light in the emitted light can be achieved by adjusting the refractive index of the waveguide layer 121 in the adjustment zone 12.
  • the filtering of the third beam of the wavelength C by the grating 1111 of the waveguide layer 111 in the laser emitting region 11 and the filtering of the second beam of the wavelength B by the grating 1311 of the waveguide layer 131 in the laser reflecting region 13 are realized.
  • One of the adjacent wavelengths is the same to ensure the emission intensity of the emitted light, thereby realizing the single of the laser 1 Mode operation.
  • the laser 1 can reduce the amount of enthalpy to one-third of that of a conventional DFB laser.
  • Embodiments of the present invention provide a laser including a laser generating region, an adjusting region, and a laser reflecting region, wherein the laser generating region generates light of at least two different wavelengths, and the at least two different wavelengths of light pass through the adjusting region to reach the laser reflecting region, and then The laser reflection region reflects one of the at least two different wavelengths of light to generate reflected light, and the reflected light returns to the laser generation region through the adjustment region, and then the laser generation region generates the emission light according to the reflected light. Therefore, a mechanism for modulating the optical signal is provided, which reduces the amount of optical signal modulation in the modulation of the optical signal, ensures the single mode operation of the laser, and increases the reliability of the laser.
  • the embodiment of the present invention further provides an optical network system 00.
  • the optical network system 00 includes at least: an Optical Line Terminal (OLT) 01 and a plurality of Optical Network Units (ONUs) 02, and an optical line terminal 01. And/or a plurality of optical network units 02 comprise the laser 1 provided in the previous embodiments.
  • OLT Optical Line Terminal
  • ONUs Optical Network Units
  • And/or a plurality of optical network units 02 comprise the laser 1 provided in the previous embodiments.
  • the optical line terminal 01 and the plurality of optical network units 02 can be connected by the optical splitter 03.
  • the disclosed methods and apparatus may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of modules is only a logical function division.
  • multiple modules or components may be combined or integrated. Go to another system, or some features can be ignored, or not executed.
  • the modules described as separate components may or may not be physically separate.
  • the components displayed as modules may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Can be based on reality It is necessary to select some or all of the units to achieve the purpose of the solution of the embodiment.
  • the functional modules in the various embodiments of the present invention may be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the above-described integrated unit implemented in the form of a software functional unit can be stored in a computer readable storage medium.
  • the software functional units described above are stored in a storage medium and include instructions for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform portions of the steps of various embodiments of the present invention.
  • the foregoing storage medium includes: a USB flash drive, a removable hard disk, a Read-Only Memory (ROM), a Random Access Memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. Medium.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种激光器、光信号调制方法和光网络***,涉及通信领域,提供了一种光信号调制的机制,实现了在光信号调制中减少光信号的啁啾量,保证了激光器的单模运转,增加激光器的可靠性。具体方法为:激光产生区(11)产生至少两个不同波长的光,该至少两个不同波长的光经过调节区(12)到达激光反射区(13),然后激光反射区(13)该至少两个不同波长的光中的一个光反射产生反射光,该反射光经过调节区(12)返回激光产生区(11),然后激光产生区(11)根据所述反射光生成发射光。该技术方案是对激光器中光信号的调制。

Description

一种激光器、 光信号调制方法和光网络*** 技术领域
本发明涉及光通信领域, 尤其涉及一种激光器、 光信号调制方 法和光网络***。
背景技术
随着新一代光接入网络的部署, 宽带接入对传输速率和传输距 离的要求不断提高, 传统的 DML ( Directed Modulated Laser,直接调 制激光器) 发射机在高速传输过程中, 由于调制机制的限制, 光频 率和光强度会伴随着调制信号产生变化, 进而产生调制频率啁啾。 而啁啾随着时间的变化与光纤的色散作用, 会导致光信号在传输之 后产生变形, 严重影响接收的灵敏度。 因此, 尽可能的减小调制过 程中产生的啁啾就成为 DLM在新一代高速接入网应用的首要前提。
在现有技术中, 提供了两种低啁啾激光器, 来减小调制过程中 产生的啁啾。
一种是釆用混合集成 DBR ( Distributed Bragg Reflector, 分布 布拉格反射器) 结构实现的低啁啾激光器。 该激光器利用 DBR作为 激光腔镜进行激光器模式选择, 利用激光器波长和 DBR反射波长的 偏离来抑制调制时的啁啾。 但是由于这一类激光器需要很窄的 DBR 反射谱宽, 目前只能通过混合集成的方式实现, 成本较高, 缺乏实 用性。
一种是由增益耦合 DFB ( Distributed Feedback Bragg , 分布反 馈布拉格激光器) 区和无光栅的反馈区组成的激光器。 其中, 增益 耦合 DFB 区为前段区域, 用于产生增益和加载调制信号。 无光栅的 反馈区为后段区域, 其折射率可以利用相位控制电流进行调节。 当 反馈区的相位在一定范围内的时候, DFB 区域调制引起的频率变化 就会受到压缩, 从而降低输出信号的啁啾。 但是使用这种结构的激 光器, 为了保证激光器的单模运转, 其 DBF 区域必须要使用增益随 长度周期性变化的增益耦合结构, 但是使用增益耦合结构会导致激 光器的可靠性下降。
发明内容
本发明实施例提供一种激光器、光信号调制方法和光网络***, 提供了一种光信号调制的机制, 实现了在光信号调制中减小光信号 的啁啾量, 并保证了激光器的单模运转, 增加激光器的可靠性。
为达到上述目的, 本发明的实施例釆用如下技术方案:
第一方面, 提供一种激光器, 所述激光器包括: 激光产生区、 调节区和激光反射区;
激光产生区, 用于产生至少两个不同波长的光, 所述至少两个 不同波长的光经过所述调节区到达所述激光反射区;
激光反射区, 用于将所述所述至少两个不同波长的光中的一个 光反射产生反射光, 所述反射光经过所述调节区返回所述激光产生 区, 所述反射光的波长与所述激光产生区的激射模式对应的波长相 同。
结合第一方面, 在第一种可能的实现方式中, 包括:
在所述激光器的底层设置有公共衬底, 所述公共衬底用于保护 所述激光器, 所述激光产生区、 调节区和激光反射区共用所述公共 衬底;
在所述激光器的顶层设置有公共包层, 所述公共包层用于保护 所述激光器, 所述激光产生区、 调节区和激光反射区共用所述公共 包层。
结合第一方面的第一种可能的实现方式, 在第二种可能的实现 方式中, 所述激光产生区包括:
波导层, 所述波导层上刻蚀有光栅, 所述波导层设置在所述公 共衬底上;
量子阱层,所述量子阱层设置在所述公共包层与所述光栅之间。 结合第一方面的第一种可能的实现方式, 在第三种可能的实现 方式中, 所述激光产生区包括: 量子阱层, 所述量子阱层设置在所述公共包层与所述公共衬底 之间;
所述量子阱层上刻蚀有光栅。
结合第一方面的第二种或第三种可能的实现方式, 在第四种可 能的实现方式中, 所述量子阱层用于产生多个不同波长的光, 所述 光栅用于对所述量子阱层产生的多个不同波长的光进行筛选, 以便 得到所述至少两个不同波长的光;
所述光栅为均与分布的光栅。
结合第一方面的第一种可能的实现方式, 在第五种可能的实现 方式中, 所述调节区包括:
波导层, 所述波导层设置在所述所述公共包层与所述公共衬底 之间。
结合第一方面的第一种可能的实现方式, 在第六种可能的实现 方式中, 所述激光反射区包括:
波导层, 在所述波导层上刻蚀有光栅, 所述波导层设置在所述 所述光栅为均勾分布的光栅。
结合第一方面, 在第一方面的第一种可能的实现方式中, 所述激光器还包括:
调节模块, 用于在发射光的啁啾量不满足预设条件时, 对所述 调节区的折射率进行调节。
第二方面, 提供一种光信号调制方法, 所述方法包括: 产生区产生至少两个不同波长的光, 所述至少两个不同波长的 光经过调节区到达激光反射区;
将所述所述至少两个不同波长的光中的一个光反射产生反射 光, 所述反射光经过所述调节区返回所述激光产生区, 所述反射光 的波长与所述激光产生区的激射模式对应的波长相同;
根据所述反射光生成发射光。
结合第二方面, 在第一种可能的实现方式中, 所述产生至少两 个不同波长的光包括:
产生多个不同波长的光, 并对所述量子阱层产生的多个不同波 长的光进行筛选, 以便得到所述至少两个不同波长的光。
结合第二方面和第二方面的第一种可能的实现方式, 在第二种 可能的实现方式中, 所述方法还包括:
在发射光的啁啾量不满足预设条件时, 对所述调节区的折射率 进行调节。
第三方面, 提供一种光网络***, 所述光网络***至少包括: 光线 路终端和多个光网络单元, 所述光线路终端和 /或所述多个光网络单元包括 如第一方面所述的激光器。
本发明实施例提供一种激光器、光信号调制方法和光网络***, 先由激光产生区产生至少两个不同波长的光, 该至少两个不同波长 的光经过调节区到达激光反射区, 然后激光反射区该至少两个不同 波长的光中的一个光反射产生反射光, 该反射光经过调节区返回激 光产生区, 然后激光产生区根据所述反射光生成发射光。 从而提供 了一种光信号调制的机制, 实现了在光信号调制中减小光信号的啁 啾量, 保证了激光器的单模运转, 增加激光器的可靠性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下 面将对实施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一些实施例, 对于 本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以 根据这些附图获得其他的附图。
图 1 为本发明实施例提供的一种光信号调制方法的流程示意 图;
图 2 为本发明实施例提供的一种光信号调制方法的流程示意 图;
图 3为本发明实施例提供的一种激光器的结构示意图;
图 4为本发明实施例提供的一种激光器的结构示意图; 图 5为本发明实施例提供的一种激光器的结构示意图; 图 6为本发明实施例提供的一种激光器的结构示意图;
图 7为本发明实施例提供的一种啁啾压缩比和调节区折射率变 化的关系示意图;
图 8为本发明实施例提供的一种光网络***的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术 方案进行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明 一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本 领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他 实施例, 都属于本发明保护的范围。
下面将结合本发明实施例中的附图, 对本发明实施例中的技术 方案进行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明 一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本 领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他 实施例, 都属于本发明保护的范围。
本发明实施例提供的一种光信号调制方法,应用于一种激光器, 该激光器包括激光产生区、 调节区和激光反射区, 如图 1 所示, 所 述方法包括:
101、 激光产生区产生至少两个不同波长的光, 该至少两个不同 波长的光经过调节区到达激光反射区。
102、激光反射区将该至少两个不同波长的光中的一个光反射产 生反射光, 反射光经过调节区返回激光产生区, 该反射光的波长与 激光产生区的激射模式对应的波长相同。
103、 激光产生区根据反射光生成发射光。
另外, 在发射光的啁啾量不满足预设条件时, 如图 2所示, 该 方法还包括:
104、 对调节区的折射率进行调节。 其中, 啁啾量是指发射光传 输过程中中心波长发生偏移时偏移量的大小。 其中, 所述调节区是没有光栅的。
在对所述调节区的折射率进行调节后, 可以再次执行 101〜103。 本发明实施例提供一种光信号调制方法, 激光产生区产生至少 两个不同波长的光, 该至少两个不同波长的光经过调节区到达激光 反射区, 然后激光反射区该至少两个不同波长的光中的一个光反射 产生反射光, 该反射光经过调节区返回激光产生区, 然后激光产生 区根据所述反射光生成发射光。 从而提供了一种光信号调制的机制, 实现了在光信号调制中减小光信号的啁啾量, 保证了激光器的单模 运转, 增加激光器的可靠性。
本发明实施例提供的一种激光器 1, 如图 3 所示, 包括: 激光 产生区 11、 调节区 12和激光反射区 13。
激光产生区 11, 用于产生至少两个不同波长的光, 该至少两个 不同波长的光经过调节区 12到达激光反射区 13。
激光反射区 13, 用于将至少两个不同波长的光中的一个光反射 产生反射光, 反射光经过调节区 12返回激光产生区 11, 反射光的波 长与激光产生区 11 的激射模式对应的波长相同。
激光产生区 11还用于根据反射光生成发射光。
另外, 所述调节区是没有光栅的, 也可以称为无光栅区。
可选的, 如图 4所示, 在激光器 1 的底层设置有公共衬底 14, 公共衬底 14用于保护激光器 1, 激光产生区 11、 调节区 12和激光 反射区 13共用公共衬底 14;
在激光器 1 的顶层设置有公共包层 15, 公共包层 15 用于保护 激光器 1, 激光产生区 11、 调节区 12和激光反射区 13共用公共包 层 15。
另外, 在另一种实现方式中, 激光产生区 11、 调节区 12 和激 光反射区 13也可以釆用非公共的衬底和包层, 即激光产生区 11、 调 节区 12和激光反射区 13釆用各自独立的衬底和包层。
可选的, 在一种实现方式下, 如图 5所示, 激光产生区 11 包括: 波导层 111, 波导层 111 上刻蚀有光栅 1111, 波导层 111 设置 在公共衬底上 14;
量子阱层 112, 量子阱层 112设置在公共包层 15与波导层 111 之间。
具体的, 量子阱层 112用于产生多个不同波长的光, 光栅 1111 用于对量子阱层 112 产生的多个不同波长的光进行筛选, 以便得到 至少两个不同波长的光;
另外, 光栅 1111为均匀分布的光栅。
如图 5所示, 调节区 12包括:
波导层 121, 波导层 121 设置在公共包层 15 与公共衬底 14之 间。
如图 5所示, 激光反射区 13 包括:
波导层 131, 在波导层 131 上刻蚀有光栅 1311, 该波导层 131 设置在公共包层 15与公共衬底 14之间。
另外, 光栅 1311 为均匀分布的光栅。
或者, 在另一种实现方式下, 如图 6所示, 激光产生区 11 包括: 量子阱层 113,量子阱层 113设置在公共包层 15与公共衬底 14 之间;
量子阱层 113上刻蚀有光栅 1131。
具体的, 量子阱层 113用于产生多个不同波长的光, 光栅 1131 用于对量子阱层 113 产生的多个不同波长的光进行筛选, 以便得到 至少两个不同波长的光;
另外, 光栅 1131 为均匀分布的光栅。
如图 6所示的激光器 1 中, 调节区 12和激光反射区 13 的结构 与图 5所示的激光器 1 中的调节区 12和激光反射区 13相同, 不再 赘述。
可选的, 激光器 1还包括:
调节模块 16, 用于在发射光的啁啾量不满足预设条件时, 对调 节区 12的折射率进行调节。
该调节模块 16可以外接在激光器 1的外部也可以集成在激光器 1 内, 该调节模块 16 可以根据发射光的啁啾量自动调节调节区 12 的折射率, 也可以在发射光的啁啾量不满足预设条件时提醒管理员, 以便根据管理员的调节指令来对调节区 12的折射率进行调节。 上述 预设条件可以为一个啁啾量阈值, 也可以为啁啾压缩比的阈值, 该 啁啾压缩比为当前发射光的啁啾量与激光器只存在激光产生区时产 生的发射光的啁啾量之比, 啁啾压缩比越小表示啁啾抑制能力越强。
另外, 所述调节区是没有光栅的, 也可以称为无光栅区。
另外, 本发明实施例提供过的激光器 1可以为 DML, 激光器 1 中的激光产生区可以为 DFB 区, 激光反射区可以为 DBR区。
进一步的, 为了更清楚的对本发明的实施例进行说明, 示例性 的, 激光器 1调制光信号的具体流程可以为:
为了方便说明, 假设激光产生区同时产生 3 个不同波长的光, 分别为波长为 A的第一束光、 波长为 B的第二束光和波长为 C的第 三束光; 其中, 该波长为 A的第一束光、 波长为 B的第二束光和波 长为 C的第三束光并非特指, 仅仅为示例性的。
具体的, 首先, 激光产生区 11 中的量子阱层 112同时产生波长 分别为波长为 A的第一束光、 波长为 B的第二束光和波长为 C的第 三束光, 然后波长为 A的第一束光、 波长为 B的第二束光和波长为 C的第三束光同时进入到波导层 111。
然后, 该波长为 A的第一束光、 波长为 B的第二光和波长为 C 的第三束光同时经过波导层 111 的光栅 1111, 该光栅 1111根据预先 设定的过滤方式, 过滤波长为 C的第三束光, 保留波长为 A的第一 束光和波长为 B的第二光, 而后该波长为 A的第一束光和波长为 B 的第二束光同时进入调节区 12。 其中, 波导层 111 的光栅 1111过滤 方式的设定可以通过该光栅的结构设计来实现, 此处不加以限定。 或者:
该波长为 A的第一束光、波长为 B的第二光和波长为 C的第三 束光同时经过量子阱层 113的光栅 1131,该光栅 1131根据预先设定 的过滤方式, 过滤波长为 C的第三束光, 保留波长为 A的第一束光 和波长为 B的第二光, 而后波长为 A的第一束光和波长为 B的第二 束光同时进入调节区 12。 其中, 量子阱层 113 的光栅 1131过滤方式 的设定方法与波导层 111 的光栅 1111过滤方式的设定方法相同或者 不同。
然后, 该波长为 A的第一束光和波长为 B的第二束光利用波导 层 121 同时经过调节区 12。 其中, 该调节区 12 中的波导层 121 的 折射率是可以调节的, 以便通过调节该折射率减小发射光的啁啾量; 该发射光为激光器 1最后输出的光。
在该波长为 A的第一束光和波长为 B的第二束光同时通过调节 区 12后, 到达激光反射区 13, 然后该波长为 A的第一束光和波长 为 B 的第二束光同时经过波导层 131 的光栅 1311, 该光栅 1311 根 据预先设定的过滤方式, 过滤波长为 B 的第二束光, 保留波长为 A 的第一束光, 并将该波长为 A的第一束光反射回调节区 12。 其中, 波导层 131 的光栅 1311 过滤方式的设定方法与波导层 111 的光栅 1111过滤方式的设定方法相同或者不同。
然后, 该波长为 A的第一束光利用波导层 121, 经过调节区 12, 到达激光发射区 11。
在该波长为 A 的第一束光到达激光发射区 11 后, 激光发射区 11利用该波长为 A的第一束光生成发射光。 其中, 该发射光的波长 与该波长为 A的第一束光的波长相同。
由此可见, 上述过程为一个自反馈过程, 在该自反馈过程中, 可以通过调节调节区 12中波导层 121的折射率来实现该发射光中的 啁啾量的减小。
同时,通过激光发射区 11 中波导层 111 的光栅 1111对波长为 C 的第三束光的过滤和激光反射区 13 中波导层 131 的光栅 1311对波 长为 B的第二束光的过滤, 实现了波长为 A的第一束光与激光发射 区 11产生的其中一个激射模式的对准,即波长为 A的第一束光的波 长与激光器 1 的可以产生的两个具有最大发射强度的相邻波长中的 其中一个相同, 以保证发射光的发射强度, 从而实现激光器 1 的单 模运转。
示例性的, 如图 7所示, 通过啁啾压缩比和调节区 12的折射率 变化关系可以看出, 激光器 1 可以让啁啾量减少到传统 DFB激光器 啁啾量的三分之一。
本发明实施例提供一种激光器, 包括激光产生区、 调节区和激 光反射区, 激光产生区产生至少两个不同波长的光, 该至少两个不 同波长的光经过调节区到达激光反射区, 然后激光反射区该至少两 个不同波长的光中的一个光反射产生反射光, 该反射光经过调节区 返回激光产生区, 然后激光产生区根据所述反射光生成发射光。 从 而提供了一种光信号调制的机制, 实现了在光信号调制中减小光信 号的啁啾量, 保证了激光器的单模运转, 增加激光器的可靠性。
本发明实施例还提供一种光网络*** 00,光网络*** 00至少包括: 光线路终端 ( Optical Line Terminal, OLT ) 01和多个光网络单元 ( Optical Network Unit, ONU ) 02, 光线路终端 01和 /或多个光网络单元 02包括前 述实施例提供的激光器 1。
其中, 如图 8所示, 光线路终端 01和多个光网络单元 02可以通过分 光器 03连接。
本发明中术语 "和 /或", 仅仅是一种描述关联对象的关联关系, 表示可以存在三种关系, 例如, A和 /或 B , 可以表示: 单独存在 A , 同时存在 A和 B , 单独存在 B这三种情况。 另外, 本文中字符 " /" , 一般表示前后关联对象是一种 "或" 的关系。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的方法 和装置, 可以通过其它的方式实现。 例如, 以上所描述的装置实施 例仅仅是示意性的, 例如, 模块的划分, 仅仅为一种逻辑功能划分, 实际实现时可以有另外的划分方式, 例如多个模块或组件可以结合 或者可以集成到另一个***, 或一些特征可以忽略, 或不执行。
作为分离部件说明的模块可以是或者也可以不是物理上分开 的, 作为模块显示的部件可以是或者也可以不是物理单元, 即可以 位于一个地方, 或者也可以分布到多个网络单元上。 可以根据实际 的需要选择其中的部分或者全部单元来实现本实施例方案的目的。 另外, 在本发明各个实施例中的功能模块可以既可以釆用硬件 的形式实现, 也可以釆用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元, 可以存储在一 个计算机可读取存储介质中。 上述软件功能单元存储在一个存储介 质中, 包括若干指令用以使得一台计算机设备(可以是个人计算机, 服务器, 或者网络设备等)执行本发明各个实施例方法的部分步骤。 而前述的存储介质包括: U盘、 移动硬盘、 只读存储器 ( Read-Only Memory , 简称 ROM )、 随机存取存储器 ( Random Access Memory , 简称 RAM )、 磁碟或者光盘等各种可以存储程序代码的介质。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围 并不局限于此, 任何熟悉本技术领域的技术人员在本发明揭露的技 术范围内, 可轻易想到变化或替换, 都应涵盖在本发明的保护范围 之内。 因此, 本发明的保护范围应以所述权利要求的保护范围为准。

Claims

权 利 要 求 书
1、 一种激光器, 其特征在于, 所述激光器包括: 激光产生区、 调节区和激光反射区;
所述激光产生区, 用于产生至少两个不同波长的光, 所述至少两 个不同波长的光经过所述调节区到达所述激光反射区;
所述激光反射区,用于将所述至少两个不同波长的光中的一个光 反射产生反射光, 所述反射光经过所述调节区返回所述激光产生区, 所述反射光的波长与所述激光产生区的激射模式对应的波长相同;
2、 根据权利要求 1所述的激光器, 其特征在于, 包括:
在所述激光器的底层设置有公共衬底,所述公共衬底用于保护所 述激光器,所述激光产生区、调节区和激光反射区共用所述公共衬底; 在所述激光器的顶层设置有公共包层,所述公共包层用于保护所 述激光器,所述激光产生区、调节区和激光反射区共用所述公共包层。
3、 根据权利要求 2所述的激光器, 其特征在于, 所述激光产生 区包括:
波导层, 所述波导层上刻蚀有光栅, 所述波导层设置在所述公共 衬底上;
量子阱层, 所述量子阱层设置在所述公共包层与所述光栅之间。
4、 根据权利要求 2所述的激光器, 其特征在于, 所述激光产生 区包括:
量子阱层,所述量子阱层设置在所述公共包层与所述公共衬底之 间;
所述量子阱层上刻蚀有光栅。
5、 根据权利要求 3或 4所述的激光器, 其特征在于, 所述量子 阱层用于产生多个不同波长的光, 所述光栅用于对所述量子阱层产生 的多个不同波长的光进行筛选, 以便得到所述至少两个不同波长的 光;
所述光栅为均匀分布的光栅。
6、 根据权利要求 2所述的激光器, 其特征在于, 所述调节区包 括:
波导层,所述波导层设置在所述所述公共包层与所述公共衬底之 间。
7、 根据权利要求 2所述的激光器, 其特征在于, 所述激光反射 区包括:
波导层, 在所述波导层上刻蚀有光栅, 所述波导层设置在所述公 所述光栅为均匀分布的光栅。
8、 根据权利要求 1 所述的激光器, 其特征在于, 所述激光器还 包括:
调节模块, 用于在发射光的啁啾量不满足预设条件时, 对所述调 节区的折射率进行调节。
9、 一种光信号调制方法, 其特征在于, 所述方法包括: 产生区产生至少两个不同波长的光,所述至少两个不同波长的光 经过调节区到达激光反射区;
将所述至少两个不同波长的光中的一个光反射产生反射光,所述 反射光经过所述调节区返回所述激光产生区, 所述反射光的波长与所 述激光产生区的激射模式对应的波长相同;
根据所述反射光生成发射光。
10、 根据权利要求 9所述的方法, 其特征在于, 所述产生至少两 个不同波长的光包括:
产生多个不同波长的光,并对所述量子阱层产生的多个不同波长 的光进行筛选, 以便得到所述至少两个不同波长的光。
1 1、 根据权利要求 9或 10所述的方法, 其特征在于, 所述方法 还包括:
在发射光的啁啾量不满足预设条件时,对所述调节区的折射率进 行调节。
12、 一种光网络***, 所述光网络***至少包括: 光线路终端和多 个光网络单元, 其特征在于, 所述光线路终端和 /或所述多个光网络单元包 括如权利要求 1至 8任一所述的激光器。
PCT/CN2013/083601 2013-09-17 2013-09-17 一种激光器、光信号调制方法和光网络*** WO2015039273A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380001772.0A CN104756332B (zh) 2013-09-17 2013-09-17 一种激光器、光信号调制方法和光网络***
PCT/CN2013/083601 WO2015039273A1 (zh) 2013-09-17 2013-09-17 一种激光器、光信号调制方法和光网络***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/083601 WO2015039273A1 (zh) 2013-09-17 2013-09-17 一种激光器、光信号调制方法和光网络***

Publications (1)

Publication Number Publication Date
WO2015039273A1 true WO2015039273A1 (zh) 2015-03-26

Family

ID=52688068

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/083601 WO2015039273A1 (zh) 2013-09-17 2013-09-17 一种激光器、光信号调制方法和光网络***

Country Status (2)

Country Link
CN (1) CN104756332B (zh)
WO (1) WO2015039273A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH042190A (ja) * 1990-04-18 1992-01-07 Nec Corp モード同期半導体レーザ
US5177758A (en) * 1989-06-14 1993-01-05 Hitachi, Ltd. Semiconductor laser device with plural active layers and changing optical properties
CN1452284A (zh) * 2003-05-01 2003-10-29 清华大学 分布反馈半导体激光器与电吸收调制器集成光源及制法
US20050053102A1 (en) * 2001-08-03 2005-03-10 Reid Douglas Charles John Tuneable laser
CN1913261A (zh) * 2005-08-11 2007-02-14 优迪那半导体有限公司 半导体激光器及其控制方法、光学器件以及激光器装置
CN102742099A (zh) * 2011-12-20 2012-10-17 华为技术有限公司 激光器、无源光网络***、装置以及波长控制方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100519922B1 (ko) * 2002-12-17 2005-10-10 한국전자통신연구원 다영역 자기모드 잠김 반도체 레이저 다이오드
JP4374862B2 (ja) * 2003-02-06 2009-12-02 三菱電機株式会社 半導体レーザ、半導体レーザの駆動方法および波長変換素子
JP5287460B2 (ja) * 2009-04-17 2013-09-11 富士通株式会社 半導体レーザ
JP5407526B2 (ja) * 2009-04-27 2014-02-05 住友電気工業株式会社 波長可変レーザ、波長可変レーザ装置、及び波長可変レーザ制御方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5177758A (en) * 1989-06-14 1993-01-05 Hitachi, Ltd. Semiconductor laser device with plural active layers and changing optical properties
JPH042190A (ja) * 1990-04-18 1992-01-07 Nec Corp モード同期半導体レーザ
US20050053102A1 (en) * 2001-08-03 2005-03-10 Reid Douglas Charles John Tuneable laser
CN1452284A (zh) * 2003-05-01 2003-10-29 清华大学 分布反馈半导体激光器与电吸收调制器集成光源及制法
CN1913261A (zh) * 2005-08-11 2007-02-14 优迪那半导体有限公司 半导体激光器及其控制方法、光学器件以及激光器装置
CN102742099A (zh) * 2011-12-20 2012-10-17 华为技术有限公司 激光器、无源光网络***、装置以及波长控制方法

Also Published As

Publication number Publication date
CN104756332A (zh) 2015-07-01
CN104756332B (zh) 2017-12-15

Similar Documents

Publication Publication Date Title
US5563732A (en) Laser pumping of erbium amplifier
JPH11251690A (ja) レ―ザ光の発生方法及び同調レ―ザ装置
JP6667533B2 (ja) プロジェクターシステムの照射のためのrgbレーザー源
US10522968B2 (en) Narrow linewidth multi-wavelength light sources
EP2816746A1 (en) Multi-wavelength light source device
US20200412091A1 (en) External Cavity Diode Laser Arrangement
EP1020969A2 (en) Light generation method and light source
WO2013098620A1 (en) Pulsed fiber laser with double- pass pumping
US20160294158A1 (en) Laser
JPH11501456A (ja) データ変調レーザの波長制御
JPWO2016042658A1 (ja) レーザ装置及びレーザ装置の制御方法
US20130044778A1 (en) Optical sources having a cavity-matched external cavity
WO2010126755A1 (en) Self-seeded wavelength conversion
WO2015039273A1 (zh) 一种激光器、光信号调制方法和光网络***
Zhou et al. High power CW laser for co-packaged optics
US20140185131A1 (en) Multi-Wavelength Light Source Apparatus
CN104269730A (zh) 被动调q脉冲激光器
US20120140783A1 (en) Wavelength-Tunable Laser Source Apparatus
WO2011050612A1 (zh) 一种锁定光信号的波长的方法、装置和***
JP2015050404A (ja) レーザ光源
WO2014190076A1 (en) Laser with full c-band tunability and narrow linewidth
JP2015088505A (ja) 外部共振器を備えた単一縦モードダイオードレーザモジュール
WO2020131797A1 (en) Tunable laser based on vernier effect
WO2014000311A1 (zh) 一种外腔激光器
JPWO2019156226A1 (ja) 波長可変レーザおよび光モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13893798

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13893798

Country of ref document: EP

Kind code of ref document: A1