WO2015032173A1 - 一种低投射比高光效立体投影装置及立体投影*** - Google Patents

一种低投射比高光效立体投影装置及立体投影*** Download PDF

Info

Publication number
WO2015032173A1
WO2015032173A1 PCT/CN2014/070688 CN2014070688W WO2015032173A1 WO 2015032173 A1 WO2015032173 A1 WO 2015032173A1 CN 2014070688 W CN2014070688 W CN 2014070688W WO 2015032173 A1 WO2015032173 A1 WO 2015032173A1
Authority
WO
WIPO (PCT)
Prior art keywords
reflected
polarization
light beam
light
transmitted
Prior art date
Application number
PCT/CN2014/070688
Other languages
English (en)
French (fr)
Inventor
李艳龙
邓贤俊
王叶通
Original Assignee
深圳市时代华影科技开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=49941565&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2015032173(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 深圳市时代华影科技开发有限公司 filed Critical 深圳市时代华影科技开发有限公司
Priority to EA201500108A priority Critical patent/EA030953B1/ru
Priority to AU2014271272A priority patent/AU2014271272B2/en
Priority to EP14796386.2A priority patent/EP2869116A4/en
Priority to CA2885281A priority patent/CA2885281C/en
Priority to US14/580,769 priority patent/US9638926B2/en
Publication of WO2015032173A1 publication Critical patent/WO2015032173A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • G02B30/25Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type using polarisation techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/332Displays for viewing with the aid of special glasses or head-mounted displays [HMD]
    • H04N13/337Displays for viewing with the aid of special glasses or head-mounted displays [HMD] using polarisation multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/363Image reproducers using image projection screens
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/388Volumetric displays, i.e. systems where the image is built up from picture elements distributed through a volume
    • H04N13/39Volumetric displays, i.e. systems where the image is built up from picture elements distributed through a volume the picture elements emitting light at places where a pair of light beams intersect in a transparent material
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • G02B27/285Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining comprising arrays of elements, e.g. microprisms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements

Definitions

  • the invention belongs to the technical field of stereoscopic projection, and in particular relates to a low projection ratio high light effect stereoscopic projection device and a stereoscopic projection system.
  • Patent No. 201220746320.8 patented as "high-efficiency light modulation device and high-efficiency stereoscopic projection system" invention patent published technology, the need to use a larger size of the polarization device, the incident light is divided into transmitted light and reflected light Beam, then adjust the polarization of the light so that the two beams coincide on the metal screen.
  • the optical path size is large, and the required optical components are also large.
  • the size of each device becomes large, and the coincidence of the two beams becomes very difficult.
  • there are many difficulties in the processing and assembly of the device and there are also great difficulties in mass production.
  • the technical problem to be solved by the present invention is to provide a low projection ratio high-efficiency stereoscopic projection device and a stereoscopic projection system, aiming at solving the problem of large volume of the existing projection device.
  • a low projection ratio high light efficiency stereoscopic projection apparatus includes:
  • a polarization beam splitting component that splits a projection beam from the projector into a transmitted beam, a first reflected beam, and a second reflected beam; a polarization direction of the transmitted beam and a polarization direction of the first reflected beam and the second reflected beam are positive cross;
  • a polarization conversion component that adjusts a polarization state of the transmitted beam or a polarization state of the first reflected beam and the second reflected beam, and the transmitted beam, the first reflected beam, and the second reflected beam have the same polarization state after adjustment ;
  • the optical path direction adjusting component adjusts a propagation direction of the transmitted beam or a propagation direction of the first reflected beam and the second reflected beam, and the transmitted beam, the first reflected beam, and the second reflected beam have the same propagation direction after adjustment ;
  • a beam size adjustment component adjusting a size range of the transmitted beam or a size range of the first reflected beam and the second reflected beam, and adjusting a projected image size of the transmitted beam, the first reflected beam, and the second reflected beam Consistent
  • the light modulator modulates the adjusted transmitted light beam, the first reflected light beam, and the second reflected light beam into left-handed circularly polarized light and right-handed circularly polarized light in a frame order.
  • the polarization beam splitting component is a polarizing beam splitting prism group;
  • the polarizing beam splitting prism group is formed by three 45 degree prism coatings and laminations, and has a rectangular parallelepiped shape, has one incident surface, three emitting surfaces, and has two internal points.
  • the plane of polarization, the two polarization planes are perpendicular to each other, and are respectively 45 degrees with the incident surface, and the two polarization planes intersect at a center line of the incident surface.
  • the polarization conversion component is at least one twisted liquid crystal device; the twisted liquid crystal device is placed in an optical path where the first reflected light beam and the second reflected light beam are located and is located before or in the optical path direction adjusting component After the optical path direction adjustment component, or placed at any position between the beam size adjustment component and the front of the light modulator.
  • the twisted liquid crystal device is a liquid crystal device based on a glass substrate, a liquid crystal device based on a flexible plastic substrate, or a polymer liquid crystal film based on a polymer technology.
  • the optical path direction adjusting component is a two mirror; the two mirrors are disposed in an optical path of the first reflected beam and the second reflected beam.
  • the beam size adjusting component is at least one lens or lens group, and the lens or lens group is placed at any one of the optical paths where the transmitted beam, the first reflected beam and the second reflected beam are located.
  • the light modulator is a liquid crystal light valve type light modulator.
  • the low-projection ratio high-efficiency stereoscopic projection device further includes a linear polarizer positioned in front of the light modulator to filter polarization states of the transmitted beam, the first reflected beam, and the second reflected beam. Consistent.
  • the light modulator is replaced with a quarter-wave retardation film, and the transmitted beam, the first reflected beam, and the second reflected beam are converted into left-handed circularly polarized light having an angle of 45 degrees and an angle of 135 degrees.
  • Right-handed circularly polarized light is replaced with a quarter-wave retardation film, and the transmitted beam, the first reflected beam, and the second reflected beam are converted into left-handed circularly polarized light having an angle of 45 degrees and an angle of 135 degrees.
  • the present invention also provides a low projection ratio high light efficiency stereoscopic projection system, comprising a projector, a metal screen and any low projection ratio high luminous efficiency stereoscopic projection device as described above; the projector sequentially playing the left eye image in frame order And a right eye image; the metal screen is used to image the reflected beam and the transmitted beam, and the pair of rays are reflected in opposite circular polarization states.
  • the low projection ratio high-efficiency stereoscopic projection device of the invention adopts a polarization beam splitting component to divide the incident beam into three parts and respectively passes through two polarization beam splitting surfaces, thereby effectively reducing the optical path difference between the reflected beam and the transmitted beam, thereby making the whole device The volume is greatly reduced, and the overlapping of the beams becomes simpler.
  • a twisted liquid crystal device is used as a rotating device of polarized light polarization direction, which has the advantages of small dispersion and high polarization rotation efficiency.
  • FIG. 1 is a schematic view showing the outer shape and optical path of a conventional polarizing beam splitting prism of the prior art
  • FIG. 2 is a schematic diagram of a polarization beam splitting prism group and an optical path thereof according to an embodiment of the present invention
  • FIG. 3 is an optical structural diagram of a first low-projection ratio high-efficiency stereoscopic projection device provided by the present invention, the twisted liquid crystal device is located in two reflected light paths, and is located between the polarization beam splitting device and the mirror;
  • FIG. 4 is an optical structural diagram of a second low-projection ratio high-efficiency stereoscopic projection device provided by the present invention, wherein the twisted liquid crystal device is located in the transmitted light path;
  • FIG. 5 is an optical structural diagram of a third low-projection high-efficiency stereoscopic projection device provided by the present invention.
  • the twisted liquid crystal device is located in two reflected light paths and is located between the mirror and the linear polarizer.
  • the low projection ratio high-efficiency stereoscopic projection device of the present invention uses a polarization beam splitting prism group to divide an incident beam into three beams of different polarization states, and then uses a twisted liquid crystal device to adjust the polarization state of one or two beams.
  • a polarization beam splitting prism group to divide an incident beam into three beams of different polarization states, and then uses a twisted liquid crystal device to adjust the polarization state of one or two beams.
  • this design can convert about 70% of the light of the projector into polarized light, thereby improving the light utilization efficiency of the stereoscopic projection device to increase the brightness of the projected image, and having the characteristics of small structure and small projection ratio.
  • the projector is around 1:1.
  • the conventional polarizing beam splitting prism as shown in FIG. 1 is glued together using two 45-degree prisms, and has one polarization plane. After the light is incident, it is divided into a transmissive P-state polarized light 101 and a reflected S-state polarized light. 102.
  • the polarizing beam splitting prism is redesigned according to the existing deficiency of the conventional polarizing beam splitting prism.
  • the polarizing beam splitting prism group used in the present invention is formed by laminating three 45 degree prisms after being coated. It has a rectangular parallelepiped shape, has one incident surface, three exit surfaces, and has two polarization planes inside.
  • the two polarization planes are perpendicular to each other, and are 45 degrees with the incident surface.
  • the two polarization planes are at the center of the incident surface. Lines intersect. After the light is incident, it is divided into transmissive P-state polarized light 201 and reflected S-state polarized light 202 and 203.
  • the low-projection high-efficiency stereoscopic projection apparatus of the present invention comprises: a polarization beam splitting component 302, optical path direction adjusting components 305 and 306, polarization state converting components 303 and 304, a beam size adjusting component 307, and a light modulator 309. .
  • the polarization beam splitting component 302 is configured to divide an incident light beam emitted from a lens of the projector 301 into a transmitted light beam 201, a first reflected light beam 202, and a second reflected light beam 203.
  • the transmitted light beam has a polarization state of P state, and two reflected light beams.
  • the polarization state is the S state, and the transmitted beam and the reflected beam are collectively referred to as polarized light.
  • the polarization beam splitting component 302 splits the projection beam from the projector 301 into a transmitted beam 201, a first reflected beam 202, and a second reflected beam 203.
  • the polarization direction of the transmitted beam 201 is opposite to the first reflected beam 202,
  • the polarization directions of the second reflected light beams 203 are orthogonal.
  • the polarization state conversion components 303 and 304 adjust a polarization state of the transmitted light beam or a polarization state of the first reflected light beam and the second reflected light beam, and the adjusted transmitted light beam, the first reflected light beam, and the second reflected light beam have an adjustment The same polarization state.
  • the optical path direction adjusting components 305 and 306 adjust a propagation direction of the transmitted light beam or a propagation direction of the first reflected light beam and the second reflected light beam, and the transmitted light beam, the first reflected light beam, and the second reflected light beam have the same after adjustment Direction of communication.
  • the beam size adjustment component 307 adjusts a size range of the transmitted beam or a size range of the first reflected beam and the second reflected beam, and the projected image size of the transmitted beam, the first reflected beam, and the second reflected beam are adjusted Consistent.
  • the light modulator 309 modulates the adjusted transmitted light beam, the first reflected light beam, and the second reflected light beam into left-handed circularly polarized light and right-handed circularly polarized light in a frame order.
  • the polarization conversion components 303 and 304 are placed in the first reflected beam 202 and the second reflected beam 203, respectively, placed adjacent to the opposite exit faces of the polarization beam splitting assembly 302, as shown in FIG.
  • the polarization conversion components 303 and 304 are at least one twisted liquid crystal device, and the twisted liquid crystal device is generally a 90 degree twisted TN type liquid crystal device, and the light polarization direction of the twisted liquid crystal device and the twisted liquid crystal device liquid crystal When the alignment direction of the layer molecules is parallel or perpendicular, the polarization state of the light after passing through the twisted liquid crystal device will be rotated by 90 degrees. Increasing the amount of retardation of the twisted liquid crystal device contributes to a better polarization state.
  • the optical path direction adjusting components 305 and 306 may be two mirrors respectively disposed on two sides of the reflecting surface of the polarization beam splitting component 302 for re-reflecting the reflected light beam to make the propagation direction thereof
  • the transmitted beams propagate in the same direction, and the images formed by the transmitted beam, the first reflected beam and the second reflected beam on the metal screen are coincident by adjusting the angle.
  • the polarization beam splitting assembly 302 is a polarization beam splitting prism group.
  • the light modulator 309 is a liquid crystal light valve type light modulator.
  • the low-projection high-efficiency stereoscopic projection device may further include a linear polarizer 308 located in front of the light modulator 309 to filter the transmitted light beam and the first reflection.
  • the polarization states of the beam and the second reflected beam are identical, making it a more ideally polarized light.
  • the polarization state conversion components 303 and 304 are at least one twist type liquid crystal device.
  • the twisted liquid crystal device is placed in the optical path where the first reflected light beam and the second reflected light beam are located, and is located before the optical path direction adjusting component or after the optical path direction adjusting component, or after being placed in the beam size adjusting component Any position between the front of the light modulator.
  • the polarization state of the transmitted beam is adjusted to be consistent with the polarization state of the reflected beam.
  • a third embodiment as shown in FIG. 5, there are two twisted liquid crystal devices, and the twisted liquid crystal device is disposed in a reflected light beam between the two mirrors and the linear polarizer 308, respectively.
  • the polarization state of the reflected beam is adjusted to coincide with the polarization state of the transmitted beam.
  • the twisted liquid crystal device may be a conventional glass substrate-based liquid crystal device composed of a glass substrate, a transparent conductive layer, an alignment layer, a spacer, an edge sealing material, a liquid crystal material, or the like. It may also be a liquid crystal device based on a flexible plastic substrate, which is composed of a plastic substrate, a transparent conductive layer, an alignment layer, a spacer, an edge sealing material, a liquid crystal material, and the like. It may also be a polymer liquid crystal film based on a polymer technology, such as a TwistarTM film from DEJIMA. A liquid crystal device having a twisted structure should be considered to be within the scope of the present invention.
  • the beam size adjustment component 307 is at least one lens or lens group placed at any of the optical paths where the transmitted beam, the first reflected beam, and the second reflected beam are located.
  • the function of the lens or lens group is to enlarge or reduce the beam of the light path to be identical to the image size of the other beam on the metal curtain 310.
  • the lens or lens group is placed in a variety of positions. Specifically, the lens or lens group is placed behind the polarizing beam splitting prism group, that is, between the polarizing beam splitting prism group and the linear polarizer 308, for expanding the transmitted light beam to be imaged on the metal screen 310.
  • the image size of the reflected beam on the metal curtain 310 is uniform.
  • the lens or lens group is respectively placed behind the two mirrors for narrowing down the reflected beam so that the image size on the metal screen is consistent with the image size of the transmitted beam on the metal screen.
  • the lens or lens group can also be placed between the light modulator 309 and the metal curtain 310.
  • a lens or lens group is typically placed between the polarization beam splitting assembly 302 and the linear polarizer 308.
  • the light modulator is replaced with a quarter-wave retardation film; the quarter-wave retardation film is placed after the linear polarizer, after passing through the linear polarizer The polarized light is converted into left-handed circularly polarized light having an angle of 45 degrees and right-handed circularly polarized light having an angle of 135 degrees.
  • the linear polarizer 308 acts as a separate component for both the transmitted and reflected beams to pass through the linear polarizer 308.
  • three smaller sized linear polarization devices may be used instead of one integral linear polarization device 308 placed in the first reflected beam, the second reflected beam, and the transmitted beam, respectively.
  • the light modulator 309 is a separate component in the above embodiments.
  • three small-sized liquid crystal light valve type light modulators may be used instead, and respectively placed on the first reflected beam. The second reflected beam and the transmitted beam.
  • the present invention also provides a low projection ratio high-efficiency stereoscopic projection system, including a projector 301, a metal curtain 310, and any low projection ratio high-efficiency stereoscopic projection as described above.
  • the projector 301 sequentially plays the left eye image and the right eye image in a frame order;
  • the metal curtain 310 may be a metal screen for imaging the reflected beam and the transmitted beam while irradiating the metal curtain 310.
  • the light is reflected in the opposite circular polarization state, so that the light remains separated from the left and right eye images before entering the circularly polarized glasses worn by the viewer, and crosstalk of the left and right images is not generated.
  • the viewer wears circularly polarized glasses to view the stereoscopic image in front of the metal curtain.
  • the left and right spectacle lenses of the circularly polarized glasses are respectively a left-handed circular polarizing plate and a right-handed circular polarizing plate, which can separate the light reflected by the metal curtain, so as to enter
  • the images of the left and right eyes are different, so as to achieve the purpose of separating the left and right eye images.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Projection Apparatus (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

一种低投射比高光效立体投影装置,包括:偏振分光组件(302),将投射光束分为透射光束(201)、第一反射光束(202)和第二反射光束(203);偏振态转换组件(303,304),调整透射光束的偏振态或第一反射光束、第二反射光束的偏振态;光路方向调整组件(305,306),调整透射光束的传播方向或第一反射光束、第二反射光束的传播方向;光束大小调整组件(307),调整透射光束、第一反射光束和第二反射光束的大小范围;光调制器(309),将调整后的透射光束、第一反射光束、第二反射光束按照帧顺序调制为左旋圆偏振光和右旋圆偏振光。低投射比高光效立体投影装置能有效减少反射光束与透射光束的光程差,从而使整个装置体积大大缩小,各光束重合变得更加简单。

Description

一种低投射比高光效立体投影装置及立体投影*** 技术领域
本发明属于立体投影技术领域,尤其涉及一种低投射比高光效立体投影装置及立体投影***。
背景技术
专利号为201220746320.8,专利名称为《高光效光调制装置及高光效立体投影***》的发明专利公布的技术中,需要使用较大尺寸的分偏振器件,将入射光线分为透射光线和反射光线两束,再对光线的偏振状态进行调整,使两束光线在金属幕上重合。采用该技术光路尺寸会较大,所需光学器件也较大,在使用低投射比投影机的情况下,各器件尺寸将变得很大,两束光线的重合也变得非常困难。同时在器件加工与组装时存在诸多困难,大批量量产也存在较大困难。
因此,现有技术存在缺陷,需要改进。
技术问题
本发明所要解决的技术问题在于提供一种低投射比高光效立体投影装置及立体投影***,旨在解决现有的投影装置体积大的问题。
技术解决方案
本发明是这样实现的,一种低投射比高光效立体投影装置,包括:
偏振分光组件,将来自投影机的投射光束分束为透射光束、第一反射光束、第二反射光束;所述透射光束的偏振方向与所述第一反射光束、第二反射光束的偏振方向正交;
偏振态转换组件,调整所述透射光束的偏振态或所述第一反射光束、第二反射光束的偏振态,调整后所述透射光束、第一反射光束、第二反射光束具有相同的偏振态;
光路方向调整组件,调整所述透射光束的传播方向或所述第一反射光束、第二反射光束的传播方向,调整后所述透射光束、第一反射光束、第二反射光束具有相同的传播方向;
光束大小调整组件,调整所述透射光束的大小范围或所述第一反射光束、第二反射光束的大小范围,调整后所述透射光束、第一反射光束、第二反射光束的所投影图像大小一致;
光调制器,将被调整后的透射光束、第一反射光束、第二反射光束按照帧顺序调制为左旋圆偏振光和右旋圆偏振光。
进一步地,所述偏振分光组件为偏振分光棱镜组;所述偏振分光棱镜组由三个45度棱镜镀膜、贴合形成,呈长方体,具有一个入射面,三个出射面,内部有两个分偏振面,所述两个分偏振面相互垂直,分别与所述入射面呈45度,所述两个分偏振面相交于入射面的中心线。
进一步地,所述偏振态转换组件为至少一扭曲型液晶器件;所述扭曲型液晶器件放置于第一反射光束、第二反射光束所在的光路中且位于所述光路方向调整组件前或所述光路方向调整组件后,或放置于所述光束大小调整组件后与光调制器前之间的任一位置。
进一步地,所述扭曲型液晶器件为基于玻璃基板的液晶器件、基于柔性塑料基板的液晶器件或基于聚合物技术的高分子液晶膜。
进一步地,所述光路方向调整组件为两反射镜;所述两反射镜置于所述第一反射光束和第二反射光束的光路中。
进一步地,所述光束大小调整组件为至少一透镜或透镜组,所述透镜或透镜组置于所述透射光束、第一反射光束和第二反射光束所在光路中的任一位置。
进一步地,所述光调制器为液晶光阀型光调制器。
进一步地,所述低投射比高光效立体投影装置还包括线偏振器,所述线偏振器位于所述光调制器前,通过过滤使透射光束、第一反射光束和第二反射光束的偏振状态一致。
进一步地,所述光调制器替换为四分之一波长延迟膜,将所述透射光束、第一反射光束和第二反射光束转化为角度为45度的左旋圆偏振光和角度为135度的右旋圆偏振光。
本发明还提供一种低投射比高光效立体投影***,包括一投影机、金属幕和任一如上所述的低投射比高光效立体投影装置;所述投影机以帧顺序依次播放左眼图像和右眼图像;所述金属幕用于对反射光束和透射光束进行成像,且成对光线以相反的圆偏振状态进行反射。
有益效果
本发明所述的低投射比高光效立体投影装置采用了偏振分光组件将入射光束分为三部分,分别经过两个偏振分光面,有效减少反射光束与透射光束的光程差,从而使整个装置体积大大缩小,各光束重合变得更加简单。同时,采用扭曲型液晶器件作为偏振光偏振方向的旋转器件,具有色散小,偏振光旋转效率高等优点。
附图说明
图1是现有技术普通偏振分光棱镜的外形及其光路示意图;
图2是本发明实施例提供的偏振分光棱镜组及其光路示意图;
图3是本发明提供的第一种低投射比高光效立体投影装置光学结构图,扭曲型液晶器件位于两个反射光路内,且位于偏振分光器件与反射镜之间;
图4是本发明提供的第二种低投射比高光效立体投影装置光学结构图,扭曲型液晶器件位于透射光路内;
图5是本发明提供的第三种低投射比高光效立体投影装置光学结构图,扭曲型液晶器件位于两个反射光路内,且位于反射镜和线偏振器之间。
本发明的实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明所述的低投射比高光效立体投影装置使用偏振分光棱镜组将入射光束分为偏振状态不同的三束光线,再使用扭曲型液晶器件将其中一束或两束光线的偏振状态进行调整,使三束光线的偏振状态一致,并使用两个反射镜或反射镜组将偏振分光器的两束反射光束调整至与原入射光束方向一致的光束,从而在金属幕上将三束光线重合在一起,采用此设计可以将投影机光线约70%左右的光线转换为偏振光线,从而提高立体投影装置的光利用率来增加投影画面的亮度,同时具有结构小巧,投射比小等特点,适用于1:1左右的投影机。
现有的普通偏振分光棱镜如图1所示,使用两个45度棱镜胶合在一起,具有1个分偏振面,光线入射后被分为透射的P态偏振光101和反射的S态偏振光102。根据现有的普通偏振分光棱镜存在的不足对偏振分光棱镜进行了重新设计,如图2所示为本发明所采用的偏振分光棱镜组,由三个45度棱镜经过镀膜后贴合而成,呈长方体,具有一个入射面,三个出射面,内部具有两个分偏振面,所述两个分偏振面相互垂直,均与入射面成45度,所述两个分偏振面在入射面中心线处相交。光线入射后,被分为透射的P态偏振光201,反射的S态偏振光202和203。
如图3所示,本发明的低投射比高光效立体投影装置,包括:偏振分光组件302、光路方向调整组件305和306、偏振态转换组件303和304、光束大小调整组件307和光调制器309。所述偏振分光组件302用于将从投影机301的镜头发出的入射光束分为透射光束201、第一反射光束202和第二反射光束203,透射光束偏振态为P态,两个反射光束的偏振状态为S态,透射光束和反射光束统称为偏振光。所述偏振分光组件302将来自投影机301的投射光束分束为透射光束201、第一反射光束202、第二反射光束203,所述透射光束201的偏振方向与所述第一反射光束202、第二反射光束203的偏振方向正交。所述偏振态转换组件303和304调整所述透射光束的偏振态或所述第一反射光束、第二反射光束的偏振态,调整后所述透射光束、第一反射光束、第二反射光束具有相同的偏振态。光路方向调整组件305和306调整所述透射光束的传播方向或所述第一反射光束、第二反射光束的传播方向,调整后所述透射光束、第一反射光束、第二反射光束具有相同的传播方向。光束大小调整组件307调整所述透射光束的大小范围或所述第一反射光束、第二反射光束的大小范围,调整后所述透射光束、第一反射光束、第二反射光束的所投影图像大小一致。光调制器309将被调整后的透射光束、第一反射光束、第二反射光束按照帧顺序调制为左旋圆偏振光和右旋圆偏振光。第一种实施例,把偏振态转换组件303和304分别放置在第一反射光束202和第二反射光束203中,即放置于偏振分光组件302的两相对的出射面旁边,如图3所示,用于将反射光束的偏振状态旋转90度,使之与透射光束光线的偏振状态相同。所述偏振态转换组件303和304为至少一扭曲型液晶器件,所述扭曲型液晶器件通常为90度扭曲的TN型液晶器件,入射到扭曲型液晶器件的光线偏振方向与扭曲型液晶器件液晶层表层分子的排列方向平行或垂直时,经过扭曲型液晶器件后的光线偏振状态将会被旋转90度。提高扭曲型液晶器件的延迟量,有助于得到更好的偏振态。
与上述实施例相结合,所述光路方向调整组件305和306可以为两反射镜,分别置于所述偏振分光组件302反射面的两边,用于将反射光束进行再次反射,使其传播方向与所述透射光束传播方向一致,且通过调整角度使透射光束、第一反射光束和第二反射光束在金属幕上所成的图像重合。所述偏振分光组件302为偏振分光棱镜组。优选的,所述光调制器309为液晶光阀型光调制器。
与上述各实施例相结合,所述低投射比高光效立体投影装置还可以包括线偏振器308,所述线偏振器308位于所述光调制器309前,通过过滤使透射光束、第一反射光束和第二反射光束的偏振状态一致,使之变为更理想的偏振光。
与上述各实施例相结合,所述偏振态转换组件303和304为至少一扭曲型液晶器件。所述扭曲型液晶器件放置于第一反射光束、第二反射光束所在的光路中且位于所述光路方向调整组件前或所述光路方向调整组件后,或放置于所述光束大小调整组件后与光调制器前之间的任一位置。
第二种实施例,如图4所示,所述扭曲型液晶器件放置于所述偏振分光棱镜组后,将透射光束的偏振态调整至与所述反射光束的偏振态一致。
第三种实施例,如图5所示,所述扭曲型液晶器件为两个,所述扭曲型液晶器件置于反射光束中,分别位于所述两反射镜和线偏振器308之间,将反射光束的偏振态调整至与所述透射光束的偏振态一致。
与上述各个实施例相结合,所述扭曲型液晶器件可以是传统的基于玻璃基板的液晶器件,由玻璃基板、透明导电层、取向层、间隔物、封边材料、液晶材料等组成。也可以是基于柔性塑料基板的液晶器件,由塑料基板、透明导电层、取向层、间隔物、封边材料、液晶材料等组成。还可以是基于聚合物技术的高分子液晶膜,例如DEJIMA公司的TwistarTM膜。应当认为具有扭曲结构的液晶器件均属于本发明所描述的范围。
所述光束大小调整组件307为至少一透镜或透镜组,所述透镜或透镜组置于所述透射光束、第一反射光束和第二反射光束所在光路中的任一位置。透镜或透镜组的功能是将所在光路的光束进行扩大或者缩小,使之与另外光束在金属幕310上所成的图像大小一致,所述透镜或透镜组放置的位置有多种。具体地,所述透镜或透镜组放置于所述偏振分光棱镜组后,即位于偏振分光棱镜组和线偏振器308之间,用于扩大透射光束,使之在金属幕310上的成像大小与反射光束在金属幕310上的成像大小一致。所述透镜或透镜组分别放置于所述两反射镜后,用于缩小反射光束,使之在金属幕上的成像大小与透射光束在金属幕上的成像大小一致。所述透镜或透镜组还可以放置在光调制器309与金属幕310之间。但为了避免透镜表面的反射对偏振态的影响,透镜或透镜组通常放置在偏振分光组件302和线偏振器308之间。
与上述各实施例相结合,所述光调制器替换为四分之一波长延迟膜;所述四分之一波长延迟膜置于所述线偏振器后,将经过所述线偏振器后的偏振光转化为角度为45度的左旋圆偏振光和角度为135度的右旋圆偏振光。
在上述的各实施例中,线偏振器308作为一个独立的部件使透射光束和反射光束均经过线偏振器308。在具体实施时,也可以使用三个较小尺寸的线偏振器件代替一个整体的线偏振器件308分别放置于第一反射光束、第二反射光束和透射光束中。同样的,光调制器309在上述的各实施例中是一个独立的部件,在具体实施时,也可以使用三个小尺寸的液晶光阀型光调制器代替,分别放置于第一反射光束、第二反射光束和透射光束中。
根据上述的低投射比高光效立体投影装置,本发明还提供一种低投射比高光效立体投影***,包括一投影机301、金属幕310和如上所述的任一低投射比高光效立体投影装置;所述投影机301以帧顺序依次播放左眼图像和右眼图像;所述金属幕310可以为金属幕,用于对反射光束和透射光束进行成像,同时将照射到金属幕310上的光线以相反的圆偏振状态进行反射,从而使光线在进入到观众佩戴的圆偏光眼镜之前仍保持左右眼图像的分离,不产生左右图像的串扰。观众戴着圆偏振眼镜在金属幕前方即可观看到立体影像,圆偏振眼镜的左右眼镜片分别为左旋圆偏振片和右旋圆偏振片,可以对金属幕反射的光线进行分离,使进入到左右眼的图像不同,从而达到左右眼图像分离的目的。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种低投射比高光效立体投影装置,其特征在于,包括:
    偏振分光组件,将来自投影机的投射光束分束为透射光束、第一反射光束、第二反射光束;所述透射光束的偏振方向与所述第一反射光束、第二反射光束的偏振方向正交;
    偏振态转换组件,调整所述透射光束的偏振态或所述第一反射光束、第二反射光束的偏振态,调整后所述透射光束、第一反射光束、第二反射光束具有相同的偏振态;
    光路方向调整组件,调整所述透射光束的传播方向或所述第一反射光束、第二反射光束的传播方向,调整后所述透射光束、第一反射光束、第二反射光束具有相同的传播方向;
    光束大小调整组件,调整所述透射光束的大小范围或所述第一反射光束、第二反射光束的大小范围,调整后所述透射光束、第一反射光束、第二反射光束的所投影图像大小一致;
    光调制器,将被调整后的透射光束、第一反射光束、第二反射光束按照帧顺序调制为左旋圆偏振光和右旋圆偏振光。
  2. 根据权利要求1所述的低投射比高光效立体投影装置,其特征在于,所述偏振分光组件为偏振分光棱镜组;所述偏振分光棱镜组由三个45度棱镜镀膜、贴合形成,呈长方体,具有一个入射面,三个出射面,内部有两个分偏振面,所述两个分偏振面相互垂直,分别与所述入射面呈45度,所述两个分偏振面相交于入射面的中心线。
  3. 根据权利要求1所述的低投射比高光效立体投影装置,其特征在于,所述偏振态转换组件为至少一扭曲型液晶器件;所述扭曲型液晶器件放置于第一反射光束、第二反射光束所在的光路中且位于所述光路方向调整组件前或所述光路方向调整组件后,或放置于所述光束大小调整组件后与光调制器前之间的任一位置。
  4. 根据权利要求3所述的低投射比高光效立体投影装置,其特征在于,所述扭曲型液晶器件为基于玻璃基板的液晶器件、基于柔性塑料基板的液晶器件或基于聚合物技术的高分子液晶膜。
  5. 根据权利要求1所述的低投射比高光效立体投影装置,其特征在于,所述光路方向调整组件为两反射镜;所述两反射镜置于所述第一反射光束和第二反射光束的光路中。
  6. 根据权利要求1所述的低投射比高光效立体投影装置,其特征在于,所述光束大小调整组件为至少一透镜或透镜组,所述透镜或透镜组置于所述透射光束、第一反射光束和第二反射光束所在光路中的任一位置。
  7. 根据权利要求1所述的低投射比高光效立体投影装置,其特征在于,所述光调制器为液晶光阀型光调制器。
  8. 根据权利要求1所述的低投射比高光效立体投影装置,其特征在于,所述低投射比高光效立体投影装置还包括线偏振器,所述线偏振器位于所述光调制器前,通过过滤使透射光束、第一反射光束和第二反射光束的偏振状态一致。
  9. 根据权利要求1至8任一所述的低投射比高光效立体投影装置,其特征在于,所述光调制器替换为四分之一波长延迟膜,将所述透射光束、第一反射光束和第二反射光束转化为角度为45度的左旋圆偏振光和角度为135度的右旋圆偏振光。
  10. 一种低投射比高光效立体投影***,其特征在于,包括一投影机、金属幕和权利要求1至9任一所述的低投射比高光效立体投影装置;所述投影机以帧顺序依次播放左眼图像和右眼图像;所述金属幕用于对反射光束和透射光束进行成像,且成对光线以相反的圆偏振状态进行反射。
PCT/CN2014/070688 2013-09-05 2014-01-15 一种低投射比高光效立体投影装置及立体投影*** WO2015032173A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EA201500108A EA030953B1 (ru) 2013-09-05 2014-01-15 Стереопроекционное устройство и стереопроекционная система с низким проекционным отношением и высокой светоотдачей
AU2014271272A AU2014271272B2 (en) 2013-09-05 2014-01-15 Stereo projection apparatus and stereo projection system with low throw ratio and high light efficiency
EP14796386.2A EP2869116A4 (en) 2013-09-05 2014-01-15 STEREOGRAPHIC PROJECTION DEVICE HAVING LOW PROJECTION RATIO AND HIGH LUMINOUS EFFECT AND STEREOGRAPHIC PROJECTION SYSTEM
CA2885281A CA2885281C (en) 2013-09-05 2014-01-15 Stereo projection apparatus and stereo projection system with low throw ratio and high light efficiency
US14/580,769 US9638926B2 (en) 2013-09-05 2014-12-23 Stereo projection apparatus and stereo projection system with low throw ratio and high light efficiency

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201320549548.2U CN203405635U (zh) 2013-09-05 2013-09-05 一种低投射比高光效立体投影装置及立体投影***
CN201320549548.2 2013-09-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/580,769 Continuation US9638926B2 (en) 2013-09-05 2014-12-23 Stereo projection apparatus and stereo projection system with low throw ratio and high light efficiency

Publications (1)

Publication Number Publication Date
WO2015032173A1 true WO2015032173A1 (zh) 2015-03-12

Family

ID=49941565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/070688 WO2015032173A1 (zh) 2013-09-05 2014-01-15 一种低投射比高光效立体投影装置及立体投影***

Country Status (7)

Country Link
US (1) US9638926B2 (zh)
EP (1) EP2869116A4 (zh)
CN (1) CN203405635U (zh)
AU (1) AU2014271272B2 (zh)
CA (1) CA2885281C (zh)
EA (1) EA030953B1 (zh)
WO (1) WO2015032173A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017509002A (ja) * 2013-04-02 2017-03-30 マスターイメージ 3ディー アジア リミテッド ライアビリティ カンパニー 向上した明るさを有する立体映像装置及び立体映像提供方法

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008042798A2 (en) 2006-09-29 2008-04-10 Colorlink, Inc. Polarization conversion systems for stereoscopic projection
AU2008251353B2 (en) 2007-05-09 2014-05-22 Reald Inc. Polarization conversion system and method for stereoscopic projection
US9494805B2 (en) * 2013-03-26 2016-11-15 Lightspeed Design, Inc. Stereoscopic light recycling device
KR101574285B1 (ko) 2013-12-16 2015-12-03 유한회사 마스터이미지쓰리디아시아 향상된 밝기를 갖는 입체 영상 장치 및 입체 영상 제공방법
CN103792781B (zh) * 2014-02-21 2017-01-25 深圳未来立体科技有限公司 用于立体投影的光学***及进行立体投影的方法
EP3115828A4 (en) * 2014-03-04 2017-03-15 Masterimage 3D Asia, Llc Modulator for stereoscopic image device and stereoscopic image device using same
CN104954775A (zh) * 2014-03-28 2015-09-30 深圳市亿思达科技集团有限公司 一种三光路偏振分光立体视频转换***
US9395549B2 (en) * 2014-12-16 2016-07-19 Volfoni R&D EURL Stereoscopic three dimensional imaging system
CN105842965B (zh) * 2015-01-12 2018-06-19 信泰光学(深圳)有限公司 光学机构
KR101702024B1 (ko) * 2015-04-06 2017-02-02 유한회사 마스터이미지쓰리디아시아 원격정렬형 입체영상장치 및 이를 이용한 입체영상상영방법
CN104880906A (zh) * 2015-06-23 2015-09-02 深圳市时代华影科技股份有限公司 一种可进行图像自动校正的高光效3d***
US9594255B2 (en) * 2015-06-25 2017-03-14 Volfoni R&D EURL Stereoscopic 3D projection system with improved level of optical light efficiency
CN105404012A (zh) * 2015-12-25 2016-03-16 刘飞 一种双机高光效立体投影***
CN205787403U9 (zh) * 2016-05-18 2017-04-26 颜栋卿 一种可提高光利用率的立体投影装置
CN106990667B (zh) * 2017-05-25 2022-08-09 青岛睿沃丰视觉科技有限公司 立体投影成像装置及***
CN107357127B (zh) * 2017-08-17 2021-11-16 深圳市乐视环球科技有限公司 一种自动调整的立体投影装备及校正方法
CN107422520A (zh) * 2017-08-25 2017-12-01 亚世光电(鞍山)有限公司 一种高光效快速响应3d投影屏及方法
CN107920238A (zh) * 2017-11-03 2018-04-17 北京铂石空间科技有限公司 图像校正装置、图像校正方法及投影设备
CN107976820A (zh) * 2017-11-22 2018-05-01 深圳市时代华影科技股份有限公司 立体投影光的偏振调制装置、方法及立体影像放映***
CN107894688A (zh) * 2017-12-15 2018-04-10 深圳市时代华影科技股份有限公司 可消除散斑的激光投影装置与***
CN108051977A (zh) * 2018-01-17 2018-05-18 深圳市时代华影科技股份有限公司 立体投影成像装置及立体影像放映***
CN108427209A (zh) * 2018-04-18 2018-08-21 深圳市时代华影科技股份有限公司 立体投影光的偏振调制装置、方法及立体影像放映***
CN113711122A (zh) 2019-03-08 2021-11-26 瑞尔D股份有限公司 具有衍射元件的偏振分束器组件
CN111505895A (zh) * 2020-05-14 2020-08-07 中影光峰激光影院技术(北京)有限公司 立体放映***
CN111629191A (zh) * 2020-06-05 2020-09-04 中影巴可(北京)电子有限公司 3d设备投影画面的对齐方法
CN111669565A (zh) * 2020-06-17 2020-09-15 中国科学技术大学 一种立体成像装置及其成像方法
CN111708179B (zh) * 2020-07-16 2022-04-01 宁波维真显示科技股份有限公司 3d显示模组
CN112327504A (zh) * 2020-11-16 2021-02-05 武汉华星光电技术有限公司 3d激光投影电视和激光电视***

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007328067A (ja) * 2006-06-07 2007-12-20 Dainippon Printing Co Ltd ステレオアダプタ
CN101359100A (zh) * 2007-08-03 2009-02-04 鸿富锦精密工业(深圳)有限公司 偏振光转换器及具有该偏振光转换器的投影***
CN201203713Y (zh) * 2008-05-06 2009-03-04 红蝶科技(深圳)有限公司 一种单片式液晶投影***
CN101398536A (zh) * 2007-09-24 2009-04-01 鸿富锦精密工业(深圳)有限公司 立体投影光学***
CN203025425U (zh) * 2012-12-29 2013-06-26 深圳市时代华影科技开发有限公司 高光效光调制装置及高光效立体投影***

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05241103A (ja) * 1992-02-21 1993-09-21 Nec Corp 投射型液晶表示装置
US7714945B2 (en) * 2005-09-09 2010-05-11 Jds Uniphase Corporation Optimally clocked trim retarders
JP4301327B2 (ja) * 2006-08-24 2009-07-22 セイコーエプソン株式会社 光学装置を備えるプロジェクタ
US7857455B2 (en) * 2006-10-18 2010-12-28 Reald Inc. Combining P and S rays for bright stereoscopic projection
US8820937B2 (en) * 2010-08-17 2014-09-02 Lc-Tec Displays Ab Optical polarization state modulator assembly for use in stereoscopic three-dimensional image projection system
KR101574285B1 (ko) * 2013-12-16 2015-12-03 유한회사 마스터이미지쓰리디아시아 향상된 밝기를 갖는 입체 영상 장치 및 입체 영상 제공방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007328067A (ja) * 2006-06-07 2007-12-20 Dainippon Printing Co Ltd ステレオアダプタ
CN101359100A (zh) * 2007-08-03 2009-02-04 鸿富锦精密工业(深圳)有限公司 偏振光转换器及具有该偏振光转换器的投影***
CN101398536A (zh) * 2007-09-24 2009-04-01 鸿富锦精密工业(深圳)有限公司 立体投影光学***
CN201203713Y (zh) * 2008-05-06 2009-03-04 红蝶科技(深圳)有限公司 一种单片式液晶投影***
CN203025425U (zh) * 2012-12-29 2013-06-26 深圳市时代华影科技开发有限公司 高光效光调制装置及高光效立体投影***

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2869116A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017509002A (ja) * 2013-04-02 2017-03-30 マスターイメージ 3ディー アジア リミテッド ライアビリティ カンパニー 向上した明るさを有する立体映像装置及び立体映像提供方法

Also Published As

Publication number Publication date
CA2885281A1 (en) 2015-03-12
US9638926B2 (en) 2017-05-02
EP2869116A4 (en) 2016-01-20
CN203405635U (zh) 2014-01-22
US20150109539A1 (en) 2015-04-23
AU2014271272B2 (en) 2019-02-14
EP2869116A1 (en) 2015-05-06
CA2885281C (en) 2018-08-21
AU2014271272A1 (en) 2015-03-19
EA201500108A1 (ru) 2016-06-30
EA030953B1 (ru) 2018-10-31

Similar Documents

Publication Publication Date Title
WO2015032173A1 (zh) 一种低投射比高光效立体投影装置及立体投影***
WO2019154430A1 (zh) 穿戴式ar***、ar显示设备及其投射源模组
US8328362B2 (en) Waveplate compensation in projection polarization conversion system
WO2017198239A2 (zh) 一种可提高光利用率的三维投影光调制装置
CA2772783C (en) Method and system for three-dimensional (3d) projection
JP2020510859A (ja) 統合された偏光器を有するディスプレイデバイスのための方法およびシステム
CN100507706C (zh) Lcd立体投影机偏振管理***
KR101574285B1 (ko) 향상된 밝기를 갖는 입체 영상 장치 및 입체 영상 제공방법
TWI524128B (zh) 投影系統
TW201349840A (zh) 立體投影光源系統
TWM576260U (zh) 頭戴顯示器及其光學裝置
WO2013102318A1 (zh) 一种单投影机式立体投影***、投影机及驱动方法
CN103792781B (zh) 用于立体投影的光学***及进行立体投影的方法
WO2019201020A1 (zh) 立体投影光的偏振调制装置、方法及立体影像放映***
CN212460210U (zh) 一种带有折射装置的双光路立体投影***
TWI769448B (zh) 投射立體影像之投影裝置
CN112213866A (zh) 一种三光路高光效立体投影装置
CN215895139U (zh) 偏振分光装置及3d投影光调制***
CN102692809A (zh) 一种3d显示***
CN214751296U (zh) 单波片三光路立体投影光学组件
CN209117903U (zh) 大角度偏振分光棱镜及无偏色3d投影光调制***
KR920011064B1 (ko) 입체영상 투영장치 및 그에 사용되는 입체영상 인식장치
CN113687572A (zh) 一种三光路高光效立体投影装置
KR101685657B1 (ko) 향상된 밝기를 갖는 입체 영상 장치 및 입체 영상 제공방법
WO2019102363A1 (ko) 복수의 편광 변환기를 이용한 영상 변환

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2014796386

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014271272

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2885281

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 201500108

Country of ref document: EA

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14796386

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE