WO2015021772A1 - 一种信道接入的方法、装置和*** - Google Patents

一种信道接入的方法、装置和*** Download PDF

Info

Publication number
WO2015021772A1
WO2015021772A1 PCT/CN2014/072957 CN2014072957W WO2015021772A1 WO 2015021772 A1 WO2015021772 A1 WO 2015021772A1 CN 2014072957 W CN2014072957 W CN 2014072957W WO 2015021772 A1 WO2015021772 A1 WO 2015021772A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
frame
access
station
data
Prior art date
Application number
PCT/CN2014/072957
Other languages
English (en)
French (fr)
Inventor
李波
屈桥
李云波
伍天宇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2016533786A priority Critical patent/JP6177437B2/ja
Priority to KR1020167005649A priority patent/KR101805560B1/ko
Priority to EP14835822.9A priority patent/EP3035767B1/en
Publication of WO2015021772A1 publication Critical patent/WO2015021772A1/zh
Priority to US15/015,313 priority patent/US20160156437A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/04Scheduled access

Definitions

  • the IEEE 802.11 protocol stipulates that all STAs use the same channel to send access request frames to compete for channel resources. Therefore, in a wireless LAN, when multiple STAs simultaneously send access request frames, collisions may occur, so that the AP may not be correct. Received an access request frame sent by any STA.
  • One solution is to divide the channel into several frequency domain subchannels. The STA listens to the busy/idle state of each subchannel to compete for channel resources on different subchannels, but because the STA needs to simultaneously monitor each subchannel. In the busy/idle state, the STA listening process is complicated, and when multiple STAs perform channel access, there is a problem that the time is not synchronized, resulting in serious neighbor interference.
  • the channel is divided into two subchannels
  • STA1 detects that subchannel 1 is in an idle state
  • STA1 detects the STA1 while transmitting the access request frame.
  • subchannel 2 is in an idle state
  • STA2 sends an access request frame to the AP, and then there is time for STA1 and STA2 to perform channel access.
  • the problem is that the STA is not synchronized.
  • the AP first receives the access request frame sent by STA1. In the process of processing the access request frame sent by STA1, the AP receives the access request frame sent by STA2, and then the access sent by STA2.
  • the request frame causes severe interference to the access request frame sent by STA1, that is, the signal on subchannel 2 interferes with the signal on subchannel 1, because each subchannel occupies a certain frequency domain bandwidth, thereby causing adjacent frequency bands. Signal interference is severe.
  • Embodiments of the present invention provide a method, an apparatus, and a system for channel access, which enable a plurality of STAs to support time synchronization during channel access by using a monitoring process of STAs, thereby avoiding causing Adjacent frequency band signal interference.
  • the present invention provides a method for channel access, including: a station STA monitors a channel state of a channel; the channel includes at least two subchannels; and when the channel is monitored to be in an idle state, Transmitting at least one subchannel of the channel to the access point AP;
  • the access response frame fed back by the AP is received, and the access response frame includes the identifier information of the site and the channel resource allocation information, the channel access is successful; the identifier information of the site and the channel resource allocation The information is used to instruct the AP to allocate channel resources for data transmission to the station.
  • the sending of the access request frame to the access point AP by using the at least one of the channels includes:
  • the channel is monitored to be in an idle state, a backoff procedure is performed; after the backoff procedure ends, an access request frame is sent to the AP through at least one of the channels.
  • the access request is sent by using at least one of the channels.
  • the method further includes: selecting at least one subchannel for transmitting the access request frame from the channels.
  • the access response frame is fed back to the STA by the AP through the channel or the subchannel selected by the STA.
  • the method further includes: the station sending the data DATA frame to the AP according to the received access response frame. .
  • the station sends the data DATA frame to the AP according to the received access response frame, including:
  • the station Determining, by the station, channel resource allocation information of the station according to the identifier information included in the access response frame received by the station; if the channel resource allocation information includes indication information for performing data transmission by using the channel, the station is at the location Transmitting a DATA frame to the access point on the channel; or, if the channel resource allocation information includes indication information for data transmission by using at least one subchannel, the station transmits a DATA frame on the at least one subchannel.
  • the method further includes: receiving the AP An acknowledgement frame sent by the channel or the subchannel selected by the STA; the acknowledgement frame includes: identifier information of the site, or the acknowledgement frame includes: identifier information of the site, and other sites Identification information.
  • the method includes: if the station receives an access response frame fed back by the AP, and the access The identification information of the station and the channel resource allocation information are not included in the response frame; or, if the station does not receive the access response frame fed back by the AP, the channel access fails;
  • the method further includes: the station re-listens the channel Channel status.
  • the present invention provides a station, including: a listening unit, configured to monitor a channel state including a channel, where the channel includes at least two subchannels;
  • a sending unit configured to: when the listening unit monitors that the channel is in an idle state, send an access request frame to the access point AP by using at least one of the channels; and the channel access unit is configured to receive And the access response frame and the channel resource allocation information are used by the AP, and the access response frame includes the identifier information and the channel resource allocation information of the site, and the channel access is successful; As indicated in the instructions
  • the AP allocates channel resources for data transmission to the station.
  • the sending unit includes: a backoff module and a sending module
  • the backoff module is configured to perform a backoff process if the listening unit monitors that the channel is in an idle state
  • the sending module is configured to send an access request frame to the AP by using at least one subchannel in the channel after the backoff process is performed by the backoff module.
  • the sending unit further includes: a selecting module
  • the selection module is configured to select at least one subchannel for transmitting an access request frame from the channels.
  • the access response frame is fed back to the STA by the AP through the channel or the subchannel selected by the STA.
  • the site further includes: a data transmission unit;
  • the data transmission unit is configured to send data to the access point AP according to the access response frame received by the channel access unit if the channel access unit channel access is successful.
  • DATA frame In a fifth possible implementation manner, according to the fourth possible implementation, the data transmission unit includes: a determining module and a data sending module, where the determining module is configured to receive the access according to the channel access unit.
  • the data sending module configured to: when the channel resource allocation information determined by the determining module includes indication information for performing data transmission by using a channel And transmitting a DATA frame to the access point on the channel; or, in a case that the channel resource allocation information determined by the determining module includes indication information for performing data transmission by using at least one subchannel, A DATA frame is transmitted on at least one of the subchannels.
  • the site further includes: a data confirming unit, where the data confirming unit is configured to receive the AP An acknowledgement frame sent by the channel or the subchannel selected by the STA; the acknowledgement frame includes: identifier information of the site, or the acknowledgement frame includes: identifier information of the site, and other sites Identification information.
  • the channel access unit is further configured to: if receiving an access response frame fed back by the AP, The access response frame does not include the identifier information and the channel resource allocation information of the site; or, if the access response frame fed back by the AP is not received, the channel access fails; the listening unit is further configured to be connected in the channel. In the case where the incoming channel access fails, the channel state of the channel is re-listened.
  • the present invention provides a system for channel access, comprising: an access point and at least two stations as described above.
  • Embodiments of the present invention provide a method, an apparatus, and a system for channel access, by which a STA monitors a channel condition of a channel, so that when the channel is in an idle state, an access request frame is sent to the AP through at least one subchannel in the channel. ; AP based on the received access request The frame returns an access response frame to all or a part of the STAs, and the STA learns whether the channel is successfully accessed according to the received access response frame. Further, if the STA channel access is successful, the DATA frame is sent on the subchannel or channel according to the channel resource allocation information included in the access response frame.
  • the STA only needs to monitor the channel state of the entire channel, and the STA's listening process is compressed, and the STA can simultaneously select at least one subchannel to transmit the access only when the channel is idle.
  • the request frame is sent to the AP to meet the time synchronization of the channel access, and the AP can further process the received access request frame to avoid interference of adjacent frequency band signals.
  • FIG. 1 is a schematic flowchart of a method for channel access according to an embodiment of the present invention
  • FIG. 2 is a schematic flowchart of a method for data transmission after successful channel access according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of channel division according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of a channel access scenario according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of a method for channel access according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of a method for data transmission after successful channel access according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of another method for data transmission after successful channel access according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a device of a station according to an embodiment of the present disclosure
  • FIG. 9 is a schematic structural diagram of another device according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of another station according to an embodiment of the present invention
  • FIG. 11 is a schematic structural diagram of another station according to an embodiment of the present invention
  • FIG. 12 is a schematic diagram of another station according to an embodiment of the present invention
  • FIG. 13 is a schematic structural diagram of another station device according to an embodiment of the present invention
  • FIG. 14 is a schematic structural diagram of a physical device of a station according to an embodiment of the present invention.
  • the present invention provides a method for channel access. As shown in FIG. 1, the method includes: Step 101: A station STA monitors a channel state of a channel; and the channel includes at least two subchannels.
  • the channel state of the channel includes: the channel is in an idle state or the channel is in a busy state; the subchannels included in the channel are mutually orthogonal.
  • the channel state of the station STA listening channel is that the STA monitors whether the strength of the energy signal in the entire channel reaches a preset threshold, where the threshold is a threshold value that can be achieved by the energy signal strength of the entire channel, that is, If the STA monitors that the strength of the energy signal in the entire channel is greater than or equal to a preset threshold, the channel is in a busy state; if the STA monitors that the strength of the energy signal in the entire channel is less than a preset threshold, the channel is in an idle state.
  • a preset threshold where the threshold is a threshold value that can be achieved by the energy signal strength of the entire channel, that is, If the STA monitors that the strength of the energy signal in the entire channel is greater than or equal to a preset threshold, the channel is in a busy state; if the STA monitors that the strength of the energy signal in the entire channel is less than a preset threshold, the channel is in an idle state.
  • the station When the station needs to perform channel access, it first monitors the busy/idle state of the channel. If the energy signal strength on the channel is greater than -72 dBm, the channel is busy. If the energy signal strength on the channel is less than -72 dBm, the channel is at the channel. In the idle state.
  • Step 102 The STA sends an access request frame to the access point AP by using at least one subchannel of the channel when the STA is in the idle state.
  • the access request frame (RTS, Request to Send) is directly sent to the access point AP by using at least one subchannel in the channel.
  • the STA performs a backoff procedure when the channel is in an idle state, and after the backoff process ends, the STA sends an access request frame to the access by using at least one of the channels. Click AP.
  • the station selects at least one of the channels for sending the access request frame before sending the access request frame to the AP by using at least one of the channels. Subchannel.
  • the station monitors that the channel is in an idle state, first select at least one subchannel from the channel, and then perform a backoff procedure on the selected subchannel, after the backoff process ends,
  • the STA transmits an access request frame to the access point AP through at least one of the channels.
  • the STA performs a backoff procedure based on the entire channel when the channel is in an idle state; after the backoff process ends, at least one of the channels in the channel, the STA passes the selected At least one of the channels transmits an access request frame to the AP.
  • the station may randomly select at least one subchannel from the channel for transmitting an access request frame, and the selection method is not limited thereto.
  • the STA may use the free/busy state of the entire channel as the basis for the backoff timing, and select the backoff time 2T to execute. Backoff process.
  • DIFS distributed coordination frame interval
  • DCF Interframe Space DCF Interframe Space
  • the distributed coordination function is a distributed media access control mechanism, and its main task is to control Access to the channel by each wireless node sharing the same wireless channel.
  • the station needs to monitor whether the channel is idle before starting to send data. If the channel is already idle, the station still needs to wait for the DIFS segment time to start transmitting data; if the channel is monitored as busy at any time during the DIFS time period, the station has to postpone its data transmission.
  • the station After the DIFS time has elapsed after the idle time, the station starts the backoff process, the station selects a backoff time according to the backoff algorithm, and sets a backoff time counter.
  • the random number generation rule in the binary random backoff algorithm adopted in IEEE802.11 is: Before the node transmits the data, the node first needs to listen to whether the channel is idle. If the channel is idle, the node is listening to the channel for continuous idle DIFS time. After the channel is busy, it waits until the current data transmission ends, and generates a random backoff time as the initial value of the back-off timer. This backoff time is a random number selected from 0 to the Contention Window (CW, Contention Window), in units of time slots.
  • CW Contention Window
  • the back-off timer is then decremented by one each time the channel is idle for one time slot. If there is a station sending data during the period, the timers of the remaining stations are frozen. When the channel is re-idle DIFS, the back-off timer is thawed and the countdown continues until the timer value is 0, and the station starts transmitting data.
  • the CW value of the competition window starts from CWmin (Contention Window minimum), and every time a conflict occurs, the competition window will multiply until CWmax (Contention Window maximum).
  • the larger the competition window the less likely it is to choose the same random backoff time, and the greater the ability of the back-off timer mechanism to resolve collisions. However, the larger the competition window, the longer the backoff time may be, resulting in unnecessary delays. Therefore, when the data transmission succeeds or the continuous retransmission fails multiple times, the CW value is reset to CWmin.
  • the interframe space DIFS and the backoff time 2T are expressions in the IEEE 802.11 standard using the existing protocol.
  • the interframe space DIFS is 34 ⁇ ⁇
  • T is the minimum unit of the backoff time, which is 9 ⁇ S.
  • STA1 and STA2 there are two stations in the wireless LAN, which are recorded as STA1 and STA2 respectively.
  • the busy/idle state of the channel is monitored. If the channel is already idle, and the idle time reaches the DIFS time, the STA selects the backoff timing according to the channel state, and the backoff time of STA1 and STA2. It is 2T.
  • STA1 and STA2 randomly select at least one of the subchannels to transmit the RTS1 frame and the RTS2 frame to ⁇ .
  • the STA1 selects the subchannel 1 to send the RTS 1 frame to the AP
  • the STA2 selects the subchannel 2 to send the RTS2 frame AP.
  • STA1 selects subchannel 2 to send an RTS1 frame to the AP
  • STA2 selects subchannel 1 to send an RTS2 frame AP.
  • STA1 selects subchannel 1 to send an RTS1 frame to the AP
  • STA2 selects subchannel 1 to send an RTS2 frame AP.
  • STA1 selects subchannel 2 to send an RTS1 frame to the AP
  • STA2 selects subchannel 2 to send an RTS2 frame AP.
  • the AP receives the access request frame sent by the STA.
  • the AP may correctly receive the access request frame sent by the STA, or may not receive correctly, that is, when the STA sends an access request frame through at least one subchannel in the channel, if the STA selects If there is no access request frame sent by other stations on the subchannel, the AP may correctly receive the access request frame sent by the STA; if the STA has the access sent by other stations on the subchannel that sends the receive request frame If the request frame is used, the access request frame sent by the STA and other stations may collide, which may result in the AP not being able to correctly receive the access request frame sent by the station.
  • STA1 sends RTS1 frame to AP through subchannel 1
  • STA2 sends RTS2 frame to AP through subchannel 2
  • STA1 sends RTS1 frame to AP through subchannel 2
  • STA2 sends RTS2 frame through subchannel 1.
  • the AP because STA1 and STA2 transmit separately through subchannel 1 and subchannel 2, and it is known that subchannel 1 and subchannel 2 are mutually orthogonal according to step S101, the AP may correctly receive the RTS frame sent by STA1 and STA2; The distance from the AP is relatively close, and the STA2 is far from the AP. Due to the characteristics of the channel fading of the radio channel itself, the RTS1 frame sent by the AP to STA1 may be correctly received, and the RTS2 frame sent by STA2 may not be received correctly.
  • STA1 sends an RTS1 frame to the AP through subchannel 1
  • STA2 transmits an RTS2 frame AP through subchannel 1
  • STA1 sends an RTS1 frame to the AP through subchannel 2
  • STA2 transmits an RTS2 frame AP through subchannel 2
  • the RTS1 frame and the RTS2 frame are transmitted through the subchannel 1 or the subchannel 2, so the RTS1 frame and the RTS2 frame may collide, and the RTS1 frame and the RTS2 frame sent by STA1 and STA2 may not be correctly received; if STA1 transmits the RTS1 frame
  • the transmit power is much larger than the transmit power of the STA2 sending RTS2 frame, and may receive the STA1 sent correctly.
  • the RTS1 frame cannot correctly receive the RTS2 frame sent by STA2.
  • Step 103 If the access response frame of the feedback is received, and the access response frame includes the identifier information of the site and the channel resource allocation information, the channel access is successful; the identifier information of the site is The channel resource allocation information is used to indicate that the channel allocates channel resources for data transmission for the station.
  • the STA receives the access response frame of the feedback, and the access response frame includes the identifier information of the station and the channel resource allocation information, the channel access is successful.
  • the access response frame is fed back to the STA by using the channel or a subchannel selected by the STA.
  • the access response frame includes an identification information of the station, and channel resource allocation information, and does not include identification information and channel resource allocation information of other stations with successful channel access; or, in the access response frame
  • the identifier information and the channel resource allocation information of the site are included, and further includes: identifier information of other stations with successful channel access and channel resource allocation information.
  • the access response frame of the ⁇ reply includes the identification information and the channel resource information of the station, and the identification information and the channel resource information of other stations including the channel access success may be fed back to the station through the channel.
  • the access response frame of the ⁇ reply includes the identifier information and the channel resource information of the site, and does not include the identifier information and channel resource information of other stations that are successfully accessed by the channel, and may be fed back to the channel through the channel.
  • Site the access response frame that is replied includes the identifier information and the channel resource information of the site, and includes identifier information and channel resource information of other stations that are successfully accessed by the channel, and may be selected by the site. The subchannel is fed back to the site.
  • the access response frame that is replied includes the identifier information and the channel resource information of the site, and does not include the identifier information and channel resource information of other stations with successful channel access, and may be adopted by the site.
  • the selected subchannel is fed back to the site.
  • the access response frame replied by the AP includes the channel resource allocation information randomly allocated by the AP to STA1 and STA2. Specifically, the AP may allocate subchannel 1 for STA1 and subchannel 2 for STA2. It may also allocate subchannel 2 for STA1, subchannel 1 for STA2, or allocate the entire channel for STA1 and allocate the entire channel for STA2. channel.
  • the AP may reply to the group to send (G-CTS, Group Clear to Send) frame and feed back to STA1 and STA2 through the entire channel.
  • the G-CTS frame includes the identifier information of STA1 and STA2, and the subchannel information randomly assigned by the AP to STA1 and STA2.
  • the AP may reply to the STA1 and the STA2 to send a CTS (Clear to Send) frame through the entire channel, that is, the AP may reply to the STA1 through the entire channel, and wait for the short frame interval (SIFS, Short Interframe space).
  • the CTS2 frame is replied to STA2 through the entire channel.
  • the CTS 1 frame only includes the identifier information of the corresponding station STA 1 and the channel resource information allocated by the AP for the STA 1.
  • the CTS2 frame only contains the identifier information of the corresponding station STA2, and the channel resource information allocated by the AP for the STA2. .
  • the AP may reply the G-CTS frame to STA1 and STA2 through the subchannel. That is, the AP replies to the G-CTS frame to STA1 through the subchannel 1 selected by STA1, and replies the G-CTS frame to STA2 through the subchannel 2 selected by STA2.
  • the AP may reply the CTS1 and CTS2 frames to STA1 and STA2 through the subchannel. That is, the AP replies to the CTS1 frame to STA1 through the subchannel 1 selected by STA1, and replies the CTS2 frame to STA2 through the subchannel 2 selected by STA2.
  • the channel access of the station is successful. If the channel access of the station is successful and data is transmitted, proceed to step 104, as shown in FIG. 2.
  • Step 104 The station sends a data DATA frame according to the access response frame AP received by the station.
  • the station sends data to the access point according to the received access response frame.
  • the DATA frame includes:
  • the station determines, according to the identification information included in the access response frame received by the station.
  • Channel resource allocation information of the station if the channel resource allocation information includes indication information transmitted by the channel, the station sends a DATA frame to the access point on the channel; or, if the channel resource allocation information includes And indicating, by the at least one subchannel, the station transmits a DATA frame on the at least one subchannel.
  • the data frame is sent to the AP according to the channel resource allocation information included in the G-CTS frame sent by the AP, where The AP allocates subchannel 1 to STA1, and AP allocates subchannel 2 to STA2.
  • STA1 and STA2 wait for the channel idle SIFS time, STA1 sends DATA1 frame to AP on subchannel 1, and STA2 sends DATA2 on subchannel 2. Frame to the AP.
  • the data frame is sent to the AP according to the channel resource allocation information included in the G-CTS frame sent by the AP, where The AP allocates the entire channel for STA1, and the AP allocates the entire channel for STA2.
  • STA1 sends a DATA1 frame to the AP on the entire channel.
  • STA2 sends DATA2 on the entire channel. Frame to the AP.
  • step 104 can be completed. If the data sent by the STA needs to be confirmed by the AP, after the step 104 is completed, the process proceeds to step 105.
  • Step 105 When the data sent by the STA needs to be acknowledged by the AP, the AP sends an acknowledgement frame to the station.
  • the STA receives the acknowledgement frame sent by the AP through the channel or the subchannel selected by the STA.
  • the confirmation frame includes: identifier information of the site, or the acknowledgement frame includes: identifier information of the site, and identifier information of other sites.
  • the AP may send a group acknowledgement (G-ACK, Group Acknowledgement) frame to the STA through the entire channel.
  • G-ACK group acknowledgement
  • the G-ACK frame is an AP that aggregates the acknowledgement messages of multiple STAs that successfully send data frames, that is, the identifier information of the site and the identifier information of other sites.
  • the AP may reply the ACK (Acknowledgement) frame one by one to the STA that successfully sends data by using the subchannel selected by the STA.
  • the AP may reply the ACK frame to the STA one by one through the entire channel.
  • the AP may reply to the G-ACK frame of the STA that successfully transmits data by using the subchannel selected by the STA.
  • step 104 if the AP receives STA1 sending DATA1 frame on subchannel 1 and STA2 sends DATA2 frame on subchannel 2, and the AP needs to confirm the received data, different manners may be used. Undergo verification.
  • the AP receives the DATA frame sent by the STA, and after waiting for the SIFS time, can reply the G-ACK frame to STA1 and STA2 through the entire channel.
  • the G-ACK frame includes the confirmation identifier information for STA1 and STA2.
  • the AP receives the DATA frame sent by the STA, and after waiting for the SIFS time, may reply the ACK1 frame to the STA1 through the subchannel 1 selected by the STA1, and reply the ACK2 frame to the STA2 through the subchannel 2 selected by the STA2.
  • the ACK1 only contains the acknowledgment identification information of the STA1, and the ACK2 only includes the acknowledgment identification information of the STA2.
  • the AP receives the DATA frame sent by the STA, and may reply the ACK1 frame and the ACK2 frame to the STA1 and STA2 one by one through the entire channel. That is, after waiting for the SIFS time, the AP sends an ACK1 frame to STA1 through the entire channel, and then waits for the SIFS time to send an ACK2 frame to STA2 through the entire channel.
  • the AP receives the DATA frame sent by the STA, and may reply the G-ACK frame to STA1 through the subchannel 1 selected by STA1, and reply the G-ACK frame to STA2 through the subchannel 2 selected by STA2.
  • step 106 is performed.
  • Step 106 In case the channel access fails, the station re-listens the channel state of the channel.
  • the station access failure includes: if the station receives the access response frame fed back by the AP, and the access response frame does not include the identifier information and channel resource allocation information of the station; or, if the station does not receive When the access response frame is fed back to the AP, the channel access fails.
  • Embodiments of the present invention provide a method, an apparatus, and a system for channel access, by which a STA monitors a channel condition of a channel, so that when the channel is in an idle state, an access request frame is sent to the AP through at least one subchannel in the channel.
  • the AP replies to the access response frame to all or a part of the STAs according to the received access request frame, and the STA learns whether the channel is successfully accessed according to the received access response frame. Further, if the STA channel access is successful, the DATA frame is sent on the subchannel or channel according to the channel resource allocation information included in the access response frame.
  • the STA only needs to monitor the channel state of the entire channel, and the STA's listening process is compressed, and the STA can select at least one subchannel to simultaneously transmit the access only when the channel is idle.
  • the request frame is sent to the AP to meet the time synchronization in the channel access, so that the AP can uniformly process the received access request frame, thereby avoiding interference of adjacent frequency band signals.
  • the present invention also provides a specific embodiment, which describes the above methods of channel access and data transmission in detail.
  • OFDMA system As shown in FIG. 3, it is assumed that there are 16 subcarriers available in the channel, sequentially numbered from 1 to 16, and the 16 subchannels are divided into 4 subchannels, wherein subcarrier 1 to subcarrier 4 is divided into subchannel 1, subcarrier 5 to subcarrier 8 is divided into subchannel 2, subcarrier 9 to subcarrier 12 is divided into subchannel 3, subcarrier 13 to subcarrier 16 is divided into subchannel 4; while eight are required STA transmits a DATA frame to the AP, shown in Figure 4, the other eight points STA 1 J i has to STA1, STA2, STA3, STA4, STA5, STA6, STA7 and STA8.
  • the eight STAs in Figure 4 need to perform channel access and data transmission through the channel shown in Figure 3.
  • Step 501 Eight STAs monitor the busy/idle state of the channel. If the idle time of the channel reaches the DIFS time, then go to step 502, otherwise stop at step 501.
  • the channel is divided into 4 subchannels, and the 4 subchannels are orthogonal to each other.
  • the channel is considered In the busy state; when the energy signal strength in the channel is less than a preset threshold, the channel is considered to be in an idle state.
  • Step 502 It is assumed that the backoff time of the STA1, the STA2, the STA3, and the STA4 is 2T, and the backoff time selected by the STA5, the STA6, the STA7, and the STA8 is greater than 2T, and the backoff process is performed.
  • Step 503 After the 2T time elapses, the STA randomly selects the sub-channel with the backoff time of 2T to send the RTS frame to the AP, and then proceeds to step 504; and selects the STA with the backoff time greater than 2T to proceed to step 501.
  • the RTS frames sent by STA1, STA2, STA3, and STA4 are respectively recorded as an RTS1 frame, an RTS2 frame, an RTS3 frame, and an RTS4 frame.
  • the STA1 randomly selects the subchannel 1 to send the RTS1 frame to the AP
  • the STA2 is randomly.
  • the subchannel 2 is selected to send the RTS2 frame to the AP
  • the STA3 randomly selects the subchannel 3 to send the RTS3 frame to the AP
  • the STA4 randomly selects the subchannel 3 to send the RTS4 frame to the AP.
  • Step 504 The AP correctly receives the RTS1 frame and the RTS2 frame sent by STA1 and STA2. After waiting for the SIFS time, the G-CTS frame is transmitted through the channel, and the G-CTS frame contains the allocation information of the channel resources; accordingly, STA1, STA2, STA3, and STA4 receive the G-CTS frame sent by the AP.
  • STA1 and STA2 respectively send an RTS1 frame and an RTS2 frame through subchannel 1 and subchannel 2, that is, only one STA on subchannel 1 and subchannel 2 transmits an RTS frame, and no other STA transmits an RTS frame, which does not generate In the collision, the AP can correctly receive the RTS 1 frame and the RTS2 frame sent by STA1 and STA2.
  • the AP sends the G-CTS frame through the entire channel according to the received RTS frame, and accordingly, STA1, STA2, STA3, and STA4 receive the G-CTS frame sent by the AP, as shown in FIG. Shown.
  • the G-CTS frame includes the channel resource allocation information of the AP to the STA1 and the STA2, and does not include the channel resource allocation information for the STA3 and the STA4, and the AP randomly allocates the subchannel 1 and the subchannel 2 for the STA1, and randomly allocates the STA2.
  • Subchannel 3 and subchannel 4 without assigning subchannels to STA3 and STA4, so the station knows from the information contained in the G-CTS frame, The channel access of STA1 and STA2 is successful, and the channel access of STA3 and STA4 fails.
  • An embodiment of the present invention provides a method for channel access, in which a STA monitors a busy/idle condition of a channel, so that when the channel is in an idle state, an access request frame is sent to the AP through one subchannel in the channel; The received access request frame returns an access response frame to all or a part of the STAs, and the STA learns whether the channel is successfully accessed according to the received access response frame.
  • the STA only needs to monitor the busy/idle state of the entire channel, and the STA's listening process is compressed, and the STA can select at least one subchannel at the same time only when the entire channel is idle.
  • the AP sends an access request frame to the AP to meet the time synchronization of the channel access, and further enables the AP to perform unified processing on the received access request frame, thereby avoiding interference of adjacent frequency band signals.
  • the STA1 and STA2 channel access is successful, and when the STA1 and the STA2 need to perform data transmission, the STA1 and the STA2 send a DATA frame to the AP according to the received access response frame;
  • the APs included in the AP allocate different channel resources for data transmission for STA1 and STA2, and two specific embodiments are provided.
  • This embodiment provides a method for performing data transmission in the case of successful channel access, including: Steps 501-504 in the first embodiment, which are steps 601-604 of the embodiment, and are not described herein. As shown in FIG. 6, the embodiment further includes:
  • Step 605 STA1 and STA2, according to the received G-CTS frame, after waiting for the channel idle SIFS time, STA1 sends a DATA1 frame to the AP on subchannel 1 and subchannel 2, and STA2 sends a DATA2 frame on subchannel 3 and subchannel 4.
  • the AP receives the DATA1 frame sent by STA1 and the DATA2 frame sent by STA2.
  • STA1, STA2, STA3, and STA4 receive the G-CTS frame sent by the AP through the channel, and the G-CTS frame only includes the channel resource allocation information for STA1 and STA2, and does not include the channel for STA3 and STA4.
  • Resource allocation information so after STA1 and STA2 wait for the channel idle SIFS time, STA1 sends DATA1 frame to AP on subchannel 1 and subchannel 2, and STA2 sends DATA2 frame to AP on subchannel 3 and subchannel 4, as shown in Fig. 6. Shown.
  • the AP only needs to receive the data sent by the STA, that is, the step 605 is performed.
  • step 606 If the data sent by STA1 and STA2 requires the AP to confirm, step 606 is performed. Step 606: The AP replies to the G-ACK frame through the entire channel after waiting for the SIFS time.
  • the AP receives the DATA1 frame and the DATA2 frame sent by STA1 and STA2, and replies to the G-ACK frame to STA1 and STA2 through the entire channel after waiting for the SIFS time.
  • the AP aggregates the acknowledgement information of STA1 and STA2 in the G-ACK frame.
  • An embodiment of the present invention provides a method for channel access, in which a STA monitors a busy/idle condition of a channel, so that when the channel is in an idle state, an access request frame is sent to the AP through one subchannel in the channel; The received access request frame returns an access response frame to all or a part of the STAs. Further, in the case that the channel access is successful, the STA receives the access response frame sent by the AP, and sends a DATA frame on the allocated subchannel according to the channel resource allocation information included in the access response frame sent by the AP.
  • the STA only needs to monitor the busy/idle state of the entire channel, and the STA's listening process is compressed, and the STA can simultaneously select one of the channels only when the entire channel is idle.
  • the channel sends an access request frame to the AP, which satisfies the time synchronization in the channel access, and further enables the AP to uniformly process the received access request frame, thereby avoiding interference of adjacent frequency band signals.
  • the present invention further provides another specific embodiment, which describes a method for performing data transmission in the case where the channel access is successful.
  • the steps 501-504 in the first embodiment are included, which are the steps 701-704 of the embodiment, and details are not described herein again.
  • the embodiment further includes:
  • Step 705 STA1 and STA2 send a DATA1 frame to the AP on the entire channel according to the received G-CTS frame, after STA1 waits for the channel idle SIFS time, and STA2 waits for the channel idle SIFS time, and then sends the DATA2 frame on the entire channel.
  • the AP receives the DATA1 frame sent by STA1 and the DATA2 frame sent by STA2. As shown in Figure 7.
  • the AP only needs to receive the data sent by the STA, that is, the step 706 is performed.
  • step 706 After receiving the DATA1 frame sent by STA1, and waiting for the SIFS time, the AP replies to the ACK1 frame through the entire channel; the AP receives the DATA2 post frame sent by STA2, and waits for the SIFS time to reply the ACK2 frame through the entire channel, such as This is shown in Figure 7.
  • An embodiment of the present invention provides a method for channel access, in which a STA monitors a busy/idle condition of a channel, so that when the channel is in an idle state, an access request frame is sent to the AP through one subchannel in the channel; The received access request frame returns an access response frame to all or a part of the STAs, and the STA learns whether the channel is successfully accessed according to the received access response frame. Further, if the STA channel access is successful, the DATA frame is sent on the channel according to the channel resource allocation information included in the access response frame.
  • the STA only needs to monitor the channel state of the entire channel, and the STA's listening process is compressed, and only when the channel is idle, the STA can simultaneously select one of the channels to transmit.
  • the access request frame is sent to the AP to meet the time synchronization during the channel access, so that the AP can uniformly process the received access request frame, thereby avoiding interference of adjacent frequency band signals.
  • the station 80 includes: a listening unit 801, configured to monitor a channel state of a channel; and the channel includes at least two subchannels;
  • the sending unit 802 is configured to: when the listening unit 801 monitors that the channel is in an idle state, send an access request frame to the access point AP by using at least one of the channels; the channel access unit 803 , for receiving an access response frame fed back by the AP, And the access response frame includes the identifier information of the site and the channel resource allocation information, and the channel access is successful.
  • the sending unit 802 includes: a backoff module 804 and a sending module 805, as shown in FIG. 9; wherein the backoff module 804 is configured to: when the listening unit 801 monitors that the channel is in an idle state, The sending module 805 is configured to send an access request frame to the AP by using at least one subchannel in the channel after the backoff process is performed by the backoff module 804.
  • the sending unit 802 further includes: a selecting module 806; the selecting module 805 is configured to select at least one subchannel for transmitting an access request frame from the channel;
  • the selection module 806 can be located before the backoff module 804, as shown in FIG. 10( a ).
  • the selection module 806 may also be located after the backoff module 804, as shown in FIG. 10(b).
  • the station 80 further includes: a data transmission unit 807, as shown in FIG. 11; the data transmission unit 807 is configured to successfully access the channel in the channel access unit 803.
  • the data DATA frame is transmitted to the access point AP according to the access response frame received by the channel access unit 803.
  • the data transmission unit 807 includes: a determination module 808 and a data transmission module 809, as shown in FIG.
  • the determining module 808 is configured to determine channel resource allocation information of the station according to the identifier information included in the access response frame received by the channel access unit 803, where the data sending module 809 is configured to In the case that the channel resource allocation information determined by the determining module 808 includes the indication information transmitted by the channel, the DATA frame is sent to the access point on the channel; or the channel resource determined by the determining module 808
  • the allocation information includes indication information transmitted by at least one subchannel, and the DATA frame is transmitted on the at least one subchannel.
  • the site 80 further includes: a data confirming unit 810, as shown in FIG.
  • the data confirming unit 810 is configured to receive an acknowledgment frame sent by the AP by using the channel or the subchannel selected by the STA, where the acknowledgment frame includes: identifier information of the station, or It includes: identification information of the site, and identification information of other sites.
  • the channel access unit 803 is further configured to receive an access response frame that is fed back by the AP, and the access response frame does not include the identifier information and channel resource allocation information of the site; or, the channel connection If the access unit does not receive the access response frame fed back by the AP, the channel access fails.
  • the listening unit 801 is further configured to re-monitor the channel state of the channel if the channel access fails.
  • the present invention also provides a system for channel access, the system comprising: an access point and the at least two stations; wherein the access point is configured to receive an access request frame sent by the station, and according to the received The access request frame generates an access response frame and feeds back to the station; if the site channel access is successful and needs to send data, the access point is used to receive the data frame sent by the station, and is determined according to the data type sent by the station. Whether you need to reply to the confirmation frame.
  • An embodiment of the present invention provides a device and system for channel access, by which a STA monitors a channel condition of a channel, so that when the channel is in an idle state, an access request frame is sent to the AP through at least one subchannel in the channel; According to the received access request frame, the access response frame is replied to all or a part of the STAs, and the STA learns whether the channel is successfully accessed according to the received access response frame. Further, if the STA channel access is successful, the DATA frame is sent on the subchannel or channel according to the channel resource allocation information included in the access response frame.
  • the STA only needs to monitor the channel state of the entire channel, and the STA's listening process is compressed, and the STA can select at least one subchannel to simultaneously transmit the access only when the channel is idle.
  • the request frame is sent to the AP to meet the time synchronization of the channel access, and the AP can further process the received access request frame to avoid interference of adjacent frequency band signals.
  • the embodiment of the present invention provides a station 140, including: a memory 1401, a processor 1402, a transmitter 1403, and a receiver 1404, as shown in FIG.
  • the memory 1401 may be a memory, and the memory 1401 stores a set of program codes; the program code is used to implement a method for channel access by the station 140 as an execution subject.
  • the processor 1402 is configured to call a program code stored in the memory 1401 to monitor a channel state of a channel.
  • the transmitter 1403 is configured to send an access request frame to the access point AP through at least one of the channels when the processor 1402 monitors that the channel is in an idle state.
  • the receiver 1403 is configured to receive an access response frame that is fed back by the AP, and the access response frame includes the identifier information of the site and channel resource allocation information, and the channel access is successful;
  • the information, the channel resource allocation information is used to instruct the AP to allocate channel resources for data transmission to the station.
  • the processor 1402 is further configured to invoke the program code stored in the memory 1401 to perform a backoff process if the channel is in an idle state, and after the backoff process ends, pass the At least one of the subchannels transmits an access request frame to the AP.
  • processor 1402 is further configured to invoke program code stored in the memory 1401 for selecting at least one subchannel for transmitting an access request frame from the channels.
  • the transmitter 1403 is further configured to send a data DATA frame to the AP according to the access response frame that is received by the transmitter.
  • the processor 1402 is further configured to invoke the program code stored in the memory 1401, to determine channel resource allocation of the station according to the identifier information included in the access response frame received by the receiver 1404. Information; if the channel resource allocation information includes indication information for data transmission by using a channel, the station sends a DATA frame to the access point on the channel; or, if the channel resource allocation information includes using at least one subchannel The indication information of the data transmission, the station transmits a DATA frame on the at least one subchannel.
  • the receiver 1404 is further configured to receive an acknowledgment frame sent by the AP by using the channel or the subchannel selected by the STA, where the acknowledgment frame includes: identifier information of the site, or the acknowledgement The frame includes: identification information of the site, and identification information of other sites. Further, the receiver 1404 is further configured to receive an access response frame that is fed back by the AP, and the access response frame does not include the identifier information and the channel resource allocation information of the site; or, if the AP is not received If the access response frame is fed back, the channel access fails. In the case that the channel access fails, the processor 1402 is further configured to invoke the program code stored in the memory 1401 to re-monitor the channel state of the channel.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not executed.
  • the coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be electrical, mechanical or otherwise.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may be physically included separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the above-described integrated unit implemented in the form of a software functional unit can be stored in a computer readable storage medium.
  • the software functional unit described above is stored in a storage medium and includes instructions for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform some of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, and a read only memory (Read-Only
  • Memory cartridge ROM), random access memory (RAM), disk or optical disc, and other media that can store program code.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种信道接入的方法、装置和***,通过简化 STA 的监听过程,以能够支持多个 STA在进行信道接入时满足时间上的同步,从而避免造成相邻频带信号干扰。所述方法包括:站点 STA监听信道的信道状态,所述信道包括至少两个子信道;在监听到信道处于空闲状态的情况下,通过信道中的至少一个子信道发送接入请求帧给接入点 AP;若接收到 AP反馈的接入响应帧,且接入响应帧中包括所述站点的标识信息和信道资源分配信息,则信道接入成功;所述站点的标识信息和信道资源分配信息用于指示所述 AP 为所述站点分配用于数据传输的信道资源。

Description

一种信道接入的方法、 装置和*** 本申请要求于 2013 年 08 月 15 日提交中国专利局、 申请号为 201310356741.9、 发明名称为"一种信道接入的方法、 装置和***"的中国专 利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域 本发明涉及无线通讯技术领域, 具体涉及一种信道接入的方法、 装置 和***。
背景技术 对于无线局域网的数据传输过程, IEEE 802.11协议对其进行了 详细的规定。 在一个无线局域网络中, 一般包括一个接入点 (AP, Access Point ) 和多个站点 ( STA, Station ) , 如果 STA有数据需要 发送时, 则必须首先将数据发送给 AP, 之后由 AP转发给其他网络 节点。 因此, 当一个无线局域网中有多个 STA 同时有数据需要发送 时, 必然会竟争信道资源。
IEEE 802.11 协议规定所有 STA使用同一条信道发送接入请求 帧, 以竟争信道资源, 因此在无线局域网中, 当多个 STA 同时发送 接入请求帧时, 会发生碰撞, 以至于 AP可能无法正确接收到任何一 个 STA发送的接入请求帧。 一种解决的思路是将信道划分为若干频 域子信道, STA通过监听每个子信道的忙 /闲状态, 以便在不同的子 信道上竟争信道资源, 但是由于 STA需要同时监听每个子信道的忙 / 闲状态, 从而导致 STA监听过程复杂, 且当多个 STA进行信道接入 时存在时间上不同步的问题, 从而导致邻带干扰严重。
例如: 若信道被划分为 2个子信道时, 当 STA1监听到子信道 1 处于空闲状态时, 则 STA1发送接入请求帧给 AP, 此时, 在 STA1发 送接入请求帧的同时, STA2监听到子信道 2处于空闲状态, 则 STA2 发送接入请求帧给 AP, 那么 STA1和 STA2进行信道接入时存在时间 上不同步的问题; AP首先接收到 STA1发送的接入请求帧, 在 AP对 STA1发送的接入请求帧进行处理的过程中,接收到 STA2发送的接入 请求帧,那么 STA2发送的接入请求帧造成对 STA1发送的接入请求帧 的严重干扰, 也就是子信道 2上的信号对子信道 1上的信号造成了干 扰, 由于每个子信道占用一定的频域带宽, 从而导致相邻频带信号干 扰严重。
发明内容 本发明的实施例提供了一种信道接入的方法、装置和***, 通过 筒化 STA的监听过程, 以能够支持多个 STA在进行信道接入时满足 时间上的同步, 从而避免造成相邻频带信号干扰。
为达到上述目的, 本发明的实施例采用如下技术方案:
第一方面, 本发明提供了一种信道接入的方法, 包括: 站点 STA监听信道的信道状态;所述信道包括至少两个子信道; 在监听到所述信道处于空闲状态的情况下,通过所述信道中的至 少一个子信道发送接入请求帧给接入点 AP;
若接收到所述 AP反馈的接入响应帧,且所述接入响应帧中包括 所述站点的标识信息和信道资源分配信息, 则信道接入成功; 所述站 点的标识信息和信道资源分配信息用于指示所述 AP为所述站点分配 用于数据传输的信道资源。
在第一种可能的实现方式中,根据第一方面, 在监听到所述信道 处于空闲状态的情况下,通过所述信道中的至少一个子信道发送接入 请求帧给接入点 AP包括:
在监听到所述信道处于空闲状态的情况下, 执行退避过程; 在所述退避过程结束后,通过所述信道中的至少一个子信道发送 接入请求帧给 AP。 在第二种可能的实现方式中,结合第一方面或第一种可能的实现 方式, 在监听到所述信道处于空闲状态的情况下, 通过所述信道中的 至少一个子信道发送接入请求帧给接入点 AP之前,所述方法还包括: 从所述信道中选择至少一个用于发送接入请求帧的子信道。
在第三种可能的实现方式中,根据第二种可能的实现方式, 所述 接入响应帧是 AP通过所述信道或所述 STA所选择的子信道反馈给 所述 STA的。
在第四种可能的实现方式中,结合第一方面或前三种可能的实现 方式中任一种, 所述方法之后还包括: 站点根据其接收到的接入响应 帧向 AP发送数据 DATA帧。 在第五种可能的实现方式中,根据第四种可能的实现方式, 所述 站点根据其接收到的接入响应帧向 AP发送数据 DATA帧包括:
所述站点根据其接收到的接入响应帧中所包含的标识信息,确定 所述站点的信道资源分配信息; 若信道资源分配信息包括用信道进行数据传输的指示信息,则所 述站点在所述信道上向所述接入点发送 DATA帧; 或, 若信道资源分配信息包括用至少一个子信道进行数据传输的指 示信息, 则所述站点在所述至少一个子信道上发送 DATA帧。 在第六种可能的实现方式中,结合第四种或第五种可能的实现方 式中的任一种, 在所述 DATA帧需要 AP确认的情况下, 所述方法还 包括: 接收 AP通过所述信道或所述 STA所选择的子信道发送的确 认帧; 所述确认帧中包括: 所述站点的标识信息, 或者, 所述确认帧 中包括: 所述站点的标识信息, 以及其他站点的标识信息。
在第七种可能的实现方式中,结合第一方面或前三种可能的实现 方式中的任一种, 所述方法包括: 若站点接收到 AP反馈的接入响应 帧,且所述接入响应帧中不包括所述站点的标识信息和信道资源分配 信息; 或者, 若站点没有接收到 AP反馈的接入响应帧, 则信道接入 失败;
在信道接入失败的情况下, 所述方法还包括: 站点重新监听信道 的信道状态。
第二方面, 本发明提供了一种站点, 包括: 监听单元, 用于监听包括信道的信道状态, 所述信道包括至少两 个子信道;
发送单元,用于在监听单元监听到所述信道处于空闲状态的情况 下,通过所述信道中的至少一个子信道发送接入请求帧给接入点 AP; 信道接入单元, 用于若接收到所述 AP反馈的接入响应帧, 且所 述接入响应帧中包括所述站点的标识信息和信道资源分配信息,则信 道接入成功;所述站点的标识信息和信道资源分配信息用于指示所述
AP为所述站点分配用于数据传输的信道资源。
在第一种可能的实现方式中,根据第二方面,所述发送单元包括: 退避模块和发送模块;
所述退避模块,用于在所述监听单元监听到所述信道处于空闲状 态的情况下, 执行退避过程;
所述发送模块, 用于在所述退避模块执行完成退避过程结束后, 通过所述信道中的至少一个子信道发送接入请求帧给 AP。
在第二种可能的实现方式中,结合第一方面或第一种可能的实现 方式, 所述发送单元还包括: 选择模块;
所述选择模块用于从所述信道中选择至少一个用于发送接入请 求帧的子信道。
在第三种可能的实现方式中,根据第二种可能的实现方式, 所述 接入响应帧是 AP通过所述信道或所述 STA所选择的子信道反馈给 所述 STA的。
在第四种可能的实现方式中,结合第二方面或前三种可能的实现 方式中的任一种, 所述站点还包括: 数据传输单元;
所述数据传输单元, 用于在信道接入单元信道接入成功的情况 下, 根据信道接入单元接收到的接入响应帧向接入点 AP 发送数据 DATA帧。 在第五种可能的实现方式中,根据第四种可能的实现方式, 所述 数据传输单元包括: 确定模块和数据发送模块; 所述确定模块,用于根据信道接入单元接收到的接入响应帧中所 包含的标识信息, 确定所述站点的信道资源分配信息; 所述数据发送模块,用于在所述确定模块所确定的信道资源分配 信息包括用信道进行数据传输的指示信息的情况下,在所述信道上向 所述接入点发送 DATA 帧; 或, 在所述确定模块所确定的信道资源 分配信息包括用至少一个子信道进行数据传输的指示信息的情况下, 在所述至少一个子信道上发送 DATA帧。 在第六种可能的实现方式中,结合第四种或第五种可能的实现方 式中的任一种, 所述站点还包括: 数据确认单元; 所述数据确认单元, 用于接收 AP通过所述信道或所述 STA所 选择的子信道发送的确认帧; 所述确认帧中包括: 所述站点的标识信 息, 或者, 所述确认帧中包括: 所述站点的标识信息, 以及其他站点 的标识信息。
在第七种可能的实现方式中,结合第二方面或前三种可能的实现 方式中的任一种, 所述信道接入单元还用于若接收到 AP反馈的接入 响应帧,且所述接入响应帧中不包括所述站点的标识信息和信道资源 分配信息; 或者, 若没有接收到 AP反馈的接入响应帧, 则信道接入 失败; 所述监听单元还用于在信道接入单元信道接入失败的情况下,重 新监听信道的信道状态。
第三方面, 本发明提供了一种信道接入的***, 包括: 接入点以 及上述的至少两个站点。
本发明的实施例提供了一种信道接入的方法、 装置和***, STA 通过监听信道的信道状况, 以便在信道处于空闲状态时, 通过信道中 的至少一个子信道发送接入请求帧给 AP; AP根据接收到的接入请求 帧, 向全部或者部分 STA回复接入响应帧, STA根据接收到的接入响 应帧, 获知信道是否接入成功。 进一步的, 若 STA信道接入成功, 则 根据接入响应帧中所包含的信道资源分配信息, 在子信道或者信道上 发送 DATA帧。 通过这种信道接入方法, 以使得 STA只需监听整个信 道的信道状态, 筒化了 STA的监听过程, 并且只有在信道处于空闲的 状态下, STA才能同时选择至少一个子信道来发送接入请求帧给 AP, 满足在进行信道接入时时间上的同步, 进一步使得 AP 能对接收到的 接入请求帧进行统一处理, 从而避免造成相邻频带信号干扰。
附图说明 为了更清楚地说明本发明实施例的技术方案, 下面将对实施例或现有 技术描述中所需要使用的附图作筒单地介绍, 显而易见地, 下面描述中的 附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付 出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明实施例提供的一种信道接入的方法流程示意图; 图 2为本发明实施例提供的一种信道接入成功后数据传输的方法流程 示意图;
图 3为本发明实施例提供的一种信道划分的示意图;
图 4为本发明实施例提供的一种信道接入的场景示意图;
图 5为本发明实施例提供的一种信道接入的方法示意图;
图 6为本发明实施例提供的一种信道接入成功后数据传输的方法示意 图;
图 7为本发明实施例提供的另一种信道接入成功后数据传输的方法示 意图;
图 8为本发明实施例提供的一种站点的装置结构示意图; 图 9为本发明实施例提供的另一种站点的装置结构示意图;
图 10为本发明实施例提供的另一种站点的装置结构示意图; 图 11为本发明实施例提供的另一种站点的装置结构示意图; 图 12为本发明实施例提供的另一种站点的装置结构示意图; 图 13为本发明实施例提供的另一种站点的装置结构示意图; 图 14为本发明实施例提供的一种站点的实体装置结构示意图。
具体实施方式 下面将结合本发明实施例中的附图,对本发明实施例中的技术方 案进行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部 分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普 通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
本发明提供了一种信道接入的方法, 如图 1所示, 包括: 步骤 101、 站点 STA监听信道的信道状态; 所述信道包括至少 两个子信道。
其中, 所述信道的信道状态包括: 信道处于空闲状态或者信道处 于繁忙状态; 所述信道中包含的子信道是相互正交的。
具体的, 所述站点 STA监听信道的信道状态为 STA监听整个信 道中能量信号的强度是否达到预先设定的阈值,所述阈值为整个信道 的能量信号强度所能达到的临界值, 也就是说, 若 STA监听到整个 信道中能量信号的强度大于等于预先设定的阈值,则信道处于繁忙状 态; 若 STA监听到整个信道中能量信号的强度小于预先设定的阈值, 则信道处于空闲状态。
示例的, 若信道被划分为两个子信道, 分别记为: 子信道 1和子 信道 2, 且两个子信道之间是相互正交的, 同时设定信道能量信号强 度所能达到的临界值为 -72dBm。 当站点需要进行信道接入时, 首先 监听信道的忙 /闲状态, 若信道上的能量信号强度大于 -72dBm, 则信 道处于繁忙状态, 若信道上的能量信号强度小于 -72dBm, 则信道处 于空闲状态。
步骤 102、 STA在监听到所述信道处于空闲状态的情况下, 通过 所述信道中的至少一个子信道发送接入请求帧给接入点 AP。
可选的, 当 STA监听到所述信道处于空闲状态的情况下, 直接 通过所述信道中的至少一个子信道发送接入请求帧( RTS , Request to Send ) 给接入点 AP。
或者可选的, STA 在监听到所述信道处于空闲状态的情况下, 执行退避过程; 在所述退避过程结束后, STA 通过所述信道中的至 少一个子信道发送接入请求帧给接入点 AP。
进一步的,在站点监听到信道处于空闲状态的情况下, 通过所述 信道中的至少一个子信道发送接入请求帧给 AP之前, 站点从所述信 道中选择至少一个用于发送接入请求帧的子信道。
可选的, 站点在监听到所述信道处于空闲状态的情况下,先从所 述信道中选择至少一个子信道, 然后在选定的子信道上执行退避过 程, 在所述退避过程结束后, STA 通过所述信道中的至少一个子信 道发送接入请求帧给接入点 AP。
或者可选的, STA 在监听到所述信道处于空闲状态的情况下, 以整个信道为依据执行退避过程; 在退避过程结束之后, 先所述信道 中的至少一个子信道, STA通过所选择的所述信道中的至少一个子 信道发送接入请求帧给 AP。
当然,站点可以从所述信道中随机的选择至少一个子信道用于发 送接入请求帧, 该选择方法不限于此。
示例的,假设无线局域网中有两个站点,且信道被划分为两个子 信道。
示例的, 当 STA监听到信道处于空闲状态的时间达到分布式协 调帧间隔 ( DIFS , DCF Interframe Space ) 时间, 则 STA可以将整个 信道的忙 /闲状态作为退避计时的依据,选择退避时间 2T执行退避过 程。
其中, 所述分布式协调功能 ( DCF , distribution coordination function ) 为一种分布式的媒体访问控制机制, 它的主要任务是控制 共享同一无线信道的各无线节点对信道的访问。 在 DCF协议中, 站 点在开始发送数据之前需要监听信道是否处于空闲状态。如果信道已 经空闲, 站点仍需等待 DIFS 段时间才开始发送数据; 如果在 DIFS 时间段内任一时刻信道被监听为忙, 贝 'J站 , 不得不推迟它的数据发 送。
当空闲之后达到 DIFS 时间后, 站点开始退避过程, 站点根据退 避算法选择一个退避时间, 并设置一个退避时间计数器。 在 IEEE802.11 中采用的二进制随机退避算法中随机数的产生规则是: 节点在发送数据之前, 首先要侦听信道是否空闲, 若信道闲, 则该结 点在侦听到信道连续空闲 DIFS时间后可以发送;若信道忙,则等待到 当前的数据传输结束后,产生一段随机的后退时间作为后退定时器的 初值。 这个后退时间是从 0到竟争窗口 (CW, Contention Window ) 之间选取一个随机数, 并以时间槽为单位。 之后每当信道空闲一个时 间槽, 后退定时器就减 1。 如果期间有站点发送数据, 则其余站点的 定时器被冻结, 当信道重新空闲 DIFS时, 后退定时器解冻, 继续倒 计数, 直到定时器的值为 0, 该站点就开始发送数据。 其中, 竟争窗 口 CW值从 CWmin ( Contention Window minimum ) 开始, 每发生一 次沖突, 竟争窗口就会成倍增长, 直到 CWmax ( Contention Window maximum )。 竟争窗口越大, 选择相同的随机后退时间的可能性就较 小, 后退定时器机制解决碰撞的能力就越大。 但是, 竟争窗口越大, 后退时间可能就越长, 从而导致不必要的延迟。 因此, 当数据传输成 功或者连续重传多次失败后, CW值被重新设置成 CWmin。
其中, 所述帧间间隔 DIFS和退避时间 2T为使用现有协议 IEEE 802.11标准中的表达方式, 所述帧间间隔 DIFS为 34 μ δ, T是退避 时间的最小单位, 为 9 μ S。
示例的, 4叚设无线局域网中有两个站点, 分别记为 STA1 和 STA2。 当两个站点需要进行信道接入时, 监听信道的忙 /闲状态, 若 监听到信道已经处于空闲状态, 且空闲时间达到 DIFS时间, 则 STA 根据信道状态选择退避计时, STA1 和 STA2的退避时间为 2T。
当退避时间达到 2Τ之后, STA1和 STA2随机地选择信道中的 至少一个子信道发送 RTS1帧和 RTS2帧给 ΑΡ。 可选的, STA1选择子信道 1发送 RTS 1帧给 AP, STA2选择子 信道 2发送 RTS2帧 AP。
或者可选的, STA1选择子信道 2发送 RTS1帧给 AP, STA2选 择子信道 1发送 RTS2帧 AP。
或者可选的, STA1选择子信道 1发送 RTS1帧给 AP, STA2选 择子信道 1发送 RTS2帧 AP。
或者可选的, STA1选择子信道 2发送 RTS1帧给 AP, STA2选 择子信道 2发送 RTS2帧 AP。
相应的, AP接收所述 STA发送的接入请求帧。
具体的, AP对于所述 STA发送的接入请求帧, 可能正确接收, 也可能无法正确接收, 即当所述 STA通过信道中的至少一个子信道 发送接入请求帧时, 若所述 STA选择的子信道上没有其他站点发送 的接入请求帧, 则 AP可能正确接收到所述 STA发送的接入请求帧; 若所述 STA在发送接收请求帧的子信道上有其他站点发送的接入请 求帧, 则所述 STA和其他站点发送的接入请求帧可能会发生碰撞, 从而导致 AP可能无法对所述站点发送的接入请求帧进行正确接收。
示例的, 若 STA1通过子信道 1发送 RTS 1帧给 AP, STA2通过 子信道 2发送 RTS2帧给 AP,或者,若 STA1通过子信道 2发送 RTS1 帧给 AP, STA2通过子信道 1发送 RTS2帧给 AP,由于 STA1和 STA2 通过子信道 1和子信道 2分别进行发送, 且根据步骤 S101 已知子信 道 1和子信道 2是相互正交的,则 AP可能正确接收到 STA1和 STA2 发送的 RTS帧; 若 STA1距离 AP比较近, 而 STA2距离 AP比较远, 由于无线信道本身的信道衰落等特性, AP对 STA1发送的 RTS1 帧 可能正确接收, 对 STA2发送的 RTS2帧可能无法正确接收。
若 STA1通过子信道 1发送 RTS1帧给 AP, STA2通过子信道 1 发送 RTS2帧 AP, 或者若 STA1通过子信道 2发送 RTS1帧给 AP, STA2通过子信道 2发送 RTS2帧 AP, 由于 STA1和 STA2都通过子 信道 1或子信道 2发送 RTS1帧和 RTS2帧, 所以 RTS1帧和 RTS2 帧可能会发生碰撞,ΑΡ可能无法对 STA1和 STA2发送的 RTS1帧和 RTS2 帧进行正确接收; 若 STA1 发送 RTS1 帧的发送功率远大于 STA2发送 RTS2帧的发送功率, ΑΡ可能正确接收到 STA1 发送的 RTS1帧, 而无法正确接收到 STA2发送的 RTS2帧。
步骤 103、 若接收到所述 ΑΡ反馈的接入响应帧, 且所述接入响 应帧中包括所述站点的标识信息和信道资源分配信息,则信道接入成 功; 所述站点的标识信息和信道资源分配信息用于指示所述 ΑΡ为所 述站点分配用于数据传输的信道资源。
具体的, 当所述 STA接收到所述 ΑΡ反馈的接入响应帧, 且所 述接入响应帧中包括有所述站点的标识信息和信道资源分配信息,则 信道接入成功。
其中, 所述接入响应帧是 ΑΡ通过所述信道或所述 STA所选择 的子信道反馈给所述 STA的。
所述接入响应帧中包括所述站点的标识信 , ¾和信道资源分配信 息,且不包括信道接入成功的其他站点的标识信息和信道资源分配信 息; 或者, 所述接入响应帧中包括所述站点的标识信息和信道资源分 配信息, 且还包括: 信道接入成功的其他站点的标识信息和信道资源 分配信息。
优选的, ΑΡ回复的接入响应帧中包括有所述站点的标识信息和 信道资源信息,且包括信道接入成功的其他站点的标识信息和信道资 源信息, 可以通过所述信道反馈给站点。
可选的, ΑΡ回复的接入响应帧中包括有所述站点的标识信息和 信道资源信息,且不包括信道接入成功的其他站点的标识信息和信道 资源信息, 可以通过所述信道反馈给站点。 或者可选的, ΑΡ回复的接入响应帧中包括有所述站点的标识信 息和信道资源信息,且包括信道接入成功的其他站点的标识信息和信 道资源信息, 可以通过所述站点所选择的子信道反馈给站点。
或者可选的, ΑΡ回复的接入响应帧中包括有所述站点的标识信 息和信道资源信息,且不包括信道接入成功的其他站点的标识信息和 信道资源信息, 可以通过所述站点所选择的子信道反馈给站点。
示例的,若 ΑΡ正确接收到 STA1和 STA2发送的 RTS 1帧和 RTS2 帧, 则 ΑΡ需要回复接入响应帧给 STA1和 STA2, 以表示 STA1和 STA2信道接入成功。 其中, AP回复的接入响应帧中包含有 AP随机地对 STA1和 STA2 的信道资源分配信息。 具体的, AP可以是为 STA1 分配子信道 1 , 为 STA2分配子信道 2; 也可以是为 STA1 分配子信道 2, 为 STA2 分配子信道 1 , 也可以是为 STA1分配整个信道, 为 STA2分配整个 信道。
优选的, AP可以回复组允许发送(G-CTS , Group Clear to Send ) 帧, 通过整个信道反馈给 STAl和 STA2。 其中, G-CTS帧中包含有 STA1和 STA2的标识信息信息,以及 AP为 STA1和 STA2随机分配 的子信道信息。
可选的, AP可以通过整个信道分别向 STA1和 STA2回复允许 发送(CTS , Clear to Send )帧, 即 AP可以通过整个信道向 STAl回 复 CTS1帧, 在等待短帧间隔( SIFS , Short Interframe space )时间之 后, 通过整个信道向 STA2回复 CTS2帧。 其中, CTS 1帧只包含有 对应站点 STA 1的标识信息信息, 以及 AP为 STA 1分配的信道资源 信息, CTS2 帧只包含有对应站点 STA2 的标识信息信息, 以及 AP 为 STA2分配的信道资源信息。
或者可选的, AP 可以通过子信道回复 G-CTS 帧给 STA1 和 STA2。 即 AP通过 STA1所选择的子信道 1回复 G-CTS帧给 STA1 , 通过 STA2所选择的子信道 2回复 G-CTS帧给 STA2。
或者可选的, AP可以通过子信道回复 CTS1和 CTS2帧给 STA1 和 STA2。即 AP通过 STA1所选择的子信道 1回复 CTS1帧给 STA1 , 通过 STA2所选择的子信道 2回复 CTS2帧给 STA2。
根据步骤 101-103可知所述站点的信道接入成功,那么所述站点 信道接入成功且有数据传输时, 继续执行步骤 104, 如图 2所示。
步骤 104、 站点根据其接收到的接入响应帧 AP发送数据 DATA 帧。
其中, 所述站点根据其接收到的接入响应帧向接入点发送数据 DATA帧包括:
所述站点根据其接收到的接入响应帧中所包含的标识信息,确定 所述站点的信道资源分配信息; 若信道资源分配信息包括用信道传输的指示信息,则所述站点在 所述信道上向所述接入点发送 DATA帧; 或, 若信道资源分配信息包括用至少一个子信道传输的指示信息,则 所述站点在所述至少一个子信道上发送 DATA帧。
示例的, 在经过步骤 101-103之后, 若 STA1和 STA2信道接入 成功且需要发送数据时, 根据接收到 AP发送的 G-CTS帧中包含的 信道资源分配信息向 AP发送数据帧, 其中, AP为 STA1分配了子 信道 1 , AP为 STA2分配了子信道 2, 则 STA1和 STA2在等待信道 空闲 SIFS时间之后, STA1在子信道 1上发送 DATA1帧给 AP, STA2 在子信道 2上发送 DATA2帧给 AP。
又示例的, 在经过步骤 101-103之后, 若 STA1和 STA2信道接 入成功且需要发送数据时, 根据接收到 AP发送的 G-CTS帧中包含 的信道资源分配信息向 AP发送数据帧, 其中, AP为 STA1分配整 个信道, AP为 STA2分配整个信道, 则 STA1在等待信道空闲 SIFS 时间后, 在整个信道上发送 DATA1帧给 AP, STA2再等待信道空闲 SIFS时间后, 在整个信道上发送 DATA2帧给 AP。
进一步的, 在 STA发送的数据无需 AP进行确认的情况下, 执 行完成步骤 104即可; 在 STA发送的数据需要 AP进行确认的情况 下, 执行完成步骤 104之后, 继续执行步骤 105。
步骤 105、 当 STA发送的数据需要 AP进行确认的情况时, AP 回复确认帧给所述站点; 相应的, 所述 STA接收 AP通过所述信道 或所述 STA所选择的子信道发送确认帧; 所述确认帧中包括: 所述 站点的标识信息, 或者, 所述确认帧中包括: 所述站点的标识信息, 以及其他站点的标识信息。
优选的, AP可以通过整个信道对成功发送数据的 STA发送组确 认 ( G-ACK, Group Acknowledgement ) 帧给所述站点。 其中, 所述 G-ACK帧为 AP将多个成功发送数据帧的 STA的确认消息聚合在一 起, 即包含有所述站点的标识信息, 以及其他站点的标识信息。
可选的, AP可以通过所述 STA所选择的子信道对成功发送数据 的 STA逐一回复 ACK ( Acknowledgement ) 帧。 或者可选的, AP可以通过整个信道对成功发送数据的 STA逐一 回复 ACK帧给所述 STA。
或者可选的, AP可以通过所述 STA所选择的子信道对成功发送 数据的 STA回复 G-ACK帧。
示例的, 在经过步骤 104后, 若 AP接收到 STA1在子信道 1上 发送 DATA1帧和 STA2在子信道 2上发送 DATA2帧,并且 AP需要 对接收到的数据进行确认, 可采用不同的方式来进行确认。
优选的, AP接收到 STA发送的 DATA帧, 在等待 SIFS时间之 后,可以通过整个信道回复 G-ACK帧给 STA1和 STA2。其中, G-ACK 帧中包含有对 STA1和 STA2的确认标识信息。
可选的, AP接收到 STA发送的 DATA帧, 在等待 SIFS时间之 后, 可以通过 STA1所选择的子信道 1回复 ACK1帧给 STA1 , 通过 STA2所选择的子信道 2回复 ACK2帧给 STA2。 其中, ACK1仅包 含有所述 STA1的确认标识信息, ACK2仅包含有所述 STA2的确认 标识信息。
或者可选的, AP接收到 STA发送的 DATA帧, 可以通过整个 信道逐一回复 ACK1帧和 ACK2帧给所述 STA1和 STA2。 即 AP在 等待 SIFS时间之后, 通过整个信道发送 ACK1 帧给 STA1 , 再等待 SIFS时间之后, 通过整个信道发送 ACK2帧给 STA2。
或者可选的, AP接收到 STA发送的 DATA帧, 可以通过 STA1 所选择的子信道 1 回复 G-ACK帧给 STA1 , 通过 STA2所选择的子 信道 2回复 G-ACK帧给 STA2。
若信道接入失败, 则执行步骤 106。
步骤 106、 在信道接入失败的情况下, 站点重新监听信道的信道 状态。
其中, 所述站点接入失败包括: 若站点接收到 AP反馈的接入响 应帧,且所述接入响应帧中不包括所述站点的标识信息和信道资源分 配信息; 或者, 若站点没有接收到 AP反馈的接入响应帧, 则信道接 入失败。 本发明的实施例提供了一种信道接入的方法、 装置和***, STA 通过监听信道的信道状况, 以便在信道处于空闲状态时, 通过信道中 的至少一个子信道发送接入请求帧给 AP; AP根据接收到的接入请求 帧, 向全部或者部分 STA回复接入响应帧, STA根据接收到的接入 响应帧, 获知信道是否接入成功。 进一步的, 若 STA信道接入成功, 则根据接入响应帧中所包含的信道资源分配信息,在子信道或者信道 上发送 DATA帧。 通过这种信道接入方法, 以使得 STA只需监听整 个信道的信道状态, 筒化了 STA的监听过程, 并且只有在信道处于 空闲的状态下, STA 才能同时选择至少一个子信道来发送接入请求 帧给 AP, 满足在进行信道接入时时间上的同步, 进一步使得 AP能 对接收到的接入请求帧进行统一处理,从而避免造成相邻频带信号干 扰。
下面, 本发明还提供了具体的实施例,对上述信道接入和数据传 输的方法进行详细的描述。 以 OFDMA***为例, 如图 3所示, 假设 信道中有可用的子载波共 16个, 从 1开始顺序编号到 16 , 该 16个 子信道被划分为 4个子信道,其中子载波 1到子载波 4被划分为子信 道 1 , 子载波 5到子载波 8被划分为子信道 2, 子载波 9到子载波 12 被划分为子信道 3 , 子载波 13到子载波 16被划分为子信道 4; 同时 有 8个 STA均需要向一个 AP发送 DATA帧,如图 4所示, 8个 STA 分另1 J i己为 STA1、 STA2、 STA3、 STA4、 STA5、 STA6、 STA7和 STA8。 图 4中的 8个 STA需要通过图 3 中所示的信道进行信道接入和数据 传输。
STA向 AP发送 DATA帧之前需要先进行信道接入的过程, 基 于上述描述的场景, 下面提供针对信道接入的方法的一具体实例, 如 图 5所示。
实施例一、
步骤 501、 8个 STA监听信道的忙 /闲状态。 若信道的空闲时间 达到 DIFS时间, 则转入步骤 502, 否则停留在步骤 501。
具体的,信道被划分为 4个子信道,且 4个子信道是相互正交的。 当信道中的能量信号强度大于等于预先设定的阈值时,则认为信道处 于繁忙状态; 当信道中的能量信号强度小于预先设定的阈值时, 则认 为信道处于空闲状态。
步骤 502、 假设 STA1、 STA2、 STA3和 STA4选择退避时间均 为 2T, STA5、 STA6、 STA7和 STA8选择的退避时间均大于 2T, 执行退避过程。
步骤 503、 在经过 2T时间之后, 选择退避时间为 2T的 STA随 机选择子信道发送 RTS帧给 AP, 之后转入步骤 504; 选择退避时间 大于 2T的 STA转入步骤 501。
具体的, 将 STA1、 STA2、 STA3和 STA4发送的 RTS帧分别记 为 RTS1帧、 RTS2帧, RTS3帧和 RTS4帧, 如图 5所示, STA1随 机选择子信道 1发送 RTS1 帧给 AP, STA2随机选择子信道 2发送 RTS2帧给 AP, STA3随机选择子信道 3发送 RTS3帧给 AP, STA4 随机选择子信道 3发送 RTS4帧给 AP。
步骤 504、AP正确接收到 STA1和 STA2发送的 RTS1帧和 RTS2 帧。 在等待 SIFS时间之后, 通过信道发送 G-CTS帧, G-CTS帧中包 含了信道资源的分配信息;相应地, STA1、 STA2、 STA3和 STA4接 收到 AP发送的 G-CTS帧。
具体的, STA1和 STA2分别通过子信道 1和子信道 2发送 RTS1 帧和 RTS2帧, 也就是说, 在子信道 1和子信道 2上只有一个 STA 发送 RTS帧, 没有其他 STA发送 RTS帧, 不会产生碰撞, AP能够 AP正确接收到 STA1和 STA2发送的 RTS 1帧和 RTS2帧。
由于 STA3和 STA4选用同一个子信道 3发送 RTS3帧和 RTS4 帧, 因此 RTS3和 RTS4帧发生碰撞, 从而导致 AP不能对 RTS3和 RTS4帧进行正确接收。
进一步的, AP在等待 SIFS时间之后, 根据接收到的 RTS帧, 通过整个信道发送 G-CTS帧, 相应地, STA1、 STA2、 STA3和 STA4 接收到 AP发送的 G-CTS帧, 如图 5中所示。 其中, 在 G-CTS帧中 包含有 AP对 STA1和 STA2的信道资源分配信息,不包含有对 STA3 和 STA4的信道资源分配信息, AP为 STA1随机分配子信道 1和子 信道 2, 为 STA2随机分配子信道 3和子信道 4, 而不用为 STA3和 STA4 分配子信道, 所以站点根据 G-CTS 帧中所包含的信息得知, STAl和 STA2的信道接入成功, STA3和 STA4的信道接入失败。 本发明的实施例提供了一种信道接入的方法, STA 通过监听信 道的忙 /闲状况, 以便在信道处于空闲状态时, 通过信道中的一个子 信道发送接入请求帧给 AP; AP根据接收到的接入请求帧, 向全部或 者部分 STA回复接入响应帧, STA根据接收的接入响应帧, 获知信 道是否接入成功。 通过这种信道接入的方法, 以使得 STA只需监听 整个信道的忙 /闲状态, 筒化了 STA的监听过程, 并且只有在整个信 道处于空闲的状态下, STA 才能同时选择至少一个子信道来发送接 入请求帧给 AP, 满足在进行信道接入时时间上的同步, 进一步使得 AP能对接收到的接入请求帧进行统一处理, 从而避免造成相邻频带 信号干扰。
根据实施例一可知, STA1和 STA2信道接入成功, 那么当所述 STA1和 STA2需要进行数据传输时, STA1和 STA2根据其接收到的 接入响应帧向 AP发送 DATA帧; 对于接入响应帧中所包含的 AP为 STA1和 STA2分配用于数据传输的信道资源的不同, 提供了两个具 体实施例。
实施例二、
本实施例提供了一种信道接入成功的情况下进行数据传输的方 法, 包括: 实施例一中的步骤 501-504,即为本实施例的步骤 601-604, 在此不再赞述。 如图 6所示, 本实施例还包括:
步骤 605、 STA1和 STA2根据接收到的 G-CTS帧, 在等待信道 空闲 SIFS时间之后, STA1在子信道 1和子信道 2上发送 DATA1帧 给 AP, STA2在子信道 3和子信道 4上发送 DATA2帧给 AP。 相应 的, AP接收 STA1发送的 DATA1帧和 STA2发送的 DATA2帧。
具体的, STA1、 STA2、 STA3和 STA4通过信道接收到 AP发送 的 G-CTS帧, 由于 G-CTS帧中只包含有对 STA1和 STA2的信道资 源分配信息, 不包含有对 STA3和 STA4的信道资源分配信息, 所以 STA1和 STA2在等待信道空闲 SIFS时间之后, STA1在子信道 1和 子信道 2上发送 DATA1帧给 AP, STA2在子信道 3和子信道 4上发 送 DATA2帧给 AP, 如图 6中所示。 若 STA1和 STA2发送的数据 (例如: 广播帧, 组播帧) 不需要 AP进行确认, 则 AP只需接收 STA发送的数据即可, 即步骤 605执 行完成即可。
若 STA1和 STA2发送的数据需要 AP进行确认时,执行步骤 606。 步骤 606、 AP在等待 SIFS时间之后通过整个信道回复 G-ACK 帧。
如图 6中所示, AP接收到 STA1和 STA2发送的 DATA1帧和 DATA2 帧, 在等待 SIFS 时间之后通过整个信道回复 G-ACK帧给 STA1和 STA2。 其中, 在 G-ACK帧中 AP将对 STA1和 STA2的确 认信息聚合在一起。
本发明的实施例提供了一种信道接入的方法, STA 通过监听信 道的忙 /闲状况, 以便在信道处于空闲状态时, 通过信道中的一个子 信道发送接入请求帧给 AP; AP根据接收到的接入请求帧, 向全部或 者部分 STA回复接入响应帧。 进一步的, 在信道接入成功的情况下, STA接收 AP发送的接入响应帧, 并根据 AP发送的接入响应帧中包 含的信道资源分配信息, 在所分配的子信道上发送 DATA 帧。 通过 这种信道接入方法, 以使得 STA只需监听整个信道的忙 /闲状态, 筒 化了 STA的监听过程,并且只有在整个信道处于空闲的状态下, STA 才能同时选择信道中的一个子信道来发送接入请求帧给 AP, 满足在 进行信道接入时时间上的同步, 进一步使得 AP能对接收到的接入请 求帧进行统一处理, 从而避免造成相邻频带信号干扰。
实施例三、
下面, 本发明还提供了另外一种具体的实施例,对上述信道接入 成功的情况下进行数据传输的方法进行详细的描述。
在本实施例中, 包括实施例一中的步骤 501-504, 即为本实施例 的步骤 701-704,在此不再赘述。 如图 7所示, 本实施例还包括:
步骤 705、 STA1和 STA2根据接收到的 G-CTS帧, 在 STA1等 待信道空闲 SIFS时间后,在整个信道上发送 DATA1帧给 AP, STA2 再等待信道空闲 SIFS时间后, 在整个信道上发送 DATA2帧给 AP。 相应的, AP接收 STA1发送的 DATA1帧和 STA2发送的 DATA2帧, 如图 7中所示。
若 STA1和 STA2发送的数据 (例如: 广播帧, 组播帧 ) 不需要 AP进行确认, 则 AP只需接收 STA发送的数据即可, 即步骤 706执 行完成即可。
若 STA1和 STA2发送的数据需要 AP进行确认时,执行步骤 706。 步骤 706、 AP在接收到 STA1发送的 DATA1后帧,并等待 SIFS 时间之后通过整个信道回复 ACK1 帧; AP 在接收到 STA2 发送的 DATA2后帧, 并等待 SIFS时间之后通过整个信道回复 ACK2帧, 如 图 7中所示。
本发明的实施例提供了一种信道接入的方法, STA 通过监听信 道的忙 /闲状况, 以便在信道处于空闲状态时, 通过信道中的一个子 信道发送接入请求帧给 AP; AP根据接收到的接入请求帧, 向全部或 者部分 STA回复接入响应帧, STA根据接收到的接入响应帧, 获知 信道是否接入成功。 进一步的, 若 STA信道接入成功, 则根据接入 响应帧中所包含的信道资源分配信息, 在信道上发送 DATA 帧。 通 过这种信道接入方法, 以使得 STA只需监听整个信道的信道状态, 筒化了 STA 的监听过程, 并且只有在信道处于空闲的状态下, STA 才能同时选择信道中的一个子信道来发送接入请求帧给 AP, 满足在 进行信道接入时时间上的同步, 进一步使得 AP能对接收到的接入请 求帧进行统一处理, 从而避免造成相邻频带信号干扰。
本发明实施例提供了一种站点,该站点中的各个功能模块与上述 以站点为执行主体的方法中的步骤相对应, 在此不进行详细描述。 如 图 8所示, 所述站点 80包括: 监听单元 801 , 用于监听信道的信道状态; 所述信道包括至少两 个子信道;
发送单元 802, 用于在所述监听单元 801监听到所述信道处于空 闲状态的情况下,通过所述信道中的至少一个子信道发送接入请求帧 给接入点 AP; 信道接入单元 803 , 用于若接收到所述 AP反馈的接入响应帧, 且所述接入响应帧中包括所述站点的标识信息和信道资源分配信息, 则信道接入成功。
进一步的, 所述发送单元 802 包括: 退避模块 804和发送模块 805 , 如图 9所示; 其中,所述退避模块 804用于在所述监听单元 801监听到所述信 道处于空闲状态的情况下, 执行退避过程; 所述发送模块 805用于在所述退避模块 804执行完成退避过程结 束后, 通过所述信道中的至少一个子信道发送接入请求帧给 AP。
进一步的, 所述发送单元 802还包括: 选择模块 806; 所述选择 模块 805 用于从所述信道中选择至少一个用于发送接入请求帧的子 信道;
可选的, 所述选择模块 806 可以位于退避模块 804之前, 如图 10 ( a ) 所示。
或者可选的, 所述选择模块 806也可以位于退避模块 804之后, 如图 10 ( b ) 所示。 若 STA信道接入成功且需要发送数据时, 所述站点 80还包括: 数据传输单元 807 , 如图 11所示; 所述数据传输单元 807用于在信 道接入单元 803信道接入成功的情况下,根据信道接入单元 803接收 到的接入响应帧向接入点 AP发送数据 DATA帧。 进一步的,所述数据传输单元 807包括: 确定模块 808和数据发 送模块 809 , 如图 12所示。 所述确定模块 808 , 用于根据信道接入单元 803接收到的接入响 应帧中所包含的标识信息, 确定所述站, 的信道资源分配信息; 所述数据发送模块 809 , 用于在所述确定模块 808所确定的信道 资源分配信息包括用信道传输的指示信息的情况下,在所述信道上向 所述接入点发送 DATA帧; 或, 在所述确定模块 808所确定的信道 资源分配信息包括用至少一个子信道传输的指示信息的情况下,在所 述至少一个子信道上发送 DATA帧。 可选的, 若 STA发送的数据需要 AP回复确认帧时, 所述站点 80还包括: 数据确认单元 810, 如图 13所示; 所述数据确认单元 810, 用于接收 AP通过所述信道或所述 STA 所选择的子信道发送的确认帧; 所述确认帧中包括: 所述站点的标识 信息, 或者, 所述确认帧中包括: 所述站点的标识信息, 以及其他站 点的标识信息。
进一步的,所述信道接入单元 803还用于接收 AP反馈的接入响 应帧,且所述接入响应帧中不包括所述站点的标识信息和信道资源分 配信息;或者,所述信道接入单元没有接收到 AP反馈的接入响应帧, 则信道接入失败;
所述监听单元 801还用于在信道接入失败的情况下,重新监听信 道的信道状态。
本发明还提供了一种信道接入的***,所述***包括: 接入点和 上述至少两个站点; 其中, 所述接入点用于接收站点发送的接入请求帧, 并根据接收 到的接入请求帧, 生成接入响应帧并反馈给站点; 若站点信道接入成 功且需要发送数据时,所述接入点用于接收站点发送的数据帧, 并根 据站点发送的数据类型确定是否需要回复确认帧。
本发明的实施例提供了一种信道接入的装置和***, STA 通过 监听信道的信道状况, 以便在信道处于空闲状态时, 通过信道中的至 少一个子信道发送接入请求帧给 AP; AP根据接收到的接入请求帧, 向全部或者部分 STA回复接入响应帧, STA根据接收到的接入响应 帧, 获知信道是否接入成功。 进一步的, 若 STA信道接入成功, 则 根据接入响应帧中所包含的信道资源分配信息,在子信道或者信道上 发送 DATA帧。 通过这种信道接入方法, 以使得 STA只需监听整个 信道的信道状态, 筒化了 STA的监听过程, 并且只有在信道处于空 闲的状态下, STA 才能同时选择至少一个子信道来发送接入请求帧 给 AP, 满足在进行信道接入时时间上的同步, 进一步使得 AP能对 接收到的接入请求帧进行统一处理, 从而避免造成相邻频带信号干 扰。 本发明实施例提供了一种站点 140, 包括: 存储器 1401、 处理器 1402、 发送机 1403和接收机 1404, 如图 14所示。
其中, 所述存储器 1401可以为内存, 且存储器 1401中存储有一 组程序代码;所述程序代码用于实现以站点 140为执行主体的信道接 入的方法。
所述处理器 1402用于调用所述存储器 1401中存储的程序代码, 以监听信道的信道状态。
所述发送机 1403用于在处理器 1402监听到所述信道处于空闲状 态的情况下,通过所述信道中的至少一个子信道发送接入请求帧给接 入点 AP。
所述接收机 1403用于接收所述 AP反馈的接入响应帧, 且所述 接入响应帧中包括所述站点的标识信息和信道资源分配信息,则信道 接入成功; 所述站点的标识信 , ¾和信道资源分配信息用于指示所述 AP为所述站点分配用于数据传输的信道资源。
进一步的,所述处理器 1402还用于调用所述存储器 1401中存储 的程序代码, 以在监听到所述信道处于空闲状态的情况下,执行退避 过程; 在所述退避过程结束后,通过所述信道中的至少一个子信道发 送接入请求帧给 AP。
进一步的,所述处理器 1402还用于调用所述存储器 1401中存储 的程序代码,用于从所述信道中选择至少一个用于发送接入请求帧的 子信道。
进一步的, 所述发送机 1403还用于根据其接收到的接入响应帧 向 AP发送数据 DATA帧。 进一步的,所述处理器 1402还用于调用所述存储器 1401中存储 的程序代码, 用于根据接收机 1404接收到的接入响应帧中所包含的 标识信息,确定所述站点的信道资源分配信息; 若信道资源分配信息 包括用信道进行数据传输的指示信息,则所述站点在所述信道上向所 述接入点发送 DATA 帧; 或, 若信道资源分配信息包括用至少一个 子信道进行数据传输的指示信息,则所述站点在所述至少一个子信道 上发送 DATA帧。 进一步的, 所述接收机 1404还用于接收 AP通过所述信道或所 述 STA所选择的子信道发送的确认帧; 所述确认帧中包括: 所述站 点的标识信息, 或者, 所述确认帧中包括: 所述站点的标识信息, 以 及其他站点的标识信息。 进一步的, 所述接收机 1404还用于接收到 AP反馈的接入响应 帧,且所述接入响应帧中不包括所述站点的标识信息和信道资源分配 信息; 或者, 若没有接收到 AP反馈的接入响应帧, 则信道接入失 败。 在信道接入失败的情况下, 所述处理器 1402还用于调用所述存 储器 1401中存储的程序代码, 以重新监听信道的信道状态。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的***, 装置和方法, 可以通过其它的方式实现。 例如, 以上所描述的装置实 施例仅仅是示意性的, 例如, 所述单元的划分, 仅仅为一种逻辑功能 划分, 实际实现时可以有另外的划分方式, 例如多个单元或组件可以 结合或者可以集成到另一个***, 或一些特征可以忽略, 或不执行。 另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以 是通过一些接口, 装置或单元的间接耦合或通信连接, 可以是电性, 机才戒或其它的形式。
位于一个地方, 或者也可以分布到多个网络单元上。 可以根据实际的 需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理 单元中, 也可以是各个单元单独物理包括, 也可以两个或两个以上单 元集成在一个单元中。 上述集成的单元既可以采用硬件的形式实现, 也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个 计算机可读取存储介质中。 上述软件功能单元存储在一个存储介质 中, 包括若干指令用以使得一台计算机设备(可以是个人计算机, 服 务器,或者网络设备等)执行本发明各个实施例所述方法的部分步骤。 而前述的存储介质包括: U 盘、 移动硬盘、 只读存储器 ( Read-Only
Memory, 筒称 ROM ) 、 随机存取存储器 ( Random Access Memory, 筒称 RAM ) 、 磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而 非对其限制; 尽管参照前述实施例对本发明进行了详细的说明, 本领 域的普通技术人员应当理解: 其依然可以对前述各实施例所记载的技 术方案进行修改, 或者对其中部分技术特征进行等同替换; 而这些修 改或者替换, 并不使相应技术方案的本质脱离本发明各实施例技术方 案的精神和范围。

Claims

权利要求
1、 一种信道接入的方法, 其特征在于, 包括:
站点 STA监听信道的信道状态;所述信道包括至少两个子信道; 在监听到所述信道处于空闲状态的情况下,通过所述信道中的至 少一个子信道发送接入请求帧给接入点 AP;
若接收到所述 AP反馈的接入响应帧,且所述接入响应帧中包括 所述站点的标识信息和信道资源分配信息, 则信道接入成功; 所述站 点的标识信息和信道资源分配信息用于指示所述 AP为所述站点分配 用于数据传输的信道资源。
2、 根据权利要求 1所述的方法, 其特征在于, 在监听到所述信 道处于空闲状态的情况下,通过所述信道中的至少一个子信道发送接 入请求帧给接入点 AP包括:
在监听到所述信道处于空闲状态的情况下, 执行退避过程; 在所述退避过程结束后,通过所述信道中的至少一个子信道发送 接入请求帧给 AP。
3、 根据权利要求 1-2任一项所述的方法, 其特征在于, 在监听 到所述信道处于空闲状态的情况下,通过所述信道中的至少一个子信 道发送接入请求帧给接入点 AP之前, 所述方法还包括:
从所述信道中选择至少一个用于发送接入请求帧的子信道。
4、 根据权利要求 3所述的方法, 其特征在于,
所述接入响应帧是 AP通过所述信道或所述 STA所选择的子信 道反馈给所述 STA的。
5、 根据权利要求 1-4任一项所述的方法, 其特征在于, 所述方 法之后还包括:
站点根据其接收到的接入响应帧向 AP发送数据 DATA帧。
6、 根据权利要求 5所述的方法, 其特征在于, 所述站点根据其 接收到的接入响应帧向 AP发送数据 DATA帧包括:
所述站点根据其接收到的接入响应帧中所包含的标识信息,确定 所述站点的信道资源分配信息; 若信道资源分配信息包括用信道进行数据传输的指示信息,则所 述站点在所述信道上向所述接入点发送 DATA帧; 或, 若信道资源分配信息包括用至少一个子信道传输的指示进行数 据信息, 则所述站点在所述至少一个子信道上发送 DATA帧。
7、 根据权利要求 5-6任一项所述的方法, 其特征在于, 在所述 DATA帧需要 AP确认的情况下, 所述方法还包括:
接收 AP通过所述信道或所述 STA所选择的子信道发送的确认 帧; 所述确认帧中包括: 所述站点的标识信息, 或者, 所述确认帧中 包括: 所述站点的标识信息, 以及其他站点的标识信息。
8、 根据权利要求 1-4任一项所述的方法, 其特征在于, 所述方 法包括:
若站点接收到 AP反馈的接入响应帧,且所述接入响应帧中不包 括所述站点的标识信息和信道资源分配信息; 或者, 若站点没有接 收到 AP反馈的接入响应帧, 则信道接入失败; 在信道接入失败的情况下, 所述方法还包括:
站点重新监听信道的信道状态。
9、 一种站点, 其特征在于, 包括: 监听单元, 用于监听信道的信道状态; 所述信道包括至少两个子 信道;
发送单元,用于在监听单元监听到所述信道处于空闲状态的情况 下,通过所述信道中的至少一个子信道发送接入请求帧给接入点 AP; 信道接入单元, 用于若接收到所述 AP反馈的接入响应帧, 且所 述接入响应帧中包括所述站点的标识信息和信道资源分配信息,则信 道接入成功;所述站点的标识信息和信道资源分配信息用于指示所述 AP为所述站点分配用于数据传输的信道资源。
10、 根据权利要求 9所述的站点, 其特征在于, 所述发送单元包 括: 退避模块和发送模块; 所述退避模块,用于在所述监听单元监听到所述信道处于空闲状 态的情况下, 执行退避过程; 所述发送模块, 用于在所述退避模块执行完成退避过程结束后, 通过所述信道中的至少一个子信道发送接入请求帧给 AP。
11、 根据权利要求 9-10任一项所述的站点, 其特征在于, 所述 发送单元还包括: 选择模块; 所述选择模块用于从所述信道中选择至少一个用于发送接入请 求帧的子信道。
12、 根据权利要求 11所述的站点, 其特征在于, 所述接入响应 帧是 AP通过所述信道或所述 STA所选择的子信道反馈给所述 STA 的。
13、 根据权利要求 9-12任一项所述的站点, 其特征在于, 所述 站点还包括: 数据传输单元; 所述数据传输单元, 用于在信道接入成功的情况下,根据信道接 入单元接收到的接入响应帧向接入点 AP发送数据 DATA帧。
14、 根据权利要求 13所述的站点, 其特征在于, 所述数据传输 单元包括: 确定模块和数据发送模块; 所述确定模块,用于根据信道接入单元接收到的接入响应帧中所 包含的标识信息, 确定所述站点的信道资源分配信息; 所述数据发送模块,用于在所述确定模块所确定的信道资源分配 信息包括用信道进行数据传输的指示信息的情况下,在所述信道上向 所述接入点发送 DATA 帧; 或, 在所述确定模块所确定的信道资源 分配信息包括用至少一个子信道进行数据传输的指示信息的情况下, 在所述至少一个子信道上发送 DATA帧。
15、 根据权利要求 13-14任一项所述的站点, 其特征在于, 所述 站点还包括: 数据确认单元;
所述数据确认单元, 用于接收 AP通过所述信道或所述 STA所 选择的子信道发送的确认帧; 所述确认帧中包括: 所述站点的标识信 息, 或者, 所述确认帧中包括: 所述站点的标识信息, 以及其他站点 的标识信息。
16、 根据权利要求 9-12任一项所述的站点, 其特征在于, 所述信道接入单元还用于若接收到 AP反馈的接入响应帧, 且所 述接入响应帧中不包括所述站点的标识信, ¾和信道资源分配信息;或 者, 若没有接收到 AP反馈的接入响应帧, 则信道接入失败; 所述监听单元还用于在信道接入失败的情况下,重新监听信道的 信道状态。
17、 一种信道接入的***, 其特征在于, 包括: 接入点和权利要 求 9-16任一项所述的至少两个站点。
PCT/CN2014/072957 2013-08-15 2014-03-06 一种信道接入的方法、装置和*** WO2015021772A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016533786A JP6177437B2 (ja) 2013-08-15 2014-03-06 チャネルアクセス方法、装置及びシステム
KR1020167005649A KR101805560B1 (ko) 2013-08-15 2014-03-06 채널 액세스를 위한 방법, 장치 및 시스템
EP14835822.9A EP3035767B1 (en) 2013-08-15 2014-03-06 Method, apparatus and system for channel access
US15/015,313 US20160156437A1 (en) 2013-08-15 2016-02-04 Channel access method, apparatus and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310356741.9A CN104378828B (zh) 2013-08-15 2013-08-15 一种信道接入的方法、装置和***
CN201310356741.9 2013-08-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/015,313 Continuation US20160156437A1 (en) 2013-08-15 2016-02-04 Channel access method, apparatus and system

Publications (1)

Publication Number Publication Date
WO2015021772A1 true WO2015021772A1 (zh) 2015-02-19

Family

ID=52467990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/072957 WO2015021772A1 (zh) 2013-08-15 2014-03-06 一种信道接入的方法、装置和***

Country Status (6)

Country Link
US (1) US20160156437A1 (zh)
EP (1) EP3035767B1 (zh)
JP (1) JP6177437B2 (zh)
KR (1) KR101805560B1 (zh)
CN (1) CN104378828B (zh)
WO (1) WO2015021772A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105978675A (zh) * 2016-06-24 2016-09-28 西安电子科技大学 基于正交频分多址上行接入方法
KR20160125301A (ko) * 2015-04-21 2016-10-31 애플 인크. 기회주의적 부 채널 액세스

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104994586B (zh) * 2015-07-01 2018-06-05 河南科技大学 适用于超高速无线局域网的自适应带宽发送机制
WO2017020957A1 (en) * 2015-08-06 2017-02-09 Telefonaktiebolaget Lm Ericsson (Publ) Sleep during nav/rid backoff
CN106455114B (zh) * 2015-08-12 2019-12-13 华为技术有限公司 基于多信道的退避方法及设备
CN105376830B (zh) * 2015-10-29 2018-08-17 西北工业大学 一种信道绑定和正交频分多址接入相结合的上行接入方法
CN105898798A (zh) * 2016-05-30 2016-08-24 珠海市魅族科技有限公司 无线局域网的通信方法、通信装置和接入点
JP6699369B2 (ja) * 2016-06-03 2020-05-27 ソニー株式会社 無線通信装置および無線通信方法
CN106559900B (zh) * 2016-10-31 2019-08-13 西北工业大学 一种基于非对称带宽的多信道多址接入方法
WO2018182264A1 (ko) * 2017-03-25 2018-10-04 주식회사 윌러스표준기술연구소 비면허 대역에서의 물리 채널 전송 방법, 장치 및 시스템
CN113472496B (zh) * 2020-03-31 2023-07-28 华为技术有限公司 一种多信道处理方法及相关设备
CN118118049A (zh) * 2022-11-30 2024-05-31 华为技术有限公司 终端设备、点对点通信方法及通信***

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101715241A (zh) * 2008-12-10 2010-05-26 北京新岸线无线技术有限公司 用于分布式无线局域网介质接入控制的方法及装置
CN102076106A (zh) * 2010-12-28 2011-05-25 北京邮电大学 时频二维混合mac层接入方法
CN102090024A (zh) * 2008-06-18 2011-06-08 Lg电子株式会社 甚高吞吐量(vht)无线局域网***的信道接入方法和支持该信道接入方法的站
CN102625466A (zh) * 2012-01-13 2012-08-01 北京邮电大学 用于无线局域网的分布式媒体接入方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5889772A (en) * 1997-04-17 1999-03-30 Advanced Micro Devices, Inc. System and method for monitoring performance of wireless LAN and dynamically adjusting its operating parameters
JP3914194B2 (ja) * 2003-09-09 2007-05-16 株式会社国際電気通信基礎技術研究所 アドホックネットワークにおける通信方法
US7388833B2 (en) * 2004-06-04 2008-06-17 Mitsubishi Electric Research Laboratories, Inc. Access control and protocol for packet switched wireless communications networks
JP4705808B2 (ja) * 2005-05-18 2011-06-22 株式会社日立製作所 無線通信システム、これを構成する無線中継装置及び無線通信端末、無線通信方法
JP2006352296A (ja) * 2005-06-14 2006-12-28 Advanced Telecommunication Research Institute International 無線装置
CN1929338B (zh) * 2005-09-06 2011-08-24 都科摩(北京)通信技术研究中心有限公司 蜂窝网和泛在网的融合方法和设备
EP2051559A3 (en) * 2007-10-17 2013-05-15 Avaya Inc. Method and apparatus imposing random delays for avoiding hidden terminal collisions in wireless Mesh networks
JP5173526B2 (ja) * 2008-03-28 2013-04-03 株式会社東芝 無線システム、無線基地局および無線端末
KR20100011141A (ko) * 2008-07-24 2010-02-03 엘지전자 주식회사 Vht 무선랜 시스템에서 데이터 전송 방법 및 이를지원하는 스테이션
US9025584B2 (en) * 2008-09-09 2015-05-05 Silver Spring Networks, Inc. Multi-channel mesh nodes employing stacked responses
US10383141B2 (en) * 2009-09-23 2019-08-13 Qualcomm Incorporated Uplink SDMA transmit opportunity scheduling
US8913510B2 (en) * 2010-09-30 2014-12-16 Intel Corporation Method and apparatus for collision detection in wider bandwidth operation
JP2012209888A (ja) * 2011-03-30 2012-10-25 Panasonic Corp 無線通信装置及び半導体装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102090024A (zh) * 2008-06-18 2011-06-08 Lg电子株式会社 甚高吞吐量(vht)无线局域网***的信道接入方法和支持该信道接入方法的站
CN101715241A (zh) * 2008-12-10 2010-05-26 北京新岸线无线技术有限公司 用于分布式无线局域网介质接入控制的方法及装置
CN102076106A (zh) * 2010-12-28 2011-05-25 北京邮电大学 时频二维混合mac层接入方法
CN102625466A (zh) * 2012-01-13 2012-08-01 北京邮电大学 用于无线局域网的分布式媒体接入方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160125301A (ko) * 2015-04-21 2016-10-31 애플 인크. 기회주의적 부 채널 액세스
KR101886491B1 (ko) 2015-04-21 2018-08-07 애플 인크. 기회주의적 부 채널 액세스
CN105978675A (zh) * 2016-06-24 2016-09-28 西安电子科技大学 基于正交频分多址上行接入方法
CN105978675B (zh) * 2016-06-24 2019-01-08 西安电子科技大学 基于正交频分多址上行接入方法

Also Published As

Publication number Publication date
EP3035767A1 (en) 2016-06-22
US20160156437A1 (en) 2016-06-02
JP2016530808A (ja) 2016-09-29
EP3035767A4 (en) 2017-04-12
JP6177437B2 (ja) 2017-08-09
CN104378828A (zh) 2015-02-25
KR20160039288A (ko) 2016-04-08
CN104378828B (zh) 2018-03-09
KR101805560B1 (ko) 2017-12-07
EP3035767B1 (en) 2020-04-15

Similar Documents

Publication Publication Date Title
US11991032B2 (en) Multi-user(MU) transmission for soliciting acknowledgement(ACK) from a target base station
US11800565B2 (en) Wireless communication method for simultaneous data transmission, and wireless communication terminal using same
WO2015021772A1 (zh) 一种信道接入的方法、装置和***
JP6728359B2 (ja) アクセス方法及び装置
US11844059B2 (en) Wireless communication method for uplink multiple-user transmission schedule and wireless communication terminal using the method
US11337222B2 (en) Coordinated stations in a single BSS with shared TXOP in the frequency domain
WO2013010430A1 (zh) 一种业务数据传输方法及***
KR101838080B1 (ko) 하향링크용 채널을 지원하는 무선랜 시스템에서 데이터 송수신 방법 및 이를 위한 장치
US10980057B2 (en) Slotted OFDMA based channel access
WO2013053296A1 (zh) 一种无线站点接入信道的方法及***
WO2014166379A1 (zh) 一种资源预约方法及装置
US20180254993A1 (en) Wireless communication method for multi-user transmission scheduling, and wireless communication terminal using same
WO2013159552A1 (zh) 无线帧的接收方法及装置
KR20170062719A (ko) 고효율 무선랜에서 상향링크 다중 사용자 전송을 지원하기 위한 채널 액세스 방법 및 장치
WO2016145662A1 (zh) 上行多用户接入方法和装置
WO2016131191A1 (zh) 一种信道接入方法及信道接入装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14835822

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016533786

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014835822

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167005649

Country of ref document: KR

Kind code of ref document: A