WO2015025857A1 - Generator - Google Patents

Generator Download PDF

Info

Publication number
WO2015025857A1
WO2015025857A1 PCT/JP2014/071684 JP2014071684W WO2015025857A1 WO 2015025857 A1 WO2015025857 A1 WO 2015025857A1 JP 2014071684 W JP2014071684 W JP 2014071684W WO 2015025857 A1 WO2015025857 A1 WO 2015025857A1
Authority
WO
WIPO (PCT)
Prior art keywords
pole
coil
electromotive force
unit
magnet
Prior art date
Application number
PCT/JP2014/071684
Other languages
French (fr)
Japanese (ja)
Inventor
高橋 茂
Original Assignee
Takahashi Shigeru
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takahashi Shigeru filed Critical Takahashi Shigeru
Priority to JP2015532866A priority Critical patent/JP6392229B2/en
Publication of WO2015025857A1 publication Critical patent/WO2015025857A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets

Definitions

  • the present invention relates to a generator provided with a torus-type magnet unit.
  • the ring rotor as the magnet portion has a structure in which substantially cylindrical magnetic bodies (permanent magnets) and nonmagnetic bodies are alternately connected in a ring shape.
  • the lines of magnetic force generated in the ring rotator are radiated mainly along the inside of the ring rotator, so that the range in which the lines of magnetic force are radiated to the outside of the ring rotator is reduced.
  • An object of the present invention is to improve power generation efficiency in a generator including a torus type magnet unit.
  • the present invention relates to a magnet part in which a magnetic body part is arranged along a circumferential direction and is configured in a ring shape as a whole, and a hollow insulating container in which the magnet part is accommodated.
  • a cover portion configured, provided on the outside of the cover portion, and provided on the outside of the cover portion, at least two electromagnet coil portions that generate an N-pole or S-pole magnetic field by the supplied drive current,
  • An electromotive force coil portion that generates an electromotive force by electromagnetic induction generated when the magnetic body portion of the magnet portion passes inside, and the magnet portion, the cover portion, the electromagnet coil portion, and the electromotive force coil portion.
  • a generator comprising: a holding unit that holds a generator body as an assembly; a power supply unit that supplies a drive current to the electromagnet coil unit; and a power storage unit that stores electromotive force generated in the electromotive coil unit.
  • the magnet portion includes a core member formed in a ring shape, and the magnetic body portion is configured by an N-pole or S-pole permanent magnet pair combined so as to sandwich the core member from the radial direction.
  • the power supply unit is configured to be able to supply drive currents having different polarities so that N-pole or S-pole magnetic fields are alternately generated in the electromagnetic coil unit, and the drive current is supplied from the power supply unit to the electromagnetic coil unit.
  • the magnet part is supplied to generate an N-pole or S-pole magnetic field in the electromagnet coil part, and the magnet part is rotated inside the cover part by the movement of the magnetic body part in response to the magnetic field, and the rotating magnet
  • the present invention relates to a power generator that stores, in the power storage unit, an electromotive force that is generated when the magnetic body portion of the part passes through the inside of the electromotive force coil unit.
  • the polarity detection is provided in the vicinity of the electromagnet coil portion, and detects the polarity of the magnetic body portion approaching the electromagnet coil portion when the magnet portion rotates inside the cover portion.
  • the magnet portion includes a rotating body that is rotatably supported in a region facing the bottom surface of the cover portion in the direction of gravity. Further, in the present invention, a part of the electromotive force generated in the electromotive force coil portion in the high power generation state is supplied to the electromotive force coil portion in the low power generation state, and N is supplied to the electromotive force coil portion in the low power generation state. It is preferable to promote the movement of the magnetic part by generating a magnetic field of a pole or an S pole.
  • the bidirectional circuit which electrically connects between the said electromotive force coil part of a high electric power generation state, and the said electromotive force coil part of a low electric power generation state.
  • an activation electromagnet coil unit that rotates the magnet unit in a predetermined direction from a stopped state by generating an N-pole or S-pole magnetic field by the supplied drive current is preferably provided.
  • the starting electromagnet coil section has a coil width that allows at least half of the adjacent N-pole and S-pole areas of the magnetic body section to pass simultaneously.
  • the power generation efficiency can be improved in a generator including a torus-type magnet unit.
  • FIG. 2 is an exploded perspective view showing a configuration of a generator body 10.
  • 2 is a plan view showing a configuration of a magnet unit 100.
  • FIG. FIG. 4 is a sectional view taken along line AA in FIG. 3.
  • 2 is an exploded perspective view showing a partial configuration of a magnet unit 100.
  • FIG. 4 is a schematic diagram showing a radiation range of magnetic lines of force in a magnet unit 100.
  • 3 is an external view showing a configuration of a holding unit 20.
  • FIG. 4 is a schematic diagram showing a relationship between a position of a magnet unit 100 in a circumferential direction and a polarity of an electromagnet coil unit 131.
  • FIG. 4 is a schematic diagram showing the polarity of a magnetic body part 110 in a magnet part 100.
  • FIG. 3 is a plan view showing a configuration of a cover part 120.
  • FIG. It is a schematic diagram which shows the positional relationship of the polarity of the magnet part 100, and the electromotive force coil part 132.
  • FIG. It is explanatory drawing which shows the relationship between the rotation of the magnet part 100, and the timing which an electromotive force generate
  • FIG. 2 is a configuration diagram of a bidirectional circuit 140.
  • FIG. 1 is an overall configuration diagram of a generator 1 in the first embodiment.
  • the generator 1 of the first embodiment includes a generator body 10, a holding unit 20 (not shown), a power supply unit 30, and a power storage unit 40.
  • FIG. 2 is an exploded perspective view showing the configuration of the generator body 10.
  • FIG. 3 is a plan view showing the configuration of the magnet unit 100.
  • 4 is a cross-sectional view taken along line AA in FIG.
  • FIG. 5 is an exploded perspective view showing a partial configuration of the magnet unit 100.
  • FIG. 6 is a schematic diagram showing a radiation range of magnetic lines of force in the magnet unit 100.
  • FIG. 7 is an external view showing the configuration of the holding unit 20.
  • the generator body 10 is a part that generates electromotive force.
  • the generator body 10 is an assembly including a magnet unit 100, a cover unit 120, a coil unit 130, and the like, which will be described later.
  • the generator main body 10 includes a magnet unit 100, a cover unit 120, and a coil unit 130.
  • the coil portion 130 is shown in a state of being divided into two in the horizontal direction, but is actually configured integrally.
  • the magnet unit 100 includes a core member 101 formed in a ring shape as shown in FIG.
  • the core member 101 is made of an insulating resin material such as polyester.
  • the core member 101 has a plurality of node portions 102 along the circumferential direction.
  • the node portion 102 is configured in a substantially disc shape and has an outer diameter larger than the diameter of the core member 101.
  • a magnetic body 110 is formed between adjacent nodes 102.
  • FIG. 3 in order to make the shape of the core member 101 easy to understand, a state in which the magnetic body portion 110 is formed at three locations is shown. However, the magnetic body portion 110 extends over the entire circumference of the core member 101. Is formed. That is, the magnet unit 100 of the present embodiment is configured as a torus type magnet unit.
  • the magnetic part 110 includes a permanent magnet pair 111 and an assimilable metal piece 112.
  • the permanent magnet pair 111 is a C-shaped permanent magnet and has an N-pole or S-pole polarity.
  • the permanent magnet pair 111 is combined so as to sandwich the core member 101 from the radial direction.
  • the magnetic body portions 110 having different polarities are alternately arranged along the circumferential direction of the core member 101. That is, the polarities of the magnetic body portions 110 are alternately set in the circumferential direction of the core member 101 such as N pole-S pole-N pole-S pole.
  • the N-pole magnetic body portion 110 has 8 poles, and the S-pole magnetic body portion 110 has 8 poles. Accordingly, a 16-pole magnetic body 110 is formed over the entire circumference of the core member 101.
  • FIG. 2 in the magnet unit 100, it is shown by a black and white pattern that the polarities of the magnetic body units 110 are different.
  • the upper part of the permanent magnet pair 111 is joined by an assimilable metal piece 112.
  • the assimilable metal piece 112 is a member for joining the permanent magnet pair 111 having the same polarity (N pole or S pole), and is made of iron or the like. That is, since the permanent magnet pairs 111 having the same polarity (N pole or S pole) have a repulsive property, the permanent magnet pair 111 can be joined by inserting the anabolic metal piece 112 therebetween.
  • a groove (bearing space) 113 is formed below the permanent magnet pair 111 as shown in FIG.
  • the groove 113 accommodates a ball bearing 114 as a rotating body.
  • the ball bearing 114 is a component for facilitating rotation of the magnet unit 100 inside a cover unit 120 (described later).
  • a plurality of ball bearings 114 are accommodated along the longitudinal direction of the groove 113.
  • the ball bearing 114 is rotatably supported in a region (groove portion 113) facing the bottom surface (see FIG. 2) of the cover portion 120 in the direction of gravity.
  • the ball bearing 114 is made of a material that is hard to be magnetized, such as stainless steel, resin, or ceramic.
  • FIG. 6A is a schematic cross-sectional view of a wheel rotor in the conventional generator described above (Japanese Patent Laid-Open No. 2003-235224).
  • FIG. 6B is a schematic cross-sectional view of the magnetic part 110 in the present embodiment.
  • the range indicated by the broken line schematically shows the radiation range of the magnetic lines of force.
  • FIG. 6 (A) in the conventional generator, most of the magnetic force lines generated in the wheel rotor are radiated along the inside of the wheel rotor, so the range in which the magnetic force lines are radiated outward is small.
  • FIG. 6 (A) in the conventional generator, most of the magnetic force lines generated in the wheel rotor are radiated along the inside of the wheel rotor, so the range in which the magnetic force lines are radiated outward is small.
  • FIG. 6 (A) in the conventional generator, most of the magnetic force lines generated in the wheel rotor are radiated along the inside of the wheel rotor, so the range in which the magnetic
  • the permanent magnet pair 111 of this embodiment is combined so as to sandwich the core member 101 from the radial direction, and therefore the range in which the lines of magnetic force are radiated to the outside increases.
  • the magnetic flux density in the electromotive force coil portion 132 (described later) is also increased, and more electromotive force can be obtained as compared with the conventional generator.
  • the cover part 120 includes an upper cover part 121 and a lower cover part 122.
  • the cover part 120 is a hollow insulating container in which the magnet part 100 is accommodated.
  • the magnet part 100 is accommodated between the upper cover part 121 and the lower cover part 122.
  • the cover part 120 becomes a ring shape as a whole by joining the joining surfaces of the upper cover part 121 and the lower cover part 122 with an adhesive or the like.
  • grooved part (code
  • the coil unit 130 includes an electromagnet coil unit 131, an electromotive force coil unit 132, and a coil magnetic sensor 133 as a polarity detection unit.
  • Each of these parts is constituted by an enameled wire wound around the outside of the cover part 120.
  • the electromagnet coil section 131 generates an N-pole or S-pole magnetic field by the drive current supplied from the power supply section 30.
  • the electromagnet coil part 131 is provided at two locations along the circumferential direction of the cover part 120.
  • the electromagnet coil unit 131 is electrically connected to a power source unit 30 (described later).
  • the electromotive force coil part 132 generates an electromotive force by electromagnetic induction generated when the magnetic body part 110 (see FIG. 3) of the magnet part 100 passes through the inside.
  • the electromotive force coil portion 132 is provided at 16 locations along the circumferential direction of the cover portion 120.
  • the electromagnet coil unit 131 is electrically connected to the power storage unit 40 (described later).
  • the coil magnetic sensor 133 detects the polarity of the magnetic body part 110 approaching the electromagnet coil part 131 when the magnet part 100 rotates inside the cover part 120.
  • the coil magnetic sensor 133 is provided in the vicinity of the electromagnet coil section 131.
  • the coil magnetic sensor 133 is provided on the upstream side in the direction in which the magnet unit 100 rotates as viewed from the electromagnet coil unit 131.
  • the coil magnetic sensor 133 is electrically connected to a power supply unit 30 (described later).
  • the polarity of the magnetic unit 110 detected by the coil magnetic sensor 133 is transmitted to the power supply unit 30 as a polarity signal (N pole or S pole).
  • the holding unit 20 is a structure that holds the generator body 10. As shown in FIG. 7, the holding portion 20 includes a stay portion 21 and a mounting plate 22.
  • the stay portion 21 is a member that fixes the generator body 10.
  • the stay portion 21 is configured by combining four L-shaped frame members 23.
  • the stay portion 21 is disposed on the mounting plate 22.
  • the generator body 10 is held by the stay portion 21 at four locations on the outer periphery.
  • the power supply unit 30 (see FIG. 1) is a device that mainly supplies a drive current to an electromagnetic coil unit 131 (described later) of the generator body 10.
  • the power supply unit 30 and the generator body 10 are electrically connected by various wirings. That is, the power supply unit 30 and the electromagnet coil unit 131 (generator body 10) are connected by the wiring L1.
  • the power supply unit 30 and the coil magnetic sensor 133 (generator body 10) are connected by a wiring L2.
  • the power supply unit 30 supplies a drive current corresponding to the N pole or the S pole to the electromagnetic coil unit 131 based on the polarity of the magnetic body unit 110 detected by the coil magnetic sensor 133.
  • the power supply unit 30 and the power storage unit 40 are electrically connected by the wiring L3. Part of the power stored in the power storage unit 40 is transmitted to the power supply unit 30 via the wiring L3.
  • the power supply unit 30 can supply a drive current to the electromagnet coil unit 131 of the generator body 10 by the electric power transmitted from the power storage unit 40.
  • the power storage unit 40 (see FIG. 1) is a battery device that stores the electromotive force generated in the electromotive force coil unit 132 of the generator body 10 as electric power.
  • the power storage unit 40 and the generator body 10 are electrically connected by a wiring L4.
  • the power storage unit 40 is electrically connected to load-side equipment (such as an electric motor and a lighting device) (not shown).
  • the electromotive force generated in the generator body 10 is accumulated as DC power in the power storage unit 40 and is transmitted from the power storage unit 40 to the load side device. As described above, a part of the power stored in the power storage unit 40 is transmitted to the power supply unit 30 via the wiring L3.
  • FIGS. 8A to 8F are schematic diagrams illustrating the relationship between the position of the magnet unit 100 in the circumferential direction and the polarity of the electromagnet coil unit 131.
  • the magnet unit 100 is housed inside the cover unit 120, but in FIG. 8, the magnet unit 100 is drawn on the same sheet for easy explanation.
  • the two electromagnet coil parts 131 are distinguished and described as electromagnet coil parts 131a and 131b.
  • the two coil magnetic sensors 133 are distinguished and described as coil magnetic sensors 133a and 133b. Further, in FIG. 8, the description of the reference numerals is omitted as appropriate.
  • the N-pole electromagnet coil portions 131a and 131b are indicated by diagonal lines, and the S-pole electromagnet coil portions 131a and 131b are indicated by mesh lines.
  • the polarities of the electromagnet coil portions 131a and 131b are switched at a predetermined timing as will be described later.
  • the N-pole magnetic body portion 110 is indicated by a white background, and the S-pole magnetic body portion 110 is indicated by a black background.
  • the polarity of the magnetic part 110 is fixed to the N pole or the S pole.
  • the magnet part 100 rotates counterclockwise (arrow direction in a figure).
  • the power supply unit 30 supplies a drive current to the electromagnet coil unit 131 to generate an N-pole or S-pole magnetic field in the electromagnet coil unit 131. Then, the magnet part 100 rotates inside the cover part 120 by the movement of the magnetic body part 110 in response to this magnetic field. At this time, based on the polarity of the magnetic body part 110 detected by the coil magnetic sensor 133, the power supply unit 30 generates a magnetic field having a polarity opposite to the polarity of the magnetic body part 110 approaching the electromagnet coil part 131. A drive current corresponding to the N pole or S pole is supplied to the electromagnet coil section 131 so as to be generated.
  • the polarity of the magnetic body part 110 (that is, the magnetic body part 110 approaching the electromagnet coil part 131a) detected by the coil magnetic sensor 133a is the N pole. Therefore, as shown in FIG. 8C, the power supply unit 30 switches the polarity of the electromagnet coil unit 131a to the S pole having the opposite polarity. According to this, since the corresponding N-pole magnetic body part 110 is attracted to the S-pole electromagnet coil part 131a, the magnetic body part 110 moves along the circumferential direction. As described above, the magnetic part 110 having the N pole is attracted to the electromagnet coil part 131a having the S pole, so that the magnet part 100 is given a driving force that rotates counterclockwise.
  • the polarity of the magnetic part 110 (that is, the magnetic part 110 approaching the electromagnet coil part 131b) detected by the coil magnetic sensor 133b is the S pole. Therefore, as shown in FIG. 8F, the power supply unit 30 switches the polarity of the electromagnet coil unit 131b to the N-polarity with the opposite polarity. According to this, since the corresponding S pole magnetic body part 110 is attracted to the N pole electromagnet coil part 131b, the magnetic body part 110 moves along the circumferential direction. In this manner, the magnetic part 110 of the S pole is attracted to the electromagnet coil part 131b of the N pole, so that the magnet part 100 is given a driving force that rotates counterclockwise.
  • each electromotive force coil unit 132 when the magnet unit 100 rotates, each electromotive force coil unit 132 generates an electromotive force by electromagnetic induction generated when the magnetic body unit 110 of the magnet unit 100 passes through the inside.
  • the electromotive force generated in each electromotive force coil unit 132 is transmitted to the power storage unit 40 via the wiring L4.
  • the generator 1 in 1st Embodiment mentioned above the following effects are show
  • the permanent magnet pair 111 is combined so as to sandwich the core member 101 from the radial direction. According to this, since the range in which the magnetic lines of force are radiated to the outside is larger than in the conventional case, the magnetic flux density in the electromotive force coil unit 132 is also increased, and more electromotive force is obtained than in the conventional generator. Can do. Therefore, according to the generator 1 of this embodiment, the power generation efficiency can be improved as compared with a conventional generator including a torus type wheel rotor (magnet part).
  • the power supply unit 30 supplies a drive current corresponding to the N pole or the S pole to the electromagnet coil unit 131 based on the polarity of the magnetic body unit 110 detected by the coil magnetic sensor 133. Therefore, the polarity of the electromagnet coil unit 131 can be switched more accurately regardless of the rotational speed of the magnet unit 100.
  • the magnetic body unit 110 includes a ball bearing 114 that is rotatably supported in a groove 113 that faces the bottom surface of the cover unit 120. Therefore, the peristaltic resistance of the magnet unit 100 rotating inside the cover unit 120 can be made as small as possible.
  • the basic configuration of the generator 1A in the second embodiment is the same as the generator 1 (see FIG. 1) of the first embodiment.
  • a characteristic configuration of the generator 1A in the second embodiment will be described.
  • the same members as those in the first embodiment are denoted by the same reference numerals.
  • the description of a function is abbreviate
  • FIG. 9 is an exploded perspective view showing the configuration of the generator main body 10A in the second embodiment.
  • FIG. 10 is a schematic diagram showing the polarity of the magnetic part 110 in the magnet part 100.
  • FIG. 11 is a plan view showing the configuration of the cover unit 120.
  • the magnet part 100 accommodated in the inside of the cover part 120 is shown with a broken line.
  • the generator main body 10A includes a magnet unit 100, a cover unit 120, and a coil unit (not shown).
  • the magnet unit 100 includes an N-pole magnetic body 110 and an S-pole magnetic body 110 as shown in FIG.
  • the N pole magnetic body 110 is indicated by crossed diagonal lines.
  • the south pole magnetic body portion 110 is indicated by hatching.
  • the polarities of the magnetic body portions 110 are alternately set in the circumferential direction of the magnet portion 100 such as N pole-S pole-N pole-S pole.
  • the N-pole magnetic part 110 has 15 poles.
  • the S pole magnetic body 110 has 15 poles. That is, the 30-pole magnetic part 110 is formed over the entire circumference of the magnet part 100.
  • FIG. 10B is a diagram showing the peak point of each magnetic body 110.
  • the peak point is a region where the magnetic force is strongest in the magnetic part 110. As shown in FIG. 10B, the peak point is present at substantially the central portion P of the magnetic body portion 110.
  • the peak point shown in FIG. 10B is a peak point existing outside the magnetic body 110.
  • an electromotive force is generated while the N or S pole in the magnet unit 100 passes through the electromotive force coil unit 132.
  • the maximum electromotive force is generated at a position where the peak point of the N pole or S pole of the magnet unit 100 coincides with the center of the electromotive force coil unit 132.
  • the cover part 120 includes an upper cover part 121 and a lower cover part 122 as shown in FIG.
  • Each of the upper cover 121 and the lower cover 122 includes a plurality of separators 123.
  • the separator 123 is a member that electrically insulates between adjacent coil portions.
  • the separator 123 is configured to be a single separator at the same circumferential position when the upper cover 121 and the lower cover 122 are joined. The width of the separator 123 varies depending on the position where it is disposed.
  • an electromagnet coil part 131 by winding an enamel wire (not shown) between adjacent separators 123, an electromagnet coil part 131, an electromotive coil part 132, etc. (see FIG. 1) are formed.
  • illustration of the coil formed in the electromagnet coil part 131, the electromotive force coil part 132, etc. is abbreviate
  • the electromagnet coil portion 131 is provided at two locations along the circumferential direction of the cover portion 120.
  • the electromotive force coil unit 132 is divided into three groups of group A, group B, and group C along the circumferential direction. Each group includes 16 electromotive force coil portions 132.
  • a group that generates an electromotive force hereinafter also referred to as “power generation group”.
  • every other electromotive coil section 132 that generates electromotive force is provided. For example, it is assumed that an electromotive force is generated in eight electromotive force coil portions 132 positioned oddly among 16 electromotive force coil portions 132 included in one group. In that case, when the same group becomes a power generation group next time, an electromotive force is generated by the eight electromotive force coil portions 132 positioned at even numbers. The switching of the power generation group will be described later.
  • the coil width of the electromotive force coil section 132 is set to be narrow so that the time during which the N pole and S pole of the magnetic body section 110 pass simultaneously is as short as possible. This is because in the electromotive force coil unit 132, if the time during which the N pole and the S pole of the magnetic body unit 110 pass simultaneously is long, the power generation efficiency decreases. As described above, in the generator main body 10A of the second embodiment, the coil width is set to be narrow so that the time during which the N pole and the S pole of the magnetic body part 110 simultaneously pass through the electromotive force coil part 132 is as short as possible. Therefore, the power generation efficiency can be improved.
  • the number of electromotive force coil units 132 is larger than the number of electromotive force coil units 132 of the first embodiment. Furthermore, the number of N poles and S poles in the magnetic body part 110 is also larger than the number of N poles and S poles in the magnetic body part 110 of the first embodiment. As described above, in the generator main body 10A of the second embodiment, since the number of N poles and S poles in the magnetic body portion 110 is large, the power generation efficiency can be further improved as compared with the first embodiment.
  • the magnetic sensor 134 detects the magnetic pole of the magnetic body part 110 approaching the electromagnet coil part 131 when the magnet part 100 rotates inside the cover part 120. As shown in FIG. 11, the magnetic sensor 134 is disposed on the separator 123 located on both sides of the electromagnet coil section 131.
  • the magnetic sensor 134 includes two magnetic sensors 134a and 134b arranged adjacent to each other.
  • the electromagnet coil unit 135 is a starting electromagnet coil unit for rotating the magnet unit 100 in a predetermined direction from a stopped state.
  • the electromagnet coil part 135 has a coil width through which at least half of the adjacent N poles and S poles of the magnetic part 110 can pass simultaneously. Therefore, when the N or S magnetic field is generated in the electromagnet coil unit 135 in the stopped state of the magnet unit 100, the S or N pole of the magnetic body 110 existing at the position of the electromagnet coil unit 135 is generated. Strongly attracted to magnetic fields. Therefore, the magnet unit 100 can be rotated more efficiently from the stopped state.
  • a bidirectional circuit 140 (not shown in FIGS. 1 and 11) is connected to the generator 1A of the second embodiment instead of the power storage unit 40 shown in FIG. The configuration of the bidirectional circuit 140 will be described later.
  • FIG. 12 is a schematic diagram showing the positional relationship between the polarity of the magnet unit 100 and the electromotive force coil unit 132.
  • the magnet part 100 is shown inside the coil part 130 for ease of explanation.
  • the positions of the N pole and the S pole in the magnet unit 100 coincide with the positions when the magnet unit 100 is accommodated in the cover unit 120.
  • group A the centers of eight (every other) electromotive force coil portions 132 coincide with the peak points at the N pole or S pole of the magnet portion 100. Therefore, the electromotive force is output from the corresponding electromotive force coil unit 132 of group A.
  • group B and C the center of each electromotive force coil part 132 and the peak point at the N pole or S pole of the magnet part 100 do not coincide with each other. For this reason, no electromotive force is output from the electromotive force coil sections 132 of the groups B and C. Accordingly, in FIG. 12, group A is a power generation group. Groups B and C are non-power generation groups.
  • group A becomes a power generation group.
  • the magnet unit 100 rotates 6 ° (2 ° ⁇ 3) counterclockwise from the position shown in FIG. 12, the group A becomes the power generation group again.
  • the power generation group is switched in the order of groups A, C, and B. Therefore, during each rotation of the magnet unit 11 counterclockwise (360 °), power generation is performed 60 times in each group. In other words, each group becomes a power generation group every 1/60 cycles while the magnet unit 11 makes one counterclockwise rotation.
  • FIGS. 13 to 16 are explanatory diagrams showing the relationship between the rotation of the magnet unit 100 and the timing at which the electromotive force is generated in the coil unit 130 in an arbitrary power generation group (group A to group C).
  • FIG. 17 is a configuration diagram of the bidirectional circuit 140.
  • (A) of FIG. 13 to FIG. 16 is a diagram schematically illustrating the timing at which an electromotive force is generated. Further, the symbols “+” and “ ⁇ ” shown in FIGS. 13A to 16A indicate the direction in which the electromotive force is generated.
  • FIG. 13 to FIG. 16 is a diagram showing a positional relationship between the magnet unit 100 and the coil unit 130 (electromotive force coil unit 132).
  • power generation coil indicates the electromotive force coil portion 132.
  • electromotive coil refers to the electromotive force coil portion 132 that temporarily functions as an electromagnet coil portion. That is, all the coil portions 130 shown in FIGS. 13 to 16B are electromotive force coil portions 132, which are expressed as “power generation coil” and “electromagnetic coil” according to the function at that time.
  • a white background portion between the power generation coil and the electromagnetic coil indicates a separator 123 (see FIG. 11).
  • the moving direction of the magnet unit 100 is the direction from the right side to the left side of the drawing.
  • a bidirectional circuit 140 is connected to the coil unit 130 of the present embodiment.
  • the bidirectional circuit 140 is a circuit that supplies a part of the electromotive force generated in the electromotive force coil unit 132 in the high power generation state to the electromotive force coil unit 132 in the low power generation state.
  • the bidirectional circuit 140 is provided between each pair of adjacent electromotive force coil sections 132.
  • the high power generation state refers to a state in which the center of the electromotive force coil unit 132 and the peak point at the N pole or S pole of the magnet unit 100 coincide.
  • an electromotive force of 80% or more of the maximum value is generated.
  • the low power generation state refers to a state where the center of the electromotive force coil unit 132 and the peak point at the N pole or S pole of the magnet unit 100 do not match.
  • the electromotive force coil section 132 in the low power generation state only an electromotive force of about 20% of the maximum value is generated (not shown). Therefore, when the generated electromotive force is applied to the load (see FIG. 1), the resistance of the electromotive force coil unit 132 in the low power generation state increases. As a result, the rotational speed of the magnet unit 100 may be affected. However, a part of the electromotive force generated in the electromotive force coil unit 132 in the high power generation state is supplied to the electromotive force coil unit 132 in the low power generation state to temporarily function as an electromagnet coil. The influence on the rotation speed can be reduced.
  • FIGS. 17A to 17D respectively show patterns of paths for supplying a part of the electromotive force.
  • upstream side refers to the side opposite to the direction in which the magnet unit 100 moves (the right side in the figure).
  • Downstream side refers to the same side (left side in the figure) as the direction in which the magnet unit 100 moves.
  • the bidirectional circuit 140 is connected between a pair of adjacent electromotive force coil portions 132. When viewed from the bidirectional circuit 140, one electromotive force coil unit 132 becomes an upstream electromotive force coil unit 132.
  • the other electromotive force coil portion 132 becomes the downstream electromotive force coil portion 132.
  • the illustration of the coil shown to FIG. 17 (A) to (D) shows the electromotive force coil part 132 (electromagnetic coil) to which a part of electromotive force is supplied.
  • Symbols of plus (+) and minus ( ⁇ ) shown in FIGS. 17A to 17D indicate an electromotive force coil unit 132 (power generation coil) that supplies a part of electromotive force to the electromagnetic coil.
  • FIG. 17A shows the pattern 1.
  • the bidirectional circuit 140 is switched to the pattern 1 when the N pole of the magnet unit 100 passes through the downstream electromotive force coil portion 132 (power generation coil), and the upstream electromotive force coil portion 132 (electromagnetic coil) has N.
  • a drive current for generating a polar magnetic field is supplied.
  • an N-pole magnetic field is generated in the upstream electromotive force coil section 132, so that the N pole of the magnet section 100 that is moving away is repelled and the S pole of the magnet section 100 that is approaching is attracted.
  • FIG. 17B shows pattern 2.
  • the bidirectional circuit 140 is switched to the pattern 2 when the south pole of the magnet unit 100 passes through the downstream electromotive force coil portion 132 (power generation coil), and the upstream electromotive force coil portion 132 (electromagnetic coil) has S.
  • a drive current for generating a polar magnetic field is supplied.
  • FIG. 17C shows pattern 3.
  • the bidirectional circuit 140 is switched to the pattern 3 when the S pole of the magnet unit 100 passes through the upstream electromotive force coil portion 132 (power generation coil), and N is applied to the downstream electromotive force coil portion 132 (electromagnetic coil).
  • a drive current for generating a polar magnetic field is supplied.
  • an N-pole magnetic field is generated, so that the N-pole of the magnet unit 100 that is being separated repels and the S-pole of the magnet unit 100 that is approaching is attracted.
  • FIG. 17D shows pattern 4.
  • the bidirectional circuit 140 is switched to the pattern 4 when the N pole of the magnet unit 100 passes through the upstream electromotive force coil portion 132 (power generation coil), and the downstream electromotive force coil portion 132 (electromagnetic coil) is switched to S.
  • a drive current for generating a polar magnetic field is supplied.
  • a magnetic field of S pole is generated, so that the S pole of the magnet unit 100 that is moving away is repelled and the N pole of the magnet unit 100 that is approaching is attracted.
  • the connection of electrode terminals provided inside is switched to four patterns (described later) according to the polarity of the electromotive force generated in the electromotive force coil unit 132.
  • the bidirectional circuit 140 is electrically connected to a load-side device (noted in the drawing) as not shown. A part of the electromotive force generated in the coil unit 130 is transmitted to the power supply unit 30 through the wiring L3 (see FIG. 1) and an inverter circuit (not shown).
  • FIGS. 13 to 16B reference numerals C1, C2, and C3C4 are attached to the electromotive force coil section 132 to be described. And according to the function at that time, it describes as "power generation coil C1", "electromagnetic coil C1".
  • Generator coil C1 N pole power generation
  • Electromagnetic coil C2 N pole excitation
  • FIG. 13B when the N pole (peak point) of the magnet unit 100 reaches the downstream power generation coil C1, the bidirectional circuit 140 switches to the pattern 1 (see FIG. 17A). It is done.
  • the bidirectional circuit 140 is switched to the pattern 1, a part of the electromotive force generated in the power generation coil C1 is supplied as a drive current for generating an N-pole magnetic field in the upstream electromagnetic coil C2.
  • the drive current is supplied to the upstream electromagnetic coil C2, an N-pole magnetic field is generated in the electromagnetic coil C2.
  • Power generation coil C2 S pole power generation
  • electromagnetic coil C1 N pole excitation
  • FIG. 14B when the south pole (peak point) of the magnet unit 100 reaches the upstream power generation coil C2, the bidirectional circuit 140 switches to pattern 3 (see FIG. 17C). It is done.
  • the bidirectional circuit 140 is switched to the pattern 3, a part of the electromotive force generated in the power generation coil C2 is supplied as a drive current for generating an N-pole magnetic field in the downstream electromagnetic coil C1.
  • the drive current is supplied to the downstream electromagnetic coil C1, an N-pole magnetic field is generated in the electromagnetic coil C1.
  • Generator coil C4 N pole power generation
  • electromagnetic coil C3 S pole excitation
  • FIG. 14B when the N pole (peak point) of the magnet unit 100 reaches the upstream power generation coil C4, the bidirectional circuit 140 switches to the pattern 4 (see FIG. 17D). It is done.
  • the bidirectional circuit 140 is switched to the pattern 4, a part of the electromotive force generated in the power generation coil C4 is supplied as a drive current for generating a south pole magnetic field in the downstream electromagnetic coil C3.
  • the drive current is supplied to the downstream electromagnetic coil C3, an S-pole magnetic field is generated in the electromagnetic coil C3.
  • the S pole (magnetic pole end) of the magnet unit 100 that is moving away from the electromagnetic coil C3 repels and the N pole (magnetic pole end) of the magnet unit 100 that is approaching the electromagnetic coil C3. ) Is aspirated. Therefore, the movement of the magnet unit 100 in the traveling direction is promoted.
  • Generator coil C1 S pole power generation
  • Electromagnetic coil C2 S pole excitation
  • FIG. 15B when the south pole (peak point) of the magnet unit 100 reaches the downstream power generation coil C1, the bidirectional circuit 140 switches to pattern 2 (see FIG. 17B). It is done.
  • the bidirectional circuit 140 is switched to the pattern 2, a part of the electromotive force generated in the power generation coil C1 is supplied as a drive current for generating an S pole magnetic field in the upstream electromagnetic coil C2.
  • the drive current is supplied to the upstream electromagnetic coil C2, an S-pole magnetic field is generated in the electromagnetic coil C2.
  • the S pole (magnetic pole end) of the magnet unit 100 that is moving away from the electromagnetic coil C2 is repelled, and the N pole (magnetic pole end) of the magnet unit 100 that is approaching the electromagnetic coil C2 is repelled. ) Is aspirated. Therefore, the movement of the magnet unit 100 in the traveling direction is promoted.
  • Generator coil C3 N pole power generation
  • Electromagnetic coil C4 N pole excitation
  • FIG. 15B when the N pole (peak point) of the magnet unit 100 reaches the downstream power generation coil C3, the bidirectional circuit 140 switches to the pattern 1 (see FIG. 17A). It is done.
  • the bidirectional circuit 140 is switched to the pattern 1, a part of the electromotive force generated in the power generation coil C3 is supplied as a drive current for generating an N-pole magnetic field in the upstream electromagnetic coil C4.
  • the drive current is supplied to the upstream electromagnetic coil C4, an N-pole magnetic field is generated in the electromagnetic coil C4.
  • Power generation coil C2 S pole power generation
  • electromagnetic coil C1 N pole excitation
  • FIG. 16B when the N pole (peak point) of the magnet unit 100 reaches the upstream power generation coil C2, the bidirectional circuit 140 switches to the pattern 4 (see FIG. 17D). It is done.
  • the bidirectional circuit 140 is switched to the pattern 4, a part of the electromotive force generated in the power generation coil C2 is supplied as a drive current for generating a south pole magnetic field in the downstream electromagnetic coil C1.
  • the drive current is supplied to the downstream electromagnetic coil C1, an S-pole magnetic field is generated in the electromagnetic coil C1.
  • the S pole (magnetic pole end) of the magnet unit 100 that is moving away from the electromagnetic coil C1 repels and the N pole (magnetic pole end) of the magnet unit 100 that is approaching the electromagnetic coil C1. ) Is aspirated. Therefore, the movement of the magnet unit 100 in the traveling direction is promoted.
  • Power generation coil C4 S pole power generation
  • electromagnetic coil C3 N pole excitation
  • FIG. 16B when the south pole (peak point) of the magnet unit 100 reaches the upstream power generation coil C4, the bidirectional circuit 140 switches to pattern 3 (see FIG. 17C). It is done.
  • the bidirectional circuit 140 is switched to the pattern 3, a part of the electromotive force generated in the power generation coil C4 is supplied as a drive current for generating an N pole magnetic field in the downstream electromagnetic coil C3.
  • the drive current is supplied to the downstream electromagnetic coil C3, an N-pole magnetic field is generated in the electromagnetic coil C3.
  • the N pole (magnetic pole end) of the magnet unit 100 that is moving away from the electromagnetic coil C3 repels and the S pole (magnetic pole end) of the magnet unit 100 that is approaching the electromagnetic coil C3.
  • the movement of the magnet unit 100 in the traveling direction is promoted.
  • the position of the electromotive force coil unit 132 (upstream side or downstream side) that functions as a power generation coil and the polarity of the generated electromotive force change as the magnet unit 100 rotates. Then, the pattern 1 is switched to any one of the patterns 4.
  • the generator 1A of the second embodiment is a bidirectional circuit that supplies a part of the electromotive force generated in the electromotive force coil unit 132 (power generation coil) in the high power generation state to the electromotive force coil unit 132 in the low power generation state. 140. Therefore, in the generator 1A, the electromotive force coil part 132 to which a part of the electromotive force is supplied temporarily becomes an N-pole or S-pole electromagnet coil, and the magnet part 100 of the same polarity that is being separated is repelled. The magnet part 100 of reverse polarity that is approaching is attracted. Thereby, in generator 1A, since the influence which it has on the rotation speed of magnet part 100 is reduced, movement to the advancing direction of magnet part 100 is promoted.
  • the generator which concerns on this invention can be implemented with a various form, without being limited to the 1st and 2nd embodiment mentioned above.
  • the rotating body may be a roller bearing.
  • other rotation mechanisms may be provided as long as they can function equally.
  • the core member 101 is formed of a resin material.
  • the core member 101 may be formed of a hollow member.
  • 1st and 2nd embodiment demonstrated the example which provided the electromagnet coil part 131 in two places. Not only this but the electromagnet coil part 131 may provide three or more places.
  • the N pole magnetic part 110 is 8 poles (15 poles in the second embodiment) and the S pole magnetic part 110 is 8 poles (15 poles in the second embodiment). did. Not only this but the number of the magnetic part 110 of a north pole and a south pole can be set suitably, if each is the same number.
  • the example in which the magnetic parts 110 having different polarities are alternately arranged along the circumferential direction has been described.
  • the configuration is not limited to this, and a plurality of N-pole magnetic bodies 110 may be arranged along the circumferential direction, and a plurality of S-pole magnetic bodies 110 may be arranged along the circumferential direction.
  • the electromagnet coil section 131 is switched to the N pole or the S pole based on the polarity of the magnetic body section 110 detected by the coil magnetic sensor 133 (the magnetic sensor 134 in the second embodiment).
  • the mechanism which optically reads the position (phase) of the magnetic body part 110 in the inside of the cover part 120 is provided, and based on the polarity of the magnetic body part 110 detected by the said mechanism, the electromagnet coil part 131 is arranged. You may comprise so that it may switch to N pole or S pole.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

 The present invention improves the power generation efficiency of a generator provided with a torus-type magnet part. This generator (1) is provided with: a magnet part in which a magnetic body is disposed along the circumferential direction; a cover part in which the magnet part is accommodated; an electromagnet coil part (131); an electromotive coil part (132) that generates electromotive force by electromagnetic induction that occurs when the magnetic body of the magnet part passes therein; a support part; a power source part (30) that supplies a drive current to the electromagnet coil part (131); and a power storage part (40) that stores the electromotive force generated by the electromotive coil part (132). The magnetic body is formed from a pair of N-pole and S-pole permanent magnets that are combined so as to sandwich a core member of the magnet part from the radial direction.

Description

発電機Generator
 本発明は、トーラス型の磁石部を備えた発電機に関する。 The present invention relates to a generator provided with a torus-type magnet unit.
 従来、鉄芯付きコイルを用いない発電機として、磁性体と非磁性体とを交互にリング状に接続し、トーラス型の輪回転子(磁石部)を構成した発電機が提案されている(例えば、特許文献1参照)。 Conventionally, as a generator not using a coil with iron core, a generator in which a magnetic body and a non-magnetic body are alternately connected in a ring shape to constitute a torus-type ring rotor (magnet portion) has been proposed ( For example, see Patent Document 1).
特開2003-235224号公報JP 2003-235224 A
 上記従来の発電機において、磁石部としての輪回転子は、略円筒状の磁性体(永久磁石)と非磁性体を交互にリング状に接続した構造を有する。この構造によれば、輪回転子で発生する磁力線は、主に輪回転子の内部に沿って放射されるため、磁力線が輪回転子の外側に放射される範囲は小さくなる。そのため、上記従来の発電機では、磁石部としての輪回転子の外側で磁束密度を高めることが難しく、発電効率の向上が課題となっていた。 In the conventional generator described above, the ring rotor as the magnet portion has a structure in which substantially cylindrical magnetic bodies (permanent magnets) and nonmagnetic bodies are alternately connected in a ring shape. According to this structure, the lines of magnetic force generated in the ring rotator are radiated mainly along the inside of the ring rotator, so that the range in which the lines of magnetic force are radiated to the outside of the ring rotator is reduced. For this reason, in the conventional generator described above, it is difficult to increase the magnetic flux density outside the ring rotor as the magnet portion, and improvement in power generation efficiency has been a problem.
 本発明は、トーラス型の磁石部を備えた発電機において、発電効率を向上させることを目的とする。 An object of the present invention is to improve power generation efficiency in a generator including a torus type magnet unit.
 本発明は、磁性体部が円周方向に沿って配置され、全体としてリング状に構成された磁石部と、前記磁石部が収容される中空の絶縁性容器であって、全体としてリング状に構成されたカバー部と、前記カバー部の外側に設けられ、供給された駆動電流によりN極又はS極の磁界を発生する少なくとも2つの電磁石コイル部と、前記カバー部の外側に設けられ、前記磁石部の前記磁性体部が内部を通過した際に生じる電磁誘導により、起電力を発生する起電力コイル部と、前記磁石部、前記カバー部、前記電磁石コイル部、及び前記起電力コイル部の組み立て体としての発電機本体を保持する保持部と、前記電磁石コイル部に駆動電流を供給する電源部と、前記起電力コイル部において発生した起電力を蓄電する蓄電部と、を備えた発電機であって、前記磁石部は、リング状に形成されたコア部材を備え、前記磁性体部は、前記コア部材を径方向から挟むように組み合わされたN極又はS極の永久磁石対により構成され、前記電源部は、前記電磁石コイル部においてN極又はS極の磁界が交互に発生するように、極性の異なる駆動電流が供給可能に構成され、前記電源部から前記電磁石コイル部に駆動電流を供給して、当該電磁石コイル部においてN極又はS極の磁界を発生させ、当該磁界に反応した前記磁性体部の移動により前記磁石部を前記カバー部の内部で回転させると共に、回転する前記磁石部の前記磁性体部が前記起電力コイル部の内部を通過した際に発生する起電力を前記蓄電部に蓄電することを特徴とする発電機に関する。 The present invention relates to a magnet part in which a magnetic body part is arranged along a circumferential direction and is configured in a ring shape as a whole, and a hollow insulating container in which the magnet part is accommodated. A cover portion configured, provided on the outside of the cover portion, and provided on the outside of the cover portion, at least two electromagnet coil portions that generate an N-pole or S-pole magnetic field by the supplied drive current, An electromotive force coil portion that generates an electromotive force by electromagnetic induction generated when the magnetic body portion of the magnet portion passes inside, and the magnet portion, the cover portion, the electromagnet coil portion, and the electromotive force coil portion. A generator comprising: a holding unit that holds a generator body as an assembly; a power supply unit that supplies a drive current to the electromagnet coil unit; and a power storage unit that stores electromotive force generated in the electromotive coil unit. so The magnet portion includes a core member formed in a ring shape, and the magnetic body portion is configured by an N-pole or S-pole permanent magnet pair combined so as to sandwich the core member from the radial direction. The power supply unit is configured to be able to supply drive currents having different polarities so that N-pole or S-pole magnetic fields are alternately generated in the electromagnetic coil unit, and the drive current is supplied from the power supply unit to the electromagnetic coil unit. The magnet part is supplied to generate an N-pole or S-pole magnetic field in the electromagnet coil part, and the magnet part is rotated inside the cover part by the movement of the magnetic body part in response to the magnetic field, and the rotating magnet The present invention relates to a power generator that stores, in the power storage unit, an electromotive force that is generated when the magnetic body portion of the part passes through the inside of the electromotive force coil unit.
 また、本発明においては、前記電磁石コイル部の近傍に設けられ、前記磁石部が前記カバー部の内部で回転した際に、前記電磁石コイル部に接近する前記磁性体部の極性を検出する極性検出部を備え、前記電源部は、前記極性検出部で検出された前記磁性体部の極性に基づいて、前記電磁石コイル部に接近する前記磁性体部の極性と逆極性の磁界が前記電磁石コイル部において発生するように、前記電磁石コイル部にN極又はS極に対応する駆動電流を供給することが好ましい。 In the present invention, the polarity detection is provided in the vicinity of the electromagnet coil portion, and detects the polarity of the magnetic body portion approaching the electromagnet coil portion when the magnet portion rotates inside the cover portion. A magnetic field having a polarity opposite to the polarity of the magnetic body portion approaching the electromagnet coil portion based on the polarity of the magnetic body portion detected by the polarity detection portion. It is preferable to supply a driving current corresponding to the N pole or the S pole to the electromagnet coil section.
 また、本発明において、前記磁石部は、重力方向において前記カバー部の底面と対向する領域に、回動自在に支持された回転体を備えることが好ましい。
 また、本発明において、高発電状態の前記起電力コイル部で発生した起電力の一部を、低発電状態の前記起電力コイル部に供給して、低発電状態の前記起電力コイル部にN極又はS極の磁界を発生させることにより、前記磁性体部の移動を促進させることが好ましい。
In the present invention, it is preferable that the magnet portion includes a rotating body that is rotatably supported in a region facing the bottom surface of the cover portion in the direction of gravity.
Further, in the present invention, a part of the electromotive force generated in the electromotive force coil portion in the high power generation state is supplied to the electromotive force coil portion in the low power generation state, and N is supplied to the electromotive force coil portion in the low power generation state. It is preferable to promote the movement of the magnetic part by generating a magnetic field of a pole or an S pole.
 また、本発明において、高発電状態の前記起電力コイル部と低発電状態の前記起電力コイル部との間を電気的に接続する双方向回路を備えることが好ましい。
 また、本発明において、供給された駆動電流によりN極又はS極の磁界を発生させることにより、前記磁石部を停止状態から所定方向に回転させる起動用の電磁石コイル部を備えることが好ましい。
Moreover, in this invention, it is preferable to provide the bidirectional circuit which electrically connects between the said electromotive force coil part of a high electric power generation state, and the said electromotive force coil part of a low electric power generation state.
Further, in the present invention, it is preferable that an activation electromagnet coil unit that rotates the magnet unit in a predetermined direction from a stopped state by generating an N-pole or S-pole magnetic field by the supplied drive current is preferably provided.
 また、本発明において、前記起動用の電磁石コイル部は、前記前記磁性体部の隣接するN極及びS極のそれぞれ少なくとも半分の領域が同時に通過可能なコイル幅を有することが好ましい。 In the present invention, it is preferable that the starting electromagnet coil section has a coil width that allows at least half of the adjacent N-pole and S-pole areas of the magnetic body section to pass simultaneously.
 本発明によれば、トーラス型の磁石部を備えた発電機において、発電効率を向上させることができる。 According to the present invention, the power generation efficiency can be improved in a generator including a torus-type magnet unit.
第1実施形態における発電機1の全体構成図である。It is a whole block diagram of the generator 1 in 1st Embodiment. 発電機本体10の構成を示す分解斜視図である。FIG. 2 is an exploded perspective view showing a configuration of a generator body 10. 磁石部100の構成を示す平面図である。2 is a plan view showing a configuration of a magnet unit 100. FIG. 図3のA-A線断面図である。FIG. 4 is a sectional view taken along line AA in FIG. 3. 磁石部100の部分的な構成を示す分解斜視図である。2 is an exploded perspective view showing a partial configuration of a magnet unit 100. FIG. 磁石部100における磁力線の放射範囲を示す模式図である。4 is a schematic diagram showing a radiation range of magnetic lines of force in a magnet unit 100. 保持部20の構成を示す外観図である。3 is an external view showing a configuration of a holding unit 20. FIG. 磁石部100の円周方向における位置と電磁石コイル部131の極性との関係を示す模式図である。4 is a schematic diagram showing a relationship between a position of a magnet unit 100 in a circumferential direction and a polarity of an electromagnet coil unit 131. FIG. 第2実施形態における発電機本体10Aの構成を示す分解斜視図である。It is a disassembled perspective view which shows the structure of 10 A of generator main bodies in 2nd Embodiment. 磁石部100における磁性体部110の極性を示す模式図である。4 is a schematic diagram showing the polarity of a magnetic body part 110 in a magnet part 100. FIG. カバー部120の構成を示す平面図である。3 is a plan view showing a configuration of a cover part 120. FIG. 磁石部100の極性と起電力コイル部132との位置関係を示す模式図である。It is a schematic diagram which shows the positional relationship of the polarity of the magnet part 100, and the electromotive force coil part 132. FIG. 磁石部100の回転とコイル部130で起電力が発生するタイミングとの関係を示す説明図である。It is explanatory drawing which shows the relationship between the rotation of the magnet part 100, and the timing which an electromotive force generate | occur | produces in the coil part. 磁石部100の回転とコイル部130で起電力が発生するタイミングとの関係を示す説明図である。It is explanatory drawing which shows the relationship between the rotation of the magnet part 100, and the timing which an electromotive force generate | occur | produces in the coil part. 磁石部100の回転とコイル部130で起電力が発生するタイミングとの関係を示す説明図である。It is explanatory drawing which shows the relationship between the rotation of the magnet part 100, and the timing which an electromotive force generate | occur | produces in the coil part. 磁石部100の回転とコイル部130で起電力が発生するタイミングとの関係を示す説明図である。It is explanatory drawing which shows the relationship between the rotation of the magnet part 100, and the timing which an electromotive force generate | occur | produces in the coil part. 双方向回路140の構成図である。2 is a configuration diagram of a bidirectional circuit 140. FIG.
 以下、図面を参照して、本発明に係る発電機の実施形態について説明する。図1は、第1実施形態における発電機1の全体構成図である。
 図1に示すように、第1実施形態の発電機1は、発電機本体10と、保持部20(不図示)と、電源部30と、蓄電部40と、を備える。
Embodiments of a generator according to the present invention will be described below with reference to the drawings. FIG. 1 is an overall configuration diagram of a generator 1 in the first embodiment.
As shown in FIG. 1, the generator 1 of the first embodiment includes a generator body 10, a holding unit 20 (not shown), a power supply unit 30, and a power storage unit 40.
 まず、発電機本体10及び保持部20の構成について説明する。図2は、発電機本体10の構成を示す分解斜視図である。図3は、磁石部100の構成を示す平面図である。図4は、図3のA-A線断面図である。図5は、磁石部100の部分的な構成を示す分解斜視図である。図6は、磁石部100における磁力線の放射範囲を示す模式図である。図7は、保持部20の構成を示す外観図である。 First, the configuration of the generator body 10 and the holding unit 20 will be described. FIG. 2 is an exploded perspective view showing the configuration of the generator body 10. FIG. 3 is a plan view showing the configuration of the magnet unit 100. 4 is a cross-sectional view taken along line AA in FIG. FIG. 5 is an exploded perspective view showing a partial configuration of the magnet unit 100. FIG. 6 is a schematic diagram showing a radiation range of magnetic lines of force in the magnet unit 100. FIG. 7 is an external view showing the configuration of the holding unit 20.
 発電機本体10は、起電力を発生する部分である。発電機本体10は、後述する磁石部100、カバー部120、コイル部130等により構成される組み立て体である。
 図2に示すように、発電機本体10は、磁石部100と、カバー部120と、コイル部130と、を備える。なお、図2において、コイル部130は、水平方向に2分割した状態を示しているが、実際には一体に構成されている。
The generator body 10 is a part that generates electromotive force. The generator body 10 is an assembly including a magnet unit 100, a cover unit 120, a coil unit 130, and the like, which will be described later.
As shown in FIG. 2, the generator main body 10 includes a magnet unit 100, a cover unit 120, and a coil unit 130. In FIG. 2, the coil portion 130 is shown in a state of being divided into two in the horizontal direction, but is actually configured integrally.
 磁石部100は、図3に示すように、リング状に形成されたコア部材101を備える。コア部材101は、ポリエステル等の絶縁性を有する樹脂のムク材により構成される。コア部材101は、円周方向に沿って複数の節部102を有する。節部102は、略円盤状に構成され、コア部材101の直径よりも大きな外径を有する。隣接する節部102と節部102との間に、磁性体部110が形成される。なお、図3では、コア部材101の形状を分かり易くするため、磁性体部110が3箇所に形成された状態を示しているが、磁性体部110は、コア部材101の全周に亘って形成されている。すなわち、本実施形態の磁石部100は、トーラス型の磁石部として構成されている。 The magnet unit 100 includes a core member 101 formed in a ring shape as shown in FIG. The core member 101 is made of an insulating resin material such as polyester. The core member 101 has a plurality of node portions 102 along the circumferential direction. The node portion 102 is configured in a substantially disc shape and has an outer diameter larger than the diameter of the core member 101. A magnetic body 110 is formed between adjacent nodes 102. In FIG. 3, in order to make the shape of the core member 101 easy to understand, a state in which the magnetic body portion 110 is formed at three locations is shown. However, the magnetic body portion 110 extends over the entire circumference of the core member 101. Is formed. That is, the magnet unit 100 of the present embodiment is configured as a torus type magnet unit.
 磁性体部110は、図4及び図5に示すように、永久磁石対111と、同化金属片112と、を備える。永久磁石対111は、C字形の永久磁石であり、N極又はS極の極性を有する。永久磁石対111は、コア部材101を径方向から挟むように組み合わされている。永久磁石対111の極性は、極性の異なる磁性体部110がコア部材101の円周方向に沿って交互に配置される。すなわち、磁性体部110の極性は、コア部材101の円周方向に沿って、N極-S極-N極-S極というように交互に設定される。本実施形態において、N極の磁性体部110は8極あり、S極の磁性体部110は8極ある。従って、コア部材101の全周に亘って16極の磁性体部110が形成されている。なお、図2では、磁石部100において、各磁性体部110の極性が異なることを白黒の模様で示している。 As shown in FIGS. 4 and 5, the magnetic part 110 includes a permanent magnet pair 111 and an assimilable metal piece 112. The permanent magnet pair 111 is a C-shaped permanent magnet and has an N-pole or S-pole polarity. The permanent magnet pair 111 is combined so as to sandwich the core member 101 from the radial direction. As for the polarity of the permanent magnet pair 111, the magnetic body portions 110 having different polarities are alternately arranged along the circumferential direction of the core member 101. That is, the polarities of the magnetic body portions 110 are alternately set in the circumferential direction of the core member 101 such as N pole-S pole-N pole-S pole. In the present embodiment, the N-pole magnetic body portion 110 has 8 poles, and the S-pole magnetic body portion 110 has 8 poles. Accordingly, a 16-pole magnetic body 110 is formed over the entire circumference of the core member 101. In FIG. 2, in the magnet unit 100, it is shown by a black and white pattern that the polarities of the magnetic body units 110 are different.
 図4に示すように、永久磁石対111の上部は、同化金属片112により接合されている。同化金属片112は、同極性(N極又はS極)の永久磁石対111を接合するための部材であり、鉄等により構成される。すなわち、同極性(N極又はS極)の永久磁石対111同士は、互いに反発する性質があるため、間に同化金属片112を入れることにより、永久磁石対111を接合することができる。 As shown in FIG. 4, the upper part of the permanent magnet pair 111 is joined by an assimilable metal piece 112. The assimilable metal piece 112 is a member for joining the permanent magnet pair 111 having the same polarity (N pole or S pole), and is made of iron or the like. That is, since the permanent magnet pairs 111 having the same polarity (N pole or S pole) have a repulsive property, the permanent magnet pair 111 can be joined by inserting the anabolic metal piece 112 therebetween.
 一方、永久磁石対111の下部には、図4に示すように、溝部(ベアリングスペース)113が形成される。この溝部113には、回転体としてのボールベアリング114が収容される。ボールベアリング114は、カバー部120(後述)の内部において、磁石部100を回転し易くするための部品である。ボールベアリング114は、溝部113の長手方向に沿って、複数個が収容される。すなわち、ボールベアリング114は、重力方向において、カバー部120の底面(図2参照)と対向する領域(溝部113)に、回動自在に支持されている。ボールベアリング114は、ステンレス、樹脂、セラミック等の磁化しにくい材料により構成される。 On the other hand, a groove (bearing space) 113 is formed below the permanent magnet pair 111 as shown in FIG. The groove 113 accommodates a ball bearing 114 as a rotating body. The ball bearing 114 is a component for facilitating rotation of the magnet unit 100 inside a cover unit 120 (described later). A plurality of ball bearings 114 are accommodated along the longitudinal direction of the groove 113. In other words, the ball bearing 114 is rotatably supported in a region (groove portion 113) facing the bottom surface (see FIG. 2) of the cover portion 120 in the direction of gravity. The ball bearing 114 is made of a material that is hard to be magnetized, such as stainless steel, resin, or ceramic.
 ここで、磁性体部110における磁力線の放射範囲について説明する。図6(A)は、先に説明した従来の発電機(特開2003-235224号)における輪回転子の概略断面図である。また、図6(B)は、本実施形態における磁性体部110の概略断面図である。図6(A)、(B)において、破線で示す範囲は、磁力線の放射範囲を模式的に示している。図6(A)に示すように、従来の発電機では、輪回転子において発生する磁力線のほとんどが輪回転子の内部に沿って放射されるため、磁力線が外側に放射される範囲は小さい。一方、図6(B)に示すように、本実施形態の永久磁石対111は、コア部材101を径方向から挟むように組み合わされているため、磁力線が外側に放射される範囲は大きくなる。その結果、起電力コイル部132(後述)における磁束密度も大きくなり、従来の発電機に比べて、より多くの起電力を得ることができる。 Here, the radiation range of the lines of magnetic force in the magnetic part 110 will be described. FIG. 6A is a schematic cross-sectional view of a wheel rotor in the conventional generator described above (Japanese Patent Laid-Open No. 2003-235224). FIG. 6B is a schematic cross-sectional view of the magnetic part 110 in the present embodiment. In FIGS. 6A and 6B, the range indicated by the broken line schematically shows the radiation range of the magnetic lines of force. As shown in FIG. 6 (A), in the conventional generator, most of the magnetic force lines generated in the wheel rotor are radiated along the inside of the wheel rotor, so the range in which the magnetic force lines are radiated outward is small. On the other hand, as shown in FIG. 6B, the permanent magnet pair 111 of this embodiment is combined so as to sandwich the core member 101 from the radial direction, and therefore the range in which the lines of magnetic force are radiated to the outside increases. As a result, the magnetic flux density in the electromotive force coil portion 132 (described later) is also increased, and more electromotive force can be obtained as compared with the conventional generator.
 再び、発電機本体10の構成について説明する。カバー部120は、図2に示すように、上カバー部121と、下カバー部122と、を備える。カバー部120は、内部に磁石部100が収容される中空の絶縁性容器である。磁石部100は、上カバー部121と下カバー部122との間に収容される。磁石部100を収容した後、上カバー部121と下カバー部122との接合面を接着剤等で接合することにより、カバー部120は、全体としてリング状となる。なお、上カバー部121及び下カバー部122の外側の表面には、後述するコイル部130が形成し易いように、凹凸部(符号略)が設けられている。 Again, the configuration of the generator body 10 will be described. As shown in FIG. 2, the cover part 120 includes an upper cover part 121 and a lower cover part 122. The cover part 120 is a hollow insulating container in which the magnet part 100 is accommodated. The magnet part 100 is accommodated between the upper cover part 121 and the lower cover part 122. After accommodating the magnet part 100, the cover part 120 becomes a ring shape as a whole by joining the joining surfaces of the upper cover part 121 and the lower cover part 122 with an adhesive or the like. In addition, the uneven | corrugated | grooved part (code | symbol abbreviation) is provided in the outer surface of the upper cover part 121 and the lower cover part 122 so that the coil part 130 mentioned later may be formed easily.
 コイル部130は、図1に示すように、電磁石コイル部131と、起電力コイル部132と、極性検出部としてのコイル磁気センサ133と、を備える。これら各部は、いずれもカバー部120の外側に巻き付けられたエナメル線により構成される。 As shown in FIG. 1, the coil unit 130 includes an electromagnet coil unit 131, an electromotive force coil unit 132, and a coil magnetic sensor 133 as a polarity detection unit. Each of these parts is constituted by an enameled wire wound around the outside of the cover part 120.
 電磁石コイル部131は、電源部30から供給される駆動電流により、N極又はS極の磁界を発生する。本実施形態において、電磁石コイル部131は、カバー部120の円周方向に沿って2箇所に設けられている。電磁石コイル部131は、電源部30(後述)と電気的に接続されている。 The electromagnet coil section 131 generates an N-pole or S-pole magnetic field by the drive current supplied from the power supply section 30. In the present embodiment, the electromagnet coil part 131 is provided at two locations along the circumferential direction of the cover part 120. The electromagnet coil unit 131 is electrically connected to a power source unit 30 (described later).
 起電力コイル部132は、磁石部100の磁性体部110(図3参照)が内部を通過した際に生じる電磁誘導により、起電力を発生する。本実施形態において、起電力コイル部132は、カバー部120の円周方向に沿って16箇所に設けられている。電磁石コイル部131は、蓄電部40(後述)と電気的に接続されている。 The electromotive force coil part 132 generates an electromotive force by electromagnetic induction generated when the magnetic body part 110 (see FIG. 3) of the magnet part 100 passes through the inside. In the present embodiment, the electromotive force coil portion 132 is provided at 16 locations along the circumferential direction of the cover portion 120. The electromagnet coil unit 131 is electrically connected to the power storage unit 40 (described later).
 コイル磁気センサ133は、磁石部100がカバー部120の内部で回転した際に、電磁石コイル部131に接近する磁性体部110の極性を検出する。コイル磁気センサ133は、電磁石コイル部131の近傍に設けられる。磁石部100が平面視において反時計回りに回転するとした場合、コイル磁気センサ133は、電磁石コイル部131から見て、磁石部100が回転する方向の上流側に設けられる。コイル磁気センサ133は、電源部30(後述)と電気的に接続されている。コイル磁気センサ133で検出された磁性体部110の極性は、極性信号(N極又はS極)として電源部30に送信される。 The coil magnetic sensor 133 detects the polarity of the magnetic body part 110 approaching the electromagnet coil part 131 when the magnet part 100 rotates inside the cover part 120. The coil magnetic sensor 133 is provided in the vicinity of the electromagnet coil section 131. When the magnet unit 100 rotates counterclockwise in plan view, the coil magnetic sensor 133 is provided on the upstream side in the direction in which the magnet unit 100 rotates as viewed from the electromagnet coil unit 131. The coil magnetic sensor 133 is electrically connected to a power supply unit 30 (described later). The polarity of the magnetic unit 110 detected by the coil magnetic sensor 133 is transmitted to the power supply unit 30 as a polarity signal (N pole or S pole).
 次に、保持部20、電源部30、及び蓄電部40の構成について説明する。
 保持部20は、発電機本体10を保持する構造体である。保持部20は、図7に示すように、ステー部21と、取付板22と、を備える。ステー部21は、発電機本体10を固定する部材である。ステー部21は、L字形の枠材23を4つ組み合わせて構成される。ステー部21は、取付板22に配置される。発電機本体10は、外周の4箇所においてステー部21に保持される。
Next, the structure of the holding | maintenance part 20, the power supply part 30, and the electrical storage part 40 is demonstrated.
The holding unit 20 is a structure that holds the generator body 10. As shown in FIG. 7, the holding portion 20 includes a stay portion 21 and a mounting plate 22. The stay portion 21 is a member that fixes the generator body 10. The stay portion 21 is configured by combining four L-shaped frame members 23. The stay portion 21 is disposed on the mounting plate 22. The generator body 10 is held by the stay portion 21 at four locations on the outer periphery.
 電源部30(図1参照)は、主に発電機本体10の電磁石コイル部131(後述)に駆動電流を供給する装置である。電源部30と発電機本体10との間は、各種の配線により電気的に接続されている。すなわち、電源部30と電磁石コイル部131(発電機本体10)との間は、配線L1により接続されている。また、電源部30とコイル磁気センサ133(発電機本体10)との間は、配線L2により接続されている。電源部30は、コイル磁気センサ133で検出された磁性体部110の極性に基づいて、電磁石コイル部131にN極又はS極に対応する駆動電流を供給する。 The power supply unit 30 (see FIG. 1) is a device that mainly supplies a drive current to an electromagnetic coil unit 131 (described later) of the generator body 10. The power supply unit 30 and the generator body 10 are electrically connected by various wirings. That is, the power supply unit 30 and the electromagnet coil unit 131 (generator body 10) are connected by the wiring L1. The power supply unit 30 and the coil magnetic sensor 133 (generator body 10) are connected by a wiring L2. The power supply unit 30 supplies a drive current corresponding to the N pole or the S pole to the electromagnetic coil unit 131 based on the polarity of the magnetic body unit 110 detected by the coil magnetic sensor 133.
 なお、本実施形態において、電源部30と蓄電部40(後述)との間は、配線L3により電気的に接続されている。蓄電部40に蓄電された電力の一部は、配線L3を介して、電源部30に送電される。電源部30は、蓄電部40から送電された電力により、発電機本体10の電磁石コイル部131に駆動電流を供給することができる。 In the present embodiment, the power supply unit 30 and the power storage unit 40 (described later) are electrically connected by the wiring L3. Part of the power stored in the power storage unit 40 is transmitted to the power supply unit 30 via the wiring L3. The power supply unit 30 can supply a drive current to the electromagnet coil unit 131 of the generator body 10 by the electric power transmitted from the power storage unit 40.
 蓄電部40(図1参照)は、発電機本体10の起電力コイル部132において発生した起電力を電力として蓄電するバッテリ装置である。蓄電部40と発電機本体10のとの間は、配線L4により電気的に接続されている。蓄電部40は、図示しない負荷側の機器(電動機、照明装置等)と電気的に接続されている。発電機本体10で発生した起電力は、蓄電部40に直流電力として蓄積され、蓄電部40から負荷側の機器に送電される。なお、先に説明したように、蓄電部40に蓄電された電力の一部は、配線L3を介して、電源部30に送電される。 The power storage unit 40 (see FIG. 1) is a battery device that stores the electromotive force generated in the electromotive force coil unit 132 of the generator body 10 as electric power. The power storage unit 40 and the generator body 10 are electrically connected by a wiring L4. The power storage unit 40 is electrically connected to load-side equipment (such as an electric motor and a lighting device) (not shown). The electromotive force generated in the generator body 10 is accumulated as DC power in the power storage unit 40 and is transmitted from the power storage unit 40 to the load side device. As described above, a part of the power stored in the power storage unit 40 is transmitted to the power supply unit 30 via the wiring L3.
 次に、電源部30において、コイル磁気センサ133で検出された磁性体部110の極性に基づいて、電磁石コイル部131にN極又はS極に対応する駆動電流を供給する場合の具体例について説明する。図8(A)から(F)は、磁石部100の円周方向における位置と電磁石コイル部131の極性との関係を示す模式図である。なお、磁石部100は、図2に示すように、カバー部120の内部に収容されるが、図8では説明を容易にするため、同一紙面上に描いている。 Next, a specific example in the case where the drive current corresponding to the N pole or the S pole is supplied to the electromagnet coil section 131 based on the polarity of the magnetic body section 110 detected by the coil magnetic sensor 133 in the power supply section 30 will be described. To do. FIGS. 8A to 8F are schematic diagrams illustrating the relationship between the position of the magnet unit 100 in the circumferential direction and the polarity of the electromagnet coil unit 131. As shown in FIG. 2, the magnet unit 100 is housed inside the cover unit 120, but in FIG. 8, the magnet unit 100 is drawn on the same sheet for easy explanation.
 図8では、2つの電磁石コイル部131を区別して、電磁石コイル部131a、131bと記述する。同様に、2つのコイル磁気センサ133を区別して、コイル磁気センサ133a、133bと記述する。また、図8において、符号の記載は適宜に省略する。 In FIG. 8, the two electromagnet coil parts 131 are distinguished and described as electromagnet coil parts 131a and 131b. Similarly, the two coil magnetic sensors 133 are distinguished and described as coil magnetic sensors 133a and 133b. Further, in FIG. 8, the description of the reference numerals is omitted as appropriate.
 図8では、N極の電磁石コイル部131a、131bを斜線で示し、S極の電磁石コイル部131a、131bを網線で示す。電磁石コイル部131a、131bの極性は、後述するように、所定のタイミングで切り替えられる。また、図8では、磁石部100において、N極の磁性体部110を白地で示し、S極の磁性体部110を黒地で示す。磁性体部110の極性は、N極又はS極に固定されている。また、本実施形態において、磁石部100は、反時計回り(図中の矢印方向)に回転する。 In FIG. 8, the N-pole electromagnet coil portions 131a and 131b are indicated by diagonal lines, and the S-pole electromagnet coil portions 131a and 131b are indicated by mesh lines. The polarities of the electromagnet coil portions 131a and 131b are switched at a predetermined timing as will be described later. Further, in FIG. 8, in the magnet unit 100, the N-pole magnetic body portion 110 is indicated by a white background, and the S-pole magnetic body portion 110 is indicated by a black background. The polarity of the magnetic part 110 is fixed to the N pole or the S pole. Moreover, in this embodiment, the magnet part 100 rotates counterclockwise (arrow direction in a figure).
 電源部30は、電磁石コイル部131に駆動電流を供給し、電磁石コイル部131においてN極又はS極の磁界を発生させる。すると、この磁界に反応した磁性体部110の移動により、磁石部100がカバー部120の内部で回転する。このとき、電源部30は、コイル磁気センサ133で検出された磁性体部110の極性に基づいて、電磁石コイル部131に接近する磁性体部110の極性と逆極性の磁界が電磁石コイル部131に発生するように、電磁石コイル部131にN極又はS極に対応する駆動電流を供給する。 The power supply unit 30 supplies a drive current to the electromagnet coil unit 131 to generate an N-pole or S-pole magnetic field in the electromagnet coil unit 131. Then, the magnet part 100 rotates inside the cover part 120 by the movement of the magnetic body part 110 in response to this magnetic field. At this time, based on the polarity of the magnetic body part 110 detected by the coil magnetic sensor 133, the power supply unit 30 generates a magnetic field having a polarity opposite to the polarity of the magnetic body part 110 approaching the electromagnet coil part 131. A drive current corresponding to the N pole or S pole is supplied to the electromagnet coil section 131 so as to be generated.
 例えば、図8(B)において、コイル磁気センサ133aで検出された磁性体部110(すなわち、電磁石コイル部131aに接近する磁性体部110)の極性は、N極となる。そのため、電源部30は、図8(C)に示すように、電磁石コイル部131aの極性を、逆極性のS極に切り替える。これによれば、該当するN極の磁性体部110は、S極の電磁石コイル部131aに吸引されるため、磁性体部110は、円周方向に沿って移動する。このように、N極の磁性体部110が、S極の電磁石コイル部131aに吸引されることにより、磁石部100には、反時計回りに回転する駆動力が与えられる。 For example, in FIG. 8B, the polarity of the magnetic body part 110 (that is, the magnetic body part 110 approaching the electromagnet coil part 131a) detected by the coil magnetic sensor 133a is the N pole. Therefore, as shown in FIG. 8C, the power supply unit 30 switches the polarity of the electromagnet coil unit 131a to the S pole having the opposite polarity. According to this, since the corresponding N-pole magnetic body part 110 is attracted to the S-pole electromagnet coil part 131a, the magnetic body part 110 moves along the circumferential direction. As described above, the magnetic part 110 having the N pole is attracted to the electromagnet coil part 131a having the S pole, so that the magnet part 100 is given a driving force that rotates counterclockwise.
 同様に、図8(E)において、コイル磁気センサ133bで検出された磁性体部110(すなわち、電磁石コイル部131bに接近する磁性体部110)の極性は、S極となる。そのため、電源部30は、図8(F)に示すように、電磁石コイル部131bの極性を逆極性のN極に切り替える。これによれば、該当するS極の磁性体部110は、N極の電磁石コイル部131bに吸引されるため、磁性体部110は、円周方向に沿って移動する。このように、S極の磁性体部110が、N極の電磁石コイル部131bに吸引されることにより、磁石部100には、反時計回りに回転する駆動力が与えられる。 Similarly, in FIG. 8E, the polarity of the magnetic part 110 (that is, the magnetic part 110 approaching the electromagnet coil part 131b) detected by the coil magnetic sensor 133b is the S pole. Therefore, as shown in FIG. 8F, the power supply unit 30 switches the polarity of the electromagnet coil unit 131b to the N-polarity with the opposite polarity. According to this, since the corresponding S pole magnetic body part 110 is attracted to the N pole electromagnet coil part 131b, the magnetic body part 110 moves along the circumferential direction. In this manner, the magnetic part 110 of the S pole is attracted to the electromagnet coil part 131b of the N pole, so that the magnet part 100 is given a driving force that rotates counterclockwise.
 本実施形態において、電磁石コイル部131a及び131bの極性は、図8に示すように、20°毎に周期的に切り替えられる。
 一方、磁石部100が回転すると、各起電力コイル部132では、磁石部100の磁性体部110が内部を通過した際に生じる電磁誘導により、それぞれ起電力を発生する。各起電力コイル部132で発生した起電力は、配線L4を介して蓄電部40に送電される。
In the present embodiment, the polarities of the electromagnet coils 131a and 131b are periodically switched every 20 ° as shown in FIG.
On the other hand, when the magnet unit 100 rotates, each electromotive force coil unit 132 generates an electromotive force by electromagnetic induction generated when the magnetic body unit 110 of the magnet unit 100 passes through the inside. The electromotive force generated in each electromotive force coil unit 132 is transmitted to the power storage unit 40 via the wiring L4.
 上述した第1実施形態における発電機1によれば、例えば、以下のような効果が奏される。
 第1実施形態の発電機1において、永久磁石対111は、コア部材101を径方向から挟むように組み合わされている。これによれば、磁力線が外側に放射される範囲が従来に比べて大きくなるため、起電力コイル部132における磁束密度も大きくなり、従来の発電機に比べて、より多くの起電力を得ることができる。従って、本実施形態の発電機1によれば、トーラス型の輪回転子(磁石部)を備えた従来の発電機に比べて、発電効率を向上させることができる。
According to the generator 1 in 1st Embodiment mentioned above, the following effects are show | played, for example.
In the generator 1 of the first embodiment, the permanent magnet pair 111 is combined so as to sandwich the core member 101 from the radial direction. According to this, since the range in which the magnetic lines of force are radiated to the outside is larger than in the conventional case, the magnetic flux density in the electromotive force coil unit 132 is also increased, and more electromotive force is obtained than in the conventional generator. Can do. Therefore, according to the generator 1 of this embodiment, the power generation efficiency can be improved as compared with a conventional generator including a torus type wheel rotor (magnet part).
 また、電源部30は、コイル磁気センサ133で検出された磁性体部110の極性に基づいて、電磁石コイル部131にN極又はS極に対応する駆動電流を供給する。そのため、磁石部100の回転速度に係わらず、電磁石コイル部131の極性を、より正確に切り替えることができる。 Further, the power supply unit 30 supplies a drive current corresponding to the N pole or the S pole to the electromagnet coil unit 131 based on the polarity of the magnetic body unit 110 detected by the coil magnetic sensor 133. Therefore, the polarity of the electromagnet coil unit 131 can be switched more accurately regardless of the rotational speed of the magnet unit 100.
 また、磁石部100において、磁性体部110は、カバー部120の底面と対向する溝部113に、回動自在に支持されたボールベアリング114を備える。そのため、カバー部120の内部で回転する磁石部100の褶動抵抗を、可能な限り小さくすることができる。 In the magnet unit 100, the magnetic body unit 110 includes a ball bearing 114 that is rotatably supported in a groove 113 that faces the bottom surface of the cover unit 120. Therefore, the peristaltic resistance of the magnet unit 100 rotating inside the cover unit 120 can be made as small as possible.
 次に、第2実施形態について説明する。
 第2実施形態における発電機1Aの基本的な構成は、第1実施形態の発電機1(図1参照)と同じである。以下、第2実施形態における発電機1Aの特徴的な構成について説明する。なお、第2実施形態では、第1実施形態と同じ部材に同一符号を付して説明する。但し、同一符号を付した部材のうち、第1実施形態と実質的に同じ構成の部材については、機能の説明を省略する。
Next, a second embodiment will be described.
The basic configuration of the generator 1A in the second embodiment is the same as the generator 1 (see FIG. 1) of the first embodiment. Hereinafter, a characteristic configuration of the generator 1A in the second embodiment will be described. In the second embodiment, the same members as those in the first embodiment are denoted by the same reference numerals. However, the description of a function is abbreviate | omitted about the member of the substantially same structure as 1st Embodiment among the members which attached | subjected the same code | symbol.
 図9は、第2実施形態における発電機本体10Aの構成を示す分解斜視図である。図10は、磁石部100における磁性体部110の極性を示す模式図である。図11は、カバー部120の構成を示す平面図である。なお、図11では、カバー部120の内部に収容される磁石部100を破線で示す。
 図9に示すように、発電機本体10Aは、磁石部100と、カバー部120と、コイル部(不図示)と、を備える。
FIG. 9 is an exploded perspective view showing the configuration of the generator main body 10A in the second embodiment. FIG. 10 is a schematic diagram showing the polarity of the magnetic part 110 in the magnet part 100. FIG. 11 is a plan view showing the configuration of the cover unit 120. In addition, in FIG. 11, the magnet part 100 accommodated in the inside of the cover part 120 is shown with a broken line.
As shown in FIG. 9, the generator main body 10A includes a magnet unit 100, a cover unit 120, and a coil unit (not shown).
 磁石部100は、図10(A)に示すように、N極の磁性体部110と、S極の磁性体部110と、を備える。図10では、N極の磁性体部110をクロスした斜線で示す。また、図10では、S極の磁性体部110を斜線で示す。磁性体部110の極性は、磁石部100の円周方向に沿って、N極-S極-N極-S極のように交互に設定される。第2実施形態において、N極の磁性体部110は、15極ある。また、S極の磁性体部110は、15極ある。即ち、磁石部100の全周に亘って、30極の磁性体部110が形成されている。 The magnet unit 100 includes an N-pole magnetic body 110 and an S-pole magnetic body 110 as shown in FIG. In FIG. 10, the N pole magnetic body 110 is indicated by crossed diagonal lines. Further, in FIG. 10, the south pole magnetic body portion 110 is indicated by hatching. The polarities of the magnetic body portions 110 are alternately set in the circumferential direction of the magnet portion 100 such as N pole-S pole-N pole-S pole. In the second embodiment, the N-pole magnetic part 110 has 15 poles. The S pole magnetic body 110 has 15 poles. That is, the 30-pole magnetic part 110 is formed over the entire circumference of the magnet part 100.
 図10(B)は、各磁性体部110のピークポイントを示す図である。ピークポイントとは、磁性体部110において、磁力が最も強い領域である。ピークポイントは、図10(B)に示すように、磁性体部110のほぼ中央部Pに存在する。図10(B)に示すピークポイントは、磁性体部110の外側に存在するピークポイントである。コイル部130では、磁石部100におけるN極又はS極が、起電力コイル部132を通過する間に起電力が発生する。特に、磁石部100のN極又はS極におけるピークポイントが、起電力コイル部132の中心と一致する位置において最大の起電力が発生する。 FIG. 10B is a diagram showing the peak point of each magnetic body 110. The peak point is a region where the magnetic force is strongest in the magnetic part 110. As shown in FIG. 10B, the peak point is present at substantially the central portion P of the magnetic body portion 110. The peak point shown in FIG. 10B is a peak point existing outside the magnetic body 110. In the coil unit 130, an electromotive force is generated while the N or S pole in the magnet unit 100 passes through the electromotive force coil unit 132. In particular, the maximum electromotive force is generated at a position where the peak point of the N pole or S pole of the magnet unit 100 coincides with the center of the electromotive force coil unit 132.
 カバー部120は、図9に示すように、上カバー部121と、下カバー部122と、を備える。上カバー部121及び下カバー部122は、それぞれ複数のセパレータ123を備える。セパレータ123は、隣接するコイル部の間を電気的に絶縁する部材である。セパレータ123は、上カバー部121と下カバー部122とを接合した際に、円周状の同じ位置において、一つのセパレータとなるように構成される。なお、セパレータ123の幅は、配置される位置により異なる。 The cover part 120 includes an upper cover part 121 and a lower cover part 122 as shown in FIG. Each of the upper cover 121 and the lower cover 122 includes a plurality of separators 123. The separator 123 is a member that electrically insulates between adjacent coil portions. The separator 123 is configured to be a single separator at the same circumferential position when the upper cover 121 and the lower cover 122 are joined. The width of the separator 123 varies depending on the position where it is disposed.
 図11において、隣接するセパレータ123の間にエナメル線(不図示)を巻き付けることにより、電磁石コイル部131、起電力コイル部132等(図1参照)が形成される。なお、第2実施形態で説明する各図では、電磁石コイル部131、起電力コイル部132等に形成されたコイルの図示を省略する。 In FIG. 11, by winding an enamel wire (not shown) between adjacent separators 123, an electromagnet coil part 131, an electromotive coil part 132, etc. (see FIG. 1) are formed. In addition, in each figure demonstrated in 2nd Embodiment, illustration of the coil formed in the electromagnet coil part 131, the electromotive force coil part 132, etc. is abbreviate | omitted.
 電磁石コイル部131は、図11に示すように、カバー部120の円周方向に沿って2箇所に設けられている。
 起電力コイル部132は、図11に示すように、円周方向に沿ってグループA、グループB、グループCの3つのグループに分けて配置されている。各グループは、起電力コイル部132を16個備えている。第2実施形態では、磁石部100が2°回転する毎に、起電力を発生するグループ(以下、「発電グループ」ともいう)が切り替えられる。
As shown in FIG. 11, the electromagnet coil portion 131 is provided at two locations along the circumferential direction of the cover portion 120.
As shown in FIG. 11, the electromotive force coil unit 132 is divided into three groups of group A, group B, and group C along the circumferential direction. Each group includes 16 electromotive force coil portions 132. In the second embodiment, every time the magnet unit 100 rotates 2 °, a group that generates an electromotive force (hereinafter also referred to as “power generation group”) is switched.
 発電グループにおいて、起電力を発生する起電力コイル部132は、一つ置きとなる。例えば、1グループに含まれる16個の起電力コイル部132のうち、奇数番目に位置する8個の起電力コイル部132で起電力が発生したとする。その場合、次に同グループが発電グループとなった場合は、偶数番目に位置する8個の起電力コイル部132で起電力が発生する。発電グループの切り替えについては後述する。 In the power generation group, every other electromotive coil section 132 that generates electromotive force is provided. For example, it is assumed that an electromotive force is generated in eight electromotive force coil portions 132 positioned oddly among 16 electromotive force coil portions 132 included in one group. In that case, when the same group becomes a power generation group next time, an electromotive force is generated by the eight electromotive force coil portions 132 positioned at even numbers. The switching of the power generation group will be described later.
 起電力コイル部132は、磁性体部110のN極及びS極が同時に通過する時間が極力短くなるようにコイル幅が狭く設定されている。起電力コイル部132において、磁性体部110のN極及びS極が同時に通過する時間が長いと、発電効率が低下するためである。このように、第2実施形態の発電機本体10Aでは、起電力コイル部132に磁性体部110のN極及びS極が同時に通過する時間が極力短くなるように、コイル幅が狭く設定されているため、発電効率を向上させることができる。 The coil width of the electromotive force coil section 132 is set to be narrow so that the time during which the N pole and S pole of the magnetic body section 110 pass simultaneously is as short as possible. This is because in the electromotive force coil unit 132, if the time during which the N pole and the S pole of the magnetic body unit 110 pass simultaneously is long, the power generation efficiency decreases. As described above, in the generator main body 10A of the second embodiment, the coil width is set to be narrow so that the time during which the N pole and the S pole of the magnetic body part 110 simultaneously pass through the electromotive force coil part 132 is as short as possible. Therefore, the power generation efficiency can be improved.
 また、第2実施形態の発電機本体10Aでは、起電力コイル部132のコイル幅を狭くしたため、起電力コイル部132の数は、第1実施形態の起電力コイル部132の数よりも多い。更に、磁性体部110におけるN極及びS極の数も、第1実施形態の磁性体部110におけるN極及びS極の数よりも多い。このように、第2実施形態の発電機本体10Aでは、磁性体部110におけるN極及びS極の数が多いため、第1実施形態に比べて、発電効率をより向上させることができる。 Moreover, in the generator main body 10A of the second embodiment, since the coil width of the electromotive force coil unit 132 is narrowed, the number of electromotive force coil units 132 is larger than the number of electromotive force coil units 132 of the first embodiment. Furthermore, the number of N poles and S poles in the magnetic body part 110 is also larger than the number of N poles and S poles in the magnetic body part 110 of the first embodiment. As described above, in the generator main body 10A of the second embodiment, since the number of N poles and S poles in the magnetic body portion 110 is large, the power generation efficiency can be further improved as compared with the first embodiment.
 磁気センサ134は、磁石部100がカバー部120の内部で回転した際に、電磁石コイル部131に接近する磁性体部110の磁極を検出する。磁気センサ134は、図11に示すように、電磁石コイル部131の両側に位置するセパレータ123の上に配置されている。なお、磁気センサ134は、隣接して配置された2つの磁気センサ134a及び134bにより構成される。 The magnetic sensor 134 detects the magnetic pole of the magnetic body part 110 approaching the electromagnet coil part 131 when the magnet part 100 rotates inside the cover part 120. As shown in FIG. 11, the magnetic sensor 134 is disposed on the separator 123 located on both sides of the electromagnet coil section 131. The magnetic sensor 134 includes two magnetic sensors 134a and 134b arranged adjacent to each other.
 電磁石コイル部135は、磁石部100を停止状態から所定方向に回転させるための起動用の電磁石コイル部である。電磁石コイル部135は、磁性体部110の隣接するN極及びS極のそれぞれ少なくとも半分の領域が同時に通過可能なコイル幅を有する。そのため、磁石部100の停止状態において、電磁石コイル部135にN極又はS極の磁界を発生させると、電磁石コイル部135の位置に存在する磁性体部110のS極又はN極は、発生した磁界に強く吸引される。そのため、磁石部100を、停止状態からより効率良く回転させることができる。
 また、第2実施形態の発電機1Aには、図1に示す蓄電部40の代わりに、双方向回路140(図1、図11に不図示)が接続されている。双方向回路140の構成については、後述する。
The electromagnet coil unit 135 is a starting electromagnet coil unit for rotating the magnet unit 100 in a predetermined direction from a stopped state. The electromagnet coil part 135 has a coil width through which at least half of the adjacent N poles and S poles of the magnetic part 110 can pass simultaneously. Therefore, when the N or S magnetic field is generated in the electromagnet coil unit 135 in the stopped state of the magnet unit 100, the S or N pole of the magnetic body 110 existing at the position of the electromagnet coil unit 135 is generated. Strongly attracted to magnetic fields. Therefore, the magnet unit 100 can be rotated more efficiently from the stopped state.
In addition, a bidirectional circuit 140 (not shown in FIGS. 1 and 11) is connected to the generator 1A of the second embodiment instead of the power storage unit 40 shown in FIG. The configuration of the bidirectional circuit 140 will be described later.
 次に、磁石部100の回転とコイル部130において起電力が発生するタイミングについて説明する。図12は、磁石部100の極性と起電力コイル部132との位置関係を示す模式図である。
 図12では、説明を容易にするため、磁石部100をコイル部130の内側に示す。磁石部100におけるN極及びS極の位置は、カバー部120に磁石部100を収容したときの位置と一致する。
Next, the rotation of the magnet unit 100 and the timing at which an electromotive force is generated in the coil unit 130 will be described. FIG. 12 is a schematic diagram showing the positional relationship between the polarity of the magnet unit 100 and the electromotive force coil unit 132.
In FIG. 12, the magnet part 100 is shown inside the coil part 130 for ease of explanation. The positions of the N pole and the S pole in the magnet unit 100 coincide with the positions when the magnet unit 100 is accommodated in the cover unit 120.
 図12において、グループAでは、8箇所(一つ置き)の起電力コイル部132の中心と、磁石部100のN極又はS極におけるピークポイントとが一致する。そのため、グループAの該当する起電力コイル部132からは、それぞれ起電力が出力される。なお、本実施形態では、磁石部100のN極又はS極におけるピークポイントが、起電力コイル部132の中心とずれている場合には、起電力が発生していないものと見做して説明する(実際には、起電力は発生している)。
 一方、グループB及びCでは、各起電力コイル部132の中心と、磁石部100のN極又はS極におけるピークポイントとがいずれも一致しない。そのため、グループB及びCの起電力コイル部132からは、起電力が出力されない。
 従って、図12において、グループAは、発電グループとなる。また、グループB及びCは、非発電グループとなる。
In FIG. 12, in group A, the centers of eight (every other) electromotive force coil portions 132 coincide with the peak points at the N pole or S pole of the magnet portion 100. Therefore, the electromotive force is output from the corresponding electromotive force coil unit 132 of group A. In the present embodiment, when the peak point at the N pole or S pole of the magnet unit 100 is deviated from the center of the electromotive force coil unit 132, it is assumed that no electromotive force is generated. (In fact, an electromotive force is generated).
On the other hand, in groups B and C, the center of each electromotive force coil part 132 and the peak point at the N pole or S pole of the magnet part 100 do not coincide with each other. For this reason, no electromotive force is output from the electromotive force coil sections 132 of the groups B and C.
Accordingly, in FIG. 12, group A is a power generation group. Groups B and C are non-power generation groups.
 次に、磁石部100が図12の状態から反時計回りに2°回転したとする(不図示)。その場合、グループCでは、8箇所(一つ置き)の起電力コイル部132の中心と、磁石部100のN極又はS極におけるピークポイントとが一致する。そのため、グループCの該当する起電力コイル部132からは、それぞれ起電力が出力される。
 一方、グループA及びBでは、各起電力コイル部132の中心と、磁石部100のN極又はS極におけるピークポイントとがいずれも一致しない(不図示)。そのため、グループA及びBに含まれる起電力コイル部132からは、起電力が出力されない。
 従って、磁石部100が図12の状態から反時計回りに2°回転した場合、グループCは、発電グループとなる。また、グループA及びBは、非発電グループとなる。
Next, it is assumed that the magnet unit 100 is rotated 2 ° counterclockwise from the state of FIG. 12 (not shown). In that case, in the group C, the centers of the eight electromotive force coil portions 132 (every other portion) coincide with the peak points at the N pole or S pole of the magnet portion 100. Therefore, each electromotive force is output from the corresponding electromotive force coil unit 132 of group C.
On the other hand, in groups A and B, the center of each electromotive force coil part 132 and the peak point at the N pole or S pole of the magnet part 100 do not coincide (not shown). Therefore, no electromotive force is output from the electromotive force coil unit 132 included in the groups A and B.
Therefore, when the magnet unit 100 is rotated 2 ° counterclockwise from the state of FIG. 12, the group C becomes a power generation group. Groups A and B are non-power generation groups.
 次に、磁石部100が更に反時計回りに2°回転したとする(不図示)。その場合、グループBでは、8箇所(一つ置き)の起電力コイル部132の中心と、磁石部100のN極又はS極におけるピークポイントとが一致する。そのため、グループBの該当する起電力コイル部132からは、それぞれ起電力が出力される。
 一方、グループA及びCでは、各起電力コイル部132の中心と、磁石部100のN極又はS極におけるピークポイントとがいずれも一致しない(不図示)。そのため、グループA及びCに含まれる起電力コイル部132からは、起電力が出力されない。
 従って、磁石部100が図12の状態から反時計回りに4°(2°×2)回転した場合、グループBは、発電グループとなる。また、グループA及びCは、非発電グループとなる。
Next, it is assumed that the magnet unit 100 is further rotated 2 ° counterclockwise (not shown). In that case, in group B, the centers of the eight electromotive force coil portions 132 (every other portion) coincide with the peak points at the N pole or S pole of the magnet portion 100. Therefore, each electromotive force is output from the corresponding electromotive force coil unit 132 of group B.
On the other hand, in groups A and C, the center of each electromotive force coil part 132 and the peak point at the N pole or S pole of the magnet part 100 do not coincide (not shown). Therefore, no electromotive force is output from the electromotive force coil unit 132 included in the groups A and C.
Therefore, when the magnet unit 100 rotates 4 ° (2 ° × 2) counterclockwise from the state of FIG. 12, the group B becomes a power generation group. Groups A and C are non-power generation groups.
 そして、磁石部100が更に反時計回りに2°回転すると、グループAでは、8箇所(図12とは異なる一つ置き)の起電力コイル部132の中心と、磁石部100のN極又はS極におけるピークポイントとが一致する。そのため、グループAが発電グループとなる。このように、磁石部100が図12に示す位置から反時計回りに6°(2°×3)回転すると、再びグループAが発電グループとなる。以後、同様に、磁石部100が反時計回りに2°回転する毎に、発電グループは、グループA、C、Bの順に切り替わる。
 従って、磁石部11が反時計回りに1回転(360°)する間、各グループにおいて、それぞれ60回の発電が行われる。言い換えると、磁石部11が反時計回りに1回転する間、各グループは、1/60サイクル毎に発電グループとなる。
Then, when the magnet unit 100 is further rotated counterclockwise by 2 °, in the group A, the centers of the electromotive coil units 132 at eight locations (another place different from FIG. 12) and the N pole or S of the magnet unit 100 are used. The peak point at the pole matches. Therefore, group A becomes a power generation group. As described above, when the magnet unit 100 rotates 6 ° (2 ° × 3) counterclockwise from the position shown in FIG. 12, the group A becomes the power generation group again. Thereafter, similarly, every time the magnet unit 100 rotates 2 ° counterclockwise, the power generation group is switched in the order of groups A, C, and B.
Therefore, during each rotation of the magnet unit 11 counterclockwise (360 °), power generation is performed 60 times in each group. In other words, each group becomes a power generation group every 1/60 cycles while the magnet unit 11 makes one counterclockwise rotation.
 次に、コイル部130において起電力が発生する仕組みについて説明する。図13から図16は、任意の発電グループ(グループAからグループC)において、磁石部100の回転とコイル部130で起電力が発生するタイミングとの関係を示す説明図である。図17は、双方向回路140の構成図である。
 図13から図16の(A)は、起電力の発生するタイミングを模式的に示す図である。また、図13から図16の(A)に示す「+」、「-」の記号は、起電力の発生する方向を表している。
Next, a mechanism for generating an electromotive force in the coil unit 130 will be described. FIGS. 13 to 16 are explanatory diagrams showing the relationship between the rotation of the magnet unit 100 and the timing at which the electromotive force is generated in the coil unit 130 in an arbitrary power generation group (group A to group C). FIG. 17 is a configuration diagram of the bidirectional circuit 140.
(A) of FIG. 13 to FIG. 16 is a diagram schematically illustrating the timing at which an electromotive force is generated. Further, the symbols “+” and “−” shown in FIGS. 13A to 16A indicate the direction in which the electromotive force is generated.
 図13から図16の(B)は、磁石部100とコイル部130(起電力コイル部132)との位置関係を示す図である。(B)において、「発電コイル」は、起電力コイル部132を示す。(B)において、「電磁コイル」は、一時的に電磁石コイル部として機能する起電力コイル部132を示す。即ち、図13から図16の(B)に示すコイル部130は、すべて起電力コイル部132であるが、その時点での機能に応じて「発電コイル」、「電磁コイル」と表記する。発電コイルと電磁コイルとの間の白地部分は、セパレータ123(図11参照)を示す。また、図13から図16の(B)において、磁石部100の移動方向は、図の右側から左側に向かう方向である。 (B) of FIG. 13 to FIG. 16 is a diagram showing a positional relationship between the magnet unit 100 and the coil unit 130 (electromotive force coil unit 132). In (B), “power generation coil” indicates the electromotive force coil portion 132. In (B), “electromagnetic coil” refers to the electromotive force coil portion 132 that temporarily functions as an electromagnet coil portion. That is, all the coil portions 130 shown in FIGS. 13 to 16B are electromotive force coil portions 132, which are expressed as “power generation coil” and “electromagnetic coil” according to the function at that time. A white background portion between the power generation coil and the electromagnetic coil indicates a separator 123 (see FIG. 11). Further, in FIGS. 13 to 16B, the moving direction of the magnet unit 100 is the direction from the right side to the left side of the drawing.
 本実施形態のコイル部130には、図13から図16に示すように、双方向回路140が接続されている。双方向回路140は、高発電状態の起電力コイル部132で発生した起電力の一部を、低発電状態の起電力コイル部132に供給する回路である。起電力の一部が供給される低発電状態の起電力コイル部132は、一時的に電磁石コイル部(電磁コイル)として機能する。双方向回路140は、後述するように、隣接する一組の起電力コイル部132の間にそれぞれ設けられている。 As shown in FIGS. 13 to 16, a bidirectional circuit 140 is connected to the coil unit 130 of the present embodiment. The bidirectional circuit 140 is a circuit that supplies a part of the electromotive force generated in the electromotive force coil unit 132 in the high power generation state to the electromotive force coil unit 132 in the low power generation state. The electromotive force coil unit 132 in a low power generation state to which a part of the electromotive force is supplied temporarily functions as an electromagnet coil unit (electromagnetic coil). As will be described later, the bidirectional circuit 140 is provided between each pair of adjacent electromotive force coil sections 132.
 なお、高発電状態とは、起電力コイル部132の中心と、磁石部100のN極又はS極におけるピークポイントとが一致する状態をいう。高発電状態の起電力コイル部132では、図13から図16に示すように、最大値の80%以上の起電力が発生する。また、低発電状態とは、起電力コイル部132の中心と、磁石部100のN極又はS極におけるピークポイントとが一致しない状態をいう。 The high power generation state refers to a state in which the center of the electromotive force coil unit 132 and the peak point at the N pole or S pole of the magnet unit 100 coincide. In the electromotive force coil section 132 in the high power generation state, as shown in FIGS. 13 to 16, an electromotive force of 80% or more of the maximum value is generated. The low power generation state refers to a state where the center of the electromotive force coil unit 132 and the peak point at the N pole or S pole of the magnet unit 100 do not match.
 低発電状態の起電力コイル部132では、最大値の20%程度の起電力しか発生しない(不図示)。そのため、発生した起電力を負荷(図1参照)に加えると、低発電状態の起電力コイル部132の抵抗が大きくなる。その結果、磁石部100の回転速度に影響を与えるおそれがある。しかし、高発電状態の起電力コイル部132で発生した起電力の一部を、低発電状態の起電力コイル部132に供給して、一時的に電磁石コイルとして機能させることにより、磁石部100の回転速度に与える影響を低減することができる。 In the electromotive force coil section 132 in the low power generation state, only an electromotive force of about 20% of the maximum value is generated (not shown). Therefore, when the generated electromotive force is applied to the load (see FIG. 1), the resistance of the electromotive force coil unit 132 in the low power generation state increases. As a result, the rotational speed of the magnet unit 100 may be affected. However, a part of the electromotive force generated in the electromotive force coil unit 132 in the high power generation state is supplied to the electromotive force coil unit 132 in the low power generation state to temporarily function as an electromagnet coil. The influence on the rotation speed can be reduced.
 ここで、双方向回路140の構成を、図17を参照しながら説明する。図17(A)から(D)は、起電力の一部を供給する経路のパターンをそれぞれ示す。以下の説明において、「上流側」とは、磁石部100が移動する方向と反対側(図中の右側)を指す。「下流側」とは、磁石部100が移動する方向と同じ側(図中の左側)を指す。双方向回路140は、隣接する一組の起電力コイル部132の間に接続されている。双方向回路140から見て、一方の起電力コイル部132は、上流側の起電力コイル部132となる。また、双方向回路140から見て、他方の起電力コイル部132は、下流側の起電力コイル部132となる。また、図17(A)から(D)に示すコイルのイラストは、起電力の一部が供給される起電力コイル部132(電磁コイル)を示す。図17(A)から(D)に示すプラス(+)及びマイナス(-)の記号は、起電力の一部を前記電磁コイルに供給する起電力コイル部132(発電コイル)を示す。 Here, the configuration of the bidirectional circuit 140 will be described with reference to FIG. FIGS. 17A to 17D respectively show patterns of paths for supplying a part of the electromotive force. In the following description, “upstream side” refers to the side opposite to the direction in which the magnet unit 100 moves (the right side in the figure). “Downstream side” refers to the same side (left side in the figure) as the direction in which the magnet unit 100 moves. The bidirectional circuit 140 is connected between a pair of adjacent electromotive force coil portions 132. When viewed from the bidirectional circuit 140, one electromotive force coil unit 132 becomes an upstream electromotive force coil unit 132. Further, when viewed from the bidirectional circuit 140, the other electromotive force coil portion 132 becomes the downstream electromotive force coil portion 132. Moreover, the illustration of the coil shown to FIG. 17 (A) to (D) shows the electromotive force coil part 132 (electromagnetic coil) to which a part of electromotive force is supplied. Symbols of plus (+) and minus (−) shown in FIGS. 17A to 17D indicate an electromotive force coil unit 132 (power generation coil) that supplies a part of electromotive force to the electromagnetic coil.
 図17(A)は、パターン1を示す。双方向回路140は、下流側の起電力コイル部132(発電コイル)に磁石部100のN極が通過したときにパターン1に切り替えられ、上流側の起電力コイル部132(電磁コイル)にN極の磁界を発生させるための駆動電流を供給する。これにより、上流側の起電力コイル部132では、N極の磁界が発生するため、離れつつある磁石部100のN極が反発すると共に、近づきつつある磁石部100のS極が吸引される。 FIG. 17A shows the pattern 1. The bidirectional circuit 140 is switched to the pattern 1 when the N pole of the magnet unit 100 passes through the downstream electromotive force coil portion 132 (power generation coil), and the upstream electromotive force coil portion 132 (electromagnetic coil) has N. A drive current for generating a polar magnetic field is supplied. As a result, an N-pole magnetic field is generated in the upstream electromotive force coil section 132, so that the N pole of the magnet section 100 that is moving away is repelled and the S pole of the magnet section 100 that is approaching is attracted.
 図17(B)は、パターン2を示す。双方向回路140は、下流側の起電力コイル部132(発電コイル)に磁石部100のS極が通過したときにパターン2に切り替えられ、上流側の起電力コイル部132(電磁コイル)にS極の磁界を発生させるための駆動電流を供給する。これにより、上流側の起電力コイル部132では、S極の磁界が発生するため、離れつつある磁石部100のS極が反発すると共に、近づきつつある磁石部100のN極が吸引される。 FIG. 17B shows pattern 2. The bidirectional circuit 140 is switched to the pattern 2 when the south pole of the magnet unit 100 passes through the downstream electromotive force coil portion 132 (power generation coil), and the upstream electromotive force coil portion 132 (electromagnetic coil) has S. A drive current for generating a polar magnetic field is supplied. Thereby, in the upstream electromotive force coil part 132, since the magnetic field of S pole is generated, the S pole of the magnet part 100 which is being separated repels and the N pole of the magnet part 100 which is approaching is attracted.
 図17(C)は、パターン3を示す。双方向回路140は、上流側の起電力コイル部132(発電コイル)に磁石部100のS極が通過したときにパターン3に切り替えられ、下流側の起電力コイル部132(電磁コイル)にN極の磁界を発生させるための駆動電流を供給する。これにより、下流側の起電力コイル部132では、N極の磁界が発生するため、離れつつある磁石部100のN極が反発すると共に、近づきつつある磁石部100のS極が吸引される。 FIG. 17C shows pattern 3. The bidirectional circuit 140 is switched to the pattern 3 when the S pole of the magnet unit 100 passes through the upstream electromotive force coil portion 132 (power generation coil), and N is applied to the downstream electromotive force coil portion 132 (electromagnetic coil). A drive current for generating a polar magnetic field is supplied. Thereby, in the electromotive force coil unit 132 on the downstream side, an N-pole magnetic field is generated, so that the N-pole of the magnet unit 100 that is being separated repels and the S-pole of the magnet unit 100 that is approaching is attracted.
 図17(D)は、パターン4を示す。双方向回路140は、上流側の起電力コイル部132(発電コイル)に磁石部100のN極が通過したときにパターン4に切り替えられ、下流側の起電力コイル部132(電磁コイル)にS極の磁界を発生させるための駆動電流を供給する。これにより、下流側の起電力コイル部132では、S極の磁界が発生するため、離れつつある磁石部100のS極が反発すると共に、近づきつつある磁石部100のN極が吸引される。 FIG. 17D shows pattern 4. The bidirectional circuit 140 is switched to the pattern 4 when the N pole of the magnet unit 100 passes through the upstream electromotive force coil portion 132 (power generation coil), and the downstream electromotive force coil portion 132 (electromagnetic coil) is switched to S. A drive current for generating a polar magnetic field is supplied. Thereby, in the electromotive force coil unit 132 on the downstream side, a magnetic field of S pole is generated, so that the S pole of the magnet unit 100 that is moving away is repelled and the N pole of the magnet unit 100 that is approaching is attracted.
 双方向回路140では、起電力コイル部132で発生する起電力の極性に応じて、内部に設けられた電極端子の接続が4パターン(後述)に切り替えられる。なお、双方向回路140は、図示しない負荷側の機器(図中、負荷と表記)と電気的に接続されている。また、コイル部130で発生した起電力の一部は、配線L3(図1参照)及びインバータ回路(不図示)を介して、電源部30に送電される。 In the bidirectional circuit 140, the connection of electrode terminals provided inside is switched to four patterns (described later) according to the polarity of the electromotive force generated in the electromotive force coil unit 132. The bidirectional circuit 140 is electrically connected to a load-side device (noted in the drawing) as not shown. A part of the electromotive force generated in the coil unit 130 is transmitted to the power supply unit 30 through the wiring L3 (see FIG. 1) and an inverter circuit (not shown).
 次に、コイル部130において起電力が発生する仕組みを、図13から図16を参照しながら説明する。ここでは、図13から図16において、符号を付した箇所において起電力が発生する仕組みについて説明する。但し、起電力が発生する仕組みは、他の箇所についても同じである。また、図13から図16の(B)では、説明の対象となる起電力コイル部132に、符号C1、C2、C3C4を付す。そして、その時点での機能に応じて「発電コイルC1」、「電磁コイルC1」のように表記する。 Next, a mechanism for generating an electromotive force in the coil unit 130 will be described with reference to FIGS. Here, a mechanism in which an electromotive force is generated at a portion denoted by a reference in FIGS. 13 to 16 will be described. However, the mechanism for generating electromotive force is the same for the other portions. Further, in FIGS. 13 to 16B, reference numerals C1, C2, and C3C4 are attached to the electromotive force coil section 132 to be described. And according to the function at that time, it describes as "power generation coil C1", "electromagnetic coil C1".
1.発電コイルC1(N極発電)、電磁コイルC2(N極励磁)
 図13の(B)に示すように、下流側の発電コイルC1に磁石部100のN極(ピークポイント)が達すると、双方向回路140は、パターン1(図17(A)参照)に切り替えられる。双方向回路140がパターン1に切り替えられると、発電コイルC1で発生した起電力の一部は、上流側の電磁コイルC2にN極の磁界を発生させるための駆動電流として供給される。上流側の電磁コイルC2に前記駆動電流が供給されると、電磁コイルC2にN極の磁界が発生する。電磁コイルC2にN極の磁界が発生すると、電磁コイルC2から離れつつある磁石部100のN極(磁極端)が反発すると共に、電磁コイルC2に近づきつつある磁石部100のS極(磁極端)が吸引される。そのため、磁石部100の進行方向への移動が促進される。
1. Generator coil C1 (N pole power generation), Electromagnetic coil C2 (N pole excitation)
As shown in FIG. 13B, when the N pole (peak point) of the magnet unit 100 reaches the downstream power generation coil C1, the bidirectional circuit 140 switches to the pattern 1 (see FIG. 17A). It is done. When the bidirectional circuit 140 is switched to the pattern 1, a part of the electromotive force generated in the power generation coil C1 is supplied as a drive current for generating an N-pole magnetic field in the upstream electromagnetic coil C2. When the drive current is supplied to the upstream electromagnetic coil C2, an N-pole magnetic field is generated in the electromagnetic coil C2. When an N-pole magnetic field is generated in the electromagnetic coil C2, the N-pole (magnetic pole end) of the magnet unit 100 that is moving away from the electromagnetic coil C2 repels, and the S-pole (magnetic pole end) of the magnet unit 100 that is approaching the electromagnetic coil C2 ) Is aspirated. Therefore, the movement of the magnet unit 100 in the traveling direction is promoted.
2.発電コイルC3(S極発電)、電磁コイルC4(S極励磁)
 図13の(B)に示すように、下流側の発電コイルC3に磁石部100のS極(ピークポイント)が達すると、双方向回路140は、パターン2(図17(B)参照)に切り替えられる。双方向回路140がパターン2に切り替えられると、発電コイルC3で発生した起電力の一部は、上流側の電磁コイルC4にS極の磁界を発生させるための駆動電流として供給される。上流側の電磁コイルC4に前記駆動電流が供給されると、電磁コイルC4にS極の磁界が発生する。電磁コイルC4にS極の磁界が発生すると、電磁コイルC4から離れつつある磁石部100のS極(磁極端)が反発すると共に、電磁コイルC4に近づきつつある磁石部100のN極(磁極端)が吸引される。そのため、磁石部100の進行方向への移動が促進される。
2. Power generation coil C3 (S pole power generation), electromagnetic coil C4 (S pole excitation)
As shown in FIG. 13B, when the south pole (peak point) of the magnet unit 100 reaches the downstream power generation coil C3, the bidirectional circuit 140 switches to pattern 2 (see FIG. 17B). It is done. When the bidirectional circuit 140 is switched to the pattern 2, a part of the electromotive force generated in the power generation coil C3 is supplied as a drive current for generating the south pole magnetic field in the upstream electromagnetic coil C4. When the drive current is supplied to the upstream electromagnetic coil C4, an S-pole magnetic field is generated in the electromagnetic coil C4. When an S-pole magnetic field is generated in the electromagnetic coil C4, the S-pole (magnetic pole end) of the magnet unit 100 that is moving away from the electromagnetic coil C4 repels and the N-pole (magnetic pole end) of the magnet unit 100 that is approaching the electromagnetic coil C4. ) Is aspirated. Therefore, the movement of the magnet unit 100 in the traveling direction is promoted.
3.発電コイルC2(S極発電)、電磁コイルC1(N極励磁)
 図14の(B)に示すように、上流側の発電コイルC2に磁石部100のS極(ピークポイント)が達すると、双方向回路140は、パターン3(図17(C)参照)に切り替えられる。双方向回路140がパターン3に切り替えられると、発電コイルC2で発生した起電力の一部は、下流側の電磁コイルC1にN極の磁界を発生させるための駆動電流として供給される。下流側の電磁コイルC1に前記駆動電流が供給されると、電磁コイルC1にN極の磁界が発生する。電磁コイルC1にN極の磁界が発生すると、電磁コイルC1から離れつつある磁石部100のN極(磁極端)が反発すると共に、電磁コイルC4に近づきつつある磁石部100のS極(磁極端)が吸引される。そのため、磁石部100の進行方向への移動が促進される。
3. Power generation coil C2 (S pole power generation), electromagnetic coil C1 (N pole excitation)
As shown in FIG. 14B, when the south pole (peak point) of the magnet unit 100 reaches the upstream power generation coil C2, the bidirectional circuit 140 switches to pattern 3 (see FIG. 17C). It is done. When the bidirectional circuit 140 is switched to the pattern 3, a part of the electromotive force generated in the power generation coil C2 is supplied as a drive current for generating an N-pole magnetic field in the downstream electromagnetic coil C1. When the drive current is supplied to the downstream electromagnetic coil C1, an N-pole magnetic field is generated in the electromagnetic coil C1. When an N-pole magnetic field is generated in the electromagnetic coil C1, the N pole (magnetic pole end) of the magnet unit 100 that is moving away from the electromagnetic coil C1 repels, and the S pole (magnetic pole end) of the magnet unit 100 that is approaching the electromagnetic coil C4. ) Is aspirated. Therefore, the movement of the magnet unit 100 in the traveling direction is promoted.
4.発電コイルC4(N極発電)、電磁コイルC3(S極励磁)
 図14の(B)に示すように、上流側の発電コイルC4に磁石部100のN極(ピークポイント)が達すると、双方向回路140は、パターン4(図17(D)参照)に切り替えられる。双方向回路140がパターン4に切り替えられると、発電コイルC4で発生した起電力の一部は、下流側の電磁コイルC3にS極の磁界を発生させるための駆動電流として供給される。下流側の電磁コイルC3に前記駆動電流が供給されると、電磁コイルC3にS極の磁界が発生する。電磁コイルC3にS極の磁界が発生すると、電磁コイルC3から離れつつある磁石部100のS極(磁極端)が反発すると共に、電磁コイルC3に近づきつつある磁石部100のN極(磁極端)が吸引される。そのため、磁石部100の進行方向への移動が促進される。
4). Generator coil C4 (N pole power generation), electromagnetic coil C3 (S pole excitation)
As shown in FIG. 14B, when the N pole (peak point) of the magnet unit 100 reaches the upstream power generation coil C4, the bidirectional circuit 140 switches to the pattern 4 (see FIG. 17D). It is done. When the bidirectional circuit 140 is switched to the pattern 4, a part of the electromotive force generated in the power generation coil C4 is supplied as a drive current for generating a south pole magnetic field in the downstream electromagnetic coil C3. When the drive current is supplied to the downstream electromagnetic coil C3, an S-pole magnetic field is generated in the electromagnetic coil C3. When the magnetic field of the S pole is generated in the electromagnetic coil C3, the S pole (magnetic pole end) of the magnet unit 100 that is moving away from the electromagnetic coil C3 repels and the N pole (magnetic pole end) of the magnet unit 100 that is approaching the electromagnetic coil C3. ) Is aspirated. Therefore, the movement of the magnet unit 100 in the traveling direction is promoted.
5.発電コイルC1(S極発電)、電磁コイルC2(S極励磁)
 図15の(B)に示すように、下流側の発電コイルC1に磁石部100のS極(ピークポイント)が達すると、双方向回路140は、パターン2(図17(B)参照)に切り替えられる。双方向回路140がパターン2に切り替えられると、発電コイルC1で発生した起電力の一部は、上流側の電磁コイルC2にS極の磁界を発生させるための駆動電流として供給される。上流側の電磁コイルC2に前記駆動電流が供給されると、電磁コイルC2にS極の磁界が発生する。電磁コイルC2にS極の磁界が発生すると、電磁コイルC2から離れつつある磁石部100のS極(磁極端)が反発すると共に、電磁コイルC2に近づきつつある磁石部100のN極(磁極端)が吸引される。そのため、磁石部100の進行方向への移動が促進される。
5. Generator coil C1 (S pole power generation), Electromagnetic coil C2 (S pole excitation)
As shown in FIG. 15B, when the south pole (peak point) of the magnet unit 100 reaches the downstream power generation coil C1, the bidirectional circuit 140 switches to pattern 2 (see FIG. 17B). It is done. When the bidirectional circuit 140 is switched to the pattern 2, a part of the electromotive force generated in the power generation coil C1 is supplied as a drive current for generating an S pole magnetic field in the upstream electromagnetic coil C2. When the drive current is supplied to the upstream electromagnetic coil C2, an S-pole magnetic field is generated in the electromagnetic coil C2. When the magnetic field of the S pole is generated in the electromagnetic coil C2, the S pole (magnetic pole end) of the magnet unit 100 that is moving away from the electromagnetic coil C2 is repelled, and the N pole (magnetic pole end) of the magnet unit 100 that is approaching the electromagnetic coil C2 is repelled. ) Is aspirated. Therefore, the movement of the magnet unit 100 in the traveling direction is promoted.
6.発電コイルC3(N極発電)、電磁コイルC4(N極励磁)
 図15の(B)に示すように、下流側の発電コイルC3に磁石部100のN極(ピークポイント)が達すると、双方向回路140は、パターン1(図17(A)参照)に切り替えられる。双方向回路140がパターン1に切り替えられると、発電コイルC3で発生した起電力の一部は、上流側の電磁コイルC4にN極の磁界を発生させるための駆動電流として供給される。上流側の電磁コイルC4に前記駆動電流が供給されると、電磁コイルC4にN極の磁界が発生する。電磁コイルC4にN極の磁界が発生すると、電磁コイルC4から離れつつある磁石部100のN極(磁極端)が反発すると共に、電磁コイルC4に近づきつつある磁石部100のS極(磁極端)が吸引される。そのため、磁石部100の進行方向への移動が促進される。
6). Generator coil C3 (N pole power generation), Electromagnetic coil C4 (N pole excitation)
As shown in FIG. 15B, when the N pole (peak point) of the magnet unit 100 reaches the downstream power generation coil C3, the bidirectional circuit 140 switches to the pattern 1 (see FIG. 17A). It is done. When the bidirectional circuit 140 is switched to the pattern 1, a part of the electromotive force generated in the power generation coil C3 is supplied as a drive current for generating an N-pole magnetic field in the upstream electromagnetic coil C4. When the drive current is supplied to the upstream electromagnetic coil C4, an N-pole magnetic field is generated in the electromagnetic coil C4. When an N-pole magnetic field is generated in the electromagnetic coil C4, the N-pole (magnetic pole end) of the magnet unit 100 that is moving away from the electromagnetic coil C4 repels and the S-pole (magnetic pole end) of the magnet unit 100 that is approaching the electromagnetic coil C4. ) Is aspirated. Therefore, the movement of the magnet unit 100 in the traveling direction is promoted.
7.発電コイルC2(S極発電)、電磁コイルC1(N極励磁)
 図16の(B)に示すように、上流側の発電コイルC2に磁石部100のN極(ピークポイント)が達すると、双方向回路140は、パターン4(図17(D)参照)に切り替えられる。双方向回路140がパターン4に切り替えられると、発電コイルC2で発生した起電力の一部は、下流側の電磁コイルC1にS極の磁界を発生させるための駆動電流として供給される。下流側の電磁コイルC1に前記駆動電流が供給されると、電磁コイルC1にS極の磁界が発生する。電磁コイルC1にS極の磁界が発生すると、電磁コイルC1から離れつつある磁石部100のS極(磁極端)が反発すると共に、電磁コイルC1に近づきつつある磁石部100のN極(磁極端)が吸引される。そのため、磁石部100の進行方向への移動が促進される。
7). Power generation coil C2 (S pole power generation), electromagnetic coil C1 (N pole excitation)
As shown in FIG. 16B, when the N pole (peak point) of the magnet unit 100 reaches the upstream power generation coil C2, the bidirectional circuit 140 switches to the pattern 4 (see FIG. 17D). It is done. When the bidirectional circuit 140 is switched to the pattern 4, a part of the electromotive force generated in the power generation coil C2 is supplied as a drive current for generating a south pole magnetic field in the downstream electromagnetic coil C1. When the drive current is supplied to the downstream electromagnetic coil C1, an S-pole magnetic field is generated in the electromagnetic coil C1. When the magnetic field of the S pole is generated in the electromagnetic coil C1, the S pole (magnetic pole end) of the magnet unit 100 that is moving away from the electromagnetic coil C1 repels and the N pole (magnetic pole end) of the magnet unit 100 that is approaching the electromagnetic coil C1. ) Is aspirated. Therefore, the movement of the magnet unit 100 in the traveling direction is promoted.
8.発電コイルC4(S極発電)、電磁コイルC3(N極励磁)
 図16の(B)に示すように、上流側の発電コイルC4に磁石部100のS極(ピークポイント)が達すると、双方向回路140は、パターン3(図17(C)参照)に切り替えられる。双方向回路140がパターン3に切り替えられると、発電コイルC4で発生した起電力の一部は、下流側の電磁コイルC3にN極の磁界を発生させるための駆動電流として供給される。下流側の電磁コイルC3に前記駆動電流が供給されると、電磁コイルC3にN極の磁界が発生する。電磁コイルC3にN極の磁界が発生すると、電磁コイルC3から離れつつある磁石部100のN極(磁極端)が反発すると共に、電磁コイルC3に近づきつつある磁石部100のS極(磁極端)が吸引される。そのため、磁石部100の進行方向への移動が促進される。
 以上説明したように、双方向回路140は、磁石部100が回転して、発電コイルとして機能する起電力コイル部132の位置(上流側又は下流側)、及び発生する起電力の極性が変わる毎に、パターン1からパターン4のいずれかに切り替わる。
8). Power generation coil C4 (S pole power generation), electromagnetic coil C3 (N pole excitation)
As shown in FIG. 16B, when the south pole (peak point) of the magnet unit 100 reaches the upstream power generation coil C4, the bidirectional circuit 140 switches to pattern 3 (see FIG. 17C). It is done. When the bidirectional circuit 140 is switched to the pattern 3, a part of the electromotive force generated in the power generation coil C4 is supplied as a drive current for generating an N pole magnetic field in the downstream electromagnetic coil C3. When the drive current is supplied to the downstream electromagnetic coil C3, an N-pole magnetic field is generated in the electromagnetic coil C3. When an N-pole magnetic field is generated in the electromagnetic coil C3, the N pole (magnetic pole end) of the magnet unit 100 that is moving away from the electromagnetic coil C3 repels and the S pole (magnetic pole end) of the magnet unit 100 that is approaching the electromagnetic coil C3. ) Is aspirated. Therefore, the movement of the magnet unit 100 in the traveling direction is promoted.
As described above, in the bidirectional circuit 140, the position of the electromotive force coil unit 132 (upstream side or downstream side) that functions as a power generation coil and the polarity of the generated electromotive force change as the magnet unit 100 rotates. Then, the pattern 1 is switched to any one of the patterns 4.
 上述した第2実施形態の発電機1Aにおいても、第1実施形態の発電機1と同等の効果が奏される。
 特に、第2実施形態の発電機1Aは、高発電状態の起電力コイル部132(発電コイル)で発生した起電力の一部を、低発電状態の起電力コイル部132に供給する双方向回路140を備える。そのため、発電機1Aにおいて、起電力の一部が供給された起電力コイル部132は、一時的にN極又はS極の電磁石コイルとなり、離れつつある同極性の磁石部100が反発すると共に、近づきつつある逆極性の磁石部100が吸引される。これにより、発電機1Aでは、磁石部100の回転速度に与える影響が低減されるため、磁石部100の進行方向への移動が促進される。
Also in the generator 1A of 2nd Embodiment mentioned above, the effect equivalent to the generator 1 of 1st Embodiment is show | played.
In particular, the generator 1A of the second embodiment is a bidirectional circuit that supplies a part of the electromotive force generated in the electromotive force coil unit 132 (power generation coil) in the high power generation state to the electromotive force coil unit 132 in the low power generation state. 140. Therefore, in the generator 1A, the electromotive force coil part 132 to which a part of the electromotive force is supplied temporarily becomes an N-pole or S-pole electromagnet coil, and the magnet part 100 of the same polarity that is being separated is repelled. The magnet part 100 of reverse polarity that is approaching is attracted. Thereby, in generator 1A, since the influence which it has on the rotation speed of magnet part 100 is reduced, movement to the advancing direction of magnet part 100 is promoted.
 以上、本発明の好ましい実施形態について説明したが、本発明に係る発電機は、上述した第1及び第2実施形態に限定されることなく、種々の形態で実施することができる。
 例えば、第1及び第2実施形態では、磁性体部110の回転体として、ボールベアリング114を用いた例について説明した。これに限らず、回転体は、ローラベアリングであってもよい。また、同等に機能し得るものであれば、他の回転機構を備えたものであってもよい。
As mentioned above, although preferable embodiment of this invention was described, the generator which concerns on this invention can be implemented with a various form, without being limited to the 1st and 2nd embodiment mentioned above.
For example, in the first and second embodiments, the example in which the ball bearing 114 is used as the rotating body of the magnetic body 110 has been described. However, the rotating body may be a roller bearing. Further, other rotation mechanisms may be provided as long as they can function equally.
 第1及び第2実施形態では、コア部材101を、樹脂のムク材により構成した例について説明した。これに限らず、コア部材101は、中空の部材により構成してもよい。また、コア部材101は、絶縁性を有する部材であれば、樹脂材だけでなく、他の部材を用いて構成してもよい。
 第1及び第2実施形態では、電磁石コイル部131を2箇所に設けた例について説明した。これに限らず、電磁石コイル部131は、3箇所以上設けてもよい。
In the first and second embodiments, the example in which the core member 101 is formed of a resin material is described. Not limited to this, the core member 101 may be formed of a hollow member. Moreover, as long as the core member 101 is a member which has insulation, you may comprise using not only a resin material but another member.
1st and 2nd embodiment demonstrated the example which provided the electromagnet coil part 131 in two places. Not only this but the electromagnet coil part 131 may provide three or more places.
 第1実施形態では、N極の磁性体部110を8極(第2実施形態では15極)、S極の磁性体部110を8極(第2実施形態では15極)とした例について説明した。これに限らず、N極及びS極の磁性体部110の数は、それぞれ同数であれば、適宜に設定することができる。また、第1及び第2実施形態では、極性の異なる磁性体部110を円周方向に沿って交互に配置した例について説明した。これに限らず、N極の磁性体部110を円周方向に沿って複数配置し、S極の磁性体部110を円周方向に沿って複数配置した構成としてもよい。 In the first embodiment, an example is described in which the N pole magnetic part 110 is 8 poles (15 poles in the second embodiment) and the S pole magnetic part 110 is 8 poles (15 poles in the second embodiment). did. Not only this but the number of the magnetic part 110 of a north pole and a south pole can be set suitably, if each is the same number. In the first and second embodiments, the example in which the magnetic parts 110 having different polarities are alternately arranged along the circumferential direction has been described. However, the configuration is not limited to this, and a plurality of N-pole magnetic bodies 110 may be arranged along the circumferential direction, and a plurality of S-pole magnetic bodies 110 may be arranged along the circumferential direction.
 第1実施形態では、コイル磁気センサ133(第2実施形態では磁気センサ134)で検出された磁性体部110の極性に基づいて、電磁石コイル部131をN極又はS極に切り替える例について説明した。これに限らず、カバー部120の内部における磁性体部110の位置(位相)を光学的に読み取る機構を設け、当該機構により検出された磁性体部110の極性に基づいて、電磁石コイル部131をN極又はS極に切り替えるように構成してもよい。 In the first embodiment, an example has been described in which the electromagnet coil section 131 is switched to the N pole or the S pole based on the polarity of the magnetic body section 110 detected by the coil magnetic sensor 133 (the magnetic sensor 134 in the second embodiment). . Not only this but the mechanism which optically reads the position (phase) of the magnetic body part 110 in the inside of the cover part 120 is provided, and based on the polarity of the magnetic body part 110 detected by the said mechanism, the electromagnet coil part 131 is arranged. You may comprise so that it may switch to N pole or S pole.
 1、1A 発電機
 10、10A 発電機本体
 20 保持部
 30 電源部
 40 蓄電部
 100 磁石部
 101 コア部材
 110 磁性体部
 114 ボールベアリング(回転体)
 120 カバー部
 130 コイル部
 131 電磁石コイル部
 132 起電力コイル部
 133 コイル磁気センサ(極性検出部)
 134 磁気センサ(極性検出部)
 140 双方向回路
DESCRIPTION OF SYMBOLS 1, 1A generator 10, 10A generator main body 20 Holding part 30 Power supply part 40 Power storage part 100 Magnet part 101 Core member 110 Magnetic body part 114 Ball bearing (rotating body)
DESCRIPTION OF SYMBOLS 120 Cover part 130 Coil part 131 Electromagnetic coil part 132 Electromotive force coil part 133 Coil magnetic sensor (polarity detection part)
134 Magnetic sensor (polarity detector)
140 Bidirectional circuit

Claims (7)

  1.  磁性体部が円周方向に沿って配置され、全体としてリング状に構成された磁石部と、
     前記磁石部が収容される中空の絶縁性容器であって、全体としてリング状に構成されたカバー部と、
     前記カバー部の外側に設けられ、供給された駆動電流によりN極又はS極の磁界を発生する少なくとも2つの電磁石コイル部と、
     前記カバー部の外側に設けられ、前記磁石部の前記磁性体部が内部を通過した際に生じる電磁誘導により、起電力を発生する起電力コイル部と、
     前記磁石部、前記カバー部、前記電磁石コイル部、及び前記起電力コイル部の組み立て体としての発電機本体を保持する保持部と、
     前記電磁石コイル部に駆動電流を供給する電源部と、
     前記起電力コイル部において発生した起電力を蓄電する蓄電部と、
    を備えた発電機であって、
     前記磁石部は、リング状に形成されたコア部材を備え、
     前記磁性体部は、前記コア部材を径方向から挟むように組み合わされたN極又はS極の永久磁石対により構成され、
     前記電源部は、前記電磁石コイル部においてN極又はS極の磁界が交互に発生するように、極性の異なる駆動電流が供給可能に構成され、
     前記電源部から前記電磁石コイル部に駆動電流を供給して、当該電磁石コイル部においてN極又はS極の磁界を発生させ、当該磁界に反応した前記磁性体部の移動により前記磁石部を前記カバー部の内部で回転させると共に、回転する前記磁石部の前記磁性体部が前記起電力コイル部の内部を通過した際に発生する起電力を前記蓄電部に蓄電することを特徴とする発電機。
    A magnetic part is disposed along the circumferential direction, and a magnet part configured as a ring as a whole;
    A hollow insulating container in which the magnet part is accommodated, and a cover part configured as a ring as a whole,
    At least two electromagnet coil portions that are provided outside the cover portion and generate an N-pole or S-pole magnetic field by a supplied drive current;
    An electromotive force coil portion that is provided outside the cover portion and generates an electromotive force by electromagnetic induction generated when the magnetic body portion of the magnet portion passes through the inside;
    A holding part for holding a generator body as an assembly of the magnet part, the cover part, the electromagnet coil part, and the electromotive force coil part;
    A power supply unit for supplying a driving current to the electromagnet coil unit;
    A power storage unit that stores electromotive force generated in the electromotive force coil unit;
    A generator with
    The magnet part includes a core member formed in a ring shape,
    The magnetic part is composed of a pair of permanent magnets of N or S poles combined so as to sandwich the core member from the radial direction,
    The power supply unit is configured to be capable of supplying drive currents having different polarities so that N or S magnetic fields are alternately generated in the electromagnetic coil unit,
    A driving current is supplied from the power supply unit to the electromagnet coil unit, an N-pole or S-pole magnetic field is generated in the electromagnet coil unit, and the magnet unit is moved by the movement of the magnetic body unit in response to the magnetic field. The generator is characterized in that the electric power generated when the magnetic body part of the rotating magnet part passes through the inside of the electromotive force coil part is stored in the power storage part while rotating inside the part.
  2.  請求項1に記載の発電機において、
     前記電磁石コイル部の近傍に設けられ、前記磁石部が前記カバー部の内部で回転した際に、前記電磁石コイル部に接近する前記磁性体部の極性を検出する極性検出部を備え、
     前記電源部は、前記極性検出部で検出された前記磁性体部の極性に基づいて、前記電磁
    石コイル部に接近する前記磁性体部の極性と逆極性の磁界が前記電磁石コイル部において発生するように、前記電磁石コイル部にN極又はS極に対応する駆動電流を供給することを特徴とする発電機。
    The generator according to claim 1,
    Provided in the vicinity of the electromagnet coil part, and when the magnet part rotates inside the cover part, comprising a polarity detection part for detecting the polarity of the magnetic body part approaching the electromagnet coil part,
    The power supply unit generates a magnetic field having a polarity opposite to the polarity of the magnetic body unit approaching the electromagnetic coil unit in the electromagnet coil unit based on the polarity of the magnetic body unit detected by the polarity detection unit. In addition, a drive current corresponding to the N pole or the S pole is supplied to the electromagnet coil section.
  3.  請求項1又は2に記載の発電機において、
     前記磁石部は、重力方向において前記カバー部の底面と対向する領域に、回動自在に支持された回転体を備えることを特徴とする発電機。
    The generator according to claim 1 or 2,
    The generator includes a rotating body rotatably supported in a region facing the bottom surface of the cover in the direction of gravity.
  4.  請求項1から3のいずれかに記載の発電機において、
     高発電状態の前記起電力コイル部で発生した起電力の一部を、低発電状態の前記起電力コイル部に供給して、低発電状態の前記起電力コイル部にN極又はS極の磁界を発生させることにより、前記磁性体部の移動を促進させることを特徴とする発電機。
    The generator according to any one of claims 1 to 3,
    A part of the electromotive force generated in the electromotive force coil portion in the high power generation state is supplied to the electromotive force coil portion in the low power generation state, and an N-pole or S-pole magnetic field is supplied to the electromotive force coil portion in the low power generation state. The generator is characterized in that the movement of the magnetic body portion is promoted by generating
  5.  請求項4に記載の発電機において、
     高発電状態の前記起電力コイル部と低発電状態の前記起電力コイル部との間を電気的に接続する双方向回路を備えることを特徴とする発電機。
    The generator according to claim 4,
    A generator comprising a bidirectional circuit that electrically connects the electromotive force coil portion in a high power generation state and the electromotive force coil portion in a low power generation state.
  6.  請求項1から5のいずれかに記載の発電機において、
     供給された駆動電流によりN極又はS極の磁界を発生させることにより、前記磁石部を停止状態から所定方向に回転させる起動用の電磁石コイル部を備えることを特徴とする発電機。
    The generator according to any one of claims 1 to 5,
    A generator comprising: a starting electromagnet coil section that rotates the magnet section in a predetermined direction from a stopped state by generating an N-pole or S-pole magnetic field with the supplied drive current.
  7.  請求項6に記載の発電機において、
     前記起動用の電磁石コイル部は、前記前記磁性体部の隣接するN極及びS極のそれぞれ少なくとも半分の領域が同時に通過可能なコイル幅を有することを特徴とする発電機。
    The generator according to claim 6,
    The starting electromagnet coil section has a coil width through which at least half of the adjacent N pole and S pole areas of the magnetic body section can pass simultaneously.
PCT/JP2014/071684 2013-08-19 2014-08-19 Generator WO2015025857A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015532866A JP6392229B2 (en) 2013-08-19 2014-08-19 Generator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013169778 2013-08-19
JP2013-169778 2013-08-19

Publications (1)

Publication Number Publication Date
WO2015025857A1 true WO2015025857A1 (en) 2015-02-26

Family

ID=52483630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/071684 WO2015025857A1 (en) 2013-08-19 2014-08-19 Generator

Country Status (2)

Country Link
JP (1) JP6392229B2 (en)
WO (1) WO2015025857A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021129388A (en) * 2020-02-13 2021-09-02 沖電気工業株式会社 Power generation device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003235224A (en) * 2002-02-08 2003-08-22 Naoki Hara Apparatus for effectively taking out electricity from permanent magnet
JP3134408U (en) * 2007-05-10 2007-08-16 茂人 西村 Generator with air-core coil and magnetic bearing
JP2009022140A (en) * 2007-07-13 2009-01-29 Sumida Corporation Rotary electromagnetic generator and method of manufacturing rotary electromagnetic generator
JP2010283983A (en) * 2009-06-04 2010-12-16 Katsuyuki Kamibayashi Generation device
US20120313457A1 (en) * 2010-10-25 2012-12-13 Puthalath Koroth Raghuprasad Gravity-assisted geomagnetic generator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003235224A (en) * 2002-02-08 2003-08-22 Naoki Hara Apparatus for effectively taking out electricity from permanent magnet
JP3134408U (en) * 2007-05-10 2007-08-16 茂人 西村 Generator with air-core coil and magnetic bearing
JP2009022140A (en) * 2007-07-13 2009-01-29 Sumida Corporation Rotary electromagnetic generator and method of manufacturing rotary electromagnetic generator
JP2010283983A (en) * 2009-06-04 2010-12-16 Katsuyuki Kamibayashi Generation device
US20120313457A1 (en) * 2010-10-25 2012-12-13 Puthalath Koroth Raghuprasad Gravity-assisted geomagnetic generator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021129388A (en) * 2020-02-13 2021-09-02 沖電気工業株式会社 Power generation device
JP7400520B2 (en) 2020-02-13 2023-12-19 沖電気工業株式会社 power generation equipment

Also Published As

Publication number Publication date
JP6392229B2 (en) 2018-09-19
JPWO2015025857A1 (en) 2017-03-02

Similar Documents

Publication Publication Date Title
JP6639810B2 (en) Rotating electric machines and non-contact generators
JP2014504129A5 (en)
US6833638B2 (en) Integrated system for non-contact power feed device and permanent magnet-excited transverse flux linear motor
US20100314961A1 (en) Magnetic flux switching type electric generator using shielding member as permanent magnet
KR101324546B1 (en) Time difference generator using balance of both poles
JP2017005878A (en) Rotary electric machine and non-contact generator
KR20130029659A (en) Switched reluctance motor
KR200386338Y1 (en) High efficiency Generator which does not have a second electrical load
JP6392229B2 (en) Generator
RU2524144C2 (en) Single-phase electrical machine
RU2727701C2 (en) Design of electric motor
JP5903510B2 (en) Rotating electrical equipment
US20200304000A1 (en) Generator with reduced magnetic resistance
JP2017135975A (en) Direct-current generator and direct-current motor
CN110138161B (en) External disk motor with barrier stator
KR101006809B1 (en) high - efficiency electromotor.
JP2709842B2 (en) Rotating machine
JP2017135811A (en) Power generator
RU181317U1 (en) ELECTRIC GENERATOR HAVING A CENTRAL MAGNETIC SHAFT
KR101772271B1 (en) Generator for decreasing counter electromotive
KR101531932B1 (en) Permanent magnet exciter for delivering high efficiency power and generator thereof
JP2014003813A (en) Rotary electric apparatus
JP2011004576A (en) Generator
KR20050112614A (en) High efficiency generator with improved stator
WO2005050821A2 (en) Generator with high efficiency

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14838492

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015532866

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14838492

Country of ref document: EP

Kind code of ref document: A1