WO2015034136A1 - Organic thin-film solar cell and method for manufacturing same - Google Patents

Organic thin-film solar cell and method for manufacturing same Download PDF

Info

Publication number
WO2015034136A1
WO2015034136A1 PCT/KR2013/011294 KR2013011294W WO2015034136A1 WO 2015034136 A1 WO2015034136 A1 WO 2015034136A1 KR 2013011294 W KR2013011294 W KR 2013011294W WO 2015034136 A1 WO2015034136 A1 WO 2015034136A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
solar cell
organic thin
zno
film solar
Prior art date
Application number
PCT/KR2013/011294
Other languages
French (fr)
Korean (ko)
Inventor
문형랑
천진민
허달호
김진형
손병혁
Original Assignee
제일모직 주식회사
서울대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제일모직 주식회사, 서울대학교 산학협력단 filed Critical 제일모직 주식회사
Publication of WO2015034136A1 publication Critical patent/WO2015034136A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • H10K30/15Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
    • H10K30/152Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2 the wide bandgap semiconductor comprising zinc oxide, e.g. ZnO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • H10K85/215Fullerenes, e.g. C60 comprising substituents, e.g. PCBM
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to an organic thin film solar cell and a method for manufacturing the same, and to an organic thin film solar cell having a ZnO nanorod layer formed using a block copolymer template and a method for manufacturing the same.
  • the organic thin film solar cell has the advantage that it can be applied to a wide range of flexible substrates because it is cheaper than silicon single crystal solar cell, has excellent process efficiency, is suitable for large area and mass production, and has fluidity.
  • silicon single crystal solar cell has excellent process efficiency, is suitable for large area and mass production, and has fluidity.
  • Much research is being conducted into solar cell devices that may replace commercially available silicon single crystal solar cells.
  • the organic thin film solar cell refers to an energy conversion device that absorbs solar energy and generates electric current by moving charges and holes generated from an interface between a p-type polymer and an n-type polymer to each electrode.
  • a large amount of charge must be generated and effectively moved, and therefore, an interface path must be secured while maximizing the interfacial area.
  • p-type polymers and n-type polymers are generally mixed to generate random interfaces.
  • the solar cells manufactured in this manner are referred to as bulk-heterojunct ion organic solar cells. do.
  • the process of obtaining electricity from the light of the organic thin film solar cell can be divided into three steps. By maximizing the efficiency of each step, it is possible to improve the photoelectric conversion efficiency of the entire solar cell.
  • the first step is for the photoactive layer to absorb sunlight.
  • Polymer thin film In the case of a solar cell, for example, the polymer absorbs light and electrons of HOMOOiighest occupied molecular orbital) are transferred to LUM0 (lowest unoccupied molecular orbital) to form acetone.
  • LUM0 lowest unoccupied molecular orbital
  • an active layer having a thickness of about 100 nm is generally used. Therefore, it is necessary to absorb a large amount of sunlight at this thickness, so the optical absorption coefficient (absorpt ion coef icient) of the polymer used must be 105 cm "1 or more.
  • the second step is to separate electrons and holes from the exciton produced by absorbing sunlight.
  • the organic thin film solar cell uses the same principle as the inorganic solar cell using the p-n bond of the inorganic semiconductor.
  • a polymer solar cell uses a polymer as a donor (p-type) material, and another type of LUM0 lower than a polymer as an acceptor (n-type) material (a) Bi-layer (b) Bulk-heterojunct ion (c) Mixed l ayer polymers, ful lerene derivatives and nano-sized inorganic materials are used. That is, excitons generated by absorbing light from the donor polymer move to the interface of the acceptor and pass electrons to the acceptor to form electron-hole pairs.
  • the energy required to separate the electron-hole pairs is only a few meV, so that they are naturally separated at room temperature, whereas organic thin film solar cells require energy of ⁇ 100 meV.
  • the third step is to move to the cathode and anode without any loss of separated electrons and holes.
  • the loss at the interface between the active layer and the electrode should be minimized, but also the formation of a path through which the electrons and holes separated within the active layer can move to the electrode without short-circuit, and within the donor and acceptor materials, The speed must be fast enough.
  • the exciton di f fusion length is known to be within 10 nm of the exciton without being destroyed.
  • Excitons are not compatible with n-type materials when the region of the p-type material is wider than this distance. It may not be possible to reach the interface of and disappear.
  • the aforementioned problems may cause a decrease in the light conversion efficiency of the organic thin film solar cell. Can be.
  • the research is to find the best efficiency condition by allowing two materials to be separated into the optimum size through thermal anneal ing, solvent anneal ing, etc.
  • Research has been conducted to increase the surface area of electrodes by controlling the structure of.
  • An object of the present invention is to provide an organic thin film solar cell formed with a nanorod layer having an interval within a distance range that excitons can be diffused and a method of manufacturing the same.
  • Another object of the present invention is to provide an organic thin film solar cell having excellent light conversion efficiency and a method of manufacturing the same.
  • One aspect of the invention is a substrate; A first electrode layer; ZnO nanorod layer; Photoactive layer; Hole trapping layer; And an organic thin film solar cell in which a second electrode layer is sequentially stacked, wherein the ZnO nanorod layer comprises a ZnO seed layer and a plurality of ZnO nanorods extending from the ZnO seed layer, wherein the ZnO nanorods are the first electrode layer.
  • the contact angle between the horizontal plane and the organic thin film solar cell is 70 ° or more.
  • the ZnO nanorods may have a square, rhombus or circular cross section.
  • the ZnO nanorod layer may have a lamel la structure formed by overlapping a plurality of ZnO nanorods.
  • the thickness of the ZnO nanorod layer is 1 to l, 000 nm, the surface area may be 0.01 to l, 000cirf / g.
  • the height of the ZnO nanorods is 1 to 500nm, the separation distance of the ZnO nanorods may be lnm to ⁇ , ⁇ .
  • the first electrode layer is made of indium tin oxide (IT0), gold, silver, and fluorine doped tin oxide (FTO), aluminum doped zink oxide (AZO), and I Z0 (indium). zink oxide), ZnO 1 Ga203, Zn A1203 and ATCKantimony tin oxide).
  • the photoactive layer may include at least one of a p-type polymer and an n-type polymer.
  • the photoactive layer may include a p-type polymer and an n-type polymer in a weight ratio of 1: 0.1 to 1: 5.
  • the p-type polymer is poly-3-nuxylthiophene (P3HT), poly-3-poly-3-octylthiophene [poly— 3-octylthiophene, P30T], polyparaphenylenevinylene [po ly-p-pheny 1 enevi ny 1 ene, PPV], poly (dioctylfluorene) [poly (9,9'-dioctylfluorene)], poly (2-methoxy, 5- (2 ⁇ ethyl-nuclear chamber) Oxy) _ 1 4 _ phenylenevinylene) [ pol y (2 _ methoX y 5 ⁇ (2 ⁇ ethyle _ hexyloxy) _ 1 4 _ phenyl enevinylene, MEH-PPV], poly (2-methyl , 5- (3 ', 7'-dimethyloctyloxy))-1,4
  • the hole trap layer may include a metal oxide selected from the group consisting of molybdenum oxide, nickel oxide, vanadium oxide, lithium fluoride and tungsten oxide.
  • Another aspect of the invention is a step of forming a first electrode layer on a substrate; The first Forming a ZnO nanorod layer on the surface of the electrode layer; And sequentially stacking a photoactive layer, a hole trapping layer, and a second electrode layer on the ZnO nanorod layer.
  • the block copolymer template may include: treating a surface of a wafer formed by depositing SiO 2 with a silane compound; Coating a hydrophilic-hydrophobic block copolymer solution on the surface treated wafer to form a block copolymer template; And removing the wafer.
  • the hydrophilic hydrophobic block copolymer solution may include 0.1 to 20 wt% of polystyrene-poly (methyl methacrylate) block copolymer PS-PMMA and 80 to 99.9 wt 3 ⁇ 4 of solvent.
  • the PS—PMMA polystyrene-poly (methyl methacrylate) block copolymer has a number average molecular weight of 1, 000 to 500, 000 kg / iTOl of PS blocks, and a number average molecular weight of 1, 000 to 500 of PMMA blocks , 000kg / n) l.
  • the silane compound may include one or more of phenethyl tr ichlorosi lane (PET) and 3 ⁇ (p-methoxyphenyl) propyl tr i chlorosi lane (MPTS).
  • PET phenethyl tr ichlorosi lane
  • MPTS propyl tr i chlorosi lane
  • the ZnO nanorod layer is immersed in a solution containing the zinc nitrite hexahydrate (zinc ni trate hexahydrate), hexamethylenetetramine and pure water (DI water) of the ZnO seed layer on which the block copolymer template is laminated It can be formed by hydrothermal synthesis.
  • the organic thin film solar cell according to the present invention includes a ZnO nanorod layer having an interval within a distance range in which an axtone can be diffused, and an effective delivery of excitons It is possible and the light conversion efficiency is excellent.
  • FIG. 1 is a conceptual diagram schematically showing an organic thin film solar cell of the present invention.
  • FIG. 2 (a) shows a SEM picture of a nanorod layer composed of ZnO nanorods having a circular cross section
  • FIG. 2 (b) shows a SEM picture of a ZnO nanorod layer having a layered structure
  • Figure 3 shows a SEM photograph of the block copolymer template according to Example 1.
  • Figure 4 shows a SEM photograph of the block copolymer template according to Example 2.
  • Figure 5 shows a SEM photograph of the block copolymer template according to Comparative Example 2.
  • the organic thin film solar cell of the present invention has an inverse structure, and has a structure in which a first electrode, a ZnO nanorod layer, a photoactive layer, a hole trapping layer, and a second electrode are sequentially stacked on a substrate.
  • the structure of an organic thin film solar cell can be divided into a forward structure and an inverse structure.
  • PED0T PSS (poly (3,4-ethylenedioxythiophene): poly (3) used as a hole transporting layer in the case of a positive structure organic thin film solar cell in which holes flow out toward the transparent electrode and electrons flow out toward the metal electrode. styrenesul fonate)) ⁇ c l Corrosion of the ITO indium t oxide layer due to acidity and rapid oxidation of metal electrodes with low work functions such as aluminum and calcium, resulting in rapid prolonged exposure to air. There is a problem of decreasing. In order to solve this problem, a lot of researches have been conducted on inverted organic thin film solar cells.
  • the reverse structure organic thin film solar cell has a structure in which electrons flow toward the metal electrode toward the transparent electrode as opposed to the positive structure.
  • Inverse Structure Organic Thin Film Solar Cell Air Efficiency is not greatly reduced even if exposed for a long time.
  • This is an electron transporting layer located on the IT0 layer, which uses non-corrosive zinc oxide, titanium oxide, etc., and the metal electrode also correlates with the work function of the metal. This is because it is possible to use precious metals such as gold and silver which are hardly oxidized.
  • the present invention will be described in detail.
  • FIG. 1 is a view schematically showing the structure of an organic thin film solar cell according to an embodiment of the present invention.
  • the first electrode layer 120, the ZnO nanorod layer 130, the photoactive layer 140, the hole trap layer 150, and the second electrode layer 120 may be formed on the substrate 110.
  • the electrode layer 160 has a stacked structure sequentially.
  • the substrate 110 may be a glass or quartz plate, in addition to polyethylene terephthalate (PET), polyethylene naphthelate (PEN), polyperopylene (PP), polyimide (Pl), polycarbornate (PC), polystylene (PS), and polyoxyethlene (POM). It may be made of a flexible and transparent material such as plastic, including PMMA (poly (methyl methacrylate)), AS resin, ABS resin, and TAC (Tri acetyl cellulose).
  • PET polyethylene terephthalate
  • PEN polyethylene naphthelate
  • PP polyperopylene
  • Pl polyimide
  • PC polycarbornate
  • PS polystylene
  • POM polyoxyethlene
  • the first electrode layer 120 is a metal organic chemical vapor deposition (MOCVD) process, a plasma enhanced chemical vapor deposition (PECVD) process, a sputtering process, an e-beam process, a thermal deposition process, a spin coating process.
  • MOCVD metal organic chemical vapor deposition
  • PECVD plasma enhanced chemical vapor deposition
  • sputtering e-beam
  • thermal deposition e-beam
  • spin coating process e.g., a spin coating process.
  • the transparent electrode material is formed on one surface of the substrate or coated in a film form.
  • the first electrode layer 110 serves as a cathode, any material having transparency and conductivity may be used as a material having a higher work function than the second electrode layer 160.
  • ITO indium tin oxide, gold, silver, fluorine doped tin oxide (FT0), aluminum doped zinc Oxide (aluminum doped zink oxide, AZO), indium zink oxide (IZO), ZnO—Ga203, Zn0-Al 2 O 3, antimony tin oxide (AT0), and the like, and preferably ITO may be used.
  • a ZnO nanorod layer 130 may be formed on the upper surface of the first electrode layer 120.
  • the ZnO nanorod layer 130 has a structure suitable for accommodating excitons generated in the p-type region, and specifically, the thickness of the ZnO nanorod layer is 1 to ⁇ , ⁇ . In particular, the nanorod layer may maximize the receiving area of the acetone in the above range.
  • the ZnO nanorod layer may include a ZnO seed layer and a plurality of ZnO nanorods extending from the ZnO seed layer.
  • the contact angle of the ZnO nanorods may be 70 ° or more, preferably 80 ° or more, and more preferably 85 ° or more.
  • the contact angle is defined as an acute angle where the ZnO nanorods extending from the ZnO seed charge form a flat or horizontal surface of the substrate.
  • the ZnO nanorods may have a square cross section, a rhombus, a circle, or the like.
  • Figure 2 (a) shows a SEM photograph of the nanorod layer consisting of nanorods having a circular cross section of the ZnO nanorods.
  • the ZnO nanorod layer may have a layered structure formed by overlapping a plurality of ZnO nanorods.
  • Figure 2 (b) shows a SEM image of the ZnO nanorods of the layer structure.
  • the height of the ZnO nanorods is 1 to 500nm, the separation distance of neighboring ZnO nanorods may be lnm to l, 000nm.
  • the ZnO nanorod filling is formed by using a block copolymer template on the surface of the first electrode layer, which will be described later.
  • the photoactive layer 140 is formed on the ZnO nanorod layer 130.
  • the photoactive insect 130 may include one or more of a p-type polymer and an n-type polymer.
  • the P-type polymer is an electron donor, poly-3-nuxylthiophene (P3HT), poly-3-poly- 3-octylthiophene (poly-3-octylthiophene, P30T), polyparaphenyl vinylene [po ly-p-phenylenevinylene, PPV], poly (dioctyl fluorene) [poly (9,9'-dioctyinuorene) ], poly (2 eume hydroxy-5- (2-ethyl-haeksil oxy) - 1,4-phenylenevinylene) [poly (2-methoxy, 5- (2-et hy 1 e-hexy 1 oxy)-1, 4- phenylenevinylene, MEH-PPV], poly (2-methyl, 5_ ( 3 ', 7'-dimethyloctyloxy))-1,4-phenylenevinylene [poly (2-methyl, 5_ (3', 7
  • the P-type polymer and the n-type polymer may be mixed in a weight ratio of 1: 0.1 to 1: 5.
  • the photoactive layer may have a thickness of about 10 nm to about 5 nm.
  • the hole trap layer 150 may include molybdenum oxide, nickel oxide, vanadium oxide, lithium fluoride, tungsten oxide, or the like as p-type metal oxides, and preferably molybdenum oxide may be used. .
  • the hole trap layer may be formed by depositing in a thermal evaporator showing a vacuum degree of lxl0 "6 torr or less after the photoactive layer is formed.
  • the hole trap layer may have a thickness of 0.1 to 50 nm.
  • the second electrode layer 160 is formed on the hole trap layer 150. Like the hole trap layer, the second electrode layer 160 is formed by being deposited in a thermal evaporator having a vacuum degree of 1 ⁇ 10 ⁇ 6 torr or less.
  • the hole trap layer is made of aluminum, silver, gold, etc. It may include, preferably silver (Ag) may be used as the second electrode layer.
  • the thickness of the second electrode layer may be 0.1 to 500 nm. Manufacturing method of organic thin film solar cell
  • Method for producing an organic thin film solar cell of the present invention comprises the steps of forming a first electrode layer on the substrate; Forming a ZnO nanorod layer on the surface of the first electrode layer; And sequentially stacking a photoactive layer, a hole trapping layer, and a crab electrode layer on the ZnO nanorod layer.
  • Forming a ZnO seed layer on the first electrode layer Depositing a block copolymer template on the ZnO seed layer; Forming ZnO nanorods on the block copolymer template; And removing the block copolymer template.
  • Block copolymer nanostructures can be a low cost effective way to solve the loss of light conversion efficiency caused by the structural problems of organic thin film solar cells.
  • Block copolymer refers to two or more polymer chains connected by covalent bonds.
  • the block copolymer has a property of separating each block into individual domains due to the limitation of covalent linkage points between the two blocks, unlike the general polymer mixture showing a large phase separation phenomenon of several microns. That is, due to the spontaneous phase separation phenomenon, the block copolymer may prepare a template capable of forming a large nanorod of about 10 to 100 nm according to the molecular weight ratio of each block.
  • block copolymer nanostructures containing a polymer such as PMMA that can be selectively removed by UV or the like can be utilized as a template of another structure.
  • the surface structure of the ZnO nanorod layer may be formed to reflect the surface structure of the block copolymer template.
  • the block copolymer template is a cylindrical nanostructure oriented perpendicular to the substrate, by selectively removing the inside of the cylinder, and using it as a template of hydrothermal synthesis, nanorods of controlled size and spacing in a large area are synthesized. which Can be.
  • the method for producing the block copolymer template comprises the steps of: surface treating the Si-wafer surface with a silane compound; Coating with a hydrophilic-hydrophobic block copolymer solution on the surface treated Si wafer to form a block copolymer template; And removing the wafer on which the block copolymer template is formed.
  • the Si-wafer means a wafer formed by depositing SiO 2 .
  • PETS phenethyl tr ichlorosilene
  • MPTS 3- (p-methoxypheny 1) propy 11 r i chloros i 1 ane) and the like may be used alone or in combination.
  • the hydrophilic hydrophobic block copolymer solution may include PS-PMMA (polystyrene-poly (methyl methacrylate) block copolymer 0.01 to 20% by weight and a solvent 80 to 99.9% 3 ⁇ 4.
  • PS-PMMA polystyrene-poly (methyl methacrylate) block copolymer 0.01 to 20% by weight and a solvent 80 to 99.9% 3 ⁇ 4.
  • the PS-PMMA (polystyrene-poly (methyl methacrylate) block copolymer is a PS block having a number average molecular weight of 1,000 to 500, 000kg / m and a PMMA block having a number average molecular weight of 1,000 to 500, 000kg / m It may include.
  • the method of surface-treating the surface of the Si-wafer with a silane compound is immersed in the organic solvent containing 0.0001 to 100 vol% of the silane compound for 1 minute to 3 hours, and then washed with ethanol It can be surface treated.
  • the organic solvent toluene and the like can be used.
  • the ZnO nanorod layer is laminated with a block copolymer template on the ZnO seed layer, zinc nitrite hexahydrate and hexamethylenetetramine in pure water (DI water) After soaking in dilute aqueous solution, hydrothermal at 50 to 100 o C for 30 minutes to 5 hours Can be formed synthetically.
  • the patterned IT0 substrate (Sunic Systems Co., Ltd.) was sonicated with isopropanol and acetone methanol for 10 minutes each, washed with methanol and dried with nitrogen (N 2 ).
  • Formation of ZnO seed layer 20m £ of 0.9M isopropanol (1 301 1 ⁇ 0 31101) solution containing 0.018 mol of zinc acetate dihydrate and 0.018 nrol of ethanol was prepared and stirred at 50 ° C. for 12 hours, followed by lOmm / itiin After the dip coating and drying on the patterned ⁇ substrate at a retreat rate was calcined (calcinat ion) for 1 hour at 40CTC to secure crystallinity.
  • Block Copolymer Template A Si wafer on which a Si0 2 layer was deposited with a thickness of 300 nm was immersed in 0.001 vol% PETSCphenethyl tr ichloros i lane for 2 hours in a luene solution to form a self-assembled monolayer on the surface of the wafer. After washing the wafer with ethanol.
  • PS-PMMA polystyrene-poly (methyl methacrylate) block copolymer (number average molecular weight: PS (46kg / mol) -PMMA (21kg / mol)) and spin coating on the wafer surface with an aqueous solution containing toluene OOOrpm, 1 minute), and dried for 6 hours at 80 ° C., and then annealed at 230 ° C. for 2 hours.
  • the block copolymer template formed on the wafer is immersed in an aqueous solution diluted with 10% of 50% hydrofluoric acid solution to melt the wafer under the block copolymer template to separate the block copolymer template from the wafer, and then block copolymer. The template was made.
  • the SEM photograph of the prepared block copolymer template is shown in FIG. 3.
  • ZnO nanorod layer The prepared block copolymer template was laminated on the ZnO seed layer, which was then immersed in an aqueous solution in which zinc nitrate hexahydrate 0.1 M aqueous solution and hexamethylenetetramine 0.1 M aqueous solution were mixed in a volume ratio of 1: 1. After hydrothermal synthesis for 1.5 hours at 95 ° C and washed with water. Afterwards at 500 o C
  • the ZnO nanorod layer was formed by removing the block copolymer template by heat treatment for 30 minutes.
  • Completion of the organic thin film solar cell Spin coating (2000rp) on the hydrothermally synthesized ZnO nanorod layer with a chlorobenzene solution containing P3HT and PCBM in a weight ratio of 1: 1 in a glove box (MBRAUN) in a nitrogen (N 2 ) atmosphere. , 1 minute) to form a photoactive layer, by depositing Mo0 3 5nm on the formed photoactive layer to form an electron trap layer, and then deposited (Ag) 100nm and then heat-treated at 150 ° C. for 10 minutes A solar cell was prepared.
  • MBRAUN glove box
  • N 2 nitrogen
  • Example 2 The average width, average spacing, and average depth of the block copolymer template prepared by the above method, and the contact angle, average thickness, average separation distance, and average height of the synthesized ZnO nanorods were measured by analyzing SEM images. To measure the light conversion efficiency of shown in Table 1 below.
  • Example 2 To measure the light conversion efficiency of shown in Table 1 below.
  • PS-PMMA (po 1 y s t yr ene-po 1 y (me t hy 1 methacryl ate)) block copolymer
  • a block copolymer template, a ZnO nanorod layer, and an organic thin film solar cell were manufactured in the same manner as in Example 1, except that (Number Average Molecular Weight: PS (80kg / mol) -PMMA (80kg / mol)) was used. . SEM pictures of the prepared block copolymer template are shown in FIG. 4. Comparative Example 1 A block copolymer template, a ZnO nanorod layer, and an organic thin film solar cell were manufactured in the same manner as in Example 1, except that the wafer surface was not treated with the silane compound. Comparative Example 2
  • An organic thin film solar cell was manufactured by hydrothermally synthesizing a ZnO nanorod layer directly on a ZnO seed layer without using a block copolymer template. SEM pictures of the prepared block copolymer template are shown in FIG. 5.
  • Optical conversion efficiency (%): measured according to IEC 60904-1 standard (Photovoltaic devices; Part 1: measurement of photovoltaic cur rent -volt age characteristics).
  • Photocurrent_voltage (I— IV) characteristics are 500W xenon lamp (XIL model
  • 05A50KS source units were measured under 1 sun (100 mW cm-2). (Calibrated with NREL manufactured Si reference solar cell)
  • the organic solar cell of Example 1-2 in which the ZnO nanorod layer was formed using the block copolymer template, was prepared using a block copolymer template. It can be seen that the contact angle of the synthesized ZnO nanorods is 70 ° or more and the average thickness, average separation distance, and average height are regular compared to Comparative Example 2 not used.

Abstract

The present invention relates to an organic thin-film solar cell in which a substrate, a first electrode layer, a ZnO nanorod layer, a photoactive layer, a hole trapping layer, and a second electrode are stacked in sequence. The ZnO nanorod layer comprises a plurality of ZnO nanorods, and the contact angle that the ZnO nanorods have with respect to the surface of the first electrode layer is at least 70 degrees. Due to comprising the ZnO nanorod layer having an interval within a length range where exciton can be diffused, the organic thin-film solar cell can effectively transfer the exciton and have excellent photoelectric conversion efficiency.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
유기박막 태양전지 및 그 제조방법  Organic thin film solar cell and its manufacturing method
【기술분야】 Technical Field
본 발명은 유기박막 태양전지 및 그 제조방법에 관한 것으로, 블록공중합체 템플레이트를 이용하여 ZnO 나노로드층이 형성된 유기박막 태양전지 및 그 제조방법에 관한 것이다.  The present invention relates to an organic thin film solar cell and a method for manufacturing the same, and to an organic thin film solar cell having a ZnO nanorod layer formed using a block copolymer template and a method for manufacturing the same.
【배경기술】 Background Art
유기박막 태양전지는 실리콘 단결정 태양전지에 비해 단가가 저렴하고, 공정효율성이 우수하여 대면적, 대량 생산에 적합하며, 유동성을 갖기 때문에 플렉시블 ( f lexible) 기판 등 넓은 범위에 적용 가능하다는 이점이 있어 현재 상용화된 실리콘 단결정 태양전지를 대체할 가능성이 있는 태양전지 소자로 많은 연구가 진행되고 있다.  The organic thin film solar cell has the advantage that it can be applied to a wide range of flexible substrates because it is cheaper than silicon single crystal solar cell, has excellent process efficiency, is suitable for large area and mass production, and has fluidity. Currently, much research is being conducted into solar cell devices that may replace commercially available silicon single crystal solar cells.
유기박막 태양전지는 태양 에너지를 흡수하여 p-type 폴리머와 n-type 폴리머의 계면으로부터 발생한 전하 및 정공을 각 전극으로 이동시켜 전류를 만들어내는 에너지 변환 소자를 일컫는다. 효율이 높은 태양전지를 제조하기 위해서는 다량의 전하가 발생하여 효과적으로 이동하여야 하기 때문에 계면적을 극대화함과 동시에 전하의 이동 경로 또한 확보해야 한다. 이를 위해서 유기박막 태양전지 제조시 일반적으로 p-type 폴리머와 n-type 폴리머를 흔합하여 무작위적인 계면을 발생시키는데, 이러한 방식으로 제조된 태양전지를 벌크헤테로정션 (Bulk-heterojunct ion) 유기 태양전지라 한다.  The organic thin film solar cell refers to an energy conversion device that absorbs solar energy and generates electric current by moving charges and holes generated from an interface between a p-type polymer and an n-type polymer to each electrode. In order to manufacture a highly efficient solar cell, a large amount of charge must be generated and effectively moved, and therefore, an interface path must be secured while maximizing the interfacial area. To this end, in the manufacture of organic thin film solar cells, p-type polymers and n-type polymers are generally mixed to generate random interfaces. The solar cells manufactured in this manner are referred to as bulk-heterojunct ion organic solar cells. do.
유기박막 태양전지의 광으로부터 전기를 얻는 과정을 크게 3단계로 나누어 볼 수 있는데, 각 단계의 효율을 극대화함으로써 전체 태양전지의 광전전환효율의 향상을 기할 수 있다.  The process of obtaining electricity from the light of the organic thin film solar cell can be divided into three steps. By maximizing the efficiency of each step, it is possible to improve the photoelectric conversion efficiency of the entire solar cell.
첫번째 단계는 광활성층이 태양광을 흡수하는 단계이다. 고분자박막 태양전지의 경우를 예로 보면, 고분자가 광을 흡수함으로써 HOMOOiighest occupi ed molecular orbi tal )의 전자가 LUM0( lowest unoccupied molecular orbi tal )로 전이되어 액시톤을 형성하게 된다. 고분자의 전도도에 따라 차이가 있기는 하지만 일반적으로 lOOnm 내외 두께의 활성층 (act ive layer)을 사용하고 있다. 따라서 이 두께에서 층분한 양의 태양광을 흡수할 수 있어야 하므로 사용하는 고분자의 광 흡수 계수 (absorpt ion coef f icient )가 105 cm"1 이상 층분히 커야 한다. The first step is for the photoactive layer to absorb sunlight. Polymer thin film In the case of a solar cell, for example, the polymer absorbs light and electrons of HOMOOiighest occupied molecular orbital) are transferred to LUM0 (lowest unoccupied molecular orbital) to form acetone. Although there is a difference depending on the conductivity of the polymer, an active layer having a thickness of about 100 nm is generally used. Therefore, it is necessary to absorb a large amount of sunlight at this thickness, so the optical absorption coefficient (absorpt ion coef icient) of the polymer used must be 105 cm "1 or more.
두 번째 단계는 태양광을 흡수하여 생성된 엑시톤에서 전자와 정공을 분리하는 단계이다. 유기박막 태양전지는 무기반도체의 p-n 결합을 이용한 무기태양전지와 같은 원리를 이용한다. 일반적으로 고분자 태양 전지에서는 donor (p-type) 물질로는 고분자를 사용하고 있으며, acceptor (n—type) 물질로는 LUM0가 고분자보다 낮은 다른 종류 (a)Bi-layer (b)Bulk-heterojunct ion (c)Mixed l ayer의 고분자나 ful lerene 유도체, 나노 크기의 무기물들을 사용하고 있다. 즉 donor인 고분자에서 광을 흡수하여 생성된 엑시톤은 억셉터의 경계면까지 이동한 후, 억셉터로 전자를 넘겨줌으로써 전자-정공쌍을 형성하게 된다. 무기 태양전지의 경우 전자-정공쌍이 분리하는데 필요한 에너지가 수 meV에 불과하므로 상온에서 자연스럽게 분리되는데 비하여, 유기박막 태양전지의 경우는 ~ 100meV의 에너지가 필요하다는 점에서 차이가 있다.  The second step is to separate electrons and holes from the exciton produced by absorbing sunlight. The organic thin film solar cell uses the same principle as the inorganic solar cell using the p-n bond of the inorganic semiconductor. In general, a polymer solar cell uses a polymer as a donor (p-type) material, and another type of LUM0 lower than a polymer as an acceptor (n-type) material (a) Bi-layer (b) Bulk-heterojunct ion (c) Mixed l ayer polymers, ful lerene derivatives and nano-sized inorganic materials are used. That is, excitons generated by absorbing light from the donor polymer move to the interface of the acceptor and pass electrons to the acceptor to form electron-hole pairs. In the case of inorganic solar cells, the energy required to separate the electron-hole pairs is only a few meV, so that they are naturally separated at room temperature, whereas organic thin film solar cells require energy of ~ 100 meV.
세 번째 단계는 분리된 전자와 정공이 소실되지 않고 무사히 음극과 양극으로 이동하는 것이다. 그러기 위해서는 활성층과 전극 계면에서의 손실을 최소화해야 할 뿐만 아니라 활성층 내부에서 분리된 전자와 정공이 단락되지 않고 전극으로 이동할 수 있는 경로의 형성이 되어야 하며 이때 도너와 억셉터 물질 내부에서도 정공과 전자의 이동속도가 충분히 빨라야 한다.  The third step is to move to the cathode and anode without any loss of separated electrons and holes. To this end, not only the loss at the interface between the active layer and the electrode should be minimized, but also the formation of a path through which the electrons and holes separated within the active layer can move to the electrode without short-circuit, and within the donor and acceptor materials, The speed must be fast enough.
특히, 생성된 엑시톤이 소멸되지 않고 이동할 수 있는 거리 (exci ton di f fusion length)는 일반적으로 10nm 이내로 알려져 있는데, p—type 물질의 영역이 이 거리 이상으로 넓을 경우에 엑시톤이 n— type 물질과의 계면까지 도달하지 못하고 소멸하는 문제점이 발생할 수 있다.  In particular, the exciton di f fusion length is known to be within 10 nm of the exciton without being destroyed. Excitons are not compatible with n-type materials when the region of the p-type material is wider than this distance. It may not be possible to reach the interface of and disappear.
앞서 언급한 문제점들은 유기박막 태양전지의 광변환 효율의 감소를 야기할 수 있다. 이러한 문제점을 해결하기 위하여 thermal anneal ing , solvent anneal ing 등을 통하여 두 물질이 최적의 크기로 상분리되도록 하여 최상의 효율을 내는 조건을 찾는 연구, 전극의 계면을 개질하여 전자의 전달을 원활히 하는 연구, 전극의 구조를 제어하여 전극의 표면적을 넓히는 연구 등이 수행되고 있다. The aforementioned problems may cause a decrease in the light conversion efficiency of the organic thin film solar cell. Can be. In order to solve this problem, the research is to find the best efficiency condition by allowing two materials to be separated into the optimum size through thermal anneal ing, solvent anneal ing, etc. Research has been conducted to increase the surface area of electrodes by controlling the structure of.
【발명의 상세한 설명】 [Detailed Description of the Invention]
【기술적 과제】  [Technical problem]
본 발명의 목적은 엑시톤이 확산될 수 있는 거리 범위 이내의 간격을 갖는 나노로드층이 형성된 유기박막 태양전지 및 그 제조방법을 제공하기 위함이다.  An object of the present invention is to provide an organic thin film solar cell formed with a nanorod layer having an interval within a distance range that excitons can be diffused and a method of manufacturing the same.
본 발명의 다른 목적은 광전환효율이 우수한 유기박막 태양전지 및 그 제조방법을 제공하기 위함이다.  Another object of the present invention is to provide an organic thin film solar cell having excellent light conversion efficiency and a method of manufacturing the same.
본 발명의 상기 및 기타의 목적들은 하기 설명되는 본 발명에 의하여 모두 달성될 수 있다.  The above and other objects of the present invention can be achieved by the present invention described below.
【기술적 해결방법】 Technical Solution
본 발명의 하나의 관점은 기판; 제 1 전극층; ZnO 나노로드층; 광활성층; 정공포획층; 및 제 2 전극층이 순차적으로 적층된 유기박막 태양전지이고, 상기 ZnO 나노로드층은 ZnO 시드층 및 상기 ZnO 시드층에서 연장된 복수 개의 ZnO 나노로드를 포함하며, 상기 ZnO 나노로드가 상기 제 1 전극층 수평면과 이루는 접촉각은 70°이상인 유기박막 태양전지에 관한 것이다. 상기 ZnO 나노로드는 단면이 정방형, 마름모형 또는 원형일 수 있다.  One aspect of the invention is a substrate; A first electrode layer; ZnO nanorod layer; Photoactive layer; Hole trapping layer; And an organic thin film solar cell in which a second electrode layer is sequentially stacked, wherein the ZnO nanorod layer comprises a ZnO seed layer and a plurality of ZnO nanorods extending from the ZnO seed layer, wherein the ZnO nanorods are the first electrode layer. The contact angle between the horizontal plane and the organic thin film solar cell is 70 ° or more. The ZnO nanorods may have a square, rhombus or circular cross section.
상기 ZnO 나노로드층은 복수 개의 ZnO 나노로드가 중첩하여 형성된 층상구조 ( lamel la structure)일 수 있다.  The ZnO nanorod layer may have a lamel la structure formed by overlapping a plurality of ZnO nanorods.
상기 ZnO 나노로드층의 두께는 1 내지 l , 000nm이며, 표면적은 0. 1 내지 l , 000cirf/g일 수 있다.  The thickness of the ZnO nanorod layer is 1 to l, 000 nm, the surface area may be 0.01 to l, 000cirf / g.
상기 ZnO 나노로드의 높이는 1 내지 500nm이고, 상기 ZnO 나노로드의 이격거리는 lnm 내지 Ι , ΟΟΟηιη일 수 있다. 상기 제 1 전극층은 IT0( indium tin oxide), 금, 은, 플로린이 도핑된 틴 옥사이드 (fluorine doped tin oxide; FTO) , 알루미늄이 도핑된 징크 옥사이드 (aluminium doped zink oxide, AZO) , I Z0( indium zink oxide) , ZnO一 Ga203, Zn으 A1203 및 ATCKantimony tin oxide)으로 이루어진 군에서 선택된 금속을 포함할 수 있다. The height of the ZnO nanorods is 1 to 500nm, the separation distance of the ZnO nanorods may be lnm to Ι, ΟΟΟηιη. The first electrode layer is made of indium tin oxide (IT0), gold, silver, and fluorine doped tin oxide (FTO), aluminum doped zink oxide (AZO), and I Z0 (indium). zink oxide), ZnO 1 Ga203, Zn A1203 and ATCKantimony tin oxide).
상기 광활성층은 p-type 폴리머와 n-type 폴리머 중 하나 이상을 포함할 수 있다.  The photoactive layer may include at least one of a p-type polymer and an n-type polymer.
상기 광활성층은 p-type 폴리머와 n-type 폴리머를 1 : 0.1 내지 1 : 5의 중량비로 포함할 수 있다.  The photoactive layer may include a p-type polymer and an n-type polymer in a weight ratio of 1: 0.1 to 1: 5.
상기 p-type 폴리머는 폴리 -3-핵실티오펜 [poly-3-hexylthiophene, P3HT], 폴리 -3-폴리 -3-옥틸티오펜 [poly— 3-octylthiophene, P30T], 폴리파라페닐렌비닐렌 [po ly-p-pheny 1 enevi ny 1 ene, PPV], 폴리 (디옥틸플루오렌) [poly(9,9'-dioctylfluorene)], 폴리 (2-메특시, 5-(2ᅳ에틸- 핵실옥시) _1 4_페닐렌비닐렌) [poly(2_methoXy 5(2ethyle_hexyloxy)_1 4_ phenyl enevinylene, MEH-PPV] , 폴리 (2-메틸, 5-(3' ,7'-디메틸옥틸옥시 ))-1,4- 페닐렌비닐렌 [poly (2一 methyl , 5一 (3 ' ,7' -dimethyloctyloxy) )-1, 4-phenylene vinylene, MDM0-PPV] , 및 이들의 유도체로 이루어진 군에서 선택된 1종 이상의 폴리머를 포함하고; 상기 n-type 폴리머는 (6,6)-페닐 61—부티릭에시드 메틸에스테르 [(6,6)-phenyl-C61-butyric acid methyl ester, PCBM] , (6,6)-페닐- C71-부티릭에시드 메틸에스테르 [(6,6)-phenyl-C71-butyric acid methyl ester, C70-PCBM] , 풀러렌 (fullerene, C60), (6,6)-티에닐 61-부티릭에시드 메틸에스테르 [(6,6)-thienyl-C61-butyric acid methyl ester; ThCBM] , 탄소나노튜브, 및 이들의 유도체로 이루어진 군에서 선택된 1종 이상의 플리머를 포함할 수 있다. The p-type polymer is poly-3-nuxylthiophene (P3HT), poly-3-poly-3-octylthiophene [poly— 3-octylthiophene, P30T], polyparaphenylenevinylene [po ly-p-pheny 1 enevi ny 1 ene, PPV], poly (dioctylfluorene) [poly (9,9'-dioctylfluorene)], poly (2-methoxy, 5- (2 ᅳ ethyl-nuclear chamber) Oxy) _ 1 4 _ phenylenevinylene) [ pol y (2 _ methoX y 5(2ethyle _ hexyloxy) _ 1 4 _ phenyl enevinylene, MEH-PPV], poly (2-methyl , 5- (3 ', 7'-dimethyloctyloxy))-1,4-phenylenevinylene [poly (2 一 methyl, 5 一 (3', 7 '-dimethyloctyloxy))-1, 4-phenylene vinylene , MDM0-PPV] And at least one polymer selected from the group consisting of derivatives thereof, wherein the n-type polymer is (6,6) -phenyl 61—butyric acid methyl ester [(6,6) -phenyl-C61-butyric acid methyl ester, PCBM], (6,6) -phenyl-C71-butyric acid methyl ester [(6,6) -phenyl-C71-butyric acid methyl ester, C70-PCBM], Fullerene (C60), (6,6) -thienyl 61-butyric acid methyl ester [(6,6) -thienyl-C61-butyric acid methyl ester; ThCBM], carbon nanotubes, and derivatives thereof It may comprise one or more plymers selected from the group consisting of.
상기 정공포획층은 산화 몰리브데늄, 산화니켈, 산화바나듐, 플루오린화리튬 및 산화텅스텐으로 이루어진 군에서 선택된 금속 산화물을 포함할 수 있다.  The hole trap layer may include a metal oxide selected from the group consisting of molybdenum oxide, nickel oxide, vanadium oxide, lithium fluoride and tungsten oxide.
본 발명의 다른 관점은 기판상에 제 1 전극층을 형성하는 단계; 상기 제 1 전극층 표면에 ZnO 나노로드층을 형성하는 단계; 및 상기 ZnO 나노로드층 위에 광활성층, 정공포획층 및 제 2 전극층을 순차적으로 적층하는 단계;를 포함하는 유기박막 태양전지의 제조방법이다. Another aspect of the invention is a step of forming a first electrode layer on a substrate; The first Forming a ZnO nanorod layer on the surface of the electrode layer; And sequentially stacking a photoactive layer, a hole trapping layer, and a second electrode layer on the ZnO nanorod layer.
상기 ZnO 나노로드층은 상기 제 1 전극층 위에 ZnO 시드층 (seed layer )를 형성하는 단계, 상기 ZnO 시드층에 위에 블록공중합체 템플레이트를 적층하는 단계 상기 블록 공중합체 템플레이트상에 ZnO 나노로드를 형성하는 단계, 및 상기 블록공중합체 템플레이트를 제거하는 단계를 포함하여 형성될 수 있다.  Forming a ZnO seed layer on the first electrode layer, laminating a block copolymer template on the ZnO seed layer, and forming a ZnO nanorod on the block copolymer template And removing the block copolymer template.
상기 블록공중합체 템플레이트는 Si02가 증착되어 형성된 웨이퍼 표면을 실란화합물로 표면 처리하는 단계; 상기 표면 처리된 웨이퍼 상에 친수성-소수성 블록공중합체 용액을 코팅하여 블록공중합체 템플레이트를 형성하는 단계; 및 상기 웨이퍼를 제거하는 단계;를 포함하여 제조될 수 있다. The block copolymer template may include: treating a surface of a wafer formed by depositing SiO 2 with a silane compound; Coating a hydrophilic-hydrophobic block copolymer solution on the surface treated wafer to form a block copolymer template; And removing the wafer.
상기 친수성-소수성 블록공중합체 용액은 PS-PMMA(polystyrene-poly (methyl methacryl ate) 블록공중합체 0. 1 내지 20 중량 % 및 용매 80 내지 99.9 중량 ¾>를 포함할 수 있다.  The hydrophilic hydrophobic block copolymer solution may include 0.1 to 20 wt% of polystyrene-poly (methyl methacrylate) block copolymer PS-PMMA and 80 to 99.9 wt ¾ of solvent.
상기 PS— PMMA(polystyrene-poly(methyl methacrylate) 블록공중합체는 수평균 분자량이 PS 블록의 수평균 분자량이 1 , 000 내지 500 , 000kg/iTOl이고, PMMA 블록의 수평균 분자량이 1 , 000 내지 500 , 000kg/n )l일 수 있다.  The PS—PMMA polystyrene-poly (methyl methacrylate) block copolymer has a number average molecular weight of 1, 000 to 500, 000 kg / iTOl of PS blocks, and a number average molecular weight of 1, 000 to 500 of PMMA blocks , 000kg / n) l.
상기 실란화합물은 PETS(phenethyl tr ichlorosi lane) 및 3ᅳ (p- methoxyphenyl )propyl tr i chlorosi lane(MPTS) 중 하나 이상을 포함할 수 있다.  The silane compound may include one or more of phenethyl tr ichlorosi lane (PET) and 3 ᅳ (p-methoxyphenyl) propyl tr i chlorosi lane (MPTS).
상기 ZnO 나노로드층은 상기 블록공중합체 템플레이트가 적층된 ZnO 시드층을 징크 나이트라이트 핵사하이드레이트 (zinc ni trate hexahydrate) , 핵사메틸렌테트라민 (hexamethylenetetramine) 및 순수 (DI water )를 포함하는 용액에 침지시켜 수열 합성으로 형성될 수 있다.  The ZnO nanorod layer is immersed in a solution containing the zinc nitrite hexahydrate (zinc ni trate hexahydrate), hexamethylenetetramine and pure water (DI water) of the ZnO seed layer on which the block copolymer template is laminated It can be formed by hydrothermal synthesis.
【유리한 효과】 Advantageous Effects
본 발명에 의한 유기박막 태양전지는 액시톤이 확산될 수 있는 거리 범위 이내의 간격을 갖는 ZnO 나노로드층을 포함하며, 엑시톤의 효과적인 전달이 가능하고, 광전환효율이 우수하다. 【도면의 간단한 설명】 The organic thin film solar cell according to the present invention includes a ZnO nanorod layer having an interval within a distance range in which an axtone can be diffused, and an effective delivery of excitons It is possible and the light conversion efficiency is excellent. [Brief Description of Drawings]
도 1은 본 발명의 유기박막 태양전지를 개략적으로 나타낸 개념도이다.  1 is a conceptual diagram schematically showing an organic thin film solar cell of the present invention.
도 2(a)는 단면이 원형인 ZnO 나노로드로 구성된 나노로드층의 SEM사진을 나타낸 것이고, 도 2(b)는 층상구조인 ZnO 나노로드층의 SEM 사진을 나타낸 것이다. 도 3은 실시예 1에 따른 블록공중합체 템플레이트의 SEM 사진을 나타낸 것이다.  2 (a) shows a SEM picture of a nanorod layer composed of ZnO nanorods having a circular cross section, and FIG. 2 (b) shows a SEM picture of a ZnO nanorod layer having a layered structure. Figure 3 shows a SEM photograph of the block copolymer template according to Example 1.
도 4는 실시예 2에 따른 블록공중합체 템플레이트의 SEM 사진을 나타낸 것이다.  Figure 4 shows a SEM photograph of the block copolymer template according to Example 2.
도 5는 비교예 2에 따른 블록공중합체 템플레이트의 SEM 사진을 나타낸 것이다.  Figure 5 shows a SEM photograph of the block copolymer template according to Comparative Example 2.
【발명의 실시를 위한 최선의 형태 】 【Best Mode for Implementation of Invention】
본 발명의 유기박막 태양전지는 역구조를 가지며, 기판상에 제 1 전극, ZnO 나노로드층, 광활성층, 정공포획층, 및 제 2 전극이 순차적으로 적층된 구조를 갖는다.  The organic thin film solar cell of the present invention has an inverse structure, and has a structure in which a first electrode, a ZnO nanorod layer, a photoactive layer, a hole trapping layer, and a second electrode are sequentially stacked on a substrate.
유기박막 태양전지의 구조는 정구조와 역구조로 나눌 수 있다. 투명전극 쪽으로 정공이 흘러나가고 금속 전극 쪽으로 전자가 흘러나가는 정구조 유기박막 태양전지의 경우, 정공 전달층 (hole transport ing layer )으로 사용되는 PED0T:PSS (poly(3 ,4-ethylenedioxythiophene) : poly(styrenesul fonate) )^cl 산성을 띠기 때문에 발생하는 ITO indium t in oxide)층의 부식 문제, 알루미늄, 칼슘 등의 낮은 일함수를 갖는 금속 전극의 빠른 산화로 인해 공기 중에 장시간 노출되었을 경우 효율이 급격히 감소하는 문제가 있다. 이러한 문제를 해결할 수 있는 방법으로 많은 연구가 수행되고 있는 것이 역구조 ( inverted type)의 유기 박막 태양전지이다. 역구조 유기 박막 태양전지는 정구조와는 반대로 투명전극 쪽으로 전자가 금속 전극 쪽으로 정공이 흘러나가는 구조이다. 역구조 유기 박막 태양전지는 공기 중에 장시간 노출되더라도 효율이 크게 감소하지 않는 특징이 있는데, 이는 IT0 층 위에 위치하는 전자 전달층 (electron transporting layer)으로 부식성이 없는 산화아연, 산화티타늄 등이 사용되고, 금속 전극 또한 금속의 일함수와 상관없이 산화가 잘 일어나지 않는 금, 은 등 귀금속의 사용이 가능하기 때문이다. 이하, 본 발명을 상세히 설명하면, 다음과 같다. 유기박막 태양전지 The structure of an organic thin film solar cell can be divided into a forward structure and an inverse structure. PED0T: PSS (poly (3,4-ethylenedioxythiophene): poly (3) used as a hole transporting layer in the case of a positive structure organic thin film solar cell in which holes flow out toward the transparent electrode and electrons flow out toward the metal electrode. styrenesul fonate)) ^ c l Corrosion of the ITO indium t oxide layer due to acidity and rapid oxidation of metal electrodes with low work functions such as aluminum and calcium, resulting in rapid prolonged exposure to air. There is a problem of decreasing. In order to solve this problem, a lot of researches have been conducted on inverted organic thin film solar cells. The reverse structure organic thin film solar cell has a structure in which electrons flow toward the metal electrode toward the transparent electrode as opposed to the positive structure. Inverse Structure Organic Thin Film Solar Cell Air Efficiency is not greatly reduced even if exposed for a long time. This is an electron transporting layer located on the IT0 layer, which uses non-corrosive zinc oxide, titanium oxide, etc., and the metal electrode also correlates with the work function of the metal. This is because it is possible to use precious metals such as gold and silver which are hardly oxidized. Hereinafter, the present invention will be described in detail. Organic Thin Film Solar Cell
도 1은 본 발명의 일 실시예에 따른 유기박막 태양전지의 구조를 개략적으로 나타낸 도면으로, 이를 참고하여 설명하면 다음과 같다.  1 is a view schematically showing the structure of an organic thin film solar cell according to an embodiment of the present invention.
본 발명의 일 실시예에 따른 유기박막 태양전지는 기판상 (110)에 제 1 전극층 (120), ZnO 나노로드층 (130), 광활성층 (140), 정공포획층 (150), 및 제 2 전극층 (160)이 순차적으로 적층된 구조를 갖는다.  In the organic thin film solar cell according to the exemplary embodiment of the present invention, the first electrode layer 120, the ZnO nanorod layer 130, the photoactive layer 140, the hole trap layer 150, and the second electrode layer 120 may be formed on the substrate 110. The electrode layer 160 has a stacked structure sequentially.
상기 기판 (110)은 유리 또는 석영판일 수 있으며, 이외에 PET(polyethylene terephthalate) , PEN(polyethylene naphthelate) , PP(polyperopylene) , Pl(polyimide) , PC(polycarbornate) , PS(polystylene) , POM(polyoxyethlene) , PMMA(poly(methyl methacrylate)) , AS 수지, ABS 수지 및 TAC(Tri acetyl cellulose) 등을 포함하는 플라스틱과 같은 유연하고 투명한 물질로 제조될 수 있다.  The substrate 110 may be a glass or quartz plate, in addition to polyethylene terephthalate (PET), polyethylene naphthelate (PEN), polyperopylene (PP), polyimide (Pl), polycarbornate (PC), polystylene (PS), and polyoxyethlene (POM). It may be made of a flexible and transparent material such as plastic, including PMMA (poly (methyl methacrylate)), AS resin, ABS resin, and TAC (Tri acetyl cellulose).
상기 제 1 전극층 (120)은 M0CVD(Metal Organic Chemical Vapor Deposition) 공정, PECVD(Plasma一 Enhanced Chemical Vapor Deposition) 공정, 스퍼터링 (Sputtering) 공정, 이빔 (e-beam) 공정, 열 증착 공정, 스핀코팅 공정 , 스크린 프린팅, 잉크젯 프린팅, 닥터 블레이드 또는 그라비아 프린팅법을 사용하여 투명전극 물질을 상기 기판의 일면에 도포되거나 필름형태로 코팅됨으로써 형성된다. 제 1 전극층 (110)은 캐소드의 기능을 하는 부분으로써, 제 2 전극층 (160)에 비해 일함수가 큰 물질로 투명성 및 도전성을 갖는 임의의 물질이 사용될 수 있다. 예를 들면, ITO indium tin oxide), 금, 은, 플로린이 도핑된 틴 옥사이드 (fluorine doped tin oxide; FT0), 알루미늄이 도핑된 징크 옥사이드 (aluminium doped zink oxide, AZO) , I Z0( indium zink oxide) , ZnO— Ga203, Zn0-Al203 및 AT0(antimony tin oxide) 등이 있으며, 바람직하게는 ITO가 사용될 수 있다. The first electrode layer 120 is a metal organic chemical vapor deposition (MOCVD) process, a plasma enhanced chemical vapor deposition (PECVD) process, a sputtering process, an e-beam process, a thermal deposition process, a spin coating process. By using screen printing, inkjet printing, doctor blade or gravure printing, the transparent electrode material is formed on one surface of the substrate or coated in a film form. As the first electrode layer 110 serves as a cathode, any material having transparency and conductivity may be used as a material having a higher work function than the second electrode layer 160. For example, ITO indium tin oxide, gold, silver, fluorine doped tin oxide (FT0), aluminum doped zinc Oxide (aluminum doped zink oxide, AZO), indium zink oxide (IZO), ZnO—Ga203, Zn0-Al 2 O 3, antimony tin oxide (AT0), and the like, and preferably ITO may be used.
상기 제 1 전극층 (120)의 상부 표면에는 ZnO 나노로드층 (130)이 형성될 수 있다.  A ZnO nanorod layer 130 may be formed on the upper surface of the first electrode layer 120.
상기 ZnO 나노로드층 (nano-rod array)(130)은 p-type 영역에서 생성된 엑시톤 (excitonj을 수용하기에 적합한 구조를 가지며, 구체적으로, 상기 ZnO 나노로드층의 두께는 1 내지 Ι,ΟΟΟηηι, 구체적으로는 1 내지 500nm이며, 표면적은 0.1 내지 1000cinVg일 수 있다. 상기 범위에서 나노로드층은 액시톤의 수용면적을 극대화할 수 있다.  The ZnO nanorod layer 130 has a structure suitable for accommodating excitons generated in the p-type region, and specifically, the thickness of the ZnO nanorod layer is 1 to Ι, ΟΟΟηηι. In particular, the nanorod layer may maximize the receiving area of the acetone in the above range.
상기 ZnO 나노로드층은 ZnO 시드층 및 상기 ZnO 시드층에서 연장된 복수 개의 ZnO 나노로드를 포함할 수 있다.  The ZnO nanorod layer may include a ZnO seed layer and a plurality of ZnO nanorods extending from the ZnO seed layer.
상기 ZnO 나노로드의 접촉각은 70°이상, 바람직하게는 80°이상, 더욱 바람직하게는 85°이상일 수 있다. 본 발명에서 상기 접촉각은 ZnO 시드충에서 연장된 ZnO 나노로드가 기재의 평탄한 일면 또는 수평면과 이루는 예각으로 정의한다.  The contact angle of the ZnO nanorods may be 70 ° or more, preferably 80 ° or more, and more preferably 85 ° or more. In the present invention, the contact angle is defined as an acute angle where the ZnO nanorods extending from the ZnO seed charge form a flat or horizontal surface of the substrate.
일 구체예로서, 상기 ZnO 나노로드는 단면이 정방형, 마름모형, 원형 등일 수 있다. 도 2(a)는 ZnO 나노로드의 단면이 원형인 나노로드로 구성된 나노로드층의 SEM사진을 나타낸 것이다.  In one embodiment, the ZnO nanorods may have a square cross section, a rhombus, a circle, or the like. Figure 2 (a) shows a SEM photograph of the nanorod layer consisting of nanorods having a circular cross section of the ZnO nanorods.
다른 구체예로서, 상기 ZnO 나노로드층은 복수 개의 ZnO 나노로드가 중첩하여 형성된 층상구조 (lamella structure)일 수 있다. 도 2(b)는 층상구조인 ZnO나노로드충의 SEM사진을 나타낸 것이다.  In another embodiment, the ZnO nanorod layer may have a layered structure formed by overlapping a plurality of ZnO nanorods. Figure 2 (b) shows a SEM image of the ZnO nanorods of the layer structure.
상기 ZnO 나노로드의 높이는 1 내지 500nm이고, 이웃하는 ZnO 나노로드의 이격거리는 lnm 내지 l,000nm일 수 있다.  The height of the ZnO nanorods is 1 to 500nm, the separation distance of neighboring ZnO nanorods may be lnm to l, 000nm.
상기 ZnO 나노로드충은 제 1 전극층의 표면에 블록공중합체 템플레이트를 이용하여 형성된 것으로 이와 관련된 ZnO 나노로드층의 제조방법에 대하여는 후술하기로 한다. 상기 ZnO 나노로드층 (130) 상에는 광활성층 (140)이 형성된다. 상기 광활성충 (130)은 p-type 폴리머와 n-type 폴리머 중 하나 이상을 포함할 수 있다. 상기 P-type 폴리머는 전자공여체인 폴리 -3-핵실티오펜 [poly-S- hexylthiophene, P3HT] , 폴리 -3-폴리— 3-옥틸티오펜 [poly-3-octylthiophene, P30T] , 폴리파라페닐렌비닐렌 [poly-p-phenylenevinylene, PPV], 폴리 (디옥틸플루오렌) [poly(9,9'-dioctyinuorene)], 폴리 (2ᅳ메록시, 5-(2-에틸- 핵실옥시) -1,4-페닐렌비닐렌) [poly( 2-methoxy, 5- ( 2-e t hy 1 e-hexy 1 oxy ) - 1, 4- phenylenevinylene, MEH-PPV] , 폴리 (2-메틸, 5_(3' ,7'-디메틸옥틸옥시)) -1,4- 페닐렌비닐렌 [poly(2-methyl , 5_(3 ' ,7' -dimethyloctyloxy) )_1, 4-phenylene vinyl ene, MDM0-PPV] , 및 이들의 유도체로 이루어진 군에서 선택된 1종 이상의 물질을 포함할 수 있다. 상기 n-type 폴리머는 전자 수용체인 (6,6)-페닐 61-부티릭에시드 메틸에스테르 [(6,6)-phenyl— C61-butyric acid methyl ester, PCBM] , (6,6)-페닐- C71-부티릭에시드 메틸에스테르 [(6,6)-phenyl-C71-butyric acid methyl ester, C70-PCBM] , 풀러렌 (fullerene, C60), (6,6)-티에닐 -C61-부티릭에시드 메틸에스테르 [(6,6)-thienyl-C61-butyric acid methyl ester; ThCBM] , 탄소나노튜브, 및 이들의 유도체로 이루어진 군에서 선택된 1종 이상의 물질을 포함할 수 있다. The ZnO nanorod filling is formed by using a block copolymer template on the surface of the first electrode layer, which will be described later. The photoactive layer 140 is formed on the ZnO nanorod layer 130. The photoactive insect 130 may include one or more of a p-type polymer and an n-type polymer. The P-type polymer is an electron donor, poly-3-nuxylthiophene (P3HT), poly-3-poly- 3-octylthiophene (poly-3-octylthiophene, P30T), polyparaphenyl vinylene [po ly-p-phenylenevinylene, PPV], poly (dioctyl fluorene) [poly (9,9'-dioctyinuorene) ], poly (2 eume hydroxy-5- (2-ethyl-haeksil oxy) - 1,4-phenylenevinylene) [poly (2-methoxy, 5- (2-et hy 1 e-hexy 1 oxy)-1, 4- phenylenevinylene, MEH-PPV], poly (2-methyl, 5_ ( 3 ', 7'-dimethyloctyloxy))-1,4-phenylenevinylene [poly (2-methyl, 5_ (3', 7'-dimethyloctyloxy)) _ 1, 4-phenylene vinyl ene, MDM0-PPV] It may comprise one or more substances selected from the group consisting of, and derivatives thereof The n-type polymer is (6,6) -phenyl 61-butyric acid methyl ester [(6,6)- phenyl— C61-butyric acid methyl ester, PCBM], (6,6) -phenyl-C71-butyric acid methyl ester [(6,6) -phenyl-C71-butyric acid met hyl ester, C70-PCBM], fullerene (C60), (6,6) -thienyl-C61-butyric acid methyl ester [(6,6) -thienyl-C61-butyric acid methyl ester; ThCBM], Carbon nanotubes, and derivatives thereof may include one or more materials selected from the group.
상기 P-type 폴리머와 n-type 폴리머는 1 : 0.1 내지 1 : 5의 중량비로 흔합될 수 있다. 상기 광활성층의 두께는 10nm 내지 5 일 수 있다.  The P-type polymer and the n-type polymer may be mixed in a weight ratio of 1: 0.1 to 1: 5. The photoactive layer may have a thickness of about 10 nm to about 5 nm.
상기 정공포획층 (150)은 p타입의 금속산화물들로 산화 몰리브데늄, 산화니켈, 산화바나듐, 플루오르화리튬, 산화텅스텐 등을 포함할 수 있으며, 바람직하게는 산화 몰리브데늄을 사용할 수 있다. 상기 정공포획층은 상기 광활성층이 형성된 후 lxl0"6torr 이하의 진공도를 보이는 열증착기 내부에서 증착되어 형성될 수 있다. 상기 정공포획층의 두께는 0.1 내지 50nm 일 수 있다. The hole trap layer 150 may include molybdenum oxide, nickel oxide, vanadium oxide, lithium fluoride, tungsten oxide, or the like as p-type metal oxides, and preferably molybdenum oxide may be used. . The hole trap layer may be formed by depositing in a thermal evaporator showing a vacuum degree of lxl0 "6 torr or less after the photoactive layer is formed. The hole trap layer may have a thickness of 0.1 to 50 nm.
상기 정공포획층 (150) 상부에는 제 2 전극층 (160)이 형성된다. 상기 계 2 전극층 (160)은 상기 정공포획층과 마찬가지로 1x10— 6torr이하의 진공도를 보이는 열증착기 내부에서 증착되어 형성된다. 상기 정공포획층은 알루미늄, 은, 금 등을 포함할 수 있으며, 바람직하게는 은 (Ag)이 제 2 전극층으로 사용될 수 있다. 상기 제 2 전극층의 두께는 0. 1 내지 500nm일 수 있다. 유기박막 태양전지의 제조방법 The second electrode layer 160 is formed on the hole trap layer 150. Like the hole trap layer, the second electrode layer 160 is formed by being deposited in a thermal evaporator having a vacuum degree of 1 × 10 −6 torr or less. The hole trap layer is made of aluminum, silver, gold, etc. It may include, preferably silver (Ag) may be used as the second electrode layer. The thickness of the second electrode layer may be 0.1 to 500 nm. Manufacturing method of organic thin film solar cell
본 발명의 유기박막 태양전지의 제조방법은 기판상에 게 1 전극층을 형성하는 단계; 상기 제 1 전극층 표면에 ZnO 나노로드층을 형성하는 단계; 및 상기 ZnO 나노로드층 위에 광활성층, 정공포획층 및 게 2 전극층을 순차적으로 적층하는 단계 ;를 포함할 수 있다.  Method for producing an organic thin film solar cell of the present invention comprises the steps of forming a first electrode layer on the substrate; Forming a ZnO nanorod layer on the surface of the first electrode layer; And sequentially stacking a photoactive layer, a hole trapping layer, and a crab electrode layer on the ZnO nanorod layer.
상기 ZnO 나노로드층은 상기 제 1 전극층 위에 ZnO 시드층 (seed layer )를 형성하는 단계; 상기 ZnO 시드층에 위에 블록공중합체 템플레이트를 적층하는 단계; 상기 블록 공중합체 템플레이트상에 ZnO 나노로드를 형성하는 단계; 및 상기 블록공중합체 템플레이트를 제거하는 단계를 포함하여 형성될 수 있다.  Forming a ZnO seed layer on the first electrode layer; Depositing a block copolymer template on the ZnO seed layer; Forming ZnO nanorods on the block copolymer template; And removing the block copolymer template.
블록공중합체 나노구조는 유기박막 태양전지의 구조적 문제로부터 야기되는 광변환 효율의 손실을 해결할 수 있는 저비용의 효과적인 방안이 될 수 있다. 블록공중합체 (Mock copolymer )란 두 개 이상의 고분자 사슬이 공유 결합에 의하여 연결된 것을 말한다. 이러한 블록공중합체는 수 미크론의 거대 상분리 현상을 보이는 일반 고분자 흔합물과는 다르게 두 블록간의 공유결합 연결점의 제약에 의해 각 블록을 각각의 도메인으로 상분리시킬 수 있는 특성을 갖는다. 즉, 이러한 자발적 상분리 현상에 의해 블록공중합체는 각 블록의 분자량 비에 따라 10 내지 lOOnm 정도의 나노로드를 대면적으로 형성할 수 있는 템플레이트를 제조할 수 있다. 특히, UV 등에 의해 선택적으로 제거될 수 있는 PMMA 등과 같은 폴리머가 포함된 블록공중합체 나노구조는 또 다른 구조의 템플레이트로서 활용이 가능하다.  Block copolymer nanostructures can be a low cost effective way to solve the loss of light conversion efficiency caused by the structural problems of organic thin film solar cells. Block copolymer refers to two or more polymer chains connected by covalent bonds. The block copolymer has a property of separating each block into individual domains due to the limitation of covalent linkage points between the two blocks, unlike the general polymer mixture showing a large phase separation phenomenon of several microns. That is, due to the spontaneous phase separation phenomenon, the block copolymer may prepare a template capable of forming a large nanorod of about 10 to 100 nm according to the molecular weight ratio of each block. In particular, block copolymer nanostructures containing a polymer such as PMMA that can be selectively removed by UV or the like can be utilized as a template of another structure.
상기 ZnO 나노로드층의 표면 구조는 블록공중합체 템플레이트의 표면 구조를 반영하여 형성될 수 있다.  The surface structure of the ZnO nanorod layer may be formed to reflect the surface structure of the block copolymer template.
일 예로, 블록공중합체 템플레이트가 기판에 대하여 수직으로 배향된 원통형 나노구조인 경우, 원통 내부를 선택적으로 제거하고, 이것을 수열합성의 템플레이트로 사용함으로써 대면적에서 크기와 간격이 제어된 나노로드를 합성할 수 있다. For example, when the block copolymer template is a cylindrical nanostructure oriented perpendicular to the substrate, by selectively removing the inside of the cylinder, and using it as a template of hydrothermal synthesis, nanorods of controlled size and spacing in a large area are synthesized. which Can be.
일 구체예로서, 상기 블록공중합체 템플레이트를 제조하는 방법은 Si-웨이퍼 표면을 실란화합물로 표면 처리하는 단계; 상기 표면 처리된 Si 웨이퍼 상에 친수성-소수성 블록공중합체 용액으로 코팅하여 블록공중합체 템플레이트를 형성하는 단계; 및 상기 블록공중합체 템플레이트가 형성된 웨이퍼를 제거하는 단계를 포함할 수 있다. 상기 Si-웨이퍼는 Si02가 증착되어 형성된 웨이퍼를 의미한다. In one embodiment, the method for producing the block copolymer template comprises the steps of: surface treating the Si-wafer surface with a silane compound; Coating with a hydrophilic-hydrophobic block copolymer solution on the surface treated Si wafer to form a block copolymer template; And removing the wafer on which the block copolymer template is formed. The Si-wafer means a wafer formed by depositing SiO 2 .
상기 실란화합물로는 PETS(phenethyl tr ichlorosi l ane) , MPTS(3-(p- methoxypheny 1 )propy 11 r i chloros i 1 ane) 등을 단독으로 또는 흔합하여 사용할 수 있다.  As the silane compound, PETS (phenethyl tr ichlorosilene), MPTS (3- (p-methoxypheny 1) propy 11 r i chloros i 1 ane) and the like may be used alone or in combination.
상기 친수성-소수성 블록공중합체 용액은 PS-PMMA(polystyrene-poly(methyl methacrylate) 블록공중합체 0. 1 내지 20중량 % 및 용매 80 내지 99.9중량¾을 포함할 수 있다.  The hydrophilic hydrophobic block copolymer solution may include PS-PMMA (polystyrene-poly (methyl methacrylate) block copolymer 0.01 to 20% by weight and a solvent 80 to 99.9% ¾.
상기 PS-PMMA(polystyrene-poly(methyl methacrylate) 블록공중합체는 수평균 분자량이 1 , 000 내지 500 , 000kg/m 인 PS 블록과 수평균 분자량이 1 , 000 내지 500 , 000kg/m 인 PMMA 블록을 포함할 수 있다.  The PS-PMMA (polystyrene-poly (methyl methacrylate) block copolymer is a PS block having a number average molecular weight of 1,000 to 500, 000kg / m and a PMMA block having a number average molecular weight of 1,000 to 500, 000kg / m It may include.
일 구체예로서, Si-웨이퍼 표면을 실란화합물로 표면 처리하는 방법은 실란 화합물 0.0001 내지 100 vol%를 포함하는 유기용매에 상기 Si-웨이퍼를 1 분 내지 3시간 동안 침지한 후, 에탄올로 세척하여 표면처리할 수 있다. 상기 유기 용매로는 를루엔 등을 사용할 수 있다.  In one embodiment, the method of surface-treating the surface of the Si-wafer with a silane compound is immersed in the organic solvent containing 0.0001 to 100 vol% of the silane compound for 1 minute to 3 hours, and then washed with ethanol It can be surface treated. As the organic solvent, toluene and the like can be used.
상기와 같이 실란화합물로 표면처리 후, 웨이퍼 상에 블록공중합체 템플레이트를 형성하는 경우 템플레이트의 두께 조절 또는 엑시톤 수용을 위한 층분한 표면적의 확보가 가능하며, 접촉각이 70ο이상인 나노로드의 형성이 가능하다. 일 구체예로서, 상기 ZnO 나노로드층은 블록공중합체 템플레이트를 ZnO 시드층에 적층한 후, 징크 나이트라이트 핵사하이드레이트 (zinc ni trate hexahydrate) 및 핵사메틸렌테트라민 (hexamethylenetetramine)을 순수 (DI water)에 회석시킨 수용액에 침지한 후 50 내지 100oC에서 30분 내지 5시간 동안 수열 합성하여 형성€ 수 있다. After surface treatment with a silane compound as described above, in the case of forming a block copolymer template on the wafer can be of a cheungbun surface area secured for adjusting the thickness of the template or exciton receiving, and a contact angle of 70 ο possible to form the nanorods or more Do. In one embodiment, the ZnO nanorod layer is laminated with a block copolymer template on the ZnO seed layer, zinc nitrite hexahydrate and hexamethylenetetramine in pure water (DI water) After soaking in dilute aqueous solution, hydrothermal at 50 to 100 o C for 30 minutes to 5 hours Can be formed synthetically.
【발명의 실시를 위한 형태】 [Form for implementation of invention]
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명하고자 하나, 이러한 실시예들은 단지 설명의 목적을 위한 것으로, 본 발명을 제한하는 것으로 해석되어서는 안 된다.  Hereinafter, the present invention will be described in more detail with reference to examples, but these examples are for illustrative purposes only and should not be construed as limiting the present invention.
실시예 Example
실시예 1  Example 1
IT0 기판의 세척 : 패턴된 IT0 기판 (선익시스템社)을 이소프로파놀, 아세톤 메탄올에 각각 10분씩 초음파 처리한 후, 메탄올로 세척한 후 질소 (N2)로 건조하였다. Washing of the IT0 substrate: The patterned IT0 substrate (Sunic Systems Co., Ltd.) was sonicated with isopropanol and acetone methanol for 10 minutes each, washed with methanol and dried with nitrogen (N 2 ).
ZnO 시드층의 형성 : Zinc acetate di hydrate 0.018mol , ethanol amine 0.018nrol을 포함하는 0.9M 이소프로판올( 1 301 1~0 31101 ) 용액 20m£를 제조하여 50°C에서 12시간 교반한 후 lOmm/itiin의 후퇴속도로 상기 패턴된 ΠΌ 기판에 딥코팅 및 건조한 후 40CTC에서 1시간 하소 (calcinat ion)하여 결정성을 확보하였다. 블록공중합체 템플레이트의 제조 : Si02층이 300nm 두께로 증착된 Si 웨이퍼를 0.001vol% PETSCphenethyl tr ichloros i lane) 를루엔 용액에 2시간 동안 침지하여 웨이퍼 표면에 자기 조립 단분자막을 형성시킨 후 2시간 경과 후 에탄올로 웨이퍼를 세척하였다. PS-PMMA(polystyrene-poly (methyl methacrylate) ) 블록공중합체 (수평균분자량: PS(46kg/mol )-PMMA(21kg/mol ) ) 및 를루엔을 포함하는 수용액을 상기 웨이퍼 표면에 스핀 코팅 OOOrpm, 1분)하였으며, 80°C , 진공 하에서 6시간 건조 후 230°C에서 2시간 어닐링하였다. 상기 웨이퍼상에 형성된 블록공중합체 템플레이트를 50% 불산 수용액이 10%로 희석된 수용액에 침지시켜 상기 블록공중합체 템플레이트 하부의 웨이퍼를 녹여 웨이퍼로부터 블록공중합체 템플레이트를 분리한 후 블록공중합체 템플레이트가 제조되었다. 제조된 블록공중합체 템플레이트의 SEM 사진을 도 3에 나타내었다. Formation of ZnO seed layer : 20m £ of 0.9M isopropanol (1 301 1 ~ 0 31101) solution containing 0.018 mol of zinc acetate dihydrate and 0.018 nrol of ethanol was prepared and stirred at 50 ° C. for 12 hours, followed by lOmm / itiin After the dip coating and drying on the patterned πΌ substrate at a retreat rate was calcined (calcinat ion) for 1 hour at 40CTC to secure crystallinity. Preparation of Block Copolymer Template : A Si wafer on which a Si0 2 layer was deposited with a thickness of 300 nm was immersed in 0.001 vol% PETSCphenethyl tr ichloros i lane for 2 hours in a luene solution to form a self-assembled monolayer on the surface of the wafer. After washing the wafer with ethanol. PS-PMMA (polystyrene-poly (methyl methacrylate)) block copolymer (number average molecular weight: PS (46kg / mol) -PMMA (21kg / mol)) and spin coating on the wafer surface with an aqueous solution containing toluene OOOrpm, 1 minute), and dried for 6 hours at 80 ° C., and then annealed at 230 ° C. for 2 hours. The block copolymer template formed on the wafer is immersed in an aqueous solution diluted with 10% of 50% hydrofluoric acid solution to melt the wafer under the block copolymer template to separate the block copolymer template from the wafer, and then block copolymer. The template was made. The SEM photograph of the prepared block copolymer template is shown in FIG. 3.
ZnO나노로드층의 형성 : 상기 제조된 블록공중합체 템플레이트를 상기 ZnO 시드층에 적층한 후, 이것을 Zinc ni trate hexahydrate 0. 1M 수용액과 hexamethylenetetramine 0. 1M 수용액이 1 : 1 부피비로 흔합된 수용액에 침지시킨 후 95°C에서 1.5시간 동안 수열 합성한 후 물로 세척하였다. 이후, 500oC에서 Formation of ZnO nanorod layer: The prepared block copolymer template was laminated on the ZnO seed layer, which was then immersed in an aqueous solution in which zinc nitrate hexahydrate 0.1 M aqueous solution and hexamethylenetetramine 0.1 M aqueous solution were mixed in a volume ratio of 1: 1. After hydrothermal synthesis for 1.5 hours at 95 ° C and washed with water. Afterwards at 500 o C
30분간 열처리하여 블록공중합체 템플레이트를 제거함으로서 ZnO 나노로드층을 형성하게 되었다. The ZnO nanorod layer was formed by removing the block copolymer template by heat treatment for 30 minutes.
유기박막 태양전지의 완성 : 질소 (N2) 분위기의 글러브 박스 (MBRAUN) 내에서 P3HT와 PCBM를 1 : 1의 중량비로 포함하는 클로로벤젠 용액을 상기 수열 합성된 ZnO 나노로드층 위에 스핀코팅 (2000rp , 1분)하여 광활성층을 형성하고, 상기 형성된 광활성층 상에 Mo03 5nm를 증착하여 전자포획층을 형성하고, 이어서 은 (Ag) lOOnm를 증착한 후 150°C에서 10분간 열처리함으로서 유기박막 태양전지를 제조하였다. Completion of the organic thin film solar cell: Spin coating (2000rp) on the hydrothermally synthesized ZnO nanorod layer with a chlorobenzene solution containing P3HT and PCBM in a weight ratio of 1: 1 in a glove box (MBRAUN) in a nitrogen (N 2 ) atmosphere. , 1 minute) to form a photoactive layer, by depositing Mo0 3 5nm on the formed photoactive layer to form an electron trap layer, and then deposited (Ag) 100nm and then heat-treated at 150 ° C. for 10 minutes A solar cell was prepared.
상기 방법으로 제조된 블록공중합체 템플레이트의 평균 폭, 평균 간격 및 평균 깊이와 합성된 ZnO 나노로드의 접촉각, 평균 두께, 평균 이격거리 및 평균 높이는 SEM사진을 분석하여 측정하였으며, 제조된 유기박막 태양전지의 광전환효율을 측정하여 하기 표 1에 나타내었다. 실시예 2  The average width, average spacing, and average depth of the block copolymer template prepared by the above method, and the contact angle, average thickness, average separation distance, and average height of the synthesized ZnO nanorods were measured by analyzing SEM images. To measure the light conversion efficiency of shown in Table 1 below. Example 2
PS-PMMA ( po 1 y s t yr ene-po 1 y ( me t hy 1 methacryl ate) ) 블록공중합체 PS-PMMA (po 1 y s t yr ene-po 1 y (me t hy 1 methacryl ate)) block copolymer
(수평균분자량: PS(80kg/mol )-PMMA(80kg/mol ) )를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 블록공중합체 템플레이트, ZnO 나노로드층, 및 유기박막 태양전지를 제조하였다. 제조된 블록공중합체 템플레이트의 SEM 사진을 도 4에 나타내었다. 비교예 1 실란화합물로 웨이퍼 표면을 처리하지 않은 것을 제외하고는 실시예 1과 동일한 방법으로 블록공중합체 템플레이트, ZnO 나노로드층, 및 유기박막 태양전지를 제조하였다. 비교예 2 A block copolymer template, a ZnO nanorod layer, and an organic thin film solar cell were manufactured in the same manner as in Example 1, except that (Number Average Molecular Weight: PS (80kg / mol) -PMMA (80kg / mol)) was used. . SEM pictures of the prepared block copolymer template are shown in FIG. 4. Comparative Example 1 A block copolymer template, a ZnO nanorod layer, and an organic thin film solar cell were manufactured in the same manner as in Example 1, except that the wafer surface was not treated with the silane compound. Comparative Example 2
블록공중합체 템플레이트를 이용하지 않고 ZnO 시드층에 바로 ZnO 나노로드층을 수열합성하여 유기박막 태양전지를 제조하였다. 제조된 블록공중합체 템플레이트의 SEM 사진을 도 5에 나타내었다. 물성 평가 방법  An organic thin film solar cell was manufactured by hydrothermally synthesizing a ZnO nanorod layer directly on a ZnO seed layer without using a block copolymer template. SEM pictures of the prepared block copolymer template are shown in FIG. 5. Property evaluation method
광전환효율 (%) : IEC 60904-1 표준 규정 (Photovoltaic devices; Part 1: measurement of photovoltaic cur rent -volt age characteristics)에 의거하여 측정하였다. Photocurrent_voltage( I— IV) 특성은 500W xenon lamp(XIL model Optical conversion efficiency (%): measured according to IEC 60904-1 standard (Photovoltaic devices; Part 1: measurement of photovoltaic cur rent -volt age characteristics). Photocurrent_voltage (I— IV) characteristics are 500W xenon lamp (XIL model
05A50KS source units) 장비를 이용하여 1 sun(100 mW cm-2) 하에서 측정하였다. (NREL 제조 Si reference solar cell로 보정됨) 05A50KS source units were measured under 1 sun (100 mW cm-2). (Calibrated with NREL manufactured Si reference solar cell)
【표 1] [Table 1]
Figure imgf000016_0001
상기 표 1의 결과 값에서 보듯이, 블록공중합체 템플레이트를 이용하여 ZnO 나노로드층을 형성한 실시예 1-2의 유기 태양전지는 블록공중합체 템플레이트를 이용하지 않은 비교예 2에 비하여 합성된 ZnO 나노로드의 접촉각이 70°이상이고 평균 두께, 평균 이격거리, 및 평균 높이가 규칙적인 것을 확인 할 수 있다.
Figure imgf000016_0001
As shown in the results of Table 1, the organic solar cell of Example 1-2, in which the ZnO nanorod layer was formed using the block copolymer template, was prepared using a block copolymer template. It can be seen that the contact angle of the synthesized ZnO nanorods is 70 ° or more and the average thickness, average separation distance, and average height are regular compared to Comparative Example 2 not used.
또한, 비교예 1은 실란화합물로 표면처리 하지 않아 템플레이트가 제대로 형성되지 않았으며, ZnO 나노로드 역시 형성되지 않은 것을 알 수 있다. 본 발명의 단순한 변형 내지 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.  In addition, in Comparative Example 1, the template was not properly formed because the surface treatment was not performed with the silane compound, and the ZnO nanorod was also not formed. Simple modifications and variations of the present invention can be easily made by those skilled in the art, and all such modifications or changes can be seen to be included in the scope of the present invention.

Claims

【특허청구범위】 【Patent Claims】
【청구항 1】 【Claim 1】
기판; 제 1 전극층; ZnO 나노로드층; 광활성층; 정공포획층; 및 제 2 전극층이 순차적으로 적층된 유기박막 태양전지이고, Board; first electrode layer; ZnO nanorod layer; photoactive layer; Hole capture layer; And an organic thin film solar cell in which the second electrode layer is sequentially stacked,
상기 ZnO 나노로드층은 ZnO 시드층 및 상기 ZnO 시드층에서 연장된 복수 개의 ZnO 나노로드를 포함하며, The ZnO nanorod layer includes a ZnO seed layer and a plurality of ZnO nanorods extending from the ZnO seed layer,
상기 ZnO 나노로드가 상기 제 1 전극층 수평면과 이루는 접촉각은 70°이상인 것을 특징으로 하는 유기박막 태양전지. An organic thin film solar cell, characterized in that the contact angle formed between the ZnO nanorod and the horizontal plane of the first electrode layer is 70° or more.
【청구항 2] [Claim 2]
제 1항에 있어서, In clause 1,
상기 ZnO 나노로드는 단면이 정방형, 마름모형 또는 원형인 것을 특징으로 하는 유기박막 태양전지 . The ZnO nanorod is an organic thin film solar cell, characterized in that the cross-section is square, diamond, or circular.
【청구항 3] [Claim 3]
거 U항에 있어서, In clause U,
상기 ZnO 나노로드층은 복수 개의 ZnO 나노로드가 중첩하여 형성된 층상구조 ( lamel la structure)인 것을 특징으로 하는 유기박막 태양전지. An organic thin film solar cell, wherein the ZnO nanorod layer has a layered structure formed by overlapping a plurality of ZnO nanorods.
【청구항 4] [Claim 4]
제 1항에 있어서, In clause 1,
상기 ZnO 나노로드층의 두께는 1 내지 l , 000nm이며, 표면적은 0. 1 내지 lOOOcuiVg인 것을 특징으로 하는 유기박막 태양전지 . An organic thin film solar cell, characterized in that the thickness of the ZnO nanorod layer is 1 to l, 000 nm, and the surface area is 0.1 to lOOOcuiVg.
【청구항 5] [Claim 5]
제 1항에 있어서, According to clause 1,
상기 ZnO 나노로드의 높이는 1 내지 500nm이고, 상기 ZnO 나노로드의 이격거리는 1 내지 l,000nm인 것을 특징으로 하는 유기박막 태양전지 . The height of the ZnO nanorod is 1 to 500 nm, An organic thin film solar cell, characterized in that the separation distance of the ZnO nanorods is 1 to 1,000 nm.
【청구항 6】 【Claim 6】
제 1항에 있어서, In clause 1,
상기 제 1 전극층은 ITO( indium tin oxide), 금, 은, 플로린이 도핑된 틴 옥사이드 (fluorine doped tin oxide; FTO), 알루미늄이 도핑된 징크 옥사이드 (aluminium doped zink oxide, AZO) , I Z0( indium zink oxide) , ZnO— Ga203, The first electrode layer is made of ITO (indium tin oxide), gold, silver, fluorine doped tin oxide (FTO), aluminum doped zinc oxide (AZO), and IZ0 (indium). zink oxide), ZnO—Ga203,
Zn0-A1203 및 ATC antimony tin oxide)으로 이루어진 군에서 선택된 금속을 포함하는 것을 특징으로 하는 유기박막 태양전지. An organic thin film solar cell comprising a metal selected from the group consisting of Zn0-A1203 and ATC antimony tin oxide.
【청구항 7】 【Claim 7】
제 1항에 있어서, In clause 1,
상기 광활성층은 p-type 폴리머와 n-type 폴리머 중 하나 이상을 포함하는 것올 특징으로 하는 유기박막 태양전지. An organic thin film solar cell characterized in that the photoactive layer contains at least one of a p-type polymer and an n-type polymer.
【청구항 8】 【Claim 8】
제 1항에 있어서, In clause 1,
상기 광활성층은 p-type 폴리머와 n-type 폴리머를 1 : 0.1 내지 1 : 5의 중량비로 포함하는 것을 특징으로 하는 유기박막 태양전지. The photoactive layer is an organic thin film solar cell characterized in that it contains a p-type polymer and an n-type polymer in a weight ratio of 1:0.1 to 1:5.
[청구항 9】 [Claim 9]
제 8항에 있어서, In clause 8,
상기 P-type 폴리머는 폴리 -3-핵실티오펜 [poly-3-hexylthiophene, P3HT] , 폴리 -3-폴리 -3-옥틸티오펜 [poly-3-octylthiophene, P30T], 폴리파라페닐렌비닐렌 [poly-p-phenylenevinylene, PPV], 폴리 (디옥틸플루오렌) [poly(9,9'-dioctylfluorene)], 폴리 (2-메록시, 5-(2-에틸- 핵실옥시 )-1, 4-페닐렌비닐렌) [poly(2-methoxy, 5-(2-ethy le-hexyloxy)-l, 4- phenylenevinylene, MEH-PPV], 폴리 (2-메틸, 5_(3' ,7' -디메틸옥틸옥시)) -1,4- 페닐렌비닐렌 [poly(2-methyl ,5-(3' ,7'-dimethyloctyloxy))-l,4-phenylene vinyl ene MDMO-PPV] , 및 이들의 유도체로 이루어진 군에서 선택된 1종 이상의 물질을 포함하고; The P-type polymer is poly-3-hexylthiophene [poly-3-hexylthiophene, P3HT], poly-3-poly-3-octylthiophene [poly-3-octylthiophene, P30T], polyparaphenylenevinylene [poly-p-phenylenevinylene, PPV],poly (dioctylfluorene) [poly(9,9'-dioctylfluorene)], poly (2-meroxy,5-(2-ethyl- Hexyloxy)-1, 4-phenylenevinylene) [poly(2-methoxy, 5-(2-ethy le-hexyloxy)-l, 4-phenylenevinylene, MEH-PPV], Poly (2-methyl, 5_( 3',7'-dimethyloctyloxy))-1,4-phenylenevinylene [poly(2-methyl,5-(3',7'-dimethyloctyloxy))-l,4-phenylene vinyl ene MDMO-PPV ], and one or more substances selected from the group consisting of their derivatives;
상기 n-type 폴리머는 (6,6)-페닐 -C61-부티릭에시드 메틸에스테르 [(6,6)- phenyl-C61-butyric acid methyl ester, PCBM], (6,6)-페닐 -C71-부티릭에시드 메틸에스테르 [(6,6)-phenyl-C71-butyric acid methyl ester, C70-PCBM] , 풀러렌 (fullerene, C60), (6,6)-티에닐 -C61-부티릭에시드 메틸에스테르 [(6,6)— thienyl-C61-butyric acid methyl ester; ThCBM] , 탄소나노류브, 및 이들의 유도체로 이루어진 군에서 선택된 1종 이상의 물질을 포함하는 것을 특징으로 하는 유기박막 태양전지 . The n-type polymer is (6,6)-phenyl-C61-butyric acid methyl ester [(6,6)-phenyl-C61-butyric acid methyl ester, PCBM], (6,6)-phenyl-C71- Butyric acid methyl ester [(6,6)-phenyl-C71-butyric acid methyl ester, C70-PCBM], fullerene (C60), (6,6)-thienyl-C61-butyric acid methyl ester [ (6,6)— thienyl-C61-butyric acid methyl ester; ThCBM], carbon nanotube, and their derivatives. An organic thin film solar cell characterized in that it contains one or more materials selected from the group consisting of.
【청구항 10] [Claim 10]
거 U항에 있어서, In clause U,
상기 정공포획층은 산화 몰리브데늄, 산화니켈, 산화바나듐 플루오린화리륨 및 산화텅스텐으로 이루어진 군에서 선택된 금속 산화물을 포함하는 유기박막 태양전지. The hole trapping layer is an organic thin film solar cell containing a metal oxide selected from the group consisting of molybdenum oxide, nickel oxide, vanadium oxide, lithium fluoride, and tungsten oxide.
【청구항 111 【Claim 111
기판상에 제 1 전극층을 형성하는 단계 ; forming a first electrode layer on a substrate;
상기 제 1 전극층 표면에 ZnO 나노로드층을 형성하는 단계; 및 forming a ZnO nanorod layer on the surface of the first electrode layer; and
상기 ZnO 나노로드층 위에 광활성층, 정공포획층 및 제 2 전극층을 순차적으로 적층하는 단계 ;를 포함하며, It includes sequentially stacking a photoactive layer, a hole trapping layer, and a second electrode layer on the ZnO nanorod layer,
상기 ZnO 나노로드층은 The ZnO nanorod layer is
상기 제 1 전극층 위에 ZnO 시드층 (seed layer)를 형성하는 단계, Forming a ZnO seed layer on the first electrode layer,
상기 ZnO시드층에 위에 블록공중합체 템플레이트를 적층하는 단계, 상기 블록 공중합체 템플레이트상에 ZnO 나노로드를 형성하는 단계, 및 상기 블톡공중합체 템플레이트를 제거하는 단계를 포함하여 형성되는 것을 특징으로 하는 유기박막 태양전지의 제조방법. Laminating a block copolymer template on the ZnO seed layer, A method of manufacturing an organic thin film solar cell, comprising the steps of forming ZnO nanorods on the block copolymer template, and removing the block copolymer template.
【청구항 12】 【Claim 12】
제 11항에 있어서, In clause 11,
상기 블록공중합체 템플레이트는 The block copolymer template is
Si02가 증착되어 형성된 웨이퍼 표면을 실란화합물로 표면 처리하는 단계; 상기 표면 처리된 웨이퍼 상에 친수성-소수성 블록공중합체 용액을 코팅하여 블록공중합체 템플레이트를 형성하는 단계; 및 Surface treating the surface of the wafer formed by depositing SiO2 with a silane compound; Forming a block copolymer template by coating a hydrophilic-hydrophobic block copolymer solution on the surface-treated wafer; and
상기 웨이퍼를 제거하는 단계; removing the wafer;
를 포함하여 제조되는 것을 특징으로 하는 유기박막 태양전지의 제조방법 . A method of manufacturing an organic thin film solar cell, characterized in that it is manufactured including.
【청구항 13】 【Claim 13】
제 12항에 있어서, In clause 12,
상기 친수성-소수성 블록공중합체 용액은 PS-PMMA(polystyrene_poly(methyI methacrylate) ) 블록공중합체 0. 1 내지 20중량 ¾> 및 용매 80 내지 99.9중량%를 포함하는 것을 특징으로 하는 유기박막 태양전지의 제조방법. The hydrophilic-hydrophobic block copolymer solution includes 0.1 to 20% by weight of PS-PMMA (polystyrene_poly(methyI methacrylate)) block copolymer and 80 to 99.9% by weight of solvent. method.
【청구항 14】 【Claim 14】
제 13항에 있어서, In clause 13,
상기 PS-PMMA(polystyrene-poly (methyl methacryl ate) ) 블록공중합체는 수평균 분자량이 PS 블록의 수평균 분자량이 1 , 000 내지 500 , 000kg/nx)l이고, PMMA 블록의 수평균 분자량이 1 , 000 내지 500 , 000kg/m 인 것을 특징으로 하는 유기박막 태양전지의 제조방법 . The PS-PMMA (polystyrene-poly (methyl methacryl ate)) block copolymer has a number average molecular weight of the PS block of 1,000 to 500,000kg/nx)l, and a number average molecular weight of the PMMA block of 1. , 000 to 500 , 000 kg/m. Method for manufacturing an organic thin film solar cell.
【청구항 15] 제 12항에 있어서, [Claim 15] In clause 12,
상기 실란화합물은 PETS(phenethyl tr i chlorosi lane) 및 3-(p— methoxyphenyl )propyl tr ichlorosi lane(MPTS) 중 하나 이상을 포함하는 것을 특징으로 하는 유기박막 태양전지의 제조방법. A method of manufacturing an organic thin film solar cell, wherein the silane compound includes at least one of PETS (phenethyl trichlorosi lane) and 3-(p—methoxyphenyl)propyl trichlorosi lane (MPTS).
【청구항 16】 【Claim 16】
제 11항에 있어서, In clause 11,
상기 ZnO 나노로드층은 상기 블록공중합체 템플레이트가 적층된 ZnO 시드층을 징크 나이트라이트 핵사하이드레이트 (zinc ni trate hexahydrate) , 핵사메틸렌테트라민 (hexamethylenetetramine) 및 순수 (DI water )를 포함하는 용액에 침지시켜 수열 합성으로 형성되는 것을 특징으로 하는 유기박막 태양전지의 제조방법. The ZnO nanorod layer is created by immersing the ZnO seed layer on which the block copolymer template is laminated in a solution containing zinc nitrite hexahydrate, hexamethylenetetramine, and pure water (DI water). A method of manufacturing an organic thin film solar cell, characterized in that it is formed by hydrothermal synthesis.
PCT/KR2013/011294 2013-09-05 2013-12-06 Organic thin-film solar cell and method for manufacturing same WO2015034136A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20130106814A KR20150028120A (en) 2013-09-05 2013-09-05 Organic thin film solar cell and method for preparing the same
KR10-2013-0106814 2013-09-05

Publications (1)

Publication Number Publication Date
WO2015034136A1 true WO2015034136A1 (en) 2015-03-12

Family

ID=52628581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/011294 WO2015034136A1 (en) 2013-09-05 2013-12-06 Organic thin-film solar cell and method for manufacturing same

Country Status (2)

Country Link
KR (1) KR20150028120A (en)
WO (1) WO2015034136A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110056744A (en) * 2009-11-23 2011-05-31 한양대학교 산학협력단 Organic-inorganic hybrid solar cell and method for fabricating the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110056744A (en) * 2009-11-23 2011-05-31 한양대학교 산학협력단 Organic-inorganic hybrid solar cell and method for fabricating the same

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
HAMES, YAKUP ET AL.: "Electrochemically grown ZnO nanorods for hybrid solar cell applications.", SOLAR ENERGY, vol. 84, no. 3., 2010, pages 426 - 431 *
LIN, YUN-YUE ET AL.: "The influence of interface modifier on the performance of nanostructured ZnO/polymer hybrid solar cells.", APPLIED PHYSICS LETTERS, vol. 94, no. 6, 2009 *
OLSON, DANA C. ET AL.: "Hybrid photovoltaic devices of polymer and ZnO nanofiber composites.", THIN SOLID FILMS, vol. 496, no. 1, 2006, pages 26 - 29 *
YOU, JINGBI ET AL.: "Metal oxide nanoparticles as an electron-transport layer in high- performance and stable inverted polymer solar cells.", ADVANCED MATERIALS, vol. 24, no. 38, 2012, pages 5267 - 5272 *
YU , BANG-YING ET AL.: "Depth profiling of organic films with X-ray photoelectron spectroscopy using C60+ and Ar+ co-sputtering.", ANALYTICAL CHEMISTRY, vol. 80, no. 9, 2008, pages 3412 - 3415 *

Also Published As

Publication number Publication date
KR20150028120A (en) 2015-03-13

Similar Documents

Publication Publication Date Title
Tang et al. Recent progress of flexible perovskite solar cells
AU2015367228B2 (en) Process of forming a photoactive layer of an optoelectronic device
US9713254B2 (en) Device components with surface-embedded additives and related manufacturing methods
US8093489B2 (en) Photovoltaic devices fabricated from nanostructured template
KR20170117466A (en) An optoelectronic device comprising a solution-processable metal oxide buffer layer
JP2006245073A (en) Organic thin-film solar cell
JP2007005620A (en) Organic thin film solar cell
Zhang et al. Recent advances in highly efficient organic-silicon hybrid solar cells
Kim et al. Enhancing the optical properties using hemisphere TiO2 photonic crystal as the electron acceptor for perovskite solar cell
Gerein et al. Effect of TiO2 film porosity and thermal processing on TiO2–P3HT hybrid materials and photovoltaic device performance
US20190131545A1 (en) Organic or hybrid electronic device and manufacturing method thereof
WO2012106119A1 (en) Photovoltaic cells
Salem et al. Inverted polymer solar cell based on MEH-PPV/PC61BM coupled with ZnO nanoparticles as electron transport layer
Kassegne et al. Organic MEMS/NEMS-based high-efficiency 3D ITO-less flexible photovoltaic cells
JP5228422B2 (en) Coating liquid for photoelectric conversion layer and method for producing the same, organic thin film solar cell and method for producing the same
US10998515B2 (en) Solar cell and manufacturing method therefor
EP3482426B1 (en) Organic-inorganic hybrid material and method for silicon surface passivation
Chen et al. Large scale two-dimensional nanobowl array high efficiency polymer solar cell
KR20150030101A (en) Organic thin film solar cell and method for preparing the same
JP5304448B2 (en) Organic photoelectric conversion element
KR101543258B1 (en) Inverted polymer solar cells with randomly nanostructured surface electrode and manufacturing method thereof
WO2015034136A1 (en) Organic thin-film solar cell and method for manufacturing same
KR101937537B1 (en) Organic Solar Cells with Low-Temperature Processed Nanostructured Hole-Transfer Layer on Active Layer and Method for Fabricating the same
Zhong et al. Enhancing the performance of poly (3-hexylthiophene)/ZnO nanorod arrays based hybrid solar cells through incorporation of a third component
Yan et al. The effect of modified layers on the performance of inverted ZnO nanorods/MEH-PPV solar cells

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13892808

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 13892808

Country of ref document: EP

Kind code of ref document: A1