WO2015024222A1 - 一种rfid电子标签 - Google Patents

一种rfid电子标签 Download PDF

Info

Publication number
WO2015024222A1
WO2015024222A1 PCT/CN2013/081994 CN2013081994W WO2015024222A1 WO 2015024222 A1 WO2015024222 A1 WO 2015024222A1 CN 2013081994 W CN2013081994 W CN 2013081994W WO 2015024222 A1 WO2015024222 A1 WO 2015024222A1
Authority
WO
WIPO (PCT)
Prior art keywords
planar spiral
chip
spiral inductor
pad
electronic tag
Prior art date
Application number
PCT/CN2013/081994
Other languages
English (en)
French (fr)
Inventor
章伟
赵田野
Original Assignee
Zhang Wei
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhang Wei filed Critical Zhang Wei
Priority to PCT/CN2013/081994 priority Critical patent/WO2015024222A1/zh
Publication of WO2015024222A1 publication Critical patent/WO2015024222A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • G06K19/07773Antenna details
    • G06K19/07777Antenna details the antenna being of the inductive type
    • G06K19/07784Antenna details the antenna being of the inductive type the inductive antenna consisting of a plurality of coils stacked on top of one another
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • G06K19/0775Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card arrangements for connecting the integrated circuit to the antenna
    • G06K19/07754Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card arrangements for connecting the integrated circuit to the antenna the connection being galvanic
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • G06K19/07773Antenna details
    • G06K19/07777Antenna details the antenna being of the inductive type
    • G06K19/07779Antenna details the antenna being of the inductive type the inductive antenna being a coil
    • G06K19/07783Antenna details the antenna being of the inductive type the inductive antenna being a coil the coil being planar
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • G06K19/07773Antenna details
    • G06K19/07786Antenna details the antenna being of the HF type, such as a dipole
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/0723Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips the record carrier comprising an arrangement for non-contact communication, e.g. wireless communication circuits on transponder cards, non-contact smart cards or RFIDs
    • G06K19/0726Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips the record carrier comprising an arrangement for non-contact communication, e.g. wireless communication circuits on transponder cards, non-contact smart cards or RFIDs the arrangement including a circuit for tuning the resonance frequency of an antenna on the record carrier

Definitions

  • the invention relates to an electronic tag, in particular to an RFID electronic tag with a planar spiral inductor.
  • the label embedded in the rubber of the tire because the fixed rubber is distributed in the rubber of the tire, the size of the label must be as small as possible to avoid interference; Since the rubber will be deformed or even cracked during the shaping and use of the tire, it is required that the label must have a certain flexibility to avoid the label failure due to the deformation of the rubber; at the same time, the label must be flexible because the label If a rigid object with a certain size is embedded in the tire rubber, it will be a great hidden danger to the quality and safety of the tire.
  • a flexible label made of a PET material substrate cannot be used in a tire rubber because of its large size; and a label using a PCB or a ceramic as a substrate has a certain size and a small size, but often does not have
  • the flexible feature, as a whole rigid object directly embedded in the tire rubber, is very detrimental to the quality and safety of the tire.
  • the right side is the equivalent circuit of the tag chip, and the left side is the equivalent circuit of the tag antenna;
  • La is the equivalent inductance of the antenna,
  • Ra is the antenna equivalent Resistor,
  • Ci is the equivalent capacitance of the chip,
  • Ri is the equivalent resistance of the chip;
  • the Alien Higg S (TM) 3 chip is taken as an example, and the impedance equivalent circuit of the chip equivalent circuit is simulated by ADS software.
  • the simulated real part curve of the tag chip impedance is obtained, and the impedance is at 920 MHz.
  • the real part value is 27.1 ohms; referring to Figure 4, the imaginary part curve of the impedance of the tag chip is simulated.
  • the imaginary part of the impedance at 920 MHz is -199.8 ohms.
  • the impedance of the tag antenna should be equal or close to the real part of the impedance according to the conjugate condition, and the imaginary parts of the impedance are opposite to each other, which is the best match.
  • the imaginary part of the inductive impedance of the tag antenna is provided by the matching ring.
  • the area of the matching ring of 15 mm* 15 mm or more is required, and it is difficult to design a small size.
  • the main object of the present invention is to provide an RFID electronic tag which is miniaturized, has good impedance conjugate performance, and is highly flexible.
  • the present invention provides an RFID electronic tag comprising: mounted on a PCB:
  • the antenna is configured to receive and reflect the RFID signal, including the connected antenna arm and the planar spiral inductor.
  • the antenna arm extends from the two sides of the PCB, and the planar spiral inductor is disposed on the PCB, and the input end and the output end thereof respectively Chip pad electrical connection;
  • the tag antenna arm and the planar spiral inductor loaded on the die pad are conjugate matched to the impedance of the chip.
  • the planar spiral inductor is provided with an input pad of a planar spiral inductor and an output pad of a planar spiral inductor
  • the chip is provided with a chip input pad and a chip output pad, and the input end of the planar spiral inductor is soldered.
  • the disk is electrically connected to the chip input pad and the antenna arm at one end, and the output pad of the planar spiral inductor is electrically connected to the chip output pad and the other antenna arm.
  • the input pad and the output pad of the planar spiral inductor are electrically connected to the left pad and the output pad of the chip through metal vias, respectively.
  • the planar spiral inductor comprises at least two layers parallel to each other, wherein an input pad of a planar spiral inductor is connected to a left pad of the chip, and an output pad of another planar spiral inductor is inserted into the chip. The right side of the pad.
  • the chip is soldered to the top layer of the PCB, and the planar spiral inductance is distributed on the bottom layer of the PCB.
  • the spacing between the coil inductances in the planar spiral inductor can be set equal or unequal. If the spacing between the turns of the coil in the planar spiral inductor is not equal.
  • the antenna arm includes a spiral body and a joint end, and a right angle hook is provided at the joint end, and the right angle hook is inserted into the metal through hole of the PCB board and fixed to the PCB board by welding. This allows the antenna arm to be more securely mounted on the PCB.
  • the shape of the planar spiral inductor is any one of a rectangular shape, an octagonal shape, a circular shape and a polygonal shape.
  • the planar spiral inductor has a trace width of 0.2-0.5 mm, a pitch of 0.2-0.5 mm, and a number of turns of 2-6 ⁇ ; the length, width and height of the planar spiral inductor are 6 mm*2 mm*lmm, and the length of the label It is 50mm.
  • an RFID electronic tag of the present invention by loading a planar spiral inductor, the inductive impedance of the antenna is greatly improved under the limited size of the electronic tag, and the impedance matching degree between the antenna and the chip is greatly improved.
  • the read/write distance of the label replaces the structural design of the existing matching ring, which reduces the volume of the label and greatly expands the miniaturization of the label.
  • the antenna arm with the right angle hook is inserted into the metal through hole of the PCB and fixed by welding, which improves the firmness of the assembly.
  • the antenna arm adopts a spiral structure, effectively increasing the electrical length of the antenna arm in a limited space.
  • the problem of having a large size matching ring on both sides of the label chip is solved; by using a planar spiral inductor, the matching ring that originally required a large space is reduced to a space of only 6 mm*2 mm*lmm, And achieve good impedance matching.
  • the antenna arm of the spiral structure By adopting the antenna arm of the spiral structure, the flexibility of the label is increased, and the right-angled hook of the front end is directly inserted into the PCB metal via hole and soldered, thereby greatly improving the reliability and the firmness of the label, and solving the prior art.
  • the problem that the two arms of the antenna are easily separated from the PCB.
  • 1 is an equivalent circuit diagram of an existing tag chip and a tag antenna
  • FIG. 2 is an impedance simulation diagram of the equivalent circuit of the chip of FIG. 1;
  • Figure 3 is a graph showing the real part of the impedance of the tag chip obtained by simulation in Figure 2;
  • Figure 4 is a graph showing the imaginary part of the impedance of the tag chip obtained by simulation in Figure 2;
  • FIG. 5 is a schematic diagram of an overall structure of an RFID electronic tag according to the present invention.
  • FIG. 6 is a schematic structural view of a PCB board of an RFID electronic tag according to the present invention.
  • FIG. 7 is a schematic structural view of a top layer of a PCB of an RFID electronic tag according to the present invention.
  • FIG. 8 is a schematic structural view of a bottom layer of a PCB of an RFID electronic tag according to the present invention.
  • FIG. 9 is a schematic structural view of an antenna arm of an RFID electronic tag according to the present invention.
  • FIG. 10 is a schematic diagram of a planar spiral inductor with unequal spacing of RFID electronic tags according to the present invention.
  • FIG. 11 is a schematic diagram of an octagonal planar spiral inductor of an RFID electronic tag according to the present invention.
  • FIG. 12 is a schematic diagram of a circular planar spiral inductor of an RFID electronic tag according to the present invention.
  • FIG. 13 is a schematic diagram of a two-layer planar spiral inductor of an RFID electronic tag according to the present invention.
  • FIG. 14 is a schematic diagram of a three-layer planar spiral inductor of an RFID electronic tag according to the present invention.
  • 15 is an equivalent circuit diagram of an RFID electronic tag in a planar spiral inductor according to the present invention.
  • 16 is a comparison diagram of an impedance real part test of an RFID electronic tag in different loading states according to the present invention.
  • 17 is a comparison diagram of an impedance imaginary part test of an RFID electronic tag in different loading states according to the present invention.
  • the present invention provides an RFID electronic tag comprising a chip 2 and an antenna 3 mounted on a PCB 1, the PCB 1 being a top layer 10 of the PCB, a bottom layer 12 of the PCB, and a PCB
  • the chip 2 is welded to the top layer 10 of the PCB.
  • the chip 2 is soldered to the end of the top layer 10 of the PCB to facilitate the connection of the wires.
  • the chip 2 is provided with chip pads 20 at both ends thereof, and the chip pads 20 are located on the top layer of the PCB for soldering the tag chips.
  • the antenna 3 is electrically connected to the PCB board and the chip 2 for receiving and reflecting the RFID signal.
  • the antenna 3 includes a connected antenna arm 30 and a planar spiral inductor 32.
  • the antenna arm 30 is externally symmetric from the bottom ends of the PCB board 1. Ground extension, for receiving and transmitting signals, the planar spiral inductor 32 is disposed on the PCB board 1 The input terminal and the output terminal are electrically connected to the chip pad 20, respectively. The antenna arm 30 of the tag and the planar spiral inductor 32 loaded on the die pad are conjugate-matched to the impedance of the chip 2.
  • a plurality of layers of planar spiral inductors are embedded in the PCB, and the number of layers is 1-4 layers.
  • the chip 2 is soldered to the top layer 10 of the PCB, and the planar spiral inductor 32 is distributed over the bottom layer 12 of the PCB.
  • the metal vias 4 are electrically connected to the input and output terminals of the chip 2, respectively.
  • the input side trace 320 of the planar spiral inductor is disposed on the left side of the chip 2
  • the output end trace 322 of the planar spiral inductor is disposed on the right side, on the PCB board 1
  • the middle of the top layer there is an output trace 322 of a planar spiral inductor.
  • two metal vias 4 are provided on the same side of the chip 2
  • the metal vias on the left side of the chip are 40
  • the metal vias on the right side of the chip are 42, which are disposed in the middle of the planar spiral inductor 32.
  • the chip pads include a chip left pad 200 and a chip right pad 202.
  • the planar spiral inductor 32 on the bottom layer 12 of the PCB is connected to the input end trace 320 of the planar spiral inductor through the metal via 40 on the left side of the chip, and the input trace 320 of the planar spiral inductor and the left pad 200 of the chip.
  • the electrical connection with the antenna 3; the upper end of the metal via 42 on the right side of the chip is connected to the output end trace 322 of the planar spiral inductor, and the lower end of the metal via 42 is not connected to the underlying planar spiral inductor trace and is not in contact with the chip.
  • the right side pad 202 is electrically connected to the antenna 3; the metal via 44 of the middle portion is connected to the output end 322 of the bottom planar spiral inductor and the top layer planar spiral inductor, and the right side pad 202 of the chip is connected to realize the plane.
  • the output end trace 322 of the spiral inductor is electrically connected to the right side pad 202 of the chip and the antenna 3; the left side pad 200 of the tag chip is connected to the planar spiral inductor input terminal 320 through the metal via 40; the right side pad 202 of the tag chip
  • the planar spiral inductor output 322 is connected through a top trace and a center metal via 42.
  • the metal via 4 is hollow inside, wherein the diameter of the empty diameter is slightly larger than the diameter of the antenna arm. The position of the metal via 4 changes depending on the position of the input and output of the planar spiral inductor.
  • the diameter of the antenna arm is slightly smaller than the diameter of the metal via, which is 0.6 mm.
  • the metal via has a diameter of 0.8 mm.
  • the planar spiral inductor has a length, a width and a height of 6 mm * 2 mm * 1 mm, and the label has a length of 50 mm.
  • the trace width d is 0.2-0.5 mm, preferably 0.2 mm, the die pad width dl is 0.4 mm, and the pitch K between the die pads is 0.4 mm.
  • the pitch between the coil inductances of the planar spiral inductor is 0.2-0.5 mm, preferably 0.3 mm; the inductance turns are 2-6 ⁇ .
  • the antenna arm 30 includes a helical body 302 and an engagement end 304 that extends outwardly in a spring shape to lengthen the length of the metal trace over a limited length.
  • a right angle hook 306 is provided at the joint end 304, inserted into the metal via 4 of the PCB by the right angle hook 306, and fixed to the PCB board 1 by soldering.
  • the right angle hook 306 is set to make it easier to insert into the metal via hole, which avoids the looseness caused by direct spot welding on the PCB and improves the stability of the antenna assembly.
  • the planar spiral inductor 32 can be arranged in various helical shapes, such as rectangular, octagonal, Any one of a circular shape and a polygonal shape.
  • the spacing between the coil inductances in the planar spiral inductor 32 can be set equal or unequal. As shown in FIG. 10, the pitch between the coil inductors in the planar spiral inductor 32 is not equal, the pitch of the inductor outer ring is larger than the pitch of the inductor inner ring, and the inductor has a square structure as a whole.
  • the pitch of the respective coils of the planar spiral inductor 32 is equal, and the inductor has an octagonal structure and a circular structure as a whole.
  • the inductance of the planar spiral inductor 32 is a two-layer structure, in which the input pad of one planar spiral inductor is connected to the chip input pad, and the output pad of another planar spiral inductor is taken out. Output pad.
  • the inductance of the planar spiral inductor 32 is a three-layer structure, and a multi-layer planar spiral inductor is provided, which can increase the number of turns of the inductor, and the laminated design can reduce the overall area of the tag and improve the inductive impedance of the tag.
  • the inductive reactance and resistance of the planar spiral inductor are represented by Ls and Rs, respectively, and the upper via of the planar spiral inductor and the metal via in the lower trace.
  • the capacitive reactance of the overlap, the capacitive coupling between the spiral inductor and the line, and the two ports are represented by Cs; Coxl and Cox2 represent the capacitive reactance between the spiral inductor and the PCB; Rsil, Csil, Rsi2, and Csi2 represent the PCB Parasitic parameters.
  • the relative dielectric constant is about 4.2, which is a low dielectric constant material, and the substrate also includes other dielectric materials with low loss tangent and different dielectric constants. Therefore, its distributed capacitances Cs, Coxl and Cox2, Csil and Csi2 are very small and negligible; at the same time, since the FR4 loss tangent is about 0.02, the planar spiral inductor is made of copper and has a very high electrical conductivity, so its distribution The resistors Rs, Rsil, and Rsi2 are also very small and can be ignored. Therefore, the planar spiral inductor structure mainly exhibits the characteristic of the inductance Ls. The more the number of turns of the planar spiral inductor, the larger the Ls, the larger the inductive impedance provided to the tag antenna.
  • the real part value of the tag antenna impedance of the loading plane spiral inductor is larger than the real part value of the load simple matching ring impedance, closer to the real part of the chip impedance, Conducive to the conjugate matching of the tag antenna impedance and the tag chip impedance.
  • the imaginary part of the tag antenna impedance of the loading plane spiral inductor is much larger than the imaginary part of the load of the simple matching ring impedance, and the tag antenna impedance of the simple matching ring is loaded.
  • the imaginary part value is in the range of 0.8 GHz to 1 GHz, which is less than 50 ohms.
  • the imaginary part of the tag antenna impedance of the plane spiral inductor When the imaginary part of the tag antenna impedance of the plane spiral inductor is loaded at 920 MHz, the imaginary part of the impedance is exactly 200 ohms, and the impedance of the tag chip is virtual. The parts are exactly opposite to each other, and have better conjugate matching degree of the tag antenna impedance and the chip impedance. Therefore, the loading plane spiral inductor has superior performance with respect to the label loaded with the simple matching ring.
  • the spiral inductor design increases the real and imaginary parts of the inductor, and the impedance increases. The better the impedance conjugate matching, the greater the read/write distance of the tag; The write distance is smaller. Therefore, obtaining an electronic tag of the same impedance size can greatly reduce the size and facilitate miniaturization of the embedded application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Details Of Aerials (AREA)

Abstract

本发明提供了一种RFID电子标签,其包括装配于PCB板上的:芯片,其两端设有芯片焊盘;天线,用于接收并反射RFID信号,包括相连接的天线臂和平面螺旋电感,天线臂由PCB板的两侧相外延伸,平面螺旋电感布设于PCB板上,其输入端和输出端分别与芯片焊盘电连接;标签天线臂及加载于芯片焊盘上的平面螺旋电感与芯片的阻抗共轭匹配。通过加载平面螺旋电感,在电子标签有限的尺寸下,大幅提高天线的感性阻抗,以及天线和芯片的阻抗匹配程度,替代了现有的匹配环的结构设计,缩小了标签的体积,极大地拓宽了标签的小型化运用。

Description

说 明 书
一种 RFID电子标签
技术领域
本发明涉及一种电子标签, 尤其是指一种带平面螺旋电感的 RFID电子标签。
背景技术
在 UHF RFID标签的运用中, 对标签尺寸、柔韧性有苛刻要求: 例如嵌入到轮胎橡胶里 的标签, 由于轮胎橡胶中分布有固定作用的金属丝, 因此为避免干扰要求标签尺寸必须尽量 小; 由于轮胎在塑形及使用过程中, 橡胶均会有一定的形变甚至开裂, 因此要求标签必须具 备一定的柔韧性, 避免由于橡胶的形变而导致标签的失效; 同时标签必须是柔性的, 因为标 签若为具有一定尺寸的硬性物体嵌入到轮胎橡胶中,对轮胎的质量、安全都将是一个很大的 隐患。
一般常规的由 PET材料为基材的柔性标签, 由于尺寸较大, 无法在轮胎橡胶中进行使 用; 而采用 PCB或陶瓷作为基材的标签, 尺寸具备一定的小型化特征, 但是往往又不具备 柔性特征,作为整体硬性物体直接嵌入到轮胎橡胶中,对轮胎的质量、安全都是非常不利的。
如图 1所示, 在标签芯片与标签天线的等效电路中, 右侧为标签芯片的等效电路, 左侧 为标签天线的等效电路; La为天线等效电感, Ra为天线等效电阻, Ci为芯片等效电容, Ri 为芯片等效电阻; 当天线与标签各自阻抗共轭对应时, RFID标签实现最好阻抗匹配;
标签天线阻抗为 ZA«T = RANT + J * 与标签芯片阻抗为 ΖΚ = RIC + J * XIC,共轭关系为
RANT ~ ^ic, X ANT ~—Xic。
参照图 2所示, 以 Alien HiggS(TM) 3芯片为例, 采用 ADS软件对其芯片等效电路进行 阻抗仿真,参照图 3为仿真所得标签芯片阻抗实部曲线,在 920MHz频率处其阻抗实部值为 27.1 欧姆; 参照图 4为仿真所得标签芯片阻抗虚部曲线, 920MHz频率处其阻抗虚部值为 -199.8欧姆。 那么标签天线的阻抗根据共轭条件, 应该为阻抗实部相等或接近, 阻抗虚部互 为相反数, 为最佳匹配。
然而, 在现有技术中, 标签天线感性阻抗虚部是由匹配环来提供的, 匹配环尺寸越大, 感性阻抗虚部就越大; 在现有技术中, 需要提供近 200 欧姆的感性阻抗虚部, 需要 15mm* 15mm以上的匹配环的面积, 难以进行小型化的设计。
因此, 有必要提供一种小型化、具备较强柔韧性的、并且具备良好阻抗共轭匹配的电子 标签。
发明内容 基于现有技术的不足, 本发明的主要目的在于提供一种小型化, 阻抗共轭性能良好、高 柔韧性的 RFID电子标签。
本发明提供了一种 RFID 电子标签, 其包括装配于 PCB板上的:
芯片, 其两端设有芯片焊盘;
天线,用于接收并反射 RFID信号,包括相连接的天线臂和平面螺旋电感,天线臂由 PCB 板的两侧相外延伸, 平面螺旋电感布设于 PCB板上, 其输入端和输出端分别与芯片焊盘电 连接;
标签天线臂及加载于芯片焊盘上的平面螺旋电感与芯片的阻抗共轭匹配。
优选地, 所述平面螺旋电感设有平面螺旋电感的输入端焊盘和平面螺旋电感的输出端焊 盘,芯片设有芯片输入端焊盘和芯片输出端焊盘,平面螺旋电感的输入端焊盘与芯片输入端 焊盘及一端天线臂电连接,平面螺旋电感的输出端焊盘与芯片输出端焊盘及另一端天线臂电 连接。
优选地, 所述平面螺旋电感的输入端焊盘和输出端焊盘分别通过金属过孔与芯片的左侧 焊盘和输出端焊盘电连接。
优选地, 所述平面螺旋电感包括相互平行的至少两层, 其中一层平面螺旋电感的输入端 焊盘接入芯片的左侧焊盘, 另一层平面螺旋电感的输出端焊盘接入芯片的右侧焊盘。
优选地, 所述芯片焊接于 PCB顶层, 平面螺旋电感分布于 PCB的底层。
优选地, 平面螺旋电感中的各圈电感之间的间距可设置为相等或不相等。 若平面螺旋电 感中的各圈电感之间的间距不相等。
优选地, 所述天线臂包括螺旋主体和接合端, 在接合端设有直角挂钩, 通过所述直角挂 钩*** PCB板的金属过孔中, 并通过焊接与 PCB板固定在一起。 以使得天线臂可更为稳固 地装配于 PCB板上。
优选地, 所述平面螺旋电感的形状为矩形、 八角形、 圆形、 多角形中任选一种。 所述平 面螺旋电感的走线宽度为 0.2-0.5mm, 间距为 0.2-0.5mm, 匝数为 2-6匝; 所述平面螺旋电 感的长宽高尺寸为 6mm*2mm*lmm, 标签的长度为 50mm。
与现有技术相比, 本发明一种 RFID 电子标签中, 通过加载平面螺旋电感, 在电子标签 有限的尺寸下, 大幅提高天线的感性阻抗, 以及天线和芯片的阻抗匹配程度, 极大地提升了 标签的读写距离, 替代了现有的匹配环的结构设计, 缩小了标签的体积, 极大地拓宽了标签 的小型化运用。 另外, 采用带直角挂钩的天线臂穿入 PCB的金属过孔, 并通过焊接固定, 提高了装配的牢固度, 同时, 天线臂采用螺旋结构, 在有限空间内, 有效增长了天线臂的电 长度, 提高了标签天线的性能, 增加了标签的读取距离, 并且使得标签具备更佳的柔韧性。 解决了现有技术中, 标签芯片两侧必须具备较大尺寸匹配环的问题; 通过采用平面螺旋 电感的方式, 将原来需要较大空间的匹配环缩小至只有 6mm*2mm*lmm的空间内, 并且实 现了良好的阻抗匹配。通过采用螺旋结构的天线臂, 增加了标签了柔韧性, 并通过其前端直 角挂钩直接*** PCB金属过孔并进行焊接, 极大的提升了标签的可靠性, 牢固度, 解决了 现有技术中天线两臂容易与 PCB脱落的问题。
附图说明
图 1为现有标签芯片与标签天线的等效电路图;
图 2为对图 1的芯片等效电路进行阻抗仿真图;
图 3为图 2仿真所得标签芯片阻抗实部曲线图;
图 4为图 2仿真所得标签芯片阻抗虚部曲线图;
图 5为本发明一种 RFID电子标签的整体结构示意图;
图 6为本发明一种 RFID电子标签的 PCB板的结构示意图;
图 7为本发明一种 RFID电子标签的 PCB板顶层的结构示意图;
图 8为本发明一种 RFID电子标签的 PCB板底层的结构示意图;
图 9为本发明一种 RFID电子标签的天线臂的结构示意图;
图 10为本发明一种 RFID电子标签的间距不等的平面螺旋电感的示意图;
图 11为本发明一种 RFID电子标签的呈八角形的平面螺旋电感的示意图;
图 12为本发明一种 RFID电子标签的呈圆形的平面螺旋电感的示意图;
图 13为本发明一种 RFID电子标签的双层平面螺旋电感的示意图;
图 14为本发明一种 RFID电子标签的三层平面螺旋电感的示意图;
图 15为本发明一种 RFID电子标签在平面螺旋电感的等效电路图;
图 16为本发明一种 RFID电子标签在不同加载状态下的阻抗实部测试比较图;
图 17为本发明一种 RFID电子标签在不同加载状态下的阻抗虚部测试比较图。
具体实施方式
参照图 5和图 6所示, 本发明提供了一种 RFID 电子标签, 其包括装配于 PCB板 1上 的芯片 2和天线 3, 所述 PCB板 1为由 PCB顶层 10、 PCB底层 12及 PCB侧壁围成的长方 体结构, 所述芯片 2焊接于 PCB顶层 10上, 在本实施例中, 所述芯片 2焊接于 PCB顶层 10的末端, 便于走线连接。 所述芯片 2的两端设有芯片焊盘 20, 芯片焊盘 20位于 PCB顶 层, 用于焊接标签芯片。 所述天线 3与 PCB板及芯片 2电连接, 用于接收并反射 RFID信 号, 其包括相连接的天线臂 30和平面螺旋电感 32, 天线臂 30由 PCB 板 1的两侧底端相外 对称地延伸, 用于对信号进行接收和发射, 所述平面螺旋电感 32布设于 PCB板 1上, 其输 入端和输出端分别与芯片焊盘 20电连接。标签的天线臂 30及加载于芯片焊盘上的平面螺旋 电感 32与芯片 2的阻抗共轭匹配。
其中, 参照图 5和图 6所示, 若干层平面螺旋电感内嵌于 PCB板之中, 所述层数为 1-4 层。 在 PCB板 1中, 所述芯片 2焊接于 PCB顶层 10, 平面螺旋电感 32分布于 PCB底层 12。 通过金属过孔 4分别与芯片 2的输入端和输出端电连接。 在本实施例中, 在 PCB板 1 的顶层端部, 芯片 2的左侧设有平面螺旋电感的输入端走线 320, 右侧设有平面螺旋电感的 输出端走线 322, 在 PCB板 1的顶层中部, 设有平面螺旋电感的输出端走线 322。 在 PCB 板上, 与芯片 2的同侧端部设有两个金属过孔 4, 芯片左侧的金属过孔为 40, 芯片右侧的金 属过孔为 42,在平面螺旋电感 32的中部设有一个金属过孔 44。芯片焊盘包括芯片左侧焊盘 200和芯片右侧焊盘 202。 其中, PCB板底层 12上的平面螺旋电感 32通过芯片左侧的金属 过孔 40接入平面螺旋电感的输入端走线 320, 平面螺旋电感的输入端走线 320与芯片的左 侧焊盘 200和天线 3的电连接; 芯片右侧的金属过孔 42的上端连接平面螺旋电感的输出端 走线 322, 所述金属过孔 42的下端与底层平面螺旋电感走线不连接且不接触, 芯片的右侧 焊盘 202与天线 3电连接; 通过中部的金属过孔 44连接底层平面螺旋电感的输出端 322及 顶层平面螺旋电感的走线连接, 接入芯片的右侧焊盘 202, 实现平面螺旋电感的输出端走线 322与芯片的右侧焊盘 202和天线 3的电连接; 标签芯片左侧焊盘 200通过金属过孔 40连 接平面螺旋电感输入端 320; 标签芯片右侧焊盘 202通过顶层走线及中心金属过孔 42连接 平面螺旋电感输出端 322。 以实现信号的传输。 所述金属过孔 4内部中空, 其中空的直径尺 寸比天线臂的直径略大。金属过孔 4的位置根据平面螺旋电感的输入端和输出端的走线位置 而改变。
在本发明的一个实施例中, 参照图 7 所示, 天线臂的直径比金属过孔的直径略小, 为 0.6mm。 金属过孔的直径为 0.8mm。 所述平面螺旋电感的长宽高尺寸为 6mm*2mm*lmm, 标签的长度为 50mm。走线宽度 d为 0.2-0.5mm,优选 0.2mm,芯片焊盘的宽度 dl为 0.4mm, 芯片焊盘之间的间距 K为 0.4mm。平面螺旋电感的各圈电感之间的间距为 0.2-0.5mm, 优选 为 0.3mm; 电感匝数为 2-6匝。
参照图 8-图 9所示, 所述天线臂 30包括螺旋主体 302和接合端 304, 所述螺旋主体 302 呈弹簧状向外延伸, 在有限的长度下, 加长了金属走线的长度。在接合端 304设有直角挂钩 306, 通过所述直角挂钩 306*** PCB板的金属过孔 4中, 并通过焊接与 PCB板 1固定在 一起。 设置直角挂钩 306, 使其更易***金属过孔之中, 避免了因直接点焊在 PCB板上而 造成的松脱, 提高了天线装配的稳固性。
参照图 10-图 14所示, 平面螺旋电感 32可设置成各种螺旋状形状, 如矩形、 八角形、 圆形、 多角形中任选一种。 平面螺旋电感 32中的各圈电感之间的间距可设置为相等或不相 等。在图 10中示出, 平面螺旋电感 32中的各圈电感之间的间距不相等, 电感外圈的间距大 于电感内圈的间距, 电感整体呈正方形结构。 在图 11-图 12中, 平面螺旋电感 32的各圈电 感的间距相等, 电感整体呈八角形结构和圆形结构。在图 13中, 平面螺旋电感 32的电感为 双层结构, 由其中一层平面螺旋电感的输入端焊盘接入芯片输入端焊盘, 由另一层平面螺旋 电感的输出端焊盘接出输出端焊盘。在图 14中, 平面螺旋电感 32的电感为三层结构, 设置 多层平面螺旋电感, 可增加电感的匝数, 层叠设计, 可减小标签的整体面积, 提高标签的感 性阻抗。
参照图 15-图 17所示, 在平面螺旋电感的等效电路图中, 平面螺旋电感的感抗与电阻 分别用 Ls和 Rs表示, 平面螺旋电感的上层走线与下层走线中的金属过孔重叠部分的容抗、 螺旋电感线与线间及两端口间的电容性耦合则用 Cs表示; Coxl和 Cox2表示螺旋电感与 PCB 板间的容抗; Rsil 、 Csil、 Rsi2、 Csi2分别表示 PCB板的寄生参数。
由于, PCB板的基材为 RF4 (聚四氟乙烯), 相对介电常数在 4.2左右, 属于低介电常数 材料, 基材也包括其他低损耗角正切值, 不同介电常数的介质材料。 因此, 其分布电容 Cs、 Coxl和 Cox2、 Csil和 Csi2均非常小, 可忽略不计; 同时由于 FR4损耗角正切值约为 0.02, 平 面螺旋电感走线为铜材质, 电导率极高, 因此其分布电阻 Rs、 Rsil、 Rsi2同样非常小, 可忽 略。 因此, 所述平面螺旋电感结构主要呈现电感 Ls的特性, 平面螺旋电感的匝数越多, Ls 越大, 提供给标签天线的感性阻抗越大。
在图 16中,在不同加载状态下的阻抗实部测试比较图中,加载平面螺旋电感的标签天线 阻抗的实部值大于加载简单匹配环阻抗的实部值,更接近芯片阻抗实部, 更有利于标签天线 阻抗与标签芯片阻抗的共轭匹配。 图 17中, 在不同加载状态下的阻抗虚部测试比较图中, 加 载平面螺旋电感的标签天线阻抗的虚部值远大于加载简单匹配环阻抗的虚部值,加载简单匹 配环的标签天线阻抗虚部值在 0.8GHz至 1GHz之间范围内, 均小于 50欧姆, 而加载平面螺旋 电感的标签天线阻抗虚部值在 920MHz频点时, 阻抗虚部值刚好为 200欧姆,与标签芯片阻抗 虚部刚好互为相反数, 具有更佳的标签天线阻抗与芯片阻抗的共轭匹配程度, 因此, 加载平 面螺旋电感相对于加载简单匹配环的标签更具有优越的性能。同时,在一定空间体积的电子 标签中, 通过螺旋状的电感设计, 使得电感的实部和虚部增加, 阻抗增大, 阻抗共轭匹配越 好, 标签的读写距离就越大; 反之读写距离就越小。 因此, 获得同样阻抗大小的电子标签, 可以大大减小体积, 便于小型化嵌入的应用。

Claims

权 利 要 求 书
1、 一种 RFID 电子标签, 其特征在于包括装配于 PCB板上的:
芯片, 其两端设有芯片焊盘;
天线,用于接收并反射 RFID信号,包括相连接的天线臂和平面螺旋电感,天线臂由 PCB 板 的两侧相外延伸, 平面螺旋电感布设于 PCB板上, 其输入端和输出端分别与芯片焊盘电连 接;
标签天线臂及加载于芯片焊盘上的平面螺旋电感与芯片的阻抗共轭匹配;
所述平面螺旋电感设有平面螺旋电感的输入端焊盘和平面螺旋电感的输出端焊盘, 芯片设有 芯片输入端焊盘和芯片输出端焊盘, 平面螺旋电感的输入端焊盘与芯片输入端焊盘及一端天 线臂电连接, 平面螺旋电感的输出端焊盘与芯片输出端焊盘及另一端天线臂电连接。
、 根据权利要求 1所述的 RFID 电子标签,其特征在于:所述平面螺旋电感的输入端焊盘和输 出端焊盘分别通过金属过孔与芯片的左侧焊盘和输出端焊盘电连接。
3、 根据权利要求 2所述的 RFID 电子标签,其特征在于:所述平面螺旋电感包括相互平行的至 少两层, 其中一层平面螺旋电感的输入端焊盘接入芯片的左侧焊盘, 另一层平面螺旋电感的 输出端焊盘接入芯片的右侧焊盘。
、 根据权利要求 1所述的 RFID 电子标签, 其特征在于: 所述芯片焊接于 PCB顶层, 平面螺 旋电感分布于 PCB的底层。
5、 根据权利要求 1所述的 RFID 电子标签,其特征在于:平面螺旋电感中的各圈电感之间的间 距相等。
6、 根据权利要求 1所述的 RFID 电子标签,其特征在于:平面螺旋电感中的各圈电感之间的间 距不相等。
7、 根据权利要求 1所述的 RFID 电子标签, 其特征在于: 所述天线臂包括螺旋主体和接合端, 在接合端设有直角挂钩, 通过所述直角挂钩*** PCB板的金属过孔中, 并通过焊接与 PCB 板固定在一起。
8、 根据权利要求 1-7中任一项所述的 RFID 电子标签, 其特征在于: 所述平面螺旋电感的形状 为矩形、 八角形、 圆形、 多角形中任选一种。
10. 根据权利要求 1 所述的 RFID 电子标签, 其特征在于: 所述平面螺旋电感的走线宽度为 0.2-0.5mm。
11. 根据权利要求 1 所述的 RFID 电子标签, 其特征在于: 所述平面螺旋电感的走线间距为 0.2-0.5mm。
12. 根据权利要求 1所述的 RFID 电子标签, 其特征在于: 所述平面螺旋电感的匝数为 2-6匝。
13. 根据权利要求 1 所述的 RFID 电子标签, 其特征在于: 所述平面螺旋电感的长宽高尺寸为 6mm*2mm* 1 mm。
14. 根据权利要求 1所述的 RFID 电子标签, 其特征在于: 所述标签的长度为 50mm。
15.—种 RFID 电子标签, 其特征在于包括装配于 PCB板上的:
芯片, 其两端设有芯片焊盘;
天线,用于接收并反射 RFID信号,包括相连接的天线臂和平面螺旋电感,天线臂由 PCB 板 的两侧相外延伸, 平面螺旋电感布设于 PCB板上, 其输入端和输出端分别与芯片焊盘电连 接;
标签天线臂及加载于芯片焊盘上的平面螺旋电感与芯片的阻抗共轭匹配。
16.根据权利要求 15所述的 RFID 电子标签, 其特征在于: 所述平面螺旋电感设有平面螺旋电 感的输入端焊盘和平面螺旋电感的输出端焊盘, 芯片设有芯片输入端焊盘和芯片输出端焊 盘, 平面螺旋电感的输入端焊盘与芯片输入端焊盘及一端天线臂电连接, 平面螺旋电感的输 出端焊盘与芯片输出端焊盘及另一端天线臂电连接。
17.根据权利要求 16所述的 RFID 电子标签, 其特征在于: 所述平面螺旋电感的输入端焊盘和 输出端焊盘分别通过金属过孔与芯片的左侧焊盘和输出端焊盘电连接。
18.根据权利要求 16所述的 RFID 电子标签, 其特征在于: 所述平面螺旋电感包括相互平行的 至少两层, 其中一层平面螺旋电感的输入端焊盘接入芯片的左侧焊盘, 另一层平面螺旋电感 的输出端焊盘接入芯片的右侧焊盘。
19.根据权利要求 15所述的 RFID 电子标签, 其特征在于: 所述芯片焊接于 PCB顶层, 平面螺 旋电感分布于 PCB的底层。
0.根据权利要求 15所述的 RFID 电子标签, 其特征在于: 所述天线臂包括螺旋主体和接合端, 在接合端设有直角挂钩, 通过所述直角挂钩*** PCB板的金属过孔中, 并通过焊接与 PCB 板固定在一起。
PCT/CN2013/081994 2013-08-21 2013-08-21 一种rfid电子标签 WO2015024222A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/081994 WO2015024222A1 (zh) 2013-08-21 2013-08-21 一种rfid电子标签

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/081994 WO2015024222A1 (zh) 2013-08-21 2013-08-21 一种rfid电子标签

Publications (1)

Publication Number Publication Date
WO2015024222A1 true WO2015024222A1 (zh) 2015-02-26

Family

ID=52482960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/081994 WO2015024222A1 (zh) 2013-08-21 2013-08-21 一种rfid电子标签

Country Status (1)

Country Link
WO (1) WO2015024222A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105576334A (zh) * 2015-12-29 2016-05-11 中国工程物理研究院电子工程研究所 一种提高pcb板或薄膜电路板隔离端匹配效果的方法
WO2020124972A1 (zh) * 2018-12-21 2020-06-25 上海一芯智能科技有限公司 Rfid电子标签

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101702945A (zh) * 2007-03-13 2010-05-05 韩亚Idt株式会社 轮胎内置式rfid标签
CN102629337A (zh) * 2012-04-12 2012-08-08 上海祯显电子科技有限公司 一种微型智能标签
CN103119786A (zh) * 2011-02-28 2013-05-22 株式会社村田制作所 无线通信器件
CN103336989A (zh) * 2013-07-25 2013-10-02 章伟 一种rfid电子标签
CN203433537U (zh) * 2013-07-25 2014-02-12 章伟 一种rfid电子标签

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101702945A (zh) * 2007-03-13 2010-05-05 韩亚Idt株式会社 轮胎内置式rfid标签
CN103119786A (zh) * 2011-02-28 2013-05-22 株式会社村田制作所 无线通信器件
CN102629337A (zh) * 2012-04-12 2012-08-08 上海祯显电子科技有限公司 一种微型智能标签
CN103336989A (zh) * 2013-07-25 2013-10-02 章伟 一种rfid电子标签
CN203433537U (zh) * 2013-07-25 2014-02-12 章伟 一种rfid电子标签

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105576334A (zh) * 2015-12-29 2016-05-11 中国工程物理研究院电子工程研究所 一种提高pcb板或薄膜电路板隔离端匹配效果的方法
WO2020124972A1 (zh) * 2018-12-21 2020-06-25 上海一芯智能科技有限公司 Rfid电子标签

Similar Documents

Publication Publication Date Title
TWI316684B (en) Systems and methods for enhancing communication in a wireless communication system
US8400307B2 (en) Radio frequency IC device and electronic apparatus
JP4271591B2 (ja) アンテナ装置
US8081121B2 (en) Article having electromagnetic coupling module attached thereto
US20150324683A1 (en) Smart Card Module
US20140176384A1 (en) Antenna device and communication terminal device
US9825361B2 (en) Antenna with multifrequency capability for miniaturized applications
JP5310855B2 (ja) アンテナマッチング装置、アンテナ装置及び移動体通信端末
KR100954879B1 (ko) 안테나 내장형 인쇄회로기판
CN201039143Y (zh) 一种移动终端射频电路与天线的连接结构
US11133126B2 (en) Coil component
US7778040B2 (en) Printed circuit board assembly
US9668353B2 (en) Electronic component with built-in capacitor
US20160104564A1 (en) Chip electronic component and board having the same
WO2015024222A1 (zh) 一种rfid电子标签
US20120068302A1 (en) Electronic device and method for direct mounting of passive components
KR20180006262A (ko) 코일 부품
CN100511640C (zh) 具有多重导线结构的螺旋电感元件
US7994885B2 (en) High-frequency switch in multi-layer substrate
CN203433537U (zh) 一种rfid电子标签
CN103336989A (zh) 一种rfid电子标签
US20210315098A1 (en) Inductor bridge and electronic device
US11322285B2 (en) Inductor
JP6394822B2 (ja) 部品内蔵デバイス、rfidタグ、および部品内蔵デバイスの製造方法
US8941552B2 (en) Composite printed wiring board and wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13891886

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13891886

Country of ref document: EP

Kind code of ref document: A1