WO2015033405A1 - Method for controlling and device for controlling internal combustion engine - Google Patents

Method for controlling and device for controlling internal combustion engine Download PDF

Info

Publication number
WO2015033405A1
WO2015033405A1 PCT/JP2013/073813 JP2013073813W WO2015033405A1 WO 2015033405 A1 WO2015033405 A1 WO 2015033405A1 JP 2013073813 W JP2013073813 W JP 2013073813W WO 2015033405 A1 WO2015033405 A1 WO 2015033405A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal combustion
combustion engine
electric motor
negative pressure
control
Prior art date
Application number
PCT/JP2013/073813
Other languages
French (fr)
Japanese (ja)
Inventor
博之 市川
孝夫 安藤
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to PCT/JP2013/073813 priority Critical patent/WO2015033405A1/en
Publication of WO2015033405A1 publication Critical patent/WO2015033405A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/543Transmission for changing ratio the transmission being a continuously variable transmission
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/042Introducing corrections for particular operating conditions for stopping the engine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4825Electric machine connected or connectable to gearbox input shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0616Position of fuel or air injector
    • B60W2710/0633Inlet air flow rate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/28Control for reducing torsional vibrations, e.g. at acceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/41Control to generate negative pressure in the intake manifold, e.g. for fuel vapor purging or brake booster
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0005Controlling intake air during deceleration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to a control device and a control method for an internal combustion engine.
  • JP 2007-276594A reduces the vibration transmitted from the engine by controlling the torque of the motor connected to the engine when the internal combustion engine is stopped.
  • vibrations in the compression stroke of the engine are reduced by increasing or decreasing the torque of the motor according to the compression stroke of the engine.
  • the present invention was made paying attention to such conventional problems.
  • the objective of this invention is providing the control apparatus and control method of an internal combustion engine which can suppress the vibration (rotational fluctuation) at the time of stopping an internal combustion engine.
  • An internal combustion engine control apparatus includes a stop determination unit that determines whether or not there is a stop command for the internal combustion engine, and when there is the stop command, terminates the combustion operation of the internal combustion engine, closes the intake throttle, A negative pressure development control unit that develops a negative pressure in the intake pipe by maintaining the internal combustion engine in a rotating state by an electric motor capable of driving the internal combustion engine.
  • FIG. 1 is a view of an internal combustion engine as viewed from the auxiliary belt side.
  • FIG. 2 is a diagram showing a power train of a vehicle to which the control device for an internal combustion engine of the present embodiment is applied.
  • FIG. 3 is a flowchart of engine stop control.
  • FIG. 4 is a flowchart of intake pipe negative pressure development control.
  • FIG. 5 is a time chart showing the operation of the comparative embodiment.
  • FIG. 6 is a time chart showing the operation of the embodiment.
  • FIG. 7 is another flowchart of the engine stop control.
  • FIG. 8 is a flowchart of the end process.
  • FIG. 9 is a time chart showing operational effects when the control of FIG. 7 is executed.
  • FIG. 10 is another flowchart of the intake pipe negative pressure development control.
  • FIG. 11 is another flowchart of the termination process.
  • FIG. 12 is a flowchart of engine control including the engine stop control S100 described above.
  • FIG. 13 is a flowchart of another
  • FIG. 1 is a view of the internal combustion engine as viewed from the auxiliary belt side.
  • the engine controller stops the fuel supply and ignition based on the stop command for the internal combustion engine, but the internal combustion engine does not stop immediately, but stops after rotating for a while.
  • a compression reaction force acts on the piston. Therefore, during the inertia rotation, the rotation of the internal combustion engine does not decrease linearly but decreases while causing a rotation fluctuation (vibration).
  • an auxiliary machine belt 16 is wound around a crankshaft pulley 11, a supercharger pulley 12, an idler pulley 13, a water pump pulley 14, and an air conditioner compressor pulley 15. ing. Because of such a structure, when the internal combustion engine stops with a large rotational fluctuation, noise may also be generated from these auxiliary machines (in this embodiment, a supercharger, a water pump, and an air conditioner compressor).
  • the rotational fluctuation (vibration) of the internal combustion engine at the time of stop is reduced.
  • FIG. 2 is a diagram showing a power train of a vehicle to which the control device for an internal combustion engine of the present embodiment is applied.
  • FIG. 2 particularly illustrates a hybrid vehicle (Hybrid Electric Vehicle) that uses the internal combustion engine 1 and an electric motor (motor generator) 5 as a travel source of the vehicle.
  • Hybrid Electric Vehicle Hybrid Electric Vehicle
  • the power train of the hybrid vehicle 10 shown in FIG. 2 includes an internal combustion engine 1, a continuously variable transmission (hereinafter referred to as “CVT”) 3, and an electric motor 5.
  • Controllers include HCM, ECM, MC, and CVTCU.
  • the internal combustion engine 1 is provided with a supercharger S / C, an air conditioner compressor A / C, and the like as auxiliary machines.
  • a starter ST for cranking the crankshaft 1a is also provided.
  • the CVT 3 is exemplified by a belt CVT in FIG.
  • the belt CVT is exemplified as an example of the transmission, but a toroidal CVT or a stepped transmission may be used.
  • the electric motor 5 is disposed between the internal combustion engine 1 and the CVT 3.
  • the electric motor 5 is coupled to a shaft 4 that transmits the rotation from the internal combustion engine 1 (crankshaft 1a) to the input shaft 3a of the CVT 3.
  • the electric motor 5 acts as a motor according to the driving state of the vehicle 10 and also acts as a generator (generator).
  • HCM Hybrid Control Module
  • ECM Engine Control Module
  • MC Motor Controller
  • CVTCU Continuous Variable Transmisson ⁇ ⁇ Control Unit
  • a shift progress backup signal is set.
  • the CVTCU controls the CVT 3 so that the target torque commanded by the HCM can be realized.
  • the CVTCU calculates the output shaft rotation speed and pulley ratio, and outputs these signals and a rotation speed control permission flag signal to the HCM.
  • the first clutch CL1 is interposed between the internal combustion engine 1 and the electric motor 5, more specifically, between the crankshaft 1a and the shaft 4.
  • the first clutch CL1 can change the transmission torque capacity continuously or stepwise.
  • a clutch for example, there is a dry multi-plate clutch capable of changing the transmission torque capacity by continuously controlling the flow rate and hydraulic pressure of the clutch hydraulic oil with a proportional solenoid.
  • the state where the transmission torque capacity becomes zero is a state where the first clutch CL1 is completely disconnected, and the state where the internal combustion engine 1 and the electric motor 5 are completely disconnected.
  • a mode in which the vehicle travels in this state is an electric travel mode (EV mode).
  • EV mode electric travel mode
  • HEV mode hybrid travel mode
  • the second clutch CL2 is interposed between the electric motor 5 and the CVT 3, more specifically, between the shaft 4 and the transmission input shaft 3a.
  • the second clutch CL2 and CVT3 may be a single unit or separate.
  • the second clutch CL2 can change the transmission torque capacity continuously or stepwise.
  • a clutch for example, there is a wet multi-plate clutch capable of changing the transmission torque capacity by continuously controlling the flow rate and hydraulic pressure of the clutch hydraulic oil with a proportional solenoid.
  • the state where the transmission torque capacity becomes zero is a state where the second clutch CL2 is completely disconnected, and the state where the motor 5 and the CVT 3 are completely disconnected.
  • the hybrid vehicle 10 has an EV mode in which electric traveling is performed only by the electric motor 5 and an HEV mode in which hybrid traveling is performed by the internal combustion engine 1 and the electric motor 5.
  • the hybrid driving mode (HEV mode) is selected when the driving force is insufficient or when the battery charge rate SOC (State Of Charge) decreases.
  • the hybrid travel mode (HEV mode)
  • the internal combustion engine 1 is started, the first clutch CL1 and the second clutch CL2 are both engaged, and the CVT 3 is in a power transmission state.
  • the output rotation from the internal combustion engine 1 and the output rotation from the electric motor 5 reach the transmission input shaft 3a.
  • the CVT 3 shifts the rotation input from the input shaft 3a according to the selected shift stage, and outputs it from the transmission output shaft 3b.
  • the rotation output from the transmission output shaft 3b reaches the drive wheels.
  • the vehicle 10 performs hybrid traveling (HEV mode traveling) by the internal combustion engine 1 and the electric motor 5. Further, the internal combustion engine 1 is operated at the optimum fuel consumption, and surplus energy operates the motor 5 so that surplus energy is converted into electric power and stored. By doing in this way, fuel consumption improves.
  • HEV mode traveling hybrid traveling
  • the internal combustion engine 1 is operated at the optimum fuel consumption, and surplus energy operates the motor 5 so that surplus energy is converted into electric power and stored.
  • the internal combustion engine 1 When it is possible to travel only with the electric motor 5, the internal combustion engine 1 is stopped and the electric motor 5 travels in the electric travel mode (EV mode) alone. In the electric travel mode (EV mode), the motive power from the internal combustion engine 1 is unnecessary, and therefore the internal combustion engine 1 is not operated. Then, the first clutch CL1 is released. Further, the second clutch CL2 is engaged. Further, the CVT 3 is set in a power transmission state. When the electric motor 5 is driven in this state, only the output rotation from the electric motor 5 reaches the transmission input shaft 3a. The CVT 3 shifts the rotation input from the input shaft 3a according to the selected shift stage, and outputs it from the transmission output shaft 3b. The rotation output from the transmission output shaft 3b reaches the drive wheels. In this way, the vehicle 10 travels electrically (EV mode travel) using only the electric motor 5. The hybrid vehicle 10 improves the fuel efficiency by frequently stopping the internal combustion engine 1.
  • FIG. 3 is a flowchart of engine stop control.
  • step S110 it is determined whether or not there is a stop command for the internal combustion engine 1. If the determination result is positive, the process proceeds to step S120, and if the determination result is negative, the process is exited.
  • step S120 intake pipe negative pressure development control is executed.
  • the specific contents are as follows.
  • FIG. 4 is a flowchart of the intake pipe negative pressure development control.
  • step S121 the combustion of the internal combustion engine 1 is terminated. Specifically, fuel injection and ignition control are stopped.
  • step S122 the intake throttle is closed.
  • step S123 the internal combustion engine 1 is maintained in the rotating state by the electric motor 5 with the first clutch CL1 engaged.
  • FIG. 5 is a time chart showing the operation of the comparative form.
  • the fuel injection is stopped (FIG. 5A).
  • the opening control of the intake throttle is stopped.
  • the intake throttle has an initial opening that is structurally balanced (2.0 deg in FIG. 5B). That is, the intake throttle has an initial opening that is structurally balanced by a throttle return spring or the like, even if no force is applied from the actuator.
  • the intake throttle is at its initial opening (FIG. 5B).
  • the electric motor 5 is also stopped (FIG. 5D).
  • the intake pipe internal pressure decreases to 40 kPa (abs) (FIG. 5C), but there is an influence of the compression reaction force on the piston, and the rotation of the internal combustion engine does not decrease linearly but changes in rotation (vibration). ) (See FIG. 5D).
  • FIG. 6 is a time chart showing the operation of the embodiment.
  • FIG. 7 is another flowchart of engine stop control.
  • parts having the same functions as those described above are denoted by the same reference numerals, and redundant description is omitted as appropriate.
  • FIG. 7 adds an end process of step S130 to FIG.
  • the specific contents of this termination process are as follows.
  • FIG. 8 is a flowchart of the end process.
  • step S131 the clutch CL1 is released.
  • FIG. 9 is a time chart showing the operational effects when the control of FIG. 7 is executed.
  • the clutch CL1 for controlling whether or not the output of the electric motor 5 is transmitted to the internal combustion engine 1 is released, so that the rotational speed of the internal combustion engine 1 is very high. It began to drop smoothly.
  • FIG. 10 is another flowchart of the intake pipe negative pressure development control.
  • step S124 it is determined whether or not a desired negative pressure has developed in the intake pipe. While the determination result is negative, the process proceeds to step S123, and when the determination result is affirmative, the process is exited.
  • Whether or not a desired negative pressure has developed in the intake pipe may be determined by, for example, an atmospheric pressure sensor. Further, it may be indirectly judged (estimated) from the elapsed time from the timing when the intake throttle is forcibly almost fully closed.
  • FIG. 11 is another flowchart of the termination process.
  • step S132 processing of step S132 and step S133 is added to FIG. 8. That is, in step S132, it is determined whether or not the engine speed has decreased. While the determination result is negative, the process stands by. If the determination result is affirmative, the process proceeds to step S133. In step S133, the motor 5 is instructed to stop.
  • FIG. 12 is a flowchart of engine control including the engine stop control S100 described above.
  • step S101 it is determined whether or not the amount of power stored in a power storage device (for example, a battery or a capacitor) that supplies power to the electric motor 5 is smaller than a predetermined value. If the determination result is positive, the process proceeds to step S102, and if the determination result is negative, step S102 is skipped.
  • a power storage device for example, a battery or a capacitor
  • step S102 the output of the electric motor 5 is limited.
  • step S100 engine stop control is executed.
  • the engine stop control for developing the intake pipe negative pressure is executed, so that the internal combustion engine 1 Rotational fluctuation (vibration) can be avoided and engine rotation can be reduced smoothly.
  • FIG. 13 is a flowchart of another engine control including the engine stop control S100 described above.
  • step S103 it is determined whether or not the transmission travel range is a non-travel range. If the determination result is positive, the process proceeds to step S100, and if the determination result is negative, step S100 is skipped.
  • Rotational fluctuation (vibration) of the internal combustion engine 1 is particularly apt to be felt by the passenger when the vehicle 10 is stopped. Therefore, it is effective to execute the engine stop control S100 especially when the travel range of the transmission is the non-travel range.
  • the vehicle shown in FIG. 1 is merely an example, and may be another type of hybrid vehicle.
  • the conventional internal combustion engine vehicle which does not use a traveling motor may be used.
  • the internal combustion engine may be forcibly maintained in a rotating state by some motor instead of the traveling motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • General Engineering & Computer Science (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

This device for controlling an internal combustion engine includes: a halting determination unit that determines the presence/absence of a halt command for the internal combustion engine; and a negative pressure development control unit that, when there has been the halt command, ends the combustion operation of the internal combustion engine, closes an air intake throttle, and maintains the rotational state of the internal combustion engine by means of an electric motor that can drive the internal combustion engine, thereby developing negative pressure in an air intake tube.

Description

内燃エンジンの制御装置及び制御方法Control device and control method for internal combustion engine
 この発明は、内燃エンジンの制御装置及び制御方法に関する。 The present invention relates to a control device and a control method for an internal combustion engine.
 JP2007-276594Aでは、内燃エンジンを停止させる際にエンジンに連結されたモーターのトルクを制御することで、エンジンから伝達される振動を低減している。特に、エンジンの圧縮行程に応じてモーターのトルクを増減することで、エンジンの圧縮行程における振動を低減している。 JP 2007-276594A reduces the vibration transmitted from the engine by controlling the torque of the motor connected to the engine when the internal combustion engine is stopped. In particular, vibrations in the compression stroke of the engine are reduced by increasing or decreasing the torque of the motor according to the compression stroke of the engine.
 しかしながら、この方法では、例えばエンジン停止時に各気筒の各行程に同期してモーターのトルクをコントロールする必要があり、演算負荷がかかる。またエンジン停止時に各気筒から生じる抵抗を正確に見積もらないと、モーターのトルク変動によって振動をかえって助長するおそれすらあった。 However, in this method, for example, when the engine is stopped, it is necessary to control the motor torque in synchronization with each stroke of each cylinder, and a calculation load is applied. Further, if the resistance generated from each cylinder when the engine is stopped is not accurately estimated, there is a possibility that the vibration may be changed by the torque fluctuation of the motor and promoted.
 本発明は、このような従来の問題点に着目してなされた。本発明の目的は、内燃エンジンを停止させる際の振動(回転変動)を抑えることができる内燃エンジンの制御装置及び制御方法を提供することである。 The present invention was made paying attention to such conventional problems. The objective of this invention is providing the control apparatus and control method of an internal combustion engine which can suppress the vibration (rotational fluctuation) at the time of stopping an internal combustion engine.
 本発明による内燃エンジンの制御装置は、内燃エンジンの停止指令の有無を判定する停止判定部と、前記停止指令が有った場合に、前記内燃エンジンの燃焼作動を終了させ、吸気スロットルを閉じ、前記内燃エンジンを駆動可能な電動機によって前記内燃エンジンを回転状態に維持することで、吸気管の負圧を発達させる負圧発達制御部と、を含む。 An internal combustion engine control apparatus according to the present invention includes a stop determination unit that determines whether or not there is a stop command for the internal combustion engine, and when there is the stop command, terminates the combustion operation of the internal combustion engine, closes the intake throttle, A negative pressure development control unit that develops a negative pressure in the intake pipe by maintaining the internal combustion engine in a rotating state by an electric motor capable of driving the internal combustion engine.
図1は、内燃エンジンを補機ベルト側から見た図である。FIG. 1 is a view of an internal combustion engine as viewed from the auxiliary belt side. 図2は、本実施形態の内燃エンジンの制御装置を適用する車両のパワートレインを示す図である。FIG. 2 is a diagram showing a power train of a vehicle to which the control device for an internal combustion engine of the present embodiment is applied. 図3は、エンジン停止制御のフローチャートである。FIG. 3 is a flowchart of engine stop control. 図4は、吸気管負圧発達制御のフローチャートである。FIG. 4 is a flowchart of intake pipe negative pressure development control. 図5は、比較形態の作用を示すタイムチャートである。FIG. 5 is a time chart showing the operation of the comparative embodiment. 図6は、実施形態の作用を示すタイムチャートである。FIG. 6 is a time chart showing the operation of the embodiment. 図7は、エンジン停止制御のもうひとつのフローチャートである。FIG. 7 is another flowchart of the engine stop control. 図8は、終了処理のフローチャートである。FIG. 8 is a flowchart of the end process. 図9は、図7の制御を実行したときの作用効果を示すタイムチャートである。FIG. 9 is a time chart showing operational effects when the control of FIG. 7 is executed. 図10は、吸気管負圧発達制御のもうひとつのフローチャートである。FIG. 10 is another flowchart of the intake pipe negative pressure development control. 図11は、終了処理のもうひとつのフローチャートである。FIG. 11 is another flowchart of the termination process. 図12は、上述したエンジン停止制御S100を含むエンジン制御のフローチャートである。FIG. 12 is a flowchart of engine control including the engine stop control S100 described above. 図13は、上述したエンジン停止制御S100を含むもうひとつのエンジン制御のフローチャートである。FIG. 13 is a flowchart of another engine control including the engine stop control S100 described above.
 以下、添付の図面を参照しながら本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
 図1は、内燃エンジンを補機ベルト側から見た図である。 FIG. 1 is a view of the internal combustion engine as viewed from the auxiliary belt side.
 まず最初に、実施形態の理解を容易にするために、図1を参照して実施形態のコンセプトについて説明する。 First, in order to facilitate understanding of the embodiment, the concept of the embodiment will be described with reference to FIG.
 エンジンコントローラーは、内燃エンジンに対する停止指令に基づいて燃料供給や点火を停止するが、内燃エンジンはすぐには停止せずしばらくイナーシャ回転してから停止する。イナーシャ回転中、吸気弁及び排気弁が閉じている圧縮行程気筒では、ピストンに対して圧縮反力が作用する。そのため、イナーシャ回転中、内燃エンジンの回転は、リニアに低下するのではなく、回転変動(振動)を生じながら低下する。 The engine controller stops the fuel supply and ignition based on the stop command for the internal combustion engine, but the internal combustion engine does not stop immediately, but stops after rotating for a while. In the compression stroke cylinder in which the intake valve and the exhaust valve are closed during the inertia rotation, a compression reaction force acts on the piston. Therefore, during the inertia rotation, the rotation of the internal combustion engine does not decrease linearly but decreases while causing a rotation fluctuation (vibration).
 この振動が車体を通じて乗員に伝達すると、乗員が違和感を感じることがある。特に、車両が停止しているときには、他の振動がないので乗員がエンジン停止に起因する振動を感じやすい。 When this vibration is transmitted to the occupant through the vehicle body, the occupant may feel uncomfortable. In particular, when the vehicle is stopped, there is no other vibration, so the occupant can easily feel the vibration caused by the engine stop.
 さらに、内燃エンジン1には、たとえば図1に示されるように、クランクシャフトプーリー11、スーパーチャージャープーリー12、アイドラープーリー13、ウォーターポンププーリー14、エアコンコンプレッサープーリー15に、補機ベルト16が掛け回されている。このような構造であるので、内燃機関が大きな回転変動を伴って停止すると、これら補機(この実施形態では、スーパーチャージャー、ウォーターポンプ、エアコンコンプレッサー)からも異音が生じることもある。 Further, in the internal combustion engine 1, for example, as shown in FIG. 1, an auxiliary machine belt 16 is wound around a crankshaft pulley 11, a supercharger pulley 12, an idler pulley 13, a water pump pulley 14, and an air conditioner compressor pulley 15. ing. Because of such a structure, when the internal combustion engine stops with a large rotational fluctuation, noise may also be generated from these auxiliary machines (in this embodiment, a supercharger, a water pump, and an air conditioner compressor).
 そこで、本実施形態では、停止時の内燃エンジンの回転変動(振動)を低減する。 Therefore, in this embodiment, the rotational fluctuation (vibration) of the internal combustion engine at the time of stop is reduced.
 図2は、本実施形態の内燃エンジンの制御装置を適用する車両のパワートレインを示す図である。この図2では、特に、車両の走行源として内燃エンジン1及び電動機(モータージェネレーター)5を使用するハイブリッド車両(Hybrid Electric Vehicle)を例示する。 FIG. 2 is a diagram showing a power train of a vehicle to which the control device for an internal combustion engine of the present embodiment is applied. FIG. 2 particularly illustrates a hybrid vehicle (Hybrid Electric Vehicle) that uses the internal combustion engine 1 and an electric motor (motor generator) 5 as a travel source of the vehicle.
 図2に示されたハイブリッド車両10のパワートレインは、内燃エンジン1と、無段変速機(Continuously Variable Transmisson;以下適宜「CVT」と称す)3と、電動機5と、を含む。またコントローラーとして、HCMと、ECMと、MCと、CVTCUと、を含む。 The power train of the hybrid vehicle 10 shown in FIG. 2 includes an internal combustion engine 1, a continuously variable transmission (hereinafter referred to as “CVT”) 3, and an electric motor 5. Controllers include HCM, ECM, MC, and CVTCU.
 内燃エンジン1には、補機として、スーパーチャージャーS/C、エアコンコンプレッサーA/Cなどが設けられる。またクランクシャフト1aをクランキングするためのスターターSTが設けられる。 The internal combustion engine 1 is provided with a supercharger S / C, an air conditioner compressor A / C, and the like as auxiliary machines. A starter ST for cranking the crankshaft 1a is also provided.
 CVT3は、図2では、ベルトCVTが例示される。なお本実施形態では、変速機の一例としてベルトCVTが挙げられるが、トロイダルCVTや有段変速機であってもよい。 The CVT 3 is exemplified by a belt CVT in FIG. In this embodiment, the belt CVT is exemplified as an example of the transmission, but a toroidal CVT or a stepped transmission may be used.
 電動機5は、内燃エンジン1及びCVT3の間に配置される。電動機5は、内燃エンジン1(クランクシャフト1a)からの回転をCVT3の入力軸3aへ伝達する軸4に結合される。電動機5は、車両10の運転状態に応じてモーターとして作用するとともにジェネレーター(発電機)としても作用する。 The electric motor 5 is disposed between the internal combustion engine 1 and the CVT 3. The electric motor 5 is coupled to a shaft 4 that transmits the rotation from the internal combustion engine 1 (crankshaft 1a) to the input shaft 3a of the CVT 3. The electric motor 5 acts as a motor according to the driving state of the vehicle 10 and also acts as a generator (generator).
 HCM(Hybrid Control Module)は、目標トルク、目標回転数、変速中目標駆動トルクなどを演算し、信号を、ECM、MC、CVTCUに出力する統合コントローラーである。 HCM (Hybrid Control Module) is an integrated controller that calculates target torque, target rotational speed, target driving torque during shifting, and outputs signals to ECM, MC, and CVTCU.
 ECM(Engine Control Module)は、HCMから受信した目標トルク信号に基づいて、目標トルクを実現できるように、内燃エンジン1を制御する。またECMは、エンジン回転推定トルクを演算し、信号をHCMに出力する。 ECM (Engine Control Module) controls the internal combustion engine 1 based on the target torque signal received from the HCM so that the target torque can be realized. Further, the ECM calculates an estimated engine rotation torque and outputs a signal to the HCM.
 MC(Motor Controller)は、HCMから受信した目標回転数信号に基づいて、目標回転数を実現できるように、電動機5の回転数をフィードバック制御する。またMCは、モーター回転推定トルクを演算し、信号をHCMに出力する。 MC (Motor Controller) feedback-controls the rotational speed of the electric motor 5 based on the target rotational speed signal received from the HCM so that the target rotational speed can be realized. In addition, the MC calculates a motor rotation estimated torque and outputs a signal to the HCM.
 CVTCU(Continuously Variable Transmisson Control Unit)は、HCMから受信した目標駆動トルク信号に基づいて、目標駆動トルクを実現できるように、変速種類毎の回転制御フラグを設定し、目標駆動トルク相当の油圧を演算し、また変速進行バックアップ信号を設定する。こららに基づいて、CVTCUは、HCMから指令された目標トルクを実現できるように、CVT3を制御する。またCVTCUは、出力軸回転数、プーリー比を演算し、これらの信号や回転数制御許可フラグ信号をHCMに出力する。 CVTCU (Continuously Variable Transmisson 回 転 Control Unit) sets the rotation control flag for each shift type based on the target drive torque signal received from the HCM and calculates the hydraulic pressure equivalent to the target drive torque In addition, a shift progress backup signal is set. Based on these, the CVTCU controls the CVT 3 so that the target torque commanded by the HCM can be realized. The CVTCU calculates the output shaft rotation speed and pulley ratio, and outputs these signals and a rotation speed control permission flag signal to the HCM.
 内燃エンジン1及び電動機5の間、より詳しくは、クランクシャフト1aと軸4との間には、第1クラッチCL1が介挿される。第1クラッチCL1は、伝達トルク容量を連続的又は段階的に変更可能である。このようなクラッチとしては、たとえば、比例ソレノイドでクラッチ作動油の流量及び油圧を連続的に制御して伝達トルク容量を変更可能な乾式多板クラッチがある。伝達トルク容量がゼロになった状態が、第1クラッチCL1が完全に切り離された状態であり、内燃エンジン1及び電動機5の間が完全に切り離された状態である。 The first clutch CL1 is interposed between the internal combustion engine 1 and the electric motor 5, more specifically, between the crankshaft 1a and the shaft 4. The first clutch CL1 can change the transmission torque capacity continuously or stepwise. As such a clutch, for example, there is a dry multi-plate clutch capable of changing the transmission torque capacity by continuously controlling the flow rate and hydraulic pressure of the clutch hydraulic oil with a proportional solenoid. The state where the transmission torque capacity becomes zero is a state where the first clutch CL1 is completely disconnected, and the state where the internal combustion engine 1 and the electric motor 5 are completely disconnected.
 第1クラッチCL1が完全に切り離されると、内燃エンジン1の出力トルクは駆動輪に伝わらず、電動機5の出力トルクだけが駆動輪に伝わる。この状態で走行するモードが電気走行モード(EVモード)である。一方、第1クラッチCL1が接続されると、内燃エンジン1の出力トルクも、電動機5の出力トルクとともに、駆動輪に伝わる。この状態で走行するモードがハイブリッド走行モード(HEVモード)である。このように第1クラッチCL1の断続によって走行モードが切り替えられる。 When the first clutch CL1 is completely disconnected, the output torque of the internal combustion engine 1 is not transmitted to the drive wheels, but only the output torque of the electric motor 5 is transmitted to the drive wheels. A mode in which the vehicle travels in this state is an electric travel mode (EV mode). On the other hand, when the first clutch CL1 is connected, the output torque of the internal combustion engine 1 is also transmitted to the drive wheels together with the output torque of the electric motor 5. A mode in which the vehicle travels in this state is a hybrid travel mode (HEV mode). In this way, the travel mode is switched by the engagement / disengagement of the first clutch CL1.
 電動機5及びCVT3の間、より詳しくは、軸4とトランスミッション入力軸3aとの間には、第2クラッチCL2が介挿される。なお第2クラッチCL2とCVT3とをひとつのユニットしても別々にしてもよい。第2クラッチCL2も第1クラッチCL1と同様に、伝達トルク容量を連続的又は段階的に変更可能である。このようなクラッチとしては、たとえば、比例ソレノイドでクラッチ作動油の流量及び油圧を連続的に制御して伝達トルク容量を変更可能な湿式多板クラッチがある。伝達トルク容量がゼロになった状態が、第2クラッチCL2が完全に切り離された状態であり、電動機5及びCVT3の間が完全に切り離された状態である。内燃エンジン1を始動するときには、第2クラッチCL2の伝達トルク容量を小さくしてスリップ制御する。すると内燃エンジン1を始動するときのショックが駆動輪に伝わりにくくなる。 The second clutch CL2 is interposed between the electric motor 5 and the CVT 3, more specifically, between the shaft 4 and the transmission input shaft 3a. The second clutch CL2 and CVT3 may be a single unit or separate. Similarly to the first clutch CL1, the second clutch CL2 can change the transmission torque capacity continuously or stepwise. As such a clutch, for example, there is a wet multi-plate clutch capable of changing the transmission torque capacity by continuously controlling the flow rate and hydraulic pressure of the clutch hydraulic oil with a proportional solenoid. The state where the transmission torque capacity becomes zero is a state where the second clutch CL2 is completely disconnected, and the state where the motor 5 and the CVT 3 are completely disconnected. When the internal combustion engine 1 is started, slip control is performed by reducing the transmission torque capacity of the second clutch CL2. Then, the shock when starting the internal combustion engine 1 is not easily transmitted to the drive wheels.
 ハイブリッド車両10には、電動機5のみによって電気走行するEVモードと、内燃エンジン1及び電動機5によってハイブリッド走行するHEVモードとがある。 The hybrid vehicle 10 has an EV mode in which electric traveling is performed only by the electric motor 5 and an HEV mode in which hybrid traveling is performed by the internal combustion engine 1 and the electric motor 5.
 電動機5のみでは、駆動力が不足する場合や、バッテリー充電率SOC(State Of Charge)が低下した場合に、ハイブリッド走行モード(HEVモード)が選択される。ハイブリッド走行モード(HEVモード)では、内燃エンジン1が始動され、第1クラッチCL1及び第2クラッチCL2がともに締結され、CVT3が動力伝達状態にされる。この状態では、内燃エンジン1からの出力回転及び電動機5からの出力回転がトランスミッション入力軸3aに達する。CVT3は、入力軸3aから入力した回転を選択中のシフト段に応じ変速して、トランスミッション出力軸3bから出力する。トランスミッション出力軸3bから出力された回転は、駆動輪に至る。このようにして、車両10は、内燃エンジン1及び電動機5によってハイブリッド走行(HEVモード走行)する。また内燃エンジン1が最適燃費で運転され、余剰なエネルギーが電動機5を作動させて、余剰エネルギーが電力に変換されて蓄電される。このようにすることで、燃費が向上する。 When only the electric motor 5 is used, the hybrid driving mode (HEV mode) is selected when the driving force is insufficient or when the battery charge rate SOC (State Of Charge) decreases. In the hybrid travel mode (HEV mode), the internal combustion engine 1 is started, the first clutch CL1 and the second clutch CL2 are both engaged, and the CVT 3 is in a power transmission state. In this state, the output rotation from the internal combustion engine 1 and the output rotation from the electric motor 5 reach the transmission input shaft 3a. The CVT 3 shifts the rotation input from the input shaft 3a according to the selected shift stage, and outputs it from the transmission output shaft 3b. The rotation output from the transmission output shaft 3b reaches the drive wheels. In this way, the vehicle 10 performs hybrid traveling (HEV mode traveling) by the internal combustion engine 1 and the electric motor 5. Further, the internal combustion engine 1 is operated at the optimum fuel consumption, and surplus energy operates the motor 5 so that surplus energy is converted into electric power and stored. By doing in this way, fuel consumption improves.
 電動機5のみで走行可能なときは、内燃エンジン1を停止して電動機5のみで電気走行モード(EVモード)で走行する。電気走行モード(EVモード)では、内燃エンジン1からの動力が不要であるので、内燃エンジン1が運転されない。そして、第1クラッチCL1が解放される。また第2クラッチCL2が締結される。さらにCVT3が動力伝達状態にされる。この状態で電動機5が駆動されると、電動機5からの出力回転のみがトランスミッション入力軸3aに達する。CVT3は、入力軸3aから入力した回転を選択中のシフト段に応じ変速して、トランスミッション出力軸3bから出力する。トランスミッション出力軸3bから出力された回転は、駆動輪に至る。このようにして、車両10は、電動機5のみによって電気走行(EVモード走行)する。ハイブリッド車両10は、頻繁に内燃エンジン1を停止することで、燃費を向上させている。 When it is possible to travel only with the electric motor 5, the internal combustion engine 1 is stopped and the electric motor 5 travels in the electric travel mode (EV mode) alone. In the electric travel mode (EV mode), the motive power from the internal combustion engine 1 is unnecessary, and therefore the internal combustion engine 1 is not operated. Then, the first clutch CL1 is released. Further, the second clutch CL2 is engaged. Further, the CVT 3 is set in a power transmission state. When the electric motor 5 is driven in this state, only the output rotation from the electric motor 5 reaches the transmission input shaft 3a. The CVT 3 shifts the rotation input from the input shaft 3a according to the selected shift stage, and outputs it from the transmission output shaft 3b. The rotation output from the transmission output shaft 3b reaches the drive wheels. In this way, the vehicle 10 travels electrically (EV mode travel) using only the electric motor 5. The hybrid vehicle 10 improves the fuel efficiency by frequently stopping the internal combustion engine 1.
 内燃エンジン1を停止するときに、回転変動(振動)を生じて、この振動が車体を通じて乗員に伝達すると、乗員が違和感を感じやすい。また内燃エンジン1(クランクシャフト11)の振動が、補機に伝達して、補機から異音が生じることもある。なお、特にキー操作などの運転者の指示により内燃エンジン1が停止する場合、内燃エンジン1が比較的高い回転数であったり、負荷が高い場合も多く停止時の振動が顕著となる。 When the internal combustion engine 1 is stopped, rotational fluctuation (vibration) occurs, and if this vibration is transmitted to the occupant through the vehicle body, the occupant tends to feel uncomfortable. Further, the vibration of the internal combustion engine 1 (crankshaft 11) may be transmitted to the auxiliary machine, and abnormal noise may be generated from the auxiliary machine. In particular, when the internal combustion engine 1 is stopped by a driver's instruction such as a key operation, the vibration at the time of stop is significant even when the internal combustion engine 1 has a relatively high rotational speed or a high load.
 そこで、本実施形態では、停止時の内燃エンジン1の振動を低減するようにしたのである。具体的な内容は、以下で説明される。 Therefore, in this embodiment, the vibration of the internal combustion engine 1 when stopped is reduced. Specific contents will be described below.
 図3は、エンジン停止制御のフローチャートである。 FIG. 3 is a flowchart of engine stop control.
 ステップS110において、内燃エンジン1に対する停止指令があったか否かが判定される。判定結果が肯であればステップS120へ処理が移行され、判定結果が否であれば処理を抜ける。 In step S110, it is determined whether or not there is a stop command for the internal combustion engine 1. If the determination result is positive, the process proceeds to step S120, and if the determination result is negative, the process is exited.
 ステップS120において、吸気管負圧発達制御が実行される。なお具体的な内容は、以下である。 In step S120, intake pipe negative pressure development control is executed. The specific contents are as follows.
 図4は、吸気管負圧発達制御のフローチャートである。 FIG. 4 is a flowchart of the intake pipe negative pressure development control.
 ステップS121において、内燃エンジン1の燃焼を終了させる。具体的には、燃料噴射や点火制御が停止される。 In step S121, the combustion of the internal combustion engine 1 is terminated. Specifically, fuel injection and ignition control are stopped.
 ステップS122において、吸気スロットルが閉じられる。 In step S122, the intake throttle is closed.
 ステップS123において、第1クラッチCL1が締結された状態で電動機5によって、内燃エンジン1が回転状態に維持される。 In step S123, the internal combustion engine 1 is maintained in the rotating state by the electric motor 5 with the first clutch CL1 engaged.
 次に、以上の制御が実行されたときの作用効果について説明する。なお実施形態の理解を容易にするために、最初に比較形態について説明する。 Next, the effect when the above control is executed will be described. In order to facilitate understanding of the embodiment, the comparative embodiment will be described first.
 図5は、比較形態の作用を示すタイムチャートである。 FIG. 5 is a time chart showing the operation of the comparative form.
 この比較形態では、内燃エンジン1に対する停止指令があったら、燃料噴射が停止される(図5(A))。また吸気スロットルの開度制御が停止される。これによって、吸気スロットルは、構造上バランスする初期開度(図5(B)では、2.0deg)になる。すなわち吸気スロットルは、アクチュエーターからの力が作用しなくても、スロットルリターンスプリングなどによって構造上バランスする初期開度になる。比較形態では、吸気スロットルがその初期開度になっている(図5(B))。また電動機5も停止される(図5(D))。この結果、吸気管内圧が40kPa(abs)まで下がるが(図5(C))、ピストンに対する圧縮反力の影響があり、内燃エンジンの回転は、リニアに低下するのではなく、回転変動(振動)を生じながら低下する(図5(D))。 In this comparative embodiment, when there is a stop command for the internal combustion engine 1, the fuel injection is stopped (FIG. 5A). Also, the opening control of the intake throttle is stopped. As a result, the intake throttle has an initial opening that is structurally balanced (2.0 deg in FIG. 5B). That is, the intake throttle has an initial opening that is structurally balanced by a throttle return spring or the like, even if no force is applied from the actuator. In the comparative form, the intake throttle is at its initial opening (FIG. 5B). The electric motor 5 is also stopped (FIG. 5D). As a result, the intake pipe internal pressure decreases to 40 kPa (abs) (FIG. 5C), but there is an influence of the compression reaction force on the piston, and the rotation of the internal combustion engine does not decrease linearly but changes in rotation (vibration). ) (See FIG. 5D).
 図6は、実施形態の作用を示すタイムチャートである。 FIG. 6 is a time chart showing the operation of the embodiment.
 この実施形態では、内燃エンジン1に対する停止指令があったら、燃料噴射が停止される(図6(A))。また吸気スロットルが強制的にほぼ全閉される。図6(B)では、0.33degにされる。電動機5は、時刻t2まで回転状態が維持されて、内燃エンジン1を強制的に回転させる。その後、電動機5も徐々に停止する(図6(D))。この結果、吸気管内圧が20kPa(abs)まで下がり(図6(C))、ピストンに対する圧縮反力の影響が回避されて、内燃エンジン1の回転変動(振動)が防止されて、内燃エンジン1の回転が滑らかに低下する(図6(D))。 In this embodiment, when there is a stop command for the internal combustion engine 1, the fuel injection is stopped (FIG. 6A). The intake throttle is forcibly almost closed. In FIG. 6B, it is set to 0.33 deg. The electric motor 5 is maintained in a rotating state until time t2, and forcibly rotates the internal combustion engine 1. Thereafter, the electric motor 5 is also gradually stopped (FIG. 6D). As a result, the intake pipe internal pressure is reduced to 20 kPa (abs) (FIG. 6C), the influence of the compression reaction force on the piston is avoided, the rotational fluctuation (vibration) of the internal combustion engine 1 is prevented, and the internal combustion engine 1 is prevented. Is smoothly reduced (FIG. 6D).
 このように、内燃エンジン1に対する停止指令が有った場合に、内燃エンジン1の燃焼作動を終了させ、吸気スロットルを閉じ、内燃エンジン1を駆動可能な電動機5によって内燃エンジン1を回転状態に維持することで、吸気管の負圧を発達させるようにした。これによって、ピストンに対する圧縮反力の影響が回避されて、内燃エンジン1の回転変動(振動)が防止されて、内燃エンジン1の回転が滑らかに低下するのである。 Thus, when there is a stop command for the internal combustion engine 1, the combustion operation of the internal combustion engine 1 is terminated, the intake throttle is closed, and the internal combustion engine 1 is maintained in the rotating state by the electric motor 5 that can drive the internal combustion engine 1. By doing so, the negative pressure of the intake pipe was developed. As a result, the influence of the compression reaction force on the piston is avoided, rotation fluctuation (vibration) of the internal combustion engine 1 is prevented, and the rotation of the internal combustion engine 1 is smoothly reduced.
 図7は、エンジン停止制御のもうひとつのフローチャートである。なお以下では、前述と同様の機能を果たす部分には同一の符号を付して重複する説明を適宜省略する。 FIG. 7 is another flowchart of engine stop control. In the following description, parts having the same functions as those described above are denoted by the same reference numerals, and redundant description is omitted as appropriate.
 図7は、図3に対して、ステップS130の終了処理が追加される。この終了処理の具体的な内容は、以下である。 FIG. 7 adds an end process of step S130 to FIG. The specific contents of this termination process are as follows.
 図8は、終了処理のフローチャートである。 FIG. 8 is a flowchart of the end process.
 ステップS131において、クラッチCL1が解放される。 In step S131, the clutch CL1 is released.
 図9は、図7の制御を実行したときの作用効果を示すタイムチャートである。 FIG. 9 is a time chart showing the operational effects when the control of FIG. 7 is executed.
 図7の制御では、内燃エンジン1に対する停止指令があったら、燃料噴射が停止される(図9(A))。また吸気スロットルが強制的にほぼ全閉される。図9(B)では、0.33degにされる。電動機5は、時刻t2まで回転状態が維持されて、内燃エンジン1が強制的に回転させられ、その後、電動機5の回転は維持されたままクラッチCL1が解放される(図9(D))。この結果、吸気管内圧が20kPa(abs)まで下がり(図9(C))、ピストンに対する圧縮反力の影響が回避される。また電動機5を回転させたままクラッチCL1が解放されることで、内燃エンジン1と電動機5の間に回転差が生じクラッチCL1が着実に解放される。これはクラッチCL1の性質上、クラッチ解放後も引きずりトルクを有するので内燃エンジン1と電動機5を同時に停止させる場合、クラッチCL1を着実に解放する必要がある。なおクラッチCL1の引きずりトルクによる締結状態が継続していると電動機5のイナーシャ分が増えて内燃エンジン1の停止が不安定になったり、クラッチCL1の引きずりトルクによる締結状態が不意に開放され内燃エンジン1の回転変動が生じる。
 このようにクラッチCL1が着実に解放されることで、内燃エンジン1の回転変動(振動)が防止されて、内燃エンジン1の回転が滑らかに低下する(図9(D))。
In the control of FIG. 7, when there is a stop command for the internal combustion engine 1, the fuel injection is stopped (FIG. 9A). The intake throttle is forcibly almost closed. In FIG. 9B, it is set to 0.33 deg. The rotation state of the electric motor 5 is maintained until time t2, the internal combustion engine 1 is forcibly rotated, and then the clutch CL1 is released while the rotation of the electric motor 5 is maintained (FIG. 9 (D)). As a result, the intake pipe internal pressure decreases to 20 kPa (abs) (FIG. 9C), and the influence of the compression reaction force on the piston is avoided. Further, when the clutch CL1 is released while the electric motor 5 is rotated, a rotational difference is generated between the internal combustion engine 1 and the electric motor 5, and the clutch CL1 is steadily released. Since this has drag torque even after the clutch is released due to the nature of the clutch CL1, it is necessary to release the clutch CL1 steadily when the internal combustion engine 1 and the electric motor 5 are stopped simultaneously. If the engagement state of the clutch CL1 by the drag torque continues, the inertia of the electric motor 5 increases and the stop of the internal combustion engine 1 becomes unstable, or the engagement state of the clutch CL1 by the drag torque is unexpectedly released. 1 rotation fluctuation occurs.
Since the clutch CL1 is steadily released in this manner, the rotation fluctuation (vibration) of the internal combustion engine 1 is prevented, and the rotation of the internal combustion engine 1 is smoothly reduced (FIG. 9D).
 このように、吸気管に所望の負圧が発達した後、電動機5の出力を内燃エンジン1に伝達させるか否かを制御するクラッチCL1を解放するので、内燃エンジン1の回転速度が、非常に滑らかに低下するようになったのである。 Thus, after the desired negative pressure develops in the intake pipe, the clutch CL1 for controlling whether or not the output of the electric motor 5 is transmitted to the internal combustion engine 1 is released, so that the rotational speed of the internal combustion engine 1 is very high. It began to drop smoothly.
 図10は、吸気管負圧発達制御のもうひとつのフローチャートである。 FIG. 10 is another flowchart of the intake pipe negative pressure development control.
 図10は、図4に対して、ステップS124の処理が追加される。すなわち、ステップS124では、吸気管内に所望の負圧が発達したか否かがが判定される。判定結果が否であるあいだは、ステップS123へ処理が移行され、判定結果が肯になったら処理を抜ける。なお、吸気管内に所望の負圧が発達したか否かは、たとえば、気圧センサーによって判断すればよい。また、吸気スロットルが強制的にほぼ全閉されたタイミングからの経過時間で間接的に判断(推定)してもよい。 In FIG. 10, the process of step S124 is added to FIG. That is, in step S124, it is determined whether or not a desired negative pressure has developed in the intake pipe. While the determination result is negative, the process proceeds to step S123, and when the determination result is affirmative, the process is exited. Whether or not a desired negative pressure has developed in the intake pipe may be determined by, for example, an atmospheric pressure sensor. Further, it may be indirectly judged (estimated) from the elapsed time from the timing when the intake throttle is forcibly almost fully closed.
 このように、吸気管に所望の負圧が発達するまで、電動機5によって内燃エンジン1を回転状態に維持することで、内燃エンジン1の回転変動(振動)が防止されて、内燃エンジン1の回転が滑らかに低下するようになったのである。すなわち、吸気スロットルが強制的にほぼ全閉された後に、電動機5が回転状態を維持して、内燃エンジン1を強制的に回転させれば、そのようにしない場合に比べて、吸気管に負圧が発達するので、相応の効果が得られるが、図10のように、所望の負圧が発達するまで、電動機5の回転状態を維持することで、内燃エンジン1の回転変動(振動)を、より確実に抑制できるのである。 Thus, by maintaining the internal combustion engine 1 in the rotating state by the electric motor 5 until a desired negative pressure develops in the intake pipe, rotation fluctuation (vibration) of the internal combustion engine 1 is prevented, and the rotation of the internal combustion engine 1 is prevented. It began to drop smoothly. That is, after the intake throttle is forcibly almost fully closed, if the electric motor 5 is kept in a rotating state and the internal combustion engine 1 is forcibly rotated, it is more negative for the intake pipe than in the case where it is not. As the pressure develops, a corresponding effect can be obtained. As shown in FIG. 10, the rotational fluctuation (vibration) of the internal combustion engine 1 is maintained by maintaining the rotation state of the electric motor 5 until the desired negative pressure is developed. It is possible to suppress more reliably.
 図11は、終了処理のもうひとつのフローチャートである。 FIG. 11 is another flowchart of the termination process.
 図11は、図8に対して、ステップS132及びステップS133の処理が追加される。すなわち、ステップS132では、エンジン回転が低下したか否かが判定される。判定結果が否であるあいだは待機し、判定結果が肯になったらステップS133へ処理が移行される。ステップS133では、電動機5に対して停止が指令される。 In FIG. 11, processing of step S132 and step S133 is added to FIG. 8. That is, in step S132, it is determined whether or not the engine speed has decreased. While the determination result is negative, the process stands by. If the determination result is affirmative, the process proceeds to step S133. In step S133, the motor 5 is instructed to stop.
 このように、クラッチCL1が解放された後、内燃エンジン1の回転速度が低下したら、電動機5に対して停止が指令されるので、無駄なエネルギー消費が回避される。 In this way, when the rotational speed of the internal combustion engine 1 decreases after the clutch CL1 is released, the motor 5 is instructed to stop, so that useless energy consumption is avoided.
 図12は、上述したエンジン停止制御S100を含むエンジン制御のフローチャートである。 FIG. 12 is a flowchart of engine control including the engine stop control S100 described above.
 ステップS101において、電動機5に電力を供給する蓄電装置(たとえばバッテリーなど。キャパシターなどでもよい)の蓄電量が所定値よりも小さいか否かが判定される。判定結果が肯であればステップS102へ処理が移行され、判定結果が否であればステップS102がスキップされる。 In step S101, it is determined whether or not the amount of power stored in a power storage device (for example, a battery or a capacitor) that supplies power to the electric motor 5 is smaller than a predetermined value. If the determination result is positive, the process proceeds to step S102, and if the determination result is negative, step S102 is skipped.
 ステップS102において、電動機5の出力が制限される。 In step S102, the output of the electric motor 5 is limited.
 ステップS100において、エンジン停止制御が実行される。 In step S100, engine stop control is executed.
 このように、蓄電量が少ない場合に電動機5を走行源に利用する出力が制限されるものであっても、吸気管負圧を発達させるエンジン停止制御が実行されることで、内燃エンジン1の回転変動(振動)を回避して、エンジン回転を滑らかに低下させることができる。 Thus, even when the output using the electric motor 5 as a travel source is limited when the storage amount is small, the engine stop control for developing the intake pipe negative pressure is executed, so that the internal combustion engine 1 Rotational fluctuation (vibration) can be avoided and engine rotation can be reduced smoothly.
 図13は、上述したエンジン停止制御S100を含むもうひとつのエンジン制御のフローチャートである。 FIG. 13 is a flowchart of another engine control including the engine stop control S100 described above.
 ステップS103において、変速機の走行レンジが非走行レンジであるか否かが判定される。判定結果が肯であればステップS100へ処理が移行され、判定結果が否であればステップS100がスキップされる。 In step S103, it is determined whether or not the transmission travel range is a non-travel range. If the determination result is positive, the process proceeds to step S100, and if the determination result is negative, step S100 is skipped.
 内燃エンジン1の回転変動(振動)は、特に車両10が停車中に生じると、乗員がその回転変動(振動)を感じやすい。そこで、特に変速機の走行レンジが非走行レンジであるときに、エンジン停止制御S100を実行することが効果的なのである。 Rotational fluctuation (vibration) of the internal combustion engine 1 is particularly apt to be felt by the passenger when the vehicle 10 is stopped. Therefore, it is effective to execute the engine stop control S100 especially when the travel range of the transmission is the non-travel range.
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。 The embodiment of the present invention has been described above. However, the above embodiment only shows a part of application examples of the present invention, and the technical scope of the present invention is limited to the specific configuration of the above embodiment. Absent.
 たとえば、図1に示された車両は一例に過ぎず、他のタイプのハイブリッド車両であってもよい。また走行モーターを用いないコンベンショナルな内燃エンジン車両であってもよい。その場合は、走行モーターに代わる何らかのモーターで内燃エンジンを強制的に回転状態に維持すればよい。 For example, the vehicle shown in FIG. 1 is merely an example, and may be another type of hybrid vehicle. Moreover, the conventional internal combustion engine vehicle which does not use a traveling motor may be used. In that case, the internal combustion engine may be forcibly maintained in a rotating state by some motor instead of the traveling motor.
 また実施形態は、適宜組み合わせ可能である。 Further, the embodiments can be appropriately combined.

Claims (8)

  1.  内燃エンジンの停止指令の有無を判定する停止判定部と、
     前記停止指令が有った場合に、前記内燃エンジンの燃焼作動を終了させ、吸気スロットルを閉じ、前記内燃エンジンを駆動可能な電動機によって前記内燃エンジンを回転状態に維持することで、吸気管の負圧を発達させる負圧発達制御部と、
    を含む内燃エンジンの制御装置。
    A stop determination unit for determining the presence or absence of a stop command for the internal combustion engine;
    When the stop command is issued, the combustion operation of the internal combustion engine is terminated, the intake throttle is closed, and the internal combustion engine is maintained in a rotating state by an electric motor capable of driving the internal combustion engine, thereby A negative pressure development control unit that develops pressure,
    A control apparatus for an internal combustion engine including:
  2.  請求項1に記載の内燃エンジンの制御装置において、
     前記電動機は、車両の走行源になるハイブリッド車両用電動機である、
    内燃エンジンの制御装置。
    The control apparatus for an internal combustion engine according to claim 1,
    The electric motor is an electric motor for a hybrid vehicle that becomes a travel source of the vehicle.
    Control device for internal combustion engine.
  3.  請求項1又は請求項2に記載の内燃エンジンの制御装置において、
     前記負圧発達制御部は、前記吸気管に所望の負圧が発達するまで、前記電動機によって前記内燃エンジンを回転状態に維持する、
    内燃エンジンの制御装置。
    The control apparatus for an internal combustion engine according to claim 1 or 2,
    The negative pressure development control unit maintains the internal combustion engine in a rotating state by the electric motor until a desired negative pressure develops in the intake pipe.
    Control device for internal combustion engine.
  4.  請求項1から請求項3までのいずれか1項に記載の内燃エンジンの制御装置において、
     前記吸気管に所望の負圧が発達した後、前記電動機の出力を前記内燃エンジンに伝達させるか否かを制御するクラッチを解放するクラッチ制御部を含む、
    内燃エンジンの制御装置。
    The control device for an internal combustion engine according to any one of claims 1 to 3,
    A clutch control unit for releasing a clutch for controlling whether or not to transmit the output of the electric motor to the internal combustion engine after a desired negative pressure develops in the intake pipe;
    Control device for internal combustion engine.
  5.  請求項4に記載の内燃エンジンの制御装置において、
     前記クラッチ制御部が前記クラッチを解放した後、前記内燃エンジンの回転速度が低下したか否かを判定する低下判定部と、
     前記内燃エンジンの回転速度が低下したら、前記電動機を停止する電動機停止部と、
    を含む内燃エンジンの制御装置。
    The control apparatus for an internal combustion engine according to claim 4,
    A reduction determination unit that determines whether or not the rotational speed of the internal combustion engine has decreased after the clutch control unit has released the clutch;
    When the rotational speed of the internal combustion engine decreases, an electric motor stop unit that stops the electric motor;
    A control apparatus for an internal combustion engine including:
  6.  請求項1から請求項5までのいずれか1項に記載の内燃エンジンの制御装置において、
     前記電動機に電力を供給する蓄電装置の蓄電量が所定値よりも低い場合に前記電動機の出力を制限する電動機出力制限部を含み、
     前記負圧発達制御部は、前記電動機の出力が制限されていても、吸気管の負圧を発達させる制御を実行する、
    内燃エンジンの制御装置。
    The control device for an internal combustion engine according to any one of claims 1 to 5,
    Including an electric motor output limiting unit that limits the output of the electric motor when the electric storage amount of the electric storage device that supplies electric power to the electric motor is lower than a predetermined value;
    The negative pressure development control unit executes control to develop the negative pressure of the intake pipe even if the output of the electric motor is limited,
    Control device for internal combustion engine.
  7.  請求項1から請求項6までのいずれか1項に記載の内燃エンジンの制御装置において、
     前記負圧発達制御部は、変速機が非走行レンジの場合に、吸気管の負圧を発達させる制御を実行する、
    内燃エンジンの制御装置。
    The control device for an internal combustion engine according to any one of claims 1 to 6,
    The negative pressure development control unit executes control to develop negative pressure of the intake pipe when the transmission is in a non-traveling range.
    Control device for internal combustion engine.
  8.  内燃エンジンの停止指令の有無を判定する停止判定手順と、
     前記停止指令が有った場合に、前記内燃エンジンの燃焼作動を終了させ、吸気スロットルを閉じ、前記内燃エンジンを駆動可能な電動機によって前記内燃エンジンを回転状態に維持することで、吸気管の負圧を発達させる負圧発達制御手順と、
    を含む内燃エンジンの制御方法。
     
     
    A stop determination procedure for determining the presence or absence of a stop command for the internal combustion engine;
    When the stop command is issued, the combustion operation of the internal combustion engine is terminated, the intake throttle is closed, and the internal combustion engine is maintained in a rotating state by an electric motor capable of driving the internal combustion engine, thereby Negative pressure development control procedure to develop pressure,
    An internal combustion engine control method including:

PCT/JP2013/073813 2013-09-04 2013-09-04 Method for controlling and device for controlling internal combustion engine WO2015033405A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/073813 WO2015033405A1 (en) 2013-09-04 2013-09-04 Method for controlling and device for controlling internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/073813 WO2015033405A1 (en) 2013-09-04 2013-09-04 Method for controlling and device for controlling internal combustion engine

Publications (1)

Publication Number Publication Date
WO2015033405A1 true WO2015033405A1 (en) 2015-03-12

Family

ID=52627915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/073813 WO2015033405A1 (en) 2013-09-04 2013-09-04 Method for controlling and device for controlling internal combustion engine

Country Status (1)

Country Link
WO (1) WO2015033405A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000257458A (en) * 1999-03-04 2000-09-19 Mitsubishi Motors Corp Stop controller for internal combustion engine
JP2001050079A (en) * 1999-06-03 2001-02-23 Mitsubishi Motors Corp Stop control unit for internal combustion engine
JP2001304005A (en) * 2000-04-20 2001-10-31 Toyota Motor Corp Automatic operation stop control for internal compustion engine
JP2004232489A (en) * 2003-01-28 2004-08-19 Toyota Motor Corp Starting control device of internal combustion engine
JP2004308570A (en) * 2003-04-08 2004-11-04 Toyota Motor Corp Hybrid power unit and its operation method
JP2009137405A (en) * 2007-12-05 2009-06-25 Toyota Motor Corp Hybrid vehicle
JP2010127178A (en) * 2008-11-27 2010-06-10 Nissan Motor Co Ltd Startup control device for internal combustion engine
JP2012086781A (en) * 2010-10-22 2012-05-10 Nissan Motor Co Ltd Control device of hybrid vehicle

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000257458A (en) * 1999-03-04 2000-09-19 Mitsubishi Motors Corp Stop controller for internal combustion engine
JP2001050079A (en) * 1999-06-03 2001-02-23 Mitsubishi Motors Corp Stop control unit for internal combustion engine
JP2001304005A (en) * 2000-04-20 2001-10-31 Toyota Motor Corp Automatic operation stop control for internal compustion engine
JP2004232489A (en) * 2003-01-28 2004-08-19 Toyota Motor Corp Starting control device of internal combustion engine
JP2004308570A (en) * 2003-04-08 2004-11-04 Toyota Motor Corp Hybrid power unit and its operation method
JP2009137405A (en) * 2007-12-05 2009-06-25 Toyota Motor Corp Hybrid vehicle
JP2010127178A (en) * 2008-11-27 2010-06-10 Nissan Motor Co Ltd Startup control device for internal combustion engine
JP2012086781A (en) * 2010-10-22 2012-05-10 Nissan Motor Co Ltd Control device of hybrid vehicle

Similar Documents

Publication Publication Date Title
JP5704148B2 (en) Vehicle travel control device
JP6369549B2 (en) Vehicle control apparatus and vehicle control method
US9079583B2 (en) Control device of hybrid vehicle
JP5888429B2 (en) Start control device for hybrid vehicle
JP6070577B2 (en) Hybrid vehicle drive control device
JP5644946B2 (en) Vehicle control device
WO2014002206A1 (en) Vehicle control device
US10000198B2 (en) Control system and control method
US20160176396A1 (en) Hybrid vehicle
WO2016152535A1 (en) Starting control device for vehicle and starting control method
US9765886B2 (en) Control system and control method for vehicle
US20130085634A1 (en) Control apparatus for hybrid vehicle
JP6197874B2 (en) Vehicle control device
US20140309912A1 (en) Automatic engine-stop control device for vehicle
WO2014068720A1 (en) Vehicle travel control device
JP2002115755A (en) Hydraulic control device of vehicle
JP6036499B2 (en) Engine start control device for hybrid vehicle
US9850825B2 (en) Vehicle control device with automatic engine stop function
US11807218B2 (en) Control device for vehicle
JP4086077B2 (en) Start control device for internal combustion engine
JP2014073747A (en) Start control device for hybrid vehicle
WO2018221464A1 (en) Hybrid vehicle control apparatus
WO2014156931A1 (en) Failure determination device for hybrid vehicles and failure determination method therefor
WO2015033405A1 (en) Method for controlling and device for controlling internal combustion engine
JP5012190B2 (en) Hybrid car

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13892961

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13892961

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP