WO2015023111A1 - Holographic data storage system - Google Patents

Holographic data storage system Download PDF

Info

Publication number
WO2015023111A1
WO2015023111A1 PCT/KR2014/007493 KR2014007493W WO2015023111A1 WO 2015023111 A1 WO2015023111 A1 WO 2015023111A1 KR 2014007493 W KR2014007493 W KR 2014007493W WO 2015023111 A1 WO2015023111 A1 WO 2015023111A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
lens
polarized light
lens module
beam splitter
Prior art date
Application number
PCT/KR2014/007493
Other languages
French (fr)
Korean (ko)
Inventor
김낙영
안병교
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US14/908,472 priority Critical patent/US9620164B2/en
Priority claimed from KR1020140104229A external-priority patent/KR101594374B1/en
Publication of WO2015023111A1 publication Critical patent/WO2015023111A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1395Beam splitters or combiners
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B7/1378Separate aberration correction lenses; Cylindrical lenses to generate astigmatism; Beam expanders
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0065Recording, reproducing or erasing by using optical interference patterns, e.g. holograms

Definitions

  • the present invention relates to a holographic data storage system, and more particularly, to a holographic data recording and reproducing system capable of recording data of a holographic data storage medium.
  • Optical storage technology is widely used in general life. Typical examples are CD (Compact Disc), DVD (Digital Versatile Disc) and Blu-ray.
  • CD Compact Disc
  • DVD Digital Versatile Disc
  • Blu-ray The amount of data to be recorded in the optical storage device is increasingly focused on high integration, miniaturization, and light weight so that a high quality image becomes more widespread and a large amount of data can be recorded.
  • a holographic data storage system using a hologram has been studied in relation to an optical storage method according to a new hysteresis and miniaturization.
  • the parallel data processing method using an LCD, a CCD (or CMOS) or the like can be used as an input / output method to fundamentally increase the data transfer rate, / cm < 2 >.
  • a key principle in high-density recording in holographic data storage systems is that data can be superimposed on the same place in a holographic storage medium without spatial isolation.
  • This technique is called a multiplexing technique.
  • an angle multiplexing technique in which two types of light are irradiated at different angles and superimposed is most widely used.
  • a light source for supplying light oscillating in one direction;
  • a reference lens for irradiating the holographic storage medium with the light supplied from the light source unit;
  • a synthesis module including a spatial light modulator (SLM) for synthesizing digital information into light supplied from the light source and modulating the digital information into a signal beam;
  • a signal lens for irradiating the modulated signal beam with a predetermined angle with the reference lens to record the digital information on the holographic storage medium;
  • a first lens module for transmitting light incident from the light source unit to the spatial light modulator;
  • a second lens module for transmitting the signal beam to the signal lens, wherein at least one of the first lens module or the second lens module includes a first lens module that transmits P- 1 Polarizing Beam Splitter (PBS);
  • a relay lens for collecting light passing through the first polarizing beam splitter;
  • a mirror that passes through the relay lens and reflects the collected light and then makes incident on the relay lens again;
  • a quarter wave plate located
  • the mirror may be located at a focal length of the relay lens.
  • the combining module further comprises a second polarizing beam splitter (PBS) disposed on the front surface of the spatial light modulator, the P polarized light passing through and the S polarized light being reflected,
  • PBS polarizing beam splitter
  • the first lens module and the second lens module may be disposed at right angles to the polarizing beam splitter.
  • the first lens module and the second lens module may be disposed at right angles to the polarizing beam splitter.
  • the spatial light modulator when the P-polarized light is supplied from the first lens module, the spatial light modulator is disposed to face the first lens module with the second polarizing beam splitter as a center, and the S-polarized light
  • the spatial light modulator may be disposed at a right angle to the first lens module centering on the second polarization beam splitter.
  • CMOS complementary metal-oxide semiconductor
  • a half wave plate disposed between the second polarizing beam splitter and the second lens module for converting the phase of incident light by? / 2.
  • the half wave plate may be selectively positioned between the second polarizing beam splitter and the second lens module when the signal beam is emitted from the signal lens or when a restoring beam is input to the signal lens.
  • the size of the holographic data storage system can be reduced, and the number of lenses can be reduced to lower the manufacturing cost.
  • FIG. 1 is a perspective view illustrating a conventional holographic data storage system.
  • FIG. 2 is a conceptual diagram illustrating a conventional holographic data storage system.
  • FIG 3 is a view illustrating a path of light when P polarized light is incident on a first lens module of a holographic data storage system according to an embodiment of the present invention.
  • FIG. 4 is a diagram illustrating a holographic data storage system in accordance with an embodiment of the present invention.
  • FIG. 5 is a view illustrating a path of light when S polarized light enters a first lens module of a holographic data storage system according to another embodiment of the present invention.
  • FIG. 6 is a diagram illustrating a holographic data storage system according to another embodiment of the present invention.
  • Figure 7 is a perspective view of the holographic data storage system of Figure 6;
  • FIG. 8 illustrates a process of extracting and reproducing digital information recorded on a holographic storage medium using the holographic data storage system of FIG.
  • FIG. 9 is a flowchart illustrating a process of extracting and reproducing digital information recorded on a holographic storage medium using the holographic data storage system of FIG.
  • FIG. 10 is a view illustrating a second lens module of a holographic data storage system according to another embodiment of the present invention.
  • FIG. 11 is a diagram illustrating a holographic data storage system according to another embodiment of the present invention.
  • FIGS. 12 and 13 illustrate a recording and reproducing process in a holographic storage medium in a holographic data storage system according to another embodiment of the present invention.
  • FIG. 14 and FIG. 15 are diagrams illustrating a recording and reproducing process in a holographic storage medium when the spatial light modulator and the image sensor are changed in position in FIG.
  • Holographic data storage technology is a technology that can record digital information on a holographic storage medium on a page basis. It can store more than 250 times as much data as a DVD, and can store and reproduce data on a page basis. Can also be improved.
  • a holographic data storage technique irradiates a signal beam including digital information and a reference beam as a reference to a holographic storage medium so that an interference pattern formed by the two kinds of light is reflected by the holographic data storage medium, And recorded on a storage medium.
  • the two kinds of light are formed at a predetermined angle and are irradiated to the holographic storage medium.
  • the holographic storage medium may store a plurality of data according to an angle at which two kinds of light are irradiated to the same position of the holographic storage medium. That is, if the angle at which the reference beam and the signal beam are irradiated to the holographic storage medium is changed n times, n digital information is stored in the holographic storage medium, so that a large amount of data can be intensively stored in a small space.
  • CMOS complementary metal-oxide semiconductor
  • the holographic data storage system of the present invention is characterized by reducing the size of the holographic data storage system by improving the system capable of recording and reproducing digital information in a holographic storage medium.
  • FIG. 1 is a perspective view showing a conventional holographic data storage system 1
  • FIG. 2 is a conceptual diagram showing a conventional holographic data storage system 1. As shown in FIG.
  • the holographic data storage system 1 includes a light source 10 for supplying light, reference modules 70 and 80 for irradiating light supplied from the light source 10 to the holographic storage medium 90, And a signal module 20, 30, 40, 50, 60 for synthesizing digital information into the light supplied from the holographic storage medium 90.
  • a reference beam R Light irradiating the holographic data storage medium 90 from the reference modules 70 and 80 is referred to as a reference beam R and light including digital information irradiated from the signal modules 20, 30, 40, 50, Is referred to as a signal beam (S).
  • the light supplied from the light source 10 can be used as the reference beam R without conversion, so that the configuration of the reference modules 70 and 80 is simple.
  • the signal beam S must synthesize digital information to the light supplied from the light source 10
  • the signal modules 20, 30, 40, 50 and 60 are connected to the extension module 20, 30, a synthesis module 40, a second lens module 50, and a signal lens 60.
  • the expansion module 20 includes a beam expander 21 and a phase mask 23.
  • the light supplied from the light source unit 10 is a point light source irradiated at a small point and is extended to the surface light source through the beam expander 21.
  • the light converted into the planar light source is processed and outputted so as to be suitable for synthesizing the digital information into the light through the phase mask 23.
  • the synthesis module 40 includes a spatial light modulator (SLM) 43 for synthesizing digital information with the light supplied from the light source 10.
  • the spatial light modulator 43 converts the incident light into a signal beam S composed of an image composed of bright points and dark points according to an electric signal including digital information.
  • the signal beam S output from the spatial light modulator 43 is radiated onto the holographic storage medium 90 and interference fringes generated when the reference beam R is irradiated at an angle different from that of the combining module 40, And recorded in the graphic storage medium 90.
  • the central part of the light path is light-rich and the light of the outer part is weakly supplied.
  • a plurality of lenses can be arranged to supply a uniform intensity light to the spatial light modulator 43 in order to supply a planar light source having uniform light intensity over the entire area.
  • the signal beam S including the digital information can be processed to uniformly supply the synthesized digital information to the holographic storage medium 90 in a clear manner.
  • the lens modules 30 and 50 constituted by the plurality of superposed lenses include a first lens module 30 which is incident on the combining module 40 and a second lens module 50 which is provided on the output side can do.
  • the first lens module 30 provided on the side to be incident on the combining module 40 processes the light supplied to the combining module 40 for combining images
  • 2 lens module 50 processes the signal beam S synthesized and emitted by the synthesis module 40.
  • the lens modules 30 and 50 are constructed by superposing a plurality of lenses 31a, 31b, 31c, 32a, 32b, 32c, 51a, 51b, 51c, 52a, 52b and 52c, And a rear relay lens 32 for diffusing the collected light again.
  • the front relay lens 31 and the rear relay lens 32 may be configured symmetrically when the area of the incident light is equal to the area of the output light.
  • the front relay lens 31 and the rear relay lens 32 are composed of a plurality of lenses and a plurality of lenses are spaced apart from each other in consideration of the focal length, problems such as a long length of the lens modules 30 and 50 .
  • the present invention can reduce the size of the holographic data storage system by reducing the number of lenses included in the first lens module or the second lens module.
  • FIG. 3 illustrates a first lens module 130 of a holographic data storage system according to an embodiment of the present invention.
  • the first module of the present invention includes a first polarizing beam splitter 135 (PBS) A quarter wave plate 133, a relay lens 131, and a first mirror 137.
  • the quarter wave plate 133 is a quarter wave plate.
  • the first lens module 130 is described, but the second lens module 150 is also applicable.
  • the first polarizing beam splitter 135 is an anisotropic member that transmits P-polarized light and reflects S-polarized light to selectively pass and reflect the light.
  • the light oscillates in a direction perpendicular to the traveling direction, and the oscillating surfaces form oscillating surfaces having various angles with each other, and the light proceeds. Light oscillating in these various directions can be divided into S polarized light oscillating in the vertical direction and P polarized light oscillating in the horizontal direction.
  • the first lens module 130 includes the front relay lens 31 and the rear relay lens 32.
  • the first lens module 130 of the present embodiment includes only one relay lens 131 . The same effect as that of the conventional relay lens 131 can be obtained by passing the light through the one relay lens 131 twice.
  • a first mirror 137 is used to allow light to pass through one relay lens 131 twice. The light passing through the relay lens 131 is collected and reaches the first mirror 137. The first mirror 137 reflects the light back to the relay lens 131 and the reflected light passes through the relay lens 131, .
  • the light reflected by the first mirror 137 passes through the relay lens 131 and is then supplied to the first polarizing beam splitter 135 again. At this time, if the light reflected by the first mirror 137 and then incident on the first polarized beam splitter 135 is P polarized light like the light incident from the light source unit 110, the light reflected from the first mirror 137 There is a problem that it passes through the one polarization beam splitter 135 and returns to the direction in which it is incident again.
  • a quarter wave plate 133 may be interposed between the first and second waveguides 131 and 131.
  • the quarter wave plate 133 is a birefringent plate that causes linearly polarized light to have a phase difference of? / 4.
  • the quarter wave plate 133 passes through the quarter wave plate 133, the linearly polarized light is converted into circularly polarized light.
  • a phase difference is generated by? / 2 so that the P-polarized light is converted into S-polarized light and the S-polarized light is converted into P-polarized light.
  • a phase difference of? / 4 is generated while passing through the 1/4 wave plate 133, and the light reflected by the first mirror 137 and passed through the relay lens 131 again passes through the 1 / 4 wave plate 133, a phase difference of? / 2 is generated compared to the light initially incident on the first lens unit 130.
  • the P-polarized light incident from the light source unit 110 is converted into S-polarized light while passing through the 1/4 wave plate 133 twice, is incident on the first polarizing beam splitter 135, is bent by 90 °, .
  • FIG. 4 illustrates a holographic data storage system 100 to which the first lens module 130 of FIG. 3 is applied.
  • the holographic data storage system 100 of FIG. The size can be reduced.
  • FIG. 5 illustrates a state where light passes through the first lens module 130 when the light supplied from the light source unit 110 is S-polarized light.
  • the first polarization beam splitter 135 A 1/4 wavelength plate 133, a relay lens 131 and a first mirror 137 are arranged in a direction perpendicular to the direction in which the light is incident.
  • the first polarized beam splitter 135 reflects the S polarized light in a direction perpendicular to the first polarized beam splitter 135, passes through the 1/4 wave plate 133 and the relay lens 131, Passes through the first polarization beam splitter 131 and the 1/4 wave plate 133, and is incident on the first polarization beam splitter 135.
  • FIG. 6 is a diagram illustrating a holographic data storage system 100 to which the first lens module 130 of FIG. 5 is applied. Unlike FIG. 4, the first lens module 130 is different in direction.
  • the direction of the first lens may be changed according to the polarization of the light supplied from the light source 110.
  • a half-wave plate for converting the S-polarized light into the P-polarized light or the P-polarized light to the S-polarized light is interposed between the first lens module 130 and the expansion module 120 without switching the direction of the first lens module 130 Light can be transmitted to the combining module 150.
  • FIG. 7 is a perspective view of the holographic data storage system 100 of FIG. 6, wherein the width is reduced (a> b) as compared to the conventional holographic data storage system 1 shown in FIG. 1, Can be reduced.
  • the light output from the first lens module 130 to the combining module 140 is combined with the digital information and output to the signal beam S.
  • the combining module 140 includes the above-described spatial light modulator 143, and the signal beam in which the digital information is synthesized in the spatial light modulator 143 is output again in the incident direction.
  • the combining module 140 may include a second polarization beam splitter 141 to distinguish the direction of incidence and the direction of the output to the combining module 140.
  • the signal beam synthesized by the spatial light modulator 143 is converted into a polarization direction and output. That is, when the P polarized light is incident, S polarized light is outputted from the signal beam outputted, and when the S polarized light is incident, the P polarized light is outputted from the signal beam outputted.
  • the second polarized beam splitter 141 rotates the light in the 90 ° direction and supplies the light to the spatial light modulator 143.
  • the direction of the light incident from the first lens module 130 and the spatial light modulator 143 are arranged in a direction perpendicular to the direction.
  • the second polarized beam splitter 141 Since the signal beam synthesized by the spatial light modulator 143 is modulated into P-polarized light, the second polarized beam splitter 141 passes the signal beam as it is and outputs it to the second lens module 150.
  • the spatial light modulator 143, the second polarization beam splitter 141, and the second lens module 150 are arranged side by side.
  • the second polarized beam splitter 141 passes the signal beam of P polarized light to the spatial light modulator 143 Supply.
  • the direction of the light incident from the first lens module 130 and the spatial light modulator 143 are arranged in a straight line.
  • the second polarized beam splitter 141 reflects the S-polarized signal beam and outputs it to the second lens module 150.
  • the spatial light modulator 143, the second polarization beam splitter 141, and the second lens module 150 are arranged side by side.
  • the second lens module 150 may further include a diaphragm 153.
  • the signal beam synthesized with the digital information in the synthesis module 140 may generate noise, and may further include an aperture stop 153 to remove the noise. Since the noise is not collected at the focal point exactly after passing through the front relay lens 151, it is possible to remove the noise by blocking light that does not converge to the focal point exactly.
  • the size of the aperture of the diaphragm 153 may vary depending on the size of the entire system, and may be in the range of 100 ⁇ m or more and 100 mm or less in diameter.
  • the signal beam passing through the second lens module 150 is irradiated to the holographic storage medium 190 through the signal lens 160.
  • the angle of the signal beam irradiated to the holographic storage medium 190 may be adjusted by adjusting the angle of the mirror 165 that reflects the light output from the second lens module 150.
  • the angle of the reference beam can be adjusted by adjusting the angle of the mirror 185 that reflects the light incident from the light source unit 110.
  • FIG. 8 is a view illustrating a process of extracting and reproducing digital information recorded in the holographic data storage medium 190 using the holographic data storage system 100 of FIG. 4.
  • FIG. The digital information recorded on the holographic storage medium 190 is extracted and reproduced using the system 100.
  • FIG. 8 is a view illustrating a process of extracting and reproducing digital information recorded in the holographic data storage medium 190 using the holographic data storage system 100 of FIG. 4.
  • FIG. The digital information recorded on the holographic storage medium 190 is extracted and reproduced using the system 100.
  • the reference beam When the reference beam is irradiated onto the holographic storage medium 190 in the reference lens 180, the digital information recorded on the holographic storage medium 190 is extracted and the reconstructed beam is incident through the signal lens 180.
  • the restoration beam passes through the second lens module 150 and is supplied to the synthesis module 140.
  • the restoration beam is incident on an image sensor 145 (CMOS: complementary metal-oxide semiconductor) provided in the synthesis module 140, And output an image.
  • CMOS complementary metal-oxide semiconductor
  • the signal beam output from the spatial light modulator 143 passes through the second polarization beam splitter 141,
  • the reconstructed beam is reflected by the second polarized beam splitter 141 and the traveling direction of the light is changed.
  • the signal beam is reflected by the second polarized beam splitter 141, 2 polarized beam splitter 141.
  • the reconstructed beam incident on the second polarized beam splitter 141 can control the polarization of the light irradiated to the holographic storage medium 190 such that the phase difference from the signal beam is? / 2.
  • the image sensor since the image sensor is located in the direction perpendicular to the direction of the restored beam incident on the second lens module 150, the restored beam is S- 6, the image sensor forms a straight line with the direction of the restored beam incident on the second lens module 150, so that the restored beam is P-polarized light.
  • the polarization of the reconstruction beam is determined according to the polarization of the reference beam.
  • the S-polarized reference beam is irradiated to the holographic storage medium 190, and in the embodiment of FIG. 6, It is possible to irradiate the graphic storage medium 190 to determine the polarization of the restored beam.
  • the second lens module may also use one relay lens like the first lens module.
  • the second lens module 250 of the present embodiment includes a third polarization beam splitter 255, a 1/4 wave plate 133, a relay lens 231 and a second mirror 257, The size of the second lens module 250 is reduced by passing light through the first lens module 251 and the second lens module 250 twice.
  • the second lens module 250 since the second lens module 250 needs to remove the noise generated by synthesizing the digital information, the second lens module 250 needs to have a configuration that serves as the diaphragm 153 in the above-described embodiment. In this embodiment, the second lens module 250 reduces the size of the second mirror 257 instead of the diaphragm 153, removes noise that does not converge accurately to focus after passing through the relay lens 251, .
  • the size of the second mirror 257 can be formed corresponding to the size of the diaphragm 253 described above and can be formed in a range of 100 ⁇ m or more and 100 mm or less in diameter.
  • FIG. 11 illustrates a holographic data storage system 200 according to another embodiment of the present invention, in which the holographic data storage system 200 of the present embodiment includes one relay lens 251 , A second mirror 257 and a third polarizing beam splitter 255.
  • the second lens module 250 includes a first polarizing beam splitter 255, The size of the second lens module becomes smaller and the size of the entire system is reduced.
  • the first lens module 230 does not cause a problem because the reconstruction beam incident from the signal lens 260 does not pass through it. However, since the second lens module 250 passes through the reconstruction beam incident from the signal lens 260, The system should be constructed considering the beam path of the beam.
  • the signal beam and the reconstructed beam have a phase difference of? / 2 / RTI > In other words, if the signal beam is P polarized light, the reconstructed beam is S polarized light, and if the signal beam is S polarized light, the reconstructed beam is P polarized light, so that one of the signal beam and the reproduction beam needs to pass through and the other to reflect.
  • the restored beam input to the image sensor 245 passes through the polarizing beam splitters 241 and 255 twice and the third polarizing beam splitter 255 of the second lens module 250
  • the reconstruction beam and the signal beam are moved in the same path, but in the second polarization beam splitter 241, the reconstruction beam and the signal beam must move in different paths.
  • FIGS. 12 and 13 illustrate a first lens module 230, a combining part, a second lens module 250, a half wave plate 248, and a signal lens 260 of the present invention.
  • the spatial light modulator 243 and the second lens module 250 are disposed at right angles with respect to the second polarization beam splitter 241,
  • the signal beam output from the second polarization beam splitter 243 is reflected by the second polarization beam splitter 241 and is incident on the second lens module 250.
  • the light incident on the second lens module 250 is transmitted through the third polarization beam splitter 255 to the relay lens 251 so that the signal beam output from the spatial light modulator 243 is converted into P- Should be.
  • the phase shifter 244 is disposed between the second lens module 250 and the combining module 240 to convert the phase to the P polarized light.
  • the light converted into the P polarized light passes through the 1/4 wave plate 253 and the relay lens 251 to reach the second mirror 257 and the light reflected by the second mirror 257 passes through the relay lens 251 And reaches the third polarizing beam splitter 255 after passing through the 1/4 wave plate 253.
  • the signal beam converted into the P polarized light by the half wave plate 248 is converted again into S polarized light while passing through the 1/4 wave plate 253 twice and is reflected by the third polarized beam splitter 255, (260).
  • the restored beam incident through the signal lens 260 is deflected by the third polarized beam splitter 255 of the second lens module 250 using the same S-polarized light as the signal beam output through the signal lens 260
  • Light can be introduced into the relay lens 251.
  • the light having passed through the second lens module 250 passes through the 1/4 wave plate 253 twice and is converted into P polarized light.
  • the half wave plate 248, the light is converted into S polarized light
  • the restored beam can not be transmitted to the image sensor 245 disposed in parallel with the second lens module 250 and the half wave plate 248 is removed when the image stored in the holographic storage medium 290 is output.
  • the half wave plate 248 is inserted when the holographic data is stored and the half wave plate 248 is omitted at the time of holographic data reproduction so that one relay lens 251 and the third polarized beam splitter 255 and 1/4 It is possible to provide the holographic storage system 200 to which the second lens module 250 including the wave plate 253 is applied.
  • the first lens module 230 and the second lens module 250 may be configured to receive the S-polarized light from the light source 210.
  • the half wave plate 248 can be further interposed between the two plates.
  • the P polarized light emitted from the first lens module 230 by the half wave plate 248 is converted into S polarized light and is incident on the spatial light modulator 243 and the signal beam synthesized with the digital information in the spatial light modulator 243 is converted into P And is converted into polarized light.
  • the P-polarized signal beam passes through the second polarization beam splitter 241 and the third polarization beam splitter 255 and reaches the 1/4 wave plate 253 of the second lens module 250.
  • the signal beam converted into the S polarized light after passing through the 1/4 wave plate 253 and the relay lens 251 twice is reflected by the third polarizing beam splitter 255 and passes through the signal lens 260 to the holographic storage medium (290).
  • a restored beam including digital information stored in the holographic storage medium 290 is incident through the signal lens 270 as shown in FIG. 15, it is supplied to the synthesis module 240 through the second lens module 250 A restored beam of S-polarized light is incident.
  • the reconstruction beam is reflected by the third polarization beam splitter 255, passes through the 1/4 wave plate 253 and the relay lens 251 twice, and is converted into P-polarized light.
  • the second polarization beam splitter 241 receives the restored beam, the reconstructed beam is incident on the spatial light modulator 243 instead of the image sensor 245.
  • the reconstructed beam is converted into S polarized light by changing the phase by? / 2, 248 are interposed between the second polarizing beam splitter 241 and the second lens module 250.
  • the half wave plate 248 is interposed between the second lens module 250 and the synthesizing unit only at the time of reproduction, and the half wave plate 248 can be omitted at the time of recording.
  • the half wave plate 248 may be physically interposed or removed, and a half wave plate 248 may be implemented using a material having an anisotropic property depending on whether current is applied or not.
  • the size of the holographic data storage system 200 can be reduced, and the number of lenses can be reduced to lower manufacturing costs.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Recording Or Reproduction (AREA)

Abstract

Provided is a holographic data storage system characterized by including: a first polarizing beam splitter (PBS), wherein at least either of a first lens module and a second lens module transmits P-polarized light and reflects S-polarized light; a relay lens collecting light passing through the first PBS; a mirror reflecting the light collected through the relay lens back to the relay lens; and a quarter wave plate located between a second PBS beam splitter and the relay lens, converting transmitted linearly polarized light into circularly polarized light, and converting the circularly polarized light into linearly polarized light. By reducing the volume of the relay lens, it is possible to decrease the size of the holographic data storage system, and by decreasing the number of lenses, it is possible to lower manufacturing costs.

Description

홀로그래픽 데이터 스토리지 시스템Holographic data storage system
본 발명은 홀로그래픽 데이터 스토리지 시스템템에 관한 것으로서, 특히 홀로그래픽 데이터 홀로그래픽 저장매체의 데이터를 기록할 수 있는 홀로그래픽 데이터 기록 및 재생이 가능한 시스템에 관한 것이다. The present invention relates to a holographic data storage system, and more particularly, to a holographic data recording and reproducing system capable of recording data of a holographic data storage medium.
광저장 기술은 일반 생활에 널리 이용되고 있으며, 대표적인 예로 CD(Compact Disc)와 DVD(Digital Versatile Disc) 및 블루레이(Blu-ray) 등이 있다. 광저장 장치에 기록하는 데이터의 양은 고화질의 영상이 보급되면서 더 많아지고 많은 양의 데이터를 기록할 수 있도록 고 집적화, 소형화, 경량화를 중심으로 진행되고 있다. Optical storage technology is widely used in general life. Typical examples are CD (Compact Disc), DVD (Digital Versatile Disc) and Blu-ray. The amount of data to be recorded in the optical storage device is increasingly focused on high integration, miniaturization, and light weight so that a high quality image becomes more widespread and a large amount of data can be recorded.
더 나아가 광저장 장치를 모바일기기에 부착하여 활용도를 높일 수 있도록 소형화 및 외부 충격에 강한 홀로그래픽 저장매체에 대한 요구가 있는바, 종래의 디스크 형태의 광저장장치에서 구조적인 변화가 필요하다.Further, there is a need for a miniaturization and a holographic storage medium resistant to an external impact so that the optical storage device can be attached to a mobile device to increase utilization, and structural changes are required in a conventional disk-type optical storage device.
새로운 고잡적화, 소형화에 따른 광저장 방식과 관련하여 홀로그램을 이용한 홀로그래픽 데이터 저장 시스템이 연구되고 있다.A holographic data storage system using a hologram has been studied in relation to an optical storage method according to a new hysteresis and miniaturization.
홀로그레픽 데이터 스토리지 시스템은 페이지당 기록 및 재생 원리를 기반으로 하고 있어 입출력 방식으로 LCD, CCD(또는 CMOS)등을 이용한 병렬 데이터 처리 방식을 사용, 근본적으로 데이터 전송률을 고속화 시킬 수 있고, 이론적으로 1Tbit/cm2의 저장 밀도까지구현이 가능한 장점을 가지고 있다. Since the holographic data storage system is based on the per-page recording and reproduction principle, the parallel data processing method using an LCD, a CCD (or CMOS) or the like can be used as an input / output method to fundamentally increase the data transfer rate, / cm < 2 >.
홀로그래픽 데이터 스토리지 시스템에 있어서 고밀도 기록을 가능하게 하는 핵심 원리는 데이터를 공간적인 격리 없이 홀로그래픽 저장매체의 동일 장소에 중첩기록 할 수 있다는 데에서 기인한다. 이러한 기법을 다중화 기법이라고 하며, 특히 2가지 종류의 빛을 상이한 각도에서 조사함으로서 중첩기록하는 각도 다중화 기법이 가장 널리 이용된다. A key principle in high-density recording in holographic data storage systems is that data can be superimposed on the same place in a holographic storage medium without spatial isolation. This technique is called a multiplexing technique. In particular, an angle multiplexing technique in which two types of light are irradiated at different angles and superimposed is most widely used.
다만, 홀로그래픽 데이터 스토리지 시스템은 그 부피가 커서 상용화에 어려움이 있어, 부피를 최소화 하기 위한 연구가 진행되고 있다.However, since the holographic data storage system has a large volume, it is difficult to commercialize the holographic data storage system, and studies are being conducted to minimize the volume.
본 발명은 크기를 줄인 홀로그래픽 스토리지 시스템을 제공하는 것을 목적으로 한다. It is an object of the present invention to provide a holographic storage system with reduced size.
일 방향으로 진동하는 빛을 공급하는 광원부; 상기 광원부에서 공급된 빛을 홀로그래픽 저장매체에 조사하는 레퍼런스 렌즈; 상기 광원부에서 공급된 빛에 디지털 정보를 합성하여 시그널 빔으로 변조하는 공간광변조기(SLM:Spatial light modulator)를 포함하는 합성모듈; 상기 변조된 시그널 빔을 상기 레퍼런스 렌즈와 소정의 각도를 이루며 상기 홀로그래픽 저장매체에 조사하여 상기 홀로그래픽 저장매체에 상기 디지털 정보를 기록하는 시그널 렌즈(object lens); 상기 광원부에서 입사된 빛을 상기 공간광변조기로 빛을 전달하는 제1 렌즈모듈; 및 상기 시그널 빔을 상기 시그널 렌즈로 전달하는 제2 렌즈모듈을 포함하고, 상기 제1 렌즈모듈 또는 상기 제2 렌즈모듈 중 적어도 하나는, P편광의 빛은 통과하고 S편광의 빛은 반사하는 제1 편광 빔 스플리터(PBS: Polarizing Beam Splitter); 상기 제1 편광 빔 스플리터를 통과한 빛을 모으는 릴레이렌즈; 상기 릴레이렌즈를 통과하며 상기 모아진 빛을 반사시켜 다시 릴레이렌즈로 입사시키는 미러; 및 상기 제2 편광 빔 스플리터와 상기 릴레이렌즈 사이에 위치하며, 통과하는 선편광을 원편광으로 변환하고 원편광을 선편광으로 변환하는 1/4 파장판(Quarter wave plate)를 포함하는 것을 특징으로 하는 홀로그래픽 데이터 스토리지 시스템을 제공한다. A light source for supplying light oscillating in one direction; A reference lens for irradiating the holographic storage medium with the light supplied from the light source unit; A synthesis module including a spatial light modulator (SLM) for synthesizing digital information into light supplied from the light source and modulating the digital information into a signal beam; A signal lens for irradiating the modulated signal beam with a predetermined angle with the reference lens to record the digital information on the holographic storage medium; A first lens module for transmitting light incident from the light source unit to the spatial light modulator; And a second lens module for transmitting the signal beam to the signal lens, wherein at least one of the first lens module or the second lens module includes a first lens module that transmits P- 1 Polarizing Beam Splitter (PBS); A relay lens for collecting light passing through the first polarizing beam splitter; A mirror that passes through the relay lens and reflects the collected light and then makes incident on the relay lens again; And a quarter wave plate located between the second polarization beam splitter and the relay lens for converting linearly polarized light passing therethrough into circularly polarized light and converting circularly polarized light into linearly polarized light. Provides a graphical data storage system.
상기 미러는 상기 릴레이렌즈의 초점거리에 위치할 수 있다. The mirror may be located at a focal length of the relay lens.
제1항에 있어서, 상기 미러의 지름은 100㎛ 이상 100㎜이하일 수 있다. The mirror according to claim 1, wherein the diameter of the mirror is 100 μm or more and 100 mm or less.
상기 합성모듈은 상기 공간광변조기 전면에 위치하며, P편광의 빛은 통과하고 S편광의 빛은 반사하는 제2 편광 빔 스플리터(PBS: Polarizing Beam Splitter)를 더 포함하고, 상기 공간광변조기는 입사된 P편광을 S편광으로 변환하여 사출하거나, S편광을 P편광으로 변환하여 사출하며, 상기 제1 렌즈모듈과 상기 제2 렌즈모듈은 상기 편광 빔 스플리터에서 직각으로 배치될 수 있다. Wherein the combining module further comprises a second polarizing beam splitter (PBS) disposed on the front surface of the spatial light modulator, the P polarized light passing through and the S polarized light being reflected, The first lens module and the second lens module may be disposed at right angles to the polarizing beam splitter. The first lens module and the second lens module may be disposed at right angles to the polarizing beam splitter.
상기 제1 렌즈모듈에서 P편광의 빛이 공급되는 경우, 상기 공간광변조기는 상기 제2 편광 빔 스플리터를 중심으로 상기 제1 렌즈모듈과 대향하여 배치되고, 상기 제1 렌즈모듈에서 S편광의 빛이 공급되는 경우, 상기 공간광변조기는 상기 제2 편광 빔 스플리터를 중심으로 상기 제1 렌즈모듈과 직각으로 배치될 수 있다. Wherein when the P-polarized light is supplied from the first lens module, the spatial light modulator is disposed to face the first lens module with the second polarizing beam splitter as a center, and the S-polarized light The spatial light modulator may be disposed at a right angle to the first lens module centering on the second polarization beam splitter.
상기 공간광변조기와 직각으로 배치되며, 입사되는 빛을 전기신호로 전환하여 증폭하는 이미지 센서(CMOS:complementary metal-oxide semiconductor)를 더 포함하고, 상기 레퍼런스 렌즈로부터 상기 홀로그래픽 저장매체에 빛을 조사하여 하여 생성되는 복원 빔(reconstructed beam)은 상기 시그널 렌즈를, 제2 렌즈모듈 및 상기 제2 편광 빔 스플리터를 통해 상기 이미지 센서로 입사될 수 있다. Further comprising an image sensor (CMOS: complementary metal-oxide semiconductor) disposed at right angles to the spatial light modulator and converting the incident light into an electric signal to amplify the light, wherein the holographic storage medium A reconstructed beam generated by the first lens module and the second polarizing beam splitter can be incident on the image sensor through the signal lens, the second lens module, and the second polarizing beam splitter.
상기 제2 편광 빔 스플리터와 상기 제2 렌즈모듈 사이에 위치하며, 입사된 빛의 위상을 λ/2만큼 변환하는 반파장판(half wave plate)를 더 포함할 수 있다. And a half wave plate disposed between the second polarizing beam splitter and the second lens module for converting the phase of incident light by? / 2.
상기 반파장판은 상기 시그널 렌즈로부터 시그널 빔을 사출할 때 또는 상기 시그널 렌즈에 복원 빔이 입력될 때 선택적으로 상기 제2 편광 빔 스플리터와 상기 제2 렌즈모듈 사이에 위치할 수 있다.The half wave plate may be selectively positioned between the second polarizing beam splitter and the second lens module when the signal beam is emitted from the signal lens or when a restoring beam is input to the signal lens.
본 발명의 적어도 일 실시예에 따르면, 릴레이렌즈의 부피를 줄임으로써, 홀로그래픽 데이터 스토리지 시스템의 크기를 줄일 수 있고 렌즈의 개수를 줄여 제조단가를 낮출 수 있다. According to at least one embodiment of the present invention, by reducing the volume of the relay lens, the size of the holographic data storage system can be reduced, and the number of lenses can be reduced to lower the manufacturing cost.
본 발명의 적용 가능성의 추가적인 범위는 이하의 상세한 설명으로부터 명백해질 것이다. 그러나 본 발명의 사상 및 범위 내에서 다양한 변경 및 수정은 당업자에게 명확하게 이해될 수 있으므로, 상세한 설명 및 본 발명의 바람직한 실시 예와 같은 특정 실시 예는 단지 예시로 주어진 것으로 이해되어야 한다. Further scope of applicability of the present invention will become apparent from the following detailed description. It should be understood, however, that the detailed description and specific examples, such as the preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art.
도 1은 종래의 홀로그래픽 데이터 스토리지 시스템를 도시한 사시도이다.1 is a perspective view illustrating a conventional holographic data storage system.
도 2는 종래의 홀로그래픽 데이터 스토리지 시스템를 설명하기 위한 개념도이다. 2 is a conceptual diagram illustrating a conventional holographic data storage system.
도 3는 본 발명의 일 실시예에 따른 홀로그래픽 데이터 스토리지 시스템의 제1 렌즈모듈에 P편광이 입사 시 빛의 경로를 도시한 도면이다. 3 is a view illustrating a path of light when P polarized light is incident on a first lens module of a holographic data storage system according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 홀로그래픽 데이터 스토리지 시스템을 도시한 도면이다. 4 is a diagram illustrating a holographic data storage system in accordance with an embodiment of the present invention.
도 5는 본 발명의 다른 실시예에 따른 홀로그래픽 데이터 스토리지 시스템의 제1 렌즈모듈에 S편광이 입사 시 빛의 경로를 도시한 도면이다.5 is a view illustrating a path of light when S polarized light enters a first lens module of a holographic data storage system according to another embodiment of the present invention.
도 6은 본 발명의 다른 실시예에 따른 홀로그래픽 데이터 스토리지 시스템을 도시한 도면이다. 6 is a diagram illustrating a holographic data storage system according to another embodiment of the present invention.
도 7은 도 6의 홀로그래픽 데이터 스토리지 시스템의 사시도이다. Figure 7 is a perspective view of the holographic data storage system of Figure 6;
도 8은 도 4의 홀로그래픽 데이터 스토리지 시스템을 이용하여 홀로그래픽 저장매체에 기록된 디지털 정보를 추출하여 재생하는 과정을 도시한 도면이다.FIG. 8 illustrates a process of extracting and reproducing digital information recorded on a holographic storage medium using the holographic data storage system of FIG.
도 9는 도 6의 홀로그래픽 데이터 스토리지 시스템을 이용하여 홀로그래픽 저장매체에 기록된 디지털 정보를 추출하여 재생하는 과정을 도시한 도면이다.FIG. 9 is a flowchart illustrating a process of extracting and reproducing digital information recorded on a holographic storage medium using the holographic data storage system of FIG.
도 10은 본 발명의 또 다른 실시예에 따른 홀로그래픽 데이터 스토리지 시스템의 제2 렌즈모듈을 도시한 도면이다. 10 is a view illustrating a second lens module of a holographic data storage system according to another embodiment of the present invention.
도 11은 본 발명의 또 다른 실시예에 따른 홀로그래픽 데이터 스토리지 시스템을 도시한 도면이다. 11 is a diagram illustrating a holographic data storage system according to another embodiment of the present invention.
도 12 및 도 13은 본 발명의 또 다른 실시예에 따른 홀로그래픽 데이터 스토리지 시스템에서 홀로그래픽 저장매체에 기록 및 재생과정을 도시한 도면이다. FIGS. 12 and 13 illustrate a recording and reproducing process in a holographic storage medium in a holographic data storage system according to another embodiment of the present invention.
도 14 및 도 15는 도 12에서 공간광변조기와 이미지 센서의 위치가 바뀐경우 홀로그래픽 저장매체에 기록 및 재생과정을 도시한 도면이다. FIG. 14 and FIG. 15 are diagrams illustrating a recording and reproducing process in a holographic storage medium when the spatial light modulator and the image sensor are changed in position in FIG.
이하 첨부된 도면을 참조하여 본 발명에 따른 홀로그래픽 데이터 스토리지 시스템에 대해 상세히 설명하도록 한다. The holographic data storage system according to the present invention will now be described in detail with reference to the accompanying drawings.
홀로그래픽 데이터 스토리지 기술은 디지털 정보를 페이지 단위로 홀로그래픽 저장매체에 다중 기록할 수 있는 기술로서 DVD보다 250배 이상의 많은 데이터를 저장할 수 있으며, 페이지단위로 저장 및 재생이 가능한 바, 기록 및 재생 속도도 혁신적으로 향상시킬 수 있다. Holographic data storage technology is a technology that can record digital information on a holographic storage medium on a page basis. It can store more than 250 times as much data as a DVD, and can store and reproduce data on a page basis. Can also be improved.
홀로그래픽 데이터 스토리지 기술은 디지털 정보를 포함하는 시그널 빔(signal beam)과 기준이 되는 레퍼런스 빔(reference beam)을 홀로그래픽 저장매체에 조사하여 상기 2종류의 빛에 의해 형성되는 간섭무늬가 상기 홀로그래픽 저장매체에 기록된다. A holographic data storage technique irradiates a signal beam including digital information and a reference beam as a reference to a holographic storage medium so that an interference pattern formed by the two kinds of light is reflected by the holographic data storage medium, And recorded on a storage medium.
상기 2종류의 빛은 소정의 각도를 이루며 상기 홀로그래픽 저장매체에 조사되며, 홀로그래픽 저장매체의 같은 위치에 2종류의 빛이 조사되는 각도에 따라 복수 개의 데이터를 저장할 수 있다. 즉, 레퍼런스 빔과 시그널 빔이 상기 홀로그래픽 저장매체에 조사되는 각도를 n회 변경한다면, n개의 디지털 정보가 상기 홀로그래픽 저장매체에 저장되는 바, 작은 공간에 많은 데이터를 집약적으로 저장할 수 있다. The two kinds of light are formed at a predetermined angle and are irradiated to the holographic storage medium. The holographic storage medium may store a plurality of data according to an angle at which two kinds of light are irradiated to the same position of the holographic storage medium. That is, if the angle at which the reference beam and the signal beam are irradiated to the holographic storage medium is changed n times, n digital information is stored in the holographic storage medium, so that a large amount of data can be intensively stored in a small space.
디지털 정보가 기록된 홀로그래픽 저장매체에 레퍼런스 빔을 조사하면 상기 디지털 정보를 포함하는 복원 빔(reconstructed beam)을 얻을 수 있어, 상기 복원빔을 이미지 센서(CMOS:complementary metal-oxide semiconductor)에 조사하면 기록된 영상을 재생할 수 있다. When a reference beam is irradiated to a holographic storage medium on which digital information is recorded, a reconstructed beam including the digital information can be obtained. When the reconstructed beam is irradiated onto a complementary metal-oxide semiconductor (CMOS) The recorded image can be reproduced.
본 발명의 홀로그래픽 데이터 스토리지 시스템은 홀로그래픽 저장매체에 디지털 정보를 기록 및 재생할 수 있는 시스템을 개선하여 기존 시스템보다 크기를 줄인 것을 특징으로 한다. The holographic data storage system of the present invention is characterized by reducing the size of the holographic data storage system by improving the system capable of recording and reproducing digital information in a holographic storage medium.
본 발명의 홀로그래픽 데이터 스토리지 시스템(1)을 살펴보기 전에 종래의 홀로그래픽 데이터 스토리지 시스템(1)을 살펴보도록 한다. 도 1은 종래의 홀로그래픽 데이터 스토리지 시스템(1)를 도시한 사시도이고, 도 2는 종래의 홀로그래픽 데이터 스토리지 시스템(1)를 도시한 개념도이다. Before looking at the holographic data storage system 1 of the present invention, let us consider a conventional holographic data storage system 1. FIG. 1 is a perspective view showing a conventional holographic data storage system 1, and FIG. 2 is a conceptual diagram showing a conventional holographic data storage system 1. As shown in FIG.
홀로그래픽 데이터 스토리지 시스템(1)은 빛을 공급하는 광원부(10), 상기 광원부(10)에서 공급된 빛을 홀로그래픽 저장매체(90)에 조사하는 레퍼런스 모듈(70, 80)및 상기 광원부(10)에서 공급된 빛에 디지털 정보를 합성하여 상기 홀로그래픽 저장매체(90)에 조사하는 시그널 모듈(20, 30, 40, 50, 60) 로 구성된다. The holographic data storage system 1 includes a light source 10 for supplying light, reference modules 70 and 80 for irradiating light supplied from the light source 10 to the holographic storage medium 90, And a signal module 20, 30, 40, 50, 60 for synthesizing digital information into the light supplied from the holographic storage medium 90.
레퍼런스 모듈(70, 80)에서 홀로그래픽 저장매체(90)에 조사하는 빛을 레퍼런스 빔(R)이라고 하고, 시그널 모듈(20, 30, 40, 50, 60)에서 조사되는 디지털 정보를 포함하는 빛을 시그널 빔(S)이라고 한다. 광원부(10)에서 공급되는 빛은 변환없이 레퍼런스 빔(R)으로 이용할 수 있어 레퍼런스 모듈(70, 80)은 구성이 단순하다. 그러나, 시그널 빔(S)은 광원부(10)에서 공급되는 빛에 디지털 정보를 합성해야 하기 때문에, 시그널 모듈(20, 30, 40, 50, 60)은 확장모듈(20), 제1 렌즈모듈(30), 합성모듈(40), 제2 렌즈모듈(50) 및 시그널 렌즈(60)를 포함한다. Light irradiating the holographic data storage medium 90 from the reference modules 70 and 80 is referred to as a reference beam R and light including digital information irradiated from the signal modules 20, 30, 40, 50, Is referred to as a signal beam (S). The light supplied from the light source 10 can be used as the reference beam R without conversion, so that the configuration of the reference modules 70 and 80 is simple. However, since the signal beam S must synthesize digital information to the light supplied from the light source 10, the signal modules 20, 30, 40, 50 and 60 are connected to the extension module 20, 30, a synthesis module 40, a second lens module 50, and a signal lens 60.
확장모듈(20)은 빔확장기(beam expander)(21)와 위상마스크(Phase mask)(23)를 포함한다. 광원부(10)에서 공급된 빛은 작은 점에 조사되는 점광원이며, 빔확장기(21)를 통해 면광원으로 확장된다. 면광원으로 전환된 빛은 위상마스크(23)를 통해 빛에 디지털 정보를 합성하기에 적절하도록 가공하여 출력한다. The expansion module 20 includes a beam expander 21 and a phase mask 23. [ The light supplied from the light source unit 10 is a point light source irradiated at a small point and is extended to the surface light source through the beam expander 21. [ The light converted into the planar light source is processed and outputted so as to be suitable for synthesizing the digital information into the light through the phase mask 23.
합성모듈(40)은 광원부(10)에서 공급된 빛에 디지털 정보를 합성하는 공간광변조기(43)(SLM:Spatial light modulator)(43)를 포함한다. 공간광변조기(43)는 디지털 정보를 포함하는 전기신호에 따라 입사된 빛이 밝은 점과 어두운 점으로 이루어진 영상으로 이루어진 시그널 빔(S)으로 변환이 된다. 공간광변조기(43)에서 출력된 시그널 빔(S)은 홀로그래픽 저장매체(90)에 조사되며 합성모듈(40)과 상이한 각도에서 조사되는 레퍼런스 빔(R)과의 교차시 생기는 간섭무늬가 홀로그래픽 저장매체(90)에 기록된다. The synthesis module 40 includes a spatial light modulator (SLM) 43 for synthesizing digital information with the light supplied from the light source 10. The spatial light modulator 43 converts the incident light into a signal beam S composed of an image composed of bright points and dark points according to an electric signal including digital information. The signal beam S output from the spatial light modulator 43 is radiated onto the holographic storage medium 90 and interference fringes generated when the reference beam R is irradiated at an angle different from that of the combining module 40, And recorded in the graphic storage medium 90.
다만, 빛은 확산되는 성질을 가지고있기 때문에 빛 경로의 중앙부는 빛이 세고 외각부분의 빛은 약하게 공급된다. 전체 면적에 균일한 빛의 세기를 갖는 면광원을 공급하기 위해, 복수개의 렌즈를 배치하여 균일한 세기의 빛을 공간광변조기(43)에 공급할 수 있다. 또한, 합성된 디지털 정보를 선명하게 홀로그래픽 저장매체(90)에 기록하기 위해서 디지털 정보를 포함하는 시그널 빔(S) 또한 균일하게 공급되도록 가공할 수 있다. However, since the light diffuses, the central part of the light path is light-rich and the light of the outer part is weakly supplied. A plurality of lenses can be arranged to supply a uniform intensity light to the spatial light modulator 43 in order to supply a planar light source having uniform light intensity over the entire area. In addition, the signal beam S including the digital information can be processed to uniformly supply the synthesized digital information to the holographic storage medium 90 in a clear manner.
상기 복수개로 중첩 배치된 렌즈로 구성된 렌즈모듈(30, 50)은 합성모듈(40)에 입사되는 구비된 제1 렌즈모듈(30)과 출력되는 측에 구비된 제2 렌즈모듈(50)을 포함할 수 있다. 합성모듈(40)에 입사되는 측에 구비된 제1 렌즈모듈(30)은 영상을 합성하는 합성모듈(40)에 공급되는 빛을 가공하며, 합성모듈(40)에서 출력되는 측에 구비된 제2 렌즈모듈(50)은 상기 합성모듈(40)에서 합성되어 사출되는 시그널 빔(S)을 가공한다. The lens modules 30 and 50 constituted by the plurality of superposed lenses include a first lens module 30 which is incident on the combining module 40 and a second lens module 50 which is provided on the output side can do. The first lens module 30 provided on the side to be incident on the combining module 40 processes the light supplied to the combining module 40 for combining images, 2 lens module 50 processes the signal beam S synthesized and emitted by the synthesis module 40. [
렌즈모듈(30, 50)은 복수개의 렌즈(31a, 31b, 31c, 32a, 32b, 32c, 51a, 51b, 51c, 52a, 52b, 52c)가 중첩되어 구성되며, 빛을 모으는 전방 릴레이렌즈(31)와 모아진 빛을 다시 확산시키는 후방 릴레이렌즈(32)로 구성된다. 입사된 빛의 면적과 출력되는 빛의 면적이 같은 경우 전방 릴레이렌즈(31)와 후방 릴레이렌즈(32)는 대칭적으로 구성될 수 있다. The lens modules 30 and 50 are constructed by superposing a plurality of lenses 31a, 31b, 31c, 32a, 32b, 32c, 51a, 51b, 51c, 52a, 52b and 52c, And a rear relay lens 32 for diffusing the collected light again. The front relay lens 31 and the rear relay lens 32 may be configured symmetrically when the area of the incident light is equal to the area of the output light.
다만, 전방 릴레이렌즈(31) 및 후방 릴레이렌즈(32)는 복수개의 렌즈로 이루어지고 초점거리를 고려하여 복수 개의 렌즈가 이격되어 배치되는 바, 렌즈모듈(30, 50)의 길이가 길어지는 문제가 있다. However, since the front relay lens 31 and the rear relay lens 32 are composed of a plurality of lenses and a plurality of lenses are spaced apart from each other in consideration of the focal length, problems such as a long length of the lens modules 30 and 50 .
이에 본 발명은 상기 문제를 해결하기 위해 제1 렌즈모듈 또는 제2 렌즈모듈 에 포함된 렌즈 개수를 줄여 홀로그래픽 데이터 스토리지 시스템의 크기를 줄일 수 있다. In order to solve the above problems, the present invention can reduce the size of the holographic data storage system by reducing the number of lenses included in the first lens module or the second lens module.
도 3은 본 발명의 일 실시예에 따른 홀로그래픽 데이터 스토리지 시스템의 제1 렌즈모듈(130)을 도시한 도면으로 본 발명의 제1 모듈은 제1 편광 빔 스플리터(135)(PBS: Polarizing Beam Splitter), 1/4 파장판(133, Quater wave plate, λ/4 plate), 릴레이렌즈(131) 및 제1 미러(137)로 구성된다. 제1 렌즈모듈(130)을 설명하나 제2 렌즈모듈(150)에도 적용가능하다. FIG. 3 illustrates a first lens module 130 of a holographic data storage system according to an embodiment of the present invention. The first module of the present invention includes a first polarizing beam splitter 135 (PBS) A quarter wave plate 133, a relay lens 131, and a first mirror 137. The quarter wave plate 133 is a quarter wave plate. The first lens module 130 is described, but the second lens module 150 is also applicable.
제1 편광 빔 스플리터(135)는 P편광의 빛은 통과하고 S편광의 빛은 반사하여 빛을 선택적으로 통과시키고 반사시키는 이방성 부재이다. 빛은 진행방향에 수직방향으로 진동하며 상기 진동면은 서로 다양한 각을 이루는 진동면을 형성하며 빛은 진행한다. 이러한 다양한 방향으로 진동하는 빛은 수직방향으로 진동하는 S편광과 수평방향으로 진동하는 P편광으로 성분을 나눌 수 있다. The first polarizing beam splitter 135 is an anisotropic member that transmits P-polarized light and reflects S-polarized light to selectively pass and reflect the light. The light oscillates in a direction perpendicular to the traveling direction, and the oscillating surfaces form oscillating surfaces having various angles with each other, and the light proceeds. Light oscillating in these various directions can be divided into S polarized light oscillating in the vertical direction and P polarized light oscillating in the horizontal direction.
광원부(110)에서 공급된 빛이 P편광의 빛인 경우 제1 편광 빔 스플리터(135)를 통과하여 릴레이렌즈(131)로 공급된다. 전술한 종래의 제1 렌즈모듈(130)은 전방 릴레이렌즈(31)와 후방 릴레이렌즈(32)를 포함하고 있는 것과 달리 본 실시예의 제1 렌즈모듈(130)은 하나의 릴레이렌즈(131)만 포함하고 있다. 대신 상기 하나의 릴레이렌즈(131)에 2회 빛을 통과시켜 종래의 릴레이렌즈(131)와 동일한 효과를 얻을 수 있다. When the light supplied from the light source unit 110 is P-polarized light, the light passes through the first polarized beam splitter 135 and is supplied to the relay lens 131. The first lens module 130 includes the front relay lens 31 and the rear relay lens 32. The first lens module 130 of the present embodiment includes only one relay lens 131 . The same effect as that of the conventional relay lens 131 can be obtained by passing the light through the one relay lens 131 twice.
하나의 릴레이렌즈(131)에 2회 빛이 통과할 수 있도록 제1 미러(137)를 이용한다. 릴레이렌즈(131)를 통과한 빛은 모아져서 제1 미러(137)에 도달하고, 제1 미러(137)는 상기 빛을 다시 릴레이렌즈(131)로 반사시켜 반사된 빛은 릴레이렌즈(131)를 통과한다.A first mirror 137 is used to allow light to pass through one relay lens 131 twice. The light passing through the relay lens 131 is collected and reaches the first mirror 137. The first mirror 137 reflects the light back to the relay lens 131 and the reflected light passes through the relay lens 131, .
제1 미러(137)에서 반사된 빛은 릴레이렌즈(131)를 통과한 후에 다시 제1 편광 빔 스플리터(135)로 공급된다. 이때, 제1 미러(137)에서 반사되어 다시 제1 편광 빔 스플리터(135)에 입사되는 빛이 광원부(110)로부터 입사된 빛과 같이 P편광이면 제1 미러(137)에서 반사된 빛도 제1 편광 빔 스플리터(135)를 통과하여 다시 입사된 방향으로 되돌아가는 문제가 있다.The light reflected by the first mirror 137 passes through the relay lens 131 and is then supplied to the first polarizing beam splitter 135 again. At this time, if the light reflected by the first mirror 137 and then incident on the first polarized beam splitter 135 is P polarized light like the light incident from the light source unit 110, the light reflected from the first mirror 137 There is a problem that it passes through the one polarization beam splitter 135 and returns to the direction in which it is incident again.
따라서, 릴레이렌즈(131)를 2회 통과하고 다시 제1 편광 빔 스플리터(135)로 공급되는 빛은 상기 입사된 빛과 직각방향의 빛으로 전환시키기 위해 제1 편광 빔 스플리터(135)와 릴레이렌즈(131) 사이에 1/4 파장판(133, Quarter wave plate)을 개재할 수 있다. Therefore, in order to switch the light that passes through the relay lens 131 twice and then again supplied to the first polarized beam splitter 135 into light in a direction perpendicular to the incident light, the first polarized beam splitter 135, A quarter wave plate 133 may be interposed between the first and second waveguides 131 and 131.
1/4 파장판(133, Quarter wave plate)은 선편광의 빛을 λ/4만큼 위상차가 생기게 하는 복굴전판으로 1/4 파장판(133)을 통과하면 선편광이 원편광으로 전환된다. 1/4 파장판(133)을 2회 통과하면 λ/2만큼 위상차가 생기게 되어 P편광은 S편광으로 전환되고 S편광은 P편광으로 전환된다. The quarter wave plate 133 is a birefringent plate that causes linearly polarized light to have a phase difference of? / 4. When the quarter wave plate 133 passes through the quarter wave plate 133, the linearly polarized light is converted into circularly polarized light. When passing through the 1/4 wave plate 133 twice, a phase difference is generated by? / 2 so that the P-polarized light is converted into S-polarized light and the S-polarized light is converted into P-polarized light.
즉, 릴레이렌즈(131)를 통과하기 전에 1/4 파장판(133)을 통과하면서 λ/4 만큼 위상차가 생기고 제1 미러(137)에 반사되어 릴레이렌즈(131)를 다시 통과한 빛은 1/4 파장판(133)을 통과하면서 최초 제1 렌즈부(130)에 입사된 빛 보다 λ/2만큼 위상차가 생기게 된다. 즉, 광원부(110)로부터 입사된 P편광은 1/4 파장판(133)을 2회 통과하면서 S편광으로 변환되어 제1 편광 빔 스플리터(135)에 입사되고, 90°꺽어져 합성부(140)로 출력된다. That is, before passing through the relay lens 131, a phase difference of? / 4 is generated while passing through the 1/4 wave plate 133, and the light reflected by the first mirror 137 and passed through the relay lens 131 again passes through the 1 / 4 wave plate 133, a phase difference of? / 2 is generated compared to the light initially incident on the first lens unit 130. [ That is, the P-polarized light incident from the light source unit 110 is converted into S-polarized light while passing through the 1/4 wave plate 133 twice, is incident on the first polarizing beam splitter 135, is bent by 90 °, .
도 4는 도 3의 제1 렌즈모듈(130)을 적용한 홀로그래픽 데이터 스토리지 시스템(100)을 도시한 것으로서, 제1 릴레이렌즈(131)의 크기가 줄어들게 되면서 전체 홀로그래픽 데이터 스토리지 시스템(100)의 크기가 줄어들 수 있다. FIG. 4 illustrates a holographic data storage system 100 to which the first lens module 130 of FIG. 3 is applied. The holographic data storage system 100 of FIG. The size can be reduced.
도 5는 광원부(110)에서 공급된 빛이 S편광인 경우 제1 렌즈모듈(130)에서 빛이 통과하는 모습을 도시한 것으로, 광원부(110)로부터 제1 편광 빔 스플리터(135)에 빛이 입사되는 방향에 수직한 방향에 1/4 파장판(133), 릴레이렌즈(131) 및 제1 미러(137)를 배치한다. 5 illustrates a state where light passes through the first lens module 130 when the light supplied from the light source unit 110 is S-polarized light. When light from the light source unit 110 enters the first polarization beam splitter 135, A 1/4 wavelength plate 133, a relay lens 131 and a first mirror 137 are arranged in a direction perpendicular to the direction in which the light is incident.
제1 편광 빔 스플리터(135)는 S편광의 빛을 직각방향으로 반사시키고 1/4 파장판(133), 릴레이렌즈(131)를 통과하여 제1 미러(137)에서 반사된 빛은 다시 릴레이렌즈(131) 및 1/4 파장판(133)을 통과하여 제1 편광 빔 스플리터(135)로 입사된다. The first polarized beam splitter 135 reflects the S polarized light in a direction perpendicular to the first polarized beam splitter 135, passes through the 1/4 wave plate 133 and the relay lens 131, Passes through the first polarization beam splitter 131 and the 1/4 wave plate 133, and is incident on the first polarization beam splitter 135.
입사된 S편광은 1/4 파장판(133)을 2회 통과한 후에 P편광으로 변환되어 제1 편광 빔 스플리터(135)에 재입사되고 반사되지 않고 그대로 통과하여 출력된다. 도 6은 도 5의 제1 렌즈모듈(130)을 적용한 홀로그래픽 데이터 스토리지 시스템(100)을 도시한 도면으로, 도 4와 달리 제1 렌즈모듈(130)의 방향이 상이하다. The incident S-polarized light is converted into P-polarized light after having passed through the quarter wave plate 133 twice, re-incident on the first polarizing beam splitter 135, and passed through without being reflected. FIG. 6 is a diagram illustrating a holographic data storage system 100 to which the first lens module 130 of FIG. 5 is applied. Unlike FIG. 4, the first lens module 130 is different in direction.
광원부(110)에서 공급되는 빛의 편광에 따라 제1 렌즈의 방향은 달라질 수 있다. 또는, 제1 렌즈모듈(130)과 확장모듈(120) 사이에 S편광을 P편광으로 또는 P편광을 S편광으로 변환하는 반파장판을 개재하면 제1 렌즈모듈(130)의 방향을 전환하지 않고도 합성모듈(150)에 빛을 전달할 수 있다. The direction of the first lens may be changed according to the polarization of the light supplied from the light source 110. Alternatively, if a half-wave plate for converting the S-polarized light into the P-polarized light or the P-polarized light to the S-polarized light is interposed between the first lens module 130 and the expansion module 120 without switching the direction of the first lens module 130 Light can be transmitted to the combining module 150. [
도 7은 도 6의 홀로그래픽 데이터 스토리지 시스템(100)의 사시도로서, 가로길이가 도 1에 도시된 종래의 홀로그래픽 데이터 스토리지 시스템(1)에 비해 줄어(a>b), 전체 시스템의 크기를 줄일 수 있다. FIG. 7 is a perspective view of the holographic data storage system 100 of FIG. 6, wherein the width is reduced (a> b) as compared to the conventional holographic data storage system 1 shown in FIG. 1, Can be reduced.
제1 렌즈모듈(130)에서 합성모듈(140)로 출력된 빛은 디지털 정보와 합성되어 시그널 빔(S)으로 출력된다. 합성모듈(140)은 전술한 공간광변조기(143)를 구비하고, 공간광변조기(143)에서 디지털 정보가 합성된 시그널 빔은 입사된 방향으로 다시 출력된다. 합성모듈(140)로의 입사방향과 출력방향을 구분하기 위해 합성모듈(140)은 제2 편광 빔 스플리터(141)를 구비할 수 있다.The light output from the first lens module 130 to the combining module 140 is combined with the digital information and output to the signal beam S. The combining module 140 includes the above-described spatial light modulator 143, and the signal beam in which the digital information is synthesized in the spatial light modulator 143 is output again in the incident direction. The combining module 140 may include a second polarization beam splitter 141 to distinguish the direction of incidence and the direction of the output to the combining module 140.
공간광변조기(143)에서 합성된 시그널 빔은 편광방향이 변환되어 출력된다. 즉, P편광이 입사된 경우 출력되는 시그널 빔은 S편광의 빛이 출력되고, S편광이 입사된 경우 출력되는 시그널 빔은 P편광의 빛이 출력된다. The signal beam synthesized by the spatial light modulator 143 is converted into a polarization direction and output. That is, when the P polarized light is incident, S polarized light is outputted from the signal beam outputted, and when the S polarized light is incident, the P polarized light is outputted from the signal beam outputted.
도 4의 경우 S편광이 합성모듈(140)로 입사되었으므로, 제2 편광 빔 스플리터(141)는 90°방향으로 빛을 꺽어서 공간광변조기(143)로 공급한다. 이 경우 제1 렌즈모듈(130)에서 입사되는 빛의 방향과 공간광변조기(143)는 직각방향으로 배치된다. 4, since the S polarized light is incident on the combining module 140, the second polarized beam splitter 141 rotates the light in the 90 ° direction and supplies the light to the spatial light modulator 143. In this case, the direction of the light incident from the first lens module 130 and the spatial light modulator 143 are arranged in a direction perpendicular to the direction.
공간광변조기(143)에서 합성된 시그널 빔은 P편광으로 변조되므로 제2 편광 빔 스플리터(141)는 이를 그대로 통과시켜 제2 렌즈모듈(150)로 출력한다. 공간광변조기(143)와 제2 편광 빔 스플리터(141) 및 제2 렌즈모듈(150)은 나란히 배치된다. Since the signal beam synthesized by the spatial light modulator 143 is modulated into P-polarized light, the second polarized beam splitter 141 passes the signal beam as it is and outputs it to the second lens module 150. The spatial light modulator 143, the second polarization beam splitter 141, and the second lens module 150 are arranged side by side.
도 6의 경우 제1 렌즈모듈(130)에서 출력되는 P편광이 합성모듈(140)로 입사되었으므로, 제2 편광 빔 스플리터(141)는 P편광의 시그널 빔을 통과시켜 공간광변조기(143)로 공급한다. 본 실시예에서는 제1 렌즈모듈(130)에서 입사되는 빛의 방향과 공간광변조기(143)는 일직선으로 배치된다. 6, since the P polarized light output from the first lens module 130 is incident on the combining module 140, the second polarized beam splitter 141 passes the signal beam of P polarized light to the spatial light modulator 143 Supply. In this embodiment, the direction of the light incident from the first lens module 130 and the spatial light modulator 143 are arranged in a straight line.
공간광변조기(143)에서 합성된 시그널 빔은 S편광으로 변조되므로 제2 편광 빔 스플리터(141)는 S편광의 시그널 빔을 반사시켜 제2 렌즈모듈(150)로 출력한다. 본 실시예에서는 공간광변조기(143)와 제2 편광 빔 스플리터(141) 및 제2 렌즈모듈(150)은 나란히 배치된다.Since the signal beam synthesized by the spatial light modulator 143 is modulated into S-polarized light, the second polarized beam splitter 141 reflects the S-polarized signal beam and outputs it to the second lens module 150. In this embodiment, the spatial light modulator 143, the second polarization beam splitter 141, and the second lens module 150 are arranged side by side.
제2 렌즈모듈(150)은 조리개(153)를 더 포함할 수 있다. 합성모듈(140)에서 디지털 정보와 합성된 시그널 빔은 노이즈가 생기게 되는바, 상기 노이즈를 제거하기 위해 조리개(153)를 더 포함할 수 있다. 노이즈는 전방 릴레이렌즈(151)를 통과한 후에 정확히 초점 지점에 모이지 않으므로 정확히 초점지점에 모이지 않는 빛은 차단하면 노이즈를 제거할 수 있다. 상기 조리개(153)의 구멍의 크기는 전체 시스템의 크기에 따라 달라질 수 있으며, 지름이 100㎛ 이상 100㎜이하의 범위에서 형성할 수 있다. The second lens module 150 may further include a diaphragm 153. The signal beam synthesized with the digital information in the synthesis module 140 may generate noise, and may further include an aperture stop 153 to remove the noise. Since the noise is not collected at the focal point exactly after passing through the front relay lens 151, it is possible to remove the noise by blocking light that does not converge to the focal point exactly. The size of the aperture of the diaphragm 153 may vary depending on the size of the entire system, and may be in the range of 100 μm or more and 100 mm or less in diameter.
제2 렌즈모듈(150)을 통과한 시그널 빔은 시그널 렌즈(160)를 통해 홀로그래픽 저장매체(190)로 조사된다. 제2 렌즈모듈(150)에서 출력된 빛을 반사시키는 미러(165)의 각도를 조절하여 상기 홀로그래픽 저장매체(190)로 조사되는 시그널 빔의 각도를 조절할 수 있다. The signal beam passing through the second lens module 150 is irradiated to the holographic storage medium 190 through the signal lens 160. The angle of the signal beam irradiated to the holographic storage medium 190 may be adjusted by adjusting the angle of the mirror 165 that reflects the light output from the second lens module 150.
레퍼런스 빔을 조사하는 레퍼런스 렌즈(180)의 경우도 광원부(110)에서 입사되는 빛을 반사시키는 미러(185)의 각도를 조절하여 레퍼런스 빔의 각도를 조절할 수 있다. In the case of the reference lens 180 for irradiating the reference beam, the angle of the reference beam can be adjusted by adjusting the angle of the mirror 185 that reflects the light incident from the light source unit 110.
도 8은 도 4의 홀로그래픽 데이터 스토리지 시스템(100)을 이용하여 홀로그래픽 저장매체(190)에 기록된 디지털 정보를 추출하여 재생하는 과정을 도시한 도면이고 도 9는 도 6의 홀로그래픽 데이터 스토리지 시스템(100)을 이용하여 홀로그래픽 저장매체(190)에 기록된 디지털 정보를 추출하여 재생하는 과정을 도시한 도면이다. FIG. 8 is a view illustrating a process of extracting and reproducing digital information recorded in the holographic data storage medium 190 using the holographic data storage system 100 of FIG. 4. FIG. The digital information recorded on the holographic storage medium 190 is extracted and reproduced using the system 100. FIG.
레퍼런스 렌즈(180)에서 레퍼런스 빔을 상기 홀로그래픽 저장매체(190)에 조사하면 홀로그래픽 저장매체(190)에 기록된 디지털 정보가 추출되어 복원 빔이 상기 시그널 렌즈(180)를 통해 입사된다. 복원 빔은 제2 렌즈모듈(150)을 통과하여 합성모듈(140)로 공급되며, 합성모듈(140)에 구비된 이미지 센서(145, CMOS: complementary metal-oxide semiconductor)에 입사되어 전기적 신호로 전환하여 영상을 출력할 수 있다. When the reference beam is irradiated onto the holographic storage medium 190 in the reference lens 180, the digital information recorded on the holographic storage medium 190 is extracted and the reconstructed beam is incident through the signal lens 180. The restoration beam passes through the second lens module 150 and is supplied to the synthesis module 140. The restoration beam is incident on an image sensor 145 (CMOS: complementary metal-oxide semiconductor) provided in the synthesis module 140, And output an image.
제2 편광 빔 스플리터(141)를 기준으로 공간광변조기(143)와 이미지 센서(145)는 직각방향에 위치하기 때문에 공간광변조기(143)에서 출력되는 시그널 빔이 제2 편광 빔 스플리터(141)를 통과하여 직선방향으로 진행하면, 복원 빔은 제2 편광 빔 스플리터(141)에서 반사되어 빛의 진행 방향이 바뀌어야 하고, 시그널 빔이 제2 편광 빔 스플리터(141)에서 반사되면, 복원 빔은 제2 편광 빔 스플리터(141)를 통과해야 한다. 따라서, 제2 편광 빔 스플리터(141)에 입사되는 복원 빔은 시그널 빔과 위상차가 λ/2 나도록 홀로그래픽 저장매체(190)에 조사하는 빛의 편광을 조절할 수 있다. Since the spatial light modulator 143 and the image sensor 145 are positioned at a right angle with respect to the second polarization beam splitter 141, the signal beam output from the spatial light modulator 143 passes through the second polarization beam splitter 141, The reconstructed beam is reflected by the second polarized beam splitter 141 and the traveling direction of the light is changed. When the signal beam is reflected by the second polarized beam splitter 141, 2 polarized beam splitter 141. [ Therefore, the reconstructed beam incident on the second polarized beam splitter 141 can control the polarization of the light irradiated to the holographic storage medium 190 such that the phase difference from the signal beam is? / 2.
도 8의 실시예(도 4의 실시예)에서 이미지센서는 제2 렌즈모듈(150)에서 입사되는 복원 빔의 방향에 직각방향에 위치하므로 복원 빔은 S편광이고, 도 9의 실시예(도 6의 실시예)에서 이미지 센서는 제2 렌즈모듈(150)에서 입사되는 복원 빔의 방향과 일직선을 이루므로 복원 빔은 P편광이다. In the embodiment of FIG. 8 (the embodiment of FIG. 4), since the image sensor is located in the direction perpendicular to the direction of the restored beam incident on the second lens module 150, the restored beam is S- 6, the image sensor forms a straight line with the direction of the restored beam incident on the second lens module 150, so that the restored beam is P-polarized light.
복원 빔의 편광은 레퍼런스 빔의 편광에 따라 결정되는 바, 도 4의 실시예에서는 S편광의 레퍼런스 빔을 홀로그래픽 저장매체(190)에 조사하고 도 6의 실시예에서는 P편광의 레퍼런스 빔을 홀로그래픽 저장매체(190)에 조사하여 복원 빔의 편광을 결정할 수 있다. The polarization of the reconstruction beam is determined according to the polarization of the reference beam. In the embodiment of FIG. 4, the S-polarized reference beam is irradiated to the holographic storage medium 190, and in the embodiment of FIG. 6, It is possible to irradiate the graphic storage medium 190 to determine the polarization of the restored beam.
홀로그래픽 데이터 스토리지 시스템의 크기를 더 줄이기 위해 제2 렌즈모듈도 제1 렌즈모듈과 같이 하나의 릴레이렌즈를 이용할 수 있다. To further reduce the size of the holographic data storage system, the second lens module may also use one relay lens like the first lens module.
도 10은 본 발명의 또 다른 실시예에 따른 홀로그래픽 데이터 스토리지 시스템의 제2 렌즈모듈(250)을 도시한 도면이다. 본 실시예의 제2 렌즈모듈(250)은 제3 편광 빔 스플리터(255), 1/4 파장판(133), 릴레이렌즈(231) 및 제2 미러(257)를 포함하며, 하나의 릴레이렌즈(251)에 2회 빛을 통과시키는 방식으로 제2 렌즈모듈(250)의 크기를 줄인 것을 특징으로 한다. 10 is a diagram illustrating a second lens module 250 of a holographic data storage system according to another embodiment of the present invention. The second lens module 250 of the present embodiment includes a third polarization beam splitter 255, a 1/4 wave plate 133, a relay lens 231 and a second mirror 257, The size of the second lens module 250 is reduced by passing light through the first lens module 251 and the second lens module 250 twice.
제2 렌즈모듈(250)은 제1 렌즈모듈(230)과 달리 디지털 정보가 합성되면서 생성된 노이즈를 제거할 필요가 있기 때문에 전술한 실시예에서 조리개(153) 역할을 하는 구성이 필요하다. 본 실시예에서 제2 렌즈모듈(250)은 조리개(153) 대신에 제2 미러(257)의 크기를 줄여 릴레이렌즈(251)를 통과한 후에 정확히 초점으로 수렴되지 않는 노이즈는 제거해 영상의 선명도를 높일 수 있다. Unlike the first lens module 230, since the second lens module 250 needs to remove the noise generated by synthesizing the digital information, the second lens module 250 needs to have a configuration that serves as the diaphragm 153 in the above-described embodiment. In this embodiment, the second lens module 250 reduces the size of the second mirror 257 instead of the diaphragm 153, removes noise that does not converge accurately to focus after passing through the relay lens 251, .
상기 제2 미러(257)의 크기는 전술한 조리개(253)의 크기에 상응하게 형성할 수 있는 바, 지름이 100㎛ 이상 100㎜이하의 범위에서 형성할 수 있다. The size of the second mirror 257 can be formed corresponding to the size of the diaphragm 253 described above and can be formed in a range of 100 μm or more and 100 mm or less in diameter.
도 11은 본 발명의 또 다른 실시예에 따른 홀로그래픽 데이터 스토리지 시스템을 도시한 도면으로, 본 실시예의 홀로그래픽 데이터 스토리지 시스템(200)은 도 6의 실시예에 도 10의 하나의 릴레이렌즈(251), 제2 미러(257) 및 제3 편광 빔 스플리터(255)를 포함하는 제2 렌즈모듈(250)을 포함한다. 제2 렌즈 모듈의 크기도 더 작아져 전체 시스템의 크기가 줄어든다. 11 illustrates a holographic data storage system 200 according to another embodiment of the present invention, in which the holographic data storage system 200 of the present embodiment includes one relay lens 251 , A second mirror 257 and a third polarizing beam splitter 255. The second lens module 250 includes a first polarizing beam splitter 255, The size of the second lens module becomes smaller and the size of the entire system is reduced.
제1 렌즈모듈(230)은 시그널 렌즈(260)로부터 입사되는 복원 빔이 통과하지 않기 때문에 문제되지 않으나, 제2 렌즈모듈(250)은 시그널 렌즈(260)로부터 입사되는 복원 빔이 통과하기 때문에 복원 빔의 광경로도 고려하여 시스템이 구축되어야 한다. The first lens module 230 does not cause a problem because the reconstruction beam incident from the signal lens 260 does not pass through it. However, since the second lens module 250 passes through the reconstruction beam incident from the signal lens 260, The system should be constructed considering the beam path of the beam.
도 8 및 도 9를 참조하면, 이미지 센서(245)와 공간광변조기(243)가 제2 편광 빔 스플리터(241)로부터 직각방향에 배치되기 때문에 시그널 빔과 복원 빔은 위상차가 λ/2나는 빛이 입사된다. 즉, 시그널 빔이 P편광이면 복원 빔은 S편광이거나, 시그널 빔이 S편광이면 복원 빔은 P편광이어야 시그널 빔과 재생 빔 중 하나는 통과시키고 다른 하나는 반사시킬 필요가 있다. 8 and 9, since the image sensor 245 and the spatial light modulator 243 are disposed at right angles to the second polarizing beam splitter 241, the signal beam and the reconstructed beam have a phase difference of? / 2 / RTI > In other words, if the signal beam is P polarized light, the reconstructed beam is S polarized light, and if the signal beam is S polarized light, the reconstructed beam is P polarized light, so that one of the signal beam and the reproduction beam needs to pass through and the other to reflect.
한편, 도 11의 실시예에서 이미지 센서(245)로 입력되는 복원 빔은 2회 편광 빔 스플리터(241, 255)를 통과하며, 제2 렌즈모듈(250)의 제3 편광 빔 스플리터(255)에서는 복원 빔과 시그널 빔이 동일한 경로를 이동하나, 제2 편광 빔 스플리터(241)에서는 복원 빔과 시그널 빔이 상이한 경로로 이동해야 한다. 11, the restored beam input to the image sensor 245 passes through the polarizing beam splitters 241 and 255 twice and the third polarizing beam splitter 255 of the second lens module 250 The reconstruction beam and the signal beam are moved in the same path, but in the second polarization beam splitter 241, the reconstruction beam and the signal beam must move in different paths.
시그널 빔과 복원 빔이 위상차가 있는 경우에는 제2 편광 빔 스플리터(241)에서뿐만 아니라 제3 편광 빔 스플리터(255)에서도 광경로가 서로 반대로 나타나는 문제가 있는 바, 본 실시예에서 제2 렌즈모듈(250)과 제2 편광 빔 스플리터(241) 사이에 반파장판(248)을 선택적으로 개재한다. In the case where the signal beam and the restored beam have a phase difference, there is a problem that not only the second polarizing beam splitter 241 but also the third polarizing beam splitter 255 show opposite optical paths. In this embodiment, 250 and the second polarizing beam splitter 241, as shown in FIG.
도 12 및 도 13은 본 발명의 제1 렌즈모듈(230), 합성부,제2 렌즈모듈(250), 반파장판(248) 및 시그널 렌즈(260)를 도시한다. 12 and 13 illustrate a first lens module 230, a combining part, a second lens module 250, a half wave plate 248, and a signal lens 260 of the present invention.
공간광변조기(243)에서 출력되는 시그널 빔이 S편광인 경우 제2 편광 빔 스플리터(241)를 기준으로 공간광변조기(243)와 제2 렌즈모듈(250)은 직각으로 배치되며, 공간광변조기(243)에서 출력된 시그널 빔은 제2 편광 빔 스플리터(241)에서 반사되어 제2 렌즈모듈(250)로 입사된다. When the signal beam output from the spatial light modulator 243 is S polarized light, the spatial light modulator 243 and the second lens module 250 are disposed at right angles with respect to the second polarization beam splitter 241, The signal beam output from the second polarization beam splitter 243 is reflected by the second polarization beam splitter 241 and is incident on the second lens module 250.
제2 렌즈모듈(250)에 입사된 빛이 제3 편광 빔 스플리터(255)를 통과하여 릴레이렌즈(251)로 전달되어야 하는 바, 공간광변조기(243)에서 출력된 시그널 빔을 P편광으로 전환해야한다. P편광으로 전환하기 위해 위상을 λ/2 변환사키는 반파장판(248)을 제2 렌즈모듈(250)과 합성모듈(240) 사이에 개재한다. The light incident on the second lens module 250 is transmitted through the third polarization beam splitter 255 to the relay lens 251 so that the signal beam output from the spatial light modulator 243 is converted into P- Should be. The phase shifter 244 is disposed between the second lens module 250 and the combining module 240 to convert the phase to the P polarized light.
P편광으로 변환된 빛은 1/4 파장판(253) 및 릴레이렌즈(251)를 통과하여 제2 미러(257)에 도달하고, 제2 미러(257)에 반사된 빛은 재차 릴레이렌즈(251)를 통과하고 1/4 파장판(253)을 통과한 후에 제3 편광 빔 스플리터(255)에 도달한다. 반파장판(248)에 의해 P편광으로 변환되어 입사된 시그널 빔은 1/4 파장판(253)을 2회 통과하면서 S편광으로 재변환되어, 제3 편광 빔 스플리터(255)에서 반사되어 시그널 렌즈(260)로 공급된다. The light converted into the P polarized light passes through the 1/4 wave plate 253 and the relay lens 251 to reach the second mirror 257 and the light reflected by the second mirror 257 passes through the relay lens 251 And reaches the third polarizing beam splitter 255 after passing through the 1/4 wave plate 253. The signal beam converted into the P polarized light by the half wave plate 248 is converted again into S polarized light while passing through the 1/4 wave plate 253 twice and is reflected by the third polarized beam splitter 255, (260).
반대로 시그널 렌즈(260)를 통해 입사된 복원 빔은 시그널 렌즈(260)를 통해 출력되는 시그널 빔과 동일한 S편광을 이용해야 제2 렌즈모듈(250)의 제3 편광 빔 스플리터(255)에서 꺽어져 릴레이렌즈(251)로 빛이 유입될 수 있다. 제2 렌즈모듈(250)을 통과한 빛은 1/4 파장판(253)을 2회 통과하여 P편광으로 전환된 상태이며, 이때, 다시 반파장판(248)을 통과하면 S편광으로 변환되어 제2 렌즈모듈(250)과 나란히 배치된 이미지 센서(245)에 복원 빔이 전달될 수 없는 바, 홀로그래픽 저장매체(290)에 저장된 영상을 출력하는 경우에는 반파장판(248)을 제거한다. Conversely, the restored beam incident through the signal lens 260 is deflected by the third polarized beam splitter 255 of the second lens module 250 using the same S-polarized light as the signal beam output through the signal lens 260 Light can be introduced into the relay lens 251. The light having passed through the second lens module 250 passes through the 1/4 wave plate 253 twice and is converted into P polarized light. At this time, when passing through the half wave plate 248, the light is converted into S polarized light, The restored beam can not be transmitted to the image sensor 245 disposed in parallel with the second lens module 250 and the half wave plate 248 is removed when the image stored in the holographic storage medium 290 is output.
이와 같이 홀로그래픽 데이터 저장시에는 반파장판(248)을 삽입하고, 홀로그래픽 데이터 재생시에는 반파장판(248)을 생략하여 하나의 릴레이렌즈(251)와, 제3 편광 빔 스플리터(255) 및 1/4 파장판(253)을 포함하는 제2 렌즈모듈(250)을 적용한 홀로그래픽 스토리지 시스템(200)를 제공할 수 있다. The half wave plate 248 is inserted when the holographic data is stored and the half wave plate 248 is omitted at the time of holographic data reproduction so that one relay lens 251 and the third polarized beam splitter 255 and 1/4 It is possible to provide the holographic storage system 200 to which the second lens module 250 including the wave plate 253 is applied.
한편 도 14와 같이 공간광변조기(243)가 제1 렌즈모듈(230)과 직각방향에 위치하고, 제2 렌즈모듈(250)과 일직선으로 배치된 실시예에서는 제1 렌즈모듈(230)에서 입사되는 빛은 S편광의 빛이 입사되어야 공간광변조기(243)에 광원부(210)로부터 공급된 빛이 유입될 수 있는 바, 도 14와 같이 제1 렌즈모듈(230)과 제2 렌즈모듈(250) 사이에 반파장판(248)을 더 개재할 수 있다. On the other hand, in the embodiment where the spatial light modulator 243 is positioned at right angles to the first lens module 230 and is disposed in a straight line with the second lens module 250 as shown in FIG. 14, 14, the first lens module 230 and the second lens module 250 may be configured to receive the S-polarized light from the light source 210. [ The half wave plate 248 can be further interposed between the two plates.
반파장판(248)에 의해 제1 렌즈모듈(230)에서 사출된 P편광은 S편광으로 변환되어 공간광변조기(243)로 입사되고 공간광변조기(243)에서 디지털 정보와 합성된 시그널 빔은 P편광으로 변환된다. P편광의 시그널 빔은 제2 편광 빔 스플리터(241)와 제3 편광 빔 스플리터(255)를 통과하여 제2 렌즈모듈(250)의 1/4 파장판(253)에 도달한다. 1/4 파장판(253) 및 릴레이렌즈(251)를 2회 통과한 후에 S편광으로 전환된 시그널 빔은 제3 편광 빔 스플리터(255)에서 반사되어 시그널 렌즈(260)를 통해 홀로그래픽 저장매체(290)에 조사된다. The P polarized light emitted from the first lens module 230 by the half wave plate 248 is converted into S polarized light and is incident on the spatial light modulator 243 and the signal beam synthesized with the digital information in the spatial light modulator 243 is converted into P And is converted into polarized light. The P-polarized signal beam passes through the second polarization beam splitter 241 and the third polarization beam splitter 255 and reaches the 1/4 wave plate 253 of the second lens module 250. The signal beam converted into the S polarized light after passing through the 1/4 wave plate 253 and the relay lens 251 twice is reflected by the third polarizing beam splitter 255 and passes through the signal lens 260 to the holographic storage medium (290).
반대로 도 15와 같이 홀로그래픽 저장매체(290)에 저장된 디지털 정보를 포함하는 복원 빔이 시그널 렌즈(270)를 통해 입사되면, 제2 렌즈모듈(250)을 통해 합성모듈(240)로 공급되기 위해서 S편광의 복원 빔이 입사된다. 복원 빔은 제3 편광 빔 스플리터(255)에서 반사되어 1/4 파장판(253) 및 릴레이렌즈(251)를 2회 통과하며 P편광으로 변환된다. 이대로 제2 편광 빔 스플리터(241)로 입사되면 이미지 센서(245)가 아니라 공간광변조기(243)로 복원 빔이 입사되는바, λ/2 만큼 위상을 변화시켜 S편광으로 변환시키기 위해 반파장판(248)을 제2 편광 빔 스플리터(241)와 제2 렌즈모듈(250) 사이에 개재한다. In contrast, when a restored beam including digital information stored in the holographic storage medium 290 is incident through the signal lens 270 as shown in FIG. 15, it is supplied to the synthesis module 240 through the second lens module 250 A restored beam of S-polarized light is incident. The reconstruction beam is reflected by the third polarization beam splitter 255, passes through the 1/4 wave plate 253 and the relay lens 251 twice, and is converted into P-polarized light. When the second polarization beam splitter 241 receives the restored beam, the reconstructed beam is incident on the spatial light modulator 243 instead of the image sensor 245. The reconstructed beam is converted into S polarized light by changing the phase by? / 2, 248 are interposed between the second polarizing beam splitter 241 and the second lens module 250.
즉, 본 실시예에서는 재생시에만 반파장판(248)을 제2 렌즈모듈(250)와 합성부 사이에 개재하고, 기록시에는 반파장판(248)을 생략할 수 있다. That is, in this embodiment, the half wave plate 248 is interposed between the second lens module 250 and the synthesizing unit only at the time of reproduction, and the half wave plate 248 can be omitted at the time of recording.
반파장판(248)을 물리적으로 개재하거나 제거하는 방법도 가능하고, 전류가 인가되는지 여부에 따라 이방성 성질을 선택적으로 띄는 소재를 이용하여 반파장판(248)을 구현할 수 있다. The half wave plate 248 may be physically interposed or removed, and a half wave plate 248 may be implemented using a material having an anisotropic property depending on whether current is applied or not.
본 발명의 적어도 일 실시예에 따르면, 릴레이렌즈(251)의 부피를 줄임으로써, 홀로그래픽 데이터 스토리지 시스템(200)의 크기를 줄일 수 있고 렌즈의 개수를 줄여 제조단가를 낮출 수 있다. According to at least one embodiment of the present invention, by reducing the volume of the relay lens 251, the size of the holographic data storage system 200 can be reduced, and the number of lenses can be reduced to lower manufacturing costs.
상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.The foregoing detailed description should not be construed in all aspects as limiting and should be considered illustrative. The scope of the present invention should be determined by rational interpretation of the appended claims, and all changes within the scope of equivalents of the present invention are included in the scope of the present invention.

Claims (8)

  1. 일 방향으로 진동하는 빛을 공급하는 광원부;A light source for supplying light oscillating in one direction;
    상기 광원부에서 공급된 빛을 홀로그래픽 저장매체에 조사하는 레퍼런스 렌즈;A reference lens for irradiating the holographic storage medium with the light supplied from the light source unit;
    상기 광원부에서 공급된 빛에 디지털 정보를 합성하여 시그널 빔으로 변조하는 공간광변조기(SLM:Spatial light modulator)를 포함하는 합성모듈;A synthesis module including a spatial light modulator (SLM) for synthesizing digital information into light supplied from the light source and modulating the digital information into a signal beam;
    상기 변조된 시그널 빔을 상기 레퍼런스 렌즈와 소정의 각도를 이루며 상기 홀로그래픽 저장매체에 조사하여 상기 홀로그래픽 저장매체에 상기 디지털 정보를 기록하는 시그널 렌즈(object lens);A signal lens for irradiating the modulated signal beam with a predetermined angle with the reference lens to record the digital information on the holographic storage medium;
    상기 광원부에서 입사된 빛을 상기 공간광변조기로 빛을 전달하는 제1 렌즈모듈; 및A first lens module for transmitting light incident from the light source unit to the spatial light modulator; And
    상기 시그널 빔을 상기 시그널 렌즈로 전달하는 제2 렌즈모듈을 포함하고,And a second lens module for transmitting the signal beam to the signal lens,
    상기 제1 렌즈모듈 또는 상기 제2 렌즈모듈 중 적어도 하나는, P편광의 빛은 통과하고 S편광의 빛은 반사하는 제1 편광 빔 스플리터(PBS: Polarizing Beam Splitter);At least one of the first lens module and the second lens module includes: a first polarizing beam splitter (PBS) for passing P-polarized light and reflecting S-polarized light;
    상기 제1 편광 빔 스플리터를 통과한 빛을 모으는 릴레이렌즈;A relay lens for collecting light passing through the first polarizing beam splitter;
    상기 릴레이렌즈를 통과하며 상기 모아진 빛을 반사시켜 다시 릴레이렌즈로 입사시키는 미러; 및A mirror that passes through the relay lens and reflects the collected light and then makes incident on the relay lens again; And
    상기 제2 편광 빔 스플리터와 상기 릴레이렌즈 사이에 위치하며, 통과하는 선편광을 원편광으로 변환하고 원편광을 선편광으로 변환하는 1/4 파장판(Quarter wave plate)를 포함하는 것을 특징으로 하는 홀로그래픽 데이터 스토리지 시스템.And a quarter wave plate which is located between the second polarizing beam splitter and the relay lens and converts the linearly polarized light passing therethrough into circularly polarized light and converts circularly polarized light into linearly polarized light. Data storage system.
  2. 제1항에 있어서,The method according to claim 1,
    상기 미러는 상기 릴레이렌즈의 초점거리에 위치하는 것을 특징으로 하는 홀로그래픽 데이터 스토리지 시스템.Wherein the mirror is located at a focal distance of the relay lens.
  3. 제1항에 있어서,The method according to claim 1,
    상기 미러의 지름은 100㎛ 이상 100㎜이하인 것을 특징으로 하는 홀로그래픽 데이터 스토리지 시스템.Wherein the diameter of the mirror is 100 占 퐉 or more and 100 mm or less.
  4. 제1항에 있어서,The method according to claim 1,
    상기 합성모듈은 상기 공간광변조기 전면에 위치하며, P편광의 빛은 통과하고 S편광의 빛은 반사하는 제2 편광 빔 스플리터(PBS: Polarizing Beam Splitter)를 더 포함하고,Wherein the combining module further comprises a second polarizing beam splitter (PBS) positioned on the front surface of the spatial light modulator, the P polarized light passing through and the S polarized light being reflected,
    상기 공간광변조기는 입사된 P편광을 S편광으로 변환하여 사출하거나, S편광을 P편광으로 변환하여 사출하며,The spatial light modulator converts the incident P polarized light into S polarized light and emits the converted S polarized light, converts the S polarized light into P polarized light,
    상기 제1 렌즈모듈과 상기 제2 렌즈모듈은 상기 편광 빔 스플리터에서 직각으로 배치되는 것을 특징으로 하는 홀로그래픽 데이터 스토리지 시스템.Wherein the first lens module and the second lens module are disposed at right angles to the polarization beam splitter.
  5. 제4항에 있어서,5. The method of claim 4,
    상기 제1 렌즈모듈에서 P편광의 빛이 공급되는 경우, 상기 공간광변조기는 상기 제2 편광 빔 스플리터를 중심으로 상기 제1 렌즈모듈과 대향하여 배치되고, Wherein when the P-polarized light is supplied from the first lens module, the spatial light modulator is disposed to face the first lens module with the second polarizing beam splitter as a center,
    상기 제1 렌즈모듈에서 S편광의 빛이 공급되는 경우, 상기 공간광변조기는 상기 제2 편광 빔 스플리터를 중심으로 상기 제1 렌즈모듈과 직각으로 배치되는 것을 특징으로 하는 홀로그래픽 데이터 스토리지 시스템.Wherein when the S-polarized light is supplied from the first lens module, the spatial light modulator is disposed at a right angle to the first lens module with the second polarizing beam splitter as a center.
  6. 제4항에 있어서,5. The method of claim 4,
    상기 공간광변조기와 직각으로 배치되며, 입사되는 빛을 전기신호로 전환하여 증폭하는 이미지 센서(CMOS:complementary metal-oxide semiconductor)를 더 포함하고,Further comprising a CMOS (Complementary Metal-Oxide Semiconductor) disposed at a right angle to the spatial light modulator and adapted to convert incident light into an electrical signal for amplification,
    상기 레퍼런스 렌즈로부터 상기 홀로그래픽 저장매체에 빛을 조사하여 하여 생성되는 복원 빔(reconstructed beam)은 상기 시그널 렌즈를, 제2 렌즈모듈 및 상기 제2 편광 빔 스플리터를 통해 상기 이미지 센서로 입사되는 것을 특징으로 하는 홀로그래픽 데이터 스토리지 시스템.And a reconstructed beam generated by irradiating light from the reference lens to the holographic storage medium is incident on the image sensor through the second lens module and the second polarizing beam splitter A holographic data storage system.
  7. 제6항에 있어서,The method according to claim 6,
    상기 제2 편광 빔 스플리터와 상기 제2 렌즈모듈 사이에 위치하며, 입사된 빛의 위상을 λ/2만큼 변환하는 반파장판(half wave plate)를 더 포함하는 홀로그래픽 데이터 스토리지 시스템.And a half wave plate disposed between the second polarizing beam splitter and the second lens module for converting the phase of the incident light by? / 2.
  8. 제7항에 있어서,8. The method of claim 7,
    상기 반파장판은 상기 시그널 렌즈로부터 시그널 빔을 사출할 때 또는 상기 시그널 렌즈에 복원 빔이 입력될 때 선택적으로 상기 제2 편광 빔 스플리터와 상기 제2 렌즈모듈 사이에 위치하는 것을 특징으로 하는 홀로그래픽 데이터 스토리지 시스템.Wherein the half wave plate is selectively positioned between the second polarizing beam splitter and the second lens module when the signal beam is emitted from the signal lens or when a restoring beam is input to the signal lens. Storage system.
PCT/KR2014/007493 2013-08-16 2014-08-12 Holographic data storage system WO2015023111A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/908,472 US9620164B2 (en) 2013-08-16 2014-08-12 Holographic data storage system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201361866548P 2013-08-16 2013-08-16
US61/866,548 2013-08-16
KR1020140104229A KR101594374B1 (en) 2013-08-16 2014-08-12 Holographic Data Storage System
KR10-2014-0104229 2014-08-12

Publications (1)

Publication Number Publication Date
WO2015023111A1 true WO2015023111A1 (en) 2015-02-19

Family

ID=52468454

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/007493 WO2015023111A1 (en) 2013-08-16 2014-08-12 Holographic data storage system

Country Status (1)

Country Link
WO (1) WO2015023111A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980041786A (en) * 1996-11-21 1998-08-17 모리시카 요이찌 Optical pickup
KR20030045824A (en) * 2000-10-12 2003-06-11 가부시키가이샤 옵트웨어 Optical information recording apparatus and method, optical information reproducing apparatus and method, optical information recording/reproducing apparatus and method, and optical information recording medium
KR20060083896A (en) * 2005-01-18 2006-07-21 소니 가부시끼 가이샤 Mastering apparatus, mastering method and optical recording medium
US20090129238A1 (en) * 2007-11-19 2009-05-21 Takeshi Shimano Objective lens
KR20090071125A (en) * 2007-12-27 2009-07-01 주식회사 대우일렉트로닉스 Optical information processing apparatus and optical system for the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980041786A (en) * 1996-11-21 1998-08-17 모리시카 요이찌 Optical pickup
KR20030045824A (en) * 2000-10-12 2003-06-11 가부시키가이샤 옵트웨어 Optical information recording apparatus and method, optical information reproducing apparatus and method, optical information recording/reproducing apparatus and method, and optical information recording medium
KR20060083896A (en) * 2005-01-18 2006-07-21 소니 가부시끼 가이샤 Mastering apparatus, mastering method and optical recording medium
US20090129238A1 (en) * 2007-11-19 2009-05-21 Takeshi Shimano Objective lens
KR20090071125A (en) * 2007-12-27 2009-07-01 주식회사 대우일렉트로닉스 Optical information processing apparatus and optical system for the same

Similar Documents

Publication Publication Date Title
US4773719A (en) Optical novelty filter
WO2009088224A2 (en) Apparatus for recording/reproducing holographic data
KR20080112569A (en) Holographic recording/reproducing apparatus employing variable size aperture
US8937855B2 (en) Holographic optical pickup device, optical information recording and reproducing device, and method of reproducing optical information, having angular variable element arrangements for changing a light angle
WO2015023111A1 (en) Holographic data storage system
KR101594374B1 (en) Holographic Data Storage System
JP3956101B2 (en) Optical unit for hologram and optical axis adjustment method thereof
KR20090071125A (en) Optical information processing apparatus and optical system for the same
KR100256651B1 (en) Composite volume holographic digital storage/reproducing system
TWI384475B (en) Hologram disc reading and writing apparatus and hologram disc reading apparatus
KR100579632B1 (en) Pickup device on the holographic digital data system
KR100456433B1 (en) Holographic digital data storage system
KR100397260B1 (en) Volumn holographic digital storage system being able to projection
JP2013125559A (en) Method and device for hologram reproduction, and hologram recording and reproducing device
KR100420135B1 (en) Composite volume holographic digital storage/reproducing system
KR100555754B1 (en) Optical source detecting device of the holographic digital data storage system
WO2021066207A1 (en) Device and method for transmitting hologram using updatable holographic material
JP2009211761A (en) Light reproduction device
KR100626957B1 (en) Pickup device on the holographic digital data system
KR100601277B1 (en) Device for data reproducing of the holographic digital data storage system
KR100477476B1 (en) Volume holographic digital storage system with error checking
KR100772040B1 (en) Oversampling method of holographic digital data storage system
KR20070002991A (en) Writing device on the holographic digital data storage system
JP2017041288A (en) Hologram recording medium multiple recording method and hologram recording medium multiple recording device
US20080031117A1 (en) Holographic optical accessing system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14835842

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14908472

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14835842

Country of ref document: EP

Kind code of ref document: A1