WO2015020420A1 - 전지팩의 절연저항을 결정하는 시스템 및 방법 - Google Patents

전지팩의 절연저항을 결정하는 시스템 및 방법 Download PDF

Info

Publication number
WO2015020420A1
WO2015020420A1 PCT/KR2014/007258 KR2014007258W WO2015020420A1 WO 2015020420 A1 WO2015020420 A1 WO 2015020420A1 KR 2014007258 W KR2014007258 W KR 2014007258W WO 2015020420 A1 WO2015020420 A1 WO 2015020420A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage level
housing
electrical terminal
insulation resistance
output
Prior art date
Application number
PCT/KR2014/007258
Other languages
English (en)
French (fr)
Inventor
보버그레그
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2016529721A priority Critical patent/JP6054000B2/ja
Priority to KR1020167000999A priority patent/KR101713049B1/ko
Priority to EP14835375.8A priority patent/EP3012644B1/en
Priority to CN201480042930.1A priority patent/CN105452885B/zh
Publication of WO2015020420A1 publication Critical patent/WO2015020420A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/025Measuring very high resistances, e.g. isolation resistances, i.e. megohm-meters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/14Measuring resistance by measuring current or voltage obtained from a reference source

Definitions

  • the present invention relates to a system and method for determining the insulation resistance of a battery pack.
  • the secondary battery is classified into a cylindrical battery and a rectangular battery in which the electrode assembly is embedded in a cylindrical or rectangular metal can, and a pouch type battery in which the electrode assembly is embedded in a pouch type case of an aluminum laminate sheet. do.
  • a pouch type battery is a battery in which an electrode assembly having a cathode / separation membrane / cathode structure is built in a battery case in which a laminate sheet including a resin layer and a metal layer is formed in a pouch.
  • the metal layer of the laminate sheet of the battery case needs to be electrically insulated.
  • Korean Patent Application Laid-Open No. 2001-106481 exposes the outer surface of the metal foil in the laminated sheet constituting the battery case to form an exposed portion, and the exposed portion and A battery inspection method is disclosed which compares a voltage between an electrode lead and a voltage between a positive electrode lead and a negative electrode lead.
  • the battery since the battery must be fully charged in order to measure the insulation resistance, it requires a lot of time and cost to measure the insulation resistance, and the measured insulation resistance value varies according to the degree of charge. There is a problem that measurement is difficult.
  • the inventors of the present application recognized the need for an improved system and method for measuring the insulation resistance of a battery pack.
  • the battery pack includes a housing and at least a first battery module and a second battery module disposed in the housing.
  • the battery pack further includes a first electric terminal and a second electric terminal.
  • the system includes a voltage source electrically connected to the first and second electrical terminals of the battery pack.
  • the voltage source includes a first output voltage level (first) between the first electrical terminal and the second electrical terminal at a first time when the first battery module and the second battery module are not electrically connected in series. It is further configured to apply an output voltage level.
  • the system further includes a voltage meter configured to measure a first voltage level between the first electrical terminal and the housing when the first output voltage level is output.
  • the voltage meter is further configured to measure a second voltage level between the first electrical terminal and the housing when the first output voltage level is output and a resistor having a set resistance level is electrically connected between the first electrical terminal and the housing. It is.
  • the voltage meter is further configured to measure a third voltage level between the second electrical terminal and the housing when the first output voltage level is output.
  • the voltage meter is further configured to measure a fourth voltage level between the second electrical terminal and the housing when the first output voltage level is output and a resistor is electrically connected between the second electrical terminal and the housing.
  • the system further includes a microprocessor programmed to operably communicate with the voltage meter.
  • the microprocessor is configured to determine a battery pack-related first isolation resistance value based on a first voltage level, a second voltage level, a third voltage level, and a set resistance level at a first time. More programmed. The microprocessor is further programmed to determine, at a first time, the battery pack related second insulation resistance based on the first voltage level, the third voltage level, the fourth voltage level, and the set resistance level. The microprocessor is further configured to determine which of the first insulation resistance value and the second insulation resistance value have a minimum value relative to each other so as to store the minimum value of the first insulation resistance value and the second insulation resistance value in a storage device. It is programmed.
  • the battery pack includes a housing and at least a first battery module and a second battery module disposed in the housing.
  • the battery pack further includes a first electric terminal and a second electric terminal.
  • the method applies a first output voltage level between a first electrical terminal and a second electrical terminal at a first time using a voltage source when the first battery module and the second battery module are not electrically connected in series. It includes the process of doing.
  • the method further includes measuring a first voltage level between the first electrical terminal and the housing when the first output voltage level is output using the voltage meter.
  • the method uses a voltage meter to measure a second voltage level between the first electrical terminal and the housing when the first output voltage level is output and a resistor having a set resistance level is electrically connected between the first electrical terminal and the housing. It further includes the process of measuring. The method further includes measuring a third voltage level between the second electrical terminal and the housing when the first output voltage level is output using a voltage meter. The method further comprises the step of measuring a fourth voltage level between the second electrical terminal and the housing using a voltage meter when the first output voltage level is output and a resistor is electrically connected between the second electrical terminal and the housing. It is included.
  • the method further includes determining, using a microprocessor, a battery pack related first insulation resistance value based on a first voltage level, a second voltage level, a third voltage level, and a set resistance level at a first time. Doing. The method further includes determining, using a microprocessor, a battery pack related second insulation resistance value based on the first voltage level, the third voltage level, the fourth voltage level, and the set resistance level at a first time. Doing. The method uses a microprocessor to determine which of the first insulation resistance value and the second insulation resistance value have a minimum value relative to each other, thereby storing the minimum value of the first insulation resistance value and the second insulation resistance value. The process of storing more.
  • FIG. 1 is a schematic diagram of an insulation resistance determination system of a battery pack according to an embodiment of the present invention
  • FIGS. 2 and 3 are flowcharts of a method for determining insulation resistance of a battery pack according to another embodiment of the present invention.
  • FIG. 4 is a graph of an insulation resistance curve of an exemplary battery pack that may be determined using the system of FIG. 1.
  • an insulation resistance determination system 10 of a battery pack 20 according to an embodiment of the present invention is provided.
  • System 10 includes voltage source 40, voltage meter 50, microprocessor 60, electrical switches 70, 72, 74, 76, 78, 80, 82, resistor 90, and storage device ( 93).
  • An advantage of the system 10 is that it utilizes a voltage source 40 that repeatedly provides a set voltage to the battery pack 20 while determining the insulation resistance of the battery pack 20.
  • Another advantage of the system 10 is that the battery pack 20 does not need to be fully charged to determine the insulation resistance of the battery pack 20.
  • the battery pack 20 is provided to generate power required for an electric vehicle or a hybrid electric vehicle.
  • the battery pack 20 includes a housing 95, battery modules 100 and 110, an electric switch 82, a first electric terminal 120, and a second electric terminal 130.
  • the housing 95 includes battery modules 110 and 110 electrically connected in series with each other.
  • the first electrical terminal 120 is electrically connected to the negative terminal of the battery module 110.
  • the second electrical terminal 130 is electrically connected to the positive terminal of the battery module 100.
  • the negative terminal of the battery module 100 is electrically connected to the first side of the electric switch 82.
  • the positive terminal of the battery module 110 is electrically connected to the second surface of the electric switch 82.
  • the electrical switch 82 is an electrically driven switch and has a normally-closed operational position.
  • the electrical switch 82 is a microcontroller such that the battery modules 100 and 110 are not electrically connected in series to each other so that the system 10 can inspect the insulation resistance of the battery pack 20 as described in detail below. In response to the control signal of the processor 60, the switch is switched to the open movable position.
  • the electrical switch 82 may be removed so that the negative terminal of the battery module 100 is not electrically connected to the positive terminal of the battery module 110 when performing the insulation resistance test described below.
  • an open circuit may exist between the negative electrode terminal of the battery module 100 and the positive electrode terminal of the battery module 110 during the insulation resistance test described below.
  • the vehicle chassis 30 is configured to fix the battery pack 20 thereon.
  • the battery modules 100 and 110 are optionally electrically connected to the housing 95 to determine the insulation resistance of the battery pack 20.
  • the housing 95 may be further electrically connected to the vehicle undercarriage 30.
  • the voltage source 40 is configured to be electrically connected to the first electrical terminal 120 and the second electrical terminal 130 of the battery pack 20.
  • the voltage source 40 is configured to apply an output voltage level representing the exemplary output voltage level to be output by the battery pack 20 between the first electrical terminal 120 and the second electrical terminal 130.
  • voltage source 40 outputs a voltage of 100 to 600 Vdc.
  • voltage source 40 has an upper current limit of 10 milli-Amp.
  • the voltage meter 50 is configured to measure the first voltage level V1 between the first electrical terminal 120 and the housing 95. When the voltage meter 50 measures the first voltage level V1, the electrical switches 70, 80 each have a closed actuation position and the remaining switches have an open actuation position. The voltage meter 50 is further configured to send data related to the first voltage level V1 to the microprocessor 60. In one specific example, the internal resistance of the voltage meter 50 is at least 10 mega-Ohm.
  • the voltage meter 50 has a second voltage level between the first electrical terminal 120 and the housing 95 when the resistor 90 is electrically connected between the first electrical terminal 120 and the housing 95. It is further configured to measure V2). When the voltage meter 50 measures the second voltage level V2, the electrical switches 70, 80, 76 each have a closed actuation position and the remaining switches have an open actuation position.
  • resistor 90 has a set resistance level R0, such as, for example, 200 kilo-Ohm.
  • the voltage meter 50 is further configured to send data related to the second voltage level V2 to the microprocessor 60.
  • the voltage meter 50 is further configured to measure the third voltage level V3 between the second electrical terminal 130 and the housing 95.
  • the electrical switches 72 and 80 each have a closed actuation position and the remaining switches have an open actuation position.
  • the voltage meter 50 is further configured to send data related to the third voltage level V3 to the microprocessor 60.
  • the voltage meter 50 is provided between the second electrical terminal 130 and the housing 95 when the resistor 90 is electrically connected between the second electrical terminal 130 and the housing 95. It is further configured to measure the fourth voltage level V4. When the voltage meter 50 measures the fourth voltage level V4, the electrical switches 72, 74, 80 each have a closed actuation position and the remaining switches have an open actuation position. The voltage meter 50 is further configured to send data related to the fourth voltage level V4 to the microprocessor 60.
  • the switches 70, 72, 74, 76, 78, 80 are electrically driven switches.
  • the switches 70 to 80 have a closed movable position or an open movable position.
  • Microprocessor 60 generates control signals that are received by switches 70-80 and induce switches 70-80 to have a closed movable position.
  • the microprocessor 60 generates a control signal received by the switch 70 to induce the switch 70 to have a closed movable position.
  • the switches 70-80 are switched to the open movable position.
  • switch 70 is switched to the open movable position.
  • the switch 70 is electrically connected between the first electrical terminal 120 of the battery pack 20 and the first electrical terminal 150 of the voltage meter 50.
  • the switch 72 is electrically connected between the second electrical terminal 130 of the battery pack 20 and the first electrical terminal 150 of the voltage meter 50.
  • the switch 74 is electrically connected between the second electrical terminal 130 of the battery pack 20 and the node 92.
  • the resistor 90 is electrically connected between the node 92 and the housing 95.
  • the switch 76 is electrically connected between the node 92 and the first electrical terminal 120 of the battery pack 20.
  • the switch 78 is electrically connected between the first electrical terminal 120 of the battery pack 20 and the second electrical terminal 151 of the voltage meter 50.
  • the switch 80 is electrically connected between the second electrical terminal 151 of the voltage meter 50 and the housing 95.
  • the microprocessor 60 is configured to operatively communicate with the voltage meter 50.
  • R1 R0 (1 + V3 / V1) [(V1 V2) / V2).
  • other isolation equations defined in SAE1766, FMVSS305, or ECE324 Rule 100 may be used.
  • R2 R0 (1 + V1 / V3) [(V3 V4) / V4).
  • SAE1766, FMVSS305, or ECE324 Rule 100 instead of the above equation for the calculation of R2, another isolation equation defined in SAE1766, FMVSS305, or ECE324 Rule 100 may be used.
  • step 254 the microprocessor 60 determines whether the voltage level is greater than or equal to a threshold voltage level. If the value of step 254 is equal to "yes”, the method advances to step 256. If not, it will exit.
  • step 256 the voltage source 40 is the first electric terminal 120 and the second electric terminal 130 when the first battery module 100 and the second battery module 110 is not electrically connected in series with each other. Apply the output voltage level of voltage_level magnitude between). In one specific example, the battery pack 20 may be fully charged to less than 50%. The method proceeds to step 258 after step 256.
  • step 258 the voltage meter 50 measures the first voltage level V1 between the first electrical terminal 120 and the housing 95 when the output voltage level is output, and measures the first voltage level V1.
  • the data corresponding to) is transmitted to the microprocessor 60.
  • Step 258 is followed by step 260.
  • step 260 the voltage meter 50, when the output voltage level is output and the resistor 90 is electrically connected between the first electrical terminal 120 and the housing 95, the first electrical terminal 120 The second voltage level V2 is measured between the housing 95 and the data corresponding to the second voltage level V2 is transmitted to the microprocessor 60. Resistor 90 has a set resistance level. Step 260 is followed by step 262.
  • step 262 the voltage meter 50 measures the third voltage level V3 between the second electrical terminal 130 and the housing 95 when the output voltage level is output, and the third voltage level. Data related to the V3 is transmitted to the microprocessor 60. Step 262 is followed by step 264.
  • step 264 the voltage meter 50, when the output voltage level is output and the resistor 90 is electrically connected between the second electrical terminal 130 and the housing 95, the second electrical terminal 130. And measures a fourth voltage level V4 between the housing 95 and transmits data related to the fourth voltage level V4 to the microprocessor 60. Step 264 is followed by step 266.
  • the microprocessor 60 may perform a first operation on the battery pack 20 based on the first voltage level V1, the second voltage level V2, the third voltage level V3, and the set resistance level. Determine the insulation resistance value R1. After step 266, the process proceeds to step 268.
  • step 268 the microprocessor 60 generates a second associated battery pack 20 based on the first voltage level V1, the third voltage level V3, the fourth voltage level V4, and the set resistance level. Determine the insulation resistance value (R2). Step 268 is followed by step 270.
  • step 270 the microprocessor 60 determines whether the first insulation resistance value R1 is less than or equal to the second insulation resistance value R2. If the value of step 270 is equal to "Yes,” then step 272 is reached. Otherwise, go to Step 274.
  • the method may be at least partially embedded in one or more computer readable media containing computer-executable instructions for executing the same.
  • the computer readable media includes one or more hard drives, flash memory, CD-ROMs, and other computer readable media known to those skilled in the art.
  • computer executable instructions When computer executable instructions are loaded and executed by one or more microprocessors or computers, the one or more microprocessors or computers become tools for carrying out the invention and are programmed to perform the methods.
  • FIG. 4 there is shown a graph of an exemplary insulation resistance curve 300 associated with a battery pack 20 that can be determined using the system 10.
  • the graph has an X axis corresponding to the voltage level applied to the battery pack 20 by the voltage source 40.
  • the graph further has a Y axis corresponding to the insulation resistance of the battery pack 20. As shown, since the voltage level applied to the battery pack 20 changes, the insulation resistance of the battery pack 20 changes.
  • the system and method of determining the insulation resistance of the battery pack 20 provides significant advantages over other systems and methods.
  • the system 10 and the method may be configured to determine the voltage of the battery pack while determining the insulation resistance so that the battery pack 20 does not need to be fully charged to determine the insulation resistance of the battery pack 20.
  • the technical effect of using the voltage source provided to 20 is provided.
  • the system and method for determining the insulation resistance of a battery pack according to the present invention provides significant advantages over other systems and methods.
  • the system and method provide a technical effect of using a voltage source that provides a set voltage to the battery pack while determining the insulation resistance so that the battery pack does not need to be fully charged to determine the insulation resistance of the battery pack. .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

전지팩의 절연저항 측정 시스템으로 전압원, 전압 측정기, 및 마이크로프로세서를 포함하고 있다. 상기 전압원은 전지팩의 외부에 위치한다. 상기 전압원은 제 1 전기단자 및 제 2 전기단자에 출력전압을 인가한다. 상기 전압측정기는 제 1 전기단자와 하우징 사이의 제 1 전압 수준, 저항이 제 1 전기단자와 하우징 사이에 전기적으로 연결될 때 제 1 전기단자와 하우징 사이의 제 2 전압 수준을 측정한다. 상기 전압 측정기는 제 2 전기단자와 하우징 사이의 제 3 전압 수준, 저항이 제 2 전기단자와 하우징 사이에 전기적으로 연결될 때 제 2 전기단자와 하우징 사이의 제 4 전압 수준을 측정한다. 상기 마이크로프로세서는 제 1 전압 수준, 제 2 전압 수준, 및 제 3 전압 수준에 기반하여 제 1 절연저항을 결정한다.

Description

전지팩의 절연저항을 결정하는 시스템 및 방법
본 발명은 전지팩의 절연저항을 결정하는 시스템 및 방법에 관한 것이다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차전지의 수요가 급격히 증가하고 있고, 그에 따라 다양한 요구에 부응할 수 있는 이차전지에 대한 많은 연구가 행해지고 있다.
이러한 이차전지는 전지케이스의 형상에 따라, 전극조립체가 원통형 또는 각형의 금속 캔에 내장되어 있는 원통형 전지 및 각형 전지와, 전극조립체가 알루미늄 라미네이트 시트의 파우치형 케이스에 내장되어 있는 파우치형 전지로 분류된다.
최근에는 두께가 얇은 각형 전지, 파우치형 전지에 대한 수요가 증가하고 있으며, 특히, 형태의 변형이 용이하고 제조비용이 저렴하며 중량이 작은 파우치형 전지에 대한 관심이 높은 실정이다.
파우치형 전지는 수지층과 금속층을 포함하는 라미네이트 시트를 파우치형으로 만든 전지케이스에 양극/분리막/음극 구조의 전극조립체가 내장되어 있는 전지이다.
전지케이스는 전극조립체를 절연 상태로 밀봉함으로써 안정적인 작동을 보장하는 역할을 하므로, 전지케이스의 라미네이트 시트 중 금속층은 전기적으로 절연상태로 유지되는 것이 필요하다.
그러나, 전지의 조립 과정 또는 사용 과정에서 예기치 못하게 라미네이트 시트의 금속층이 전극 리드와 전기적 접속 상태에 놓이는 경우가 발생한다. 라미네이트 시트의 금속층과 전극 리드 간에는 기전력 차이가 크기 때문에, 상기와 같은 전기적 접속 상태에서 이차전지의 충방전이 행해지면, 알루미늄의 부식 현상이 진행된다.
즉, 다양한 원인에 의해 금속층이 전극단자와 접촉하게 되면 절연저항이 낮아지게 되고, 이러한 상태에서는 금속층의 부식이 커지고, 누전이 발생하는 등의 문제가 야기되며, 그로 인해 전지의 수명이 급속히 짧아지고 전지의 안전성 역시 크게 위협을 받게 된다.
따라서, 전지케이스의 금속층이 전극 리드와 전기적으로 절연상태를 유지하고 있는 지를 검사하기 위하여, 이차전지의 절연저항을 측정하는 기술이 필요하다.
이러한 문제점을 해결하기 위하여, 일부 선행기술, 예를 들어, 한국 특허출원공개 제2001-106481호는 전지케이스를 구성하는 적층시트 내의 금속박의 외부 표면을 일부 노출시켜 노출부를 형성하고, 상기 노출부와 전극 리드 사이의 전압과, 양극 리드와 음극 리드 사이의 전압을 비교하는 것을 특징으로 하는 전지 검사 방법을 개시하고 있다.
그러나, 종래의 기술에 따르면, 절연저항 측정을 위해서는 전지가 만충전(fully charged)되어 있어야 하므로, 절연저항 측정에 많은 시간과 비용이 필요하고, 충전 정도에 따라 측정되는 절연저항 값이 달라지므로 정확한 측정이 어렵다는 문제가 있다.
본 출원의 발명자들은 전지팩의 절연저항을 측정하기 위한 향상된 시스템 및 방법에 대한 필요성을 인식하였다.
본 발명의 하나의 실시예에 따른 전지팩의 절연저항(isolation resistance)을 결정하는 시스템을 제공한다. 상기 전지팩은 하우징과 상기 하우징 내에 배치되어 있는 적어도 제 1 전지모듈 및 제 2 전지모듈을 포함하고 있다. 또한, 상기 전지팩은 제 1 전기단자 및 제 2 전기단자를 더 포함하고 있다. 상기 시스템은 전지팩의 제 1 전기단자 및 제 2 전기단자에 전기적으로 연결되어 있는 전압원(voltage source)을 포함하고 있다. 상기 전압원은 제 1 전지모듈과 제 2 전지모듈이 서로 전기적으로 직렬 연결되어 있지 않을 때, 제 1 시기(first time)에 상기 제 1 전기단자와 제 2 전기단자 사이에 제 1 출력전압 수준(first output voltage level)을 인가하도록 더 구성되어 있다. 상기 시스템은, 제 1 출력전압 수준이 출력될 때, 제 1 전기단자와 하우징 사이의 제 1 전압 수준(first voltage level)을 측정하도록 구성되어 있는 전압 측정기(voltage meter)를 더 포함하고 있다. 상기 전압 측정기는, 제 1 출력전압 수준이 출력되고 설정된 저항 수준을 가진 저항이 제 1 전기단자와 하우징 사이에 전기적으로 연결될 때, 제 1 전기단자와 하우징 사이의 제 2 전압 수준을 측정하도록 더 구성되어 있다. 상기 전압 측정기는, 제 1 출력전압 수준이 출력될 때, 제 2 전기단자와 하우징 사이의 제 3 전압 수준을 측정하도록 더 구성되어 있다. 상기 전압 측정기는, 제 1 출력전압 수준이 출력되고 제 2 전기단자와 하우징 사이에 저항이 전기적으로 연결될 때, 상기 제 2 전기단자와 하우징 사이의 제 4 전압 수준을 측정하도록 더 구성되어 있다. 상기 시스템은 전압 측정기와 작동가능하게(operably) 통신하도록 프로그램 되어 있는 마이크로프로세서를 더 포함하고 있다. 상기 마이크로프로세서는, 제 1 시기에 제 1 전압 수준, 제 2 전압 수준, 제 3 전압 수준, 및 설정된 저항 수준(resistance level)에 기반한 전지팩 관련 제 1 절연저항(first isolation resistance value)을 결정하도록 더 프로그램 되어 있다. 상기 마이크로프로세서는, 제 1 시기에, 제 1 전압 수준, 제 3 전압 수준, 제 4 전압 수준, 및 설정된 저항 수준에 기반한 전지팩 관련 제 2 절연저항을 결정하도록 더 프로그램 되어 있다. 상기 마이크로프로세서는, 제 1 절연저항 값과 제 2 절연저항 값의 어느 것이 서로 상대적으로 최소 값을 가지는 지를 결정하여, 제 1 절연저항 값과 제 2 절연저항 값의 최소값을 저장 장치에 저장하도록 더 프로그램 되어 있다.
본 발명의 하나의 실시예에 따른 전지팩의 절연저항을 결정하는 방법을 제공한다. 상기 전지팩은 하우징과 상기 하우징 내에 배치되어 있는 적어도 제 1 전지모듈 및 제 2 전지모듈을 포함하고 있다. 또한, 상기 전지팩은 제 1 전기단자 및 제 2 전기단자를 더 포함하고 있다. 상기 방법은, 제 1 전지모듈과 제 2 전지모듈이 서로 전기적으로 직렬 연결되어 있지 않을 때, 전압원을 이용하여 제 1 시기에 제 1 전기단자와 제 2 전기단자 사이에 제 1 출력전압 수준을 인가하는 과정을 포함하고 있다. 상기 방법은, 전압 측정기를 이용하여, 제 1 출력전압 수준이 출력될 때, 제 1 전기단자와 하우징 사이의 제 1 전압 수준을 측정하는 과정을 더 포함하고 있다. 상기 방법은, 제 1 출력전압 수준이 출력되고 설정된 저항 수준을 가진 저항이 제 1 전기단자와 하우징 사이에 전기적으로 연결될 때, 전압 측정기를 이용하여 제 1 전기단자와 하우징 사이의 제 2 전압 수준을 측정하는 과정을 더 포함하고 있다. 상기 방법은, 전압 측정기를 이용하여, 제 1 출력전압 수준이 출력될 때 제 2 전기단자와 하우징 사이의 제 3 전압 수준을 측정하는 과정을 더 포함하고 있다. 상기 방법은, 제 1 출력전압 수준이 출력되고 제 2 전기단자와 하우징 사이에 저항이 전기적으로 연결될 때, 전압 측정기를 이용하여 제 2 전기단자와 하우징 사이의 제 4 전압 수준을 측정하는 과정을 더 포함하고 있다. 상기 방법은, 마이크로프로세서를 이용하여, 제 1 시기에 제 1 전압 수준, 제 2 전압 수준, 제 3 전압 수준, 및 설정된 저항 수준에 기반한 전지팩 관련 제 1 절연저항 값을 결정하는 과정을 더 포함하고 있다. 상기 방법은, 마이크로프로세서를 이용하여, 제 1 시기에 제 1 전압 수준, 제 3 전압 수준, 제 4 전압 수준, 및 설정된 저항 수준에 기반한 전지팩 관련 제 2 절연저항 값을 결정하는 과정을 더 포함하고 있다. 상기 방법은, 마이크로프로세서를 이용하여, 제 1 절연저항 값과 제 2 절연저항 값의 어느 것이 서로 상대적으로 최소값을 가지는 지를 결정하여, 제 1 절연저항 값과 제 2 절연저항 값의 최소값을 저장 장치에 저장하는 과정을 더 포함하고 있다.
도 1은 본 발명의 하나의 실시예에 따른 전지팩의 절연저항 결정 시스템의 모식도이다;
도 2 및 도 3은 본 발명의 또 다른 하나의 실시예에 따른 전지팩의 절연저항 결정 방법의 순서도들이다;
도 4는 도 1의 시스템을 이용하여 결정될 수 있는 예시적인 전지팩의 절연저항 곡선의 그래프이다.
도 1을 참조하면, 본 발명의 하나의 실시예에 따른 전지팩(20)의 절연저항 결정 시스템(10)이 제공된다.
시스템(10)은 전압원(40), 전압 측정기(50), 마이크로프로세서(60), 전기 스위치들(70, 72, 74, 76, 78, 80, 82), 저항(90), 및 저장 장치(93)를 포함하고 있다. 시스템(10)의 장점은, 전지팩(20)의 절연저항을 결정하는 동안에, 설정 전압을 반복적으로 전지팩(20)에 제공하는 전압원(40)을 이용한다는 점이다. 시스템(10)의 또 다른 장점은, 전지팩(20)의 절연저항을 결정하기 위해서 전지팩(20)이 만충전(fully charged)될 필요가 없다는 점이다.
전지팩(20)은 전기자동차 또는 하이브리드 전기자동차에 필요한 전력을 생성하기 위해 제공된다. 전지팩(20)은 하우징(95), 전지모듈들(100, 110), 전기 스위치(82), 제 1 전기단자(120), 및 제 2 전기단자(130)를 포함하고 있다. 하우징(95)은 서로 전기적으로 직렬 연결된 전지모듈들(110, 110)을 포함하고 있다. 제 1 전기단자(120)는 전지모듈(110)의 음극 단자에 전기적으로 연결되어 있다. 제 2 전기단자(130)는 전지모듈(100)의 양극 단자에 전기적으로 연결되어 있다. 전지모듈(100)의 음극 단자는 전기 스위치(82)의 제 1 면(first side)에 전기적으로 연결되어 있다. 전지모듈(110)의 양극 단자는 전기 스위치(82)의 제 2 면에 전기적으로 연결되어 있다. 전기 스위치(82)는 전기적으로 구동되는 스위치이고, 평상시 닫힌 가동 위치(normally-closed operational position)를 가진다. 전기 스위치(82)는, 하기에서 자세히 설명하는 것처럼, 시스템(10)이 전지팩(20)의 절연저항 검사를 할 수 있게 전지모듈들(100, 110)이 서로 전기적으로 직렬 연결되지 않도록, 마이크로프로세서(60)의 제어 신호에 대응하여 열린 가동 위치로 전환된다.
또 다른 실시예에서, 하기에 기재된 절연저항 검사를 수행할 때 전지모듈(100)의 음극 단자가 전지모듈(110)의 양극 단자에 전기적으로 연결되지 않도록 전기 스위치(82)가 제거될 수 있다. 부언하면, 하기에 기재된 절연저항 검사 시 전지모듈(100)의 음극 단자와 전지모듈(110)의 양극 단자 사이에 개방 회로(open circuit)가 존재할 수 있다.
자동차 차대(30)는 그 위에 전지팩(20)을 고정할 수 있도록 구성되어 있다. 전지모듈들(100, 110)은 전지팩(20)의 절연저항을 결정하기 위해 선택적으로 하우징(95)에 전기적으로 연결된다. 하우징(95)은 자동차 차대(30)에 전기적으로 더 연결될 수도 있다.
전압원(40)은 전지팩(20)의 제 1 전기단자(120) 및 제 2 전기단자(130)에 전기적으로 연결되도록 구성되어 있다. 전압원(40)은, 전지팩(20)에 의해 출력될 예시적인 출력전압 수준을 나타내는 출력전압 수준을 제 1 전기단자(120)와 제 2 전기단자(130) 사이에 인가하도록 구성되어 있다. 하나의 구체적인 예에서, 전압원(40)은 100 내지 600 Vdc의 전압을 출력한다. 전압원(40)이 600 Vdc를 출력할 때, 전압원(40)은 10 milli-Amp의 전류 상한(upper current limit)을 가진다.
전압 측정기(50)는 제 1 전기단자(120)와 하우징(95) 사이의 제 1 전압 수준(V1)을 측정하도록 구성되어 있다. 전압 측정기(50)가 제 1 전압 수준(V1)을 측정할 때, 전기 스위치들(70, 80)은 각각 닫힌 가동 위치를 가지며, 나머지 스위치들은 열린 가동 위치를 가진다. 전압 측정기(50)는 제 1 전압 수준(V1)과 관련된 데이터를 마이크로프로세서(60)에 보내도록 더 구성되어 있다. 하나의 구체적인 예에서, 전압 측정기(50)의 내부 저항은 최소 10 mega-Ohm이다.
전압 측정기(50)는, 저항(90)이 제 1 전기단자(120)와 하우징(95) 사이에 전기적으로 연결될 때, 제 1 전기단자(120)와 하우징(95) 사이의 제 2 전압 수준(V2)을 측정하도록 더 구성되어 있다. 전압 측정기(50)가 제 2 전압 수준(V2)를 측정할 때, 전기 스위치들(70, 80, 76)은 각각 닫힌 가동 위치를 가지며, 나머지 스위치들은 열린 가동 위치를 가진다. 하나의 구체적인 예에서, 저항(90)은, 예를 들어, 200 kilo-Ohm과 같은 설정된 저항 수준(R0)을 가진다. 전압 측정기(50)는 제 2 전압 수준(V2)과 관련된 데이터를 마이크로프로세서(60)에 보내도록 더 구성되어 있다.
전압 측정기(50)는 제 2 전기단자(130)와 하우징(95) 사이의 제 3 전압 수준(V3)을 측정하도록 더 구성되어 있다. 전압 측정기(50)가 제 3 전압 수준(V3)을 측정할 때, 전기 스위치들(72, 80)은 각각 닫힌 가동 위치를 가지며, 나머지 스위치들은 열린 가동 위치를 가진다. 전압 측정기(50)는 제 3 전압 수준(V3)과 관련된 데이터를 마이크로프로세서(60)에 보내도록 더 구성되어 있다.
전압 측정기(50)는, 저항(90)이 제 2 전기단자(130)와 하우징(95) 사이에 저항(90)이 전기적으로 연결될 때, 제 2 전기단자(130)와 하우징(95) 사이의 제 4 전압 수준(V4)을 측정하도록 더 구성되어 있다. 전압 측정기(50)가 제 4 전압 수준(V4)을 측정할 때, 전기 스위치들(72, 74, 80)은 각각 닫힌 가동 위치를 가지며, 나머지 스위치들은 열린 가동 위치를 가진다. 전압 측정기(50)는 제 4 전압 수준(V4)과 관련된 데이터를 마이크로프로세서(60)에 보내도록 더 구성되어 있다.
스위치들(70, 72, 74, 76, 78, 80)은 전기적으로 구동되는 스위치들이다. 특히, 스위치들(70 내지 80)은 닫힌 가동 위치 또는 열린 가동 위치를 가진다. 마이크로프로세서(60)은, 스위치들(70 내지 80)에 의해 수용되며 스위치들(70 내지 80)이 닫힌 가동 위치를 가지도록 유도하는, 제어 신호들을 생성한다. 예를 들어, 마이크로프로세서(60)는, 스위치(70)가 닫힌 가동 위치를 가지도록 유도하기 위하여, 스위치(70)에 의해 수용되는 제어 신호를 생성한다. 마이크로 프로세서(60)가 스위치들(70 내지 80)에 의해 수용되는 제어 신호의 생성을 중단하면, 스위치들(70 내지 80)은 열린 가동 위치로 전환된다. 예를 들어, 마이크로프로세서(60)가 스위치(70)에 의해 수용되는 제어 신호의 생성을 중단하면, 스위치(70)는 열린 가동 위치로 전환된다.
시스템(10)의 개략적인 전기적 구성에 대한 설명을 제공할 것이다. 스위치(70)는 전지팩(20)의 제 1 전기단자(120)와 전압 측정기(50)의 제 1 전기단자(150) 사이에 전기적으로 연결되어 있다. 스위치(72)는 전지팩(20)의 제 2 전기단자(130)와 전압 측정기(50)의 제 1 전기단자(150) 사이에 전기적으로 연결되어 있다. 스위치(74)는 전지팩(20)의 제 2 전기단자(130)와 노드(92) 사이에 전기적으로 연결되어 있다. 저항(90)은 노드(92)와 하우징(95) 사이에 전기적으로 연결되어 있다. 스위치(76)는 노드(92)와 전지팩(20)의 제 1 전기단자(120) 사이에 전기적으로 연결되어 있다. 스위치(78)는 전지팩(20)의 제 1 전기단자(120)와 전압 측정기(50)의 제 2 전기단자(151) 사이에 전기적으로 연결되어 있다. 또한, 스위치(80)는 전압 측정기(50)의 제 2 전기단자(151)와 하우징(95) 사이에 전기적으로 연결되어 있다.
마이크로프로세서(60)는 전압 측정기(50)와 작동가능하게 통신하도록 구성되어 있다. 마이크로프로세서(60)는 다음 식: R1 = R0 (1 + V3 / V1) [(V1 V2) / V2)에 기반하여 전지팩(20) 관련 제 1 절연저항(R1)을 결정하도록 구성되어 있다. 또 다른 예에서, R1의 계산에 상기 식 대신 SAE1766, FMVSS305, 또는 ECE324 Rule 100에 정의되어 있는 다른 절연 식(isolation equation)이 사용될 수 있다.
마이크로프로세서(60)는 다음 식: R2 = R0 (1 + V1 / V3) [(V3 V4) / V4)에 기반하여 전지팩(20) 관련 제 2 절연저항(R2)을 결정하도록 구성되어 있다. 하나의 구체적인 예에서, R2의 계산에 상기 식 대신 SAE1766, FMVSS305, 또는 ECE324 Rule 100에 정의되어 있는 다른 절연 식(isolation equation)이 사용될 수 있다.
도 2 내지 도 3을 참조하여, 본 발명의 또 다른 하나의 실시예에 따른, 전지팩(20)의 절연저항을 결정하는 방법의 순서도를 설명할 것이다.
단계(250)에서, 마이크로프로세서(60)는 다음과 같은 변수들을: 타임_인덱스 = 0; 및 전압_수준 = 100으로 초기화 한다. 단계(250) 이후에 단계(252)로 넘어간다.
단계(252)에서, 마이크로프로세서(60)는 다음과 같은 변수들을: 타임_인덱스 = 타임_인덱스 + 1; 및 전압_수준 = 전압_수준 + 1으로 업데이트 한다. 단계(252) 이후에 단계(254)로 넘어간다.
단계(254)에서, 마이크로프로세서(60)는 전압 수준이 역치 전압 수준(Threshold Voltage level)보다 큰지 또는 동일한지 결정한다. 단계(254)의 값이 "예"와 같은 경우, 상기 방법은 단계(256)로 넘어간다. 그렇지 않은 경우, 빠져 나오게 된다.
단계(256)에서, 전압원(40)은 제 1 전지모듈(100)과 제 2 전지모듈(110)이 서로 전기적으로 직렬 연결되어 있지 않을 때 제 1 전기단자(120)와 제 2 전기단자(130) 사이에 전압_수준 크기의 출력전압 수준을 인가한다. 하나의 구체적인 예에서, 전지팩(20)은 50% 미만으로 만충전(fully charged)되어 있을 수 있다. 상기 방법은, 단계(256) 이후에 단계(258)로 넘어간다.
단계(258)에서, 전압 측정기(50)는 출력전압 수준이 출력될 때 제 1 전기단자(120)와 하우징(95) 사이의 제 1 전압 수준(V1)을 측정하고, 제 1 전압 수준(V1)에 대응되는 데이터를 마이크로프로세서(60)로 전송한다. 단계(258) 이후에 단계(260)로 넘어간다.
단계(260)에서, 전압 측정기(50)는, 출력전압 수준이 출력되고 저항(90)이 제 1 전기단자(120)와 하우징(95) 사이에 전기적으로 연결될 때, 제 1 전기단자(120)와 하우징(95) 사이의 제 2 전압 수준(V2)을 측정하고, 제 2 전압 수준(V2)에 대응되는 데이터를 마이크로프로세서(60)로 전송한다. 저항(90)은 설정된 저항 수준을 가진다. 단계(260) 이후에 단계(262)로 넘어간다.
단계(262)에서, 전압 측정기(50)는, 출력전압 수준이 출력될 때, 제 2 전기단자(130)와 하우징(95) 사이의 제 3 전압 수준(V3)을 측정하고, 제 3 전압 수준(V3)에 관련되는 데이터를 마이크로프로세서(60)로 전송한다. 단계(262) 이후에 단계(264)로 넘어간다.
단계(264)에서, 전압 측정기(50)는, 출력전압 수준이 출력되고 저항(90)이 제 2 전기단자(130)와 하우징(95) 사이에 전기적으로 연결될 때, 제 2 전기단자(130)와 하우징(95) 사이의 제 4 전압 수준(V4)을 측정하고, 제 4 전압 수준(V4)에 관련되는 데이터를 마이크로프로세서(60)로 전송한다. 단계(264) 이후에 단계(266)로 넘어간다.
단계(266)에서, 마이크로프로세서(60)는 제 1 전압 수준(V1), 제 2 전압 수준(V2), 제 3 전압 수준(V3), 및 설정된 저항 수준에 기반한 전지팩(20) 관련 제 1 절연저항 값(R1)을 결정한다. 단계(266) 이후에 단계(268)로 넘어간다.
단계(268)에서, 마이크로프로세서(60)는 제 1 전압 수준(V1), 제 3 전압 수준(V3), 제 4 전압 수준(V4), 및 설정된 저항 수준에 기반한 전지팩(20) 관련 제 2 절연저항 값(R2)을 결정한다. 단계(268) 이후에 단계(270)로 넘어간다.
단계(270)에서, 마이크로프로세서(60)는 제 1 절연저항 값(R1)이 제 2 절연저항 값(R2)보다 작은지 또는 동일한지 결정한다. 단계(270)의 값이 "예"와 같은 경우, 단계(272)로 넘어간다. 그렇지 않은 경우, 단계(274)로 넘어간다.
단계(272)에서, 마이크로프로세서(60)는 다음 식: 절연_저항_행렬(타임_인덱스) = 제 1 절연저항 값(R1)을 이용하여 제 1 절연저항 값(R1)을 저장 장치(93)의 행렬에 저장한다. 단계(272) 이후에 단계(252)로 돌아간다.
단계(270)를 다시 참조하면, 단계(270)의 값이 "아니오"와 같은 경우, 단계(274)가 수행된다. 단계(274)에서, 마이크로프로세서(60)는 다음 식: 절연_저항_행렬(타임_인덱스) = 제 2 절연저항 값(R2)을 이용하여 제 2 절연저항 값(R2)을 저장 장치(93)의 행렬에 저장한다. 단계(274) 이후에 단계(252)로 돌아간다.
상기 방법은, 이를 실행하기 위한 컴퓨터 실행가능 명령어(computer-executable instruction)를 포함하는 하나 이상의 컴퓨터 인식가능 미디어(computer readable media)에, 적어도 부분적으로 내장될 수 있다. 상기 컴퓨터 인식가능 미디어는, 하나 이상의 하드 드라이브(hard drive), 플래시 메모리(flash memory), 시디롬(CD-ROM), 및 해당 기술분야의 통상의 기술자에게 알려진 기타 컴퓨터 인식가능 미디어를 포함하며, 상기 컴퓨터 실행가능 명령어가 하나 이상의 마이크로프로세서 또는 컴퓨터에 의해 로딩되고 실행될 때, 하나 이상의 마이크로프로세서 또는 컴퓨터는 본 발명을 실행하기 위한 도구가 되고 상기 방법을 수행하기 위해 프로그램 된다.
도 4를 참조하면, 시스템(10)을 이용하여 결정될 수 있는 전지팩(20) 관련 예시적인 절연저항 곡선(300)의 그래프가 도시되어 있다. 상기 그래프는 전압원(40)에 의해 전지팩(20)에 인가되는 전압 수준에 대응되는 X축을 가지고 있다. 상기 그래프는 전지팩(20)의 절연저항에 대응되는 Y축을 더 가지고 있다. 보는 바와 같이, 전지팩(20)에 인가되는 전압 수준이 변하기 때문에, 전지팩(20)의 절연저항은 변한다.
전지팩(20)의 절연저항을 결정하는 상기 시스템 및 방법은 기타 다른 시스템들 및 방법들에 비해 현저한 이점을 제공한다. 특히, 시스템(10) 및 상기 방법은, 전지팩(20)의 절연저항을 결정하기 위해 전지팩(20)이 만충전(fully charged)될 필요가 없도록, 절연저항을 결정하면서 설정된 전압을 전지팩(20)에 제공하는 전압원을 이용하는 기술적 효과를 제공한다.
이상에서 본 발명의 실시예들을 참조하여 설명하였지만, 상기 실시예들은 본 발명을 예시하기 위한 것이며, 본 발명의 범주가 이들만으로 한정되는 것은 아니다. 오히려, 본 발명이 속한 분야에서 통상의 지식을 가진 자라면 상기 내용을 바탕으로 본 발명의 범주 내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다. 게다가, 본 발명의 다양한 실시예들을 설명하였지만, 이것은 본 발명이 상기 실시예들을 포함할 수 있다는 측면에서 이해되어야 할 것이다. 따라서, 본 발명은 상기 기재에 한정되는 것으로 볼 수 없다.
본 발명에 따른 전지팩의 절연저항을 결정하는 시스템 및 방법은 기타 다른 시스템들 및 방법들에 비해 현저한 이점을 제공한다. 특히, 상기 시스템 및 방법은 절연저항을 결정하면서 설정된 전압을 전지팩에 제공하는 전압원을 이용하는 기술적 효과를 제공하여 전지팩의 절연저항을 결정하기 위해 전지팩이 만충전(fully charged)될 필요가 없다.

Claims (5)

  1. 하우징과 상기 하우징 내에 배치되어 있는 적어도 제 1 전지모듈 및 제 2 전지모듈을 포함하고, 제 1 전기단자 및 제 2 전기단자를 더 포함하는 전지팩의 절연저항(isolation resistance)을 결정하는 시스템으로서,
    상기 전지팩의 제 1 전기단자 및 제 2 전기단자에 전기적으로 연결되어 있고, 상기 제 1 전지모듈과 제 2 전지모듈이 서로 전기적으로 직렬 연결되어 있지 않을 때, 제 1 시기(first time)에 상기 제 1 전기단자와 제 2 전기단자 사이에 제 1 출력전압 수준(first output voltage level)을 인가하도록 구성되어 있는 전압원(voltage source);
    상기 제 1 출력전압 수준이 출력될 때, 제 1 전기단자와 하우징 사이의 제 1 전압 수준(first voltage level)을 측정하도록 구성되어 있는 전압 측정기(voltage meter); 및
    상기 전압 측정기와 작동가능하게(operably) 통신하도록 프로그램 되어 있는 마이크로프로세서로서, 상기 제 1 시기에 제 1 전압 수준, 제 2 전압 수준, 제 3 전압 수준, 및 설정된 저항 수준(resistance level)에 기반한 전지팩 관련 제 1 절연저항(first isolation resistance value)을 결정하도록 더 프로그램 되어있는 마이크로프로세서;
    를 포함하고 있으며,
    상기 전압 측정기는, 제 1 출력전압 수준이 출력되고 설정된 저항 수준을 가진 저항이 제 1 전기단자와 하우징 사이에 전기적으로 연결될 때, 제 1 전기단자와 하우징 사이의 제 2 전압 수준을 측정하도록 더 구성되어 있으며;
    상기 전압 측정기는, 제 1 출력전압 수준이 출력될 때, 제 2 전기단자와 하우징 사이의 제 3 전압 수준을 측정하도록 더 구성되어 있고;
    상기 전압 측정기는, 제 1 출력전압 수준이 출력되고 제 2 전기단자와 하우징 사이에 저항이 전기적으로 연결될 때, 상기 제 2 전기단자와 하우징 사이의 제 4 전압 수준을 측정하도록 더 구성되어 있으며;
    상기 마이크로프로세서는, 제 1 전압 수준, 제 3 전압 수준, 제 4 전압 수준, 및 설정된 저항 수준에 기반한 전지팩 관련 제 2 절연저항을 결정하도록 더 프로그램 되어 있고;
    상기 마이크로프로세서는, 제 1 절연저항 값과 제 2 절연저항 값의 어느 것이 서로 상대적으로 최소 값을 가지는 지를 결정하여, 제 1 절연저항 값과 제 2 절연저항 값의 최소값을 저장 장치에 저장하도록 더 프로그램 되어있는 것을 특징으로 하는 전지팩의 절연저항 결정 시스템.
  2. 제 1 항에 있어서,
    상기 전압원은, 상기 제 1 전지모듈과 제 2 전지모듈이 서로 전기적으로 직렬 연결되어 있지 않을 때, 제 2 시기에 제 1 전기단자와 제 2 전기단자 사이에 제 2 출력전압 수준을 인가하도록 더 구성되어 있으며, 상기 제 2 시기는 제 1 시기 이후이고, 상기 제 2 출력전압 수준은 제 1 출력전압 수준보다 크며;
    상기 전압 측정기는, 상기 제 2 출력전압 수준이 출력될 때, 제 1 전기단자와 하우징 사이의 제 5 전압 수준을 측정하도록 더 구성되어 있고;
    상기 전압 측정기는, 상기 제 2 출력전압 수준이 출력되고 제 1 전기단자와 하우징 사이에 저항이 전기적으로 연결될 때, 제 1 전기단자와 하우징 사이의 제 6 전압 수준을 측정하도록 더 구성되어 있으며;
    상기 전압 측정기는, 상기 제 2 출력전압 수준이 출력될 때, 제 2 전기단자와 하우징 사이의 제 7 전압 수준을 측정하도록 더 구성되어 있고;
    상기 전압 측정기는, 상기 제 2 출력전압 수준이 출력되고 제 2 전기단자와 하우징 사이에 저항이 전기적으로 연결될 때, 상기 제 2 전기단자와 하우징 사이의 제 8 전압 수준을 측정하도록 더 구성되어 있으며;
    상기 마이크로프로세서는, 제 2 시기에 제 5 전압 수준, 제 6 전압 수준, 제 7 전압 수준, 및 설정된 저항 수준에 기반한 전지팩 관련 제 3 절연저항 값을 결정하도록 더 프로그램 되어 있고;
    상기 마이크로프로세서는, 제 2 시기에 제 5 전압 수준, 제 7 전압 수준, 제 8 전압 수준, 및 설정된 저항 수준에 기반한 전지팩 관련 제 4 절연저항 값을 결정하도록 더 프로그램 되어 있으며;
    상기 마이크로프로세서는, 제 3 절연저항 값과 제 4 절연저항 값의 어느 것이 서로 상대적으로 최소 값을 가지는 지를 결정하여, 제 3 절연저항 값과 제 4 절연저항 값의 최소값을 저장 장치에 저장하도록 더 프로그램 되어있는 것을 특징으로 하는 전지팩의 절연저항 결정 시스템.
  3. 제 1 항에 있어서, 상기 전지팩은 50% 미만으로 만충전(fully charged) 되어 있는 것을 특징으로 하는 전지팩의 절연저항 결정 시스템.
  4. 하우징과 상기 하우징 내에 배치되어 있는 적어도 제 1 전지모듈 및 제 2 전지모듈을 포함하고, 제 1 전기단자 및 제 2 전기단자를 더 포함하는 전지팩의 절연저항을 결정하는 방법으로서,
    상기 제 1 전지모듈과 제 2 전지모듈이 서로 전기적으로 직렬 연결되어 있지 않을 때, 전압원을 이용하여 제 1 시기에 제 1 전기단자와 제 2 전기단자 사이에 제 1 출력전압 수준을 인가하는 과정;
    전압 측정기를 이용하여, 상기 제 1 출력전압 수준이 출력될 때 제 1 전기단자와 하우징 사이의 제 1 전압 수준을 측정하는 과정;
    상기 제 1 출력전압 수준이 출력되고 설정된 저항 수준을 가진 저항이 제 1 전기단자와 하우징 사이에 전기적으로 연결될 때, 전압 측정기를 이용하여 제 1 전기단자와 하우징 사이의 제 2 전압 수준을 측정하는 과정;
    상기 전압 측정기를 이용하여, 제 1 출력전압 수준이 출력될 때 제 2 전기단자와 하우징 사이의 제 3 전압 수준을 측정하는 과정;
    상기 제 1 출력전압 수준이 출력되고 제 2 전기단자와 하우징 사이에 저항이 전기적으로 연결될 때, 전압 측정기를 이용하여 제 2 전기단자와 하우징 사이의 제 4 전압 수준을 측정하는 과정;
    마이크로프로세서를 이용하여, 상기 제 1 시기에 제 1 전압 수준, 제 2 전압 수준, 제 3 전압 수준, 및 설정된 저항 수준에 기반한 전지팩 관련 제 1 절연저항 값을 결정하는 과정;
    상기 마이크로프로세서를 이용하여, 제 1 시기에 제 1 전압 수준, 제 3 전압 수준, 제 4 전압 수준, 및 설정된 저항 수준에 기반한 전지팩 관련 제 2 절연저항 값을 결정하는 과정; 및
    상기 마이크로프로세서를 이용하여, 제 1 절연저항 값과 제 2 절연저항 값의 어느 것이 서로 상대적으로 최소값을 가지는 지를 결정하여, 제 1 절연저항 값과 제 2 절연저항 값의 최소값을 저장 장치에 저장하는 과정;
    을 포함하는 것을 특징으로 하는 전지팩의 절연저항 결정 방법.
  5. 제 4 항에 있어서,
    상기 제 1 전지모듈과 제 2 전지모듈이 서로 전기적으로 직렬 연결되어 있지 않을 때, 전압원을 이용하여 제 2 시기에 제 1 전기단자와 제 2 전기단자 사이에 제 2 출력전압 수준을 인가하는 과정으로서, 제 2 시기는 제 1 시기 이후이고, 상기 제 2 출력전압 수준은 제 1 출력전압 수준보다 크게 구성되어 있는 과정;
    상기 전압 측정기를 이용하여, 제 2 출력전압 수준이 출력될 때, 제 1 전기단자와 하우징 사이의 제 5 전압 수준을 측정하는 과정;
    상기 제 2 출력전압 수준이 출력되고 제 1 전기단자와 하우징 사이에 저항이 전기적으로 연결될 때, 전압 측정기를 이용하여 제 1 전기단자와 하우징 사이의 제 6 전압 수준을 측정하는 과정;
    상기 전압 측정기를 이용하여, 제 2 출력전압 수준이 출력될 때, 제 2 전기단자와 하우징 사이의 제 7 전압 수준을 측정하는 과정;
    상기 제 2 출력전압 수준이 출력되고 제 2 전기단자와 하우징 사이에 저항이 전기적으로 연결될 때, 전압 측정기를 이용하여 제 2 전기단자와 하우징 사이의 제 8 전압 수준을 측정하는 과정;
    상기 마이크로프로세서를 이용하여, 제 2 시기에 제 5 전압 수준, 제 6 전압 수준, 제 7 전압 수준, 및 설정된 저항 수준에 기반한 전지팩 관련 제 3 절연저항 값을 결정하는 과정;
    상기 마이크로프로세서를 이용하여, 제 2 시기에 제 5 전압 수준, 제 7 전압 수준, 제 8 전압 수준, 및 설정된 저항 수준에 기반한 전지팩 관련 제 4 절연저항 값을 결정하는 과정; 및
    상기 마이크로프로세서를 이용하여, 제 3 절연저항 값과 제 4 절연저항 값의 어느 것이 서로 상대적으로 최소값을 가지는 지를 결정하여, 제 3 절연저항 값과 제 4 절연저항 값의 최소값을 저장 장치에 저장하는 과정;
    을 포함하는 것을 특징으로 하는 전지팩의 절연저항 결정 방법.
PCT/KR2014/007258 2013-08-07 2014-08-06 전지팩의 절연저항을 결정하는 시스템 및 방법 WO2015020420A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016529721A JP6054000B2 (ja) 2013-08-07 2014-08-06 電池パックの絶縁抵抗を決定するシステム及び方法
KR1020167000999A KR101713049B1 (ko) 2013-08-07 2014-08-06 전지팩의 절연저항을 결정하는 시스템 및 방법
EP14835375.8A EP3012644B1 (en) 2013-08-07 2014-08-06 System and method for determining insulation resistance of battery pack
CN201480042930.1A CN105452885B (zh) 2013-08-07 2014-08-06 用于确定电池组的隔离电阻的***和方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/961,834 US9164151B2 (en) 2013-08-07 2013-08-07 System and method for determining isolation resistances of a battery pack
US13/961,834 2013-08-07

Publications (1)

Publication Number Publication Date
WO2015020420A1 true WO2015020420A1 (ko) 2015-02-12

Family

ID=52448095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/007258 WO2015020420A1 (ko) 2013-08-07 2014-08-06 전지팩의 절연저항을 결정하는 시스템 및 방법

Country Status (6)

Country Link
US (1) US9164151B2 (ko)
EP (1) EP3012644B1 (ko)
JP (1) JP6054000B2 (ko)
KR (1) KR101713049B1 (ko)
CN (1) CN105452885B (ko)
WO (1) WO2015020420A1 (ko)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015101074B4 (de) * 2015-01-26 2021-10-07 Lisa Dräxlmaier GmbH Verfahren und Vorrichtung zur Bestimmung einer Isolationsgröße sowie Kraftfahrzeug mit dieser Vorrichtung
US10295584B2 (en) * 2016-09-14 2019-05-21 Johnson Controls Technology Company Systems and methods for measuring isolation resistance
KR101991910B1 (ko) * 2016-11-16 2019-06-21 주식회사 엘지화학 배터리의 절연 저항 산출 장치 및 방법
EP3361271B1 (en) * 2017-02-08 2022-06-01 Fico Triad, S.A. Device and method for measuring isolation resistance of battery powered systems
CN108802494B (zh) 2017-05-03 2020-03-20 华为技术有限公司 绝缘电阻的检测电路、检测方法和装置
KR102468740B1 (ko) * 2018-02-21 2022-11-18 (주)이티에스 이차전지셀의 절연저항측정방법
FR3079305B1 (fr) 2018-03-23 2020-05-01 IFP Energies Nouvelles Procede de determination d'au moins deux resistances equivalentes d'isolement d'un systeme electrique

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010106481A (ko) 1999-07-23 2001-11-29 다니구찌 이찌로오, 기타오카 다카시 전지 및 전지 검사 방법
KR20100105954A (ko) * 2009-03-23 2010-10-01 에스케이에너지 주식회사 배터리와 연결되는 저항을 이용한 절연저항 측정회로
US20110115490A1 (en) * 2009-11-19 2011-05-19 Valence Technology, Inc. Battery Insulation Resistance Measurement Methods, Insulation Resistance Measurement Methods, Insulation Resistance Determination Apparatuses, And Articles Of Manufacture
KR20120029850A (ko) * 2010-09-17 2012-03-27 에스케이이노베이션 주식회사 누설전류를 발생시키지 않고 셀프 테스트 기능을 가진 절연저항 측정회로
KR20120030198A (ko) * 2010-09-17 2012-03-28 현대모비스 주식회사 차량의 절연저항 감지 장치
KR20130080579A (ko) * 2012-01-05 2013-07-15 에스케이이노베이션 주식회사 절연 저항 측정 회로

Family Cites Families (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4214204A (en) 1978-04-11 1980-07-22 General Battery Corporation High rate, battery testing apparatus and method
US4311917A (en) 1980-03-31 1982-01-19 Thomas R. Hencey, Jr. Non-pollution motor
US4363407A (en) 1981-01-22 1982-12-14 Polaroid Corporation Method and system for testing and sorting batteries
US4408157A (en) * 1981-05-04 1983-10-04 Associated Research, Inc. Resistance measuring arrangement
JPS5999271A (ja) 1982-11-29 1984-06-07 Matsushita Electric Ind Co Ltd 電池の特性測定方法
US5357423A (en) 1993-02-22 1994-10-18 Kulicke And Soffa Investments, Inc. Apparatus and method for automatically adjusting power output of an ultrasonic generator
JP3435749B2 (ja) 1993-09-29 2003-08-11 ソニー株式会社 倉 庫
IES940589A2 (en) 1994-07-22 1995-11-01 Enda Brennan A product testing apparatus
JPH08163704A (ja) 1994-11-30 1996-06-21 Fujikura Ltd 漏電検出装置
JPH08185896A (ja) 1994-12-28 1996-07-16 Nissan Motor Co Ltd 蓄電池の異常検出装置
US5901572A (en) 1995-12-07 1999-05-11 Rocky Research Auxiliary heating and air conditioning system for a motor vehicle
DE19618897B4 (de) * 1996-05-10 2006-04-20 Varta Automotive Systems Gmbh Schaltungsanordnung zur Bestimmung des Isolationswiderstandes einer Akkumulatorenbatterie
JPH1140212A (ja) 1997-07-23 1999-02-12 Honda Motor Co Ltd 電気自動車のバッテリ冷却方法および装置
US6138466A (en) 1998-11-12 2000-10-31 Daimlerchrysler Corporation System for cooling electric vehicle batteries
US7058525B2 (en) 1999-04-08 2006-06-06 Midtronics, Inc. Battery test module
JP4666712B2 (ja) 2000-02-22 2011-04-06 パナソニック株式会社 電池の短絡検査方法
US6762610B1 (en) 2000-07-21 2004-07-13 Thomas Steel Strip Corporation Device and method for evaluating battery can coatings
US6401463B1 (en) 2000-11-29 2002-06-11 Marconi Communications, Inc. Cooling and heating system for an equipment enclosure using a vortex tube
JP3594567B2 (ja) 2001-05-21 2004-12-02 アスカ電子株式会社 電池ホルダ
US6983212B2 (en) 2001-11-27 2006-01-03 American Power Conversion Corporation Battery management system and method
US6907278B2 (en) 2002-09-13 2005-06-14 Samsung Electronics Co., Ltd. Apparatus and method for measuring power usage in a wireless mobile station
US7190171B2 (en) * 2002-10-11 2007-03-13 Canon Kabushiki Kaisha Detecting method and detecting apparatus for detecting internal of rechargeable battery, rechargeable battery pack having said detecting apparatus therein, apparatus having said detecting apparatus therein, program in which said detecting method is incorporated, and medium in which said program is stored
US6781382B2 (en) 2002-12-05 2004-08-24 Midtronics, Inc. Electronic battery tester
KR20040072069A (ko) 2003-02-08 2004-08-18 삼성에스디아이 주식회사 이차전지 테스트용 프로브
US7109700B2 (en) 2003-05-30 2006-09-19 David Fazzina Multimeter having off-device display device and selection device
KR20050001008A (ko) 2003-06-25 2005-01-06 주식회사 에스엠시 노트북배터리용 배터리 누설시험장비
US7075194B2 (en) 2003-07-31 2006-07-11 The Titan Corporation Electronically reconfigurable battery
US7429849B2 (en) 2003-11-26 2008-09-30 Toyo System Co., Ltd. Method and apparatus for confirming the charge amount and degradation state of a battery, a storage medium, an information processing apparatus, and an electronic apparatus
US6922058B2 (en) 2003-12-19 2005-07-26 Btech, Inc. Method for determining the internal impedance of a battery cell in a string of serially connected battery cells
JP4512942B2 (ja) 2004-02-16 2010-07-28 オリジン電気株式会社 液漏れ検出装置
US7263836B2 (en) 2004-05-18 2007-09-04 Schlumberger Technology Corporation Vortex tube cooling system
US7642786B2 (en) 2004-06-01 2010-01-05 Midtronics, Inc. Battery tester capable of identifying faulty battery post adapters
US7317316B2 (en) * 2004-07-02 2008-01-08 Nucellsys Gmbh Apparatus and method for measuring the insulation resistance of a fuel cell system
KR101126879B1 (ko) 2004-12-16 2012-03-19 한라공조주식회사 연료전지의 공기 냉각 시스템
JP4353093B2 (ja) 2004-12-24 2009-10-28 日産自動車株式会社 電圧可変バッテリを備えたハイブリッド車両
JP2006220520A (ja) * 2005-02-10 2006-08-24 Honda Motor Co Ltd 非接地直流電源の絶縁抵抗測定装置及びその方法
KR101201121B1 (ko) 2005-12-02 2012-11-13 에스케이이노베이션 주식회사 전지 검사 장치 및 방법
US7915856B2 (en) 2006-03-10 2011-03-29 Spx Corporation Battery testing and/or charging system with integrated receptacle and pass-through power for booster pack and method of using same
EP1841002B1 (en) 2006-03-31 2009-05-20 Sony Deutschland Gmbh Battery leakage detection system
JP2007280794A (ja) 2006-04-07 2007-10-25 Toyota Motor Corp 燃料電池システム
US7332913B2 (en) 2006-04-28 2008-02-19 Btech, Inc. Method and apparatus for determining to which battery cell in a string of battery cells a test instrument is connected
US20070261415A1 (en) 2006-05-12 2007-11-15 Barnes Timothy K Apparatus and method for the cooling of ambient air in outdoor spaces
WO2008033064A1 (en) * 2006-09-14 2008-03-20 Abb Technology Ltd Method and device for automatic monitoring of battery insulation condition.
US7564248B2 (en) 2007-03-12 2009-07-21 Gm Global Technology Operations, Inc. Method and apparatus for monitoring fuel cells
US7622893B2 (en) 2007-03-13 2009-11-24 Linear Technology Corporation Method and apparatus for measuring the voltage of a power source
KR20090015273A (ko) 2007-08-08 2009-02-12 현대자동차주식회사 연료전지 냉각 및 압축공기 가열을 위한 공기공급장치
KR101291724B1 (ko) 2007-09-04 2013-07-31 주식회사 엘지화학 배터리의 누설전류 감지 장치 및 방법
JP4649489B2 (ja) 2008-03-27 2011-03-09 株式会社日立製作所 組電池の総電圧検出回路
US8222868B2 (en) 2008-04-02 2012-07-17 Techtronic Power Tools Technology Limited Battery tester for rechargeable power tool batteries
US9759495B2 (en) 2008-06-30 2017-09-12 Lg Chem, Ltd. Battery cell assembly having heat exchanger with serpentine flow path
WO2010011224A1 (en) 2008-07-24 2010-01-28 Hewlett-Packard Development Company, L.P. Spot-cooling for an electronic device
EP2336794B1 (en) * 2008-09-01 2014-11-26 LG Chem, Ltd. Apparatus and method for sensing a current leakage of a battery, and battery driving apparatus and battery pack including the apparatus
EP2230522B1 (de) 2009-03-16 2011-05-11 SMA Solar Technology AG Verfahren und Vorrichtung zur Isolationsüberwachung eines Netzes ohne Neutralleiter
JP5224383B2 (ja) 2009-03-31 2013-07-03 古河電気工業株式会社 バッテリ状態検知センサ装置
US8766642B2 (en) 2009-08-28 2014-07-01 General Electric Company Electrochemical cell
KR101053352B1 (ko) 2009-12-07 2011-08-01 주식회사 엘지화학 배터리 제어 장치 및 방법
JP5210434B2 (ja) 2010-01-28 2013-06-12 パナソニック株式会社 電池モジュール
JP5370583B2 (ja) 2010-03-31 2013-12-18 トヨタ自動車株式会社 中古二次電池の選別方法、リビルト電池パック、これを用いた車両及び電池使用機器、並びにリビルト電池パックの製造方法
US8736273B2 (en) 2010-04-15 2014-05-27 Lg Chem, Ltd. Testing system and method for testing a battery cell
US8802253B2 (en) 2010-04-16 2014-08-12 Lg Chem, Ltd. Weld validation system and method for a battery module
US20110300416A1 (en) 2010-06-03 2011-12-08 Bertness Kevin I Battery pack maintenance for electric vehicle
KR101236606B1 (ko) 2010-11-26 2013-02-25 주식회사 현대케피코 전기 자동차의 누전 검출 장치
JP2012165536A (ja) 2011-02-04 2012-08-30 Toyota Motor Corp 電動車両
US20130027049A1 (en) 2011-07-28 2013-01-31 Tesla Motors, Inc. Method for Determining Battery Pack Isolation Resistance Via Dual Bus Monitoring
US9046580B2 (en) * 2011-08-23 2015-06-02 Tesla Motors, Inc. Battery thermal event detection system utilizing battery pack isolation monitoring
JP5767077B2 (ja) * 2011-10-24 2015-08-19 株式会社ケーヒン 漏電検出装置
US8716981B2 (en) 2011-11-11 2014-05-06 Lg Chem, Ltd. System and method for cooling and cycling a battery pack
US8816692B2 (en) 2011-12-01 2014-08-26 Lg Chem, Ltd. Test system for a battery module
CN102707144B (zh) * 2012-05-24 2016-06-08 北华大学 动力电池组母线绝缘电阻测量装置及方法
US9063179B2 (en) 2012-09-26 2015-06-23 Lg Chem, Ltd. System and method for determining an isolation resistance of a battery pack disposed on a vehicle chassis

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010106481A (ko) 1999-07-23 2001-11-29 다니구찌 이찌로오, 기타오카 다카시 전지 및 전지 검사 방법
KR20100105954A (ko) * 2009-03-23 2010-10-01 에스케이에너지 주식회사 배터리와 연결되는 저항을 이용한 절연저항 측정회로
US20110115490A1 (en) * 2009-11-19 2011-05-19 Valence Technology, Inc. Battery Insulation Resistance Measurement Methods, Insulation Resistance Measurement Methods, Insulation Resistance Determination Apparatuses, And Articles Of Manufacture
KR20120029850A (ko) * 2010-09-17 2012-03-27 에스케이이노베이션 주식회사 누설전류를 발생시키지 않고 셀프 테스트 기능을 가진 절연저항 측정회로
KR20120030198A (ko) * 2010-09-17 2012-03-28 현대모비스 주식회사 차량의 절연저항 감지 장치
KR20130080579A (ko) * 2012-01-05 2013-07-15 에스케이이노베이션 주식회사 절연 저항 측정 회로

Also Published As

Publication number Publication date
US20150042350A1 (en) 2015-02-12
CN105452885B (zh) 2018-03-16
JP6054000B2 (ja) 2016-12-27
KR20160026994A (ko) 2016-03-09
KR101713049B1 (ko) 2017-03-07
US9164151B2 (en) 2015-10-20
JP2016527508A (ja) 2016-09-08
CN105452885A (zh) 2016-03-30
EP3012644B1 (en) 2020-08-05
EP3012644A4 (en) 2016-08-10
EP3012644A1 (en) 2016-04-27

Similar Documents

Publication Publication Date Title
WO2015020420A1 (ko) 전지팩의 절연저항을 결정하는 시스템 및 방법
EP2762908B1 (en) Battery cell performance estimation method and battery cell performance estimation apparatus
KR101470553B1 (ko) 배터리의 절연 저항 측정 장치 및 방법
WO2014051284A1 (ko) 차량의 차대에 배치된 전지팩의 절연저항을 측정하기 위한 방법 및 시스템
WO2013115585A1 (ko) 배터리의 수명 예측 방법 및 장치, 이를 이용한 배터리 관리 시스템
WO2015142145A1 (en) Pre-charging and voltage supply system for a dc-ac inverter
CN204832469U (zh) 一种车辆动力电池包的上电测试装置
CN104749533A (zh) 一种锂离子电池健康状态在线估算方法
WO2015083372A1 (ja) 電池残存容量推定装置、電池残存容量判定方法及び電池残存容量判定プログラム
EP3678256B1 (en) Apparatus and method for testing secondary battery
WO2015002334A1 (ko) 전지 soc 추정 방법 및 시스템
US20140184236A1 (en) Battery control apparatus and battery system
EP3206042B1 (en) Switch deterioration detection device and method
JP2011165343A5 (ko)
CN104802655B (zh) 电动汽车电驱动***高压直流端开路诊断***
WO2015080526A1 (ko) 배터리 랙에 포함된 전압 센서 보정 방법
KR20150084532A (ko) 절연 저항 측정 장치 및 방법
CN105425155A (zh) 一种高压电池组总电压和绝缘电阻检测电路及检测方法
CN110207913A (zh) 电池包的密封检测方法、装置及存储介质、汽车
KR20150073392A (ko) 배터리 스웰링 감지 시스템 및 방법
WO2021154043A1 (ko) 배터리 충방전 제어 장치 및 방법
JP2015169483A (ja) 二次電池の異常判定装置
WO2021125678A1 (ko) 병렬 배터리 릴레이 진단 장치 및 방법
KR20140062531A (ko) 절연파괴 측정회로 및 방법
KR20180067140A (ko) 쇼트 감지방법 및 장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480042930.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14835375

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167000999

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014835375

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016529721

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE