WO2015022851A1 - Measurement device using optical interferometry and measurement method using optical interferometry - Google Patents

Measurement device using optical interferometry and measurement method using optical interferometry Download PDF

Info

Publication number
WO2015022851A1
WO2015022851A1 PCT/JP2014/069690 JP2014069690W WO2015022851A1 WO 2015022851 A1 WO2015022851 A1 WO 2015022851A1 JP 2014069690 W JP2014069690 W JP 2014069690W WO 2015022851 A1 WO2015022851 A1 WO 2015022851A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
sensor
optical
interference
axis
Prior art date
Application number
PCT/JP2014/069690
Other languages
French (fr)
Japanese (ja)
Inventor
中村誠
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to JP2015531753A priority Critical patent/JPWO2015022851A1/en
Publication of WO2015022851A1 publication Critical patent/WO2015022851A1/en
Priority to US15/017,013 priority patent/US20160161730A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/026Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring distance between sensor and object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/14Measuring arrangements characterised by the use of optical techniques for measuring distance or clearance between spaced objects or spaced apertures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/22Measuring arrangements characterised by the use of optical techniques for measuring depth
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • G01B11/303Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces using photoelectric detection means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/24Base structure
    • G02B21/26Stages; Adjusting means therefor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/362Mechanical details, e.g. mountings for the camera or image sensor, housings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2210/00Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
    • G01B2210/56Measuring geometric parameters of semiconductor structures, e.g. profile, critical dimensions or trench depth
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers

Definitions

  • the present invention relates to a measurement apparatus using an optical interference method and a measurement method using an optical interference method. For example, the depth of a via hole of a TSV (through silicon via) provided in a semiconductor substrate is accurately measured.
  • the present invention relates to a measuring apparatus using an optical interferometry and a measuring method using an optical interferometry.
  • such an etching hole depth measurement is performed by applying infrared light from the back surface of the silicon substrate as shown in FIG. (A) reflected light from the back surface of the silicon substrate; (B) the reflected light from the bottom of the TSV, (C) reflected light from the surface of the silicon substrate, The interference waveform consisting of the optical path difference is measured.
  • TSV depth optical path difference between (b) and (c)
  • Thickness of silicon substrate A method of calculating the optical path difference between (a) and (c) is common, and devices for mass production are commercially available from several companies.
  • the TSV depth is calculated based on the optical path difference in silicon with the refractive index of silicon being constant, layers having different refractive indexes exist in silicon or on the surface thereof. If it does, it becomes a measurement error.
  • dopant implanted layer (2) such as an insulating film
  • some layer on the back side exists typically RIE, using SiO 2 or SiN and the like as a hard mask Therefore, these films are also present on the back side
  • substrates with greatly different dopant concentrations and oxygen concentrations typically RIE, using SiO 2 or SiN and the like as a hard mask Therefore, these films are also present on the back side
  • the probe light that can be used is limited to infrared light that transmits through silicon. However, in this case, there is an advantage that it is not necessary to strictly adjust the optical axis.
  • interference of light incident from the sample surface and reflected from the surface and the TSV bottom it is preferable to use interference of light incident from the sample surface and reflected from the surface and the TSV bottom.
  • a. The TSV part and the flat part are simultaneously irradiated with the probe to use the interference of the reflected light.
  • b. Interference (d) of reflected light from the sensor tip and sample surface flat part and interference (e) of reflected light from the sensor tip and TSV bottom are used.
  • the method a is widely used as a method of measuring surface irregularities by optical interference (see, for example, Patent Document 1), but no measurement example of a deep hole with a large aspect ratio called TSV has been reported. .
  • the spectroscope is generally provided coaxially with the optical microscope, and is not used as a method for measuring the distance between the reference surface and the sample by providing the sensor head with a reference surface.
  • the optical microscope and the probe optical axis can be integrated, but there is a problem that an interference waveform cannot usually be obtained unless the probe light is irradiated to both the TSV part and the flat part.
  • the distance between the sample surface and the sensor cannot be determined accurately, it is difficult to discuss the absolute value of the light quantity.
  • the method b described above is based on the difference in optical path between the reflected (reference) light from the reference reflecting surface 47 at the tip of the sensor head 44 and the reflected light 46 from the surface of the measurement object 45 as shown in FIG.
  • the sensor head 44 is commercially available as a sensor for measuring the distance between the sensor head 44 and the sample.
  • Reference numerals 41, 42, 43, and 48 to 52 in the figure denote a light source such as a super luminescent diode (SLD), sensor light, polarization maintaining fiber, interference light, spectrometer, diffraction grating, CCD camera, and so on. It is a waveform analysis means.
  • the TSV depth can be obtained by measuring the reflected light d from the sample surface and the reflected light e from the TSV bottom as shown in FIG.
  • both the TSV part and the sample surface may be irradiated at once, or may be irradiated independently.
  • the probe since the distance between the sensor head and the workpiece is measured, the probe may be applied to one or both of the TSV part and the flat part.
  • offset and axis adjustment with the optical microscope are essential.
  • FIG. 21 shows an interference spectrum obtained by actually measuring a TSV region having a diameter of 20 ⁇ m and a depth of 200 ⁇ m using a commercially available sensor.
  • the probe diameter is approximately 40 ⁇ m, and each peak corresponds to the following in order.
  • P 1 Interference spectrum of reflection from the surface and reflection from the TSV bottom
  • P 2 Interference spectrum of reflection from the sensor end and the surface of the sensor
  • P 3 Interference spectrum of reflection from the sensor end and the TSV bottom. That is, the value of (P 3 -P 2 ) or P 1 corresponds to the TSV depth.
  • FIG. 22 is an explanatory view of the arrangement relationship between the sensor head and the sample
  • FIG. 22 (a) is an explanatory view when the optical axis of the sensor is in the normal direction of the sample
  • FIG. 22 (b) is an illustration of the sensor. It is explanatory drawing in case an optical axis inclines with respect to the normal line direction of a sample.
  • FIG. 23 is an explanatory diagram of the arrangement relationship between the sensor head and the sample when the flat surface of the sample is irradiated with sensor light.
  • FIG. 23A is an explanatory diagram when the optical axis of the sensor is in the normal direction of the sample
  • FIG. 23B is an explanatory diagram when the optical axis of the sensor is inclined with respect to the normal direction of the sample.
  • the intensity of the reflected light from the sample becomes weak if there is no sensor head in the sample normal direction. Even if the measurement is carried out while maintaining a constant value, the measured reflected light intensity varies depending on the inclination of the sample. As a result, there is a problem that the absolute value and peak shape of the reflected light cannot be discussed, and the sample surface states cannot be compared quantitatively.
  • a sensor for measuring a distance by optical interferometry an optical microscope in which the optical axis is in a fixed relationship with the optical axis of the sensor, a sample stage on which a sample to be measured is placed, and measurement Means for keeping the distance between the sensor head end of the sensor and the surface of the sample constant, reflected light of the sensor light from the surface of the sample, or reflection of the sensor light from the surface of the sample and the sensor head end
  • a measuring apparatus using an optical interference method comprising an inclination adjusting means for inclining one of the surface of the sample or the optical axis of the sensor so that the interference intensity of light is maximized.
  • the optical microscope and the optical axis are in a fixed relationship. Irradiating the sample with sensor light while maintaining a constant distance between the sensor head end of the sensor and the surface of the sample from a sensor having a certain optical axis, and reflected light of the sensor light from the surface of the sample Or tilting one of the surface of the sample or the optical axis of the sensor so that the interference intensity of the reflected light of the sensor light from the sensor head end and the sensor head end is maximized; In the state where the interference intensity of the reflected light of the sensor light or the reflected light of the sensor light from the surface of the sample and the sensor head end is the highest, And measuring the interference waveform of the reflected light of the sa light and determining the distance between the measurement target portion of the sample and the sensor head end by the optical interferometry, and a measuring method using the optical interferometry
  • the measuring device using the optical interferometry and the measuring method using the optical interferometry it is possible to accurately measure the depth of the high aspect ratio recess.
  • FIG. 1 is a conceptual configuration diagram of a measuring apparatus using an optical interferometry according to an embodiment of the present invention.
  • a sensor 1 for measuring a distance by an optical interference method an optical microscope 2 whose optical axis is in a fixed relationship with the optical axis of the sensor 1, and a sample stage 4 on which a sample 5 to be measured is placed. Further, at the time of measurement, a means for keeping the distance between the sensor head end of the sensor 1 and the surface of the sample 5 constant, and the surface of the sample 5 or the sensor 1 so that the interference intensity of reflected light from the surface of the sample 5 is maximized.
  • Inclination adjusting means for inclining one of the optical axes is provided.
  • the optical system of the optical microscope 2 may be shared by at least a part of the optical system of the sensor 1, or the optical system of the sensor 1 may be a separate optical system from the optical system of the optical microscope 2.
  • a mechanism for storing offset coordinates for observing the same field of view as the optical microscope 2 is provided.
  • the optical system of the sensor 1 is an optical system that is separate from the optical system of the optical microscope 2
  • the common support member that can fix the sensor 1 and the optical microscope 2 and operate the distance to the sample 5 at the same time is variably operated. 3
  • the optical microscope 2 is provided with a mechanism that tilts only the optical axis independently
  • the sensor 1 is provided with a drive mechanism that can independently adjust the distance between the tilt adjusting mechanism that tilts the optical axis independently and the sample 5. .
  • the sample stage 5 may be provided with a tilt adjusting mechanism that can adjust the tilt independently.
  • a drive mechanism that can independently adjust the distance between the tilt adjusting mechanism that tilts the optical axis independently of the sensor 1 and the sample 5 may be provided.
  • ⁇ 1 The distance between the sensor head end of the sensor 1 and the surface of the sample 5 is made constant while observing the surface of the sample 5 with the optical microscope 2 keeping the distance from the surface of the sample 5 to be measured constant.
  • the sample light 5 is irradiated with the sensor light while being kept.
  • ⁇ 2 Next, one of the surface of the sample 5 or the optical axis of the sensor 1 so that the reflected light of the sensor light from the surface of the sample 5 or the interference intensity of the reflected light from the surface of the sample 5 and the end of the sensor head is maximized. Tilt.
  • the interference waveform of the reflected light from the sensor head end is measured in a state where the interference intensity of the reflected light from the sample surface or the reflected light from the surface of the sample 5 and the sensor head end is maximized.
  • the distance between the measurement target portion and the sensor head end is determined by optical interferometry.
  • the sample is typically a semiconductor substrate such as a silicon wafer
  • the measurement target portion is typically a via hole for a through via provided in the semiconductor substrate.
  • the probe diameter of the sensor light may be set to 3/4 or less of the via diameter of the via hole.
  • the sensor light may be irradiated to the flat surface of the sample 5 that is not provided with the via hole and compared.
  • the measured interference waveform is Fourier-transformed to obtain a power spectrum, and the intensity and shape of the power spectrum are compared and analyzed, whereby the flatness of the bottom surface of the via hole and the surface of the sample near the via hole are analyzed. It becomes possible to calculate the surface roughness.
  • the alignment method and mechanism of the sensor it is possible to measure the depth of a deep via hole having an aspect ratio of 10 or more using a commercially available sensor.
  • the measurement is performed with the distance between the sensor and the workpiece precisely fixed, it is possible to compare the absolute values of the interference waveform intensity, evaluate the via diameter, evaluate the area of the flat surface of the via bottom, and the sample surface. And the roughness of the bottom of the via can be evaluated.
  • the above method uses holes with a high aspect ratio that are actually formed except for the wafer edge, as the hole diameter decreases, the tilt axis of the sensor and the flatness of the hole bottom cause it to move away from the hole bottom. May not be obtained and adjustment may be difficult.
  • a shaft adjustment dedicated member having a shaft adjustment structure including a projection or a recess having a planar area within a range of ⁇ 10% of the planar area of the measurement target portion. Is used.
  • a shaft adjustment dedicated member having a plurality of protrusions having different planar areas may be used as the shaft adjustment dedicated member.
  • projections having the same height and different planar areas may be arranged at a pitch of 100 ⁇ m or more, for example.
  • a shaft adjustment dedicated member having a plurality of different planar areas and having a recess having an aspect ratio of 1 or less may be used.
  • the concave portions having the same depth and different planar areas may be arranged at a pitch of 100 ⁇ m or more.
  • a shaft adjustment dedicated member a shaft adjustment dedicated member having a stepped protrusion in which concentric cylindrical protrusions are stacked in order of size, or a shaft having a stepped recess in which concentric cylindrical recesses are dug in order of size.
  • a dedicated adjustment member may be used.
  • a shaft adjustment dedicated member having a stepped recess formed by digging concentric cylindrical recesses in descending order of size and a protrusion provided at the center of the stepped recess may be used.
  • a dedicated shaft adjustment member provided with a projection is preferable.
  • the inclination of the sample or the optical microscope is adjusted so that the side walls of the protrusions or recesses are not visible or the area of the protrusions or the area of the recesses is maximized.
  • the optical axis of the sensor is adjusted and the offset amount with respect to the optical microscope is finely adjusted so that the interference peak is maximized in a state where the distance to the surface of the protrusion or the bottom surface of the recess is set to a specified value.
  • FIG. 2 is a conceptual configuration diagram of the measuring apparatus using the optical interferometry according to the first embodiment of the present invention.
  • the sensor 11 that measures the distance by the optical interferometry, the optical microscope 12, and the common support block 13 that fixes both of them. And a sample stage 14 on which the sample is placed.
  • SI-F10 a product number manufactured by Keyence Corporation
  • SI-F10 is used with a mechanism that can move independently in the z-axis direction and tilt the optical axis in the x-axis direction and the y-axis direction.
  • the optical microscope 12 can be tilted independently in the x-axis direction and the y-axis direction, and the movement in the z-axis direction is performed by the common support block 13.
  • the sample stage 14 includes a vacuum chuck mechanism, and mounts and fixes a sample 15 such as a semiconductor wafer. However, in this case, the sample stage does not need to have an inclination mechanism.
  • FIG. 3 is a wavelength distribution diagram of a light source used for measurement.
  • an infrared SLD having a wavelength peak in the near-infrared region of 820 nm is used as a light source.
  • it since it does not transmit through the silicon substrate as in the prior art, it is not limited to infrared light.
  • S 1 First, the common support block 13 is moved so as to be perpendicularly incident while viewing the pattern for axis alignment (for example, TSV of ⁇ 20 ⁇ m) with the camera of the optical microscope 12, and focus adjustment and tilt axis adjustment are performed. At this time, the optical microscope 12 is adjusted so as to be in the sample normal direction, and may be adjusted so that the via bottom can be seen or the via diameter is maximized.
  • S 2 Next, a coordinate offset between the sensor 11 and the optical microscope 12 is obtained.
  • a sample having an L-shaped groove pattern or a cross groove pattern formed on the surface is prepared as an alignment sample, and the x-axis and y-axis are adjusted using the L-shaped groove pattern or the cross-shaped groove pattern. .
  • S 3 Next, the sample stage 14 is moved so that the sensor 11 and the optical microscope 12 correspond to a flat region having no pattern.
  • S 4 Next, the independent z-axis of the sensor 11 is adjusted so that the distance indicated by the peak due to interference of reflected light from the sensor end and the surface of the sample 15 becomes a predetermined value. For example, the distance is set to 11.0 mm. When the distance between the sensor 11 and the sample 15 is a desired value, the optical microscope 12 is adjusted to be in focus.
  • S 5 Next, the inclination of the sensor 11 is finely adjusted so that the peak due to interference of reflected light from the sensor end and the surface of the sample 15 is maximized. Such fine adjustment is often less than 0.5 °. Alternatively, the peak due to interference of reflected light from the sensor end and the bottom surface of the TSV may be maximized.
  • S 6 Thereafter, the steps S 2 to S 5 are repeated, and the sensor tilt axis and the offset (x, y) are set at a position where the distance between the sensor 11 and the sample 15 is a desired value and the maximum peak intensity can be obtained. adjust.
  • the optical axis of the sensor 11 and the vertical direction of the sample 15 become the same at the focal position of the optical microscope 12, and then actual measurement is started.
  • S 7 With the sample 15 to be measured placed and fixed on the sample stage 14, the common support block 13 is moved to focus the optical microscope 12.
  • S 8 After the sensor 11 is moved to the position of the TSV formed on the sample 15 and the common support block 14 is moved in the z direction so that the distance between the sensor 11 and the surface of the sample 15 becomes a predetermined value, fine adjustment is performed. The TSV depth is measured.
  • the probe diameter may be a size including a via diameter and a flat portion to be measured, for example, a diameter of 40 ⁇ m, or sufficiently smaller than the via diameter. It may be smaller than the diameter.
  • the via diameter can be estimated from the peak intensity. Also, (2) Surface roughness can be estimated from the broadening of the interference peak waveform.
  • the probe diameter when the probe diameter is smaller than the via diameter, (3)
  • the area of the flat surface at the bottom of the via can be evaluated from the peak intensity.
  • the roughness of the via bottom can be estimated from the broadening of the waveform of the interference peak.
  • FIG. 4 is an explanatory diagram of an interference waveform of reflected light from the sensor head and the sample surface
  • FIG. 4 (a) is an interference waveform of a sample with a flat surface
  • FIG. 4 (b) is a sample with a rough surface.
  • This is an interference waveform.
  • a sample having a flat surface has a sharp interference waveform and a high intensity at the peak.
  • FIG. 4B the half-width of the peak of the interference waveform of the sample having a rough surface increases, and the intensity of the peak decreases.
  • a commercially available sensor for example, the sensor SI-F10 (manufactured by Keyence Corporation) is used by devising the sensor alignment method and the common support block mechanism. Measurement of via holes with a high aspect ratio is possible. Incidentally, it became possible to measure vias with a via diameter of 3.2 ⁇ m and a depth of 34 ⁇ m. In addition, via holes with an aspect ratio of 10 or more, such as via holes with a via diameter of 5 ⁇ m and a depth of 54 ⁇ m, a via diameter of 10 ⁇ m and a depth of 162 ⁇ m, can be measured. Unusual results were obtained.
  • FIG. 5 is a conceptual configuration diagram of a measuring apparatus using the optical interferometry according to the second embodiment of the present invention.
  • the sensor 21 that measures the distance by the optical interferometry, the optical microscope 22, and a common support block 23 that fixes both of them. And a sample stage 24 on which the sample is placed.
  • SI-F10 a product number manufactured by Keyence Corporation
  • SI-F10 is used with a mechanism that can move independently in the z-axis direction and tilt the optical axis in the x-axis direction and the y-axis direction.
  • the optical microscope 22 performs adjustment in the z-axis direction using the common support block 23 and does not include an inclination adjustment mechanism in the x-axis direction and the y-axis direction.
  • the sample stage 24 includes a vacuum chuck mechanism and an inclination mechanism, and places and fixes a sample 25 such as a semiconductor wafer and adjusts the inclination of the sample 25 in the normal direction. Also in Example 2, the light source having the spectral characteristics shown in FIG. 2 is used.
  • FIG. 6A and 6B are explanatory views of the tilt mechanism of the sample stage, FIG. 6A is a bottom view, and FIG. 6B is a side view.
  • FIG. 6A is a bottom view
  • FIG. 6B is a side view.
  • three pins 26 1 to 26 3 are provided at the lower part of the sample stage 24, and the sample stage 24 can be easily moved in all directions by moving the three pins 26 1 to 26 3 up and down. Can be stably tilted.
  • s 1 First, the common support block 23 is moved so as to be perpendicularly incident while viewing the pattern for axis alignment (for example, ⁇ 20 ⁇ m TSV) with the camera of the optical microscope 22 to perform focusing, and the tilt axis of the sample stage 24 To adjust for normal incidence. At this time, the optical microscope 12 is adjusted so as to be in the sample normal direction, and may be adjusted so that the via bottom can be seen or the via diameter is maximized.
  • s 2 Next, a coordinate offset between the sensor 21 and the optical microscope 22 is obtained.
  • an alignment standard sample having an L-shaped groove pattern or a cross-shaped groove pattern formed on the surface is prepared, and this L-shaped groove pattern or the cross-shaped groove pattern is used to prepare an x-axis, Adjust the y-axis.
  • s 3 Next, the sample stage 24 is moved so that the sensor 21 and the optical microscope 22 correspond to a flat region having no pattern.
  • s 4 Next, the independent z axis of the sensor 21 is adjusted so that the distance indicated by the peak due to interference of reflected light from the sensor end and the surface of the sample 25 becomes a predetermined value. For example, the distance is set to 11.0 mm.
  • the optical microscope 22 is adjusted to be in focus when the distance between the sensor 21 and the sample 25 is a desired value.
  • s 5 Next, the inclination of the sensor 21 is finely adjusted so that the peak due to interference of reflected light from the sensor end and the surface of the sample 25 becomes maximum. Such fine adjustment is often less than 0.5 °. Alternatively, the peak due to interference of reflected light from the sensor end and the bottom surface of the TSV may be maximized.
  • s 6 Thereafter, the processes of s 2 to s 5 are repeated, and the sensor tilt axis and the offset (x, y) are set at a position where the distance between the sensor 21 and the sample 25 is a desired value and the maximum peak intensity can be obtained. adjust.
  • s 7 With the sample 25 to be measured placed and fixed on the sample stage 24, the common support block 23 is moved and the optical microscope 22 is focused.
  • s 8 After moving the sensor 21 to the position of the TSV formed on the sample 25 and moving the common support block 24 in the z direction so that the distance between the sensor 21 and the surface of the sample 25 becomes a predetermined value, fine adjustment is performed. The TSV depth is measured.
  • the probe diameter may be a size including the via diameter to be measured and the flat portion, for example, a diameter of 40 ⁇ m, as in the first embodiment. It may be sufficiently smaller than the via diameter, for example, 3/4 or less of the via diameter.
  • the probe diameter when the probe diameter is made to include the via diameter to be measured and the flat portion, (1)
  • the via diameter can be estimated from the peak intensity.
  • (2) Surface roughness can be estimated from the broadening of the interference peak waveform.
  • the probe diameter when the probe diameter is smaller than the via diameter, (3)
  • the area of the flat surface at the bottom of the via can be evaluated from the peak intensity.
  • the roughness of the via bottom can be estimated from the broadening of the waveform of the interference peak.
  • FIG. 7 is a conceptual configuration diagram of a measuring apparatus using the optical interferometry according to the third embodiment of the present invention.
  • the optical microscope 32 in which the optical mirror 33 is inserted in the optical axis and the optical mirror 33 are used in common.
  • a sensor head 31 inserted into a microscope.
  • the sample stage 34 provided with the vacuum chuck mechanism and the inclination mechanism is provided similarly to the second embodiment.
  • the sensor head 31 operates independently in the x-axis, y-axis, and z-axis, and the optical microscope 32 operates independently in the sample normal direction.
  • Reference numerals 36 1 to 36 3 in the figure denote pins.
  • ⁇ 1 First, the sample stage 34 is tilted so as to be perpendicularly incident while viewing the pattern for axis alignment (for example, TSV of ⁇ 20 ⁇ m) with the camera of the optical microscope 32, and focusing is performed. At this time, the optical microscope 12 is adjusted so as to be in the sample normal direction, and may be adjusted so that the via bottom can be seen or the via diameter is maximized.
  • ⁇ 2 Next, the sensor is adjusted so as to have the same field of view as the optical microscope 32 by adjusting the x-axis and y-axis of the sensor.
  • an alignment standard sample having an L-shaped groove pattern or a cross-shaped groove pattern formed on the surface is prepared, and the x-axis and y-axis are adjusted using the L-shaped groove pattern or the cross-shaped groove pattern.
  • ⁇ 3 Next, the sample stage 34 is moved so that the optical microscope 32 corresponds to a flat region without a pattern.
  • ⁇ 4 Next, the independent z-axis of the sensor head 31 is adjusted so that the distance indicated by the peak due to interference of reflected light from the sensor end and the surface of the sample 35 becomes a predetermined value. For example, the distance is set to 80 mm. In this case as well, the optical microscope 32 is adjusted to be in focus when the distance between the sensor head 31 and the sample 35 is a desired value.
  • ⁇ 5 The steps of ⁇ 2 to ⁇ 4 are repeated, and the distance between the sensor head 31 and the sample 35 is adjusted to a desired value, and the optical axis of the optical microscope 32 and the optical axis of the sensor are adjusted to be the same.
  • ⁇ 6 With the sample 35 to be measured placed and fixed on the sample stage 34, the support block that supports the optical microscope 32 (not shown) is moved to focus the optical microscope 32.
  • ⁇ 7 After the optical microscope 32 is moved to the position of the TSV formed on the sample 35 and the z-axis moving mechanism of the optical microscope is moved and finely adjusted so that the distance between the sensor head 31 and the surface of the sample 35 becomes a predetermined value. Measure TSV depth.
  • the probe diameter is set to a size including a via diameter and a flat portion to be measured, for example, a diameter of 40 ⁇ m.
  • the wavelength of the reference light is different from the wavelength of the optical microscope, it is difficult to reduce the probe diameter.
  • the via diameter can be estimated from the peak intensity.
  • (2) Surface roughness can be estimated from the broadening of the interference peak waveform.
  • Example 3 since the optical axis of the sensor and the optical axis of the optical microscope coincide with each other by sharing the optical mirror, the step of measuring the offset amount between the optical axis of the sensor and the optical axis of the optical microscope is performed. It becomes unnecessary.
  • FIGS. 8 to 16 a measurement method using the optical interferometry according to the fourth embodiment of the present invention will be described with reference to FIGS. 8 to 16.
  • the measurement device itself is the same as the measurement device according to the first or second embodiment. Use.
  • the axis adjustment tip will be described with reference to FIGS. .
  • FIG. 8 is an explanatory diagram of a first axis adjustment chip used in the measurement method using the optical interference method of Example 4 of the present invention
  • FIG. 8 (a) is a plan view
  • FIG. 8 (b) is a cross-sectional view connecting the horizontal portions of the alternate long and short dash line connecting AA ′ in FIG.
  • the first axis adjusting chip 60 is obtained by processing a single crystal Si substrate and providing projections with a height of 3 ⁇ m and diameters of 20 ⁇ m, 10 ⁇ m, 5 ⁇ m, and 3 ⁇ m at a pitch of 50 ⁇ m. A knife edge in the X direction and the Y direction is provided around the chip.
  • FIG. 9A a single crystal Si substrate 61 whose surface is flattened to an atomic level is prepared.
  • FIG. 9B by applying a photoresist, exposing and developing, a resist mask 62 having the circular pattern openings 63 shown in FIG. 8 is formed.
  • FIG. 9C the exposed surface of the single crystal Si substrate 61 is dug down by 3 ⁇ m using a fluorocarbon etching gas 64 using the resist mask 62 as a mask.
  • FIG. 9D the resist mask 62 is peeled off to obtain the first axis adjusting chip 60 having a cross-sectional shape having the protrusions 65 shown in FIG. 8B.
  • the irradiation surface of the sensor light is used as the surface of the projection 65, and the surface of the ridge has flatness at the atomic level, so that highly accurate measurement is possible.
  • FIG. 10 is an explanatory view of a second axis adjustment chip used in the measurement method using the optical interference method of the fourth embodiment of the present invention
  • FIG. 10 (a) is a plan view
  • FIG. 10 (b) is a cross-sectional view connecting the horizontal portions of the alternate long and short dash line connecting AA ′ in FIG.
  • This second axis adjusting chip is obtained by processing a single crystal Si substrate and providing recesses having a depth of 3 ⁇ m and diameters of 20 ⁇ m, 10 ⁇ m, 5 ⁇ m, and 3 ⁇ m at a pitch of 50 ⁇ m. A knife edge in the X direction and the Y direction is provided around the chip. Further, the manufacturing process is the same as the manufacturing process of the first axis adjusting chip described above except that the unevenness relationship is reversed.
  • the aspect ratio of the recesses with the smallest diameter is set to 1, and the aspect ratios of the other recesses are set to less than 1, so that the tilt axis of the sensor is shifted in the axis adjustment process. And is not affected by the flatness of the bottom surface of the recess.
  • FIG. 11 is an explanatory diagram of a third axis adjustment chip used in the measurement method using the optical interference method according to the fourth embodiment of the present invention
  • FIG. 11 (a) is a plan view
  • FIG. 11 (b) is a cross-sectional view connecting the horizontal portions of the alternate long and short dash line connecting AA ′ in FIG.
  • This third axis adjusting chip is obtained by processing a single crystal Si substrate and sequentially stacking projections having diameters of 20 ⁇ m, 10 ⁇ m, 5 ⁇ m and 3 ⁇ m in a concentric cylinder shape with a thickness of 5 ⁇ m. A knife edge in the X direction and the Y direction is provided around the chip.
  • a resist mask having a pattern with a diameter of 20 ⁇ m is applied by applying a photoresist onto a single crystal Si substrate 71 whose surface is flattened to an atomic level, and exposing and developing. 72 is formed.
  • the exposed surface of the single crystal Si substrate 71 is dug down by 5 ⁇ m using a fluorocarbon-based etching gas 73 using the resist mask 72 as a mask.
  • the resist mask 72 is peeled to form the first step protrusion 74 having a diameter of 20 ⁇ m.
  • a resist mask 75 having a pattern with a diameter of 10 ⁇ m that is concentric with the first step projection 74 is formed by applying a photoresist, exposing and developing the photoresist. .
  • the exposed surface of the single crystal Si substrate 71 is dug down by 5 ⁇ m using a fluorocarbon-based etching gas 76.
  • the resist mask 75 is peeled to form second step projections 77 having a diameter of 10 ⁇ m.
  • a resist mask 78 having a pattern with a diameter of 5 ⁇ m that is concentric with the first projection 74 is formed by applying a photoresist, exposing and developing. .
  • the exposed surface of the single crystal Si substrate 71 is dug down by 5 ⁇ m using a fluorocarbon-based etching gas 79.
  • the resist mask 78 is peeled off to form a third step protrusion 80 having a diameter of 5 ⁇ m.
  • a photoresist is applied, exposed and developed to form a resist mask 81 having a pattern with a diameter of 3 ⁇ m that is concentric with the first step projection 74. .
  • the exposed surface of the single crystal Si substrate 71 is dug down using a fluorocarbon-based etching gas 82.
  • the etching is stopped when the exposed surface of the single crystal Si substrate 71 is dug down by 5 ⁇ m.
  • the resist mask 81 is peeled off to form a first step protrusion 74 having a diameter of 20 ⁇ m, a second step protrusion 77 having a diameter of 10 ⁇ m, a third step protrusion 80 having a diameter of 5 ⁇ m, and a diameter.
  • a protrusion structure in which the fourth protrusions 83 of 3 ⁇ m are sequentially stacked is obtained.
  • FIG. 14 is an explanatory diagram of a fourth axis adjustment chip used in the measurement method using the optical interference method of Example 4 of the present invention
  • FIG. 14 (a) is a plan view
  • FIG. 14 (b) is a cross-sectional view connecting the horizontal portions of the alternate long and short dash line connecting AA ′ in FIG.
  • This fourth axis adjusting chip is obtained by processing a single crystal Si substrate, digging 20 ⁇ m, 10 ⁇ m, and 5 ⁇ m in order into a concentric cylinder with a depth of 5 ⁇ m in order, a center part having a height of 9 ⁇ m and a diameter of 3 ⁇ m A cylindrical projection is provided.
  • a knife edge in the X direction and the Y direction is provided around the chip.
  • the third axis adjusting chip and the unevenness are reversed, and a resist pattern having a diameter of 3 ⁇ m is always provided in the central portion for etching.
  • reflected light from the bottom surface of the concave portion and the surface of the central projection having different areas can be obtained at one place. Since the alignment is sufficient, the production process is simplified. In addition, since the surface of the central protrusion has atomic level flatness, it is possible to measure with high accuracy at the protrusion.
  • FIG. 15 is an explanatory diagram of a fifth axis adjustment chip used in the measurement method using the optical interference method of Example 4 of the present invention
  • FIG. 15 (a) is a plan view
  • FIG. 15 (b) is a cross-sectional view connecting the horizontal portions of the alternate long and short dash line connecting AA ′ in FIG.
  • This fifth axis adjusting chip is obtained by processing a single crystal Si substrate and dug concave portions having diameters of 20 ⁇ m, 10 ⁇ m, 5 ⁇ m, and 3 ⁇ m in order into a concentric cylindrical shape with a depth of 3 ⁇ m.
  • a knife edge in the X direction and the Y direction is provided around the chip.
  • etching may be performed with the third axis adjusting tip and the unevenness reversed.
  • the fifth axis adjustment tip reflected light from the bottom surface of the concave portion and the surface of the central projection having different areas can be obtained at one place. Since the alignment is sufficient, the production process is simplified.
  • the fourth axis adjusting chip the 3 ⁇ m protrusion at the center is easily damaged in the resist coating process and the like, but in the case of the fifth axis adjusting chip, no protrusion is formed. Is not required.
  • ns 1 With an optical microscope, the sample inclination is adjusted so that the optical microscope is on the normal line of the surface of the projection pattern. For this purpose, adjustment is performed so that the side wall of the protrusion cannot be seen or the upper area of the protrusion is maximized by observation with an optical microscope.
  • ns 2 As in the conventional method, the offset between the optical axis of the optical microscope and the optical axis of the sensor is adjusted using the projection pattern.
  • ns 3 The distance between the protrusion pattern and the sensor is adjusted to a desired value, for example, a specified value of 11.8 mm.
  • ns 4 Finely adjust the tilt of the sensor so that the peak intensity of the interference light due to the reflected light from the projection pattern is maximized.
  • ns 5 ns 2 to ns 4 are repeated to narrow down to a condition where the distance from the sensor is constant and the interference peak is strongest. Note that the diameter of the probe at this time is preferably larger than the hole diameter to be measured.
  • NS 1 As shown in FIG. 16A, the first peak adjusting chip 60 is used to measure the interference peak intensity at a flat portion having the same height as the protrusion 65 (ref. 1).
  • NS 2 Next, as shown in FIG. 16B, the intensity of the interference peak is measured with the protrusion 65 having a size close to the TSV hole to be measured (ref. 2).
  • NS 3 The intensity ratio of ref.2 to ref.1 is calculated in advance. Note that protrusions of various sizes may be measured in advance, and thereby a calibration curve may be created.
  • NS 4 Next, as shown in FIG.
  • the distance from the sensor becomes a specified value at a flat portion in the vicinity of the TSV hole 91 of the Si wafer 90 provided with the TSV hole 91 to be measured.
  • the interference peak intensity is measured (ref. 3).
  • NS 5 Next, as shown in FIG. 16 (d), the sensor head 66 is moved to the TSV hole 91 for measurement, adjusted so that the distance between the flat portion and the sensor becomes a specified value, and then interference from the flat portion. The peak intensity is measured (ref. 4).
  • NS 6 The hole diameter is obtained by obtaining the difference between the strength of ref. 3 and the strength of ref. 4 and comparing the difference with the result of NS 3 .
  • NS 7 Since the interference peak from the bottom of the TSV hole 91 is simultaneously measured, the depth of the SV hole 91 can be known.
  • the shaft adjustment tip is used, so that the shaft adjustment becomes easy and the TSV hole depth and the hole diameter can be measured simultaneously and accurately. Become.
  • the depth of the TSV hole and the flat portion at the bottom of the TSV hole are described. Measure the diameter.
  • the axis adjustment is performed in the same procedure as in the fourth embodiment, using the first axis adjustment tip for axis adjustment.
  • nS 1 First, as shown in FIG. 17A, the intensity of the interference peak is measured with the protrusion 65 having a size close to the TSV hole to be measured (Ref. 1). Note that protrusions of various sizes may be measured in advance, and thereby a calibration curve may be created.
  • nS 2 Next, as shown in FIG. 17B, after the sensor head 66 is moved to the TSV hole 91 for measurement and adjusted so that the distance from the sensor to the bottom of the TSV hole 91 becomes a specified value. Then, the interference peak intensity is measured (Ref. 2).
  • nS 3 The diameter of the TSV hole 91 can be obtained by determining how much smaller Ref.2 is than Ref.1. That is, since the diameter of the flat portion at the bottom is usually smaller than the diameter of the hole on the surface, the diameter of the TSV hole 91 can be obtained from the strength ratio.
  • the shaft adjusting tip since the shaft adjusting tip is used, the shaft adjustment becomes easy, and the depth of the TSV hole and the diameter of the flat portion at the bottom of the TSV hole are adjusted. Measurement can be performed at the same time with high accuracy.

Abstract

Provided are a measurement device using optical interferometry and a measurement method using optical interferometry that accurately measure the depth of a recess having a high aspect ratio. The measurement device is provided with a sensor for measuring distance using optical interferometry, an optical microscope having an optical axis in a fixed relationship with the optical axis of the sensor, a sample stage on which a sample to be measured is placed, a means for maintaining a fixed distance between a sensor head end of the sensor and a surface of the sample during measurement, and a tilt adjustment means for tilting the surface of the sample or the optical axis of the sensor so as to maximize the interference intensity of the sensor light reflected from the surface of the sample or the sensor light reflected from the surface of the sample and the sensor head end.

Description

光干渉法を用いた計測装置及び光干渉法を用いた計測方法Measuring apparatus using optical interferometry and measuring method using optical interferometry
 本発明は、光干渉法を用いた計測装置及び光干渉法を用いた計測方法に関するものであり、例えば、半導体基板に設けたTSV(シリコン貫通ヴィア)のヴィア穴の深さを精度よく計測するための光干渉法を用いた計測装置及び光干渉法を用いた計測方法に関する。 The present invention relates to a measurement apparatus using an optical interference method and a measurement method using an optical interference method. For example, the depth of a via hole of a TSV (through silicon via) provided in a semiconductor substrate is accurately measured. The present invention relates to a measuring apparatus using an optical interferometry and a measuring method using an optical interferometry.
 近年、半導体デバイスの高集積化・高機能化の流れの中で異種または同種デバイスの3次元集積技術に注目が集まっている。このような半導体デバイスの3次元集積を実現するための手段の一つとしてTSV(Through Silicon Via)の採用が検討されている。 In recent years, attention has been focused on three-dimensional integration technology of different or similar devices in the trend of higher integration and higher functionality of semiconductor devices. The adoption of TSV (Through Silicon Via) is being studied as one means for realizing such three-dimensional integration of semiconductor devices.
 TSVを作成するプロセスでは、シリコン基板に開口した貫通電極用のエッチングホールの深さの測定が重要である。なぜなら、例えば、ヴィアミドルプロセスでは電極材料の銅によるデバイス汚染を防ぐために、裏面から研削薄化する時にTSVの直近数μmのシリコンを残して薄化を停止することが必要である。 In the process of creating TSV, it is important to measure the depth of the etching hole for the through electrode opened in the silicon substrate. This is because, for example, in the Viamide process, in order to prevent device contamination due to copper of the electrode material, it is necessary to stop the thinning while leaving silicon of the nearest several μm of TSV when thinning by grinding from the back surface.
 TSV直近で機械的研削を停止するためには、反応性イオンエッチング(Reactive Ion Etching : RIE)深さの面内分布を高精度に制御することが重要になる。そのためには、RIEで形成したTSV深さを正確に計測することが必要になる。 In order to stop mechanical grinding in the immediate vicinity of TSV, it is important to control the in-plane distribution of reactive ion etching (Reactive Ion Etching) depth with high accuracy. For this purpose, it is necessary to accurately measure the TSV depth formed by RIE.
 現在このようなエッチングホールの深さ計測には、図18に示すようにシリコン基板の裏面から赤外光を当て、
(a)シリコン基板裏面からの反射光、
(b)TSV底からの返射光、
(c)シリコン基板表面からの返射光、
の光路差よりなる干渉波形を計測する。
At present, such an etching hole depth measurement is performed by applying infrared light from the back surface of the silicon substrate as shown in FIG.
(A) reflected light from the back surface of the silicon substrate;
(B) the reflected light from the bottom of the TSV,
(C) reflected light from the surface of the silicon substrate,
The interference waveform consisting of the optical path difference is measured.
 計測した干渉波形からフーリエ変換して得られるパワースペクトルより、
i)TSV深さ・・・(b)と(c)の光路差、
ii)シリコン基板の厚さ・・・(a)と(c)の光路差
を算出する方法が一般的で、数社から量産対応の装置が市販されている。
From the power spectrum obtained by Fourier transform from the measured interference waveform,
i) TSV depth: optical path difference between (b) and (c),
ii) Thickness of silicon substrate: A method of calculating the optical path difference between (a) and (c) is common, and devices for mass production are commercially available from several companies.
 このような市販されている計測方法では、シリコンの屈折率を一定としてシリコン中の光路差をもとにTSV深さを算出しているため、シリコン中やその表面に屈折率が異なる層が存在する場合には計測誤差になる。 In such a commercially available measurement method, since the TSV depth is calculated based on the optical path difference in silicon with the refractive index of silicon being constant, layers having different refractive indexes exist in silicon or on the surface thereof. If it does, it becomes a measurement error.
 例えば、
(1)高濃度のドーパント注入層が存在
(2)裏面に何らかの層(絶縁膜など)が存在(一般的にRIEによりTSV孔を開口する際には、SiOやSiNなどをハードマスクとして使用するので、裏面にもこれらの膜が存在する)
(3)ドーパント濃度や酸素濃度が大きく異なる基板を利用
(4)SOI構造の基板を利用
する場合には、正しくTSV深さが測定できない。また、使用できるプローブ光はシリコンを透過する赤外光に限定される。但し、この場合には、厳密に光軸調整をすることが必要ではないという利点はある。
For example,
(1) when opening the TSV hole by high concentration exists dopant implanted layer (2) (such as an insulating film) where some layer on the back side exists (typically RIE, using SiO 2 or SiN and the like as a hard mask Therefore, these films are also present on the back side)
(3) Utilization of substrates with greatly different dopant concentrations and oxygen concentrations (4) When utilizing an SOI structure substrate, the TSV depth cannot be measured correctly. The probe light that can be used is limited to infrared light that transmits through silicon. However, in this case, there is an advantage that it is not necessary to strictly adjust the optical axis.
特開2008‐076379号公報JP 2008-076379 A
 これらの問題点を解決するためには、図19に示すように、試料表面から光を入射し、表面とTSV底から反射される光の干渉を用いると良い。具体的には、
a.TSV部と平坦部に同時にプローブを照射して反射光の干渉を利用する。
b.センサ先端部と試料表面平坦部からの反射光の干渉(d)とセンサ先端部とTSV底からの反射光の干渉(e)を利用する。
In order to solve these problems, as shown in FIG. 19, it is preferable to use interference of light incident from the sample surface and reflected from the surface and the TSV bottom. In particular,
a. The TSV part and the flat part are simultaneously irradiated with the probe to use the interference of the reflected light.
b. Interference (d) of reflected light from the sensor tip and sample surface flat part and interference (e) of reflected light from the sensor tip and TSV bottom are used.
 これらの方法で計測に利用するのは試料表面とTSV部の空気層の光路差であるため、試料物性には全く依存しないという利点がある。また、利用できる光は、シリコン基板での吸収を考慮する必要がないので、赤外光に限定されないという利点もある。 Since these methods use the optical path difference between the sample surface and the air layer of the TSV part to be used for measurement, there is an advantage that it does not depend on sample physical properties at all. In addition, the light that can be used does not need to be considered for absorption in the silicon substrate, and thus has an advantage that it is not limited to infrared light.
 なお、上記のaの方法は、光干渉により表面凹凸を計測する方法として広く用いられているが(例えば、特許文献1参照)、TSVというアスペクト比の大きな深いホールの計測例は報告されていない。この場合、一般的には、光学顕微鏡と同軸に分光器を設ける構造になっており、センサヘッドに参照面を設けて参照面と試料間の距離を測る方法としては使用されていない。 The method a is widely used as a method of measuring surface irregularities by optical interference (see, for example, Patent Document 1), but no measurement example of a deep hole with a large aspect ratio called TSV has been reported. . In this case, the spectroscope is generally provided coaxially with the optical microscope, and is not used as a method for measuring the distance between the reference surface and the sample by providing the sensor head with a reference surface.
 また、この方法では光学顕微鏡とプローブ光軸を一体化することが可能である反面、通常はTSV部と平坦部の両方にプローブ光を照射しないと干渉波形を得ることができないという問題がある。また、試料表面とセンサ間の距離を正確に決めることができないので光量の絶対値を議論するのが困難であるという問題がある。 In this method, the optical microscope and the probe optical axis can be integrated, but there is a problem that an interference waveform cannot usually be obtained unless the probe light is irradiated to both the TSV part and the flat part. In addition, since the distance between the sample surface and the sensor cannot be determined accurately, it is difficult to discuss the absolute value of the light quantity.
 一方、上記のbの方法は、図20に示すように、センサヘッド44の先端の参照反射面47からの反射(参照)光と、計測対象物45の表面からの反射光46の光路差から、センサヘッド44と試料の距離を計測するセンサとして市販されている。なお、図における符号41,42,43,48~52は、それぞれ、スーパールミネッセントダイオード(SLD)等の光源、センサ光、偏波保持ファイバ、干渉光、分光器、回折格子、CCDカメラ及び波形解析手段である。この市販されているセンサを流用することで、図19のように試料表面からの反射光dとTSV底からの反射光eを計測することで、TSV深さを求めることが可能である。この場合、TSV部と試料表面の両方に一度にプローブを照射しても良いし、或いは、独立して照射しても良い。 On the other hand, the method b described above is based on the difference in optical path between the reflected (reference) light from the reference reflecting surface 47 at the tip of the sensor head 44 and the reflected light 46 from the surface of the measurement object 45 as shown in FIG. The sensor head 44 is commercially available as a sensor for measuring the distance between the sensor head 44 and the sample. Reference numerals 41, 42, 43, and 48 to 52 in the figure denote a light source such as a super luminescent diode (SLD), sensor light, polarization maintaining fiber, interference light, spectrometer, diffraction grating, CCD camera, and so on. It is a waveform analysis means. By diverting this commercially available sensor, the TSV depth can be obtained by measuring the reflected light d from the sample surface and the reflected light e from the TSV bottom as shown in FIG. In this case, both the TSV part and the sample surface may be irradiated at once, or may be irradiated independently.
 この方法では、センサヘッドとワークの距離を測っているのでTSV部及び平坦部の一方または両方にプローブを当てて計測しても良い反面、光学顕微鏡とのオフセット及び軸調整が必須となる。 In this method, since the distance between the sensor head and the workpiece is measured, the probe may be applied to one or both of the TSV part and the flat part. However, offset and axis adjustment with the optical microscope are essential.
 図21は、市販のセンサ用いて実際にφ20μm、深さ200μmのTSV領域を計測して得られた干渉スペクトルであり、プローブ径はおよそφ40μmで、各ピークは順に以下のものに相当している。
:表面からの反射とTSV底からの反射の干渉スペクトル
:センサ端と表面からの反射の干渉スペクトル
:センサ端とTSV底からの反射の干渉スペクトル
になる。即ち、(P-P)或いはPの値がTSV深さに相当している。
FIG. 21 shows an interference spectrum obtained by actually measuring a TSV region having a diameter of 20 μm and a depth of 200 μm using a commercially available sensor. The probe diameter is approximately 40 μm, and each peak corresponds to the following in order. .
P 1 : Interference spectrum of reflection from the surface and reflection from the TSV bottom P 2 : Interference spectrum of reflection from the sensor end and the surface of the sensor P 3 : Interference spectrum of reflection from the sensor end and the TSV bottom. That is, the value of (P 3 -P 2 ) or P 1 corresponds to the TSV depth.
 しかし、この方法の場合、センサからの光が、TSV底に到達し、反射してくる最適位置(試料法線方向)に、センサを配する必要があり、そのアライメント技術が重要になるので、この事情を図22及び図23を参照して説明する。図22は、センサヘッドと試料の配置関係の説明図であり、図22(a)はセンサの光軸が試料の法線方向になる場合の説明図であり、図22(b)はセンサの光軸が試料の法線方向に対して傾いている場合の説明図である。 However, in this method, it is necessary to place the sensor at the optimal position (in the direction of the sample normal) where the light from the sensor reaches the TSV bottom and is reflected, and the alignment technology becomes important. This situation will be described with reference to FIGS. FIG. 22 is an explanatory view of the arrangement relationship between the sensor head and the sample, FIG. 22 (a) is an explanatory view when the optical axis of the sensor is in the normal direction of the sample, and FIG. 22 (b) is an illustration of the sensor. It is explanatory drawing in case an optical axis inclines with respect to the normal line direction of a sample.
 図22(a)と図22(b)の対比から明らかなように、TSVの深さが深くなると試料法線方向にセンサヘッドがないとTSV底にプローブが届かない場合や、TSV底で反射した光がセンサに届かない事態になるため計測が困難になる。 As is clear from the comparison between FIG. 22A and FIG. 22B, when the TSV depth increases, the probe does not reach the TSV bottom unless there is a sensor head in the sample normal direction, or the TSV bottom reflects. Measurement becomes difficult because the incident light does not reach the sensor.
 図23は、試料の平坦面にセンサ光を照射する場合のセンサヘッドと試料の配置関係の説明図である。図23(a)はセンサの光軸が試料の法線方向になる場合の説明図であり、図23(b)はセンサの光軸が試料の法線方向に対して傾いている場合の説明図である。 FIG. 23 is an explanatory diagram of the arrangement relationship between the sensor head and the sample when the flat surface of the sample is irradiated with sensor light. FIG. 23A is an explanatory diagram when the optical axis of the sensor is in the normal direction of the sample, and FIG. 23B is an explanatory diagram when the optical axis of the sensor is inclined with respect to the normal direction of the sample. FIG.
 図23(a)と図23(b)の対比から明らかなように、試料法線方向にセンサヘッドがないと試料からの反射光の強度が弱くなるため、試料とセンサの距離を所望の値に保ちながら計測をしても試料の傾斜により計測した反射光強度が異なることになる。その結果、反射光の絶対値やピーク形状の議論ができず、定量的に試料表面状態の比較ができないという問題がある。 As is clear from the comparison between FIG. 23A and FIG. 23B, the intensity of the reflected light from the sample becomes weak if there is no sensor head in the sample normal direction. Even if the measurement is carried out while maintaining a constant value, the measured reflected light intensity varies depending on the inclination of the sample. As a result, there is a problem that the absolute value and peak shape of the reflected light cannot be discussed, and the sample surface states cannot be compared quantitatively.
 したがって、光干渉法を用いた計測装置及び光干渉法を用いた計測方法において、高アスペクト比の凹部の深さを精度良く計測することを目的とする。 Therefore, it is an object of the present invention to accurately measure the depth of a high aspect ratio recess in a measurement apparatus using an optical interferometry and a measurement method using an optical interferometry.
 開示する一観点からは、光干渉法により距離を計測するセンサと、光軸が前記センサの光軸と一定の関係にある光学顕微鏡と、測定対象となる試料を載置する試料ステージと、計測時において前記センサのセンサヘッド端と前記試料の表面の距離を一定に保つ手段と、前記試料の表面からのセンサ光の反射光または前記試料の表面と前記センサヘッド端からの前記センサ光の反射光の干渉強度が最も大きくなるように前記試料の表面または前記センサの光軸の一方を傾斜させる傾斜調整手段とを有することを特徴とする光干渉法を用いた計測装置が提供される。 From one aspect to be disclosed, a sensor for measuring a distance by optical interferometry, an optical microscope in which the optical axis is in a fixed relationship with the optical axis of the sensor, a sample stage on which a sample to be measured is placed, and measurement Means for keeping the distance between the sensor head end of the sensor and the surface of the sample constant, reflected light of the sensor light from the surface of the sample, or reflection of the sensor light from the surface of the sample and the sensor head end There is provided a measuring apparatus using an optical interference method, comprising an inclination adjusting means for inclining one of the surface of the sample or the optical axis of the sensor so that the interference intensity of light is maximized.
 また、開示する別の観点からは、光学顕微鏡により測定対象となる試料の表面との距離を一定に保った状態で前記試料の表面を観察しながら、前記光学顕微鏡と光軸と一定の関係にある光軸を有するセンサから前記センサのセンサヘッド端と前記試料の表面の距離を一定に保った状態でセンサ光を前記試料に照射する工程と、前記試料の表面からの前記センサ光の反射光または前記試料の表面と前記センサヘッド端からの前記センサ光の反射光の干渉強度が最も大きくなるように前記試料の表面または前記センサの光軸の一方を傾斜させる工程と、前記試料の表面からの前記センサ光の反射光または前記試料の表面と前記センサヘッド端からの前記センサ光の反射光の干渉強度が最も大きくなった状態で、前記センサヘッド端からの前記センサ光の反射光の干渉波形を計測して光干渉法により前記試料における計測対象部と前記センサヘッド端との距離を判定する工程とを有することを特徴とする光干渉法を用いた計測方法が提供される。 Further, from another viewpoint to be disclosed, while observing the surface of the sample in a state where the distance from the surface of the sample to be measured is kept constant by an optical microscope, the optical microscope and the optical axis are in a fixed relationship. Irradiating the sample with sensor light while maintaining a constant distance between the sensor head end of the sensor and the surface of the sample from a sensor having a certain optical axis, and reflected light of the sensor light from the surface of the sample Or tilting one of the surface of the sample or the optical axis of the sensor so that the interference intensity of the reflected light of the sensor light from the sensor head end and the sensor head end is maximized; In the state where the interference intensity of the reflected light of the sensor light or the reflected light of the sensor light from the surface of the sample and the sensor head end is the highest, And measuring the interference waveform of the reflected light of the sa light and determining the distance between the measurement target portion of the sample and the sensor head end by the optical interferometry, and a measuring method using the optical interferometry Is provided.
 開示の光干渉法を用いた計測装置及び光干渉法を用いた計測方法によれば、高アスペクト比の凹部の深さを精度良く計測することが可能になる。 According to the measuring device using the optical interferometry and the measuring method using the optical interferometry, it is possible to accurately measure the depth of the high aspect ratio recess.
本発明の実施の形態の光干渉法を用いた計測装置の概念的構成図である。It is a notional block diagram of the measuring device using the optical interferometry of embodiment of this invention. 本発明の実施例1の光干渉法を用いた計測装置の概念的構成図である。It is a notional block diagram of the measuring device using the optical interferometry of Example 1 of this invention. 計測に使用する光源の波長分布図である。It is a wavelength distribution map of the light source used for measurement. センサヘッドと試料表面からの反射光の干渉波形の説明図である。It is explanatory drawing of the interference waveform of the reflected light from a sensor head and a sample surface. 本発明の実施例2の光干渉法を用いた計測装置の概念的構成図である。It is a notional block diagram of the measuring device using the optical interferometry of Example 2 of this invention. 試料ステージの傾斜機構の説明図である。It is explanatory drawing of the inclination mechanism of a sample stage. 本発明の実施例3の光干渉法を用いた計測装置の概念的構成図である。It is a notional block diagram of the measuring device using the optical interferometry of Example 3 of this invention. 本発明の実施例4の光干渉法を用いた計測方法に用いる第1の軸調整用チップの説明図である。It is explanatory drawing of the 1st axis | shaft adjustment chip | tip used for the measuring method using the optical interferometry of Example 4 of this invention. 第1の軸調整用チップの製造工程の説明図である。It is explanatory drawing of the manufacturing process of the chip | tip for a 1st axis adjustment. 本発明の実施例4の光干渉法を用いた計測方法に用いる第2の軸調整用チップの説明図である。It is explanatory drawing of the 2nd axis | shaft adjustment chip | tip used for the measuring method using the optical interferometry of Example 4 of this invention. 本発明の実施例4の光干渉法を用いた計測方法に用いる第3の軸調整用チップの説明図である。It is explanatory drawing of the 3rd axis | shaft adjustment chip | tip used for the measuring method using the optical interferometry of Example 4 of this invention. 第3の軸調整用チップの製造工程の途中までの説明図である。It is explanatory drawing to the middle of the manufacturing process of the chip | tip for a 3rd axis | shaft adjustment. 第3の軸調整用チップの製造工程の図12以降の説明図である。It is explanatory drawing after FIG. 12 of the manufacturing process of the 3rd axis | shaft adjustment chip | tip. 本発明の実施例4の光干渉法を用いた計測方法に用いる第4の軸調整用チップの説明図である。It is explanatory drawing of the 4th axis | shaft adjustment chip | tip used for the measuring method using the optical interferometry of Example 4 of this invention. 本発明の実施例4の光干渉法を用いた計測方法に用いる第5の軸調整用チップの説明図である。It is explanatory drawing of the 5th axis | shaft adjustment chip | tip used for the measuring method using the optical interferometry of Example 4 of this invention. 本発明の実施例4の光干渉法を用いた計測方法の説明図である。It is explanatory drawing of the measuring method using the optical interferometry of Example 4 of this invention. 本発明の実施例5の光干渉法を用いた計測方法の説明図である。It is explanatory drawing of the measuring method using the optical interferometry of Example 5 of this invention. エッチングホールの深さの計測方法の説明図である。It is explanatory drawing of the measuring method of the depth of an etching hole. 表面から計測を行う場合の説明図である。It is explanatory drawing in the case of measuring from the surface. 市販のセンサの一例の構成説明図である。It is a structure explanatory view of an example of a commercial sensor. TSV領域を計測して得られた干渉スペクトルの説明図である。It is explanatory drawing of the interference spectrum obtained by measuring a TSV area | region. センサヘッドと試料の配置関係の説明図である。It is explanatory drawing of the arrangement | positioning relationship between a sensor head and a sample. 試料の平坦面にセンサ光を照射する場合のセンサヘッドと試料の配置関係の説明図である。It is explanatory drawing of the arrangement | positioning relationship between a sensor head and a sample in the case of irradiating sensor light to the flat surface of a sample.
 ここで、図1を参照して、本発明の実施の形態の光干渉法を用いた計測装置及び計測方法を説明する。図1は、本発明の実施の形態の光干渉法を用いた計測装置の概念的構成図である。光干渉法により距離を計測するセンサ1と、光軸がセンサ1の光軸と一定の関係にある光学顕微鏡2と、測定対象となる試料5を載置する試料ステージ4とを備えている。また、計測時においてセンサ1のセンサヘッド端と試料5の表面の距離を一定に保つ手段と、試料5の表面からの反射光の干渉強度が最も大きくなるように試料5の表面またはセンサ1の光軸の一方を傾斜させる傾斜調整手段を備えている。 Here, with reference to FIG. 1, a measuring apparatus and a measuring method using the optical interferometry according to the embodiment of the present invention will be described. FIG. 1 is a conceptual configuration diagram of a measuring apparatus using an optical interferometry according to an embodiment of the present invention. A sensor 1 for measuring a distance by an optical interference method, an optical microscope 2 whose optical axis is in a fixed relationship with the optical axis of the sensor 1, and a sample stage 4 on which a sample 5 to be measured is placed. Further, at the time of measurement, a means for keeping the distance between the sensor head end of the sensor 1 and the surface of the sample 5 constant, and the surface of the sample 5 or the sensor 1 so that the interference intensity of reflected light from the surface of the sample 5 is maximized. Inclination adjusting means for inclining one of the optical axes is provided.
 センサ1の光学系の少なくとも一部を光学顕微鏡2の光学系を共用するようにしても良いし、或いは、センサ1の光学系を、光学顕微鏡2の光学系と別個の光学系としても良い。光学顕微鏡2の光学系と別個の光学系にする場合には光学顕微鏡2と同一視野を観察するためのオフセット座標を記憶する機構を設ける。 The optical system of the optical microscope 2 may be shared by at least a part of the optical system of the sensor 1, or the optical system of the sensor 1 may be a separate optical system from the optical system of the optical microscope 2. When an optical system separate from the optical system of the optical microscope 2 is provided, a mechanism for storing offset coordinates for observing the same field of view as the optical microscope 2 is provided.
 また、センサ1の光学系を、光学顕微鏡2の光学系と別個の光学系とする場合には、センサ1と光学顕微鏡2を固定して同時に試料5との距離を可変に稼働できる共通支持部材3を設けるようにしても良い。この場合、光学顕微鏡2には光軸のみ独立して傾斜する機構を設け、センサ1は光軸を独立して傾斜する傾斜調整機構と試料5との距離を独立して調整できる駆動機構を設ける。 Further, when the optical system of the sensor 1 is an optical system that is separate from the optical system of the optical microscope 2, the common support member that can fix the sensor 1 and the optical microscope 2 and operate the distance to the sample 5 at the same time is variably operated. 3 may be provided. In this case, the optical microscope 2 is provided with a mechanism that tilts only the optical axis independently, and the sensor 1 is provided with a drive mechanism that can independently adjust the distance between the tilt adjusting mechanism that tilts the optical axis independently and the sample 5. .
 或いは、センサ1と光学顕微鏡2を固定して同時に試料との距離を可変に稼働できる 共通支持部材3を設けた場合、試料ステージ5に独立して傾斜を調整できる傾斜調整機構を設けても良い。この場合、センサ1側にのみ光軸を独立して傾斜する傾斜調整機構と試料5との距離を独立して調整できる駆動機構を設ければ良い。 Alternatively, when the common support member 3 that can operate the variable distance from the sample at the same time while fixing the sensor 1 and the optical microscope 2 is provided, the sample stage 5 may be provided with a tilt adjusting mechanism that can adjust the tilt independently. . In this case, a drive mechanism that can independently adjust the distance between the tilt adjusting mechanism that tilts the optical axis independently of the sensor 1 and the sample 5 may be provided.
 このような計測装置を用いて計測する場合には、
Σ:光学顕微鏡2により測定対象となる試料5の表面との距離を一定に保った状態で試料5の表面を観察しながら、センサ1のセンサヘッド端と試料5の表面の距離を一定に保った状態でセンサ光を試料5に照射する。
Σ:次いで、試料5の表面からのセンサ光の反射光または試料5の表面とセンサヘッド端からの反射光の干渉強度が最も大きくなるように試料5の表面またはセンサ1の光軸の一方を傾斜させる。
Σ:次いで、試料の表面からの反射光または試料5の表面とセンサヘッド端からの反射光の干渉強度が最も大きくなった状態で、センサヘッド端からの反射光の干渉波形を計測して光干渉法により計測対象部とセンサヘッド端との距離を判定する。
When measuring with such a measuring device,
Σ 1 : The distance between the sensor head end of the sensor 1 and the surface of the sample 5 is made constant while observing the surface of the sample 5 with the optical microscope 2 keeping the distance from the surface of the sample 5 to be measured constant. The sample light 5 is irradiated with the sensor light while being kept.
Σ 2 : Next, one of the surface of the sample 5 or the optical axis of the sensor 1 so that the reflected light of the sensor light from the surface of the sample 5 or the interference intensity of the reflected light from the surface of the sample 5 and the end of the sensor head is maximized. Tilt.
Σ 3 : Next, the interference waveform of the reflected light from the sensor head end is measured in a state where the interference intensity of the reflected light from the sample surface or the reflected light from the surface of the sample 5 and the sensor head end is maximized. The distance between the measurement target portion and the sensor head end is determined by optical interferometry.
 この場合の試料としてはシリコンウェーハ等の半導体基板が典型的なものであり、計測対象部としては、半導体基板に設けた貫通ヴィア用のヴィア穴が典型的なものである。 In this case, the sample is typically a semiconductor substrate such as a silicon wafer, and the measurement target portion is typically a via hole for a through via provided in the semiconductor substrate.
 この時、貫通ヴィア用のヴィア穴の底面の荒れを評価するためには、センサ光のプローブ径をヴィア穴のヴィア径の3/4以下にすれば良い。或いは、試料5のヴィア底の荒れを評価する場合には、センサ光を、ヴィア穴と、ヴィア穴を設けていない試料5の平坦面に照射し比較すれば良い。 At this time, in order to evaluate the roughness of the bottom surface of the via hole for the penetrating via, the probe diameter of the sensor light may be set to 3/4 or less of the via diameter of the via hole. Alternatively, when evaluating the roughness of the via bottom of the sample 5, the sensor light may be irradiated to the flat surface of the sample 5 that is not provided with the via hole and compared.
 この時、測定した干渉波形をフーリエ変換してパワースペクトルを得て、パワースペクトルの強度及び形状を相互比較して解析することにより、ヴィア穴の底面の平坦度及びヴィア穴近傍の試料の表面の表面粗さを算出することが可能になる。 At this time, the measured interference waveform is Fourier-transformed to obtain a power spectrum, and the intensity and shape of the power spectrum are compared and analyzed, whereby the flatness of the bottom surface of the via hole and the surface of the sample near the via hole are analyzed. It becomes possible to calculate the surface roughness.
 本発明の実施の形態においては、センサのアライメント法及び機構を工夫することにより、市販のセンサを用いて、アスペクト比が10以上の深いヴィア穴等の深さの測定が可能になる。また、センサとワークの距離を精密に一定にして測定を行っているため、干渉波形の強度の絶対値の比較が可能になり、ヴィア径の評価、ヴィア底の平坦面の面積評価、試料表面やヴィア底の荒れの評価が可能になる。 In the embodiment of the present invention, by devising the alignment method and mechanism of the sensor, it is possible to measure the depth of a deep via hole having an aspect ratio of 10 or more using a commercially available sensor. In addition, since the measurement is performed with the distance between the sensor and the workpiece precisely fixed, it is possible to compare the absolute values of the interference waveform intensity, evaluate the via diameter, evaluate the area of the flat surface of the via bottom, and the sample surface. And the roughness of the bottom of the via can be evaluated.
 但し、上述の方法では、ウェーハエッジを除き、実際に形成された高アスペクト比の孔を用いるため、孔径が小さくなるにつれ、センサの傾斜軸のずれや孔底の平坦性のせいで孔底からの信号が得られなくなり、調整が困難になる虞がある。 However, since the above method uses holes with a high aspect ratio that are actually formed except for the wafer edge, as the hole diameter decreases, the tilt axis of the sensor and the flatness of the hole bottom cause it to move away from the hole bottom. May not be obtained and adjustment may be difficult.
 そこで、このような問題を解消するために、軸調整工程において、計測対象部の平面面積の±10%の範囲内の平面面積を有する突起または凹部からなる軸調整構造物を有する軸調整専用部材を用いる。 Therefore, in order to solve such a problem, in the shaft adjustment step, a shaft adjustment dedicated member having a shaft adjustment structure including a projection or a recess having a planar area within a range of ± 10% of the planar area of the measurement target portion. Is used.
 例えば、軸調整専用部材として、複数の異なった平面面積を有する突起を有する軸調整専用部材を用いれば良い。具体的には、同じ高さで異なった平面面積の突起を例えば、100μm以上のピッチで配列すれば良い。 For example, a shaft adjustment dedicated member having a plurality of protrusions having different planar areas may be used as the shaft adjustment dedicated member. Specifically, projections having the same height and different planar areas may be arranged at a pitch of 100 μm or more, for example.
 或いは、軸調整専用部材として、複数の異なった平面面積を有し、アスペクト比が1以下の凹部を有する軸調整専用部材を用いれば良い。具体的には、同じ深さで異なった平面面積の凹部を100μm以上のピッチで配列すれば良い。 Alternatively, as the shaft adjustment dedicated member, a shaft adjustment dedicated member having a plurality of different planar areas and having a recess having an aspect ratio of 1 or less may be used. Specifically, the concave portions having the same depth and different planar areas may be arranged at a pitch of 100 μm or more.
 或いは、軸調整専用部材として、同心円筒状の突起をサイズの大きな順に積層した段差状突起を有する軸調整専用部材、或いは、同心円筒状の凹部をサイズが大きな順に掘り下げた段差状凹部を有する軸調整専用部材を用いても良い。さらには、同心円筒状の凹部をサイズが大きな順に掘り下げた段差状凹部と、段差状凹部の中心に設けた突起を有する軸調整専用部材を用いても良い。 Alternatively, as a shaft adjustment dedicated member, a shaft adjustment dedicated member having a stepped protrusion in which concentric cylindrical protrusions are stacked in order of size, or a shaft having a stepped recess in which concentric cylindrical recesses are dug in order of size. A dedicated adjustment member may be used. Furthermore, a shaft adjustment dedicated member having a stepped recess formed by digging concentric cylindrical recesses in descending order of size and a protrusion provided at the center of the stepped recess may be used.
 但し、突起の表面は原子レベルで平坦であるので、突起を設けた軸調整専用部材の方が望ましい。なお、この軸調整専用部材の周辺部に、X型向またはY型向のナイフエッジを設けておくことが望ましい。 However, since the surface of the projection is flat at the atomic level, a dedicated shaft adjustment member provided with a projection is preferable. In addition, it is desirable to provide a knife edge in the X-type or Y-type direction in the peripheral portion of this axis adjustment dedicated member.
 この様な軸調整専用部材を用いて光学顕微鏡及びセンサの光軸を調整する場合には、
a.突起または凹部の側壁が見えない状態或いは突起の面積または凹部の面積が最大になるように試料または前記光学顕微鏡の傾斜を調整する。
b.次いで、突起の表面或いは凹部の底面までの距離を規定値にした状態で、干渉ピークが最大になるように前記センサの光軸を調整するとともに光学顕微鏡に対するオフセット量を微調整する。
When adjusting the optical axis of the optical microscope and sensor using such a dedicated axis adjustment member,
a. The inclination of the sample or the optical microscope is adjusted so that the side walls of the protrusions or recesses are not visible or the area of the protrusions or the area of the recesses is maximized.
b. Next, the optical axis of the sensor is adjusted and the offset amount with respect to the optical microscope is finely adjusted so that the interference peak is maximized in a state where the distance to the surface of the protrusion or the bottom surface of the recess is set to a specified value.
 次に、図2乃至図4を参照して、本発明の実施例1の光干渉法を用いた計測装置及び計測方法を説明する。図2は、本発明の実施例1の光干渉法を用いた計測装置の概念的構成図であり、光干渉法により距離を計測するセンサ11と光学顕微鏡12と両者を固定する共通支持ブロック13と、試料を載置する試料ステージ14とを備えている。センサ11としては、SI-F10(キーエンス社製商品型番)にz軸方向に独立に移動可能で、x軸方向及びy軸方向に光軸を傾斜可能な機構を付けて用いる。光学顕微鏡12は独立してx軸方向及びy軸方向に傾斜可能であり、z軸方向の移動は共通支持ブロック13により行う。試料ステージ14は真空チャック機構を備えており、半導体ウェーハ等の試料15を載置・固定する。但し、この場合、試料ステージは傾斜機構を備える必要はない。 Next, with reference to FIGS. 2 to 4, a measuring apparatus and a measuring method using the optical interferometry according to the first embodiment of the present invention will be described. FIG. 2 is a conceptual configuration diagram of the measuring apparatus using the optical interferometry according to the first embodiment of the present invention. The sensor 11 that measures the distance by the optical interferometry, the optical microscope 12, and the common support block 13 that fixes both of them. And a sample stage 14 on which the sample is placed. As the sensor 11, SI-F10 (a product number manufactured by Keyence Corporation) is used with a mechanism that can move independently in the z-axis direction and tilt the optical axis in the x-axis direction and the y-axis direction. The optical microscope 12 can be tilted independently in the x-axis direction and the y-axis direction, and the movement in the z-axis direction is performed by the common support block 13. The sample stage 14 includes a vacuum chuck mechanism, and mounts and fixes a sample 15 such as a semiconductor wafer. However, in this case, the sample stage does not need to have an inclination mechanism.
 図3は、計測に使用する光源の波長分布図であり、ここでは、820nmの近赤外領域に波長ピークを有する赤外SLDを光源として用いる。但し、従来のように、シリコン基板内を透過させるものではないので、赤外光に限られるものではない。 FIG. 3 is a wavelength distribution diagram of a light source used for measurement. Here, an infrared SLD having a wavelength peak in the near-infrared region of 820 nm is used as a light source. However, since it does not transmit through the silicon substrate as in the prior art, it is not limited to infrared light.
 次に、計測方法を説明する。
:まず、光学顕微鏡12のカメラで軸合わせ用のパターン(例えば、φ20μmのTSV)を見ながら垂直入射になるよう共通支持ブロック13を動かし、フォーカス合わせ、チルト軸調整を行う。この時、光学顕微鏡12が試料法線方向になるよう調整するものであり、ヴィア底が見えるようになるか、または、ヴィア径が最大になるように調整すれば良い。
:次いで、センサ11と光学顕微鏡12の座標オフセットを求める。例えば、アライメント用の試料として、表面にL字溝パターン或いは十字溝パターンを形成しているものを準備し、このL字溝パターン或いは十字溝パターンを利用してx軸、y軸の調整を行う。
:次いで、センサ11と光学顕微鏡12がパターンの無い平坦領域に対応するように試料ステージ14を移動する。
:次いで、センサ端と試料15の表面からの反射光の干渉によるピークの示す距離が所定の値になるようにセンサ11の独立しているz軸を調整する。例えば、11.0mmの距離に設定する。なお、センサ11と試料15との間の距離が所望値の時、光学顕微鏡12の焦点が合っている状態に調整する。
:次いで、センサ端と試料15の表面からの反射光の干渉によるピークが最大になるようにセンサ11の傾斜を微調整する。なお、このような微調整は多くの場合0.5°未満である。或いは、センサ端とTSVの底面からの反射光の干渉によるピークが最大になるようにしても良い。
:以降は、S~Sの工程を繰り返し、センサ11と試料15との間の距離が所望値で、最もピーク強度が取れる位置にセンサの傾斜軸とオフセット(x,y)を調整する。
Next, a measurement method will be described.
S 1 : First, the common support block 13 is moved so as to be perpendicularly incident while viewing the pattern for axis alignment (for example, TSV of φ20 μm) with the camera of the optical microscope 12, and focus adjustment and tilt axis adjustment are performed. At this time, the optical microscope 12 is adjusted so as to be in the sample normal direction, and may be adjusted so that the via bottom can be seen or the via diameter is maximized.
S 2 : Next, a coordinate offset between the sensor 11 and the optical microscope 12 is obtained. For example, a sample having an L-shaped groove pattern or a cross groove pattern formed on the surface is prepared as an alignment sample, and the x-axis and y-axis are adjusted using the L-shaped groove pattern or the cross-shaped groove pattern. .
S 3 : Next, the sample stage 14 is moved so that the sensor 11 and the optical microscope 12 correspond to a flat region having no pattern.
S 4 : Next, the independent z-axis of the sensor 11 is adjusted so that the distance indicated by the peak due to interference of reflected light from the sensor end and the surface of the sample 15 becomes a predetermined value. For example, the distance is set to 11.0 mm. When the distance between the sensor 11 and the sample 15 is a desired value, the optical microscope 12 is adjusted to be in focus.
S 5 : Next, the inclination of the sensor 11 is finely adjusted so that the peak due to interference of reflected light from the sensor end and the surface of the sample 15 is maximized. Such fine adjustment is often less than 0.5 °. Alternatively, the peak due to interference of reflected light from the sensor end and the bottom surface of the TSV may be maximized.
S 6 : Thereafter, the steps S 2 to S 5 are repeated, and the sensor tilt axis and the offset (x, y) are set at a position where the distance between the sensor 11 and the sample 15 is a desired value and the maximum peak intensity can be obtained. adjust.
 以上の調整により、光学顕微鏡12の焦点位置でセンサ11の光軸と試料15の鉛直方向が同じになるので、次に、実際の測定を開始する。
:被測定用の試料15を試料ステージ14上に載置・固定した状態で、共通支持ブロック13を動かし、光学顕微鏡12の焦点合わせを行う。
:センサ11を試料15に形成したTSVの位置に移動させて、センサ11と試料15の表面との距離が所定値になるよう共通支持ブロック14をz方向に動かし微調整を行ったのち、TSVの深さを計測する。
With the above adjustment, the optical axis of the sensor 11 and the vertical direction of the sample 15 become the same at the focal position of the optical microscope 12, and then actual measurement is started.
S 7 : With the sample 15 to be measured placed and fixed on the sample stage 14, the common support block 13 is moved to focus the optical microscope 12.
S 8 : After the sensor 11 is moved to the position of the TSV formed on the sample 15 and the common support block 14 is moved in the z direction so that the distance between the sensor 11 and the surface of the sample 15 becomes a predetermined value, fine adjustment is performed. The TSV depth is measured.
 この時、センサ先端部に参照面を有している場合は、プローブ径は、計測するヴィア径と平坦部を含む大きさ、例えば、直径40μmでも良いし、ヴィア径より十分小さく、例えば、ヴィア径より小さくても良い。 At this time, when the sensor tip has a reference surface, the probe diameter may be a size including a via diameter and a flat portion to be measured, for example, a diameter of 40 μm, or sufficiently smaller than the via diameter. It may be smaller than the diameter.
 プローブ径を、計測するヴィア径と平坦部を含む大きさにした場合には、
(1)ピーク強度からヴィア径を推定することが可能になった。また、
(2)干渉ピークの波形の広がりから表面の荒れを推定することが可能になった。
When the probe diameter is made to include the via diameter to be measured and the flat part,
(1) The via diameter can be estimated from the peak intensity. Also,
(2) Surface roughness can be estimated from the broadening of the interference peak waveform.
 一方、プローブ径をヴィア径より小さくした場合には、
(3)ピーク強度からヴィア底の平坦面の面積評価が可能になった。また、
(4)干渉ピークの波形の広がりからヴィア底の荒れを推定することが可能になった。
On the other hand, when the probe diameter is smaller than the via diameter,
(3) The area of the flat surface at the bottom of the via can be evaluated from the peak intensity. Also,
(4) The roughness of the via bottom can be estimated from the broadening of the waveform of the interference peak.
 図4は、センサヘッドと試料表面からの反射光の干渉波形の説明図であり、図4(a)は表面が平坦な試料の干渉波形であり、図4(b)は表面が荒れた試料の干渉波形である。図4(a)に示すように、表面が平坦な試料で、干渉波形はシャープな波形となりそのピークにおける強度が高くなる。一方、図4(b)に示すように表面が荒れた試料の干渉波形はピークの半値幅が拡がるとともに、ピークの強度が低下する。このような平坦面から得られる干渉波形の形状を予め計測しておくことで、試料の表面の荒れやビア底の荒れを評価することが可能になる。 FIG. 4 is an explanatory diagram of an interference waveform of reflected light from the sensor head and the sample surface, FIG. 4 (a) is an interference waveform of a sample with a flat surface, and FIG. 4 (b) is a sample with a rough surface. This is an interference waveform. As shown in FIG. 4A, a sample having a flat surface has a sharp interference waveform and a high intensity at the peak. On the other hand, as shown in FIG. 4B, the half-width of the peak of the interference waveform of the sample having a rough surface increases, and the intensity of the peak decreases. By measuring the shape of the interference waveform obtained from such a flat surface in advance, it becomes possible to evaluate the roughness of the surface of the sample and the roughness of the via bottom.
 このように、本発明の実施例1においては、センサのアライメント法及び共通支持ブロック等の機構を工夫することにより、市販のセンサ、例えば、センサSI-F10(キーエンス社製商品型番)を用いてアスペクト比の高いヴィア穴の測定が可能になった。因みに、ヴィア径φ3.2μmで深さ34μmのヴィアの計測が可能になった。また、ヴィア径5μmで深さが54μm、ヴィア径が10μmで深さが162μmのヴィア穴等のアスペクト比が10以上のヴィア穴の測定もでき、市販のセンサを用いた従来計測技術では予想しえない成果が得られた。 As described above, in the first embodiment of the present invention, a commercially available sensor, for example, the sensor SI-F10 (manufactured by Keyence Corporation) is used by devising the sensor alignment method and the common support block mechanism. Measurement of via holes with a high aspect ratio is possible. Incidentally, it became possible to measure vias with a via diameter of 3.2 μm and a depth of 34 μm. In addition, via holes with an aspect ratio of 10 or more, such as via holes with a via diameter of 5 μm and a depth of 54 μm, a via diameter of 10 μm and a depth of 162 μm, can be measured. Unusual results were obtained.
 次に、図5及び図6を参照して、本発明の実施例2の光干渉法を用いた計測装置及び計測方法を説明する。図5は、本発明の実施例2の光干渉法を用いた計測装置の概念的構成図であり、光干渉法により距離を計測するセンサ21と光学顕微鏡22と両者を固定する共通支持ブロック23と、試料を載置する試料ステージ24とを備えている。センサ21としては、SI-F10(キーエンス社製商品型番)にz軸方向に独立に移動可能で、x軸方向及びy軸方向に光軸を傾斜可能な機構を付けて用いる。光学顕微鏡22は共通支持ブロック23によりz軸方向の調整を行い、x軸方向及びy軸方向の傾斜調整機構は備えていない。試料ステージ24は真空チャック機構及び傾斜機構を備えており、半導体ウェーハ等の試料25を載置・固定するとともに、試料25の法線方向の傾きを調整する。なお、実施例2においても、上記の図2に示したスペクトル特性を有する光源を用いる。 Next, with reference to FIGS. 5 and 6, a measuring apparatus and a measuring method using the optical interferometry according to the second embodiment of the present invention are described. FIG. 5 is a conceptual configuration diagram of a measuring apparatus using the optical interferometry according to the second embodiment of the present invention. The sensor 21 that measures the distance by the optical interferometry, the optical microscope 22, and a common support block 23 that fixes both of them. And a sample stage 24 on which the sample is placed. As the sensor 21, SI-F10 (a product number manufactured by Keyence Corporation) is used with a mechanism that can move independently in the z-axis direction and tilt the optical axis in the x-axis direction and the y-axis direction. The optical microscope 22 performs adjustment in the z-axis direction using the common support block 23 and does not include an inclination adjustment mechanism in the x-axis direction and the y-axis direction. The sample stage 24 includes a vacuum chuck mechanism and an inclination mechanism, and places and fixes a sample 25 such as a semiconductor wafer and adjusts the inclination of the sample 25 in the normal direction. Also in Example 2, the light source having the spectral characteristics shown in FIG. 2 is used.
 図6は、試料ステージの傾斜機構の説明図であり、図6(a)は下面図であり、図6(b)は側面図である。図に示すように、試料ステージ24の下部に3本のピン26~26を備えており、この3本のピン26~26を上下に動かすことにより容易にあらゆる方向に試料ステージ24を安定して傾斜させることができる。 6A and 6B are explanatory views of the tilt mechanism of the sample stage, FIG. 6A is a bottom view, and FIG. 6B is a side view. As shown in the figure, three pins 26 1 to 26 3 are provided at the lower part of the sample stage 24, and the sample stage 24 can be easily moved in all directions by moving the three pins 26 1 to 26 3 up and down. Can be stably tilted.
 次に、計測方法を説明する。
:まず、光学顕微鏡22のカメラで軸合わせ用のパターン(例えば、φ20μmのTSV)を見ながら垂直入射になるよう共通支持ブロック23を動かし、フォーカス合わせを行うとともに、試料ステージ24の傾斜軸を調整して垂直入射になるようにする。この時、光学顕微鏡12が試料法線方向になるよう調整するものであり、ヴィア底が見えるようになるか、または、ヴィア径が最大になるように調整すれば良い。
:次いで、センサ21と光学顕微鏡22の座標オフセットを求める。例えば、実施例1と同様に、アライメント用標準試料として表面にL字溝パターン或いは十字溝パターンを形成したものを準備しておき、このL字溝パターン或いは十字溝パターンを利用してx軸、y軸の調整を行う。
:次いで、センサ21と光学顕微鏡22がパターンの無い平坦領域に対応するように試料ステージ24を移動する。
:次いで、センサ端と試料25の表面からの反射光の干渉によるピークの示す距離が所定の値になるようにセンサ21の独立しているz軸を調整する。例えば、11.0mmの距離に設定する。なお、この場合も、センサ21と試料25との間の距離が所望値の時、光学顕微鏡22の焦点が合っている状態に調整する。
:次いで、センサ端と試料25の表面からの反射光の干渉によるピークが最大になるようにセンサ21の傾斜を微調整する。なお、このような微調整は多くの場合0.5°未満である。或いは、センサ端とTSVの底面からの反射光の干渉によるピークが最大になるようにしても良い。
:以降は、s~sの工程を繰り返し、センサ21と試料25との間の距離が所望値で、最もピーク強度が取れる位置にセンサの傾斜軸とオフセット(x,y)を調整する。
Next, a measurement method will be described.
s 1 : First, the common support block 23 is moved so as to be perpendicularly incident while viewing the pattern for axis alignment (for example, φ20 μm TSV) with the camera of the optical microscope 22 to perform focusing, and the tilt axis of the sample stage 24 To adjust for normal incidence. At this time, the optical microscope 12 is adjusted so as to be in the sample normal direction, and may be adjusted so that the via bottom can be seen or the via diameter is maximized.
s 2 : Next, a coordinate offset between the sensor 21 and the optical microscope 22 is obtained. For example, as in the first embodiment, an alignment standard sample having an L-shaped groove pattern or a cross-shaped groove pattern formed on the surface is prepared, and this L-shaped groove pattern or the cross-shaped groove pattern is used to prepare an x-axis, Adjust the y-axis.
s 3 : Next, the sample stage 24 is moved so that the sensor 21 and the optical microscope 22 correspond to a flat region having no pattern.
s 4 : Next, the independent z axis of the sensor 21 is adjusted so that the distance indicated by the peak due to interference of reflected light from the sensor end and the surface of the sample 25 becomes a predetermined value. For example, the distance is set to 11.0 mm. In this case as well, the optical microscope 22 is adjusted to be in focus when the distance between the sensor 21 and the sample 25 is a desired value.
s 5 : Next, the inclination of the sensor 21 is finely adjusted so that the peak due to interference of reflected light from the sensor end and the surface of the sample 25 becomes maximum. Such fine adjustment is often less than 0.5 °. Alternatively, the peak due to interference of reflected light from the sensor end and the bottom surface of the TSV may be maximized.
s 6 : Thereafter, the processes of s 2 to s 5 are repeated, and the sensor tilt axis and the offset (x, y) are set at a position where the distance between the sensor 21 and the sample 25 is a desired value and the maximum peak intensity can be obtained. adjust.
 以上の調整により、光学顕微鏡22の焦点位置でセンサ21の光軸と試料25の鉛直方向が同じになるので、次に、実際の測定を開始する。
:被測定用の試料25を試料ステージ24上に載置・固定した状態で、共通支持ブロック23を動かし、光学顕微鏡22の焦点合わせを行う。
:センサ21を試料25に形成したTSVの位置に移動させて、センサ21と試料25の表面との距離が所定値になるよう共通支持ブロック24をz方向に動かし微調整を行ったのち、TSVの深さを計測する。
With the above adjustment, the optical axis of the sensor 21 and the vertical direction of the sample 25 become the same at the focal position of the optical microscope 22, and then actual measurement is started.
s 7 : With the sample 25 to be measured placed and fixed on the sample stage 24, the common support block 23 is moved and the optical microscope 22 is focused.
s 8 : After moving the sensor 21 to the position of the TSV formed on the sample 25 and moving the common support block 24 in the z direction so that the distance between the sensor 21 and the surface of the sample 25 becomes a predetermined value, fine adjustment is performed. The TSV depth is measured.
 この時、センサ先端部に参照面を有している場合は、上記の実施例1と同様に、プローブ径は、計測するヴィア径と平坦部を含む大きさ、例えば、直径40μmでも良いし、ヴィア径より十分小さく、例えば、ヴィア径の3/4以下でも良い。 At this time, when the sensor tip has a reference surface, the probe diameter may be a size including the via diameter to be measured and the flat portion, for example, a diameter of 40 μm, as in the first embodiment. It may be sufficiently smaller than the via diameter, for example, 3/4 or less of the via diameter.
 上記の実施例1と同様に、プローブ径を、計測するヴィア径と平坦部を含む大きさにした場合には、
(1)ピーク強度からヴィア径を推定することが可能になった。また、
(2)干渉ピークの波形の広がりから表面の荒れを推定することが可能になった。
As in Example 1 above, when the probe diameter is made to include the via diameter to be measured and the flat portion,
(1) The via diameter can be estimated from the peak intensity. Also,
(2) Surface roughness can be estimated from the broadening of the interference peak waveform.
 一方、プローブ径をヴィア径より小さくした場合には、
(3)ピーク強度からヴィア底の平坦面の面積評価が可能になった。また、
(4)干渉ピークの波形の広がりからヴィア底の荒れを推定可能になった。
On the other hand, when the probe diameter is smaller than the via diameter,
(3) The area of the flat surface at the bottom of the via can be evaluated from the peak intensity. Also,
(4) The roughness of the via bottom can be estimated from the broadening of the waveform of the interference peak.
 次に、図7を参照して、本発明の実施例3の光干渉法を用いた計測装置及び計測方法を説明する。図7は本発明の実施例3の光干渉法を用いた計測装置の概念的構成図であり、光軸内に光学ミラー33が挿入された光学顕微鏡32と、光学ミラー33を共用して光学顕微鏡に挿入されたセンサヘッド31とを備えている。また、実施例2と同様に真空チャック機構及び傾斜機構を備えた試料ステージ34を備えている。センサヘッド31は、x軸、y軸及びz軸が独立稼動するとともに、光学顕微鏡32は試料法線方向に独立稼働する。なお、図における符号36~36ピンである。 Next, with reference to FIG. 7, the measuring apparatus and measuring method using the optical interference method of Example 3 of this invention are demonstrated. FIG. 7 is a conceptual configuration diagram of a measuring apparatus using the optical interferometry according to the third embodiment of the present invention. The optical microscope 32 in which the optical mirror 33 is inserted in the optical axis and the optical mirror 33 are used in common. And a sensor head 31 inserted into a microscope. Moreover, the sample stage 34 provided with the vacuum chuck mechanism and the inclination mechanism is provided similarly to the second embodiment. The sensor head 31 operates independently in the x-axis, y-axis, and z-axis, and the optical microscope 32 operates independently in the sample normal direction. Reference numerals 36 1 to 36 3 in the figure denote pins.
 次に、計測方法を説明すると、
σ:まず、光学顕微鏡32のカメラで軸合わせ用のパターン(例えば、φ20μmのTSV)を見ながら垂直入射になるよう試料ステージ34を傾斜させ、フォーカス合わせを行う。この時、光学顕微鏡12が試料法線方向になるよう調整するものであり、ヴィア底が見えるようになるか、または、ヴィア径が最大になるように調整すれば良い。
σ:次いで、センサのx軸及びy軸の調整により、光学顕微鏡32と同一視野になるように調整する。例えば、アライメント用標準試料として表面にL字溝パターン或いは十字溝パターンを形成したものを準備しておき、このL字溝パターン或いは十字溝パターンを利用してx軸、y軸の調整を行う。σ:次いで、光学顕微鏡32がパターンの無い平坦領域に対応するように試料ステージ34を移動する。
σ:次いで、センサ端と試料35の表面からの反射光の干渉によるピークの示す距離が所定の値になるようにセンサヘッド31の独立しているz軸を調整する。例えば、80mmの距離に設定する。なお、この場合も、センサヘッド31と試料35との間の距離が所望値の時、光学顕微鏡32の焦点が合っている状態に調整する。
σ:σ~σの工程を繰り返し、センサヘッド31と試料35との間の距離が所望値で、光学顕微鏡32の光軸とセンサの光軸が同じになるように調整する。
Next, explaining the measurement method,
σ 1 : First, the sample stage 34 is tilted so as to be perpendicularly incident while viewing the pattern for axis alignment (for example, TSV of φ20 μm) with the camera of the optical microscope 32, and focusing is performed. At this time, the optical microscope 12 is adjusted so as to be in the sample normal direction, and may be adjusted so that the via bottom can be seen or the via diameter is maximized.
σ 2 : Next, the sensor is adjusted so as to have the same field of view as the optical microscope 32 by adjusting the x-axis and y-axis of the sensor. For example, an alignment standard sample having an L-shaped groove pattern or a cross-shaped groove pattern formed on the surface is prepared, and the x-axis and y-axis are adjusted using the L-shaped groove pattern or the cross-shaped groove pattern. σ 3 : Next, the sample stage 34 is moved so that the optical microscope 32 corresponds to a flat region without a pattern.
σ 4 : Next, the independent z-axis of the sensor head 31 is adjusted so that the distance indicated by the peak due to interference of reflected light from the sensor end and the surface of the sample 35 becomes a predetermined value. For example, the distance is set to 80 mm. In this case as well, the optical microscope 32 is adjusted to be in focus when the distance between the sensor head 31 and the sample 35 is a desired value.
σ 5 : The steps of σ 2 to σ 4 are repeated, and the distance between the sensor head 31 and the sample 35 is adjusted to a desired value, and the optical axis of the optical microscope 32 and the optical axis of the sensor are adjusted to be the same.
 以上の調整により、光学顕微鏡32の焦点位置でセンサヘッド31の光軸と試料35の鉛直方向が同じになるので、次に、実際の測定を開始する。
σ:被測定用の試料35を試料ステージ34上に載置・固定した状態で、図示しない光学顕微鏡32を支持する支持ブロックを動かし、光学顕微鏡32の焦点合わせを行う。
σ:光学顕微鏡32を試料35に形成したTSVの位置に移動させて、センサヘッド31と試料35の表面との距離が所定値になるよう光学顕微鏡のz軸移動機構を動かし微調整した後、TSV深さを計測する。
With the above adjustment, the optical axis of the sensor head 31 and the vertical direction of the sample 35 become the same at the focal position of the optical microscope 32. Next, actual measurement is started.
σ 6 : With the sample 35 to be measured placed and fixed on the sample stage 34, the support block that supports the optical microscope 32 (not shown) is moved to focus the optical microscope 32.
σ 7 : After the optical microscope 32 is moved to the position of the TSV formed on the sample 35 and the z-axis moving mechanism of the optical microscope is moved and finely adjusted so that the distance between the sensor head 31 and the surface of the sample 35 becomes a predetermined value. Measure TSV depth.
 この時、センサ先端部に参照面を有している場合は、プローブ径は、計測するヴィア径と平坦部を含む大きさ、例えば、直径40μmにする。なお、実施例3においては参照光の波長と光学顕微鏡の波長が異なるので、プローブ径を小さくすることは困難である。この実施例3においては、
(1)ピーク強度からヴィア径を推定することが可能になった。また、
(2)干渉ピークの波形の広がりから表面の荒れを推定可能になった。
At this time, when the sensor tip has a reference surface, the probe diameter is set to a size including a via diameter and a flat portion to be measured, for example, a diameter of 40 μm. In Example 3, since the wavelength of the reference light is different from the wavelength of the optical microscope, it is difficult to reduce the probe diameter. In this Example 3,
(1) The via diameter can be estimated from the peak intensity. Also,
(2) Surface roughness can be estimated from the broadening of the interference peak waveform.
 この実施例3においては、光学ミラーを共用することによって、センサの光軸と光学顕微鏡の光軸が一致しているので、センサの光軸と光学顕微鏡の光軸とのオフセット量の計測工程が不要になる。 In Example 3, since the optical axis of the sensor and the optical axis of the optical microscope coincide with each other by sharing the optical mirror, the step of measuring the offset amount between the optical axis of the sensor and the optical axis of the optical microscope is performed. It becomes unnecessary.
 次に、図8乃至図16を参照して、本発明の実施例4の光干渉法を用いた計測方法を説明するが、計測装置自体は上記の実施例1或いは実施例2の計測装置を用いる。本発明の実施例4においては、実際に形成された高アスペクト比の孔ではなく、軸調整専用のチップを用いるので、まず、図8乃至図15を参照して、軸調整用チップを説明する。 Next, a measurement method using the optical interferometry according to the fourth embodiment of the present invention will be described with reference to FIGS. 8 to 16. The measurement device itself is the same as the measurement device according to the first or second embodiment. Use. In the fourth embodiment of the present invention, since the tip for exclusive use of the axis adjustment is used instead of the actually formed high aspect ratio hole, first, the axis adjustment tip will be described with reference to FIGS. .
 図8は、本発明の実施例4の光干渉法を用いた計測方法に用いる第1の軸調整用チップの説明図であり、図8(a)は平面図であり、図8(b)は図8(a)におけるA-A′を結ぶ一点鎖線の水平部を結ぶ断面図である。この第1の軸調整用チップ60は単結晶Si基板を加工して、高さがそれぞれ3μmで、直径が20μm、10μm、5μm及び3μmの突起を50μmのピッチで設けたものである。なお、チップの周囲にはX方向及びY方向のナイフエッヂを設けている。 FIG. 8 is an explanatory diagram of a first axis adjustment chip used in the measurement method using the optical interference method of Example 4 of the present invention, FIG. 8 (a) is a plan view, and FIG. 8 (b). FIG. 9 is a cross-sectional view connecting the horizontal portions of the alternate long and short dash line connecting AA ′ in FIG. The first axis adjusting chip 60 is obtained by processing a single crystal Si substrate and providing projections with a height of 3 μm and diameters of 20 μm, 10 μm, 5 μm, and 3 μm at a pitch of 50 μm. A knife edge in the X direction and the Y direction is provided around the chip.
 次に、図9を参照して、第1の軸調整用チップの製造工程を説明する。まず、図9(a)に示すように、表面が原子レベルに平坦化された単結晶Si基板61を用意する。次いで、図9(b)に示すように、フォトレジストを塗布し、露光・現像することにより、図8に示した円形パターンの開口部63を有するレジストマスク62を形成する。次いで、図9(c)に示すように、レジストマスク62をマスクとして、フロロカーボン系のエッチングガス64を用いて単結晶Si基板61の露出面を3μmだけ掘り下げる。次いで、図9(d)に示すように、レジストマスク62を剥離することで、図8(b)に示した突起65を有する断面形状の第1の軸調整用チップ60が得られる。 Next, with reference to FIG. 9, the manufacturing process of the first shaft adjusting chip will be described. First, as shown in FIG. 9A, a single crystal Si substrate 61 whose surface is flattened to an atomic level is prepared. Next, as shown in FIG. 9B, by applying a photoresist, exposing and developing, a resist mask 62 having the circular pattern openings 63 shown in FIG. 8 is formed. Next, as shown in FIG. 9C, the exposed surface of the single crystal Si substrate 61 is dug down by 3 μm using a fluorocarbon etching gas 64 using the resist mask 62 as a mask. Next, as shown in FIG. 9D, the resist mask 62 is peeled off to obtain the first axis adjusting chip 60 having a cross-sectional shape having the protrusions 65 shown in FIG. 8B.
 この第1の軸調整用チップは、センサ光の照射面を突起65の表面としており、このヒ表面は原子レベルでの平坦性を有しているので、精度の高い計測が可能になる。 In the first axis adjusting chip, the irradiation surface of the sensor light is used as the surface of the projection 65, and the surface of the ridge has flatness at the atomic level, so that highly accurate measurement is possible.
 次に、図10を参照して第2の軸調整用チップを説明する。図10は、本発明の実施例4の光干渉法を用いた計測方法に用いる第2の軸調整用チップの説明図であり、図10(a)は平面図であり、図10(b)は図10(a)におけるA-A′を結ぶ一点鎖線の水平部を結ぶ断面図である。この第2の軸調整用チップは単結晶Si基板を加工して、深さがそれぞれ3μmで、直径が20μm、10μm、5μm及び3μmの凹部を50μmのピッチで設けたものである。なお、チップの周囲にはX方向及びY方向のナイフエッヂを設けている。また、製造工程は、凹凸の関係が逆なだけで、上記の第1の軸調整用チップの製造工程を同様である。 Next, the second axis adjusting chip will be described with reference to FIG. FIG. 10 is an explanatory view of a second axis adjustment chip used in the measurement method using the optical interference method of the fourth embodiment of the present invention, FIG. 10 (a) is a plan view, and FIG. 10 (b). FIG. 11 is a cross-sectional view connecting the horizontal portions of the alternate long and short dash line connecting AA ′ in FIG. This second axis adjusting chip is obtained by processing a single crystal Si substrate and providing recesses having a depth of 3 μm and diameters of 20 μm, 10 μm, 5 μm, and 3 μm at a pitch of 50 μm. A knife edge in the X direction and the Y direction is provided around the chip. Further, the manufacturing process is the same as the manufacturing process of the first axis adjusting chip described above except that the unevenness relationship is reversed.
 この第2の軸調整用チップにおいては、最小径の凹部のアスペクト比を1にして、それ以外の凹部のアスペクト比を1より小さくしているので、軸調整工程において、センサの傾斜軸のずれや凹部の底面の平坦性の影響を受けることがない。 In this second axis adjustment chip, the aspect ratio of the recesses with the smallest diameter is set to 1, and the aspect ratios of the other recesses are set to less than 1, so that the tilt axis of the sensor is shifted in the axis adjustment process. And is not affected by the flatness of the bottom surface of the recess.
 次に、図11を参照して第3の軸調整用チップを説明する。図11は、本発明の実施例4の光干渉法を用いた計測方法に用いる第3の軸調整用チップの説明図であり、図11(a)は平面図であり、図11(b)は図11(a)におけるA-A′を結ぶ一点鎖線の水平部を結ぶ断面図である。この第3の軸調整用チップは単結晶Si基板を加工して、直径が20μm、10μm、5μm及び3μmの突起を順に同心円筒状に5μmの厚さで重ねたものである。なお、チップの周囲にはX方向及びY方向のナイフエッヂを設けている。 Next, a third axis adjusting chip will be described with reference to FIG. FIG. 11 is an explanatory diagram of a third axis adjustment chip used in the measurement method using the optical interference method according to the fourth embodiment of the present invention, FIG. 11 (a) is a plan view, and FIG. 11 (b). FIG. 12 is a cross-sectional view connecting the horizontal portions of the alternate long and short dash line connecting AA ′ in FIG. This third axis adjusting chip is obtained by processing a single crystal Si substrate and sequentially stacking projections having diameters of 20 μm, 10 μm, 5 μm and 3 μm in a concentric cylinder shape with a thickness of 5 μm. A knife edge in the X direction and the Y direction is provided around the chip.
 次に、図12及び図13を参照して、第3の軸調整用チップの製造工程を説明する。まず、図12(a)に示すように、表面が原子レベルに平坦化された単結晶Si基板71上にフォトレジストを塗布し、露光・現像することにより、直径が20μmのパターンを有するレジストマスク72を形成する。次いで、図12(b)に示すように、レジストマスク72をマスクとして、フロロカーボン系のエッチングガス73を用いて単結晶Si基板71の露出面を5μmだけ掘り下げる。次いで、図12(c)に示すように、レジストマスク72を剥離することで、直径が20μmの第1段突起74が形成される。 Next, with reference to FIGS. 12 and 13, the manufacturing process of the third axis adjusting chip will be described. First, as shown in FIG. 12A, a resist mask having a pattern with a diameter of 20 μm is applied by applying a photoresist onto a single crystal Si substrate 71 whose surface is flattened to an atomic level, and exposing and developing. 72 is formed. Next, as shown in FIG. 12B, the exposed surface of the single crystal Si substrate 71 is dug down by 5 μm using a fluorocarbon-based etching gas 73 using the resist mask 72 as a mask. Next, as shown in FIG. 12C, the resist mask 72 is peeled to form the first step protrusion 74 having a diameter of 20 μm.
 次いで、図12(d)に示すように、フォトレジストを塗布し、露光・現像することにより、第1段突起74に対して同心円状になる直径が10μmのパターンを有するレジストマスク75を形成する。レジストマスク75をマスクとして、フロロカーボン系のエッチングガス76を用いて単結晶Si基板71の露出面を5μmだけ掘り下げる。次いで、図12(e)に示すように、レジストマスク75を剥離することで、直径が10μmの第2段突起77が形成される。 Next, as shown in FIG. 12D, a resist mask 75 having a pattern with a diameter of 10 μm that is concentric with the first step projection 74 is formed by applying a photoresist, exposing and developing the photoresist. . Using the resist mask 75 as a mask, the exposed surface of the single crystal Si substrate 71 is dug down by 5 μm using a fluorocarbon-based etching gas 76. Next, as shown in FIG. 12E, the resist mask 75 is peeled to form second step projections 77 having a diameter of 10 μm.
 次いで、図13(f)に示すように、フォトレジストを塗布し、露光・現像することにより、第1段突起74に対して同心円状になる直径が5μmのパターンを有するレジストマスク78を形成する。次いで、このレジストマスク78をマスクとして、フロロカーボン系のエッチングガス79を用いて単結晶Si基板71の露出面を5μmだけ掘り下げる。次いで、図13(g)に示すように、レジストマスク78を剥離することで、直径が5μmの第3段突起80が形成される。 Next, as shown in FIG. 13 (f), a resist mask 78 having a pattern with a diameter of 5 μm that is concentric with the first projection 74 is formed by applying a photoresist, exposing and developing. . Next, using the resist mask 78 as a mask, the exposed surface of the single crystal Si substrate 71 is dug down by 5 μm using a fluorocarbon-based etching gas 79. Next, as shown in FIG. 13G, the resist mask 78 is peeled off to form a third step protrusion 80 having a diameter of 5 μm.
 次いで、図13(h)に示すように、フォトレジストを塗布し、露光・現像することにより、第1段突起74に対して同心円状になる直径が3μmのパターンを有するレジストマスク81を形成する。次いで、このレジストマスク81をマスクとして、フロロカーボン系のエッチングガス82を用いて単結晶Si基板71の露出面を掘り下げる。次いで、図13(i)に示すように、単結晶Si基板71の露出面を5μmだけ掘り下げた時点でエッチングを停止する。次いで、図13(j)に示すように、レジストマスク81を剥離することで、直径が20μmの第1段突起74、直径が10μの第2段突起77、5μmの第3段突起80及び直径が3μmの第4段突起83が順に積層した突起構造が得られる。 Next, as shown in FIG. 13H, a photoresist is applied, exposed and developed to form a resist mask 81 having a pattern with a diameter of 3 μm that is concentric with the first step projection 74. . Next, using the resist mask 81 as a mask, the exposed surface of the single crystal Si substrate 71 is dug down using a fluorocarbon-based etching gas 82. Next, as shown in FIG. 13I, the etching is stopped when the exposed surface of the single crystal Si substrate 71 is dug down by 5 μm. Next, as shown in FIG. 13 (j), the resist mask 81 is peeled off to form a first step protrusion 74 having a diameter of 20 μm, a second step protrusion 77 having a diameter of 10 μm, a third step protrusion 80 having a diameter of 5 μm, and a diameter. A protrusion structure in which the fourth protrusions 83 of 3 μm are sequentially stacked is obtained.
 この第3の軸調整用チップの場合には、一か所で面積の異なる突起からの反射光を得ることができるので、検量線を作成する場合に、一度の位置合わせで良いので、その作成工程が簡素化される。 In the case of this third axis adjustment chip, reflected light from protrusions having different areas can be obtained at one place, so that it is sufficient to perform alignment once when creating a calibration curve. The process is simplified.
 次に、図14を参照して第4の軸調整用チップを説明する。図14は、本発明の実施例4の光干渉法を用いた計測方法に用いる第4の軸調整用チップの説明図であり、図14(a)は平面図であり、図14(b)は図14(a)におけるA-A′を結ぶ一点鎖線の水平部を結ぶ断面図である。この第4の軸調整用チップは単結晶Si基板を加工して、直径が20μm、10μm及び5μmを順に5μmの深さで同心円筒状に掘り下げ、中心部に高さが9μmで直径が3μmの円筒状の突起を設けたものである。なお、チップの周囲にはX方向及びY方向のナイフエッヂを設けている。製造工程としては、第3の軸調整用チップと凹凸を逆にするとともに、中央部に常に直径が3μmのレジストパターンを設けてエッチングを行えば良い。 Next, a fourth axis adjustment tip will be described with reference to FIG. FIG. 14 is an explanatory diagram of a fourth axis adjustment chip used in the measurement method using the optical interference method of Example 4 of the present invention, FIG. 14 (a) is a plan view, and FIG. 14 (b). FIG. 15 is a cross-sectional view connecting the horizontal portions of the alternate long and short dash line connecting AA ′ in FIG. This fourth axis adjusting chip is obtained by processing a single crystal Si substrate, digging 20 μm, 10 μm, and 5 μm in order into a concentric cylinder with a depth of 5 μm in order, a center part having a height of 9 μm and a diameter of 3 μm A cylindrical projection is provided. A knife edge in the X direction and the Y direction is provided around the chip. As a manufacturing process, the third axis adjusting chip and the unevenness are reversed, and a resist pattern having a diameter of 3 μm is always provided in the central portion for etching.
 この第4の軸調整用チップの場合にも、一か所で面積の異なる凹部の底面及び中央の突起の表面からの反射光を得ることができるので、検量線を作成する場合に、一度の位置合わせで良いので、その作成工程が簡素化される。また、中央部の突起の表面は原子レベルの平坦性を有しているので、この突起部においては精度の良い計測が可能になる。 Also in the case of the fourth axis adjusting chip, reflected light from the bottom surface of the concave portion and the surface of the central projection having different areas can be obtained at one place. Since the alignment is sufficient, the production process is simplified. In addition, since the surface of the central protrusion has atomic level flatness, it is possible to measure with high accuracy at the protrusion.
 次に、図15を参照して第5の軸調整用チップを説明する。図15は、本発明の実施例4の光干渉法を用いた計測方法に用いる第5の軸調整用チップの説明図であり、図15(a)は平面図であり、図15(b)は図15(a)におけるA-A′を結ぶ一点鎖線の水平部を結ぶ断面図である。この第5の軸調整用チップは単結晶Si基板を加工して、直径が20μm、10μm、5μm及び3μmの凹部を順に3μmの深さで同心円筒状に掘り下げたものである。なお、チップの周囲にはX方向及びY方向のナイフエッヂを設けている。製造工程としては、第3の軸調整用チップと凹凸を逆にしてエッチングを行えば良い。 Next, a fifth axis adjusting chip will be described with reference to FIG. FIG. 15 is an explanatory diagram of a fifth axis adjustment chip used in the measurement method using the optical interference method of Example 4 of the present invention, FIG. 15 (a) is a plan view, and FIG. 15 (b). FIG. 16 is a cross-sectional view connecting the horizontal portions of the alternate long and short dash line connecting AA ′ in FIG. This fifth axis adjusting chip is obtained by processing a single crystal Si substrate and dug concave portions having diameters of 20 μm, 10 μm, 5 μm, and 3 μm in order into a concentric cylindrical shape with a depth of 3 μm. A knife edge in the X direction and the Y direction is provided around the chip. As a manufacturing process, etching may be performed with the third axis adjusting tip and the unevenness reversed.
 この第5の軸調整用チップの場合にも、一か所で面積の異なる凹部の底面及び中央の突起の表面からの反射光を得ることができるので、検量線を作成する場合に、一度の位置合わせで良いので、その作成工程が簡素化される。また、第4の軸調整用チップは、中央部の3μmの突起がレジスト塗布工程等において損傷しやすいが、第5の軸調整用チップの場合には、突起を形成しないので、製造工程に精度が要求されない。 Also in the case of the fifth axis adjustment tip, reflected light from the bottom surface of the concave portion and the surface of the central projection having different areas can be obtained at one place. Since the alignment is sufficient, the production process is simplified. In the fourth axis adjusting chip, the 3 μm protrusion at the center is easily damaged in the resist coating process and the like, but in the case of the fifth axis adjusting chip, no protrusion is formed. Is not required.
 次に、図16を参照して、本発明の実施例4の光干渉法を用いた計測方法を説明するが、ここでは、軸調整用に上述の第1の軸調整用チップを用いて説明する。まず、軸調整工程を説明する。
ns1:光学顕微鏡で、突起パターンの表面の法線上に光学顕微鏡が来るように試料傾斜を調整する。そのためには、光学顕微鏡により観察により、突起の側壁が見えない、又は突起上部面積が最大になるように調整する。
ns:従来方法同様に、突起パターンを用いて光学顕微鏡の光軸とセンサの光軸のオフセットを調整する。そのためには、突起パターンからの反射光による干渉光の強度が最大になるようにする。
ns:突起パターンとセンサの距離を所望の値、例えば、11.8mmの規定値になるように調整する。
ns:突起パターンからの反射光による干渉光ピーク強度が最大になるようにセンサの傾斜を微調整する。
ns:ns~nsを繰り返してセンサからの距離が一定でもっとも干渉ピークが強い条件に絞り込む。なお、この時のプローブの径は、測定する孔径よりも大きいことが望ましい。
Next, a measurement method using the optical interference method according to the fourth embodiment of the present invention will be described with reference to FIG. 16. Here, the first axis adjustment tip described above is used for axis adjustment. To do. First, the shaft adjustment process will be described.
ns 1 : With an optical microscope, the sample inclination is adjusted so that the optical microscope is on the normal line of the surface of the projection pattern. For this purpose, adjustment is performed so that the side wall of the protrusion cannot be seen or the upper area of the protrusion is maximized by observation with an optical microscope.
ns 2 : As in the conventional method, the offset between the optical axis of the optical microscope and the optical axis of the sensor is adjusted using the projection pattern. For this purpose, the intensity of the interference light caused by the reflected light from the projection pattern is maximized.
ns 3 : The distance between the protrusion pattern and the sensor is adjusted to a desired value, for example, a specified value of 11.8 mm.
ns 4 : Finely adjust the tilt of the sensor so that the peak intensity of the interference light due to the reflected light from the projection pattern is maximized.
ns 5 : ns 2 to ns 4 are repeated to narrow down to a condition where the distance from the sensor is constant and the interference peak is strongest. Note that the diameter of the probe at this time is preferably larger than the hole diameter to be measured.
 以上の工程で軸調整を行ったのち、TSV用孔の深さとホール径の計測を同時に行う。まず、
NS:図16(a)に示すように、第1の軸調整用チップ60を用い、突起65と同じ高さの平坦部で、干渉ピーク強度を測定する(ref.1)。
NS:次いで、図16(b)に示すように、測定対象となるTSV用孔に近いサイズの突起65で干渉ピークの強度を測定する (ref.2)。
NS:ref.1に対するref.2の強度比を算出しておく。なお、様々なサイズの突起をあらかじめ測定しておき、これにより検量線を作成しておいても良い。
NS:次いで、図16(c)に示すように、測定対象となるTSV用孔91を設けたSiウェーハ90のTSV用孔91の近傍の平坦部で、センサからの距離が規定値になるように調整したのち、干渉ピーク強度を計測する(ref.3)。
NS:次いで、図16(d)に示すように、センサヘッド66を測定するTSV用孔91に移動し、平坦部とセンサの距離が規定値になるように調整後、平坦部からの干渉ピーク強度を計測する(ref.4)。
NS:ref.3の強度とref.4の強度の差を求め、NSの結果と比較することで、ホール径が求まる。
NS:同時にTSV用孔91の底からの干渉ピークが計測されるので、SV用孔91の深さを知ることができる。
After adjusting the axis in the above steps, the TSV hole depth and hole diameter are measured simultaneously. First,
NS 1 : As shown in FIG. 16A, the first peak adjusting chip 60 is used to measure the interference peak intensity at a flat portion having the same height as the protrusion 65 (ref. 1).
NS 2 : Next, as shown in FIG. 16B, the intensity of the interference peak is measured with the protrusion 65 having a size close to the TSV hole to be measured (ref. 2).
NS 3 : The intensity ratio of ref.2 to ref.1 is calculated in advance. Note that protrusions of various sizes may be measured in advance, and thereby a calibration curve may be created.
NS 4 : Next, as shown in FIG. 16C, the distance from the sensor becomes a specified value at a flat portion in the vicinity of the TSV hole 91 of the Si wafer 90 provided with the TSV hole 91 to be measured. After the adjustment, the interference peak intensity is measured (ref. 3).
NS 5 : Next, as shown in FIG. 16 (d), the sensor head 66 is moved to the TSV hole 91 for measurement, adjusted so that the distance between the flat portion and the sensor becomes a specified value, and then interference from the flat portion. The peak intensity is measured (ref. 4).
NS 6 : The hole diameter is obtained by obtaining the difference between the strength of ref. 3 and the strength of ref. 4 and comparing the difference with the result of NS 3 .
NS 7 : Since the interference peak from the bottom of the TSV hole 91 is simultaneously measured, the depth of the SV hole 91 can be known.
 このように、本発明の実施例4においては、軸調整用チップを用いているので、軸調整が容易になるとともに、TSV用孔の深さとホール径の計測を同時に精度良く行うことが可能になる。 As described above, in the fourth embodiment of the present invention, the shaft adjustment tip is used, so that the shaft adjustment becomes easy and the TSV hole depth and the hole diameter can be measured simultaneously and accurately. Become.
 次に、図17を参照して、本発明の実施例5の光干渉法を用いた計測方法を説明するが、ここでは、TSV用孔の深さとともに、TSV用孔の底の平坦部分の径の計測を行う。ここでも、軸調整用に上記の第1の軸調整用チップを用いて、上記の実施例4と同じ手順で軸調整を行う。 Next, with reference to FIG. 17, a measurement method using the optical interference method of the fifth embodiment of the present invention will be described. Here, the depth of the TSV hole and the flat portion at the bottom of the TSV hole are described. Measure the diameter. In this case as well, the axis adjustment is performed in the same procedure as in the fourth embodiment, using the first axis adjustment tip for axis adjustment.
 nS:まず、図17(a)に示すように、測定対象となるTSV用孔に近いサイズの突起65で干渉ピークの強度を測定する (Ref.1)。なお、様々なサイズの突起をあらかじめ測定しておき、これにより検量線を作成しておいても良い。
nS:次いで、図17(b)に示すように、センサヘッド66を測定するTSV用孔91に移動し、センサからTSV用孔91の底までの距離が規定値になるように調整したのち、干渉ピーク強度を計測する(Ref.2)。
nS:Ref.2がRef.1に比べて何%小さいかを求めることで、TSV用孔91の径が求まる。即ち、通常は、表面の孔径より底部の平坦部の径が小さいので、強度比によりTSV用孔91の径を求めることができる。
nS 1 : First, as shown in FIG. 17A, the intensity of the interference peak is measured with the protrusion 65 having a size close to the TSV hole to be measured (Ref. 1). Note that protrusions of various sizes may be measured in advance, and thereby a calibration curve may be created.
nS 2 : Next, as shown in FIG. 17B, after the sensor head 66 is moved to the TSV hole 91 for measurement and adjusted so that the distance from the sensor to the bottom of the TSV hole 91 becomes a specified value. Then, the interference peak intensity is measured (Ref. 2).
nS 3 : The diameter of the TSV hole 91 can be obtained by determining how much smaller Ref.2 is than Ref.1. That is, since the diameter of the flat portion at the bottom is usually smaller than the diameter of the hole on the surface, the diameter of the TSV hole 91 can be obtained from the strength ratio.
 このように、本発明の実施例5においては、軸調整用チップを用いているので、軸調整が容易になるとともに、TSV用孔の深さとともに、TSV用孔の底の平坦部分の径の計測を同時に精度良く行うことが可能になる。 As described above, in the fifth embodiment of the present invention, since the shaft adjusting tip is used, the shaft adjustment becomes easy, and the depth of the TSV hole and the diameter of the flat portion at the bottom of the TSV hole are adjusted. Measurement can be performed at the same time with high accuracy.
1,11,21 センサ
2,12,22 光学顕微鏡
3 共通支持部材
4,14,24 試料ステージ
5,15,25 試料
13,23 共通支持ブロック
26~26 ピン
31 センサヘッド
32 光学顕微鏡
33 光学ミラー
34 試料ステージ
35 試料
36~36 ピン
41 光源
42 センサ光
43 偏波保持ファイバ
44 センサヘッド
45 計測対象物
46 反射光
47 参照反射面
48 干渉光
49 分光器
50 回折格子
51 CCDカメラ
52 波形解析手段
60 第1の軸調整用チップ
61 単結晶Si基板
62 レジストマスク
63 開口部
64 エッチングガス
65 突起
66 センサヘッド
71 単結晶Si基板
72,75,78,81 レジストマスク
73,76,79,82 エッチングガス
74 第1段突起
77 第2段突起
80 第3段突起
83 第4段突起
90 Siウェーハ
91 TSV用孔
1,11,21 Sensor 2,12,22 Optical microscope 3 Common support member 4,14,24 Sample stage 5,15,25 Sample 13,23 Common support block 26 1 to 26 3 pin 31 Sensor head 32 Optical microscope 33 Optical Mirror 34 Sample stage 35 Sample 36 1 to 36 3 pin 41 Light source 42 Sensor light 43 Polarization maintaining fiber 44 Sensor head 45 Measurement object 46 Reflected light 47 Reference reflection surface 48 Interference light 49 Spectroscope 50 Diffraction grating 51 CCD camera 52 Waveform Analyzing means 60 First axis adjusting chip 61 Single crystal Si substrate 62 Resist mask 63 Opening 64 Etching gas 65 Projection 66 Sensor head 71 Single crystal Si substrate 72, 75, 78, 81 Resist mask 73, 76, 79, 82 Etching gas 74 First step protrusion 77 Second step protrusion 80 Third step protrusion 83 Fourth stage protrusion 90 Si wafer 91 TSV hole

Claims (21)

  1.  光干渉法により距離を計測するセンサと、
     光軸が前記センサの光軸と一定の関係にある光学顕微鏡と、
     測定対象となる試料を載置する試料ステージと、
     計測時において前記センサのセンサヘッド端と前記試料の表面の距離を一定に保つ手段と、
     前記試料の表面からのセンサ光の反射光または前記試料の表面と前記センサヘッド端からの前記センサ光の反射光の干渉強度が最も大きくなるように前記試料の表面または前記センサの光軸の一方を傾斜させる傾斜調整手段と
    を有することを特徴とする光干渉法を用いた計測装置。
    A sensor for measuring distance by optical interferometry,
    An optical microscope whose optical axis is in a fixed relationship with the optical axis of the sensor;
    A sample stage on which a sample to be measured is placed;
    Means for keeping the distance between the sensor head end of the sensor and the surface of the sample constant during measurement;
    One of the surface of the sample or the optical axis of the sensor so that the interference intensity of the reflected light of the sensor light from the surface of the sample or the reflected light of the sensor light from the surface of the sample and the sensor head end is maximized. A measuring device using an optical interferometry, comprising: an inclination adjusting means for inclining the light.
  2.  前記センサの光学系の少なくとも一部が前記光学顕微鏡の光学系を共用していることを特徴とする請求項1に記載の光干渉法を用いた計測装置。 The measuring apparatus using the optical interference method according to claim 1, wherein at least a part of the optical system of the sensor shares the optical system of the optical microscope.
  3.  前記センサの光学系は、前記光学顕微鏡の光学系と別個の光学系からなり、前記光学顕微鏡と同一視野を観察するためのオフセット座標を記憶する機構を有することを特徴とする請求項1に記載の光干渉法を用いた計測装置。 The optical system of the sensor includes an optical system separate from the optical system of the optical microscope, and has a mechanism for storing offset coordinates for observing the same field of view as the optical microscope. Measuring device using optical interferometry.
  4.  前記センサと前記光学顕微鏡を固定して同時に前記試料との距離を可変に稼働できる共通支持部材を有し、前記光学顕微鏡は光軸のみ独立して傾斜する機構を有し、
     前記センサは光軸を独立して傾斜する傾斜調整機構と前記試料との距離を独立して調整できる駆動機構を有することを特徴とする請求項3に記載の光干渉法を用いた計測装置。
    Having a common support member capable of operating the sensor and the optical microscope at the same time and variably operating the distance between the sample, the optical microscope has a mechanism that tilts only the optical axis independently;
    The measuring apparatus using the optical interferometry according to claim 3, wherein the sensor has a tilt adjusting mechanism that tilts an optical axis independently and a drive mechanism that can independently adjust a distance between the sample and the sample.
  5.  前記センサと前記光学顕微鏡を固定して同時に前記試料との距離を可変に稼働できる共通支持部材を有し、
     前記試料ステージは独立して傾斜を調整できる傾斜調整機構を有し、前記センサは光軸を独立して傾斜する傾斜調整機構と前記試料との距離を独立して調整できる駆動機構を有することを特徴とする請求項3に記載の光干渉法を用いた計測装置。
    Having a common support member capable of operating the sensor and the optical microscope at the same time and variably operating the distance from the sample;
    The sample stage has an inclination adjusting mechanism capable of independently adjusting an inclination, and the sensor has an inclination adjusting mechanism for independently tilting an optical axis and a drive mechanism capable of independently adjusting a distance between the sample and the sample stage. A measuring device using the optical interferometry according to claim 3.
  6.  光学顕微鏡により測定対象となる試料の表面との距離を一定に保った状態で前記試料の表面を観察しながら、前記光学顕微鏡と光軸と一定の関係にある光軸を有するセンサから前記センサのセンサヘッド端と前記試料の表面の距離を一定に保った状態でセンサ光を前記試料に照射する工程と、
     前記試料の表面からの前記センサ光の反射光または前記試料の表面と前記センサヘッド端からの前記センサ光の反射光の干渉強度が最も大きくなるように前記試料の表面または前記センサの光軸の一方を傾斜させる工程と、
     前記試料の表面からの前記センサ光の反射光または前記試料の表面と前記センサヘッド端からの前記センサ光の反射光の干渉強度が最も大きくなった状態で、前記センサヘッド端からの前記センサ光の反射光の干渉波形を計測して光干渉法により前記試料における計測対象部と前記センサヘッド端との距離を判定する工程と
    を有することを特徴とする光干渉法を用いた計測方法。
    While observing the surface of the sample in a state where the distance from the surface of the sample to be measured is kept constant by an optical microscope, a sensor having an optical axis that is in a fixed relationship with the optical microscope and the optical axis is used. Irradiating the sample with sensor light while maintaining a constant distance between the sensor head end and the surface of the sample;
    The surface of the sample or the optical axis of the sensor so that the interference intensity of the reflected light of the sensor light from the surface of the sample or the reflected light of the sensor light from the sensor head end and the surface of the sample is maximized. Tilting one side;
    The sensor light from the sensor head end when the reflected light of the sensor light from the surface of the sample or the interference intensity of the reflected light of the sensor light from the surface of the sample and the sensor head end is maximized. And measuring the interference waveform of the reflected light of the sample and determining the distance between the measurement target portion of the sample and the sensor head end by optical interferometry, and a measurement method using the optical interference method.
  7.  前記試料が半導体基板であり、前記計測対象部が前記半導体基板に設けた貫通ヴィア用のヴィア穴であることを特徴とする請求項6に記載の光干渉法を用いた計測方法。 The measurement method using the optical interference method according to claim 6, wherein the sample is a semiconductor substrate, and the measurement target portion is a via hole for a through via provided in the semiconductor substrate.
  8.  前記センサ光のプローブ径が、前記ヴィア穴のヴィア径の3/4以下であることを特徴とする請求項7に記載の光干渉法を用いた計測方法。 The measurement method using the optical interference method according to claim 7, wherein a probe diameter of the sensor light is 3/4 or less of a via diameter of the via hole.
  9.  前記センサ光を、前記ヴィア穴と、前記ヴィア穴を設けていない前記試料の平坦面に同時に照射することを特徴とする請求項7に記載の光干渉法を用いた計測方法。 The measurement method using an optical interference method according to claim 7, wherein the sensor light is simultaneously irradiated onto the via hole and a flat surface of the sample not provided with the via hole.
  10.  測定した前記干渉波形をフーリエ変換してパワースペクトルを得る工程と、前記パワースペクトルの強度及び形状を相互比較して解析することにより、前記ヴィア穴の底面の平坦度或いは前記ヴィア穴近傍の試料の表面の表面粗さを算出する工程とを備えていることを特徴とする請求項7に記載の光干渉法を用いた計測方法。 By performing a Fourier transform on the measured interference waveform to obtain a power spectrum, and analyzing the power spectrum by comparing and comparing the intensity and shape of the power spectrum, the flatness of the bottom surface of the via hole or the sample near the via hole is analyzed. A measuring method using an optical interference method according to claim 7, further comprising: calculating a surface roughness of the surface.
  11.  測定に先立って、前記計測対象部の平面面積の±10%の範囲内の平面面積を有する突起または凹部からなる軸調整構造物を有する軸調整専用部材を用いて前記光学顕微鏡及びセンサの光軸調整を調整する工程を有することを特徴とする請求項6に記載の計測方法。 Prior to the measurement, the optical microscope and the optical axis of the sensor using an axis-adjusting member having an axis-adjusting structure composed of a protrusion or a recess having a plane area within a range of ± 10% of the plane area of the measurement target portion. The measuring method according to claim 6, further comprising a step of adjusting the adjustment.
  12.  前記軸調整専用部材が、複数の異なった平面面積を有する突起を有することを特徴とする請求項11に記載の形成側方法。 12. The forming side method according to claim 11, wherein the axis adjustment dedicated member has a plurality of protrusions having different plane areas.
  13.  前記軸調整専用部材が、アスペクト比が1以下の複数の異なった平面面積を有する凹部を有することを特徴とする請求項11に記載の形成側方法。 The forming side method according to claim 11, wherein the axis adjustment dedicated member has a plurality of concave portions having different plane areas with an aspect ratio of 1 or less.
  14.  前記軸調整専用部材が、同心円筒状の突起をサイズの大きな順に積層した段差状突起を有することを特徴とする請求項11に記載の計測方法。 12. The measuring method according to claim 11, wherein the axis adjustment dedicated member has a stepped protrusion in which concentric cylindrical protrusions are stacked in order of size.
  15.  前記軸調整専用部材が、同心円筒状の凹部をサイズが大きな順に掘り下げた段差状凹部を有することを特徴とする請求項11に記載の計測方法。 12. The measuring method according to claim 11, wherein the shaft adjustment dedicated member has a step-shaped recess formed by digging concentric cylindrical recesses in descending order of size.
  16.  前記軸調整専用部材が、同心円筒状の凹部をサイズが大きな順に掘り下げた段差状凹部と、前記段差状凹部の中心に設けた突起を有することを特徴とする請求項11に記載の計測方法。 12. The measuring method according to claim 11, wherein the shaft adjustment dedicated member has a stepped recess formed by digging concentric cylindrical recesses in descending order of size, and a protrusion provided at the center of the stepped recess.
  17.  前記軸調整専用部材の周辺部に、X型向またはY型向のナイフエッジを有することを特徴とする請求項11に記載の計測方法。 12. The measuring method according to claim 11, further comprising an X-shaped or Y-shaped knife edge in a peripheral portion of the axis adjustment dedicated member.
  18.  前記光軸調整を調整する工程において、
     前記軸調整専用構造物が突起であり、
     前記突起の側壁が見えない状態或いは前記突起の面積が最大になるように前記試料または前記光学顕微鏡の傾斜を調整する工程と、
     前記突起の表面までの距離を規定値にした状態で、干渉ピークが最大になるように前記センサの光軸を調整するとともに前記光学顕微鏡に対するオフセット量を微調整することを特徴とする請求項11に記載の計測方法。
    In the step of adjusting the optical axis adjustment,
    The shaft adjustment dedicated structure is a protrusion,
    Adjusting the tilt of the sample or the optical microscope so that the side wall of the protrusion is not visible or the area of the protrusion is maximized;
    12. The optical axis of the sensor is adjusted so as to maximize the interference peak in a state where the distance to the surface of the protrusion is a specified value, and the offset amount with respect to the optical microscope is finely adjusted. Measurement method described in 1.
  19.  前記光軸調整を調整する工程において、
     前記軸調整専用構造物が凹部であり、
     前記凹部の側壁が見えない状態或いは前記凹部の面積が最大になるように前記試料または前記光学顕微鏡の傾斜を調整する工程と、
     前記凹部の表面までの距離を規定値にした状態で、干渉ピークが最大になるように前記センサの光軸を調整するとともに前記光学顕微鏡の光軸に対するオフセット量を微調整することを特徴とする請求項11に記載の計測方法。
    In the step of adjusting the optical axis adjustment,
    The shaft adjustment dedicated structure is a recess,
    Adjusting the inclination of the sample or the optical microscope so that the side wall of the recess is not visible or the area of the recess is maximized;
    The optical axis of the sensor is adjusted so as to maximize the interference peak in a state where the distance to the surface of the concave portion is a specified value, and the offset amount with respect to the optical axis of the optical microscope is finely adjusted. The measurement method according to claim 11.
  20.  前記測定対象部が、孔部であり、
     前記軸調整専用部材の平坦部で、前記平坦部と前記センサとの距離を規定値にした状態で、干渉スペクトル強度を測定する工程と、
     前記測定対象部の孔部の径のサイズに近い前記軸調整専用部材に設けた突起を利用して干渉スペクトル強度を計測する工程と、
     前記試料の平坦部と前記孔部を計測することにより前記孔部の孔径を計測する工程を有することを特徴とする請求項11に記載の計測方法。
    The measurement target part is a hole,
    Measuring the interference spectrum intensity in a state where the distance between the flat part and the sensor is a specified value at the flat part of the axis adjustment dedicated member;
    A step of measuring the interference spectrum intensity using a protrusion provided on the member for exclusive use in adjusting the shaft that is close to the size of the diameter of the hole of the measurement target part;
    The measurement method according to claim 11, further comprising a step of measuring a hole diameter of the hole portion by measuring the flat portion and the hole portion of the sample.
  21.  前記測定対象部が、孔部であり、
     前記軸調整専用部材に設けた突起を利用して前記センサと前記突起との距離を規定値にする工程と、
     前記突起からの干渉スペクトル強度を計測する工程と、
    前記試料の前記孔部底までの距離を前記規定値にする工程と、
     前記孔部からの干渉スペクトル強度を計測する工程と、
     前記孔部からの干渉スペクトル強度と前記突起からの干渉スペクトル強度とを比較することで前記孔部の底の平坦部の面積を計測する工程と
    を有することを特徴とする請求項11に記載の計測方法。
    The measurement target part is a hole,
    A step of setting a distance between the sensor and the protrusion to a specified value using a protrusion provided on the axis adjustment dedicated member;
    Measuring the interference spectrum intensity from the protrusion;
    Setting the distance to the hole bottom of the sample to the specified value;
    Measuring the interference spectrum intensity from the hole;
    The step of measuring the area of the flat portion at the bottom of the hole by comparing the interference spectrum intensity from the hole and the interference spectrum intensity from the protrusion. Measurement method.
PCT/JP2014/069690 2013-08-15 2014-07-25 Measurement device using optical interferometry and measurement method using optical interferometry WO2015022851A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015531753A JPWO2015022851A1 (en) 2013-08-15 2014-07-25 Measuring apparatus using optical interferometry and measuring method using optical interferometry
US15/017,013 US20160161730A1 (en) 2013-08-15 2016-02-05 Measurement device using optical interferometry and measurement method using optical interferometry

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013168921 2013-08-15
JP2013-168921 2013-08-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/017,013 Continuation US20160161730A1 (en) 2013-08-15 2016-02-05 Measurement device using optical interferometry and measurement method using optical interferometry

Publications (1)

Publication Number Publication Date
WO2015022851A1 true WO2015022851A1 (en) 2015-02-19

Family

ID=52468238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/069690 WO2015022851A1 (en) 2013-08-15 2014-07-25 Measurement device using optical interferometry and measurement method using optical interferometry

Country Status (3)

Country Link
US (1) US20160161730A1 (en)
JP (1) JPWO2015022851A1 (en)
WO (1) WO2015022851A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017117940A (en) * 2015-12-24 2017-06-29 株式会社デンソー Semiconductor manufacturing apparatus and method of manufacturing semiconductor
CN108603035A (en) * 2016-03-09 2018-09-28 日东电工株式会社 Hardening resin composition, polarizing coating and its manufacturing method, optical film and image display device
CN109300823A (en) * 2018-11-28 2019-02-01 德淮半导体有限公司 Ultrasonic scanning system and for wafer carry out ultrasonic scanning method
JPWO2021100317A1 (en) * 2019-11-20 2021-11-25 株式会社ロジストラボ Optical element manufacturing method and optical element manufacturing system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102389680B1 (en) * 2013-01-23 2022-04-21 루돌프 테크놀로지스 인코퍼레이티드 Characterizing tsv microfabrication process and products
JP6196119B2 (en) * 2013-10-11 2017-09-13 大塚電子株式会社 Shape measuring apparatus and shape measuring method
KR101855816B1 (en) * 2016-05-13 2018-05-10 주식회사 고영테크놀러지 Biological Tissue Inspection Apparatus and Method thereof
EP4279860A1 (en) * 2022-05-19 2023-11-22 Unity Semiconductor A method and a system for characterising structures through a substrate

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63229309A (en) * 1987-03-18 1988-09-26 Nikon Corp Method and apparatus for measuring depth of fine pattern
JPH0259603A (en) * 1988-08-24 1990-02-28 Nec Corp Measuring method for depth of groove of semiconductor substrate
JPH0394106A (en) * 1989-09-06 1991-04-18 Matsushita Electric Ind Co Ltd Shape measuring device and shape measuring method
JPH06258055A (en) * 1993-03-03 1994-09-16 Hitachi Electron Eng Co Ltd Optical axis adjusting method for positional shift measuring optical system
JPH06281432A (en) * 1993-03-25 1994-10-07 Jasco Corp Fine angle adjusting device
JPH0755418A (en) * 1993-08-13 1995-03-03 Ono Sokki Co Ltd Displacement gauge
JPH1089921A (en) * 1996-09-13 1998-04-10 Mitsubishi Electric Corp Method for correcting error of alignment measurement and production of semiconductor device
JP2007139752A (en) * 2005-10-18 2007-06-07 Canon Inc Pattern formation device and method, and mold for pattern formation
JP2008233679A (en) * 2007-03-22 2008-10-02 Olympus Corp Microscope instrument
WO2010029799A1 (en) * 2008-09-13 2010-03-18 独立行政法人科学技術振興機構 Microscope device and fluorescent observing method using same
JP2010175672A (en) * 2009-01-28 2010-08-12 Nikon Corp Microscope device and mirror unit used for the same
JP2011163823A (en) * 2010-02-05 2011-08-25 Aisin Seiki Co Ltd Object-shape evaluating device
JP2012037292A (en) * 2010-08-04 2012-02-23 Shimadzu Corp Etching monitoring device
JP2013117507A (en) * 2011-08-02 2013-06-13 Tokyo Electron Ltd Optical interference system, substrate processing apparatus and measuring method
WO2013084565A1 (en) * 2011-12-07 2013-06-13 コニカミノルタ株式会社 Data correction apparatus and data correction program

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7477401B2 (en) * 2004-11-24 2009-01-13 Tamar Technology, Inc. Trench measurement system employing a chromatic confocal height sensor and a microscope
GB2435092A (en) * 2006-02-10 2007-08-15 Taylor Hobson Ltd Surface measurement instrument with adjustable sample support

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63229309A (en) * 1987-03-18 1988-09-26 Nikon Corp Method and apparatus for measuring depth of fine pattern
JPH0259603A (en) * 1988-08-24 1990-02-28 Nec Corp Measuring method for depth of groove of semiconductor substrate
JPH0394106A (en) * 1989-09-06 1991-04-18 Matsushita Electric Ind Co Ltd Shape measuring device and shape measuring method
JPH06258055A (en) * 1993-03-03 1994-09-16 Hitachi Electron Eng Co Ltd Optical axis adjusting method for positional shift measuring optical system
JPH06281432A (en) * 1993-03-25 1994-10-07 Jasco Corp Fine angle adjusting device
JPH0755418A (en) * 1993-08-13 1995-03-03 Ono Sokki Co Ltd Displacement gauge
JPH1089921A (en) * 1996-09-13 1998-04-10 Mitsubishi Electric Corp Method for correcting error of alignment measurement and production of semiconductor device
JP2007139752A (en) * 2005-10-18 2007-06-07 Canon Inc Pattern formation device and method, and mold for pattern formation
JP2008233679A (en) * 2007-03-22 2008-10-02 Olympus Corp Microscope instrument
WO2010029799A1 (en) * 2008-09-13 2010-03-18 独立行政法人科学技術振興機構 Microscope device and fluorescent observing method using same
JP2010175672A (en) * 2009-01-28 2010-08-12 Nikon Corp Microscope device and mirror unit used for the same
JP2011163823A (en) * 2010-02-05 2011-08-25 Aisin Seiki Co Ltd Object-shape evaluating device
JP2012037292A (en) * 2010-08-04 2012-02-23 Shimadzu Corp Etching monitoring device
JP2013117507A (en) * 2011-08-02 2013-06-13 Tokyo Electron Ltd Optical interference system, substrate processing apparatus and measuring method
WO2013084565A1 (en) * 2011-12-07 2013-06-13 コニカミノルタ株式会社 Data correction apparatus and data correction program

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017117940A (en) * 2015-12-24 2017-06-29 株式会社デンソー Semiconductor manufacturing apparatus and method of manufacturing semiconductor
CN108603035A (en) * 2016-03-09 2018-09-28 日东电工株式会社 Hardening resin composition, polarizing coating and its manufacturing method, optical film and image display device
CN109300823A (en) * 2018-11-28 2019-02-01 德淮半导体有限公司 Ultrasonic scanning system and for wafer carry out ultrasonic scanning method
JPWO2021100317A1 (en) * 2019-11-20 2021-11-25 株式会社ロジストラボ Optical element manufacturing method and optical element manufacturing system
JP7008307B2 (en) 2019-11-20 2022-02-10 株式会社ロジストラボ Optical element manufacturing method and optical element manufacturing system

Also Published As

Publication number Publication date
US20160161730A1 (en) 2016-06-09
JPWO2015022851A1 (en) 2017-03-02

Similar Documents

Publication Publication Date Title
WO2015022851A1 (en) Measurement device using optical interferometry and measurement method using optical interferometry
US11536674B2 (en) Systems and methods for combined reflectometry and photoelectron spectroscopy
TWI805594B (en) Methods and systems for semiconductor metrology based on polychromatic soft x-ray diffraction
TWI633299B (en) Metrology methods, metrology apparatus and device manufacturing method
US8879073B2 (en) Optical metrology using targets with field enhancement elements
TWI746498B (en) Systems and methods for extended infrared spectroscopic ellipsometry
CN110603435A (en) Process monitoring of deep structures using X-ray scatterometry
US9305341B2 (en) System and method for measurement of through silicon structures
US7362436B2 (en) Method and apparatus for measuring optical overlay deviation
JP5186129B2 (en) Method and apparatus for measuring groove pattern depth
US8373113B2 (en) Calibration standard member, method for manufacturing the member and scanning electronic microscope using the member
CN109690235A (en) Based on the reflection infrared spectrum for measuring high-aspect-ratio structure
CN109416330B (en) Hybrid inspection system
JP2011027461A (en) Method of measuring pattern shape, method of manufacturing semiconductor device, and process control system
TW201643405A (en) Optical metrology with reduced focus error sensitivity
TW200426344A (en) Methods for determining the depth of a buried structure
WO2017122248A1 (en) Method for measuring film thickness distribution of wafer with thin film
CN109690747A (en) With electron beam column array measurement overlay and edge placement error
Ku Spectral reflectometry for metrology of three-dimensional through-silicon vias
JP6372948B2 (en) Automatic sample orientation
CN101131318A (en) Measuring method and apparatus for measuring depth of trench pattern
KR100805233B1 (en) An apparatus for measuring thickness of thin flim on wafer
US20210262950A1 (en) Measurement And Control Of Wafer Tilt For X-Ray Based Metrology
US20220196576A1 (en) Methods And Systems For Compact, Small Spot Size Soft X-Ray Scatterometry
Wang et al. Adjustable low NA Quasi-Confocal reflectometry for ultra-high-aspect-ratio micro-structures

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14836216

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015531753

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14836216

Country of ref document: EP

Kind code of ref document: A1