WO2015035624A1 - 光器件、装置以及光网络*** - Google Patents

光器件、装置以及光网络*** Download PDF

Info

Publication number
WO2015035624A1
WO2015035624A1 PCT/CN2013/083519 CN2013083519W WO2015035624A1 WO 2015035624 A1 WO2015035624 A1 WO 2015035624A1 CN 2013083519 W CN2013083519 W CN 2013083519W WO 2015035624 A1 WO2015035624 A1 WO 2015035624A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
light
area
optical device
refraction
Prior art date
Application number
PCT/CN2013/083519
Other languages
English (en)
French (fr)
Inventor
文玥
王磊
胡菁
周小平
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201380001928.5A priority Critical patent/CN103718486B/zh
Priority to PCT/CN2013/083519 priority patent/WO2015035624A1/zh
Publication of WO2015035624A1 publication Critical patent/WO2015035624A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/29361Interference filters, e.g. multilayer coatings, thin film filters, dichroic splitters or mirrors based on multilayers, WDM filters
    • G02B6/29362Serial cascade of filters or filtering operations, e.g. for a large number of channels
    • G02B6/29365Serial cascade of filters or filtering operations, e.g. for a large number of channels in a multireflection configuration, i.e. beam following a zigzag path between filters or filtering operations
    • G02B6/29367Zigzag path within a transparent optical block, e.g. filter deposited on an etalon, glass plate, wedge acting as a stable spacer

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to an optical device, an apparatus, and an optical network system. Background technique
  • an Optical Line Terminal includes four independently operating transmitters.
  • the frequency interval is 100 GHz GHz.
  • Each transmitter transmits one wavelength signal.
  • the four wavelength signals are multiplexed into one fiber through a multiplexer and transmitted to each optical network unit via optical fiber and beam splitter (0NU, Optical Network Unit ) , (The receiving wavelength of the MU terminal is adjustable, so that the signal of the corresponding wavelength can be selected for detection and the optical line terminal splits the four wavelengths in the optical fiber through the demultiplexer and passes through four independent working receptions.
  • the machine is receiving.
  • the transmitter or receiver works independently, the frequency interval is 100 GHz as specified by the standard, and the dense or dense multiplexer is used when the transmitter or receiver uses a dense multiplexer or a dense demultiplexer.
  • the size of the device and the dense demultiplexer are small enough to be inherited in the transmitter or receiver, and the wavelength interval needs to be guaranteed to meet the standard, but the wavelength division multiplexer or demultiplexer currently used is bulky and structured. Complex, unable to meet the above requirements.
  • the embodiments of the present invention provide an optical device, a device, and a system for solving the problems that the multiplexer and the demultiplexer currently used in the prior art are large in size, complicated in structure, and unable to meet the requirements.
  • the present invention provides an optical device, the optical device comprising: a first incident region, a refractive region, a filtering region, and a reflective region;
  • the first incident region is configured to inject light of at least a first wavelength and light of a second wavelength, and the incident light of the first wavelength and the light of the second wavelength enter a refraction zone;
  • the refractive region is configured to refract the light of the first wavelength and the light of the second wavelength, and the refracted light of the first wavelength and the light of the second wavelength enter a filtering area;
  • the second wavelength of light reflected by the filtering region is refracted, and the refracted light of the second wavelength enters the reflective region; and the second wavelength of light reflected by the reflective region is refracted, after being refracted The second wavelength of light enters the filtration zone;
  • the filter region is configured to transmit light of the first wavelength refracted by the refractive region, and output the first a light of a wavelength, reflecting the light of the second wavelength to the refractive region; and transmitting a second wavelength reflected by the reflective region to output light of a second wavelength.
  • the reflective area is configured to reflect the second wavelength of light refracted by the refractive area, and the reflected second wavelength of light enters the refractive area.
  • the refractive region is a wedge dielectric having a certain refractive index.
  • the reflective area includes at least one mirror, and the any one of the mirrors and the vertical plane has a specific The angle of the.
  • the filtering area includes at least one filter, And any one of the thin film filters is disposed on a surface of the wedge-shaped medium.
  • the present invention provides another optical device.
  • the optical device includes: a second incident region, a filtering region, a reflective region, and a refractive region;
  • the incident region is configured to input the received light of the first wavelength and the light of the second wavelength to the filtering region;
  • the filtering region is configured to: the incident light of the first wavelength and the first Two wavelengths of light are transmitted into the refraction zone;
  • the refractive region is configured to refract light of the first wavelength and light of the second wavelength such that light of the second wavelength enters the reflective region, and the light of the first wavelength is refracted And refracting the second wavelength of light reflected by the reflective region, such that the second wavelength of light is refracted and emitted together with the first wavelength of light;
  • the reflection area is configured to reflect the light of the second wavelength and enter the refraction zone.
  • the refractive region is formed by a wedge-shaped medium having a certain refractive index.
  • the reflective area includes at least one mirror, and The arbitrary mirror has a specific angle with the vertical plane.
  • the filter zone includes at least one filter, and any one of the film filters is disposed on a surface of the wedge-shaped medium.
  • the present invention provides a demultiplexer comprising the first aspect to the first aspect A third possible implementation of an optical device.
  • the present invention provides a multiplexer comprising the optical device of the second aspect to the fourth possible implementation of the second aspect.
  • the present invention provides an optical network system, where the optical network system includes an optical line terminal and an optical network unit, and the optical line terminal includes the light of the third aspect to the third possible implementation of the first aspect.
  • a device and/or an optical device comprising the second aspect to the fourth possible implementation of the second aspect.
  • the optical device provided by the above solution solves the problem that the currently used multiplexer and the demultiplexer are large in size, complicated in structure, and cannot meet the requirements, so that the improved optical device can meet various standard requirements. , and small in size, and simple in structure.
  • FIG. 1 is a schematic structural diagram of an optical network system according to the present invention.
  • FIG. 2 is a schematic structural view of an optical device according to the present invention.
  • FIG. 3 is a detailed structural diagram of components of an optical device according to the present invention.
  • FIG. 4 is a schematic structural view of an optical device according to the present invention.
  • FIG. 5 is another schematic structural diagram of an optical device according to the present invention.
  • FIG. 6 is a schematic structural view of another optical device according to the present invention.
  • FIG. 7 is a schematic structural diagram of still another optical device according to the present invention.
  • FIG. 1 is a schematic structural diagram of an optical network system according to an embodiment of the present invention.
  • a schematic diagram of a structure of a passive optical network system according to an embodiment of the present invention, where the system includes: an optical line terminal OLT and an optical network unit (MU, wherein the optical line terminal and/or the optical network unit includes: Said Optical transmitter 1.
  • OLT optical line terminal
  • MU optical network unit
  • the passive optical network system may be a TWDM-P0N system, as follows:
  • the TWDM-P0N is composed of the 0LT on the office side, the 0NU on the user side, or the Optical Network Terminal (0NT) and the Optical Distribution Network (ODN).
  • the passive optical network generally adopts a tree topology.
  • the typical TWDM-P0N network architecture is shown in Figure 1. The following is an example of the architecture.
  • the structure of the optical transmitter 1 described in the above embodiments 1 to 5 is employed in the 0LT or 0NU.
  • 0LT provides a network-side interface for the P0N system, connecting one or more 0DNs.
  • the ODN is a passive optical splitting device for connecting an OLT device and an optical network unit (0NU, Optical Network Unit) or an optical network terminal (0NT) device for distributing or multiplexing data between the OLT and the ONU or the NTT. signal.
  • 0NU provides a user-side interface for the P0N system, which is connected to the 0DN. If 0 is provided directly, the user port function, such as the Ethernet user port for PC Internet access, is called 0NT. Unless otherwise stated, the 0NU mentioned below refers to 0NU and 0NT.
  • Figure 8 shows an example in which 0LT includes 4 optical transmitters Txl ⁇ Tx4 and 4 optical receivers Rxl ⁇ Rx4.
  • the 4 optical transmitters Txl ⁇ Tx4 of 0LT broadcast downlink data with optical signals of different wavelengths respectively, and output them to the backbone optical fiber of 0DN through the multiplexer and the coupler, and transmit them to each by 0DN (MU, 0NU).
  • a tunable receiver is used to receive a downlink broadcast data signal on one of the downstream wavelengths.
  • the 0NU tunable transmitter uses one of the upstream wavelengths to transmit the burst optical signal in Time Division Multiple Access (TDMA) mode, and reaches the 0LT through the backbone optical fiber of 0DN, and the coupler and solution through the 0LT
  • the multiplexer the optical signals of different wavelengths are respectively received by four different receivers Rxl ⁇ Rx4.
  • Each of the same uplink wavelengths (MU, TDMA mode transmits data, that is, each 0NU allocates a time slot through 0LT, and each 0NU must transmit data in strict accordance with the time slot allocated by 0LT, thereby ensuring that uplink data does not collide.
  • the possible network topology may be: There is a 0LT rack (chassis), and multiple PON ports (ports) are on a single card (incecard), and are connected to the 0DN through a wavelength multiplexing device. Or, there is a 0LT rack and multiple boards, each board has at least one P0N port, and multiple P0N ports are connected to 0DN through wavelength multiplexing devices; or, there are at least two 0LT racks, each The 0LT rack has multiple boards, each board has at least one P0N port, and multiple P0N ports are connected to the 0DN through the wavelength multiplexing device.
  • the 0LT board has two ports, one is a network side port, with Ethernet (ETH, Ethernet) or IP network or Asynchronous Transfer Mode (ATM)/Synchronous Digital System (SDH, Synchronous digital hierarchy) The other is the PON port, which is connected to each 0NU through 0DN.
  • Ethernet Ethernet
  • ATM Asynchronous Transfer Mode
  • SDH Synchronous Digital hierarchy
  • Different P0N ports on the same 0LT board can communicate through the internal bus of the 0LT board; between different 0LT boards on the same 0LT rack, communication can be communicated through the backplane bus of the rack through its network side port.
  • the 0LT boards of different 0LT racks can communicate through the ETH network connected to the rack or the IP network ATM network.
  • the multiplexer and demultiplexer mentioned in the above system architecture may be a wavelength division multiplexer and a wave decomposition multiplexer, and the specific structure of the multiplexer is improved by using an incident region, a refraction region, and filtering.
  • the optical device formed by the region and the reflective region constitutes the multiplexer or demultiplexer, and functions to split the transmitted wavelength and combine the received wavelengths. For details, please refer to the following description of the multiplexer and demultiplexer.
  • the passive optical network system provided by the embodiment of the present invention uses the structure of the optical device of the new multiplexer and the demultiplexer in the optical line terminal in the system, so that the current multiplexer and the demultiplexing The device is smaller in size, simpler in structure, and reduces crosstalk between different signals, improving single-channel output power.
  • FIG. 2 is a schematic structural diagram of an optical device according to an embodiment of the present invention, wherein the optical device includes: a first incident region, a refractive region, a filtering region, and a reflective region;
  • the first incident region (incident region in the figure) is configured to inject at least a first wavelength of light and a second wavelength of light, the incident first wavelength light and the second wavelength light Enter the refraction zone.
  • the refractive region is configured to refract the light of the first wavelength and the light of the second wavelength, and the refracted light of the first wavelength and the light of the second wavelength enter a filtering area;
  • the second wavelength of light reflected by the filtering region is refracted, and the refracted light of the second wavelength enters the reflective region; and the second wavelength of light reflected by the reflective region is refracted, after being refracted
  • the second wavelength of light enters the filtration zone.
  • the refractive region is formed by a wedge-shaped dielectric block, and the wedge-shaped dielectric block may be formed of a wedge-shaped glass having a refractive index n.
  • the filter region is configured to transmit light of the first wavelength refracted by the refractive region, output light of the first wavelength, and reflect light of the second wavelength to the refractive region;
  • the second wavelength reflected by the reflective region is transmitted to output light of the second wavelength.
  • the filter area may be formed by at least one filter, and the filter may be a thin film filter, or may be formed by at least two filter plates having different refractive indexes, and any one of the thin film filters is disposed on the wedge shape. On one surface of the media.
  • the reflective area is configured to reflect the second wavelength of light refracted by the refractive area, and the reflected second wavelength of light enters the refractive area.
  • the reflective area may be composed of at least one mirror, and any one of the mirrors and the vertical plane has a specific Angle.
  • the optical device may be a demultiplexer that separately outputs the first wavelength and the second wavelength optical signal through the demultiplexer, and separately outputs the first wavelength of light and the second wavelength of light.
  • the demultiplexer can be placed in an optical line termination in the embodiment of the passive optical network system described above.
  • FIG. 3 a detailed structural diagram of each component of the optical device is shown in FIG. 3, and two incident light beams are taken as an example, but are not limited to the two incident light.
  • the incident light is an optical signal having wavelengths ⁇ 1 and ⁇ 2 respectively
  • the incident angles of ⁇ 1 and ⁇ 2 are ⁇
  • the refractive area is composed of a wedge-shaped dielectric block having an angle of ⁇ and a refractive index of ⁇
  • the filtering region is One or more pieces of the filter attached to one side of the wedge-shaped dielectric block (the filter may be a thin film filter), the reflection area being composed of one or more mirrors having a D angle with respect to the vertical direction.
  • the optical signals of ⁇ 1 and ⁇ 2 enter the wedge-shaped dielectric block for refraction, and after being refracted to the first filter, the optical signal of wavelength ⁇ 1 is transmitted through the filter, and the optical signal of wavelength ⁇ 2 is reflected back to the wedge-shaped medium. In the block, after being refracted, it is reflected on the mirror.
  • the angle between the refraction of the optical signal having the wavelength ⁇ 2 and the reflection of the filter is ct, that is, the optical signal having the wavelength ⁇ 2 is incident on the filter, and the optical signal having the wavelength ⁇ 2 is understood.
  • the angle between the incident direction and the reflection direction is ⁇
  • the angle between the mirror and the vertical direction is D.
  • the filter at this time, the P-polarization of the optical signal coincides with the S-polarization, eliminating the need for polarization diversity, so that the optical device using the structure has high precision; using the wedge-shaped oblique side and the relationship between the refractive index of the medium and the air, the optical signal is enlarged.
  • the wedge edge plays an important role in reducing the size of the optical path; in addition, the mirror can accurately adjust the angle of incidence to the filter, with large tolerance, simple process, making the mirror more The large rotation tolerance allows precise adjustment of the angle of incidence. Therefore, the optical device is compact, simple, small, and effective.
  • the filter when the incident light is a four-way optical signal, when the filter is one piece, in order to separate the optical signals of different wavelengths, the mirror is separated, and at least three separate mirrors can be reflected.
  • the mirror controls the angle of incidence to the filter so that the optical signal of the incident mirror can be better incident on the filter and separated by the filter.
  • at least three separate mirrors and ⁇ in the vertical direction The angles are the same and can be fine-tuned.
  • the at least three separate mirrors are integrated into one mirror, the filter can be divided into at least three pieces, and one mirror is simultaneously adjusted into three thin film filters.
  • the angle of the mirror, the angle of rotation of the mirror plays a role in fine-tuning the angle of the incident filter, that is, the rotation of the mirror has a large tolerance, reducing the complexity of the process.
  • the rotation of the mirror has a large tolerance, reducing the complexity of the process.
  • FIG. 5 or at least three separate filters and at least three separate mirrors can be used, and the angles of incident light entering the filter can be precisely adjusted by three separate mirrors, thereby
  • the role of the wave please refer to Figure 6.
  • FIG. 7 is a schematic structural diagram of another optical device according to an embodiment of the present invention.
  • the optical device includes: a second incident region, a filtering region, a reflective region, and a refractive region;
  • the second incident region is configured to inject light of the received first wavelength and light of the second wavelength into the filtering region.
  • the filtering zone is configured to transmit the incident light of the first wavelength and the light of the second wavelength into the refraction zone.
  • the refractive region is formed by a wedge-shaped dielectric block, and the wedge-shaped dielectric block may be formed of a wedge-shaped glass having a refractive index n.
  • the refractive region is configured to refract light of the first wavelength and light of the second wavelength such that light of the second wavelength enters the reflective region, and the light of the first wavelength is refracted And refracting the light of the second wavelength reflected by the reflective region, so that the light of the second wavelength is refracted, and then multiplexed with the light of the first wavelength, and then output.
  • the filter area may be formed by at least one filter, and the filter may be a thin film filter, or may be formed by at least two filter plates having different refractive indexes, and any one of the thin film filters is disposed on the wedge shape. On one surface of the media.
  • the reflection area is configured to reflect the light of the second wavelength and enter the refraction zone.
  • the reflective area may be formed by at least one mirror, and any one of the mirrors has a specific angle with the vertical plane.
  • the optical device is a demultiplexer that combines the incident first wavelength and the second wavelength optical signal through a multiplexer, and combines and outputs the optical signal.
  • the demultiplexer can be provided in the optical line termination in the embodiment of the passive optical network system described above.
  • each component of the optical device may also be described by taking two incident lights as an example, but is not limited to the two incident light.
  • the optical signal of ⁇ 2 enters the refraction zone through the filtering zone, is refracted, is incident on the reflective zone, is reflected, enters the refraction zone again, refracts and enters the filtering zone, and passes through the filtering zone.
  • the reflection is emitted from the refraction zone; the optical signal of wavelength ⁇ 1 is filtered and transmitted into the refraction zone, and after being refracted, it is combined with the optical signal of wavelength ⁇ 2 and output.
  • the exit angle is ⁇
  • the refraction zone is composed of a wedge-shaped dielectric block having an angle of ⁇ and a refractive index of ⁇
  • the filter zone is one or more sheets attached to one side of the wedge-shaped dielectric block.
  • Filter (the filter) It may be configured as a thin film filter, wherein the reflective area is formed by one or more mirrors having a D angle with respect to the vertical direction.
  • the angle between the refraction of the optical signal having the wavelength ⁇ 2 and the reflection of the filter is ⁇ , and ct can be understood as the angle at which the optical signal of the wavelength ⁇ 2 is incident on the filter, and the optical signal of the wavelength ⁇ 2 is incident.
  • the angle between the direction and the reflection direction is ⁇ , and the angle between the mirror and the vertical direction is D.
  • the relationship between the above angles determines the position and angle relationship between the filter and the mirror and the wedge dielectric block, and
  • the angle relationship of the corresponding embodiment of FIG. 3 is the same, except that the direction of the optical signal is reversed, and the incident from the filtering region plays a role opposite to that of the third embodiment, that is, the optical signals of wavelengths ⁇ 1 and ⁇ 2 are combined. Therefore, the optical device has the characteristics of compact structure, simple structure, small size, and good effect.
  • the optical device mentioned in this embodiment can also be reversed with reference to the description of Figs. 4-6, and the optical device of the embodiment will be briefly described with reference to Figs.
  • the filter in the optical device is one piece, in order to make the optical signals of different wavelengths can be combined, the mirrors are separated, and at least three separate mirrors can control the angle of incidence to the filter through the mirror, so that the reflection The optical signal of the mirror can be better incident on the filter, so that the optical signals of different wavelengths are combined and output.
  • at least three separate mirrors have the same angle of ⁇ 1 in the vertical direction, and can be fine-tuned.
  • FIG. 4 please refer to FIG. 4.
  • the filter can be divided into at least three pieces, and the angle of entering the three film filters is simultaneously adjusted by using one mirror, and the mirror is rotated.
  • the angle plays a role in fine-tuning the angle of the incident filter, that is, the rotation of the mirror has a large tolerance, which reduces the complexity of the process.
  • FIG. 5 please refer to FIG. 5; or at least three separate filters and at least three The separate mirrors can also precisely adjust the angle of incident light into the filter by three separate mirrors. And multiplexing functions, in particular see figures 6.
  • the embodiment of the present invention further provides a demultiplexer.
  • the demultiplexer separates the received optical signals of different wavelengths and respectively enters the receiver.
  • the demultiplexer includes the optical device of FIGS. 2-6, the optical device comprising: a first incident region, a refractive region, a filtering region, and a reflective region;
  • the first incident region is configured to inject light of at least a first wavelength and light of a second wavelength, and the incident light of the first wavelength and the light of the second wavelength enter a refraction zone;
  • the refractive region is configured to refract the light of the first wavelength and the light of the second wavelength, and the refracted light of the first wavelength and the light of the second wavelength enter a filtering area;
  • the second wavelength of light reflected by the filtering region is refracted, and the refracted light of the second wavelength enters the reflective region; and the second wavelength of light reflected by the reflective region is refracted, after being refracted The second wavelength of light enters the filtration zone;
  • the filter region is configured to transmit light of the first wavelength refracted by the refractive region, and output the first a light of a wavelength, reflecting the light of the second wavelength to the refractive region; and transmitting a second wavelength reflected by the reflective region to output light of a second wavelength.
  • the reflective area is configured to reflect the second wavelength of light refracted by the refractive area, and the reflected second wavelength of light enters the refractive area.
  • the embodiment of the present invention further provides a multiplexer.
  • the multiplexer combines optical signals of different wavelengths and outputs them from a port.
  • the multiplexer includes the optical device as described in FIG. 7, the optical device comprising: a second incident region, a filtering region, a reflective region, and a refractive region;
  • the second incident area is configured to input the received light of the first wavelength and the light of the second wavelength to the filtering area;
  • the filtering area is configured to be used to input the light of the first wavelength Transmitting light of the second wavelength into the refraction zone;
  • the refractive region is configured to refract light of the first wavelength and light of the second wavelength such that light of the second wavelength enters the reflective region, and the light of the first wavelength is refracted And refracting the light of the second wavelength reflected by the reflective region, so that the light of the second wavelength is refracted and then multiplexed with the light of the first wavelength;
  • the reflection area is configured to reflect the light of the second wavelength and enter the refraction zone.
  • An embodiment of the present invention further provides an optical network system.
  • the optical network system is shown in FIG. 1.
  • the specific optical line terminal includes a multiplexer and a demultiplexer.
  • the multiplexer is shown in FIG. 7 and the corresponding embodiment.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a computer.
  • computer readable media may comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, disk storage media or other magnetic storage device, or can be used for carrying or storing in the form of an instruction or data structure.
  • Any connection may suitably be a computer readable medium.
  • the software is transmitted from a website, server, or other remote source using coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave.
  • coaxial cable, fiber optic cable, twisted pair, DSL or wireless technologies such as infrared, wireless and microwave are included in the fixing of the associated medium.
  • a disk and a disc include a compact disc (CD), a laser disc, a compact disc, a digital versatile disc (DVD), a floppy disc, and a Blu-ray disc, wherein the disc is typically magnetically replicated, and The disc uses a laser to optically replicate the data. Combinations of the above should also be included within the scope of the computer readable media.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Communication System (AREA)

Abstract

本发明提供了一种光器件、装置以及光网络***,所述光器件包括:第一入射区,用于将至少第一波长的光和第二波长的光进行入射,入射后的所述第一波长的光和所述第二波长的光进入折射区;所述折射区,用于将所述第一波长的光和第二波长的光进行折射,折射后的所述第一波长的光和所述第二波长的光进入过滤区;用于将经过所述过滤区反射的所述第二波长的光进行折射,折射后的所述第二波长的光进入所述反射区;以及对所述反射区反射的第二波长的光进行折射,折射后的所述第二波长的光进入所述过滤区;所述过滤区,用于将所述折射区折射的所述第一波长的光进行透射,输出所述第一波长的光,将所述第二波长的光反射到所述折射区;以及将反射区反射的第二波长进行透射,输出第二波长的光;所述反射区,用于将所述折射区折射的所述第二波长的光进行反射,反射后的第二波长的光进入所述折射区。采用了新型光器件的结构,使得目前复用器以及解复用器的体积更小,结构更简单,并且降低了不同信号之间的串扰,提高了单通道输出功率。

Description

光器件、 装置以及光网络*** 技术领域
本发明涉及通信技术领域, 特别涉及一种光器件、 装置以及光网络***。 背景技术
目前, 在时分波分混合复用 ( TWDM, Time Wavelength Division Multiplexing ) 无 源光网络 (PON, Passive Optical Network )中,光线路终端 ( OLT, Optical Line Terminal ) 包括有四个独立工作的发射机, 频率间隔为 100千兆赫兹 GHz , 每个发射机发射一个波长信 号, 四个波长信号通过一个复用器复用到一根光纤, 经光纤和分束器传输到各个光网络单 元 (0NU, Optical Network Unit ) , (MU端的接收波长为可调, 从而可以挑选出对应波长 的信号进行探测以及光线路终端通过解复用器将光纤中的四路波长进行分波后通过四个 独立工作的接收机机进行接收。
在 TWDM-P0N 中, 发射机或者接收机独立工作, 频率间隔要满足标准规定的 100GHz , 该发射机或者接收机采用密集型复用器或者密集型解复用器时,对应的密集型复用器和密 集型解复用器的体积足够小能够继承在发射机或者接收机中,且需要保证波长间隔满足标 准的规定, 但是目前使用的波分复用器或者解复用器体积大, 结构复杂, 无法满足上述要 求。
发明内容
有鉴于此, 本发明实施例提供了一种光器件、 装置以及***, 用于解决现有目前使 用的复用器以及解复用器体积大, 结构复杂, 无法满足要求的问题。
第一方面, 本发明提供一种光器件, 所述光器件包括: 第一入射区、 折射区、 过滤 区和反射区;
所述第一入射区, 用于将至少第一波长的光和第二波长的光进行入射, 入射后的所 述第一波长的光和所述第二波长的光进入折射区;
所述折射区, 用于将所述第一波长的光和第二波长的光进行折射, 折射后的所述第 一波长的光和所述第二波长的光进入过滤区;用于将经过所述过滤区反射的所述第二波长 的光进行折射, 折射后的所述第二波长的光进入所述反射区; 以及对所述反射区反射的第 二波长的光进行折射, 折射后的所述第二波长的光进入所述过滤区;
所述过滤区, 用于将所述折射区折射的所述第一波长的光进行透射, 输出所述第一 波长的光, 将所述第二波长的光反射到所述折射区; 以及将反射区反射的第二波长进行透 射, 输出第二波长的光。
所述反射区, 用于将所述折射区折射的所述第二波长的光进行反射, 反射后的第二波 长的光进入所述折射区。
在第一方面的第一种可能的实现方式中,所述折射区为具有一定折射率的楔形介质构 成。
结合第一方面或第一方面的第一种可能的实现方式, 在第二种可能的实现方式中, 所述反射区包括至少一片反射镜, 且所述任意一反射镜与垂直面的具有特定的夹角。
结合第一方面、 第一方面的第一种可能的实现方式或者第一方面的第二种可能的实 现方式中, 在第三种可能的实现方式中, 所述过滤区包括至少一片滤波片, 且所述任意一 薄膜滤波片设置在所述楔形介质的一表面上。
第二方面, 本发明提供了另一种一种光器件, 在第二方面的第一种可能的实现方式 中, 所述光器件包括: 第二入射区、 过滤区、 反射区和折射区;
所述入射区, 用于将接收到的第一波长的光和第二波长的光入射到所述过滤区; 所述过滤区, 用于将入射的所述第一波长的光和所述第二波长的光进行透射, 进入所 述折射区;
所述折射区, 用于将所述第一波长的光和所述第二波长的光进行折射, 使得所述第二 波长的光进入所述反射区, 所述第一波长的光进行折射后射出; 以及将所述反射区反射的 第二波长的光进行折射, 使得所述第二波长的光进行折射后与所述第一波长的光一同射 出;
所述反射区, 用于将所述第二波长的光进行反射后, 进入所述折射区。
结合第二方面或第二方面的第一种可能的实现方式, 在第二种可能的实现方式中, 所 述折射区为具有一定折射率的楔形介质构成。
结合第二方面、第二方面的第一种可能的实现方式或者第二方面的第二种可能的实现 方式, 在第三种可能的实现方式中, 所述反射区包括至少一片反射镜, 且所述任意一反射 镜与垂直面的具有特定的夹角。
结合第二方面、第二方面的第一种可能的实现方式、第二方面的第二种可能的实现方 式、在第三种可能的实现方式或者在第四种可能的实现方式中, 所述过滤区包括至少一片 滤波片, 且所述任意一薄膜滤波片设置在所述楔形介质的一表面上。
第三方面, 本发明提供了一种解复用器, 所述解复用器包括第一方面至第一方面的 第三种可能的实现方式的光器件。
第四方面, 本发明提供了一种复用器, 所述复用器包括第二方面至第二方面的第四 种可能的实现方式的光器件。
第五方面, 本发明提供了一种光网络***, 所述光网络***包括光线路终端和光网络 单元, 所述光线路终端包括第一方面至第一方面的第三种可能的实现方式的光器件和 /或 包括第二方面至第二方面的第四种可能的实现方式的光器件。
通过上述方案提供的一种光器件, 解决了现有目前使用的复用器以及解复用器体积 大, 结构复杂, 无法满足要求的问题, 使得改进后的光器件能够满足各种标准的要求, 并 且体积小, 而且结构简单。
附图说明 为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附 图作简单地介绍。 显而易见地, 下面描述中的附图仅仅是本发明的一些实施例, 对于本领 域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附 图。
图 1为本发明提供的一种光网络***的结构示意图;
图 2为本发明提供的一种光器件的结构示意图;
图 3为本发明提供的一种光器件的各组件的详细结构示意图;
图 4为本发明提供的一种光器件的一种结构示意图;
图 5为本发明提供的一种光器件的另一种结构示意图;
图 6为本发明提供的一种光器件的又一种结构示意图;
图 7为本发明提供的一种光器件的又一种结构示意图。
具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地 描述。 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是全部的实施例。 基于本 发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实 施例, 都属于本发明保护的范围。
图 1为本发明实施例提供的一种光网络***的结构示意图。
为本发明实施例提供的无源光网络***的结构示意图, 所述***包括: 光线路终端 0LT和光网络单元 (MU, 其中, 所述光线路终端和 /或光网络单元包括: 如上述实施例所述 光发射机 1。
优选地, 所述无源光网络***可以为 TWDM-P0N***, 具体如下:
TWDM-P0N 由局侧的 0LT、 用户侧的 0NU 或者光网络终端 (0NT, Optical Network Terminal ) 以及光分配网络 ( ODN, Optical Distribution Network ) 组成。 无源光网络 一般采用树型的拓扑结构, 典型的 TWDM-P0N网络架构如图 1所示, 下面以该架构为例进 行说明。其中,所述 0LT或者 0NU中采用上述实施例图示 1至 5所述的光发射机 1的结构。
0LT为 P0N***提供网络侧接口, 连接一个或多个 0DN。 ODN是无源分光器件, 用于 连接 0LT设备和光网络单元(0NU, Optical Network Unit )或者光网络终端(0NT, Optical Network Terminal ) 设备, 用于分发或复用 OLT和 0NU或者 0NT之间的数据信号。 0NU为 P0N***提供用户侧接口, 与 0DN相连。 如果 0而直接提供用户端口功能, 如 PC上网用 的以太网用户端口, 则称为 0NT。 无特殊说明, 下文提到的 0NU统指 0NU和 0NT。 图 8以 0LT包含有 4个光发射机 Txl~Tx4及 4个光接收机 Rxl~Rx4为例。
在 TWDM-P0N***中, 从 0LT到 0NU称为下行; 反之, 从(MU到 0LT为上行。 上行方 向和下行方向各有多个(≥1 )波长, 图 8中假设上行和下行各有 4个波长, 以 WDM方式共 存, 互相不干扰。
在下行方向上, 0LT的 4个光发射机 Txl~Tx4, 分别以不同波长的光信号广播下行数 据, 通过复用器、 耦合器后输出到 0DN的主干光纤, 经 0DN传输到各个 (MU, 0NU使用可 调接收机, 在其中一个下行波长上接收下行广播数据信号。
在上行方向上, 0NU的可调发射机使用其中一个上行波长, 以时分多址 (TDMA, Time Division Multiple Access )方式发射突发光信号, 经过 0DN的主干光纤到达 0LT, 经 0LT 的耦合器和解复用器, 不同波长的光信号分别由 4个不同的接收机 Rxl~Rx4接收。 同一上 行波长上的各个(MU, 采用 TDMA方式传输数据, 即通过 0LT为每个 0NU分配时隙, 各个 0NU必须严格按照 0LT分配的时隙发送数据, 从而保证上行数据不发生冲突。
实际 TWDM-P0N网络中, 可能的网络拓扑结构可以为: 有一个 0LT机架 (chassis ), 多个 PON口 (port )都在一块板卡(l inecard)上, 通过波长复用器件与 0DN连接; 或者, 有一个 0LT机架及多块板卡, 每块板卡有至少一个 P0N口, 多个 P0N口通过波长复用器件 与 0DN连接; 又或者, 有至少两个 0LT机架, 每个 0LT机架有多块板卡, 每块板卡有至少 一个 P0N口, 多个 P0N口通过波长复用器件与 0DN连接。
0LT板卡有两种端口, 一种是网络侧端口, 与以太网 (ETH, Ethernet ) 或者 IP 网 络或者异步传输模式 (ATM , Asynchronous Transfer Mode ) /同步数字体系 (SDH, synchronous digital hierarchy) 网络连接; 另一种是 PON口, 通过 0DN与各 0NU连接。 同一个 0LT板卡上的不同 P0N口, 可以通过 0LT板卡内部总线进行通信; 同一个 0LT机架 上的不同 0LT板卡之间, 可以通过其网络侧端口, 通过机架的背板总线通信; 不同 0LT机 架的 0LT板卡, 可以通过与机架连接的 ETH网络或者 IP网络 ATM网络等络通信。
上述***架构中提到的复用器以及解复用器, 可以为波分复用器以及波分解复用器, 该复用器的具体结构做了改进, 采用由入射区、 折射区、 过滤区和反射区构成的光器件构 成该复用器或者解复用器,实现对发射的波长进行分波以及对接收的各路波长进行合波的 功能。 具体请参见下面实施例对复用器以及解复用器的具体介绍。
由上述可知, 本发明实施例提供的无源光网络***, 所述***中的光线路终端采用了 新型复用器以及解复用器的光器件的结构, 使得目前复用器以及解复用器的体积更小, 结 构更简单, 并且降低了不同信号之间的串扰, 提高了单通道输出功率。
请参考图 2, 图 2为本发明实施例提供的一种光器件的结构示意图, 其中, 该光器件包 括: 第一入射区、 折射区、 过滤区和反射区;
所述第一入射区 (图中为入射区), 用于将至少第一波长的光和第二波长的光进行入 射, 入射后的所述第一波长的光和所述第二波长的光进入折射区。
所述折射区, 用于将所述第一波长的光和第二波长的光进行折射, 折射后的所述第一 波长的光和所述第二波长的光进入过滤区;用于将经过所述过滤区反射的所述第二波长的 光进行折射, 折射后的所述第二波长的光进入所述反射区; 以及对所述反射区反射的第二 波长的光进行折射, 折射后的所述第二波长的光进入所述过滤区。
可选的, 该折射区由楔形介质块构成, 该楔形介质块可以为某折射率为 n的楔形玻璃 构成。
所述过滤区, 用于将所述折射区折射的所述第一波长的光进行透射, 输出所述第一波 长的光,将所述第二波长的光反射到所述折射区;以及将反射区反射的第二波长进行透射, 输出第二波长的光。
可选的, 所述过滤区可以由至少一片滤波片构成, 该滤波片可以为薄膜滤波片, 也可 以由至少两片折射率不同的滤波片构成所述任意一薄膜滤波片设置在所述楔形介质的一 个表面上。
所述反射区, 用于将所述折射区折射的所述第二波长的光进行反射, 反射后的第二波 长的光进入所述折射区。
所述反射区可以由至少一片反射镜构成,且所述任意一反射镜与垂直面的具有特定的 夹角。
该光器件可以为解复用器, 将入射的第一波长以及第二波长的光信号通过解复用器 后, 分开输出第一波长的光以及第二波长的光。 该解复用器可以设置在上述的无源光网络 ***实施例中的光线路终端中。
具体的, 该光器件的各组件的详细结构示意图如图 3所示, 以二束入射光为例进行介 绍, 但是不限于该二束入射光。
当入射光分别为波长为 λ 1和 λ 2的光信号时, λ 1和 λ 2的入射角为 Α, 折射区由角度 为 θ, 折射率为 η的楔形介质块构成, 所述过滤区为一片或者多片贴在楔形介质块一侧的滤 波片 (该滤波片可以为薄膜滤波片) 构成, 所述反射区为一片或者多片与垂直方向成 D角 的反射镜构成。 其中, λ 1和 λ 2的光信号进入楔形介质块中进行折射, 折射到第一滤波片 后, 波长为 λ 1的光信号透过滤波片, 波长为 λ 2的光信号被反射回楔形介质块中, 经过折 射后到反射镜上被反射。 其中, 所述波长为 λ 2的光信号折射与被滤波片反射之间的夹角 为 ct, 即可以理解为波长为 λ 2的光信号入射到滤波片的角度, 波长为 λ 2的光信号入射方 向与反射方向的夹角为 β,反射镜与垂直方向的夹角为 D,这几个角度之间的关系可以如下: A= arc(n sin (^ - α)) ; β = arc(n sin(^ + ))- arc(n sin(^ - a) ; Ό = ^β + A- Θ 以上角度之间的关系确定了滤波片与反射镜以及楔形介质块之间位置和角度关系, 当
(为光从介质中入射进滤波片的角度, 以 n=l. 5的玻璃介质为例, 空气入射到膜片角度 1. 5 ° , 因此 CF I °, 上述为举例说明, 以小角度入射滤波片, 此时光信号的 P偏振与 S偏 振重合, 无需偏振分集, 使得采用该结构的光器件精确度高; 利用楔形的斜边以及介质与 空气的折射率的关系, 拉大了光信号的入射角与反射角的夹角, 因此, 楔形边对减小光路 尺寸起到重要作用; 另外, 反射镜可以精确调整入射到滤波片的角度, 具有大容差, 简便 工艺, 使得反射镜具有较大的旋转容差, 可精确调整入射角。 因此, 该光器件的结构紧凑、 简单, 体积小, 且效果好。
另外, 上述光器件中当入射光为四路光信号时, 滤波片为一片时, 为了使得不同波长 的光信号能分离开, 反射镜是分离的, 至少三片分离的反射镜, 可以通过反射镜来控制入 射到滤波片的角度, 使得入射反射镜的光信号能够更好的入射到滤波片, 从而通过滤波片 进行分离, 这种情况下, 至少三片分离的反射镜与垂直方向的 ΦΙ 角度都相同, 可以进行 微调, 具体请参见附图 4 ; 若将该至少三片分离的反射镜集成一片反射镜, 则滤波片可以 分成至少三片, 使用一个反射镜同时调整进入三个薄膜滤波片的角度, 反射镜旋转角度起 到了对入射滤波片的角度的微调作用, 即反射镜的旋转有较大的容差, 降低工艺复杂度, 具体请参见附图 5; 也可以是采用至少三片分离的滤波片和至少三片分离的反射镜, 通过 三个分离的反射镜也可以精确调整入射光进入滤波片的角度, 进而起到分波的作用, 具体 请参见附图 6。
请参考图 7,图 7为本发明实施例提供的另一种光器件的结构示意图,所述光器件包括: 第二入射区、 过滤区、 反射区和折射区;
所述第二入射区, 用于将接收到的第一波长的光和第二波长的光入射到所述过滤区。 所述过滤区, 用于将入射的所述第一波长的光和所述第二波长的光进行透射, 进入所 述折射区。
可选的, 该折射区由楔形介质块构成, 该楔形介质块可以为某折射率为 n的楔形玻璃 构成。
所述折射区, 用于将所述第一波长的光和所述第二波长的光进行折射, 使得所述第二 波长的光进入所述反射区, 所述第一波长的光进行折射后射出; 以及将所述反射区反射的 第二波长的光进行折射,使得所述第二波长的光进行折射后与所述第一波长的光进行合波 后进行输出。
可选的, 所述过滤区可以由至少一片滤波片构成, 该滤波片可以为薄膜滤波片, 也可 以由至少两片折射率不同的滤波片构成所述任意一薄膜滤波片设置在所述楔形介质的一 个表面上。
所述反射区, 用于将所述第二波长的光进行反射后, 进入所述折射区。
所述反射区可以由至少一片反射镜构成,且所述任意一反射镜与垂直面的具有特定的 夹角。
该光器件为一种解复用器, 将入射的第一波长以及第二波长的光信号通过复用器后, 进行合波并输出。 该解复用器可以设置在上述的无源光网络***实施例中的光线路终端 中。
具体的, 该光器件的各组件的详细结构示意图也可以如图 3所示, 以二束入射光为例 进行介绍, 但是不限于该二束入射光。
当入射光分别为波长为 λ 2的光信号时, λ 2的光信号通过过滤区进入折射区, 折射后 入射到反射区被反射, 再次进入折射区, 折射后进入过滤区, 经过过滤区的反射从折射区 射出; 波长为 λ 1的光信号经过过滤后透射进入折射区, 经过折射后, 与波长为 λ 2的光信 号合波后输出。 其中, λ 1和 λ 2进行合波后, 出射角为 Α, 折射区由角度为 θ, 折射率为 η 的楔形介质块构成, 所述过滤区为一片或者多片贴在楔形介质块一侧的滤波片(该滤波片 可以为薄膜滤波片) 构成, 所述反射区为一片或者多片与垂直方向成 D角的反射镜构成。 所述波长为 λ 2的光信号折射与被滤波片反射之间的夹角为 α, ct即可以理解为波长为 λ 2 的光信号入射到滤波片的角度, 波长为 λ 2的光信号入射方向与反射方向的夹角为 β, 反射 镜与垂直方向的夹角为 D, 这几个角度之间的关系可以如下: A= arc(n sin (^ - α)) ; β = arc(n sin(^ + ))- arc(n sin(^ - a) ; Ό = ^β + A- Θ 以上角度之间的关系确定了滤波片与反射镜以及楔形介质块之间位置和角度关系,与 图 3对应的实施例的角度关系一致, 只是光信号的方向反向, 从过滤区进行入射, 起到的 作用与上述实施例 3的相反, 即将波长为 λ 1以及 λ 2的光信号进行合波后输出。 因此, 具 有上述光器件也有着结构紧凑、 简单, 体积小, 且效果好的特点。
另外, 该实施例提到的光器件也可以参照图 4-图 6的描述, 光信号的方向反向即可, 因 此参照上述图 4-图 6对该实施例的光器件进行简单介绍。 该光器件中的滤波片为一片时, 为了使得不同波长的光信号能合并, 反射镜是分离的, 至少三片分离的反射镜, 可以通过 反射镜来控制入射到滤波片的角度, 使得反射镜的光信号能够更好的入射到滤波片, 从而 使得不同波长的光信号进行合波后输出, 这种情况下, 至少三片分离的反射镜与垂直方向 的 Φ1 角度都相同, 可以进行微调, 具体请参见附图 4; 若将该至少三片分离的反射镜集成 一片反射镜, 则滤波片可以分成至少三片, 使用一个反射镜同时调整进入三个薄膜滤波片 的角度, 反射镜旋转角度起到了对入射滤波片角度的微调作用, 即反射镜的旋转有较大的 容差, 降低工艺复杂度, 具体请参见附图 5 ; 也可以是采用至少三片分离的滤波片和至少 三片分离的反射镜, 通过三个分离的反射镜也可以精确调整入射光进入滤波片的角度, 进 而起到合波的作用, 具体请参见附图 6。
本发明实施例还提供了一种解复用器, 请参见***图 1中的解复用器, 该解复用器对 接收的不同的波长的光信号进行分离后分别进入接收机中。 该解复用器包括图 2-图 6的光 器件, 所述光器件包括: 第一入射区、 折射区、 过滤区和反射区;
所述第一入射区, 用于将至少第一波长的光和第二波长的光进行入射, 入射后的所述 第一波长的光和所述第二波长的光进入折射区;
所述折射区, 用于将所述第一波长的光和第二波长的光进行折射, 折射后的所述第一 波长的光和所述第二波长的光进入过滤区;用于将经过所述过滤区反射的所述第二波长的 光进行折射, 折射后的所述第二波长的光进入所述反射区; 以及对所述反射区反射的第二 波长的光进行折射, 折射后的所述第二波长的光进入所述过滤区;
所述过滤区, 用于将所述折射区折射的所述第一波长的光进行透射, 输出所述第一 波长的光, 将所述第二波长的光反射到所述折射区; 以及将反射区反射的第二波长进行透 射, 输出第二波长的光。
所述反射区, 用于将所述折射区折射的所述第二波长的光进行反射, 反射后的第二波 长的光进入所述折射区。
具体解复用器的请参见图 2-图 6的光器件的具体描述, 这里就不再赘述。
本发明实施例还提供了一种复用器, 请参见***图 1中的复用器, 该复用器对不同的 波长的光信号进行合波后分别从一端口中输出。 所述复用器包括如图 7所述的光器件, 所 述光器件包括: 第二入射区、 过滤区、 反射区和折射区;
所述第二入射区, 用于将接收到的第一波长的光和第二波长的光入射到所述过滤区; 所述过滤区, 用于将入射的所述第一波长的光和所述第二波长的光进行透射, 进入所 述折射区;
所述折射区, 用于将所述第一波长的光和所述第二波长的光进行折射, 使得所述第二 波长的光进入所述反射区, 所述第一波长的光进行折射后射出; 以及将所述反射区反射的 第二波长的光进行折射,使得所述第二波长的光进行折射后与所述第一波长的光进行合波 后进行输出;
所述反射区, 用于将所述第二波长的光进行反射后, 进入所述折射区。
具体复用器的请参见图 7的光器件的具体描述, 这里就不再赘述。
本发明实施例还提供一种光网络***, 所述光网络***请参见图 1, 具体光线路终端 包括复用器和解复用器, 其中所述复用器请参见图 7以及相应的实施例的描述, 所述解复 用器请参见图 2-图 6以及相应的实施例的描述。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本发明可以用硬 件实现, 或固件实现, 或它们的组合方式来实现。 当使用软件实现时, 可以将上述功能存 储在计算机可读介质中或作为计算机可读介质上的一个或多个指令或代码进行传输。计算 机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个 地方传送计算机程序的任何介质。存储介质可以是计算机能够存取的任何可用介质。 以此 为例但不限于: 计算机可读介质可以包括 RAM、 ROM, EEPR0M、 CD-ROM或其他光盘存储、 磁 盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期 望的程序代码并能够由计算机存取的任何其他介质。此外。任何连接可以适当的成为计算 机可读介质。 例如, 如果软件是使用同轴电缆、 光纤光缆、 双绞线、 数字用户线 (DSL) 或者诸如红外线、 无线电和微波之类的无线技术从网站、 服务器或者其他远程源传输的, 那么同轴电缆、 光纤光缆、 双绞线、 DSL或者诸如红外线、 无线和微波之类的无线技术包 括在所属介质的定影中。如本发明所使用的, 盘(Disk)和碟(disc)包括压縮光碟(CD)、 激光碟、 光碟、 数字通用光碟 (DVD)、 软盘和蓝光光碟, 其中盘通常磁性的复制数据, 而 碟则用激光来光学的复制数据。 上面的组合也应当包括在计算机可读介质的保护范围之 内。
总之, 以上所述仅为本发明技术方案的较佳实施例而已, 并非用于限定本发明的保护 范围。 凡在本发明的精神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在 本发明的保护范围之内。

Claims

权利 要求
1、 一种光器件, 其特征在于, 所述光器件包括: 第一入射区、 折射区、 过滤区和反 射区;
所述第一入射区, 用于将至少第一波长的光和第二波长的光进行入射, 入射后的所述 第一波长的光和所述第二波长的光进入折射区;
所述折射区, 用于将所述第一波长的光和第二波长的光进行折射, 折射后的所述第一 波长的光和所述第二波长的光进入过滤区;用于将经过所述过滤区反射的所述第二波长的 光进行折射, 折射后的所述第二波长的光进入所述反射区; 以及对所述反射区反射的第二 波长的光进行折射, 折射后的所述第二波长的光进入所述过滤区;
所述过滤区, 用于将所述折射区折射的所述第一波长的光进行透射, 输出所述第一 波长的光, 将所述第二波长的光反射到所述折射区; 以及将反射区反射的第二波长进行透 射, 输出第二波长的光;
所述反射区, 用于将所述折射区折射的所述第二波长的光进行反射, 反射后的第二波 长的光进入所述折射区。
2、 根据权利要求 1所述的光器件, 其特征在于, 所述折射区为具有一定折射率的楔形 介质构成。
3、 根据权利要求 1所述的光器件, 其特征在于, 所述反射区包括至少一片反射镜, 且 所述任意一反射镜与垂直面的具有特定的夹角。
4、 根据权利要求 1或者 2所述的光器件, 其特征在于, 所述过滤区包括至少一片滤波 片, 且所述任意一薄膜滤波片设置在所述楔形介质的一表面上。
5、 一种光器件, 其特征在于, 所述光器件包括: 第二入射区、 过滤区、 反射区和折 射区;
所述第二入射区, 用于将接收到的第一波长的光和第二波长的光入射到所述过滤区; 所述过滤区, 用于将入射的所述第一波长的光和所述第二波长的光进行透射, 进入所 述折射区;
所述折射区, 用于将所述第一波长的光和所述第二波长的光进行折射, 使得所述第二 波长的光进入所述反射区, 所述第一波长的光进行折射后射出; 以及将所述反射区反射的 第二波长的光进行折射,使得所述第二波长的光进行折射后与所述第一波长的光进行合波 后进行输出;
所述反射区, 用于将所述第二波长的光进行反射后, 进入所述折射区。
6、 根据权利要求 5所述的光器件, 其特征在于, 所述折射区为具有一定折射率的楔形 介质构成。
7、 根据权利要求 5所述的光器件, 其特征在于, 所述反射区包括至少一片反射镜, 且 所述任意一反射镜与垂直面的具有特定的夹角。
8、 根据权利要求 5所述的光器件, 其特征在于, 所述过滤区包括至少一片滤波片, 且 所述任意一薄膜滤波片设置在所述楔形介质的一表面上。
9、 一种解复用器, 其特征在于, 所述解复用器包括如权利要求 1-4所述的任意一光器 件。
10、 一种复用器, 其特征在于, 所述复用器包括如权利要求 5-8所述的任意一光器件。
11、 一种光网络***, 所述光网络***包括光线路终端和光网络单元, 其特征在于, 所述光线路终端包括如权利要求 1-4所述的任意一光器件和如权利要求 5-8所述的任意一 光器件。
PCT/CN2013/083519 2013-09-14 2013-09-14 光器件、装置以及光网络*** WO2015035624A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380001928.5A CN103718486B (zh) 2013-09-14 2013-09-14 光器件、装置以及光网络***
PCT/CN2013/083519 WO2015035624A1 (zh) 2013-09-14 2013-09-14 光器件、装置以及光网络***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/083519 WO2015035624A1 (zh) 2013-09-14 2013-09-14 光器件、装置以及光网络***

Publications (1)

Publication Number Publication Date
WO2015035624A1 true WO2015035624A1 (zh) 2015-03-19

Family

ID=50409491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/083519 WO2015035624A1 (zh) 2013-09-14 2013-09-14 光器件、装置以及光网络***

Country Status (2)

Country Link
CN (1) CN103718486B (zh)
WO (1) WO2015035624A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114740571A (zh) * 2022-04-08 2022-07-12 西安炬光科技股份有限公司 光学多路复用***和滤光器

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060177177A1 (en) * 2003-03-22 2006-08-10 Qinetiq Limited Optical wavelength division multiplexer/demultiplexer device
CN101056153A (zh) * 2006-04-14 2007-10-17 上海未来宽带技术及应用工程研究中心有限公司 波分复用器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1217213C (zh) * 2002-02-25 2005-08-31 台达电子工业股份有限公司 可配置型光塞取多工器
CN2636507Y (zh) * 2003-08-28 2004-08-25 深圳飞通光电股份有限公司 波分复用组件
US7079322B2 (en) * 2003-09-26 2006-07-18 Hitachi Maxell, Ltd. Wavelength division multiplexer
CN100495096C (zh) * 2004-05-26 2009-06-03 Hoya株式会社 光模块和光波长合波分波装置
CN2901712Y (zh) * 2006-04-14 2007-05-16 上海未来宽带技术及应用工程研究中心有限公司 波分复用器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060177177A1 (en) * 2003-03-22 2006-08-10 Qinetiq Limited Optical wavelength division multiplexer/demultiplexer device
CN101056153A (zh) * 2006-04-14 2007-10-17 上海未来宽带技术及应用工程研究中心有限公司 波分复用器

Also Published As

Publication number Publication date
CN103718486B (zh) 2017-09-08
CN103718486A (zh) 2014-04-09

Similar Documents

Publication Publication Date Title
CN203301489U (zh) 具有多路波长通道的光发射器件、光接收器件及光模块
WO2012149810A1 (zh) 无源光网络***及其下行传输方法
US9294217B2 (en) Optical signal multiplexing method and optical multiplexer
WO2012149813A1 (zh) 光网络***、光网络***升级的方法以及光分配网
US20180123693A1 (en) Optical device and optical module
WO2013075662A1 (zh) 共存无源光网络***及上、下行光信号发送方法
WO2015154267A1 (zh) 一种光时域反射仪实现装置及***
US9831946B2 (en) Optical transmitter and transmission method, and optical receiver and receiption method
EP2981010A1 (en) Optical module and optical network system
WO2022042721A1 (zh) 光收发器装置和光网络***
US20150381305A1 (en) Self-calibrating tunable laser for optical network
WO2015035624A1 (zh) 光器件、装置以及光网络***
CN114845187A (zh) 一种无源光网络***及相关装置
WO2012106920A1 (zh) 光模块及其突发发射方法、激光器及光网络***
TW201532396A (zh) 雙向五訊耦合收發系統及其方法
WO2014134770A1 (zh) 光发射机、信号传输方法以及***
US10128970B2 (en) Bandwidth adjustable optical module and system
WO2013078679A1 (zh) 光收发模块、无源光网络***和设备
TW201213910A (en) Reflective semiconductor optical amplifier for optical networks
WO2024139919A1 (zh) 一种光接收组件、光模块、olt及pon***
CN206270601U (zh) 一种多波长合波器
CN103986525A (zh) 一种光接入单元收发模块
JP4626208B2 (ja) 光ネットワーク
WO2020253540A1 (zh) 无源光网络的波长切换、配置方法及装置
CN109802745A (zh) 一种用于200g/400g光收发模块的8通道波分复用/解复用器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13893526

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13893526

Country of ref document: EP

Kind code of ref document: A1