WO2015027381A1 - 无线链路故障的处理方法、用户设备和基站 - Google Patents

无线链路故障的处理方法、用户设备和基站 Download PDF

Info

Publication number
WO2015027381A1
WO2015027381A1 PCT/CN2013/082298 CN2013082298W WO2015027381A1 WO 2015027381 A1 WO2015027381 A1 WO 2015027381A1 CN 2013082298 W CN2013082298 W CN 2013082298W WO 2015027381 A1 WO2015027381 A1 WO 2015027381A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio link
rlf
link
base station
radio
Prior art date
Application number
PCT/CN2013/082298
Other languages
English (en)
French (fr)
Inventor
乌力吉
蔺波
张涛
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201380002700.8A priority Critical patent/CN104641683B/zh
Priority to PCT/CN2013/082298 priority patent/WO2015027381A1/zh
Publication of WO2015027381A1 publication Critical patent/WO2015027381A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a method for processing a wireless link failure, and to a user equipment and a base station.
  • Carrier aggregation is the aggregation of multiple smaller bandwidth carriers into a larger bandwidth carrier to support high speed data rates.
  • UE User Equipment, user equipment
  • CA Carrier aggregation
  • the maintenance of the RRC connection refers to establishing a bearer for transmitting an RRC control message between the UE and the base station.
  • two base stations provide services for the UE at the same time. That is, a radio link is established between the UE and the two base stations, and each radio link has a radio bearer.
  • the two base stations are linked to each other, for example via a backhaul (backhaul) link.
  • backhaul backhaul
  • the inventor of the present application found in a long-term research and development that when the UE is served by two base stations, the UE performs RLM (radio only) on the radio link (represented by the radio link 1) with the base station operating on the main frequency band.
  • Link monitor if the radio link 1 detects RLF (radio link) Failure, radio link failure), the UE will initiate the RRC connection re-establishment process.
  • the radio link represented by the radio link 2 with the base station operating on the sub-band may remain normal, and the radio bearer on the radio link 1 can be completely switched to the radio.
  • Link 2 without having to initiate the RRC connection re-establishment process, therefore, if the UE still initiates the RRC connection re-establishment process at this time, it is obviously a waste of radio resources, resulting in degradation of network performance.
  • the technical problem to be solved by the present invention is to provide a method for processing a radio link failure, a user equipment, and a base station, which can reduce an unnecessary RRC connection reestablishment process when RLF occurs.
  • a first aspect of the present invention provides a method for processing a radio link failure.
  • the processing method includes: the UE simultaneously establishing a first radio link with the first base station and establishing a second radio link with the second base station; Whether the RLF occurs on a radio link and whether the RLF occurs on the second radio link; if the RLF occurs on the first radio link and the RLF does not occur on the second radio link, the UE abandons the RRC triggered by the RLF occurring on the first radio link. Connect the rebuild process.
  • the UE aborts the triggering due to the RLF occurring on the first radio link.
  • the step of the RRC connection re-establishment process specifically includes: if the RLF occurs on the first radio link and the RLF does not occur on the second radio link, the UE determines whether there is a radio bearer on the first radio link; if there is a radio on the first radio link Carrying, the UE confirms whether the radio bearer on the first radio link switches to the second radio link within the first predetermined time; if the radio bearer on the first radio link switches to the second radio chain within the first predetermined time The UE quits the RRC connection re-establishment procedure triggered by the RLF occurring on the first radio link.
  • the UE abandons the startup due to the first
  • the step of the RRC connection re-establishment procedure triggered by the RLF of the radio link further includes: if there is no radio bearer on the first radio link, the UE abandons the RRC connection re-establishment procedure triggered by the RLF occurring on the first radio link.
  • the UE aborts the startup due to the first
  • the step of the RRC connection re-establishment process triggered by the RLF of the radio link further includes: if the radio bearer on the first radio link does not switch to the second radio link within the first predetermined time, the UE starts due to the first radio chain The RRC connection re-establishment process triggered by the RLF.
  • the processing method further includes: if the RLF is not generated by the first radio link and the RLF is generated by the second radio link, Determining, by the UE, whether there is a radio bearer on the second radio link; if there is a radio bearer on the second radio link, the UE confirms whether the radio bearer on the second radio link is switched to the first radio link in the second predetermined time; If the radio bearer on the second radio link does not switch to the first radio link within the second predetermined time, the UE attempts to reconstruct the radio bearer on the second radio link on the first radio link.
  • the processing method further includes: if the first wireless link occurs RLF and the second wireless chain The RLF occurs on the path, and the UE initiates an RRC connection reestablishment procedure triggered by the RLF occurring on the first radio link.
  • the UE detects the first wireless
  • the step of whether the link occurs with the RLF and the second radio link whether the RLF occurs includes: the UE receiving the first configuration information generated by the first base station when establishing the first radio link and receiving the second radio link when establishing the second radio link, respectively The second configuration information generated by the first base station or the second base station; the UE detects whether the first radio link generates RLF according to the first configuration information, and detects whether the second radio link generates RLF according to the second configuration information.
  • the first configuration information includes a first configuration quantity, a first predetermined quantity, and a first configuration duration
  • the UE is configured according to the first
  • the step of detecting, by the configuration information, whether the first radio link has an RLF comprises: detecting, by the UE, whether the first configured number of out-of-synchronization indications are continuously received from the first wireless link; if the first configuration is continuously received from the first wireless link The number of out-of-synchronization indications, the UE starts the first timer; the UE detects whether the first predetermined number of synchronization indications are continuously received from the first wireless link before the timing duration of the first timer exceeds the first configuration duration; if not The first wireless link continuously receives the first predetermined number of synchronization indications, The UE determines that the first radio link has an RLF.
  • the step of the UE detecting, according to the first configuration information, whether the first radio link generates the RLF further includes: if A wireless link continuously receives a first predetermined number of synchronization indications, the UE determines that no RLF has occurred on the first wireless link, and turns off the first timer and clears the timing of the first timer.
  • the second configuration information includes a second configuration quantity, a second predetermined quantity, and a second configuration duration
  • the step of detecting, by the second configuration information, whether the second radio link generates the RLF comprises: detecting, by the UE, whether the second configured number of out-of-synchronization indications are continuously received from the second radio link; if the second configuration is continuously received from the second radio link The number of out-of-synchronization indications, the UE starts a second timer; the UE detects whether a second predetermined number of synchronization indications are continuously received from the second wireless link before the timing duration of the second timer exceeds the second configuration duration; if not The second wireless link continuously receives a second predetermined number of synchronization indications, and the UE determines that the second radio link has an RLF.
  • the step of the UE detecting, according to the second configuration information, whether the second radio link generates the RLF further includes: if The second wireless link continuously receives the second predetermined number of synchronization indications, the UE determines that the RLF does not occur on the second wireless link, and turns off the second timer and clears the timing of the second timer.
  • the step of the UE detecting, according to the first configuration information, whether the first radio link is RLF or not The step of detecting whether the RLF is generated by the second radio link is performed by the second configuration information. Specifically, when the UE detects that the first out-of-synchronization indication is received from the first radio link, the UE detects whether the second radio link is continuously received. The second configuration number of out of step indications.
  • the step of the UE detecting, according to the first configuration information, whether the first radio link is RLF or not is specifically: when the UE detects that the first configured number of out-of-synchronization indications are continuously received from the first radio link, the UE detects whether the second radio link is detected.
  • the second configuration number of out-of-step indications are continuously received.
  • the step of the UE detecting, according to the first configuration information, whether the first radio link is RLF or not The second configuration information is used to detect whether the RLF is generated on the second radio link. Specifically, when the UE determines that the RLF occurs on the first radio link, the UE detects whether the second configured number of out-of-synchronization indications are continuously received from the second radio link. .
  • the step of the UE detecting, according to the first configuration information, whether the first radio link is RLF and the UE according to the second The step of configuring information to detect whether the second radio link has an RLF is performed simultaneously.
  • the first timer and the second timer are the same timer, and the first configuration duration is equal to the first
  • the step of detecting, by the UE, whether the first radio link is RLF according to the first configuration information, and detecting whether the RLF is generated by the second radio link according to the second configuration information the method further includes: after the UE starts the first timer, the UE Detecting that when the first timer count duration exceeds the first configuration duration, the first predetermined number of synchronization indications are continuously received from the first wireless link or the second predetermined number of synchronization indications are continuously received from the second wireless link The UE turns off the first timer and clears the timing of the first timer.
  • the first predetermined number is equal to the second predetermined number.
  • the first timer and the second timer are the same timer, and the first configuration quantity is equal to the second Configuring the number, the detecting, by the UE, according to the first configuration information, whether the first radio link is RLF, and detecting whether the second radio link is RLF according to the second configuration information, further comprising: detecting, by the UE, from the first radio link or When the second wireless link continuously receives the first configured number of out-of-synchronization indications, the UE starts the first timer.
  • a second aspect of the present invention provides a user equipment, where the user equipment includes a link establishment module, a detection module, and an RRC module, where the link establishment module is configured to establish a first wireless link and a second with the first base station, respectively.
  • the base station establishes a second radio link
  • the detecting module is configured to detect whether the RLF occurs on the first radio link and the RLF occurs in the second radio link
  • the RRC module is configured to detect, by the detecting module, that the first radio link is RLF.
  • the RRC connection reestablishment procedure triggered by the RLF occurring on the first radio link is abandoned.
  • the user equipment further includes a determining module and a confirming module, where the determining module is configured to detect, by the detecting module, that the first wireless link generates RLF and the second When the RLF is not generated on the wireless link, determining whether there is a radio bearer on the first radio link; the confirming module is configured to confirm the radio bearer on the first radio link when the judging module determines that the radio bearer exists on the first radio link Whether to switch to the second wireless link within the first predetermined time; the RRC module is further configured to abandon the activation when the acknowledgment module confirms that the radio bearer on the first wireless link switches to the second wireless link within the first predetermined time The RRC connection re-establishment procedure triggered by the RLF occurring on the first radio link.
  • the RRC module is further configured to: when the determining module determines that the radio bearer does not exist on the first radio link, Initiating an RRC connection re-establishment procedure triggered by the RLF occurring on the first radio link.
  • the RRC module is further configured to: in the confirmation module, confirm that the radio bearer on the first radio link is not in the first predetermined When the time is switched to the second radio link, the RRC connection reestablishment procedure triggered by the RLF occurring on the first radio link is initiated.
  • the user equipment further includes a bearer setup module, where the judging module is further configured to detect, by the detecting module, the first wireless When the RLF is not generated on the link and the RLF is generated on the second radio link, determining whether there is a radio bearer on the second radio link; the confirming module is further configured to: when the judging module determines that the radio bearer exists on the second radio link, confirming that Whether the radio bearer on the radio link switches to the first radio link within a second predetermined time; the bearer establishing module is configured to confirm, in the confirming module, that the radio bearer on the second radio link does not switch to the second predetermined time At the first wireless link, an attempt is made to reconstruct a radio bearer on the second wireless link on the first wireless link.
  • the RRC module is further configured to: when the detecting module detects that the first radio link is RLF, and When the RLF occurs on the second radio link, the RRC connection reestablishment process triggered by the RLF of the first radio link is initiated.
  • the user equipment further includes a receiving module, The receiving module is configured to receive the first configuration information generated by the first base station when the link establishing module establishes the first wireless link, and receive the first base station or the first when the link establishing module establishes the second wireless link. a second configuration information generated by the second base station; the detecting module is configured to detect, according to the first configuration information, whether the first wireless link generates an RLF according to the first configuration information, and detect whether the second wireless link generates an RLF according to the second configuration information.
  • the first configuration information includes a first configuration quantity, a first predetermined quantity, and a first configuration duration
  • the detecting module includes a first out-of-synchronization detecting unit, a first synchronization detecting unit, a first starting unit, a determining unit, and a first timer, wherein the first out-of-synchronization detecting unit is configured to detect whether the first configuration is continuously received from the first wireless link a number of out-of-step indications;
  • the first activation unit is configured to: when the first out-of-synchronization detection unit detects that the first configuration number of out-of-synchronization indications are continuously received from the first wireless link, turn on the first timer;
  • the unit is configured to detect, when the first start unit starts the first timer, whether the first predetermined number of synchronization indications are continuously received from the first wireless link before the time duration of the first timer exceeds the first configuration time; the determining unit And determining, when the first
  • the determining unit is further configured to: when the first synchronization detecting unit detects that the first wireless link is continuously received Determining that the first wireless link does not generate RLF when a predetermined number of synchronization indications; the first activation unit is further configured to: when the first synchronization detecting unit detects that the first predetermined number of synchronization indications are continuously received from the first wireless link , the first timer is turned off and the time duration of the first timer is cleared.
  • the second configuration information includes the second configuration quantity, the second predetermined quantity, and the second configuration duration
  • the detecting module further a second out-of-synchronization detecting unit, a second synchronization detecting unit, a second starting unit, and a second timer, wherein the second out-of-synchronization detecting unit is configured to detect whether the second configured number of consecutively received from the second wireless link
  • the second start unit is configured to: when the second out-of-synchronization detecting unit detects that the second configured number of out-of-synchronization indications are continuously received from the second wireless link, turn on the second timer; When the second timer is turned on, detecting whether the second predetermined number of synchronization indications are continuously received from the second wireless link before the timing of the second timer exceeds the second configuration time; the determining unit further uses It is determined that the second radio link generates RLF when the second synchronization detecting unit detects that the second predetermined number of synchron
  • the determining unit is further configured to: when the second synchronization detecting unit detects that the second wireless link is continuously received Determining that the second radio link does not generate RLF when the second predetermined number of synchronization indications; the second initiating unit is further configured to: when the second synchronization detecting unit detects that the second predetermined number of synchronization indications are continuously received from the second radio link , closing the second timer and clearing the timing of the second timer.
  • the detecting module after detecting, according to the first configuration information, whether the first radio link is RLF, according to the second configuration
  • the information indicates whether the RLF is generated by the second radio link.
  • the first out-of-synchronization detecting unit detects that the first out-of-synchronization indication is received from the first radio link
  • the second out-of-synchronization detecting unit starts detecting whether the second out-of-synchronization detecting unit starts from the second
  • the wireless link continuously receives the second configured number of out-of-synchronization indications.
  • the detecting module after detecting, according to the first configuration information, whether the first radio link is RLF, according to the second configuration
  • the information is: when the first out-of-synchronization detecting unit detects that the first configured number of out-of-synchronization indications are continuously received from the first wireless link, the second out-of-synchronization detecting unit starts detecting whether A second configured number of out-of-synchronization indications are continuously received from the second wireless link.
  • the detecting module after detecting, according to the first configuration information, whether the first radio link is RLF, according to the second configuration
  • the information detecting whether the RLF occurs on the second radio link is specifically: when the determining unit determines that the RLF occurs on the first radio link, the second out-of-synchronization detecting unit starts to detect whether the second configured number of consecutive losses are received from the second radio link. Step indication.
  • the detecting module is configured to detect, according to the first configuration information, whether the first wireless link generates RLF and according to the second configuration The information detects whether the second radio link has an RLF.
  • the first timer and the second timer are the same timer, and the first configuration duration is equal to the first After the first configuration unit or the second activation unit turns on the first timer, the first synchronization detecting unit detects that the time duration of the first timer is continuously received from the first wireless link before the first configuration time length exceeds the first configuration time length.
  • the first The start unit or the second start unit is further configured to close the first timer and clear the time duration of the first timer.
  • the first timer and the second timer are the same timer, and the first configuration quantity is equal to the second Configuring the number, the first out-of-synchronization detecting unit detects that the first configured number of out-of-synchronization indications are continuously received from the first wireless link or the second out-of-synchronization detecting unit detects that the first configuration is continuously received from the second wireless link
  • the first start unit or the second start unit is further used to turn on the first timer when the number of out-of-synchronization indications.
  • a third aspect of the present invention provides a method for processing a radio link failure, where the method includes: the base station establishes a first radio link with the UE, where the UE simultaneously establishes a second radio link with another base station; Whether the RLF occurs on the wireless link; if the RLF occurs on the first radio link, the base station determines whether there is a radio bearer on the first radio link; if there is a radio bearer on the first radio link, the base station instructs the other base station to be the first radio link The radio bearer on the road switches to the second radio link.
  • the step of the base station instructing another base station to switch the radio bearer on the first radio link to the second radio link includes: the base station to another The base station sends the first state information, so that another base station sends a handover request to the base station according to the first state information, where the first state information is used to indicate that the first radio link generates RLF; the base station receives the handover request from another base station; A request is sent to another base station to cause the other base station to switch the radio bearer on the first wireless link to the second wireless link according to the handover instruction.
  • the step of the base station instructing another base station to switch the radio bearer on the first radio link to the second radio link comprises: the base station from another The base station receives the handover request, and the handover request is generated by the other base station according to the first state information of the RLF generated by the first radio link reported by the UE; the base station sends a handover instruction to another base station according to the handover request, so that another base station according to the handover instruction The radio bearer on the first wireless link switches to the second radio link.
  • the processing method further includes: receiving, by the base station, the second radio link RLF from the UE State information: the base station switches the radio bearer on the second radio link to the first radio link according to the second state information; the base station sends a handover completion instruction that feeds back the second state information to the UE, so that the UE confirms according to the handover completion command.
  • the wireless bearer on the two wireless links switches to the first wireless link.
  • a fourth aspect of the present invention provides a base station, where the base station includes a link establishment module, a detection module, a determination module, and an indication module, where the link establishment module is configured to establish a first wireless link with the UE, where The UE establishes a second wireless link with another base station at the same time; the detecting module is configured to detect whether the first wireless link generates RLF after the link establishing module establishes the first wireless link; and the determining module is configured to detect, by the detecting module, Determining whether there is a radio bearer on the first radio link when the RLF occurs on the radio link; the indicating module is configured to: when the judging module determines that the radio bearer exists on the first radio link, instruct the another base station to use the first radio link The upper radio bearer is switched to the second radio link.
  • the indication module includes a first sending unit, a first receiving unit, and an indicating unit, where the first sending unit is configured to send the first to another base station State information, such that another base station sends a handover request to the base station according to the first state information, where the first state information is used to indicate that the first radio link generates RLF; the first receiving unit is configured to receive a handover request from another base station, and The handover request is sent to the indication unit; the indication unit is configured to receive the handover request from the receiving unit, and send a handover instruction to another base station according to the handover request, so that another base station switches the radio bearer on the first radio link to the first according to the handover instruction.
  • Two wireless links are configured to send the first to another base station State information, such that another base station sends a handover request to the base station according to the first state information, where the first state information is used to indicate that the first radio link generates RLF; the first receiving unit is configured to receive a handover request from another base station, and The handover request
  • the indication module includes a first receiving unit and an indication unit, where the first receiving unit is configured to receive a handover request from another base station, and the handover request is Sending to the indication unit, the handover request is generated by the other base station according to the first state information of the RLF generated by the first radio link reported by the UE; the indication unit is configured to receive the handover request from the receiving unit, and send the handover instruction to another base station according to the handover request. So that another base station switches the radio bearer on the first radio link to the second radio link according to the handover instruction.
  • the base station further includes a second receiving unit, a second sending unit, and a switching unit, where The second receiving unit is configured to receive second state information of the second radio link RLF from the UE, and send the second state information to the switching unit, where the switching unit is configured to receive the second state information from the second receiving unit, according to the second The status information is used to switch the radio bearer on the second radio link to the first radio link, and the second sending unit is further configured to: after the switching unit switches the radio bearer on the second radio link to the first radio link, The UE sends a handover complete instruction for feeding back the second state information, so that the UE confirms that the radio bearer on the second radio link is switched to the first radio link according to the handover complete instruction.
  • a fifth aspect of the present invention provides a user equipment, where the user equipment includes a processor and a memory electrically connected to the processor, wherein the processor is configured to establish a first wireless link with the first base station and a second base station, respectively. And detecting, by the second wireless link, whether the RLF occurs on the first radio link and whether the RLF occurs on the second radio link, and when the RLF is detected on the first radio link and the RLF is not generated on the second radio link, The RRC connection re-establishment process triggered by the RLF of the first radio link; the memory is used to store data.
  • the method for processing a radio link failure of the present invention the user equipment, and the base station respectively detect the first radio link after establishing a first radio link with the first base station and establishing a second radio link with the second base station. Whether the RLF occurs on the radio link and whether the RLF occurs on the second radio link. If the RLF occurs on the first radio link and the RLF does not occur on the second radio link, the UE abandons the RRC connection triggered by the RLF occurring on the first radio link. The reconstruction process is performed to reduce the unnecessary RRC connection re-establishment process when RLF occurs, and to avoid wasting the use of radio resources.
  • FIG. 1 is a schematic flowchart of a first embodiment of a method for processing a radio link failure according to the present application
  • FIG. 2 is a schematic flowchart of a second embodiment of a method for processing a radio link failure according to the present application
  • FIG. 3 is a schematic diagram of information exchange of switching radio bearers in the processing method shown in FIG. 2;
  • FIG. 4 is a schematic flowchart of a third embodiment of a method for processing a radio link failure according to the present application.
  • FIG. 5 is a schematic flowchart of a fourth embodiment of a method for processing a radio link failure according to the present application
  • FIG. 6 is a schematic flowchart of a fifth embodiment of a method for processing a radio link failure according to the present application.
  • FIG. 7 is a schematic structural diagram of a first embodiment of a user equipment according to the present application.
  • FIG. 8 is a schematic structural diagram of a second embodiment of a user equipment according to the present application.
  • FIG. 9 is a schematic structural diagram of a third embodiment of a user equipment according to the present application.
  • FIG. 10 is a schematic flowchart of a sixth embodiment of a method for processing a radio link failure according to the present application.
  • FIG. 11 is a schematic flowchart diagram of a seventh embodiment of a method for processing a radio link failure according to the present application.
  • FIG. 12 is a schematic structural diagram of an embodiment of a base station according to the present application.
  • FIG. 13 is a schematic structural diagram of a fourth embodiment of a user equipment according to the present application.
  • FIG. 1 is a schematic flowchart diagram of a first embodiment of a method for processing a wireless link failure according to the present application.
  • the method for processing a wireless link failure includes the following steps:
  • Step S11 The UE establishes a first radio link with the first base station and a second radio link with the second base station, respectively.
  • the first base station and the second base station simultaneously serve the UE.
  • the first base station and the second base station may be base stations in the same network standard, for example, the network standards of the first base station and the second base station are all GSM (Global System For Mobile Communication, Global System for Mobile Communications).
  • GSM Global System For Mobile Communication, Global System for Mobile Communications
  • the first base station and the second base station can also work at different frequency points, for example, the first base station works at GSM900Mhz, and the second base station works at GSM1800Mhz.
  • the first base station and the second base station may also be base stations in different network standards.
  • the inter-rat handover condition is met, for example, the network standard of the first base station is GSM, and the network standard of the second base station is CDMA (Code Division Multiple Access, code division multiple access), at this time, the UE can perform 2G (2rd-generation, second generation mobile communication technology) network to 3G (3rd-generation, third generation mobile communication technology) on the first base station and the second base station Switching of the network or switching of the 3G network to the 2G network.
  • GSM Global System for Mobile Communications
  • CDMA Code Division Multiple Access, code division multiple access
  • the signal coverage range of the second base station may also be within the signal coverage of the first base station, that is, the first base station is a macro base station, and the second base station is For the micro base station.
  • Step S12 The UE detects whether the RLF occurs on the first radio link and whether the RLF occurs in the second radio link, respectively.
  • Step S13 If the RLF occurs on the first radio link and the RLF does not occur on the second radio link, the UE abandons the RRC connection reestablishment procedure triggered by the RLF occurring on the first radio link.
  • the RLF of the first radio link indicates that the UE cannot use the service provided by the first base station, but if the RLF does not occur on the second radio link, the UE may use the service provided by the second base station, so in the first wireless chain
  • the RLF occurrence does not initiate the RRC connection re-establishment process, but further determines whether to initiate the RRC connection re-establishment process according to the status of the second radio link.
  • the UE since the UE establishes the first radio link and the second radio link with the first base station and the second base station at the same time, when the RLF is detected on the first radio link, The RRC connection re-establishment process is not immediately started, but the RLF is detected on the second radio link. If the RLF does not occur on the second radio link, the UE abandons the RRC connection re-establishment process, thereby reducing unnecessary when the RLF occurs.
  • the purpose of the RRC connection re-establishment process is to avoid wasting the use of radio resources.
  • the method for processing a wireless link failure includes the following steps:
  • Step S21 The UE establishes a first radio link with the first base station and a second radio link with the second base station, respectively.
  • the first base station and the second base station serve the UE at the same time, and the first base station and the second base station may be base stations in the same network standard, and may be base stations in different network standards.
  • Step S22 The UE detects whether the RLF occurs on the first radio link and whether the RLF occurs in the second radio link, respectively.
  • Step S23 If the RLF occurs on the first radio link and the RLF does not occur on the second radio link, the UE determines whether there is a radio bearer on the first radio link.
  • Step S24 If there is a radio bearer on the first radio link, the UE confirms whether the radio bearer on the first radio link switches to the second radio link within the first predetermined time.
  • the UE needs to continue to use the radio bearer because the RLF is generated on the first radio link and the radio bearer exists on the first radio link. Otherwise, the UE cannot perform certain services normally.
  • the second radio link does not generate RLF, so the UE waits for the network side to switch the radio bearer on the first radio link to the second radio link, so as to achieve the purpose of rationally utilizing radio resources.
  • the UE cannot wait all the time, otherwise it will affect the user experience.
  • the timing of the first predetermined time may be implemented by a timer, which is also the waiting time of the UE.
  • Step S25 If the radio bearer on the first radio link switches to the second radio link within the first predetermined time, the UE abandons the RRC connection reestablishment procedure triggered by the RLF occurring on the first radio link.
  • the second base station can replace the first base station to provide the service of the original first base station, and the UE does not need to perform
  • the RRC connection re-establishment process reduces unnecessary RRC connection re-establishment procedures and avoids wasting radio resources.
  • FIG. 3 is a schematic diagram of information exchange of switching radio bearers in the processing method shown in FIG. 2.
  • the information interaction between the UE, the first base station, and the second base station is as follows:
  • Step S31 The UE reports the information about the RLF of the first radio link to the second base station, and starts a timer.
  • the timer time is the first predetermined time.
  • Step S32 The second base station sends, to the first base station, a handover request for switching the radio bearer on the first radio link to the second radio link.
  • Step S33 The first base station feeds back configuration information of the radio bearer on the first radio link to the second base station.
  • the switching request and configuration information are transmitted through backhaul.
  • Step S34 The second base station performs handover of the radio bearer according to the configuration information.
  • Step S35 The second base station sends the indication information of the handover completion to the UE.
  • Step S36 The UE confirms whether the indication information is received before the timer expires.
  • the UE will abandon the RRC connection reestablishment procedure triggered by the RLF occurring on the first radio link.
  • the process of switching the radio bearer is completely performed by the network side, and the speed of switching the radio bearer on the network side affects the user experience, because the UE is in the waiting state when the information about the RLF of the first radio link is reported to be received.
  • the setting of the first predetermined time by the UE can avoid the phenomenon that the long-term handover on the network side is unsuccessful or the handover is slow, causing the UE to wait blindly.
  • the first base station itself may also detect whether the first radio link has RLF, if the first base station detects the first radio.
  • the RLF is generated on the link, and the first base station can directly send configuration information to the second base station, that is, the information interaction between the UE, the first base station, and the second base station may include only step S33, step S34, step S35, and step. S36, without including step S31 and step S32.
  • FIG. 4 is a schematic flowchart diagram of a third embodiment of a method for processing a radio link failure according to the present application.
  • the method for processing a wireless link failure includes the following steps:
  • Step S41 The UE establishes a first radio link with the first base station and a second radio link with the second base station, respectively.
  • Step S42 The UE detects whether the RLF occurs on the first radio link. If yes, if the RLF occurs on the first radio link, step S43 is performed. If no, if the RLF does not occur on the first radio link, step S48 is performed.
  • Step S43 The UE detects whether the RLF is generated on the second radio link. If yes, if the RLF occurs on the second radio link, step S47 is performed, and if no, if the RLF does not occur on the second radio link, step S44 is performed.
  • Step S44 The UE determines whether there is a radio bearer on the first radio link. If yes, it determines that there is a radio bearer on the first radio link, and then proceeds to step S45. If not, it determines that there is no radio bearer on the first radio link. Then, step S46 is performed.
  • the UE if there is no radio bearer on the first radio link, the UE has no service on the first base station.
  • Step S45 The UE confirms whether the radio bearer on the first radio link switches to the second radio link within the first predetermined time. If yes, the radio bearer on the first radio link switches to the second in the first predetermined time. If the wireless link does not switch to the second wireless link within the first predetermined time, the process proceeds to step S47.
  • radio bearer exists on the first radio link, the radio bearer needs to be switched to the second radio link to ensure that the service on the UE is normal.
  • the process of radio bearer handover is performed by the network side, and the UE only needs to confirm the result of the handover.
  • Step S46 The UE abandons the RRC connection reestablishment procedure triggered by the RLF occurring on the first radio link.
  • the service on the UE is performed on the second base station, and the RLF status of the first radio link does not affect.
  • the second radio link so the UE does not need to initiate the RRC connection re-establishment process.
  • Step S47 The UE initiates an RRC connection reestablishment procedure triggered by the RLF occurring on the first radio link.
  • the RRC connection reestablishment process when the first radio link and the second radio link both generate RLF, the RRC connection reestablishment process must be performed.
  • Step S48 The UE detects whether the RLF is generated on the second radio link, and if yes, the RLF occurs on the second radio link, and then proceeds to step S49.
  • Steps S48 and S43 are both detecting whether the RLF is generated on the second radio link, but the conditions are different. If the RLF does not occur on the second wireless link, step S42 is repeated.
  • Step S49 The UE determines whether there is a radio bearer on the second radio link, and if yes, determines that there is a radio bearer on the second radio link, and then proceeds to step S410.
  • step S42 is repeated, and when the first radio link RLF is detected after the next step S42 is performed, the RRC connection re-establishment process is directly started.
  • Step S410 The UE confirms whether the radio bearer on the second radio link switches to the first radio link within a second predetermined time. If not, the radio bearer on the second radio link does not switch to the second predetermined time. The first wireless link proceeds to step S411.
  • the network side switches the radio bearer on the second radio link to the first radio link because the RLF does not occur on the first radio link.
  • the UE needs to confirm whether the handover process is completed within the second predetermined time. If it is confirmed that the radio bearer on the second radio link is switched to the first radio link in the second predetermined time, step S42 is repeated, and when the RLF is detected on the first radio link after the next step S42 is performed, The RRC connection re-establishment process is initiated.
  • the first predetermined time is equal to the second predetermined time.
  • Step S411 The UE attempts to reconstruct the radio bearer on the second radio link on the first radio link.
  • the process of the UE re-establishing the radio bearer on the second radio link may be that the UE sends a radio bearer request to the first base station, and the first base station allocates a radio resource to the UE according to the request, and after the radio resource is completed, the first base station sends the radio resource to the UE.
  • a confirmation message is provided to cause the UE to transmit signals on the first wireless link for service.
  • the RRC connection re-establishment process when it is detected that only one radio link of the first radio link and the second radio link generates RLF, the RRC connection re-establishment process is not started, but The radio bearer on the radio link is switched to another radio link, thereby achieving the purpose of reducing unnecessary RRC connection reestablishment process when RLF occurs, and fully utilizing radio resources to avoid wasting radio resources.
  • FIG. 5 is a schematic flowchart diagram of a fourth embodiment of a method for processing a radio link failure according to the present application.
  • the method for processing a wireless link failure includes the following steps:
  • Step S51 The UE establishes a first radio link with the first base station and a second radio link with the second base station, respectively.
  • Step S52 The UE receives the first configuration information generated by the first base station when establishing the first radio link and the second configuration information generated by the first base station or the second base station when establishing the second radio link, respectively.
  • the one configuration information includes a first configuration quantity, a first predetermined quantity, and a first configuration duration
  • the second configuration information includes a second configuration quantity, a second predetermined quantity, and a second configuration duration.
  • the UE may receive the first configuration information by using the first radio link, or receive the first configuration information by using the second radio link, and may even receive the first configuration information by using other methods.
  • the UE may receive the second configuration information through the second wireless link or other means.
  • the second configuration information may be generated by the first base station.
  • Step S53 The UE detects whether the first configured number of out-of-synchronization indications are continuously received from the first wireless link, and if yes, continuously receives the first configured number of out-of-synchronization indications from the first wireless link, proceeding to step S54.
  • the first threshold and the second threshold are generally set for the wireless link, and the first threshold is greater than the second threshold.
  • Cell reference signal Cell Reference
  • the UE will receive the synchronization indication.
  • the signal quality of the cell reference signal is lower than the second threshold, the UE will receive the out-of-synchronization indication, if the signal quality of the cell reference signal Above the second threshold but below the first threshold, the UE receives neither the synchronization indication nor the out-of-synchronization indication.
  • Step S54 The UE starts the first timer.
  • the first timer uses the first configured duration as the timing threshold.
  • Step S55 The UE detects whether the first predetermined number of synchronization indications are continuously received from the first wireless link before the timing duration of the first timer exceeds the first configuration duration, and if so, the timing of the first timer exceeds the first duration. If the first predetermined number of synchronization indications are continuously received from the first wireless link before the configuration time length, proceed to step S56. If no, the time duration of the first timer is not continuous from the first wireless link before the first configuration time length exceeds the first configuration time length. Upon receiving the first predetermined number of synchronization indications, step S57 is performed.
  • the timing of the first timer exceeds the first configuration duration, indicating that the first timer expires, and the first wireless link is considered to occur even after the first predetermined number of synchronization indications are continuously received from the first wireless link. RLF.
  • Step S56 The UE determines that the RLF does not occur on the first radio link, and turns off the first timer and clears the time duration of the first timer.
  • the first timer After the first timer is turned off and cleared, the next time the first timer is turned on, it will be re-timed.
  • Step S57 The UE determines that the first radio link generates RLF.
  • Step S58 The UE detects whether the second configured number of out-of-synchronization indications are continuously received from the second wireless link, and if yes, continuously receives the second configured number of out-of-synchronization indications from the second wireless link, proceeding to step S59.
  • step S58 and step S53 are performed simultaneously.
  • Step S59 The UE starts the second timer.
  • the second timer uses the second configured duration as the timing threshold.
  • Step S510 The UE detects whether a second predetermined number of synchronization indications are continuously received from the second radio link before the timing duration of the second timer exceeds the second configuration duration, and if so, the timing of the second timer exceeds the second duration. If the second predetermined number of synchronization indications are continuously received from the second wireless link before the configuration time length, step S512 is performed, and if not, the time duration of the second timer is not continuous from the second wireless link before the second configuration duration is exceeded. Upon receiving the second predetermined number of synchronization indications, step S511 is performed.
  • the timing of the second timer exceeds the second configuration duration, indicating that the second timer expires, and the second wireless link is considered to occur even after the second predetermined number of synchronization indications are continuously received from the second wireless link. RLF.
  • Step S511 The UE determines that the second radio link generates RLF.
  • Step S512 The UE determines that the RLF does not occur on the second radio link, and turns off the second timer and clears the timing of the second timer.
  • Step S513 The UE abandons the RRC connection reestablishment procedure triggered by the RLF occurring on the first radio link.
  • the RRC connection re-establishment process is abandoned.
  • step S53 and step S58 are performed simultaneously, that is, the step of the UE detecting whether the first radio link is RLF according to the first configuration information, and the step of the UE detecting whether the second radio link is RLF according to the second configuration information. At the same time.
  • the step of detecting, by the UE, whether the first radio link is RLF according to the first configuration information may be performed before the step of the UE detecting whether the second radio link is RLF according to the second configuration information, for example, the step S58 may be performed when the determination in step S53 is YES, that is, when the UE detects that the first configured number of out-of-synchronization indications are continuously received from the first wireless link, The UE detects whether the second configured number of out-of-synchronization indications are continuously received from the second wireless link; or step S58 is performed after step S57, that is, when the UE determines that the first radio link generates RLF, the UE detects whether the second wireless chain is detected.
  • the road continuously receives the second configured number of out-of-synchronization indications; or in step 53, when receiving the first out-of-synchronization indication, performing step S48, that is, the UE detects that the first loss is received from the first wireless link.
  • step S48 the UE detects whether a second configured number of out-of-synchronization indications are continuously received from the second wireless link.
  • FIG. 6 is a schematic flowchart diagram of a fifth embodiment of a method for processing a radio link failure according to the present application. This embodiment is a modification of the fourth embodiment.
  • the method for processing a radio link failure includes the following steps:
  • Step S61 The UE establishes a first radio link with the first base station and a second radio link with the second base station, respectively.
  • Step S62 The UE receives the first configuration information generated by the first base station when establishing the first radio link and the second configuration information generated by the first base station or the second base station when establishing the second radio link, respectively.
  • the one configuration information includes a first configuration quantity, a first predetermined quantity, and a first configuration duration
  • the second configuration information includes a second configuration quantity, a second predetermined quantity, and a second configuration duration.
  • Step S63 The UE detects whether the first configured number of out-of-synchronization indications are continuously received from the first wireless link.
  • Step S64 The UE detects whether the second configured number of out-of-synchronization indications are continuously received from the second wireless link.
  • step S63 and step S64 are performed simultaneously.
  • Step S65 The UE starts the first timer.
  • Step S66 The UE detects whether the first predetermined number of synchronization indications are continuously received from the first wireless link before the timing duration of the first timer exceeds the first configuration duration, and if so, the timing of the first timer exceeds the first duration. Before the configuration time period, the first predetermined number of synchronization indications are continuously received from the first wireless link, and then step S68 is performed.
  • Step S67 The UE detects whether a second predetermined number of synchronization indications are continuously received from the second radio link before the timing duration of the first timer exceeds the first configuration duration, and if so, the timing of the first timer exceeds the first duration. Before the configuration time period, the second predetermined number of synchronization indications are continuously received from the second wireless link, and then step S69 is performed.
  • the first configuration duration is equal to the second configuration duration.
  • the first predetermined number may also be equal to the second predetermined number.
  • Step S68 The UE determines that the RLF does not occur on the first radio link, and turns off the first timer and clears the time duration of the first timer.
  • the first timer is turned off, which is equivalent to interrupting detecting whether the second radio link has an RLF.
  • the UE does not initiate the RRC connection re-establishment process.
  • Step S69 The UE determines that the RLF does not occur on the second radio link, and turns off the first timer and clears the time duration of the first timer.
  • the first timer is turned off, which is equivalent to interrupting detecting whether the first radio link has an RLF.
  • the UE does not initiate the RRC connection re-establishment process.
  • Step S610 The UE initiates an RRC connection reestablishment procedure triggered by the RLF occurring on the first radio link or the second radio link.
  • the first wireless is illustrated
  • the RLF occurs on both the link and the second radio link, and the RRC connection re-establishment process is initiated.
  • the first number of configurations is equal to the second number of configurations, such that detection of the first wireless link and detection of the second wireless link can share parameters as much as possible, then the UE detects from the first wireless link or from When the second wireless link continuously receives the first configured number of out-of-synchronization indications, the UE starts the first timer.
  • FIG. 7 is a schematic structural diagram of a first embodiment of a user equipment according to the present application.
  • the user equipment 70 includes a link establishment module 701, a detection module 702, and an RRC module 703.
  • the link establishing module 701 is configured to establish a first wireless link with the first base station 71 and a second wireless link with the second base station 72, respectively. After the wireless link is established, the first base station 71 and the second base station 72 simultaneously serve the user equipment 70.
  • the first base station 71 and the second base station 72 may be base stations in the same network standard. For example, the network specifications of the first base station 71 and the second base station 72 are all GSM. On this basis, the first base station 71 and the second base station 72 can also operate at different frequency points, for example, the first base station 71 operates at GSM900Mhz, and the second base station 72 operates at GSM1800Mhz.
  • the first base station 71 and the second base station 72 may also be base stations in different network systems.
  • the network format of the first base station 71 is GSM
  • the network format of the second base station 72 is CDMA
  • the signal coverage range of the second base station 72 may also be within the signal coverage of the first base station 71, that is, The first base station 71 is a macro base station, and the second base station 72 is a micro base station.
  • the detecting module 702 is configured to detect whether an RLF occurs on the first wireless link and an RLF occurs in the second wireless link, respectively.
  • the RRC module 703 is configured to, when the detecting module 702 detects that the RLF occurs on the first radio link and the RLF does not occur on the second radio link, abandon the RRC connection reestablishment procedure triggered by the RLF occurring on the first radio link. Since the user equipment 70 is simultaneously connected to the first base station 71 and the second base station 72, when the radio link failure occurs on the first radio link, the second radio link may remain normal, and the user equipment 70 may continue to be continued by the second base station 72. Service, it is not necessary to initiate the RRC connection re-establishment process at this time.
  • the RRC module 703 is further configured to: when the detecting module 702 detects that the first radio link generates RLF and the second radio link generates RLF, initiates an RRC connection reestablishment triggered by the RLF occurring on the first radio link. process.
  • the RLF occurs on both the first radio link and the second radio link, indicating that the user equipment 70 cannot continue to serve the first base station 71 or the second base station 72. In this case, the RRC connection reestablishment procedure should be initiated.
  • FIG. 8 is a schematic structural diagram of a second embodiment of a user equipment according to the present application.
  • the user equipment 80 includes a link establishment module 801, a detection module 802, a determination module 803, an acknowledgment module 804, an RRC module 805, and a bearer setup module 806.
  • the link establishing module 801 is configured to establish a first wireless link with the first base station 81 and a second wireless link with the second base station 82, respectively.
  • the detecting module 802 block is configured to detect whether the RLF occurs on the first wireless link and whether the RLF occurs in the second wireless link, respectively.
  • the determining module 803 is configured to determine whether a radio bearer exists on the first radio link when the detecting module 802 detects that the RLF is generated on the first radio link and the RLF does not occur in the second radio link. Since the RLF occurs on the first radio link, and the radio bearer exists on the first radio link, the user equipment 80 needs to continue to use the radio bearer, otherwise the user equipment 80 cannot perform certain services normally. At this time, the second radio link does not generate RLF, so the user equipment 80 waits for the network side to switch the radio bearer on the first radio link to the second radio link, so as to achieve the purpose of rationally utilizing radio resources. However, the user device 80 may not wait all the time, otherwise it will affect the user experience.
  • the timing of the first predetermined time may be implemented by a timer, which is the waiting time of the user equipment 80.
  • the confirmation module 804 is configured to confirm, when the determining module 803 determines that there is a radio bearer on the first radio link, whether the radio bearer on the first radio link switches to the second radio link within the first predetermined time.
  • the RRC module 805 is configured to: when the acknowledgment module 804 confirms that the radio bearer on the first radio link switches to the second radio link within the first predetermined time or when the determining module 803 determines that there is no radio bearer on the first radio link Abandoning the RRC connection re-establishment procedure triggered by the RLF occurring on the first radio link, and for confirming in the confirmation module 804 that the radio bearer on the first radio link does not switch to the second radio link within the first predetermined time At this time, an RRC connection reestablishment procedure triggered by the RLF of the first radio link is initiated.
  • the second base station 82 can replace the first base station 81 to provide the service of the original first base station 81, and the user equipment. 80 does not need to perform an RRC connection re-establishment process, thereby reducing unnecessary RRC connection re-establishment process and avoiding wasting radio resources.
  • the determining module 803 is further configured to determine whether a radio bearer exists on the second radio link when the detecting module 802 detects that the RLF is not generated on the first radio link and the RLF occurs in the second radio link.
  • the confirmation module 804 is further configured to: when the determining module 803 determines that there is a radio bearer on the second radio link, confirm whether the radio bearer on the second radio link switches to the first radio link within a second predetermined time.
  • the network side switches the radio bearer on the second radio link to the first radio link because the RLF does not occur on the first radio link.
  • the UE needs to confirm whether the handover process is completed within the second predetermined time.
  • the first predetermined time is equal to the second predetermined time.
  • the bearer establishing module 806 is configured to attempt to reconstruct the second wireless link on the first wireless link when the confirming module 804 confirms that the radio bearer on the second radio link does not switch to the first radio link within the second predetermined time.
  • Radio bearer on The process of the user equipment 80 reestablishing the radio bearer on the second radio link may be that the user equipment 80 sends a radio bearer request to the first base station 81, and the first base station 81 allocates radio resources to the user equipment 80 according to the request, and the radio resources are completed. Thereafter, the first base station 81 sends an acknowledgment message to the user equipment 80 to cause the user equipment 80 to transmit a signal on the first wireless link for service.
  • the detecting module 802 detects that only one radio link of the first radio link and the second radio link is RLF, the RRC connection reestablishment process is not started, but the network side is waiting.
  • the radio bearer on the radio link is switched to another radio link, thereby achieving the purpose of reducing unnecessary RRC connection reestablishment process when RLF occurs, and fully utilizing radio resources to avoid wasting radio resources.
  • FIG. 9 is a schematic structural diagram of a third embodiment of a user equipment according to the present application.
  • the user equipment 90 includes a link establishment module 901, a receiving module 902, a detection module 903, and an RRC module 904.
  • the link establishing module 901 is configured to establish a first wireless link with the first base station 91 and a second wireless link with the second base station 92, respectively.
  • the receiving module 902 is configured to receive the first configuration information generated by the first base station 91 when the link establishing module 901 establishes the first wireless link, and receive the first base station when the second wireless link is established by the link establishing module 901, respectively. 91 or second configuration information generated by the second base station 92.
  • the receiving module 902 may receive the first configuration information by using the first wireless link, or receive the first configuration information by using the second wireless link, and may even receive the first configuration information by using other methods.
  • the receiving module 902 can receive the second configuration information through the second wireless link or other means. If the first base station is a macro base station and the second base station is a micro base station, the second configuration information may be generated by the first base station.
  • the detecting module 903 is configured to detect, according to the first configuration information, whether the first wireless link generates RLF and detect whether the second wireless link generates RLF according to the second configuration information.
  • the RRC module 904 is configured to, when the detecting module 903 detects that the RLF occurs on the first radio link and the RLF does not occur on the second radio link, abandon the RRC connection reestablishment procedure triggered by the RLF occurring on the first radio link.
  • the first configuration information includes a first configuration quantity, a first predetermined quantity, and a first configuration duration.
  • the second configuration information includes a second configuration number, a second predetermined number, and a second configuration duration.
  • the detecting module 903 includes a first out-of-synchronization detecting unit 931, a first starting unit 932, a first timer 933, a first synchronization detecting unit 934, a determining unit 935, a second out-of-synchronization detecting unit 941, a second starting unit 942, and a Two timers 943 and a second synchronization detecting unit 944.
  • the first out-of-synchronization detecting unit 931 is configured to detect whether the first configured number of out-of-synchronization indications are continuously received from the first wireless link.
  • the first threshold and the second threshold are generally set for the first wireless link, and the first threshold is greater than the second threshold.
  • the first out-of-synchronization detecting unit 931 When the signal quality of the cell reference signal is higher than the first threshold, the first out-of-synchronization detecting unit 931 will receive the synchronization indication, and when the signal quality of the cell reference signal is lower than the second threshold, the first out-of-synchronization detecting unit 931 will receive To the out-of-synchronization indication, if the signal quality of the cell reference signal is higher than the second threshold but lower than the first threshold, the first out-of-synchronization detecting unit 931 receives neither the synchronization indication nor the out-of-synchronization indication.
  • the first starting unit 932 is configured to enable the first timer 933 when the first out-of-synchronization detecting unit 931 detects that the first configured number of out-of-synchronization indications are continuously received from the first wireless link.
  • the first timer 933 has a first configuration time length as a timing threshold.
  • the first synchronization detecting unit 934 is configured to detect, when the first timer 933 is turned on by the first starting unit 932, whether the first time period before the first timer 933 exceeds the first configuration time period, whether the first time is received from the first wireless link. A predetermined number of synchronization indications.
  • the second out-of-synchronization detecting unit 941 is configured to detect whether the second configured number of out-of-synchronization indications are continuously received from the second wireless link.
  • the second starting unit 942 is configured to enable the second timer 943 when the second out-of-synchronization detecting unit detects that the second configured number of out-of-synchronization indications are continuously received from the second wireless link.
  • the second timer 943 has a second configured duration as a timing threshold.
  • the second synchronization detecting unit 944 is configured to detect, when the second timer 943 is turned on by the second starting unit 942, whether the second timer 943 continuously receives the second time from the second wireless link before the second configuration time length exceeds the second configuration time length. A predetermined number of synchronization indications.
  • the determining unit 935 is configured to determine that the first wireless link generates RLF when the first synchronization detecting unit 934 detects that the first predetermined number of synchronization indications are not continuously received from the first wireless link, or at the second synchronization detecting unit 944. It is detected that the second predetermined number of synchronization indications are not continuously received from the second wireless link, and it is determined that the second radio link generates RLF.
  • the timing of the first timer 933 exceeds the first configuration duration, indicating that the first timer 933 times out, even if the first synchronization detecting unit 934 continuously receives the first predetermined number of synchronization indications from the first wireless link.
  • the RLF will be considered to occur on the first radio link.
  • the second timer 933 times out it is also considered that the second radio link generates RLF.
  • the determining unit 935 is further configured to determine that the first wireless link does not generate the RLF and the second synchronization detecting unit 944 when the first synchronization detecting unit 934 detects that the first predetermined number of synchronization indications are continuously received from the first wireless link. When it is detected that the second predetermined number of synchronization indications are continuously received from the second wireless link, it is determined that the RLF is not generated by the second wireless link.
  • the first starting unit 932 is further configured to: when the first synchronization detecting unit 934 detects that the first predetermined number of synchronization indications are continuously received from the first wireless link, turn off the first timer and clear the timing duration of the first timer. After the first timer 933 is turned off and emptied, the next time the first timer 933 is turned on will be re-timed.
  • the second starting unit 942 is further configured to: when the second synchronization detecting unit 944 detects that the second predetermined number of synchronization indications are continuously received from the second wireless link, turn off the second timer and clear the timing duration of the second timer. After the second timer 943 is turned off and emptied, the next time the second timer 943 is turned on, it will be re-timed.
  • the detecting module 903 detects whether the RLF is generated on the first wireless link according to the first configuration information, and detects whether the RLF occurs on the second wireless link according to the second configuration information, or the detecting module 903 detects the first wireless according to the first configuration information. Whether the RLF is generated on the link and detecting whether the second radio link is RLF according to the second configuration information may be specifically classified into four cases. First, the first out-of-synchronization detecting unit 931 detects that the first out-of-synchronization detecting unit 931 receives the information from the first radio link.
  • the second out-of-synchronization detecting unit 941 starts to detect whether the second configured number of out-of-synchronization indications are continuously received from the second wireless link;
  • the first out-of-synchronization detecting unit 931 detects the slave
  • the second out-of-synchronization detecting unit 941 starts to detect whether the second configured number of out-of-synchronization indications are continuously received from the second wireless link;
  • the determining unit 935 determines that the RLF occurs on the first radio link
  • the second out-of-synchronization detecting unit 941 starts detecting whether the second configured number of out-of-synchronization indications are continuously received from the second radio link;
  • This embodiment is preferably a fourth type.
  • the first timer 933 and the second timer 943 are the same timer, and the first configuration duration is equal to the second configuration duration, and the first predetermined number may also be equal to the second predetermined number.
  • the first synchronization detecting unit 934 detects that the time duration of the first timer 933 is continuous from the first wireless link before the first configuration time length exceeds the first configuration time length.
  • Receiving the first predetermined number of synchronization indications or the second synchronization detecting unit 944 detects that the second predetermined number of synchronization indications are continuously received from the second wireless link before the timing duration of the first timer 933 exceeds the first configured duration
  • the first starting unit 932 or the second starting unit 942 is further configured to turn off the first timer 933 and clear the timing of the first timer 933.
  • the first predetermined number of synchronization indications are not continuously received from the first wireless link or the second predetermined number of synchronization indications are received from the second wireless link before the first timer 933 times out, the first The RLF occurs on both the wireless link and the second wireless link, and the RRC connection re-establishment process is initiated.
  • the first out-of-synchronization detecting unit 931 detects that the first configured number of out-of-synchronization indications are continuously received from the first wireless link or the second out-of-synchronization detecting unit 941 detects
  • the first activation unit 932 or the second activation unit 942 is further configured to enable the first timer 933 when the first configuration number of out-of-synchronization indications are continuously received from the second wireless link.
  • FIG. 10 is a schematic flowchart diagram of a sixth embodiment of a method for processing a radio link failure according to the present application.
  • the method for processing a wireless link failure includes the following steps:
  • Step S110 The base station establishes a first radio link with the UE, where the UE establishes a second radio link with another base station at the same time.
  • the base station and the other base station simultaneously serve the UE.
  • the two may be base stations in the same network standard.
  • the network specifications of the base station and the other base station are both GSM, and may be base stations in different network standards.
  • the base station and the other base station satisfy the inter-rat handover condition, the network standard of the base station is GSM, and the network standard of the other base station is CDMA.
  • Step S120 The base station detects whether an RLF occurs on the first radio link.
  • Step S130 If the RLF occurs on the first radio link, the base station determines whether there is a radio bearer on the first radio link.
  • the base station can detect whether the RLF occurs on the first radio link.
  • a wireless link exists on the first wireless link, indicating that the UE has a service on the base station.
  • Step S140 If there is a radio bearer on the first radio link, the base station instructs another base station to switch the radio bearer on the first radio link to the second radio link.
  • the process of switching the radio bearer is equivalent to switching the UE service to the other base station.
  • the base station instructs another base station to perform radio bearer handover, and the UE does not need to participate in the whole process, thereby reducing the mental overhead.
  • FIG. 11 is a schematic flowchart diagram of a seventh embodiment of a method for processing a radio link failure according to the present application.
  • the method for processing a wireless link failure includes the following steps:
  • Step S210 The base station establishes a first radio link with the UE, where the UE simultaneously establishes a second radio link with another base station.
  • Step S220 The base station detects whether an RLF occurs on the first radio link.
  • Step S230 If the RLF occurs on the first radio link, the base station determines whether there is a radio bearer on the first radio link.
  • Step S240 If there is a radio bearer on the first radio link, the base station instructs another base station to switch the radio bearer on the first radio link to the second radio link.
  • Step S250 The base station receives second state information of the second radio link RLF from the UE.
  • the base station and the other base station satisfy an inter-rat handover condition, and the signal coverage of the other base station is within the signal coverage of the base station.
  • the base station can receive the second status information through the backhoul.
  • Step S260 The base station switches the radio bearer on the second radio link to the first radio link according to the second state information.
  • the another base station cannot continue to provide services for the UE, and therefore the base station switches the radio bearer to serve the UE instead of the other base station.
  • Step S270 The base station sends a handover completion instruction for feeding back the second state information to the UE, so that the UE confirms that the radio bearer on the second radio link is switched to the first radio link according to the handover completion instruction.
  • the handover completion instruction is sent to the UE.
  • the UE is in a waiting state, and the handover completion command may cause the UE to end the waiting state for the next operation.
  • step S240 includes:
  • Step S241 The base station sends the first state information to another base station, so that another base station sends a handover request to the base station according to the first state information, where the first state information is used to indicate that the first radio link generates the RLF.
  • Step S242 The base station receives the handover request from another base station.
  • Step S243 The base station sends a handover instruction to another base station according to the handover request, so that another base station switches the radio bearer on the first radio link to the second radio link according to the handover instruction.
  • the handover instruction includes at least a radio resource configuration requirement of the radio bearer, such as a channel configuration.
  • step S240 may include only step S242 and step S243, and does not include step S241.
  • the handover request received by the base station from another base station is generated by the other base station according to the first state information of the RLF generated by the first radio link reported by the UE. That is to say, both the UE and the base station can detect that the first radio link generates RLF, and the first status information is sent by the UE to another base station.
  • FIG. 12 is a schematic structural diagram of an embodiment of a base station according to the present application.
  • the base station 310 includes a link establishment module 311, a detection module 312, a determination module 313, and an indication module 314.
  • the link establishing module 311 is configured to establish a first wireless link with the UE 320, wherein the UE 320 simultaneously establishes a second wireless link with another base station 330.
  • the detecting module 312 is configured to detect whether the RLF occurs on the first wireless link after the link establishing module 311 establishes the first wireless link.
  • the determining module 313 is configured to determine whether a radio bearer exists on the first radio link when the detecting module 312 detects that the first radio link generates RLF.
  • the indication module 314 is configured to, when the determining module 313 determines that there is a radio bearer on the first radio link, instruct the another base station 330 to switch the radio bearer on the first radio link to the second radio link.
  • the indication module 314 includes a first sending unit 3141, a first receiving unit 3142, and an indicating unit 3143.
  • the first sending unit 3141 is configured to send the first state information to another base station 330, so that another base station 330 sends a handover request to the base station 310 according to the first state information, where the first state information is used to indicate that the first radio link generates RLF. .
  • the first receiving unit 3142 is configured to receive a handover request from another base station 330, and send the handover request to the indication unit 3143.
  • the indication unit 3143 is configured to receive a handover request from the receiving unit, and send a handover instruction to another base station according to the handover request, so that another base station switches the radio bearer on the first radio link to the second radio link according to the handover instruction.
  • the base station 310 further includes a second receiving unit 315, a switching unit 316, and a second transmitting unit 317.
  • the second receiving unit 315 is configured to receive second state information of the second radio link RLF from the UE 320, and send the second state information to the switching unit 316.
  • the switching unit 316 is configured to receive second state information from the second receiving unit 315, and switch the radio bearer on the second wireless link to the first wireless link according to the second state information.
  • the second sending unit 317 is configured to: after the switching unit 316 switches the radio bearer on the second radio link to the first radio link, send a handover complete instruction that feeds back the second state information to the UE 320, so that the UE 320 completes the handover completion command according to the handover. Confirming that the radio bearer on the second radio link switches to the first radio link.
  • FIG. 13 is a schematic structural diagram of a fourth embodiment of a user equipment according to the present application.
  • the user equipment includes a processor 410, a receiver 420, an emitter 430, a random access memory (RAM) 440, a read only memory (ROM) 450, and a bus 460. And a Network Interface Unit 470.
  • the processor 410 Receiver 420, transmitter 430, random access memory 440, read only memory 450, and network interface unit 470 are coupled via bus 460, respectively.
  • the user equipment needs to be operated, it is cured in the read only memory 450.
  • BIOS Basic input/output system
  • BIOS Basic input/output system
  • the loader boots the system to boot, guiding the user device into normal operation. After the user device enters the normal running state, the application is run in the random access memory 440 (Application) Programs and operating system (OS), making:
  • the processor 410 is configured to establish a first wireless link with the first base station (not shown) and a second wireless link with the second base station (not shown) to detect whether the first wireless link generates RLF and the first wireless link respectively. Whether the RLF occurs on the second radio link, and when it is detected that the RLF occurs on the first radio link and the RLF does not occur on the second radio link, the RRC connection reestablishment procedure triggered by the RLF occurring on the first radio link is abandoned.
  • the processor 410 determines whether there is a radio bearer on the first radio link, and determines that there is a radio on the first radio link. During the bearer, confirm whether the radio bearer on the first radio link switches to the second radio link within the first predetermined time, and then confirm that the radio bearer on the first radio link switches to the second radio within the first predetermined time. At the time of the link, the RRC connection re-establishment procedure triggered by the RLF of the first radio link is abandoned.
  • the method for processing a radio link failure of the present invention the user equipment, and the base station respectively detect the first radio after the UE establishes a first radio link with the first base station and a second radio link with the second base station, respectively. Whether the RLF occurs on the link and whether the RLF occurs on the second radio link. If the RLF occurs on the first radio link and the RLF does not occur on the second radio link, the UE abandons the RRC connection re-establishment triggered by the RLF occurring on the first radio link.
  • the process so as to reduce the unnecessary RRC connection re-establishment process when RLF occurs, can avoid wasteful use of radio resources and improve user experience.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of modules or units is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • An integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, can be stored in a computer readable storage medium.
  • the instructions include a plurality of instructions for causing a computer device (which may be a personal computer, a management server, or a network device, etc.) or a processor to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read only memory (ROM, Read-Only) Memory, random access memory (RAM), disk or optical disk, and other media that can store program code.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种无线链路故障的处理方法、用户设备和基站。处理方法包括:UE同时分别与第一基站建立第一无线链路、与第二基站建立第二无线链路;UE分别检测第一无线链路是否发生RLF和第二无线链路是否发生RLF;如果第一无线链路发生RLF而第二无线链路没有发生RLF,UE放弃启动由于第一无线链路发生RLF而触发的RRC连接重建过程。实施本申请能够在发生RLF时减少不必要的RRC连接重建过程,合理利用无线资源。

Description

无线链路故障的处理方法、用户设备和基站
【技术领域】
本发明涉及无线通信技术领域,特别是涉及一种无线链路故障的处理方法,还涉及一种用户设备和基站。
【背景技术】
载波聚合(CA,Carrier Aggregation)是将多个较小带宽的载波聚合成一个较大带宽的载波,以支持高速数据输率。在某些网络场景下,UE(User Equipment,用户设备)需要汇聚来自两个不同基站的载波,称为不同基站之间的载波聚合技术。
UE与基站之间维护RRC(Radio Resource Control,无线资源控制)连接后,基站可以为UE服务。所谓维护RRC连接,是指UE与基站之间建立传输RRC控制消息的承载。在一些CA网络场景中,存在两个基站同时为UE提供服务,也就是说,UE与两个基站之间分别建立有一条无线链路,每条无线链路上都有无线承载。这两个基站互相链接,例如通过backhaul(回程线路)链接。对于UE来说,其中一个基站工作在主频带上,UE主要使用该基站提供的无线资源,而另一个基站工作在辅频带上,该基站提供额外的无线资源。
本申请的发明人在长期的研发中发现:UE被两个基站服务时,UE只对与工作在主频带上的基站之间的无线链路(以无线链路1表示)进行RLM(radio link monitor,无线链路检测),如果检测到无线链路1发生RLF(radio link Failure,无线链路故障),UE就会启动RRC连接重建过程。但是,无线链路1发生RLF时,与工作在辅频带上的基站之间的无线链路(以无线链路2表示)却可能保持正常,无线链路1上的无线承载完全可以切换至无线链路2,而不必启动RRC连接重建过程,因此,如果这时候UE仍然启动RRC连接重建过程,显然会浪费无线资源,导致网络性能下降。
【发明内容】
本发明主要解决的技术问题是提供一种无线链路故障的处理方法、用户设备和基站,能够在发生RLF时减少不必要的RRC连接重建过程。
本发明的第一方面提供一种无线链路故障的处理方法,处理方法包括:UE同时分别与第一基站建立第一无线链路、与第二基站建立第二无线链路;UE分别检测第一无线链路是否发生RLF和第二无线链路是否发生RLF;如果第一无线链路发生RLF而第二无线链路没有发生RLF,UE放弃启动由于第一无线链路发生RLF而触发的RRC连接重建过程。
结合第一方面,在第一方面的第一种可能的实现方式中,如果第一无线链路发生RLF而第二无线链路没有发生RLF,UE放弃启动由于第一无线链路发生RLF而触发的RRC连接重建过程的步骤具体包括:如果第一无线链路发生RLF而第二无线链路没有发生RLF,UE判断第一无线链路上是否存在无线承载;如果第一无线链路上存在无线承载,UE确认第一无线链路上的无线承载是否在第一预定时间内切换至第二无线链路;如果第一无线链路上的无线承载在第一预定时间内切换至第二无线链路,UE放弃启动由于第一无线链路发生RLF而触发的RRC连接重建过程。
结合第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,如果第一无线链路发生RLF而第二无线链路没有发生RLF,UE放弃启动由于第一无线链路发生RLF而触发的RRC连接重建过程的步骤还包括:如果第一无线链路上不存在无线承载,UE放弃启动由于第一无线链路发生RLF而触发的RRC连接重建过程。
结合第一方面的第一种可能的实现方式,在第一方面的第三种可能的实现方式中,如果第一无线链路发生RLF而第二无线链路没有发生RLF,UE放弃启动由于第一无线链路发生RLF而触发的RRC连接重建过程的步骤还包括:如果第一无线链路上的无线承载没有在第一预定时间内切换至第二无线链路,UE启动由于第一无线链路发生RLF而触发的RRC连接重建过程。
结合第一方面的第一种可能的实现方式,在第一方面的第四种可能的实现方式中,处理方法还包括:如果第一无线链路没有发生RLF而第二无线链路发生RLF,UE判断第二无线链路上是否存在无线承载;如果第二无线链路上存在无线承载,UE确认第二无线链路上的无线承载是否在第二预定时间内切换至第一无线链路;如果第二无线链路上的无线承载没有在第二预定时间内切换至第一无线链路,UE尝试在第一无线链路上重建第二无线链路上的无线承载。
结合第一方面或第一方面的的第一种可能的实现方式,在第一方面的第五种可能的实现方式中,处理方法还包括:如果第一无线链路发生RLF且第二无线链路发生RLF,UE启动由于第一无线链路发生RLF而触发的RRC连接重建过程。
结合第一方面或、第一方面的第一种、第二种、第三种或第四种可能的实现方式,在第一方面的第六种可能的实现方式中,UE分别检测第一无线链路是否发生RLF和第二无线链路是否发生RLF的步骤包括:UE分别在建立第一无线链路时接收由第一基站生成的第一配置信息和在建立第二无线链路时接收由第一基站或第二基站生成的第二配置信息;UE分别根据第一配置信息检测第一无线链路是否发生RLF和根据第二配置信息检测第二无线链路是否发生RLF。
结合第一方面的第六种可能的实现方式,在第一方面的第七种可能的实现方式中,第一配置信息包括第一配置数量、第一预定数量和第一配置时长,UE根据第一配置信息检测第一无线链路是否发生RLF的步骤包括:UE检测是否从第一无线链路连续接收到第一配置数量的失步指示;如果从第一无线链路连续接收到第一配置数量的失步指示,UE开启第一计时器;UE检测在第一计时器的计时时长超出第一配置时长之前是否从第一无线链路连续接收到第一预定数量的同步指示;如果没有从第一无线链路连续接收到第一预定数量的同步指示, UE判定第一无线链路发生RLF。
结合第一方面的第七种可能的实现方式,在第一方面的第八种可能的实现方式中,UE根据第一配置信息检测第一无线链路是否发生RLF的步骤还包括:如果从第一无线链路连续接收到第一预定数量的同步指示,UE判定第一无线链路没有发生RLF,并且关闭第一计时器并清空第一计时器的计时时长。
结合第一方面的第八种可能的实现方式,在第一方面的第九种可能的实现方式中,第二配置信息包括第二配置数量、第二预定数量和第二配置时长,UE根据第二配置信息检测第二无线链路是否发生RLF的步骤包括:UE检测是否从第二无线链路连续接收到第二配置数量的失步指示;如果从第二无线链路连续接收到第二配置数量的失步指示,UE开启第二计时器;UE检测在第二计时器的计时时长超出第二配置时长之前是否从第二无线链路连续接收到第二预定数量的同步指示;如果没有从第二无线链路连续接收到第二预定数量的同步指示,UE判定第二无线链路发生RLF。
结合第一方面的第九种可能的实现方式,在第一方面的第十种可能的实现方式中,UE根据第二配置信息检测第二无线链路是否发生RLF的步骤还包括:如果从第二无线链路连续接收到第二预定数量的同步指示,UE判定第二无线链路没有发生RLF,并且关闭第二计时器并清空第二计时器的计时时长。
结合第一方面的第十种可能的实现方式,在第一方面的第十一种可能的实现方式中,UE根据第一配置信息检测第一无线链路是否发生RLF的步骤先于UE根据第二配置信息检测第二无线链路是否发生RLF的步骤进行,具体为:UE检测到从第一无线链路接收到第一个失步指示时,UE检测是否从第二无线链路连续接收到第二配置数量的失步指示。
结合第一方面的第十种可能的实现方式,在第一方面的第十二种可能的实现方式中,UE根据第一配置信息检测第一无线链路是否发生RLF的步骤先于UE根据第二配置信息检测第二无线链路是否发生RLF的步骤进行,具体为:UE检测到从第一无线链路连续接收到第一配置数量的失步指示时,UE检测是否从第二无线链路连续接收到第二配置数量的失步指示。
结合第一方面的第十种可能的实现方式,在第一方面的第十三种可能的实现方式中,UE根据第一配置信息检测第一无线链路是否发生RLF的步骤先于UE根据第二配置信息检测第二无线链路是否发生RLF的步骤进行,具体为:UE判定第一无线链路发生RLF时,UE检测是否从第二无线链路连续接收到第二配置数量的失步指示。
结合第一方面的第十种可能的实现方式,在第一方面的第十四种可能的实现方式中,UE根据第一配置信息检测第一无线链路是否发生RLF的步骤与UE根据第二配置信息检测第二无线链路是否发生RLF的步骤同时进行。
结合第一方面的第十四种可能的实现方式,在第一方面的第十五种可能的实现方式中,第一计时器和第二计时器为同一计时器,并且第一配置时长等于第二配置时长,UE分别根据第一配置信息检测第一无线链路是否发生RLF和根据第二配置信息检测第二无线链路是否发生RLF的步骤还包括:在UE开启第一计时器后,UE检测到在第一计时器的计时时长超出第一配置时长之前从第一无线链路连续接收到第一预定数量的同步指示或者从第二无线链路连续接收到第二预定数量的同步指示时,UE关闭第一计时器并清空第一计时器的计时时长。
结合第一方面的第十五种可能的实现方式,在第一方面的第十六种可能的实现方式中,第一预定数量等于第二预定数量。
结合第一方面的第十四种可能的实现方式,在第一方面的第十七种可能的实现方式中,第一计时器和第二计时器为同一计时器,第一配置数量等于第二配置数量,UE分别根据第一配置信息检测第一无线链路是否发生RLF和根据第二配置信息检测第二无线链路是否发生RLF的步骤还包括:UE检测到从第一无线链路或者从第二无线链路连续接收到第一配置数量的失步指示时,UE开启第一计时器。
本发明的第二方面提供一种用户设备,用户设备包括链路建立模块、检测模块和RRC模块,其中,链路建立模块用于同时分别与第一基站建立第一无线链路、与第二基站建立第二无线链路;检测模块用于分别检测第一无线链路是否发生RLF和第二无线链路是否发生RLF;RRC模块用于在检测模块检测到第一无线链路发生RLF而第二无线链路没有发生RLF时,放弃启动由于第一无线链路发生RLF而触发的RRC连接重建过程。
结合第二方面,在第二方面的第一种可能的实现方式中,用户设备还包括判断模块和确认模块,其中,判断模块用于在检测模块检测到第一无线链路发生RLF而第二无线链路没有发生RLF时,判断第一无线链路上是否存在无线承载;确认模块用于在判断模块判断到第一无线链路上存在无线承载时,确认第一无线链路上的无线承载是否在第一预定时间内切换至第二无线链路;RRC模块还用于在确认模块确认第一无线链路上的无线承载在第一预定时间内切换至第二无线链路时,放弃启动由于第一无线链路发生RLF而触发的RRC连接重建过程。
结合第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现方式中,RRC模块还用于在判断模块判断到第一无线链路上不存在无线承载时,放弃启动由于第一无线链路发生RLF而触发的RRC连接重建过程。
结合第二方面的第一种可能的实现方式,在第二方面的第三种可能的实现方式中,RRC模块还用于在确认模块确认第一无线链路上的无线承载没有在第一预定时间内切换至第二无线链路时,启动由于第一无线链路发生RLF而触发的RRC连接重建过程。
结合第二方面的第一种可能的实现方式,在第二方面的第四种可能的实现方式中,用户设备还包括承载建立模块,其中,判断模块还用于在检测模块检测到第一无线链路没有发生RLF而第二无线链路发生RLF时,判断第二无线链路上是否存在无线承载;确认模块还用于在判断模块判断到第二无线链路上存在无线承载时,确认第二无线链路上的无线承载是否在第二预定时间内切换至第一无线链路;承载建立模块用于在确认模块确认第二无线链路上的无线承载没有在第二预定时间内切换至第一无线链路时,尝试在第一无线链路上重建第二无线链路上的无线承载。
结合第二方面或第二方面的第二种可能的实现方式,在第二方面的第五种可能的实现方式中,RRC模块还用于在检测模块检测到第一无线链路发生RLF且第二无线链路发生RLF时,启动由于第一无线链路发生RLF而触发的RRC连接重建过程。
结合第二方面、第二方面的第一种、第二种、第三种或第四种可能的实现方式,在第二方面的第六种可能的实现方式中,用户设备还包括接收模块,其中,接收模块用于分别在链路建立模块建立第一无线链路时接收由第一基站生成的第一配置信息和在链路建立模块建立第二无线链路时接收由第一基站或第二基站生成的第二配置信息;检测模块用于分别根据第一配置信息检测第一无线链路是否发生RLF和根据第二配置信息检测第二无线链路是否发生RLF。
结合第二方面的第六种可能的实现方式,在第二方面的第七种可能的实现方式中,第一配置信息包括第一配置数量、第一预定数量和第一配置时长,检测模块包括第一失步检测单元、第一同步检测单元、第一启动单元、判定单元和第一计时器,其中,第一失步检测单元用于检测是否从第一无线链路连续接收到第一配置数量的失步指示;第一启动单元用于在第一失步检测单元检测到从第一无线链路连续接收到第一配置数量的失步指示时,开启第一计时器;第一同步检测单元用于在第一启动单元开启第一计时器时,检测在第一计时器的计时时长超出第一配置时长之前是否从第一无线链路连续接收到第一预定数量的同步指示;判定单元用于在第一同步检测单元检测到没有从第一无线链路连续接收到第一预定数量的同步指示时,判定第一无线链路发生RLF。
结合第二方面的第七种可能的实现方式,在第二方面的第八种可能的实现方式中,判定单元还用于在第一同步检测单元检测到从第一无线链路连续接收到第一预定数量的同步指示时,判定第一无线链路没有发生RLF;第一启动单元还用于在第一同步检测单元检测到从第一无线链路连续接收到第一预定数量的同步指示时,关闭第一计时器并清空第一计时器的计时时长。
结合第二方面的第八种可能的实现方式,在第二方面的第九种可能的实现方式中,第二配置信息包括第二配置数量、第二预定数量和第二配置时长,检测模块还包括第二失步检测单元、第二同步检测单元、第二启动单元和第二计时器,其中,第二失步检测单元用于检测是否从第二无线链路连续接收到第二配置数量的失步指示;第二启动单元用于在第二失步检测单元检测到从第二无线链路连续接收到第二配置数量的失步指示时,开启第二计时器;第二同步检测单元用于在第二启动单元开启第二计时器时,检测在第二计时器的计时时长超出第二配置时长之前是否从第二无线链路连续接收到第二预定数量的同步指示;判定单元还用于在第二同步检测单元检测到没有从第二无线链路连续接收到第二预定数量的同步指示,判定第二无线链路发生RLF。
结合第二方面的第九种可能的实现方式,在第二方面的第十种可能的实现方式中,判定单元还用于在第二同步检测单元检测到从第二无线链路连续接收到第二预定数量的同步指示时,判定第二无线链路没有发生RLF;第二启动单元还用于在第二同步检测单元检测到从第二无线链路连续接收到第二预定数量的同步指示时,关闭第二计时器并清空第二计时器的计时时长。
结合第二方面的第十种可能的实现方式,在第二方面的第十一种可能的实现方式中,检测模块根据第一配置信息检测第一无线链路是否发生RLF后,根据第二配置信息检测第二无线链路是否发生RLF,具体为:第一失步检测单元检测到从第一无线链路接收到第一个失步指示时,第二失步检测单元开始检测是否从第二无线链路连续接收到第二配置数量的失步指示。
结合第二方面的第十种可能的实现方式,在第二方面的第十二种可能的实现方式中,检测模块根据第一配置信息检测第一无线链路是否发生RLF后,根据第二配置信息检测第二无线链路是否发生RLF,具体为:第一失步检测单元检测到从第一无线链路连续接收到第一配置数量的失步指示时,第二失步检测单元开始检测是否从第二无线链路连续接收到第二配置数量的失步指示。
结合第二方面的第十种可能的实现方式,在第二方面的第十三种可能的实现方式中,检测模块根据第一配置信息检测第一无线链路是否发生RLF后,根据第二配置信息检测第二无线链路是否发生RLF,具体为:判定单元判定第一无线链路发生RLF时,第二失步检测单元开始检测是否从第二无线链路连续接收到第二配置数量的失步指示。
结合第二方面的第十种可能的实现方式,在第二方面的第十四种可能的实现方式中,检测模块同时根据第一配置信息检测第一无线链路是否发生RLF和根据第二配置信息检测第二无线链路是否发生RLF。
结合第二方面的第十四种可能的实现方式,在第二方面的第十五种可能的实现方式中,第一计时器和第二计时器为同一计时器,并且第一配置时长等于第二配置时长,则第一启动单元或第二启动单元开启第一计时器后,第一同步检测单元检测到在第一计时器的计时时长超出第一配置时长之前从第一无线链路连续接收到第一预定数量的同步指示或者第二同步检测单元检测到在第一计时器的计时时长超出第一配置时长之前从第二无线链路连续接收到第二预定数量的同步指示时,第一启动单元或第二启动单元还用于关闭第一计时器并清空第一计时器的计时时长。
结合第二方面的第十四种可能的实现方式,在第二方面的第十六种可能的实现方式中,第一计时器和第二计时器为同一计时器,第一配置数量等于第二配置数量,则第一失步检测单元检测到从第一无线链路连续接收到第一配置数量的失步指示或者第二失步检测单元检测到从第二无线链路连续接收到第一配置数量的失步指示时,第一启动单元或者第二启动单元还用于开启第一计时器。
本发明的第三方面提供一种无线链路故障的处理方法,处理方法包括:基站与UE建立第一无线链路,其中,UE同时与另一基站建立第二无线链路;基站检测第一无线链路是否发生RLF;如果第一无线链路发生RLF,基站判断第一无线链路上是否存在无线承载;如果第一无线链路上存在无线承载,基站指示另一基站将第一无线链路上的无线承载切换至第二无线链路。
结合第三方面,在第三方面的第一种可能的实现方式中,基站指示另一基站将第一无线链路上的无线承载切换至第二无线链路的步骤具体包括:基站向另一基站发送第一状态信息,以使得另一基站根据第一状态信息向基站发送切换请求,第一状态信息用于指示第一无线链路发生RLF;基站从另一基站接收切换请求;基站根据切换请求向另一基站发送切换指令,以使得另一基站根据切换指令将第一无线链路上的无线承载切换至第二无线链路。
结合第三方面,在第三方面的第二种可能的实现方式中,基站指示另一基站将第一无线链路上的无线承载切换至第二无线链路的步骤具体包括:基站从另一基站接收切换请求,切换请求由另一基站根据UE上报的第一无线链路发生RLF的第一状态信息产生;基站根据切换请求向另一基站发送切换指令,以使得另一基站根据切换指令将第一无线链路上的无线承载切换至第二无线链路。
结合第三方面的第一种或第二种可能的实现方式,在第三方面的第三种可能的实现方式中,处理方法还包括:基站从UE接收第二无线链路发生RLF的第二状态信息;基站根据第二状态信息将第二无线链路上的无线承载切换至第一无线链路;基站向UE发送反馈第二状态信息的切换完成指令,以使UE根据切换完成指令确认第二无线链路上的无线承载切换至第一无线链路。
本发明的第四方面提供一种基站,基站包括链路建立模块、检测模块、判断模块和指示模块,其中,链路建立模块用于与UE建立第一无线链路,其中, UE同时与另一基站建立第二无线链路;检测模块用于在链路建立模块建立第一无线链路后,检测第一无线链路是否发生RLF;判断模块用于在检测模块检测到第一无线链路发生RLF时,判断第一无线链路上是否存在无线承载;指示模块用于在判断模块判断到第一无线链路上存在无线承载时,指示另一基站将第一无线链路上的无线承载切换至第二无线链路。
结合第四方面,在第四方面的第一种可能的实现方式中,指示模块包括第一发送单元、第一接收单元和指示单元,其中,第一发送单元用于向另一基站发送第一状态信息,以使得另一基站根据第一状态信息向基站发送切换请求,第一状态信息用于指示第一无线链路发生RLF;第一接收单元用于从另一基站接收切换请求,并将切换请求发送给指示单元;指示单元用于从接收单元接收切换请求,根据切换请求向另一基站发送切换指令,以使得另一基站根据切换指令将第一无线链路上的无线承载切换至第二无线链路。
结合第四方面,在第四方面的第二种可能的实现方式中,指示模块包括第一接收单元和指示单元,其中,第一接收单元用于从另一基站接收切换请求,并将切换请求发送给指示单元,切换请求由另一基站根据UE上报的第一无线链路发生RLF的第一状态信息产生;指示单元用于从接收单元接收切换请求,根据切换请求向另一基站发送切换指令,以使得另一基站根据切换指令将第一无线链路上的无线承载切换至第二无线链路。
结合第四方面的第一种或第二种可能的实现方式,在第四方面的第三种可能的实现方式中,基站还包括第二接收单元、第二发送单元和切换单元,其中,第二接收单元用于从UE接收第二无线链路发生RLF的第二状态信息,并将第二状态信息发送给切换单元;切换单元用于从第二接收单元接收第二状态信息,根据第二状态信息将第二无线链路上的无线承载切换至第一无线链路;第二发送单元还用于在切换单元将第二无线链路上的无线承载切换至第一无线链路后,向UE发送反馈第二状态信息的切换完成指令,以使UE根据切换完成指令确认第二无线链路上的无线承载切换至第一无线链路。
本发明的第五方面提供一种用户设备,用户设备包括处理器以及与处理器电连接的存储器,其中,处理器用于同时分别与第一基站建立第一无线链路、与第二基站建立第二无线链路,分别检测第一无线链路是否发生RLF和第二无线链路是否发生RLF,并在检测到第一无线链路发生RLF而第二无线链路没有发生RLF时,放弃启动由于第一无线链路发生RLF而触发的RRC连接重建过程;存储器用于存储数据。
综上所述,本发明的无线链路故障的处理方法、用户设备和基站在UE分别与第一基站建立第一无线链路、与第二基站建立第二无线链路后,分别检测第一无线链路是否发生RLF和第二无线链路是否发生RLF,如果第一无线链路发生RLF而第二无线链路没有发生RLF,UE放弃启动由于第一无线链路发生RLF而触发的RRC连接重建过程,从而达到在发生RLF时减少不必要的RRC连接重建过程的目的,避免浪费利用无线资源。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其他目的、特征和优点能够更明显易懂,以下特举较佳实施例,并配合附图,详细说明如下。
【附图说明】
图1是本申请无线链路故障的处理方法第一实施例的流程示意图;
图2是本申请无线链路故障的处理方法第二实施例的流程示意图;
图3是图2所示的处理方法中切换无线承载的信息交互示意图;
图4是本申请无线链路故障的处理方法第三实施例的流程示意图;
图5是本申请无线链路故障的处理方法第四实施例的流程示意图;
图6是本申请无线链路故障的处理方法第五实施例的流程示意图;
图7是本申请用户设备第一实施例的结构示意图;
图8是本申请用户设备第二实施例的结构示意图;
图9是本申请用户设备第三实施例的结构示意图;
图10是本申请无线链路故障的处理方法第六实施例的流程示意图;
图11是本申请无线链路故障的处理方法第七实施例的流程示意图;
图12是本申请基站一实施例的结构示意图;
图13是本申请用户设备第四实施例的结构示意图。
【具体实施方式】
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,均属于本发明保护的范围。
参见图1,是本申请无线链路故障的处理方法第一实施例的流程示意图。无线链路故障的处理方法包括以下步骤:
步骤S11:UE同时分别与第一基站建立第一无线链路、与第二基站建立第二无线链路。
其中,第一基站和第二基站同时为UE服务。第一基站和第二基站可以是相同网络制式下的基站,比如第一基站和第二基站的网络制式均为GSM(Global System For Mobile Communication,全球移动通讯***)。在此基础上,第一基站和第二基站也可以工作在不同频点,比如第一基站工作在GSM900Mhz,第二基站工作在GSM1800Mhz。
第一基站和第二基站还可以是不同网络制式下的基站。满足inter-rat切换条件,比如第一基站的网络制式均为GSM,第二基站的网络制式为CDMA(Code Division Multiple Access,码分多址),此时,UE可以在第一基站和第二基站上进行2G(2rd-generation,第二代移动通信技术)网络到3G(3rd-generation,第三代移动通信技术)网络的切换或者3G网络到2G网络的切换。
第一基站和第二基站支持相同网络制式的情况下,第二基站的信号覆盖范围号还可以在第一基站的信号覆盖范围之内,也就是说,第一基站为宏基站,第二基站为微基站。
步骤S12:UE分别检测第一无线链路是否发生RLF和第二无线链路是否发生RLF。
步骤S13:如果第一无线链路发生RLF而第二无线链路没有发生RLF,UE放弃启动由于第一无线链路发生RLF而触发的RRC连接重建过程。
其中,第一无线链路发生RLF说明UE不能使用第一基站提供的服务,但是如果这时第二无线链路没有发生RLF,UE可能会使用第二基站提供的服务,所以在第一无线链路发生RLF并不启动RRC连接重建过程,而是进一步根据第二无线链路的状况来决定是否启动RRC连接重建过程。
本申请实施例的无线链路故障的处理方法中,由于UE同时与第一基站和第二基站建立有第一无线链路和第二无线链路,在检测到第一无线链路发生RLF时,并不立即启动RRC连接重建过程,而是检测第二无线链路是否发生RLF,如果第二无线链路没有发生RLF,那么UE就放弃RRC连接重建过程,从而达到在发生RLF时减少不必要的RRC连接重建过程的目的,避免浪费利用无线资源。
参见图2,是本申请无线链路故障的处理方法第二实施例的流程示意图。无线链路故障的处理方法包括以下步骤:
步骤S21:UE同时分别与第一基站建立第一无线链路、与第二基站建立第二无线链路。
其中,第一基站和第二基站同时为UE服务,第一基站和第二基站可以是相同网络制式下的基站,可以是不同网络制式下的基站。
步骤S22:UE分别检测第一无线链路是否发生RLF和第二无线链路是否发生RLF。
步骤S23:如果第一无线链路发生RLF而第二无线链路没有发生RLF,UE判断第一无线链路上是否存在无线承载。
步骤S24:如果第一无线链路上存在无线承载,UE确认第一无线链路上的无线承载是否在第一预定时间内切换至第二无线链路。
其中,由于第一无线链路发生RLF,并且第一无线链路上存在无线承载,那么UE需要继续使用该无线承载,否则UE不能正常进行某些业务。此时第二无线链路是没有发生RLF的,所以UE会等待网络侧将第一无线链路上的无线承载切换至第二无线链路,达到合理利用无线资源的目的。但是UE不可能一直等待,否则会影响用户体验。这里,第一预定时间的计时可以由定时器实现,第一预定时间也就是UE的等待时间。
步骤S25:如果第一无线链路上的无线承载在第一预定时间内切换至第二无线链路,UE放弃启动由于第一无线链路发生RLF而触发的RRC连接重建过程。
其中,第一无线链路上的无线承载如果在第一预定时间内切换至第二无线链路,那么说明第二基站可以代替第一基站来提供原先第一基站的服务,UE则不需进行RRC连接重建过程,从而减少不必要的RRC连接重建过程,避免浪费无线资源。
结合参见图2和图3,图3是图2所示的处理方法中切换无线承载的信息交互示意图。UE、第一基站和第二基站之间的信息交互如下:
步骤S31:UE向第二基站上报第一无线链路发生RLF的信息,并开启定时器。
其中,定时器的定时时间为第一预定时间。
步骤S32:第二基站向第一基站发送将第一无线链路上的无线承载切换至第二无线链路的切换请求。
步骤S33:第一基站向第二基站反馈第一无线链路上的无线承载的配置信息。
其中,切换请求和配置信息都通过backhaul传输。
步骤S34:第二基站根据配置信息进行无线承载的切换。
步骤S35:第二基站向UE发送切换完成的指示信息。
步骤S36:UE确认是否在定时器超时前接收到指示信息。
其中,如果定时器没有超时,即UE在第一预定时间内接收到指示信息,UE将放弃启动由于第一无线链路发生RLF而触发的RRC连接重建过程。由于UE在上报第一无线链路发生RLF的信息到接收到指示信息这段时间处于等待状态,切换无线承载的过程完全由网络侧进行,所以网络侧切换无线承载的速度会影响到用户体验,UE设定第一预定时间可以避免网络侧长时间切换不成功或者切换缓慢而造成UE盲目等待的现象。
在更多实施例中,由于UE与第一基站都作为第一无线链路的建立方,第一基站自身也可能会检测第一无线链路是否发生RLF,如果第一基站检测到第一无线链路发生RLF,第一基站就可以直接向第二基站发送配置信息,也就是说,UE、第一基站和第二基站之间的信息交互可以只包括步骤S33、步骤S34、步骤S35和步骤S36,而不包括步骤S31和步骤S32。
参见图4,是本申请无线链路故障的处理方法第三实施例的流程示意图。无线链路故障的处理方法包括以下步骤:
步骤S41:UE同时分别与第一基站建立第一无线链路、与第二基站建立第二无线链路。
步骤S42:UE检测第一无线链路是否发生RLF,若是,如果第一无线链路发生RLF,则进行步骤S43,若否,如果第一无线链路没有发生RLF,则进行步骤S48。
步骤S43:UE检测第二无线链路是否发生RLF,若是,如果第二无线链路发生RLF,则进行步骤S47,若否,如果第二无线链路没有发生RLF,则进行步骤S44。
步骤S44:UE判断第一无线链路上是否存在无线承载,若是,判断到第一无线链路上存在无线承载,则进行步骤S45,若否,判断到第一无线链路上不存在无线承载,则进行步骤S46。
其中,如果第一无线链路上不存在无线承载,说明UE没有业务在第一基站上进行。
步骤S45:UE确认第一无线链路上的无线承载是否在第一预定时间内切换至第二无线链路,若是,第一无线链路上的无线承载在第一预定时间内切换至第二无线链路,则进行步骤S46,若否,第一无线链路上的无线承载没有在第一预定时间内切换至第二无线链路,则进行步骤S47。
其中,如果第一无线链路上存在无线承载,需要将无线承载切换到第二无线链路上,以保证UE上的业务正常进行。无线承载切换的过程由网络侧进行,UE只需要确认切换的结果。
步骤S46:UE放弃启动由于第一无线链路发生RLF而触发的RRC连接重建过程。
其中,第一无线链路上的无线承载在第一预定时间内切换至第二无线链路后,UE上的业务就在第二基站上进行,第一无线链路的RLF状态不会影响到第二无线链路,所以UE不必要启动RRC连接重建过程,
步骤S47:UE启动由于第一无线链路发生RLF而触发的RRC连接重建过程。
其中,第一无线链路和第二无线链路都发生RLF,则必须进行RRC连接重建过程,
步骤S48:UE检测第二无线链路是否发生RLF,若是,第二无线链路发生RLF,则进行步骤S49。
其中,步骤S48和步骤S43虽然都是检测第二无线链路是否发生RLF,但是进行的条件不同。如果第二无线链路没有发生RLF,则重复进行步骤S42。
步骤S49:UE判断第二无线链路上是否存在无线承载,若是,判断到第二无线链路上存在无线承载,则进行步骤S410。
其中,如果第二无线链路上存在无线承载,说明UE有业务在第二基站上进行。如果判断到不存在无线承载,则重复进行步骤S42,并且在下一次进行步骤S42后检测到第一无线链路发生RLF时,直接启动RRC连接重建过程。
步骤S410:UE确认第二无线链路上的无线承载是否在第二预定时间内切换至第一无线链路,若否,第二无线链路上的无线承载没有在第二预定时间内切换至第一无线链路,则进行步骤S411。
其中,由于第一无线链路没有发生RLF,所以网络侧将第二无线链路上的无线承载切换至第一无线链路。UE需要确认切换过程是否在第二预定时间内完成。如果确认第二无线链路上的无线承载在第二预定时间内切换至第一无线链路,则重复进行步骤S42,并且在下一次进行步骤S42后检测到第一无线链路发生RLF时,直接启动RRC连接重建过程。在本实施例中,第一预定时间等于第二预定时间。
步骤S411:UE尝试在第一无线链路上重建第二无线链路上的无线承载。
其中,UE重建第二无线链路上的无线承载的过程可以是UE向第一基站发出无线承载的请求,第一基站根据请求为UE分配无线资源,无线资源完成后,第一基站向UE发送确认消息,以使UE在第一无线链路上发射信号进行业务。
在本发明实施例的无线链路故障的处理方法中,在检测到第一无线链路和第二无线链路中只有一条无线链路发生RLF时,并不启动RRC连接重建过程,而是将该条无线链路上的无线承载切换至另一条无线链路上,从而达到了在发生RLF时减少不必要的RRC连接重建过程的目的,能够充分利用无线资源,避免浪费无线资源。
参见图5,是本申请无线链路故障的处理方法第四实施例的流程示意图。无线链路故障的处理方法包括以下步骤:
步骤S51:UE同时分别与第一基站建立第一无线链路、与第二基站建立第二无线链路。
步骤S52:UE分别在建立第一无线链路时接收由第一基站生成的第一配置信息和在建立第二无线链路时接收由第一基站或第二基站生成的第二配置信息,第一配置信息包括第一配置数量、第一预定数量和第一配置时长,第二配置信息包括第二配置数量、第二预定数量和第二配置时长。
其中,UE可以通过第一无线链路接收第一配置信息,也可以通过第二无线链路接收第一配置信息,甚至可以通过其他途径接收第一配置信息。UE可以通过第二无线链路或者其他途径接收第二配置信息。
如果第一基站是宏基站、第二基站是微基站,那么第二配置信息可以由第一基站生成。
步骤S53:UE检测是否从第一无线链路连续接收到第一配置数量的失步指示,若是,从第一无线链路连续接收到第一配置数量的失步指示,则进行步骤S54。
其中,针对无线链路一般设定有第一阈值和第二阈值,第一阈值大于第二阈值。在小区参考信号(Cell Reference Signal,CRS)的信号质量高于第一阈值时,UE将接收到同步指示,在小区参考信号的信号质量低于第二阈值时,UE将接收到失步指示,若小区参考信号的信号质量高于第二阈值但低于第一阈值,UE既接收不到同步指示也接收不到失步指示。
步骤S54:UE开启第一计时器。
其中,第一计时器以第一配置时长作为计时门限。
步骤S55:UE检测在第一计时器的计时时长超出第一配置时长之前是否从第一无线链路连续接收到第一预定数量的同步指示,若是,在第一计时器的计时时长超出第一配置时长之前从第一无线链路连续接收到第一预定数量的同步指示,则进行步骤S56,若否,在第一计时器的计时时长超出第一配置时长之前没有从第一无线链路连续接收到第一预定数量的同步指示,则进行步骤S57。
其中,第一计时器的计时时长超出第一配置时长,说明第一计时器超时,即使之后从第一无线链路连续接收到第一预定数量的同步指示,也会认为第一无线链路发生RLF。
步骤S56:UE判定第一无线链路没有发生RLF,并且关闭第一计时器并清空第一计时器的计时时长。
其中,第一计时器关闭并清空后,下一次第一计时器开启时将重新计时。
步骤S57:UE判定第一无线链路发生RLF。
步骤S58:UE检测是否从第二无线链路连续接收到第二配置数量的失步指示,若是,从第二无线链路连续接收到第二配置数量的失步指示,则进行步骤S59。
其中,步骤S58与步骤S53同时进行。
步骤S59:UE开启第二计时器。
其中,第二计时器以第二配置时长作为计时门限。
步骤S510:UE检测在第二计时器的计时时长超出第二配置时长之前是否从第二无线链路连续接收到第二预定数量的同步指示,若是,在第二计时器的计时时长超出第二配置时长之前从第二无线链路连续接收到第二预定数量的同步指示,则进行步骤S512,若否,在第二计时器的计时时长超出第二配置时长之前没有从第二无线链路连续接收到第二预定数量的同步指示,则进行步骤S511。
其中,第二计时器的计时时长超出第二配置时长,说明第二计时器超时,即使之后从第二无线链路连续接收到第二预定数量的同步指示,也会认为第二无线链路发生RLF。
步骤S511:UE判定第二无线链路发生RLF。
步骤S512:UE判定第二无线链路没有发生RLF,并且关闭第二计时器并清空第二计时器的计时时长。
步骤S513:UE放弃启动由于第一无线链路发生RLF而触发的RRC连接重建过程。
其中,在UE判定第一无线链路发生RLF而第二无线链路没有发生RLF时,就放弃启动RRC连接重建过程。
在本实施例中,步骤S53和步骤S58同时进行,即UE根据第一配置信息检测第一无线链路是否发生RLF的步骤与UE根据第二配置信息检测第二无线链路是否发生RLF的步骤同时进行。但在更多实施例中,UE根据第一配置信息检测第一无线链路是否发生RLF的步骤可以先于UE根据第二配置信息检测第二无线链路是否发生RLF的步骤进行,比如,步骤S58可以在步骤S53判断为是时进行,即UE检测到从第一无线链路连续接收到第一配置数量的失步指示时, UE检测是否从第二无线链路连续接收到第二配置数量的失步指示;或者步骤S58在步骤S57后进行,即UE判定第一无线链路发生RLF时,UE检测是否从第二无线链路连续接收到第二配置数量的失步指示;或者在步骤53过程中,从接收第一个失步指示时,进行步骤S48,即UE检测到从第一无线链路接收到第一个失步指示时,UE检测是否从第二无线链路连续接收到第二配置数量的失步指示。
参见图6,是本申请无线链路故障的处理方法第五实施例的流程示意图。本实施例是第四实施例的一个变型,无线链路故障的处理方法包括以下步骤:
步骤S61:UE同时分别与第一基站建立第一无线链路、与第二基站建立第二无线链路。
步骤S62:UE分别在建立第一无线链路时接收由第一基站生成的第一配置信息和在建立第二无线链路时接收由第一基站或第二基站生成的第二配置信息,第一配置信息包括第一配置数量、第一预定数量和第一配置时长,第二配置信息包括第二配置数量、第二预定数量和第二配置时长。
步骤S63:UE检测是否从第一无线链路连续接收到第一配置数量的失步指示。
步骤S64:UE检测是否从第二无线链路连续接收到第二配置数量的失步指示。
其中,步骤S63和步骤S64同时进行。
步骤S65:UE开启第一计时器。
步骤S66:UE检测在第一计时器的计时时长超出第一配置时长之前是否从第一无线链路连续接收到第一预定数量的同步指示,若是,在第一计时器的计时时长超出第一配置时长之前从第一无线链路连续接收到第一预定数量的同步指示,则进行步骤S68。
步骤S67:UE检测在第一计时器的计时时长超出第一配置时长之前是否从第二无线链路连续接收到第二预定数量的同步指示,若是,在第一计时器的计时时长超出第一配置时长之前从第二无线链路连续接收到第二预定数量的同步指示,则进行步骤S69。
其中,第一配置时长等于第二配置时长。在其它实施例中,第一预定数量还可以等于第二预定数量。
步骤S68:UE判定第一无线链路没有发生RLF,并且关闭第一计时器并清空第一计时器的计时时长。
其中,关闭第一计时器,相当于中断检测第二无线链路是否发生RLF。UE不会启动RRC连接重建过程。
步骤S69:UE判定第二无线链路没有发生RLF,并且关闭第一计时器并清空第一计时器的计时时长。
其中,关闭第一计时器,相当于中断检测第一无线链路是否发生RLF。UE不会启动RRC连接重建过程。
步骤S610:UE启动由于第一无线链路或第二无线链路发生RLF而触发的RRC连接重建过程。
其中,如果在第一计时器超时之前都没有从第一无线链路连续接收到第一预定数量的同步指示或从第二无线链路接收到第二预定数量的同步指示,则说明第一无线链路和第二无线链路都发生RLF,则启动RRC连接重建过程。
在其它实施例中,第一配置数量等于第二配置数量,使得第一无线链路的检测和第二无线链路的检测可以尽可能共享参数,那么UE检测到从第一无线链路或者从第二无线链路连续接收到第一配置数量的失步指示时,UE开启第一计时器。
参见图7,是本申请用户设备第一实施例的结构示意图。
用户设备70包括链路建立模块701、检测模块702和RRC模块703。
链路建立模块701用于同时分别与第一基站71建立第一无线链路、与第二基站72建立第二无线链路。建立无线链路后,第一基站71和第二基站72同时为用户设备70服务。第一基站71和第二基站72可以是相同网络制式下的基站,比如第一基站71和第二基站72的网络制式均为GSM。在此基础上,第一基站71和第二基站72也可以工作在不同频点,比如第一基站71工作在GSM900Mhz,第二基站72工作在GSM1800Mhz。第一基站71和第二基站72还可以是不同网络制式下的基站。满足inter-rat切换条件,比如第一基站71的网络制式均为GSM,第二基站72的网络制式为CDMA。在本实施例中,第一基站71和第二基站72支持相同网络制式的情况下,第二基站72的信号覆盖范围号还可以在第一基站71的信号覆盖范围之内,也就是说,第一基站71为宏基站,第二基站72为微基站。
检测模块702用于分别检测第一无线链路是否发生RLF和第二无线链路是否发生RLF。
RRC模块703用于在检测模块702检测到第一无线链路发生RLF而第二无线链路没有发生RLF时,放弃启动由于第一无线链路发生RLF而触发的RRC连接重建过程。由于用户设备70同时与第一基站71和第二基站72连接,那么第一无线链路发生无线链路故障时,第二无线链路可能保持正常,用户设备70还可能继续被第二基站72服务,此时启动RRC连接重建过程是不必要的。
在本实施例中,RRC模块703还用于在检测模块702检测到第一无线链路发生RLF且第二无线链路发生RLF时,启动由于第一无线链路发生RLF而触发的RRC连接重建过程。第一无线链路发生和第二无线链路都发生RLF,说明用户设备70无法继续呗第一基站71或第二基站72服务,此时应启动RRC连接重建过程。
参见图8,是本申请用户设备第二实施例的结构示意图。用户设备80包括链路建立模块801、检测模块802、判断模块803、确认模块804、RRC模块805和承载建立模块806。
链路建立模块801用于同时分别与第一基站81建立第一无线链路、与第二基站82建立第二无线链路。
检测模块802块用于分别检测第一无线链路是否发生RLF和第二无线链路是否发生RLF。
判断模块803用于在检测模块802检测到第一无线链路发生RLF而第二无线链路没有发生RLF时,判断第一无线链路上是否存在无线承载。由于第一无线链路发生RLF,并且第一无线链路上存在无线承载,那么用户设备80需要继续使用该无线承载,否则用户设备80不能正常进行某些业务。此时第二无线链路是没有发生RLF的,所以用户设备80会等待网络侧将第一无线链路上的无线承载切换至第二无线链路,达到合理利用无线资源的目的。但是用户设备80不可能一直等待,否则会影响用户体验。这里,第一预定时间的计时可以由定时器实现,第一预定时间也就是用户设备80的等待时间。
确认模块804用于在判断模块803判断到第一无线链路上存在无线承载时,确认第一无线链路上的无线承载是否在第一预定时间内切换至第二无线链路。
RRC模块805用于在确认模块804确认第一无线链路上的无线承载在第一预定时间内切换至第二无线链路或者在判断模块803判断到第一无线链路上不存在无线承载时时,放弃启动由于第一无线链路发生RLF而触发的RRC连接重建过程,以及用于在确认模块804确认第一无线链路上的无线承载没有在第一预定时间内切换至第二无线链路时,启动由于第一无线链路发生RLF而触发的RRC连接重建过程。其中,第一无线链路上的无线承载如果在第一预定时间内切换至第二无线链路,那么说明第二基站82可以代替第一基站81来提供原先第一基站81的服务,用户设备80则不需进行RRC连接重建过程,从而减少不必要的RRC连接重建过程,避免浪费无线资源。
判断模块803还用于在检测模块802检测到第一无线链路没有发生RLF而第二无线链路发生RLF时,判断第二无线链路上是否存在无线承载。
确认模块804还用于在判断模块803判断到第二无线链路上存在无线承载时,确认第二无线链路上的无线承载是否在第二预定时间内切换至第一无线链路。其中,由于第一无线链路没有发生RLF,所以网络侧将第二无线链路上的无线承载切换至第一无线链路。UE需要确认切换过程是否在第二预定时间内完成。在本实施例中,第一预定时间等于第二预定时间。
承载建立模块806用于在确认模块804确认第二无线链路上的无线承载没有在第二预定时间内切换至第一无线链路时,尝试在第一无线链路上重建第二无线链路上的无线承载。其中,用户设备80重建第二无线链路上的无线承载的过程可以是用户设备80向第一基站81发出无线承载的请求,第一基站81根据请求为用户设备80分配无线资源,无线资源完成后,第一基站81向用户设备80发送确认消息,以使用户设备80在第一无线链路上发射信号进行业务。
由此可见,只要第一无线链路和第二无线链路中至少一个没有发生RLF,RRC连接重建过程就不会进行,达到了在发生RLF时减少不必要的RRC连接重建过程的目的,可以合理利用无线资源,并保证原有的网络性能。
在本发明实施例的用户设备中,在检测模块802检测到第一无线链路和第二无线链路中只有一条无线链路发生RLF时,并不启动RRC连接重建过程,而是等待网络侧将该条无线链路上的无线承载切换至另一条无线链路上,从而达到了在发生RLF时减少不必要的RRC连接重建过程的目的,能够充分利用无线资源,避免浪费无线资源。
参见图9,是本申请用户设备第三实施例的结构示意图。用户设备90包括链路建立模块901、接收模块902、检测模块903和RRC模块904。
链路建立模块901用于同时分别与第一基站91建立第一无线链路、与第二基站92建立第二无线链路。
接收模块902用于分别在链路建立模块901建立第一无线链路时接收由第一基站91生成的第一配置信息和在链路建立模块901建立第二无线链路时接收由第一基站91或第二基站92生成的第二配置信息。接收模块902可以通过第一无线链路接收第一配置信息,也可以通过第二无线链路接收第一配置信息,甚至可以通过其他途径接收第一配置信息。接收模块902可以通过第二无线链路或者其他途径接收第二配置信息。如果第一基站是宏基站、第二基站是微基站,那么第二配置信息可以由第一基站生成。
检测模块903用于分别根据第一配置信息检测第一无线链路是否发生RLF和根据第二配置信息检测第二无线链路是否发生RLF。
RRC模块904用于在检测模块903检测到第一无线链路发生RLF而第二无线链路没有发生RLF时,放弃启动由于第一无线链路发生RLF而触发的RRC连接重建过程。
具体地,第一配置信息包括第一配置数量、第一预定数量和第一配置时长。第二配置信息包括第二配置数量、第二预定数量和第二配置时长。检测模块903包括第一失步检测单元931、第一启动单元932、第一计时器933、第一同步检测单元934、判定单元935、第二失步检测单元941、第二启动单元942、第二计时器943和第二同步检测单元944。
第一失步检测单元931用于检测是否从第一无线链路连续接收到第一配置数量的失步指示。其中,针对第一无线链路一般设定有第一阈值和第二阈值,第一阈值大于第二阈值。在小区参考信号的信号质量高于第一阈值时,第一失步检测单元931将接收到同步指示,在小区参考信号的信号质量低于第二阈值时,第一失步检测单元931将接收到失步指示,若小区参考信号的信号质量高于第二阈值但低于第一阈值,第一失步检测单元931既接收不到同步指示也接收不到失步指示。
第一启动单元932用于在第一失步检测单元931检测到从第一无线链路连续接收到第一配置数量的失步指示时,开启第一计时器933。其中,第一计时器933以第一配置时长作为计时门限。
第一同步检测单元934用于在第一启动单元932开启第一计时器933时,检测在第一计时器933的计时时长超出第一配置时长之前是否从第一无线链路连续接收到第一预定数量的同步指示。
第二失步检测单元941用于检测是否从第二无线链路连续接收到第二配置数量的失步指示。
第二启动单元942用于在第二失步检测单元检测到从第二无线链路连续接收到第二配置数量的失步指示时,开启第二计时器943。其中,第二计时器943以第二配置时长作为计时门限。
第二同步检测单元944用于在第二启动单元942开启第二计时器943时,检测在第二计时器943的计时时长超出第二配置时长之前是否从第二无线链路连续接收到第二预定数量的同步指示。
判定单元935用于在第一同步检测单元934检测到没有从第一无线链路连续接收到第一预定数量的同步指示时,判定第一无线链路发生RLF,或者在第二同步检测单元944检测到没有从第二无线链路连续接收到第二预定数量的同步指示,判定第二无线链路发生RLF。其中,第一计时器933的计时时长超出第一配置时长,说明第一计时器933超时,即使之后第一同步检测单元934从第一无线链路连续接收到第一预定数量的同步指示,也会认为第一无线链路发生RLF。同样地,第二计时器933超时,也会认为第二无线链路发生RLF。
判定单元935还用于在第一同步检测单元934检测到从第一无线链路连续接收到第一预定数量的同步指示时,判定第一无线链路没有发生RLF以及在第二同步检测单元944检测到从第二无线链路连续接收到第二预定数量的同步指示时,判定第二无线链路没有发生RLF。
第一启动单元932还用于在第一同步检测单元934检测到从第一无线链路连续接收到第一预定数量的同步指示时,关闭第一计时器并清空第一计时器的计时时长。其中,第一计时器933关闭并清空后,下一次第一计时器933开启时将重新计时。
第二启动单元942还用于在第二同步检测单元944检测到从第二无线链路连续接收到第二预定数量的同步指示时,关闭第二计时器并清空第二计时器的计时时长。其中,第二计时器943关闭并清空后,下一次第二计时器943开启时将重新计时。
其中,检测模块903根据第一配置信息检测第一无线链路是否发生RLF后,根据第二配置信息检测第二无线链路是否发生RLF,或者检测模块903同时根据第一配置信息检测第一无线链路是否发生RLF和根据第二配置信息检测第二无线链路是否发生RLF,具体可以分为四种情况,第一种,第一失步检测单元931检测到从第一无线链路接收到第一个失步指示时,第二失步检测单元941开始检测是否从第二无线链路连续接收到第二配置数量的失步指示;第二种,第一失步检测单元931检测到从第一无线链路连续接收到第一配置数量的失步指示时,第二失步检测单元941开始检测是否从第二无线链路连续接收到第二配置数量的失步指示;第三种,判定单元935判定第一无线链路发生RLF时,第二失步检测单元941开始检测是否从第二无线链路连续接收到第二配置数量的失步指示;第四种,第一失步检测单元931和第二失步检测单元941同时开始工作。本实施例优选为第四种。
在本实施例中,第一计时器933和第二计时器943为同一计时器,并且第一配置时长等于第二配置时长,第一预定数量还可以等于第二预定数量。则第一启动单元932或第二启动单元942开启第一计时器933后,第一同步检测单元934检测到在第一计时器933的计时时长超出第一配置时长之前从第一无线链路连续接收到第一预定数量的同步指示或者第二同步检测单元944检测到在第一计时器933的计时时长超出第一配置时长之前从第二无线链路连续接收到第二预定数量的同步指示时,第一启动单元932或第二启动单元942还用于关闭第一计时器933并清空第一计时器933的计时时长。其中,如果在第一计时器933超时之前都没有从第一无线链路连续接收到第一预定数量的同步指示或从第二无线链路接收到第二预定数量的同步指示,则说明第一无线链路和第二无线链路都发生RLF,则启动RRC连接重建过程。
优选地,第一配置数量等于第二配置数量,则第一失步检测单元931检测到从第一无线链路连续接收到第一配置数量的失步指示或者第二失步检测单元941检测到从第二无线链路连续接收到第一配置数量的失步指示时,第一启动单元932或者第二启动单元942还用于开启第一计时器933。
参见图10,是本申请无线链路故障的处理方法第六实施例的流程示意图。无线链路故障的处理方法包括以下步骤:
步骤S110:基站与UE建立第一无线链路,其中,UE同时与另一基站建立第二无线链路。
其中,该基站和该另一基站同时为UE服务。两者可以是相同网络制式下的基站,比如该基站和该另一基站的网络制式均为GSM,也可以是不同网络制式下的基站。比如该基站和该另一基站满足inter-rat切换条件,该基站的网络制式均为GSM,该另一基站的网络制式为CDMA。
步骤S120:基站检测第一无线链路是否发生RLF。
步骤S130:如果第一无线链路发生RLF,基站判断第一无线链路上是否存在无线承载。
其中,由于第一无线链路建立在该基站与UE之间,所以该基站能够检测到第一无线链路是否发生RLF。第一无线链路上存在无线链路,说明UE有业务在该基站上进行。
步骤S140:如果第一无线链路上存在无线承载,基站指示另一基站将第一无线链路上的无线承载切换至第二无线链路。
其中,切换无线承载的过程相当于将UE业务换到该另一基站上进行。
在本发明实施例的无线链路故障的处理方法,第一无线链路发生RLF后,该基站指示另一基站进行无线承载的切换,全程无需UE的参与,能够减少心灵开销。
参见图11,是本申请无线链路故障的处理方法第七实施例的流程示意图。无线链路故障的处理方法包括以下步骤:
步骤S210:基站与UE建立第一无线链路,其中,UE同时与另一基站建立第二无线链路。
步骤S220:基站检测第一无线链路是否发生RLF。
步骤S230:如果第一无线链路发生RLF,基站判断第一无线链路上是否存在无线承载。
步骤S240:如果第一无线链路上存在无线承载,基站指示另一基站将第一无线链路上的无线承载切换至第二无线链路。
步骤S250:基站从UE接收第二无线链路发生RLF的第二状态信息。
其中,该基站和该另一基站满足inter-rat切换条件,并且该另一基站的信号覆盖范围在该基站的信号覆盖范围之内。该基站可以通过backhoul接收第二状态信息。
步骤S260:基站根据第二状态信息将第二无线链路上的无线承载切换至第一无线链路。
其中,该另一基站不能继续为UE提供服务,因此该基站切换无线承载以代替该另一基站为UE服务。
步骤S270:基站向UE发送反馈第二状态信息的切换完成指令,以使UE根据切换完成指令确认第二无线链路上的无线承载切换至第一无线链路。
其中,基站切换完成后,向UE发送切换完成指令。基站切换无线承载的过程中,UE处于等待状态,切换完成指令可以使UE结束等待状态,以进行下一步操作。
在本实施例中,步骤S240包括:
步骤S241:基站向另一基站发送第一状态信息,以使得另一基站根据第一状态信息向基站发送切换请求,第一状态信息用于指示第一无线链路发生RLF。
步骤S242:基站从另一基站接收切换请求。
步骤S243:基站根据切换请求向另一基站发送切换指令,以使得另一基站根据切换指令将第一无线链路上的无线承载切换至第二无线链路。
其中,切换指令至少包括无线承载的无线资源配置需求,例如信道配置等。
在其它实施例中,步骤S240可以只包括步骤S242和步骤S243,而不包括步骤S241。此时,基站从另一基站接收的切换请求由另一基站根据UE上报的第一无线链路发生RLF的第一状态信息产生。也就是说,UE和该基站都能够检测到第一无线链路发生RLF,则第一状态信息是由UE发送给另一基站。
参见图12,是本申请基站一实施例的结构示意图。基站310包括链路建立模块311、检测模块312、判断模块313和指示模块314。
链路建立模块311用于与UE320建立第一无线链路,其中,UE320同时与另一基站330建立第二无线链路。
检测模块312用于在链路建立模块311建立第一无线链路后,检测第一无线链路是否发生RLF。
判断模块313用于在检测模块312检测到第一无线链路发生RLF时,判断第一无线链路上是否存在无线承载。
指示模块314用于在判断模块313判断到第一无线链路上存在无线承载时,指示另一基站330将第一无线链路上的无线承载切换至第二无线链路。
在本实施例中,指示模块314包括第一发送单元3141、第一接收单元3142和指示单元3143。
第一发送单元3141用于向另一基站330发送第一状态信息,以使得另一基站330根据第一状态信息向基站310发送切换请求,第一状态信息用于指示第一无线链路发生RLF。
第一接收单元3142用于从另一基站330接收切换请求,并将切换请求发送给指示单元3143。
指示单元3143用于从接收单元接收切换请求,根据切换请求向另一基站发送切换指令,以使得另一基站根据切换指令将第一无线链路上的无线承载切换至第二无线链路。
进一步地,基站310还包括第二接收单元315、切换单元316和第二发送单元317。
第二接收单元315用于从UE320接收第二无线链路发生RLF的第二状态信息,并将第二状态信息发送给切换单元316。
切换单元316用于从第二接收单元315接收第二状态信息,根据第二状态信息将第二无线链路上的无线承载切换至第一无线链路。
第二发送单元317用于在切换单元316将第二无线链路上的无线承载切换至第一无线链路后,向UE320发送反馈第二状态信息的切换完成指令,以使UE320根据切换完成指令确认第二无线链路上的无线承载切换至第一无线链路。
参见图13,是本申请用户设备第四实施例的结构示意图。用户设备包括处理器(processer)410、接收器(receiver)420、发送器(emitter)430、随机存取存储器(RAM)440、只读存储器(ROM)450、总线460 以及网络接口单元(Network Interface Unit)470。其中,处理器410 通过总线460分别耦接接收器420、发送器430、随机存取存储器440、只读存储器450以及网络接口单元470。其中,当需要运行用户设备时,通过固化在只读存储器450 中的基本输入输出***(BIOS)或者嵌入式***中的boot loader引导***进行启动,引导用户设备进入正常运行状态。在用户设备进入正常运行状态后,在随机存取存储器440 中运行应用程序(Application Programs)和操作***(OS),使得:
处理器410用于同时分别与第一基站(图未示)建立第一无线链路、与第二基站(图未示)建立第二无线链路,分别检测第一无线链路是否发生RLF和第二无线链路是否发生RLF,并在检测到第一无线链路发生RLF而第二无线链路没有发生RLF时,放弃启动由于第一无线链路发生RLF而触发的RRC连接重建过程。
具体地,处理器410在检测到第一无线链路发生RLF而第二无线链路没有发生RLF时,判断第一无线链路上是否存在无线承载,在判断到第一无线链路上存在无线承载时,确认第一无线链路上的无线承载是否在第一预定时间内切换至第二无线链路,再确认第一无线链路上的无线承载在第一预定时间内切换至第二无线链路时,放弃启动由于第一无线链路发生RLF而触发的RRC连接重建过程。
处理器410的具体实现过程请参照前述实施例的无线链路故障的处理方法以及用户设备,此处不再详述。
通过上述方式,本发明的无线链路故障的处理方法、用户设备和基站在UE分别与第一基站建立第一无线链路、与第二基站建立第二无线链路后,分别检测第一无线链路是否发生RLF和第二无线链路是否发生RLF,如果第一无线链路发生RLF而第二无线链路没有发生RLF,UE放弃启动由于第一无线链路发生RLF而触发的RRC连接重建过程,从而达到在发生RLF时减少不必要的RRC连接重建过程的目的,能够避免浪费利用无线资源,提高用户体验。
在本申请所提供的几个实施例中,应该理解到,所揭露的***,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通讯连接可以是通过一些接口,装置或单元的间接耦合或通讯连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,管理服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (44)

  1. 一种无线链路故障的处理方法,其特征在于,所述处理方法包括:
    用户设备UE同时分别与第一基站建立第一无线链路、与第二基站建立第二无线链路;
    所述UE分别检测所述第一无线链路是否发生无线链路故障RLF和所述第二无线链路是否发生RLF;
    如果所述第一无线链路发生RLF而所述第二无线链路没有发生RLF,所述UE放弃启动由于所述第一无线链路发生RLF而触发的无线资源控制RRC连接重建过程。
  2. 根据权利要求1所述的处理方法,其特征在于,所述如果所述第一无线链路发生RLF而所述第二无线链路没有发生RLF,所述UE放弃启动由于所述第一无线链路发生RLF而触发的RRC连接重建过程的步骤具体包括:
    如果所述第一无线链路发生RLF而所述第二无线链路没有发生RLF,所述UE判断所述第一无线链路上是否存在无线承载;
    如果所述第一无线链路上存在无线承载,所述UE确认所述第一无线链路上的无线承载是否在第一预定时间内切换至所述第二无线链路;
    如果所述第一无线链路上的无线承载在第一预定时间内切换至所述第二无线链路,所述UE放弃启动由于所述第一无线链路发生RLF而触发的RRC连接重建过程。
  3. 根据权利要求2所述的处理方法,其特征在于,所述如果所述第一无线链路发生RLF而所述第二无线链路没有发生RLF,所述UE放弃启动由于所述第一无线链路发生RLF而触发的RRC连接重建过程的步骤还包括:
    如果所述第一无线链路上不存在无线承载,所述UE放弃启动由于所述第一无线链路发生RLF而触发的RRC连接重建过程。
  4. 根据权利要求2所述的处理方法,其特征在于,所述如果所述第一无线链路发生RLF而所述第二无线链路没有发生RLF,所述UE放弃启动由于所述第一无线链路发生RLF而触发的RRC连接重建过程的步骤还包括:
    如果所述第一无线链路上的无线承载没有在第一预定时间内切换至所述第二无线链路,所述UE启动由于所述第一无线链路发生RLF而触发的RRC连接重建过程。
  5. 根据权利要求2所述的处理方法,其特征在于,所述处理方法还包括:
    如果所述第一无线链路没有发生RLF而所述第二无线链路发生RLF, 所述UE判断所述第二无线链路上是否存在无线承载;
    如果所述第二无线链路上存在无线承载,所述UE确认所述第二无线链路上的无线承载是否在第二预定时间内切换至所述第一无线链路;
    如果所述第二无线链路上的无线承载没有在第二预定时间内切换至所述第一无线链路,所述UE尝试在所述第一无线链路上重建所述第二无线链路上的无线承载。
  6. 根据权利要求1或2所述的处理方法,其特征在于,所述处理方法还包括:
    如果所述第一无线链路发生RLF且所述第二无线链路发生RLF,所述UE启动由于所述第一无线链路发生RLF而触发的RRC连接重建过程。
  7. 根据权利要求1-5任一项所述的处理方法,其特征在于,所述UE分别检测所述第一无线链路是否发生RLF和所述第二无线链路是否发生RLF的步骤包括:
    所述UE分别在建立所述第一无线链路时接收由所述第一基站生成的第一配置信息和在建立所述第二无线链路时接收由所述第一基站或所述第二基站生成的第二配置信息;
    所述UE分别根据所述第一配置信息检测所述第一无线链路是否发生RLF和根据所述第二配置信息检测所述第二无线链路是否发生RLF。
  8. 根据权利要求7所述的处理方法,其特征在于,所述第一配置信息包括第一配置数量、第一预定数量和第一配置时长,所述UE根据所述第一配置信息检测所述第一无线链路是否发生RLF的步骤包括:
    所述UE检测是否从所述第一无线链路连续接收到所述第一配置数量的失步指示;
    如果从所述第一无线链路连续接收到所述第一配置数量的失步指示,所述UE开启第一计时器;
    所述UE检测在所述第一计时器的计时时长超出所述第一配置时长之前是否从所述第一无线链路连续接收到所述第一预定数量的同步指示;
    如果没有从所述第一无线链路连续接收到所述第一预定数量的同步指示,所述UE判定所述第一无线链路发生RLF。
  9. 根据权利要求8所述的处理方法,其特征在于,所述UE根据所述第一配置信息检测所述第一无线链路是否发生RLF的步骤还包括:
    如果从所述第一无线链路连续接收到所述第一预定数量的同步指示,所述UE判定所述第一无线链路没有发生RLF,并且关闭所述第一计时器并清空所述第一计时器的计时时长。
  10. 根据权利要求9所述的处理方法,其特征在于,所述第二配置信息包括第二配置数量、第二预定数量和第二配置时长,所述UE根据所述第二配置信息检测所述第二无线链路是否发生RLF的步骤包括:
    所述UE检测是否从所述第二无线链路连续接收到所述第二配置数量的失步指示;
    如果从所述第二无线链路连续接收到所述第二配置数量的失步指示,所述UE开启第二计时器;
    所述UE检测在所述第二计时器的计时时长超出所述第二配置时长之前是否从所述第二无线链路连续接收到所述第二预定数量的同步指示;
    如果没有从所述第二无线链路连续接收到所述第二预定数量的同步指示,所述UE判定所述第二无线链路发生RLF。
  11. 根据权利要求10所述的处理方法,其特征在于,所述UE根据所述第二配置信息检测所述第二无线链路是否发生RLF的步骤还包括:
    如果从所述第二无线链路连续接收到所述第二预定数量的同步指示,所述UE判定所述第二无线链路没有发生RLF,并且关闭所述第二计时器并清空所述第二计时器的计时时长。
  12. 根据权利要求11所述的处理方法,其特征在于,所述UE根据所述第一配置信息检测所述第一无线链路是否发生RLF的步骤先于所述UE根据所述第二配置信息检测所述第二无线链路是否发生RLF的步骤进行,具体为:
    所述UE检测到从所述第一无线链路接收到第一个失步指示时,所述UE检测是否从所述第二无线链路连续接收到所述第二配置数量的失步指示。
  13. 根据权利要求11所述的处理方法,其特征在于,所述UE根据所述第一配置信息检测所述第一无线链路是否发生RLF的步骤先于所述UE根据所述第二配置信息检测所述第二无线链路是否发生RLF的步骤进行,具体为:
    所述UE检测到从所述第一无线链路连续接收到所述第一配置数量的失步指示时,所述UE检测是否从所述第二无线链路连续接收到所述第二配置数量的失步指示。
  14. 根据权利要求11所述的处理方法,其特征在于,所述UE根据所述第一配置信息检测所述第一无线链路是否发生RLF的步骤先于所述UE根据所述第二配置信息检测所述第二无线链路是否发生RLF的步骤进行,具体为:
    所述UE判定所述第一无线链路发生RLF时,所述UE检测是否从所述第二无线链路连续接收到所述第二配置数量的失步指示。
  15. 根据权利要求11所述的处理方法,其特征在于,所述UE根据所述第一配置信息检测所述第一无线链路是否发生RLF的步骤与所述UE根据所述第二配置信息检测所述第二无线链路是否发生RLF的步骤同时进行。
  16. 根据权利要求15所述的处理方法,其特征在于,所述第一计时器和所述第二计时器为同一计时器,并且所述第一配置时长等于所述第二配置时长,所述UE分别根据所述第一配置信息检测所述第一无线链路是否发生RLF和根据所述第二配置信息检测所述第二无线链路是否发生RLF的步骤还包括:
    在所述UE开启所述第一计时器后,所述UE检测到在所述第一计时器的计时时长超出所述第一配置时长之前从所述第一无线链路连续接收到所述第一预定数量的同步指示或者从所述第二无线链路连续接收到所述第二预定数量的同步指示时,所述UE关闭所述第一计时器并清空所述第一计时器的计时时长。
  17. 根据权利要求16所述的处理方法,其特征在于,所述第一预定数量等于第二预定数量。
  18. 根据权利要求15所述的处理方法,其特征在于,所述第一计时器和所述第二计时器为同一计时器,所述第一配置数量等于所述第二配置数量,所述UE分别根据所述第一配置信息检测所述第一无线链路是否发生RLF和根据所述第二配置信息检测所述第二无线链路是否发生RLF的步骤还包括:
    所述UE检测到从所述第一无线链路或者从所述第二无线链路连续接收到所述第一配置数量的失步指示时,所述UE开启所述第一计时器。
  19. 一种用户设备,其特征在于,所述用户设备包括链路建立模块、检测模块和RRC模块,其中,
    所述链路建立模块用于同时分别与第一基站建立第一无线链路、与第二基站建立第二无线链路;
    所述检测模块用于分别检测所述第一无线链路是否发生RLF和所述第二无线链路是否发生RLF;
    所述RRC模块用于在所述检测模块检测到所述第一无线链路发生RLF而所述第二无线链路没有发生RLF时,放弃启动由于所述第一无线链路发生RLF而触发的RRC连接重建过程。
  20. 根据权利要求19所述的用户设备,其特征在于,所述用户设备还包括判断模块和确认模块,其中,
    所述判断模块用于在所述检测模块检测到所述第一无线链路发生RLF而所述第二无线链路没有发生RLF时,判断所述第一无线链路上是否存在无线承载;
    所述确认模块用于在所述判断模块判断到所述第一无线链路上存在无线承载时,确认所述第一无线链路上的无线承载是否在第一预定时间内切换至所述第二无线链路;
    所述RRC模块还用于在所述确认模块确认所述第一无线链路上的无线承载在第一预定时间内切换至所述第二无线链路时,放弃启动由于所述第一无线链路发生RLF而触发的RRC连接重建过程。
  21. 根据权利要求20所述的用户设备,其特征在于,所述RRC模块还用于在所述判断模块判断到所述第一无线链路上不存在无线承载时,放弃启动由于所述第一无线链路发生RLF而触发的RRC连接重建过程。
  22. 根据权利要求20所述的用户设备,其特征在于,所述RRC模块还用于在所述确认模块确认所述第一无线链路上的无线承载没有在第一预定时间内切换至所述第二无线链路时,启动由于所述第一无线链路发生RLF而触发的RRC连接重建过程。
  23. 根据权利要求20所述的用户设备,其特征在于,所述用户设备还包括承载建立模块,其中,
    所述判断模块还用于在所述检测模块检测到所述第一无线链路没有发生RLF而所述第二无线链路发生RLF时,判断所述第二无线链路上是否存在无线承载;
    所述确认模块还用于在所述判断模块判断到所述第二无线链路上存在无线承载时,确认所述第二无线链路上的无线承载是否在第二预定时间内切换至所述第一无线链路;
    所述承载建立模块用于在所述确认模块确认所述第二无线链路上的无线承载没有在第二预定时间内切换至所述第一无线链路时,尝试在所述第一无线链路上重建所述第二无线链路上的无线承载。
  24. 根据权利要求19或20所述的用户设备,其特征在于,所述RRC模块还用于在所述检测模块检测到所述第一无线链路发生RLF且所述第二无线链路发生RLF时,启动由于所述第一无线链路发生RLF而触发的RRC连接重建过程。
  25. 根据权利要求19-23任一项所述的用户设备,其特征在于,所述用户设备还包括接收模块,其中,
    所述接收模块用于分别在所述链路建立模块建立所述第一无线链路时接收由所述第一基站生成的第一配置信息和在所述链路建立模块建立所述第二无线链路时接收由所述第一基站或所述第二基站生成的第二配置信息;
    所述检测模块用于分别根据所述第一配置信息检测所述第一无线链路是否发生RLF和根据所述第二配置信息检测所述第二无线链路是否发生RLF。
  26. 根据权利要求25所述的用户设备,其特征在于,所述第一配置信息包括第一配置数量、第一预定数量和第一配置时长,所述检测模块包括第一失步检测单元、第一同步检测单元、第一启动单元、判定单元和第一计时器,其中,
    所述第一失步检测单元用于检测是否从所述第一无线链路连续接收到所述第一配置数量的失步指示;
    所述第一启动单元用于在所述第一失步检测单元检测到从所述第一无线链路连续接收到所述第一配置数量的失步指示时,开启所述第一计时器;
    所述第一同步检测单元用于在所述第一启动单元开启所述第一计时器时,检测在所述第一计时器的计时时长超出所述第一配置时长之前是否从所述第一无线链路连续接收到所述第一预定数量的同步指示;
    所述判定单元用于在所述第一同步检测单元检测到没有从所述第一无线链路连续接收到所述第一预定数量的同步指示时,判定所述第一无线链路发生RLF。
  27. 根据权利要求26所述的用户设备,其特征在于,所述判定单元还用于在所述第一同步检测单元检测到从所述第一无线链路连续接收到所述第一预定数量的同步指示时,判定所述第一无线链路没有发生RLF;
    所述第一启动单元还用于在所述第一同步检测单元检测到从所述第一无线链路连续接收到所述第一预定数量的同步指示时,关闭所述第一计时器并清空所述第一计时器的计时时长。
  28. 根据权利要求27所述的用户设备,其特征在于,所述第二配置信息包括第二配置数量、第二预定数量和第二配置时长,所述检测模块还包括第二失步检测单元、第二同步检测单元、第二启动单元和第二计时器,其中,
    所述第二失步检测单元用于检测是否从所述第二无线链路连续接收到所述第二配置数量的失步指示;
    所述第二启动单元用于在所述第二失步检测单元检测到从所述第二无线链路连续接收到所述第二配置数量的失步指示时,开启所述第二计时器;
    所述第二同步检测单元用于在所述第二启动单元开启所述第二计时器时,检测在所述第二计时器的计时时长超出所述第二配置时长之前是否从所述第二无线链路连续接收到所述第二预定数量的同步指示;
    所述判定单元还用于在所述第二同步检测单元检测到没有从所述第二无线链路连续接收到所述第二预定数量的同步指示,判定所述第二无线链路发生RLF。
  29. 根据权利要求28所述的用户设备,其特征在于,所述判定单元还用于在所述第二同步检测单元检测到从所述第二无线链路连续接收到所述第二预定数量的同步指示时,判定所述第二无线链路没有发生RLF;
    所述第二启动单元还用于在所述第二同步检测单元检测到从所述第二无线链路连续接收到所述第二预定数量的同步指示时,关闭所述第二计时器并清空所述第二计时器的计时时长。
  30. 根据权利要求29所述的用户设备,其特征在于,所述检测模块根据所述第一配置信息检测所述第一无线链路是否发生RLF后,根据所述第二配置信息检测所述第二无线链路是否发生RLF,具体为:
    所述第一失步检测单元检测到从所述第一无线链路接收到第一个失步指示时,所述第二失步检测单元开始检测是否从所述第二无线链路连续接收到所述第二配置数量的失步指示。
  31. 根据权利要求29所述的用户设备,其特征在于,所述检测模块根据所述第一配置信息检测所述第一无线链路是否发生RLF后,根据所述第二配置信息检测所述第二无线链路是否发生RLF,具体为:
    所述第一失步检测单元检测到从所述第一无线链路连续接收到所述第一配置数量的失步指示时,所述第二失步检测单元开始检测是否从所述第二无线链路连续接收到所述第二配置数量的失步指示。
  32. 根据权利要求29所述的用户设备,其特征在于,所述检测模块根据所述第一配置信息检测所述第一无线链路是否发生RLF后,根据所述第二配置信息检测所述第二无线链路是否发生RLF,具体为:
    所述判定单元判定所述第一无线链路发生RLF时,所述第二失步检测单元开始检测是否从所述第二无线链路连续接收到所述第二配置数量的失步指示。
  33. 根据权利要求29所述的用户设备,其特征在于,所述检测模块同时根据所述第一配置信息检测所述第一无线链路是否发生RLF和根据所述第二配置信息检测所述第二无线链路是否发生RLF。
  34. 根据权利要求33所述的用户设备,其特征在于,所述第一计时器和所述第二计时器为同一计时器,并且所述第一配置时长等于所述第二配置时长,则所述第一启动单元或所述第二启动单元开启所述第一计时器后,所述第一同步检测单元检测到在所述第一计时器的计时时长超出所述第一配置时长之前从所述第一无线链路连续接收到所述第一预定数量的同步指示或者所述第二同步检测单元检测到在所述第一计时器的计时时长超出所述第一配置时长之前从所述第二无线链路连续接收到所述第二预定数量的同步指示时,所述第一启动单元或所述第二启动单元还用于关闭所述第一计时器并清空所述第一计时器的计时时长。
  35. 根据权利要求33所述的用户设备,其特征在于,所述第一计时器和所述第二计时器为同一计时器,所述第一配置数量等于所述第二配置数量,则所述第一失步检测单元检测到从所述第一无线链路连续接收到所述第一配置数量的失步指示或者所述第二失步检测单元检测到从所述第二无线链路连续接收到所述第一配置数量的失步指示时,所述第一启动单元或者所述第二启动单元还用于开启所述第一计时器。
  36. 一种无线链路故障的处理方法,其特征在于,所述处理方法包括:
    基站与UE建立第一无线链路,其中,所述UE同时与另一基站建立第二无线链路;
    所述基站检测所述第一无线链路是否发生RLF;
    如果所述第一无线链路发生RLF,所述基站判断所述第一无线链路上是否存在无线承载;
    如果所述第一无线链路上存在无线承载,所述基站指示所述另一基站将所述第一无线链路上的无线承载切换至所述第二无线链路。
  37. 根据权利要求36所述的处理方法,其特征在于,所述基站指示所述另一基站将所述第一无线链路上的无线承载切换至所述第二无线链路的步骤具体包括:
    所述基站向所述另一基站发送第一状态信息,以使得所述另一基站根据所述第一状态信息向所述基站发送切换请求,所述第一状态信息用于指示所述第一无线链路发生RLF;
    所述基站从所述另一基站接收所述切换请求;
    所述基站根据所述切换请求向所述另一基站发送切换指令,以使得所述另一基站根据所述切换指令将所述第一无线链路上的无线承载切换至所述第二无线链路。
  38. 根据权利要求36所述的处理方法,其特征在于,所述基站指示所述另一基站将所述第一无线链路上的无线承载切换至所述第二无线链路的步骤具体包括:
    所述基站从所述另一基站接收切换请求,所述切换请求由所述另一基站根据所述UE上报的所述第一无线链路发生RLF的第一状态信息产生;
    所述基站根据所述切换请求向所述另一基站发送切换指令,以使得所述另一基站根据所述切换指令将所述第一无线链路上的无线承载切换至所述第二无线链路。
  39. 根据权利要求37或38所述的处理方法,其特征在于,所述处理方法还包括:
    所述基站从所述UE接收所述第二无线链路发生RLF的第二状态信息;
    所述基站根据所述第二状态信息将所述第二无线链路上的无线承载切换至所述第一无线链路;
    所述基站向所述UE发送反馈所述第二状态信息的切换完成指令,以使所述UE根据所述切换完成指令确认所述第二无线链路上的无线承载切换至所述第一无线链路。
  40. 一种基站,其特征在于,所述基站包括链路建立模块、检测模块、判断模块和指示模块,其中,
    所述链路建立模块用于与UE建立第一无线链路,其中,所述UE同时与另一基站建立第二无线链路;
    所述检测模块用于在所述链路建立模块建立第一无线链路后,检测所述第一无线链路是否发生RLF;
    所述判断模块用于在所述检测模块检测到所述第一无线链路发生RLF时,判断所述第一无线链路上是否存在无线承载;
    所述指示模块用于在所述判断模块判断到所述第一无线链路上存在无线承载时,指示所述另一基站将所述第一无线链路上的无线承载切换至所述第二无线链路。
  41. 根据权利要求40所述的基站,其特征在于,所述指示模块包括第一发送单元、第一接收单元和指示单元,其中,
    所述第一发送单元用于向所述另一基站发送第一状态信息,以使得所述另一基站根据所述第一状态信息向所述基站发送切换请求,所述第一状态信息用于指示所述第一无线链路发生RLF;
    所述第一接收单元用于从所述另一基站接收所述切换请求,并将所述切换请求发送给所述指示单元;
    所述指示单元用于从所述接收单元接收所述切换请求,根据所述切换请求向所述另一基站发送切换指令,以使得所述另一基站根据所述切换指令将所述第一无线链路上的无线承载切换至所述第二无线链路。
  42. 根据权利要求40所述的基站,其特征在于,所述指示模块包括第一接收单元和指示单元,其中,
    所述第一接收单元用于从所述另一基站接收切换请求,并将所述切换请求发送给所述指示单元,所述切换请求由所述另一基站根据所述UE上报的所述第一无线链路发生RLF的第一状态信息产生;
    所述指示单元用于从所述接收单元接收所述切换请求,根据所述切换请求向所述另一基站发送切换指令,以使得所述另一基站根据所述切换指令将所述第一无线链路上的无线承载切换至所述第二无线链路。
  43. 根据权利要求41或42所述的基站,其特征在于,所述基站还包括第二接收单元、第二发送单元和切换单元,其中,
    所述第二接收单元用于从所述UE接收所述第二无线链路发生RLF的第二状态信息,并将所述第二状态信息发送给所述切换单元;
    所述切换单元用于从所述第二接收单元接收所述第二状态信息,根据所述第二状态信息将所述第二无线链路上的无线承载切换至所述第一无线链路;
    所述第二发送单元用于在所述切换单元将所述第二无线链路上的无线承载切换至所述第一无线链路后,向所述UE发送反馈所述第二状态信息的切换完成指令,以使所述UE根据所述切换完成指令确认所述第二无线链路上的无线承载切换至所述第一无线链路。
  44. 一种用户设备,其特征在于,所述用户设备包括处理器以及与所述处理器电连接的存储器,其中,
    所述处理器用于同时分别与第一基站建立第一无线链路、与第二基站建立第二无线链路,分别检测所述第一无线链路是否发生RLF和所述第二无线链路是否发生RLF,并在检测到所述第一无线链路发生RLF而所述第二无线链路没有发生RLF时,放弃启动由于所述第一无线链路发生RLF而触发的RRC连接重建过程;
    所述存储器用于存储数据。
PCT/CN2013/082298 2013-08-26 2013-08-26 无线链路故障的处理方法、用户设备和基站 WO2015027381A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380002700.8A CN104641683B (zh) 2013-08-26 2013-08-26 无线链路故障的处理方法、用户设备和基站
PCT/CN2013/082298 WO2015027381A1 (zh) 2013-08-26 2013-08-26 无线链路故障的处理方法、用户设备和基站

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/082298 WO2015027381A1 (zh) 2013-08-26 2013-08-26 无线链路故障的处理方法、用户设备和基站

Publications (1)

Publication Number Publication Date
WO2015027381A1 true WO2015027381A1 (zh) 2015-03-05

Family

ID=52585365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/082298 WO2015027381A1 (zh) 2013-08-26 2013-08-26 无线链路故障的处理方法、用户设备和基站

Country Status (2)

Country Link
CN (1) CN104641683B (zh)
WO (1) WO2015027381A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018031799A1 (en) * 2016-08-10 2018-02-15 Idac Holdings, Inc. Connectivity supervision and recovery
US10952273B2 (en) 2017-08-10 2021-03-16 At&T Intellectual Property I, L.P. Detecting and correcting radio link failures based on different usage scenarios

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3691397B1 (en) * 2015-10-05 2022-04-06 Telefonaktiebolaget LM Ericsson (publ) Methods and arrangements in a wireless communication network for managing a problem with a radio link between a wireless device and a serving network node
KR102173322B1 (ko) * 2015-10-20 2020-11-04 주식회사 윌러스표준기술연구소 중첩된 베이직 서비스 세트를 포함하는 고밀도 환경에서의 무선 통신 방법 및 무선 통신 단말
CN113950138A (zh) 2015-11-03 2022-01-18 韦勒斯标准与技术协会公司 无线通信方法和无线通信终端
KR20230175353A (ko) 2016-03-04 2023-12-29 주식회사 윌러스표준기술연구소 다른 베이직 서비스 세트와 중첩된 베이직 서비스 세트에서의 무선 통신 방법 및 무선 통신 단말
CN109391968B (zh) * 2017-08-11 2021-08-13 华为技术有限公司 通信方法及通信装置
CN110972177B (zh) * 2018-09-28 2022-10-11 华为技术有限公司 一种链路检测方法及装置
EP4042611A4 (en) * 2019-11-07 2022-10-26 Apple Inc. CELL DETECTION AND MEASUREMENT APPARATUS, SYSTEM AND METHOD FOR LICENSE-EXEMPT NRs

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101854682A (zh) * 2009-03-31 2010-10-06 华为技术有限公司 一种切换方法和装置
CN101998466A (zh) * 2009-08-17 2011-03-30 中兴通讯股份有限公司 一种不期望的切换场景的判决方法和***
CN102316509A (zh) * 2010-06-30 2012-01-11 中兴通讯股份有限公司 无线链路失败相关测量信息的上报方法及***
WO2012019362A1 (en) * 2010-08-13 2012-02-16 Huawei Technologies Co., Ltd. Method for providing information in a cellular wireless communication system
CN103200599A (zh) * 2012-01-06 2013-07-10 华为技术有限公司 传输数据的方法及设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102056190A (zh) * 2009-11-10 2011-05-11 ***通信集团公司 对载波聚合***中无线链路失败的处理方法、***及装置
KR101622792B1 (ko) * 2010-02-04 2016-06-01 삼성전자주식회사 무선 통신 시스템에서 핸드오버 방법 및 장치
CN106100816B (zh) * 2011-11-25 2019-10-22 华为技术有限公司 实现载波聚合的方法、基站和用户设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101854682A (zh) * 2009-03-31 2010-10-06 华为技术有限公司 一种切换方法和装置
CN101998466A (zh) * 2009-08-17 2011-03-30 中兴通讯股份有限公司 一种不期望的切换场景的判决方法和***
CN102316509A (zh) * 2010-06-30 2012-01-11 中兴通讯股份有限公司 无线链路失败相关测量信息的上报方法及***
WO2012019362A1 (en) * 2010-08-13 2012-02-16 Huawei Technologies Co., Ltd. Method for providing information in a cellular wireless communication system
CN103200599A (zh) * 2012-01-06 2013-07-10 华为技术有限公司 传输数据的方法及设备

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018031799A1 (en) * 2016-08-10 2018-02-15 Idac Holdings, Inc. Connectivity supervision and recovery
CN109804704A (zh) * 2016-08-10 2019-05-24 Idac控股公司 连接性监督和恢复
CN109804704B (zh) * 2016-08-10 2023-11-03 交互数字专利控股公司 连接性监督和恢复
US11877337B2 (en) 2016-08-10 2024-01-16 Interdigital Patent Holdings, Inc. Connectivity supervision and recovery
US10952273B2 (en) 2017-08-10 2021-03-16 At&T Intellectual Property I, L.P. Detecting and correcting radio link failures based on different usage scenarios

Also Published As

Publication number Publication date
CN104641683B (zh) 2018-07-31
CN104641683A (zh) 2015-05-20

Similar Documents

Publication Publication Date Title
WO2015027381A1 (zh) 无线链路故障的处理方法、用户设备和基站
WO2018045679A1 (zh) 通信方法、通信装置和终端
WO2018030866A1 (ko) 저전력 rrc 운용 방법 및 장치
WO2017126919A1 (en) Radio link failure processing method and apparatus therefor
WO2015023067A1 (ko) 다중 기지국 연결 기반의 무선 통신 시스템에서의 무선 링크 실패 처리 방법 및 그 장치
WO2020204549A1 (en) Method and apparatus for executing conditional handover in wireless communication network
WO2014029107A1 (zh) Pci混淆检测的方法、用户设备及基站
WO2015108391A1 (ko) 이중 연결을 지원하는 무선 통신 시스템에서 단말과 기지국 사이의 연결 구성 결정 및 핸드 오버 수행 방법 및 장치
WO2016021890A1 (en) Signalling in dual connectivity mobile communication networks
WO2019194592A1 (en) Method for supporting handover and corresponding base station and network node
WO2015032188A1 (zh) 小区的切换方法、终端和网络设备
WO2017048063A1 (en) Method for handover in wireless communication system and apparatus supporting the same
WO2015147576A1 (en) Apparatus and method for communicating voice data in a wireless network
WO2011136565A2 (en) Apparatus and method for providing handover support information in mobile communication system
WO2015115843A1 (en) A method and apparatus for maintenance and release of ue resources
WO2013118978A1 (ko) 무선 통신 시스템에서 small data를 효율적으로 전송하는 방법 및 장치
WO2015020475A1 (en) Apparatus and method for perfoming switching operation between macro cell and small cell in mobile communication system
WO2013066071A1 (en) Method and device for supporting group handover
WO2016003218A1 (en) Method and apparatus for inter-cell load balance in wireless communication system
WO2015010339A1 (zh) 无线网络kpi的测量方法、用户设备、网络设备以及***
WO2018045680A1 (zh) 通信方法和通信装置
CN104429153A (zh) 一种实现无线资源控制连接释放的方法、装置及***
WO2015137637A1 (en) Method for supporting proximity-based service configuring for ue
WO2018045681A1 (zh) 通信方法和通信装置
WO2016137306A1 (ko) 이동 통신 시스템에서 scell의 동적 제어 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13892729

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13892729

Country of ref document: EP

Kind code of ref document: A1