WO2015020089A1 - Horizontal multi-joint robot and production method for horizontal multi-joint robot - Google Patents

Horizontal multi-joint robot and production method for horizontal multi-joint robot Download PDF

Info

Publication number
WO2015020089A1
WO2015020089A1 PCT/JP2014/070736 JP2014070736W WO2015020089A1 WO 2015020089 A1 WO2015020089 A1 WO 2015020089A1 JP 2014070736 W JP2014070736 W JP 2014070736W WO 2015020089 A1 WO2015020089 A1 WO 2015020089A1
Authority
WO
WIPO (PCT)
Prior art keywords
arm
hand
arm portion
end side
articulated robot
Prior art date
Application number
PCT/JP2014/070736
Other languages
French (fr)
Japanese (ja)
Inventor
康行 北原
俊道 風間
保 栗林
正義 齋地
Original Assignee
日本電産サンキョー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013247026A external-priority patent/JP6374156B2/en
Application filed by 日本電産サンキョー株式会社 filed Critical 日本電産サンキョー株式会社
Priority to KR1020167002891A priority Critical patent/KR102294107B1/en
Priority to US14/899,410 priority patent/US10195743B2/en
Priority to CN201480040746.3A priority patent/CN105408068B/en
Publication of WO2015020089A1 publication Critical patent/WO2015020089A1/en
Priority to US15/854,487 priority patent/US20190001500A1/en
Priority to US16/580,276 priority patent/US10780586B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • B25J11/0095Manipulators transporting wafers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/02Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type
    • B25J9/04Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type by rotating at least one arm, excluding the head movement itself, e.g. cylindrical coordinate type or polar coordinate type
    • B25J9/041Cylindrical coordinate type
    • B25J9/042Cylindrical coordinate type comprising an articulated arm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67763Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading
    • H01L21/67766Mechanical parts of transfer devices

Definitions

  • the present invention relates to a horizontal articulated robot in which an arm moves in a horizontal direction and a method for manufacturing the horizontal articulated robot.
  • a horizontal articulated robot that forms part of EFEM (Equipment Front End Module) and transports a semiconductor wafer between a FOUP (Front Open Unified Pod) and a semiconductor wafer processing apparatus is known (for example, a patent) Reference 1).
  • the horizontal articulated robot described in Patent Document 1 includes two hands on which semiconductor wafers are mounted, an arm that is coupled to the two hands so as to be pivotable to the tip side, and a base end side of the arm that is pivotable. And a main body connected to the main body.
  • the arm includes a first arm whose base end side is rotatably connected to the main body, a second arm whose base end side is rotatably connected to the tip end side of the first arm, and a tip end of the second arm.
  • the base end side is rotatably connected to the side, and the hand is rotatably connected to the distal end side.
  • An arm elevating mechanism that elevates and lowers the first arm is housed inside the main body.
  • a vertical articulated robot As a vertical articulated robot, a base, a body fixed to the base, a first arm rotatably connected to the body, and a second arm rotatably connected to the first arm
  • a vertical articulated robot is known that includes a wrist arm that is rotatably connected to a second arm and a hand arm that is rotatably connected to the wrist arm (see, for example, Patent Document 2).
  • a spirit level for adjusting the origin position is attached to the first arm and the hand arm.
  • a horizontal articulated robot described in Patent Document 3 includes a hand on which a semiconductor wafer is mounted, an arm that is pivotally connected to the distal end side, and a base that is pivotally connected to a base end side of the arm. And.
  • the arm has a first arm portion whose base end side is rotatably connected to the base, a base end side rotatably connected to the front end side of the first arm portion, and a hand is turned to the front end side. It is comprised from the 2nd arm part connected so that a movement is possible.
  • the horizontal articulated robot described in Patent Document 3 includes a turning drive unit that rotates the second arm unit with respect to the first arm unit.
  • the turning drive means includes a motor disposed inside the first arm portion so that the axial direction of the output shaft is horizontal, a first bevel gear connected to the output shaft of the motor, and a first bevel.
  • JP 2011-230256 A Japanese Utility Model Publication No. 63-147704 JP 2008-264980 A
  • the FOUP is manufactured based on SEMI (Semiconductor Equipment and Materials Institute) standard, and a plurality of semiconductor wafers are accommodated in the FOUP so as to overlap each other at a constant pitch.
  • a gap is formed between the plurality of semiconductor wafers accommodated in the FOUP, but this gap is relatively narrow.
  • a horizontal articulated robot that transports a semiconductor wafer between a FOUP and a semiconductor wafer processing apparatus places a hand in a narrow gap between a plurality of semiconductor wafers accommodated in the FOUP and then mounts the semiconductor wafer on the hand. Must be taken out. Therefore, this horizontal articulated robot needs to be installed with high precision so that the hand can operate with high precision in the horizontal direction.
  • a first problem of the present invention is that a horizontal articulated robot in which the arm moves in the horizontal direction can be installed so that the hand can move with high precision in the horizontal direction easily in a relatively short time.
  • Another object of the present invention is to provide a horizontal articulated robot manufacturing method in which the arm moves in the horizontal direction, and can be installed so that the hand can move in the horizontal direction with high accuracy in a relatively short time. It is to provide a method for manufacturing a horizontal articulated robot.
  • the motor is arranged inside the first arm unit so that the axial direction of the output shaft is horizontal, the motor is arranged inside the first arm unit. Even if is arranged, the first arm portion can be made thin.
  • the power of the motor constituting the turning drive means is transmitted to the second arm unit via the first bevel gear, the second bevel gear, the second gear, and the third gear. Therefore, it is difficult to increase the reduction ratio in the power transmission path from the motor to the second arm portion. Therefore, in this horizontal articulated robot, a motor with a large output must be used as the motor constituting the turning drive means, and the motor becomes large. Further, in this horizontal articulated robot, the power of the motor is transmitted to the second arm portion via the first bevel gear, the second bevel gear, the second gear, and the third gear. The backlash in the power transmission path to the two arm portions is increased.
  • a second problem of the present invention is that a small-sized motor is provided in a horizontal articulated robot having a motor arranged so that the axial direction of the output shaft is in the horizontal direction inside the arm portion constituting a part of the arm. And providing a horizontal articulated robot capable of reducing backlash.
  • the horizontal articulated robot of the present invention is a horizontal articulated robot in which an arm operates in a horizontal direction.
  • An arm having at least two arm portions, a hand side arm portion that is movably connected and a second hand side arm portion that is pivotally connected to a distal end side of the hand side arm portion;
  • the base end side of the hand-side arm portion is adjusted at least with respect to the vertical direction of the rotation center axis of the hand-side arm portion with respect to the second hand-side arm portion. It is characterized by having a level attached to the main body.
  • the manufacturing method of the horizontal articulated robot of this invention is the hand side by which the conveyance object is mounted, and the hand side rotatably connected to the front end side.
  • An arm having at least two arm portions, a second hand side arm portion connected to the distal end side of the arm portion and the base end side of the hand side arm portion, and a base end side of the arm is rotatable
  • a method of manufacturing a horizontal articulated robot comprising a main body unit to be connected and a hand, an arm or a level attached to the main body unit, wherein the arm moves in the horizontal direction, and at least the hand side with respect to the second hand side arm unit A level is attached after adjusting the inclination of the rotation center axis of the arm portion with respect to the vertical direction.
  • the horizontal articulated robot of the present invention includes a hand on which an object to be transported is mounted, a hand side arm part to which the hand is rotatably connected, and a second hand side to which the hand side arm part is rotatably connected. And at least a level attached to the hand, arm or main body after the inclination of the rotation center axis of the hand side arm with respect to the second hand side arm is adjusted relative to the vertical direction. Yes.
  • the method for manufacturing a horizontal articulated robot according to the present invention at least after adjusting the inclination of the rotation central axis of the hand side arm portion with respect to the second hand side arm portion with respect to the vertical direction, Is attached.
  • the hand when the horizontal articulated robot is installed, the hand can be rotated by installing the horizontal articulated robot so that the level attached to the horizontal articulated robot shows a predetermined state.
  • the hand-side arm portion In order for the hand-side arm portion to be connected to the second hand-side arm portion to have an appropriate inclination with respect to the vertical direction of the rotation center axis, the horizontal inclination of the hand relative to the horizontal direction becomes an appropriate inclination. It becomes possible to install a joint robot. Therefore, in the present invention, the horizontal articulated robot is installed so that the hand can be operated in the horizontal direction with high accuracy in a relatively short time as compared with the conventional horizontal articulated robot installation method described above. It becomes possible.
  • the hand has a mounting surface on which the object to be transported is mounted, and the level is attached after the inclination of the mounting surface with respect to the horizontal direction is adjusted.
  • the horizontal articulated robot is set so that the hand moves more accurately in the horizontal direction by installing the horizontal articulated robot so that the level attached to the horizontal articulated robot shows a predetermined state. Can be installed.
  • the level is a bubble level having a bubble tube, and at least after the inclination of the rotation center axis of the hand side arm portion with respect to the second hand side arm portion with respect to the vertical direction is adjusted, It is attached so that the bubbles in the tube fall within the reference line marked on the bubble tube.
  • the horizontal articulated robot when installing the horizontal articulated robot, the horizontal articulated robot is installed so that the bubbles in the bubble tube of the spirit level are within the reference line. It is possible to install the horizontal articulated robot so that the inclination of the hand-side arm portion with respect to the vertical direction of the rotation center axis becomes an appropriate inclination and the inclination of the hand with respect to the horizontal direction becomes an appropriate inclination.
  • the spirit level is preferably attached to the main body. If a spirit level is attached to the arm or hand, for example, if the spirit level is a bubble tube level, the position of the bubbles in the bubble tube is likely to fluctuate depending on the expansion / contraction state of the arm. Even if the horizontal articulated robot is installed so that the distance is within the reference line, the horizontal articulated robot is installed so that the hand is tilted appropriately with respect to the horizontal direction, depending on the expansion and contraction of the arm during installation. There is a risk that it cannot be done. On the other hand, if the spirit level is attached to the main body, the position of the bubbles in the bubble tube is less likely to fluctuate even if the arm expands and contracts, so that the bubbles fit within the reference line. By installing the horizontal articulated robot in the horizontal direction, it becomes possible to install the horizontal articulated robot so that the inclination of the hand with respect to the horizontal direction becomes an appropriate inclination regardless of the extension / contraction state of the arm at the time of installation.
  • the horizontal articulated robot of the present invention is a horizontal articulated robot in which an arm moves in a horizontal direction, and a hand on which a conveyance target is mounted and a relative rotation with respect to each other.
  • An arm having at least two arm portions of a support arm portion and a supported arm portion that can be connected to each other, and a hand that is rotatably connected to the distal end side, and a base end side of the arm that are rotatably connected to each other
  • a main body portion and a rotation mechanism that rotates the supported arm portion with respect to the support arm portion, and the rotation mechanism is configured such that the axial direction of the output shaft is horizontal in the support arm portion or the supported arm portion.
  • a harmonic drive that constitutes a motor and a joint that serves as a connecting portion between the support arm and the supported arm and decelerates the power of the motor and transmits it to the support arm or the supported arm.
  • a first bevel gear coupled to the output shaft of the motor
  • a second bevel gear coupled to the wave generator of the harmonic drive (registered trademark) and meshing with the first bevel gear.
  • the power of the motor is decelerated by the harmonic drive (registered trademark) and transmitted to the supporting arm portion or the supported arm portion. Therefore, according to the present invention, the reduction ratio can be increased in the power transmission path from the motor to the support arm portion or the supported arm portion. Therefore, in the present invention, even if a motor with a small output is used, the supported arm portion can be rotated with respect to the support arm portion, and as a result, the motor can be miniaturized.
  • the power of the motor is decelerated and transmitted to the support arm portion or the supported arm portion by the harmonic drive (registered trademark), the power from the motor to the support arm portion or the supported arm portion is transmitted. Backlash can be reduced in the transmission path.
  • the arm is, for example, as an arm portion, a first arm portion whose base end side is rotatably connected to the main body portion, and a base end side rotatably connected to the distal end side of the first arm portion.
  • a second arm portion serving as a support arm portion, and a third arm portion serving as a supported arm portion whose base end side is rotatably connected to the distal end side of the second arm portion.
  • a hand is rotatably connected to the distal end side of the.
  • the horizontal articulated robot includes a first hand and a second hand arranged so as to overlap in the vertical direction as hands, and a first hand that rotates the first hand relative to the third arm portion.
  • the first hand rotation mechanism is disposed in the third arm portion.
  • the second hand rotating mechanism includes a second hand motor disposed inside the third arm portion, the first hand includes a connecting portion connected to the third arm portion, and a conveyance target.
  • the mounting portion is formed to extend horizontally from the upper end side of the connecting portion, and is attached to the third arm portion.
  • the protruding portion is formed at a position shifted from the connecting portion in the longitudinal direction of the third arm portion with the third arm portion and the first hand overlapping in the vertical direction, and up to a height that does not contact the mounting portion.
  • the third arm protrudes upward, and the first hand motor and the second hand motor have the third arm so that the output shaft faces downward and a part thereof is disposed in the protrusion. It is preferable that it is arrange
  • the rotation mechanism preferably includes a magnetic fluid seal disposed on the outer peripheral side of the harmonic drive (registered trademark). If comprised in this way, it will become possible to prevent the outflow of the dust which generate
  • the horizontal articulated robot according to the present invention can easily operate in a relatively short time and with high accuracy in the horizontal direction. Can be installed. Further, in the horizontal articulated robot manufactured by the method for manufacturing a horizontal articulated robot of the present invention, the horizontal articulated robot is installed so that the hand can move with high precision in the horizontal direction easily in a relatively short time. It becomes possible.
  • the present invention includes a motor that is arranged so that the axial direction of the output shaft is in the horizontal direction inside the arm portion that constitutes a part of the arm.
  • the motor can be reduced in size and backlash can be reduced.
  • FIG. 1 is a perspective view of a horizontal articulated robot according to a first embodiment of the present invention.
  • FIG. 2 is a perspective view of the horizontal articulated robot shown in FIG. 1 in a state where the arm is lifted and extended.
  • FIG. 2 is a schematic plan view of a semiconductor manufacturing system in which the horizontal articulated robot shown in FIG. 1 is used. It is a side view of the horizontal articulated robot shown in FIG.
  • FIG. 6 is a perspective view of the horizontal articulated robot shown in FIG. 5 in a state where the arm is lifted and extended.
  • FIG. 6 is a schematic plan view of a semiconductor manufacturing system in which the horizontal articulated robot shown in FIG. 5 is used.
  • FIG. 6 is a side view of the horizontal articulated robot shown in FIG. 5. It is sectional drawing for demonstrating the structure of the rotation mechanism shown in FIG.
  • FIG. 1 is a perspective view of a horizontal articulated robot 1 according to a first embodiment of the present invention.
  • FIG. 2 is a perspective view of the horizontal articulated robot 1 shown in FIG. 1 in a state where the arm 6 is lifted and extended.
  • FIG. 3 is a schematic plan view of a semiconductor manufacturing system 9 in which the horizontal articulated robot 1 shown in FIG. 1 is used.
  • FIG. 4 is a side view of the horizontal articulated robot 1 shown in FIG.
  • the horizontal articulated robot 1 of this embodiment is a robot for transporting a semiconductor wafer 2 (see FIG. 3) that is a transport object.
  • the horizontal articulated robot 1 includes two hands 4 and 5 on which a semiconductor wafer 2 is mounted, arms 4 and 5 that are rotatably connected to the distal end side, and move in a horizontal direction.
  • 6 is provided with a main body 7 to which the base end side of 6 is rotatably connected.
  • the horizontal articulated robot 1 is referred to as “robot 1”
  • the semiconductor wafer 2 is referred to as “wafer 2”.
  • the Y direction orthogonal to the vertical direction and the left-right direction is referred to as “front-rear direction”
  • the X1 direction side is referred to as “right ”Side
  • the X2 direction side is the“ left ”side
  • the Y1 direction side is the“ front ”side
  • the Y2 direction side is the“ rear (back) ”side.
  • the robot 1 is used by being incorporated in a semiconductor manufacturing system 9.
  • the semiconductor manufacturing system 9 includes an EFEM 10 and a semiconductor wafer processing apparatus 11 that performs predetermined processing on the wafer 2.
  • the EFEM 10 is disposed on the front side of the semiconductor wafer processing apparatus 11.
  • the robot 1 constitutes a part of the EFEM 10.
  • the EFEM 10 includes a plurality of load ports 13 that open and close the FOUP 12 and a housing 14 in which the robot 1 is accommodated.
  • the housing 14 is formed in a rectangular parallelepiped box shape elongated in the left-right direction.
  • the inside of the housing 14 is a clean space. That is, the inside of the EFEM 10 is a clean space, and a predetermined cleanliness is secured inside the EFEM 10.
  • the FOUP 12 is manufactured based on the SEMI standard, and 25 or 13 wafers 2 can be accommodated in the FOUP 12 in a state where they are overlapped in the vertical direction.
  • the load port 13 is disposed on the front side of the housing 14.
  • the EFEM 10 of this embodiment includes four load ports 13 arranged at a predetermined pitch in the left-right direction. In the EFEM 10, four FOUPs 12 are arranged at a predetermined pitch in the left-right direction.
  • the robot 1 transports the wafer 2 between the four FOUPs 12 and the semiconductor wafer processing apparatus 11.
  • the arm 6 has a first arm part 16 whose base end side is rotatably connected to the main body part 7 and a second arm part whose base end side is rotatably connected to the distal end side of the first arm part 16. 17 and a third arm portion 18 whose base end side is rotatably connected to the distal end side of the second arm portion 17. That is, the arm 6 includes three arm portions that are connected to each other so as to be relatively rotatable.
  • the first arm part 16, the second arm part 17, and the third arm part 18 are formed in a hollow shape. In this embodiment, the length of the first arm portion 16, the length of the second arm portion 17, and the length of the third arm portion 18 are equal.
  • the main body part 7, the first arm part 16, the second arm part 17, and the third arm part 18 are arranged in this order from the lower side in the vertical direction.
  • the 3rd arm part 18 of this form is a hand side arm part
  • the 2nd arm part 17 is a 2nd hand side arm part.
  • the hands 4 and 5 are formed so as to have a substantially Y shape when viewed in the vertical direction, and a connecting portion 19 connected to the third arm portion 18 and a wafer mounting portion on which the wafer 2 is mounted. 20.
  • the hands 4 and 5 are arranged so as to overlap in the vertical direction. Specifically, the hand 4 is disposed on the upper side and the hand 5 is disposed on the lower side. Further, the hands 4 and 5 are disposed above the third arm portion 18.
  • the connecting portion 19 constitutes a base end side portion of the hands 4 and 5 and is rotatably connected to the distal end side of the third arm portion 18.
  • the wafer mounting portion 20 constitutes the tip side portion of the hands 4 and 5 and is formed in a bifurcated shape.
  • the upper surface of the wafer mounting unit 20 is a mounting surface 20a on which the wafer 2 is mounted. That is, the mounting surfaces 20 a are formed on the hands 4 and 5.
  • An adjustment bolt (not shown) for finely adjusting the inclination of the mounting surface 20a with respect to the horizontal direction is attached to a connection portion between the connection portion 19 and the third arm portion 18.
  • a screw hole into which the adjustment bolt is screwed is formed at a connection portion between the connection portion 19 and the third arm portion 18, and mounting in the horizontal direction is performed depending on the screwing amount of the adjustment bolt into the screw hole.
  • the inclination of the surface 20a is adjusted.
  • the hand 4 and the hand 5 may overlap in the vertical direction, but in most cases, the hand 4 and the hand 5 do not overlap in the vertical direction.
  • the rotation angle of the hand 5 with respect to the hand 4 is, for example, 120 ° to 150 °.
  • the main body portion 7 includes a housing 21 and a columnar member 22 (see FIG. 2) to which the proximal end side of the first arm portion 16 is rotatably connected.
  • the housing 21 is formed in a substantially rectangular parallelepiped shape elongated in the vertical direction, and the shape of the housing 21 when viewed from the vertical direction is a substantially rectangular shape or a substantially square shape. Further, the front surface and the rear surface of the housing 21 are substantially parallel to a plane composed of the up-down direction and the left-right direction, and the left and right side surfaces of the housing 21 are planar surfaces composed of the up-down direction and the front-back direction. It is almost parallel.
  • the bottom surface of the housing 21 is formed in a planar shape that is substantially orthogonal to the vertical direction.
  • the columnar member 22 is formed in a vertically long and narrow columnar shape.
  • the base end side of the first arm portion 16 is rotatably connected to the upper end of the columnar member 22.
  • An arm elevating mechanism (not shown) for elevating the columnar member 22 is accommodated in the housing 21. That is, an arm elevating mechanism for elevating and lowering the first arm portion 16 relative to the main body portion 7 (that is, elevating and lowering the arm 6) is housed in the housing 21.
  • the arm elevating mechanism includes, for example, a ball screw arranged with the vertical direction as an axial direction, a nut member that engages with the ball screw, a motor that rotates the ball screw, and the like. As shown in FIG. 1, the arm elevating mechanism has an arm between a position where the columnar member 22 is accommodated in the housing 21 and a position where the columnar member 22 protrudes upward from the housing 21 as shown in FIG. 6 and the columnar member 22 are moved up and down.
  • the columnar member 22 is disposed on the front end side of the housing 21.
  • the columnar member 22 is disposed at the center position of the housing 21 in the left-right direction.
  • a protruding portion 21 a that protrudes upward is formed.
  • the protruding portion 21 a is formed so as to surround the left and right sides and the rear side of the columnar member 22.
  • the upper surface of the protruding portion 21a is formed in a planar shape orthogonal to the vertical direction.
  • bolt attachment portions 21 b to which adjustment bolts (not shown) for finely adjusting the inclination of the entire robot 1 with respect to the horizontal direction are formed at the four corners at the lower end of the housing 21.
  • a screw hole into which the adjustment bolt is screwed is formed in the bolt mounting portion 21b so as to penetrate in the vertical direction. The inclination of the robot 1 with respect to the horizontal direction depends on the screwing amount of the adjustment bolt into the screw hole. Adjusted.
  • a level 23 is attached to the upper surface side of the protruding portion 21a. That is, a level 23 is attached to the main body 7.
  • the level 23 in this embodiment is a bubble tube level having a bubble tube.
  • the level 23 is a so-called eyeball level (eyeball level, omnidirectional level) in which the shape of the bubble tube is circular when viewed from above and below, and viewed from above and below.
  • a circular reference line is marked at the center of the bubble tube.
  • the level 23 is a uniaxial bubble tube level that can confirm the inclination in one horizontal direction (for example, the left-right direction), and the inclination in a direction (for example, the front-rear direction) orthogonal to the one horizontal direction. It may be a bubble tube level other than the eye level, such as a two-axis level in combination with a single-axis type bubble level that can be confirmed.
  • the robot 1 rotates the first arm unit 16 and the second arm unit 17 to extend and contract a part of the arm 6 composed of the first arm unit 16 and the second arm unit 17;
  • a third arm drive mechanism that rotationally drives the third arm portion 18, a first hand drive mechanism that rotationally drives the hand 4, and a second hand drive mechanism that rotationally drives the hand 5 are provided.
  • the arm unit driving mechanism includes a motor 125 as a driving source, a speed reducer 126 for decelerating and transmitting the power of the motor 125 to the first arm unit 16, and the power of the motor 25. And a speed reducer 127 for transmitting the speed to the second arm portion 17.
  • the motor 125 is disposed inside the housing 21.
  • the reduction gear 126 constitutes a joint portion that connects the main body portion 7 and the first arm portion 16.
  • the speed reducer 127 constitutes a joint portion that connects the first arm portion 16 and the second arm portion 17.
  • the reduction gears 126 and 127 are, for example, harmonic drive (registered trademark) which is a wave gear device.
  • the motor 125 and the speed reducer 126 are connected via a pulley and a belt (not shown), and the motor 125 and the speed reducer 127 are illustrated. It is connected via an omitted pulley and belt.
  • the third arm unit driving mechanism includes a motor 128 serving as a driving source and a speed reducer 129 for decelerating the power of the motor 128 and transmitting it to the third arm unit 18.
  • the motor 28 is disposed inside the distal end side of the second arm portion 17.
  • the speed reducer 129 constitutes a joint portion that connects the second arm portion 17 and the third arm portion 18.
  • the reducer 129 is, for example, a harmonic drive (registered trademark).
  • the motor 128 and the speed reducer 129 are connected, for example, via a gear train (not shown).
  • the first hand drive mechanism includes a motor 130 as a drive source and a speed reducer 131 for decelerating the power of the motor 130 and transmitting it to the hand 4.
  • the second hand drive mechanism includes a motor 132 serving as a drive source and a speed reducer 133 for decelerating and transmitting the power of the motor 132 to the hand 5.
  • the motors 130 and 132 and the speed reducers 131 and 133 are disposed inside the third arm unit 18.
  • the reducers 131 and 133 are, for example, harmonic drives (registered trademark).
  • the speed reducer 131 is attached to the output shaft of the motor 130, and the speed reducer 133 is attached to the output shaft of the motor 132.
  • the connecting portion 19 of the hand 4 and the speed reducer 131 are connected via a pulley and a belt (not shown), and the connecting portion 19 and the speed reducer 133 of the hand 5 are connected via a pulley and a belt (not shown). Are connected.
  • the robot 1 In the manufacturing process of the robot 1, when the hands 4, 5, the arm 6, and the main body 7 are connected and the robot 1 is in an operable state, the robot 1 is installed on a predetermined reference surface that ensures flatness. The In this state, the level 23 is not attached to the main body portion 7. Thereafter, the inclination of the rotation center axis of the third arm portion 18 with respect to the second arm portion 17 with respect to the vertical direction (vertical direction) is adjusted. Further, the inclination of the mounting surface 20a of the hands 4, 5 with respect to the horizontal direction is adjusted.
  • the rotation center axis of the third arm portion 18 with respect to the second arm portion 17 is attached to the bolt attachment portion 21b of the casing 21 so as not to be inclined more than a predetermined angle with respect to the vertical direction.
  • the connecting portion 19 and the third portion are arranged so that the mounting surface 20a is not inclined more than a predetermined angle with respect to the horizontal direction.
  • the inclination of the mounting surface 20a with respect to the horizontal direction is adjusted by an adjusting bolt attached to a connection portion with the arm portion 18. Note that the distance between the hand 4 and the hand 5 in the vertical direction is also adjusted.
  • the level 23 is attached to the main body 7. Specifically, the level 23 is fixed to the main body portion 7 so that the bubbles in the bubble tube of the level 23 are within the reference line marked on the bubble tube.
  • the inclination of the rotation center axis of the third arm portion 18 with respect to the second arm portion 17 with respect to the vertical direction and the inclination of the mounting surface 20a of the hands 4 and 5 with respect to the horizontal direction are adjusted.
  • the level 23 is attached to the main body portion 7 so that the bubbles in the bubble tube of the level 23 are within the reference line marked on the bubble tube.
  • the robot 4 is installed so that the bubbles in the bubble tube of the level 23 are within the reference line.
  • the third arm portion 18 that is rotatably connected to the second arm portion 17 has an appropriate inclination with respect to the vertical direction of the rotation center axis, and the inclination of the mounting surface 20a with respect to the horizontal direction is an appropriate inclination.
  • the robot 1 can be installed. Therefore, in this embodiment, it is possible to install the robot 1 on the housing 14 so that the hands 4 and 5 can move with high precision in the horizontal direction easily in a relatively short time.
  • the position of the bubbles in the bubble tube of the level 23 tends to fluctuate according to the expansion / contraction state of the arm 6. Even if the robot 1 is installed on the housing 14 so that the bubbles are within the reference line, depending on the extension / contraction state of the arm 6 at the time of installation, the robot 1 can be moved so that the hands 4 and 5 can move in the horizontal direction with high accuracy. There is a possibility that it cannot be installed on the housing 14. On the other hand, in this embodiment, since the level 23 is attached to the main body 7, even if the expansion / contraction state of the arm 6 is changed, the position of the bubbles in the bubble tube of the level 23 is not easily changed. .
  • the robot 1 is installed on the housing 14 so that the bubbles of the level 23 are within the reference line, so that the hands 4, 5 can be moved horizontally regardless of the extension / contraction state of the arm 6 at the time of installation. It is possible to install the robot 1 on the housing 14 so as to operate with high accuracy.
  • a level 23 is attached to the main body portion 7 so that the bubbles in the bubble tube 23 fall within the reference line marked on the bubble tube.
  • the inclination of the rotation center axis of the third arm portion 18 with respect to the second arm portion 17 with respect to the vertical direction is adjusted, and the inclination of the mounting surface 20a with respect to the horizontal direction is adjusted.
  • the level 23 may be attached to the main body unit 7 so that the bubbles in the bubble tube of the level 23 are within the reference line marked on the bubble tube in the absence of the level. If the inclination of the rotation center axis of the third arm part 18 with respect to the second arm part 17 with respect to the vertical direction is adjusted, the inclination of the hands 4 and 5 with respect to the horizontal direction can be suppressed. Even if the robot 1 is installed on the housing 14 so that the bubbles in the bubble tube of the level 23 are within the reference line, the robot 1 can move the hands 4 and 5 accurately in the horizontal direction. Can be installed in the housing 14.
  • the level 23 is attached to the main body 7.
  • the level 23 may be attached to the arm 6 or may be attached to the hand 4 or the hand 5.
  • the level 23 is a bubble tube level, but the level 23 may be a level other than the bubble level, such as a laser level or a digital level.
  • the main body portion 7 is formed in a substantially rectangular parallelepiped shape that is elongated in the vertical direction.
  • the main body portion 7 may be formed in a substantially cylindrical shape, and the shape when viewed from the vertical direction is approximately. You may form in the polygonal column shape used as a hexagon shape or a substantially octagon shape.
  • the two hands 4 and 5 are attached to the distal end side of the third arm portion 18, but one hand may be attached to the distal end side of the third arm portion 18.
  • the arm 6 is constituted by the three arm portions of the first arm portion 16, the second arm portion 17, and the third arm portion 18.
  • the arm 6 has two arm portions. It may be comprised by 4 or more arm parts.
  • the semiconductor wafer processing apparatus 11 is disposed behind the EFEM 10.
  • the semiconductor wafer processing apparatus 11 may be disposed on the right side, the left side, or the left and right sides of the EFEM 10.
  • the semiconductor wafer processing apparatus 11 may be disposed on the right side of the EFEM 10 as indicated by a two-dot chain line in FIG.
  • the robot 1 is a robot for transporting the wafer 2, but the robot 1 may be a robot for transporting other transport objects such as a glass substrate for liquid crystal.
  • FIG. 5 is a perspective view of the horizontal articulated robot 1 according to the second embodiment of the present invention.
  • FIG. 6 is a perspective view of the horizontal articulated robot 1 shown in FIG. 5 in a state where the arm 6 is raised and extended.
  • FIG. 7 is a schematic plan view of a semiconductor manufacturing system 9 in which the horizontal articulated robot 1 shown in FIG. 5 is used.
  • FIG. 8 is a side view of the horizontal articulated robot 1 shown in FIG.
  • symbol is attached
  • the horizontal articulated robot 1 is a robot for transporting a semiconductor wafer 2 (see FIG. 7) which is a transport object.
  • the horizontal articulated robot 1 includes two hands 4 and 5 on which a semiconductor wafer 2 is mounted, arms 4 and 5 that are rotatably connected to the distal end side, and move in a horizontal direction. 6 is provided with a main body 7 to which the base end side of 6 is rotatably connected.
  • the horizontal articulated robot 1 is referred to as “robot 1”
  • the semiconductor wafer 2 is referred to as “wafer 2”.
  • the Y direction orthogonal to the up and down direction and the left and right direction is referred to as “front and back direction”
  • the X1 direction side is ”Side
  • the X2 direction side is the“ left ”side
  • the Y1 direction side is the“ front ”side
  • the Y2 direction side is the“ rear (back) ”side.
  • the robot 1 is incorporated into a semiconductor manufacturing system 9 and used.
  • the semiconductor manufacturing system 9 includes an EFEM 10 and a semiconductor wafer processing apparatus 11 that performs predetermined processing on the wafer 2.
  • the EFEM 10 is disposed on the front side of the semiconductor wafer processing apparatus 11.
  • the robot 1 constitutes a part of the EFEM 10.
  • the EFEM 10 includes a plurality of load ports 13 that open and close the FOUP 12 and a housing 14 in which the robot 1 is accommodated.
  • the housing 14 is formed in a rectangular parallelepiped box shape elongated in the left-right direction.
  • the inside of the housing 14 is a clean space. That is, the inside of the EFEM 10 is a clean space, and a predetermined cleanliness is secured inside the EFEM 10.
  • the FOUP 12 is manufactured based on the SEMI standard, and the FOUP 12 can accommodate 25 or 13 wafers 2.
  • the load port 13 is disposed on the front side of the housing 14.
  • the EFEM 10 of this embodiment includes four load ports 13 arranged at a predetermined pitch in the left-right direction. In the EFEM 10, four FOUPs 12 are arranged at a predetermined pitch in the left-right direction.
  • the robot 1 transports the wafer 2 between the four FOUPs 12 and the semiconductor wafer processing apparatus 11.
  • the arm 6 has a first arm part 16 whose base end side is rotatably connected to the main body part 7 and a second arm part whose base end side is rotatably connected to the distal end side of the first arm part 16. 17 and a third arm portion 18 whose base end side is rotatably connected to the distal end side of the second arm portion 17. That is, the arm 6 includes three arm portions that are connected to each other so as to be relatively rotatable.
  • the first arm part 16, the second arm part 17, and the third arm part 18 are formed in a hollow shape. In this embodiment, the length of the first arm portion 16, the length of the second arm portion 17, and the length of the third arm portion 18 are equal.
  • the main body part 7, the first arm part 16, the second arm part 17, and the third arm part 18 are arranged in this order from the lower side in the vertical direction.
  • the 2nd arm part 17 of this form is a support arm part, and the 3rd arm part 18 is a supported arm part.
  • the hands 4 and 5 are formed so as to have a substantially Y shape when viewed from above and below, and a connecting portion 19 connected to the third arm portion 18 and a mounting portion 20 on which the wafer 2 is mounted. It consists of and.
  • the hands 4 and 5 are arranged so that the connecting portion 19 of the hand 4 and the connecting portion 19 of the hand 5 overlap in the vertical direction. Specifically, the hand 4 is disposed on the upper side and the hand 5 is disposed on the lower side. Further, the hands 4 and 5 are disposed above the third arm portion 18.
  • the hand 5 of this embodiment is a first hand, and the hand 4 is a second hand.
  • the connecting portion 19 constitutes a base end side portion of the hands 4 and 5 and is rotatably connected to the distal end side of the third arm portion 18.
  • the mounting portion 20 constitutes the tip side portion of the hands 4 and 5 and is formed in a bifurcated shape. Moreover, the mounting part 20 is formed in flat form. As shown in FIG. 8, in the hand 4, the mounting portion 20 is formed to extend in the horizontal direction from the lower end side of the connecting portion 19, and in the hand 5, the mounting portion 20 is in the horizontal direction from the upper end side of the connecting portion 19. It is formed to extend.
  • the upper surface of the mounting unit 20 is a mounting surface on which the wafer 2 is mounted.
  • the hand 4 and the hand 5 may overlap in the vertical direction, but in most cases, the hand 4 and the hand 5 do not overlap in the vertical direction.
  • the rotation angle of the hand 5 with respect to the hand 4 is, for example, 120 ° to 150 °.
  • the third arm portion 18 is formed with a protruding portion 18a protruding upward.
  • the protruding portion 18 a has a longitudinal length of the third arm portion 18 so as not to contact the connecting portion 19 of the hand 5 when the third arm portion 18 and the hand 5 overlap each other in the vertical direction. It is formed at a position shifted from the connecting portion 19 of the hand 5 in the direction (front-rear direction in the state shown in FIG. 8). Further, the protruding portion 18 a protrudes upward to a height that does not contact the mounting portion 20 of the hand 5.
  • the main body portion 7 includes a housing 21 and a columnar member 22 (see FIG. 6) to which the proximal end side of the first arm portion 16 is rotatably connected.
  • the housing 21 is formed in a substantially rectangular parallelepiped shape elongated in the vertical direction, and the shape of the housing 21 when viewed from the vertical direction is a substantially rectangular shape or a substantially square shape.
  • the front surface and the rear surface of the housing 21 are substantially parallel to a plane composed of the up-down direction and the left-right direction. It is almost parallel.
  • the columnar member 22 is formed in a vertically long and narrow columnar shape.
  • the base end side of the first arm portion 16 is rotatably connected to the upper end of the columnar member 22.
  • An arm elevating mechanism (not shown) for elevating the columnar member 22 is accommodated in the housing 21. That is, an arm elevating mechanism for elevating and lowering the first arm portion 16 relative to the main body portion 7 (that is, elevating and lowering the arm 6) is housed in the housing 21.
  • the arm elevating mechanism includes, for example, a ball screw arranged with the vertical direction as an axial direction, a nut member that engages with the ball screw, a motor that rotates the ball screw, and the like. As shown in FIG.
  • the arm elevating mechanism has an arm between a position where the columnar member 22 is accommodated in the housing 21 and a position where the columnar member 22 protrudes upward from the housing 21 as shown in FIG. 6 and the columnar member 22 are moved up and down.
  • the columnar member 22 is disposed on the front end side of the housing 21.
  • the columnar member 22 is disposed at the center position of the housing 21 in the left-right direction.
  • the robot 1 rotates the first arm portion 16 and the second arm portion 17 to expand and contract a part of the arm 6 including the first arm portion 16 and the second arm portion 17;
  • a third arm rotation mechanism 26 as a rotation mechanism for rotating the third arm 18 with respect to the second arm 17, and a first hand for rotating the hand 5 with respect to the third arm 18.
  • a rotation mechanism 27 and a second hand rotation mechanism 28 that rotates the hand 4 with respect to the third arm portion 18 are provided.
  • the arm unit drive mechanism 25 includes a motor 30 serving as a drive source, a speed reducer 31 for decelerating and transmitting the power of the motor 30 to the first arm unit 16, and the power of the motor 30.
  • the motor 30 is disposed inside the housing 21.
  • the speed reducer 31 constitutes a joint portion that connects the main body portion 7 and the first arm portion 16.
  • the speed reducer 32 constitutes a joint portion that connects the first arm portion 16 and the second arm portion 17.
  • the reduction gears 31 and 32 are harmonic drives (registered trademark) which are wave gear devices.
  • the motor 30 and the speed reducer 31 are connected via a pulley and a belt (not shown) as in the horizontal articulated robot described in, for example, Japanese Patent Application Laid-Open No. 2011-230256. Further, the motor 30 and the speed reducer 32 are connected via a pulley and a belt (not shown) as in the horizontal articulated robot described in Japanese Patent Application Laid-Open No. 2011-230256, for example.
  • the third arm portion rotation mechanism 26 includes a motor 33 serving as a drive source, and a speed reducer 34 for decelerating and transmitting the power of the motor 33 to the third arm portion 18. Yes.
  • a specific configuration of the third arm portion rotation mechanism 26 will be described later.
  • the first hand rotating mechanism 27 includes a motor 35 serving as a drive source and a speed reducer 36 for decelerating the power of the motor 35 and transmitting it to the hand 5.
  • the second hand rotation mechanism 28 includes a motor 37 as a drive source and a speed reducer 38 for decelerating the power of the motor 37 and transmitting it to the hand 4. Yes.
  • the motor 35 of this embodiment is a first hand motor
  • the motor 37 is a second hand motor.
  • the motors 35 and 37 and the speed reducers 36 and 38 are disposed inside the third arm portion 18.
  • the motors 35 and 37 are arranged so that their output shafts face downward and a part of the opposite output shaft side is arranged in the protruding portion 18 a of the third arm portion 18.
  • the reduction gears 36 and 38 are harmonic drives (registered trademark).
  • the reduction gear 36 is attached to the output shaft of the motor 35 protruding downward
  • the reduction gear 38 is attached to the output shaft of the motor 37 protruding downward.
  • the connecting portion 19 of the hand 5 and the speed reducer 36 are connected via a pulley and a belt (not shown)
  • the four connecting portions 19 and the speed reducer 38 are connected via a pulley and a belt (not shown).
  • FIG. 9 is a cross-sectional view for explaining the configuration of the third arm rotation mechanism 26 shown in FIG.
  • the third arm portion rotation mechanism 26 includes the motor 33 and the speed reducer 34 as described above.
  • the motor 33 is disposed inside the second arm portion 17.
  • the motor 33 is fixed inside the second arm portion 17 so that the axial direction of the output shaft is horizontal.
  • the motor 33 is fixed inside the second arm portion 17 so that the output shaft protrudes toward the distal end side of the second arm portion 17.
  • the one end side of the rotating shaft 42 is connected to the output shaft of the motor 33 through the coupling 41.
  • the rotating shaft 42 is disposed inside the second arm portion 17 so that the axial direction thereof coincides with the horizontal direction.
  • a bevel gear 43 as a first bevel gear is fixed to the other end side of the rotating shaft 42. That is, the bevel gear 43 is connected to the output shaft of the motor 33 via the coupling 41 and the rotating shaft 42. Further, the other end side of the rotating shaft 42 is rotatably held by a bearing 44 fixed inside the second arm portion 17.
  • the reduction gear 34 constitutes a joint part that connects the second arm part 17 and the third arm part 18. That is, the speed reducer 34 constitutes a joint portion that is a connection portion between the second arm portion 17 and the third arm portion 18.
  • the speed reducer 34 is arranged so that its axial direction coincides with the vertical direction.
  • the speed reducer 34 is a harmonic drive (registered trademark), and includes a wave generator 45, a circular spline 46, and a flex spline 47 as shown in FIG.
  • the flex spline 47 is fixed to the base end side of the third arm portion 18 via the frame 48.
  • the circular spline 46 is fixed to the distal end side of the second arm portion 17 via the frame 49.
  • a bevel gear 50 as a second bevel gear is fixed to the lower end of the wave generator 45. That is, the bevel gear 50 is connected to the lower end of the wave generator 45.
  • the bevel gear 50 meshes with the bevel gear 43.
  • a magnetic fluid seal 51 for preventing dust generated in the speed reducer 34 from flowing out of the second arm portion 17 and the third arm portion 18 is disposed on the outer peripheral side of the speed reducer 34. Further, a hollow shaft 52 disposed so as to pass through the center of the speed reducer 34 is fixed to the proximal end side of the third arm portion 18. The wave generator 45 is rotatably arranged on the outer peripheral side of the hollow shaft 52. A predetermined wiring is routed using the inner peripheral side of the hollow shaft 52.
  • the power of the motor 33 is decelerated and transmitted to the third arm unit 18 by the speed reducer 34 that is a harmonic drive (registered trademark). Therefore, in this embodiment, it is possible to increase the reduction ratio in the power transmission path from the motor 33 to the third arm unit 18. Therefore, in this embodiment, even if the motor 33 having a small output is used, the third arm portion 18 can be rotated with respect to the second arm portion 17, and as a result, the motor 33 can be downsized. Is possible.
  • the power of the motor 33 is decelerated and transmitted to the third arm unit 18 by the reduction gear 34 that is a harmonic drive (registered trademark), the power from the motor 33 to the third arm unit 18 is reduced. It is possible to reduce backlash in the transmission path.
  • the third arm portion 18 is formed with a protruding portion 18a protruding upward.
  • the protruding portion 18a is formed at a position shifted from the connecting portion 19 of the hand 5 in the longitudinal direction of the third arm portion 18 in a state where the third arm portion 18 and the hand 5 overlap in the vertical direction. It protrudes upward to a height at which it does not contact the mounting portion 20 of the hand 5.
  • the motors 35 and 37 are disposed inside the third arm portion 18 so that the output shaft faces downward, and a part of the motors 35 and 37 on the side opposite to the output shaft is It arrange
  • the motor 33 is disposed inside the second arm portion 17, but the motor 33 may be disposed inside the third arm portion 18.
  • the circular spline 46 is fixed to the proximal end side of the third arm portion 18 via the frame 49
  • the flex spline 47 is fixed to the proximal end side of the third arm portion 18 via the frame 48.
  • the power of the motor 33 is decelerated by the speed reducer 34 and transmitted to the second arm unit 17.
  • the arm 6 is configured by the three arm portions of the first arm portion 16, the second arm portion 17, and the third arm portion 18, but the arm 6 is configured by the two arm portions. It may be configured by four or more arm portions.
  • the two hands 4 and 5 are attached to the distal end side of the third arm portion 18, but one hand may be attached to the distal end side of the third arm portion 18.
  • the semiconductor wafer processing apparatus 11 is disposed behind the EFEM 10.
  • the semiconductor wafer processing apparatus 11 may be disposed on the right side, the left side, or the left and right sides of the EFEM 10.
  • the semiconductor wafer processing apparatus 11 may be disposed on the right side of the EFEM 10 as indicated by a two-dot chain line in FIG.
  • the robot 1 is a robot for transporting the wafer 2, but the robot 1 may be a robot for transporting other transport objects such as a glass substrate for liquid crystal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manipulator (AREA)

Abstract

Provided is a horizontal multi-joint robot that has an arm that moves in the horizontal direction and that can be installed so that a hand moves accurately in the horizontal direction with ease in a relatively short amount of time. The horizontal multi-joint robot (1) that has an arm (6) that moves in the horizontal direction is provided with: hands (4, 5) on which an object to be conveyed is mounted; the arm (6), which comprises at least two arm sections, namely, a hand-side arm section (18) having the hands (4, 5) rotatably connected to the tip side thereof and a second hand-side arm section (17) having the base end of the hand-side arm section (18) rotatably connected to the tip side thereof; a main body section (7) having the base end side of the arm (6) rotatably connected thereto; and a level (23) that is attached to the main body section (7). The level (23) is attached to the main body section (7) after the inclination thereof is adjusted with respect to at least the vertical direction of the central axis of rotation of the hand-side arm section (18) with respect to the second hand-side arm section (17).

Description

水平多関節ロボットおよび水平多関節ロボットの製造方法Horizontal articulated robot and method of manufacturing horizontal articulated robot
 本発明は、水平方向にアームが動作する水平多関節ロボット、および、水平多関節ロボットの製造方法に関する。 The present invention relates to a horizontal articulated robot in which an arm moves in a horizontal direction and a method for manufacturing the horizontal articulated robot.
 従来、EFEM(Equipment Front End Module)の一部を構成するとともにFOUP(Front Open Unified Pod)と半導体ウエハ処理装置との間で半導体ウエハを搬送する水平多関節ロボットが知られている(たとえば、特許文献1参照)。特許文献1に記載の水平多関節ロボットは、半導体ウエハが搭載される2個のハンドと、2個のハンドが先端側に回動可能に連結されるアームと、アームの基端側が回動可能に連結される本体部とを備えている。アームは、本体部にその基端側が回動可能に連結される第1アームと、第1アームの先端側にその基端側が回動可能に連結される第2アームと、第2アームの先端側にその基端側が回動可能に連結されるとともにその先端側にハンドが回動可能に連結される第3アームとから構成されている。本体部の内部には、第1アームを昇降させるアーム昇降機構が収容されている。 Conventionally, a horizontal articulated robot that forms part of EFEM (Equipment Front End Module) and transports a semiconductor wafer between a FOUP (Front Open Unified Pod) and a semiconductor wafer processing apparatus is known (for example, a patent) Reference 1). The horizontal articulated robot described in Patent Document 1 includes two hands on which semiconductor wafers are mounted, an arm that is coupled to the two hands so as to be pivotable to the tip side, and a base end side of the arm that is pivotable. And a main body connected to the main body. The arm includes a first arm whose base end side is rotatably connected to the main body, a second arm whose base end side is rotatably connected to the tip end side of the first arm, and a tip end of the second arm. The base end side is rotatably connected to the side, and the hand is rotatably connected to the distal end side. An arm elevating mechanism that elevates and lowers the first arm is housed inside the main body.
 また、従来、垂直多関節ロボットとして、ベースと、ベースに固定される胴体と、胴体に回動可能に連結される第1アームと、第1アームに回動可能に連結される第2アームと、第2アームに回動可能に連結される手首アームと、手首アームに回動可能に連結される手先アームとを備える垂直多関節ロボットが知られている(たとえば、特許文献2参照)。特許文献2に記載の垂直多関節ロボットでは、第1アームおよび手先アームに原点位置調整用の水準器が取り付けられている。 Conventionally, as a vertical articulated robot, a base, a body fixed to the base, a first arm rotatably connected to the body, and a second arm rotatably connected to the first arm A vertical articulated robot is known that includes a wrist arm that is rotatably connected to a second arm and a hand arm that is rotatably connected to the wrist arm (see, for example, Patent Document 2). In the vertical articulated robot described in Patent Document 2, a spirit level for adjusting the origin position is attached to the first arm and the hand arm.
 次に、従来、半導体ウエハを搬送する水平多関節ロボットが知られている(たとえば、特許文献1参照)。特許文献3に記載の水平多関節ロボットは、半導体ウエハが搭載されるハンドと、ハンドが先端側に回動可能に連結されるアームと、アームの基端側が回動可能に連結される基台とを備えている。アームは、基台にその基端側が回動可能に連結される第1アーム部と、第1アーム部の先端側にその基端側が回動可能に連結されるとともにその先端側にハンドが回動可能に連結される第2アーム部とから構成されている。 Next, conventionally, a horizontal articulated robot for transferring a semiconductor wafer is known (for example, see Patent Document 1). A horizontal articulated robot described in Patent Document 3 includes a hand on which a semiconductor wafer is mounted, an arm that is pivotally connected to the distal end side, and a base that is pivotally connected to a base end side of the arm. And. The arm has a first arm portion whose base end side is rotatably connected to the base, a base end side rotatably connected to the front end side of the first arm portion, and a hand is turned to the front end side. It is comprised from the 2nd arm part connected so that a movement is possible.
 また、特許文献3に記載の水平多関節ロボットは、第1アーム部に対して第2アーム部を回動させる旋回駆動手段を備えている。この旋回駆動手段は、出力軸の軸方向が水平方向となるように第1アーム部の内部に配置されるモータと、モータの出力軸に連結される第1のかさ歯車と、第1のかさ歯車と噛み合う第2のかさ歯車と、第2アーム部の基端側に固定された円筒状の突出部の下端側に形成される第3歯車と、第3歯車と噛み合うとともに第2のかさ歯車と一体で形成される第2歯車とを備えている。 Further, the horizontal articulated robot described in Patent Document 3 includes a turning drive unit that rotates the second arm unit with respect to the first arm unit. The turning drive means includes a motor disposed inside the first arm portion so that the axial direction of the output shaft is horizontal, a first bevel gear connected to the output shaft of the motor, and a first bevel. A second bevel gear meshing with the gear, a third gear formed on the lower end side of the cylindrical projection fixed to the base end side of the second arm portion, and a second bevel gear meshing with the third gear And a second gear formed integrally.
特開2011-230256号公報JP 2011-230256 A 実開昭63-147704号公報Japanese Utility Model Publication No. 63-147704 特開2008-264980号公報JP 2008-264980 A
 FOUPは、SEMI(Semiconductor Equipment and Materials Institute)規格に基づいて製造されており、FOUPには、複数枚の半導体ウエハが一定のピッチで上下方向に重なるように収容されている。FOUPに収容される複数の半導体ウエハの間には隙間が形成されているが、この隙間は比較的狭くなっている。FOUPと半導体ウエハ処理装置との間で半導体ウエハを搬送する水平多関節ロボットは、FOUPに収容される複数枚の半導体ウエハの間の狭い隙間にハンドを入れてからハンドに半導体ウエハを搭載して取り出さなければならない。そのため、この水平多関節ロボットは、水平方向へハンドが精度良く動作するように精度良く設置されている必要がある。 The FOUP is manufactured based on SEMI (Semiconductor Equipment and Materials Institute) standard, and a plurality of semiconductor wafers are accommodated in the FOUP so as to overlap each other at a constant pitch. A gap is formed between the plurality of semiconductor wafers accommodated in the FOUP, but this gap is relatively narrow. A horizontal articulated robot that transports a semiconductor wafer between a FOUP and a semiconductor wafer processing apparatus places a hand in a narrow gap between a plurality of semiconductor wafers accommodated in the FOUP and then mounts the semiconductor wafer on the hand. Must be taken out. Therefore, this horizontal articulated robot needs to be installed with high precision so that the hand can operate with high precision in the horizontal direction.
 水平多関節ロボットを精度良く設置するために、一般には、水平多関節ロボットの設置時に、アームがある方向へ伸びている状態、アームが他の方向へ伸びている状態およびアームが縮んでいる状態等の様々な状態に水平多関節ロボットの状態を変えながら、水準器を用いて各状態でのハンドの傾き等を調べ、水平方向へハンドが最適な動作を行うことができるように、水平多関節ロボットを設置している。そのため、半導体ウエハを搬送する水平多関節ロボットの設置には時間がかかる。また、この水平多関節ロボットが設置されるEFEMの筺体の内部はそれほど広くないため、水平多関節ロボットの設置作業も困難である。 In order to install a horizontal articulated robot with high accuracy, in general, when installing a horizontal articulated robot, the arm is extended in one direction, the arm is extended in the other direction, and the arm is contracted While changing the state of the horizontal articulated robot to various states, etc., use a level to check the tilt of the hand in each state, so that the hand can perform optimal movement in the horizontal direction. A joint robot is installed. Therefore, it takes time to install the horizontal articulated robot that transports the semiconductor wafer. Further, since the inside of the EFEM housing where the horizontal articulated robot is installed is not so wide, it is difficult to install the horizontal articulated robot.
 そこで、本発明の第一の課題は、水平方向にアームが動作する水平多関節ロボットにおいて、比較的短時間で容易に、かつ、水平方向へハンドが精度良く動作するように設置することが可能な水平多関節ロボットを提供することにある。また、本発明の課題は、水平方向にアームが動作する水平多関節ロボットの製造方法において、比較的短時間で容易に、かつ、水平方向へハンドが精度良く動作するように設置することが可能となる水平多関節ロボットの製造方法を提供することにある。 Accordingly, a first problem of the present invention is that a horizontal articulated robot in which the arm moves in the horizontal direction can be installed so that the hand can move with high precision in the horizontal direction easily in a relatively short time. Is to provide a horizontal articulated robot. Another object of the present invention is to provide a horizontal articulated robot manufacturing method in which the arm moves in the horizontal direction, and can be installed so that the hand can move in the horizontal direction with high accuracy in a relatively short time. It is to provide a method for manufacturing a horizontal articulated robot.
 次に、特許文献3に記載の水平多関節ロボットでは、出力軸の軸方向が水平方向となるように第1アーム部の内部にモータが配置されているため、第1アーム部の内部にモータが配置されていても、第1アーム部を薄型化することが可能になる。しかしながら、この水平多関節ロボットでは、旋回駆動手段を構成するモータの動力が第1のかさ歯車、第2のかさ歯車、第2歯車および第3歯車を介して、第2アーム部に伝達されているため、モータから第2アーム部への動力の伝達経路において、減速比を大きくすることは困難である。したがって、この水平多関節ロボットでは、旋回駆動手段を構成するモータとして、出力の大きなモータを使用しなければならず、モータが大型化する。また、この水平多関節ロボットでは、モータの動力が第1のかさ歯車、第2のかさ歯車、第2歯車および第3歯車を介して、第2アーム部に伝達されているため、モータから第2アーム部への動力の伝達経路におけるバックラッシュが大きくなる。 Next, in the horizontal articulated robot described in Patent Document 3, since the motor is arranged inside the first arm unit so that the axial direction of the output shaft is horizontal, the motor is arranged inside the first arm unit. Even if is arranged, the first arm portion can be made thin. However, in this horizontal articulated robot, the power of the motor constituting the turning drive means is transmitted to the second arm unit via the first bevel gear, the second bevel gear, the second gear, and the third gear. Therefore, it is difficult to increase the reduction ratio in the power transmission path from the motor to the second arm portion. Therefore, in this horizontal articulated robot, a motor with a large output must be used as the motor constituting the turning drive means, and the motor becomes large. Further, in this horizontal articulated robot, the power of the motor is transmitted to the second arm portion via the first bevel gear, the second bevel gear, the second gear, and the third gear. The backlash in the power transmission path to the two arm portions is increased.
 そこで、本発明の第二の課題は、アームの一部を構成するアーム部の内部に出力軸の軸方向が水平方向となるように配置されるモータを有する水平多関節ロボットにおいて、モータを小型化すること、および、バックラッシュを低減することが可能な水平多関節ロボットを提供することにある。 Accordingly, a second problem of the present invention is that a small-sized motor is provided in a horizontal articulated robot having a motor arranged so that the axial direction of the output shaft is in the horizontal direction inside the arm portion constituting a part of the arm. And providing a horizontal articulated robot capable of reducing backlash.
 上記の第一の課題を解決するため、本発明の水平多関節ロボットは、水平方向にアームが動作する水平多関節ロボットにおいて、搬送対象物が搭載されるハンドと、ハンドがその先端側に回動可能に連結されるハンド側アーム部とハンド側アーム部の基端側がその先端側に回動可能に連結される第2ハンド側アーム部との少なくとも2個のアーム部を有するアームと、アームの基端側が回動可能に連結される本体部とを備えるとともに、少なくとも第2ハンド側アーム部に対するハンド側アーム部の回動中心軸の鉛直方向に対する傾きが調整された後に、ハンド、アームまたは本体部に取り付けられた水準器を備えることを特徴とする。 In order to solve the first problem described above, the horizontal articulated robot of the present invention is a horizontal articulated robot in which an arm operates in a horizontal direction. An arm having at least two arm portions, a hand side arm portion that is movably connected and a second hand side arm portion that is pivotally connected to a distal end side of the hand side arm portion; The base end side of the hand-side arm portion is adjusted at least with respect to the vertical direction of the rotation center axis of the hand-side arm portion with respect to the second hand-side arm portion. It is characterized by having a level attached to the main body.
 また、上記の第一の課題を解決するため、本発明の水平多関節ロボットの製造方法は、搬送対象物が搭載されるハンドと、ハンドがその先端側に回動可能に連結されるハンド側アーム部とハンド側アーム部の基端側がその先端側に回動可能に連結される第2ハンド側アーム部との少なくとも2個のアーム部を有するアームと、アームの基端側が回動可能に連結される本体部と、ハンド、アームまたは本体部に取り付けられる水準器とを備え、水平方向にアームが動作する水平多関節ロボットの製造方法であって、少なくとも第2ハンド側アーム部に対するハンド側アーム部の回動中心軸の鉛直方向に対する傾きを調整した後に、水準器を取り付けることを特徴とする。 Moreover, in order to solve said 1st subject, the manufacturing method of the horizontal articulated robot of this invention is the hand side by which the conveyance object is mounted, and the hand side rotatably connected to the front end side. An arm having at least two arm portions, a second hand side arm portion connected to the distal end side of the arm portion and the base end side of the hand side arm portion, and a base end side of the arm is rotatable A method of manufacturing a horizontal articulated robot comprising a main body unit to be connected and a hand, an arm or a level attached to the main body unit, wherein the arm moves in the horizontal direction, and at least the hand side with respect to the second hand side arm unit A level is attached after adjusting the inclination of the rotation center axis of the arm portion with respect to the vertical direction.
 本発明の水平多関節ロボットは、搬送対象物が搭載されるハンドと、ハンドが回動可能に連結されるハンド側アーム部と、ハンド側アーム部が回動可能に連結される第2ハンド側アーム部とを備えるとともに、少なくとも第2ハンド側アーム部に対するハンド側アーム部の回動中心軸の鉛直方向に対する傾きが調整された後に、ハンド、アームまたは本体部に取り付けられた水準器を備えている。また、本発明の水平多関節ロボットの製造方法では、少なくとも第2ハンド側アーム部に対するハンド側アーム部の回動中心軸の鉛直方向に対する傾きを調整した後に、ハンド、アームまたは本体部に水準器を取り付けている。 The horizontal articulated robot of the present invention includes a hand on which an object to be transported is mounted, a hand side arm part to which the hand is rotatably connected, and a second hand side to which the hand side arm part is rotatably connected. And at least a level attached to the hand, arm or main body after the inclination of the rotation center axis of the hand side arm with respect to the second hand side arm is adjusted relative to the vertical direction. Yes. In the method for manufacturing a horizontal articulated robot according to the present invention, at least after adjusting the inclination of the rotation central axis of the hand side arm portion with respect to the second hand side arm portion with respect to the vertical direction, Is attached.
 そのため、本発明では、水平多関節ロボットを設置する際に、水平多関節ロボットに取り付けられた水準器が所定の状態を示すように水平多関節ロボットを設置することで、ハンドが回動可能に連結されるハンド側アーム部の、第2ハンド側アーム部に対する回動中心軸の鉛直方向に対する傾きが適切な傾きとなって、水平方向に対するハンドの傾きが適切な傾きとなるように、水平多関節ロボットを設置することが可能になる。したがって、本発明では、上述した従来の水平多関節ロボットの設置方法と比較して、比較的短時間で容易に、かつ、水平方向へハンドが精度良く動作するように水平多関節ロボットを設置することが可能になる。 Therefore, in the present invention, when the horizontal articulated robot is installed, the hand can be rotated by installing the horizontal articulated robot so that the level attached to the horizontal articulated robot shows a predetermined state. In order for the hand-side arm portion to be connected to the second hand-side arm portion to have an appropriate inclination with respect to the vertical direction of the rotation center axis, the horizontal inclination of the hand relative to the horizontal direction becomes an appropriate inclination. It becomes possible to install a joint robot. Therefore, in the present invention, the horizontal articulated robot is installed so that the hand can be operated in the horizontal direction with high accuracy in a relatively short time as compared with the conventional horizontal articulated robot installation method described above. It becomes possible.
 本発明において、ハンドには、搬送対象物が搭載される搭載面が形成され、水準器は、水平方向に対する搭載面の傾きが調整された後に取り付けられていることが好ましい。このように構成すると、水平多関節ロボットに取り付けられた水準器が所定の状態を示すように水平多関節ロボットを設置することで、水平方向へハンドがより精度良く動作するように水平多関節ロボットを設置することが可能になる。 In the present invention, it is preferable that the hand has a mounting surface on which the object to be transported is mounted, and the level is attached after the inclination of the mounting surface with respect to the horizontal direction is adjusted. With this configuration, the horizontal articulated robot is set so that the hand moves more accurately in the horizontal direction by installing the horizontal articulated robot so that the level attached to the horizontal articulated robot shows a predetermined state. Can be installed.
 本発明において、たとえば、水準器は、気泡管を有する気泡管水準器であり、少なくとも第2ハンド側アーム部に対するハンド側アーム部の回動中心軸の鉛直方向に対する傾きが調整された後に、気泡管内の気泡が気泡管に印された基準線の中に収まるように取り付けられている。この場合には、水平多関節ロボットを設置する際に、水準器の気泡管の中の気泡が基準線の中に収まるように水平多関節ロボットを設置することで、第2ハンド側アーム部に対するハンド側アーム部の回動中心軸の鉛直方向に対する傾きが適切な傾きとなって、水平方向に対するハンドの傾きが適切な傾きとなるように、水平多関節ロボットを設置することが可能になる。 In the present invention, for example, the level is a bubble level having a bubble tube, and at least after the inclination of the rotation center axis of the hand side arm portion with respect to the second hand side arm portion with respect to the vertical direction is adjusted, It is attached so that the bubbles in the tube fall within the reference line marked on the bubble tube. In this case, when installing the horizontal articulated robot, the horizontal articulated robot is installed so that the bubbles in the bubble tube of the spirit level are within the reference line. It is possible to install the horizontal articulated robot so that the inclination of the hand-side arm portion with respect to the vertical direction of the rotation center axis becomes an appropriate inclination and the inclination of the hand with respect to the horizontal direction becomes an appropriate inclination.
 本発明において、水準器は、本体部に取り付けられていることが好ましい。アームやハンドに水準器が取り付けられていると、たとえば、水準器が気泡管水準器である場合、アームの伸縮状態に応じて、気泡管の中の気泡の位置が変動しやすくなるため、気泡が基準線の中に収まるように水平多関節ロボットを設置しても、設置時のアームの伸縮状態によっては、水平方向に対するハンドの傾きが適切な傾きとなるように、水平多関節ロボットを設置することができないおそれがある。これに対して、水準器が本体部に取り付けられていると、アームの伸縮状態が変わっても、気泡管の中の気泡の位置が変動しにくくなるため、気泡が基準線の中に収まるように水平多関節ロボットを設置することで、設置時のアームの伸縮状態にかかわらず、水平方向に対するハンドの傾きが適切な傾きとなるように、水平多関節ロボットを設置することが可能になる。 In the present invention, the spirit level is preferably attached to the main body. If a spirit level is attached to the arm or hand, for example, if the spirit level is a bubble tube level, the position of the bubbles in the bubble tube is likely to fluctuate depending on the expansion / contraction state of the arm. Even if the horizontal articulated robot is installed so that the distance is within the reference line, the horizontal articulated robot is installed so that the hand is tilted appropriately with respect to the horizontal direction, depending on the expansion and contraction of the arm during installation. There is a risk that it cannot be done. On the other hand, if the spirit level is attached to the main body, the position of the bubbles in the bubble tube is less likely to fluctuate even if the arm expands and contracts, so that the bubbles fit within the reference line. By installing the horizontal articulated robot in the horizontal direction, it becomes possible to install the horizontal articulated robot so that the inclination of the hand with respect to the horizontal direction becomes an appropriate inclination regardless of the extension / contraction state of the arm at the time of installation.
 次に、上記の第二の課題を解決するため、本発明の水平多関節ロボットは、水平方向にアームが動作する水平多関節ロボットにおいて、搬送対象物が搭載されるハンドと、互いに相対回動可能に連結される支持アーム部および被支持アーム部の少なくとも2個のアーム部を有しハンドが先端側に回動可能に連結されるアームと、アームの基端側が回動可能に連結される本体部と、支持アーム部に対して被支持アーム部を回動させる回動機構とを備え、回動機構は、支持アーム部または被支持アーム部の内部に出力軸の軸方向が水平方向となるように配置されるモータと、支持アーム部と被支持アーム部との連結部分となる関節部を構成するとともにモータの動力を減速して支持アーム部または被支持アーム部に伝達するハーモニックドライブ(登録商標)と、モータの出力軸に連結される第1のかさ歯車と、ハーモニックドライブ(登録商標)のウェーブジェネレータに連結され第1のかさ歯車と噛み合う第2のかさ歯車とを備えることを特徴とする。 Next, in order to solve the above second problem, the horizontal articulated robot of the present invention is a horizontal articulated robot in which an arm moves in a horizontal direction, and a hand on which a conveyance target is mounted and a relative rotation with respect to each other. An arm having at least two arm portions of a support arm portion and a supported arm portion that can be connected to each other, and a hand that is rotatably connected to the distal end side, and a base end side of the arm that are rotatably connected to each other A main body portion and a rotation mechanism that rotates the supported arm portion with respect to the support arm portion, and the rotation mechanism is configured such that the axial direction of the output shaft is horizontal in the support arm portion or the supported arm portion. A harmonic drive that constitutes a motor and a joint that serves as a connecting portion between the support arm and the supported arm and decelerates the power of the motor and transmits it to the support arm or the supported arm. (Registered trademark), a first bevel gear coupled to the output shaft of the motor, and a second bevel gear coupled to the wave generator of the harmonic drive (registered trademark) and meshing with the first bevel gear. Features.
 本発明の水平多関節ロボットでは、ハーモニックドライブ(登録商標)によって、モータの動力が減速されて支持アーム部または被支持アーム部に伝達されている。そのため、本発明では、モータから支持アーム部または被支持アーム部への動力の伝達経路において、減速比を大きくすることが可能になる。したがって、本発明では、出力の小さなモータを使用しても、支持アーム部に対して被支持アーム部を回動させることが可能になり、その結果、モータを小型化することが可能になる。また、本発明では、ハーモニックドライブ(登録商標)によって、モータの動力が減速されて支持アーム部または被支持アーム部に伝達されているため、モータから支持アーム部または被支持アーム部への動力の伝達経路において、バックラッシュを低減することが可能になる。 In the horizontal articulated robot of the present invention, the power of the motor is decelerated by the harmonic drive (registered trademark) and transmitted to the supporting arm portion or the supported arm portion. Therefore, according to the present invention, the reduction ratio can be increased in the power transmission path from the motor to the support arm portion or the supported arm portion. Therefore, in the present invention, even if a motor with a small output is used, the supported arm portion can be rotated with respect to the support arm portion, and as a result, the motor can be miniaturized. In the present invention, since the power of the motor is decelerated and transmitted to the support arm portion or the supported arm portion by the harmonic drive (registered trademark), the power from the motor to the support arm portion or the supported arm portion is transmitted. Backlash can be reduced in the transmission path.
 本発明において、アームは、たとえば、アーム部として、その基端側が本体部に回動可能に連結される第1アーム部と、第1アーム部の先端側にその基端側が回動可能に連結される支持アーム部としての第2アーム部と、第2アーム部の先端側にその基端側が回動可能に連結される被支持アーム部としての第3アーム部とを備え、第3アーム部の先端側にハンドが回動可能に連結されている。 In the present invention, the arm is, for example, as an arm portion, a first arm portion whose base end side is rotatably connected to the main body portion, and a base end side rotatably connected to the distal end side of the first arm portion. A second arm portion serving as a support arm portion, and a third arm portion serving as a supported arm portion whose base end side is rotatably connected to the distal end side of the second arm portion. A hand is rotatably connected to the distal end side of the.
 本発明において、水平多関節ロボットは、ハンドとして、上下方向で重なるように配置される第1ハンドおよび第2ハンドを備えるとともに、第3アーム部に対して第1ハンドを回動させる第1ハンド回動機構と、第3アーム部に対して第2ハンドを回動させる第2ハンド回動機構とを備え、第1ハンド回動機構は、第3アーム部の内部に配置される第1ハンド用モータを備え、第2ハンド回動機構は、第3アーム部の内部に配置される第2ハンド用モータを備え、第1ハンドは、第3アーム部に連結される連結部と、搬送対象物が搭載される平板状の搭載部とを備えるとともに、第2ハンドよりも下側に配置され、搭載部は、連結部の上端側から水平方向へ伸びるように形成され、第3アーム部には、上側へ突出する突出部が形成され、突出部は、第3アーム部と第1ハンドとが上下方向で重なっている状態で、第3アーム部の長手方向において連結部とずれた位置に形成されるとともに、搭載部に接触しない高さまで上側へ突出しており、第1ハンド用モータおよび第2ハンド用モータは、その出力軸が下側を向くように、かつ、その一部が突出部の中に配置されるように、第3アーム部の内部に配置されていることが好ましい。このように構成すると、上下方向において、第1ハンドの搭載部と第3アーム部との間に形成されるデッドスペースに突出する突出部を利用して、第1ハンド用モータおよび第2ハンド用モータの一部を配置することが可能になる。したがって、第1ハンド、第2ハンドおよび第3アーム部の全体の上下方向における厚みを薄くすることが可能になる。 In the present invention, the horizontal articulated robot includes a first hand and a second hand arranged so as to overlap in the vertical direction as hands, and a first hand that rotates the first hand relative to the third arm portion. A rotation mechanism; and a second hand rotation mechanism that rotates the second hand relative to the third arm portion. The first hand rotation mechanism is disposed in the third arm portion. The second hand rotating mechanism includes a second hand motor disposed inside the third arm portion, the first hand includes a connecting portion connected to the third arm portion, and a conveyance target. A flat plate-like mounting portion on which an object is mounted, and is disposed below the second hand. The mounting portion is formed to extend horizontally from the upper end side of the connecting portion, and is attached to the third arm portion. Is formed with a protrusion protruding upward, The protruding portion is formed at a position shifted from the connecting portion in the longitudinal direction of the third arm portion with the third arm portion and the first hand overlapping in the vertical direction, and up to a height that does not contact the mounting portion. The third arm protrudes upward, and the first hand motor and the second hand motor have the third arm so that the output shaft faces downward and a part thereof is disposed in the protrusion. It is preferable that it is arrange | positioned inside the part. If comprised in this way, the motor for 1st hands and 2nd hands will be utilized in the up-down direction using the protrusion part which protrudes into the dead space formed between the mounting part of the 1st hand and the 3rd arm part. It becomes possible to arrange a part of the motor. Therefore, it is possible to reduce the overall thickness of the first hand, the second hand, and the third arm portion in the vertical direction.
 本発明において、回動機構は、ハーモニックドライブ(登録商標)の外周側に配置される磁性流体シールを備えることが好ましい。このように構成すると、ハーモニックドライ
ブ(登録商標)で発生する塵埃の外部への流出を防止することが可能になる。
In the present invention, the rotation mechanism preferably includes a magnetic fluid seal disposed on the outer peripheral side of the harmonic drive (registered trademark). If comprised in this way, it will become possible to prevent the outflow of the dust which generate | occur | produces with a harmonic drive (trademark) to the exterior.
 以上のように、上述した第一の課題を解決するため、本発明の水平多関節ロボットでは、比較的短時間で容易に、かつ、水平方向へハンドが精度良く動作するように水平多関節ロボットを設置することが可能になる。また、本発明の水平多関節ロボットの製造方法で製造された水平多関節ロボットでは、比較的短時間で容易に、かつ、水平方向へハンドが精度良く動作するように水平多関節ロボットを設置することが可能になる。 As described above, in order to solve the first problem described above, the horizontal articulated robot according to the present invention can easily operate in a relatively short time and with high accuracy in the horizontal direction. Can be installed. Further, in the horizontal articulated robot manufactured by the method for manufacturing a horizontal articulated robot of the present invention, the horizontal articulated robot is installed so that the hand can move with high precision in the horizontal direction easily in a relatively short time. It becomes possible.
 以上のように上述した第二の課題を解決するため、、本発明では、アームの一部を構成するアーム部の内部に出力軸の軸方向が水平方向となるように配置されるモータを有する水平多関節ロボットにおいて、モータを小型化すること、および、バックラッシュを低減することが可能になる。 As described above, in order to solve the second problem described above, the present invention includes a motor that is arranged so that the axial direction of the output shaft is in the horizontal direction inside the arm portion that constitutes a part of the arm. In the horizontal articulated robot, the motor can be reduced in size and backlash can be reduced.
本発明の第一の実施の形態にかかる水平多関節ロボットの斜視図である。1 is a perspective view of a horizontal articulated robot according to a first embodiment of the present invention. 図1に示す水平多関節ロボットの、アームが上昇するとともに伸びている状態の斜視図である。FIG. 2 is a perspective view of the horizontal articulated robot shown in FIG. 1 in a state where the arm is lifted and extended. 図1に示す水平多関節ロボットが使用される半導体製造システムの概略平面図である。FIG. 2 is a schematic plan view of a semiconductor manufacturing system in which the horizontal articulated robot shown in FIG. 1 is used. 図1に示す水平多関節ロボットの側面図である。It is a side view of the horizontal articulated robot shown in FIG.
本発明の第二の実施の形態にかかる水平多関節ロボットの斜視図である。It is a perspective view of a horizontal articulated robot according to a second embodiment of the present invention. 図5に示す水平多関節ロボットの、アームが上昇するとともに伸びている状態の斜視図である。FIG. 6 is a perspective view of the horizontal articulated robot shown in FIG. 5 in a state where the arm is lifted and extended. 図5に示す水平多関節ロボットが使用される半導体製造システムの概略平面図である。FIG. 6 is a schematic plan view of a semiconductor manufacturing system in which the horizontal articulated robot shown in FIG. 5 is used. 図5に示す水平多関節ロボットの側面図である。FIG. 6 is a side view of the horizontal articulated robot shown in FIG. 5. 図8に示す回動機構の構成を説明するための断面図である。It is sectional drawing for demonstrating the structure of the rotation mechanism shown in FIG.
 以下、図面を参照しながら、本発明の第一の実施の形態を説明する。 Hereinafter, a first embodiment of the present invention will be described with reference to the drawings.
 (水平多関節ロボットの構成)
 図1は、本発明の第一の実施の形態にかかる水平多関節ロボット1の斜視図である。図2は、図1に示す水平多関節ロボット1の、アーム6が上昇するとともに伸びている状態の斜視図である。図3は、図1に示す水平多関節ロボット1が使用される半導体製造システム9の概略平面図である。図4は、図1に示す水平多関節ロボット1の側面図である。
(Configuration of horizontal articulated robot)
FIG. 1 is a perspective view of a horizontal articulated robot 1 according to a first embodiment of the present invention. FIG. 2 is a perspective view of the horizontal articulated robot 1 shown in FIG. 1 in a state where the arm 6 is lifted and extended. FIG. 3 is a schematic plan view of a semiconductor manufacturing system 9 in which the horizontal articulated robot 1 shown in FIG. 1 is used. FIG. 4 is a side view of the horizontal articulated robot 1 shown in FIG.
 本形態の水平多関節ロボット1は、搬送体対象物である半導体ウエハ2(図3参照)を搬送するためのロボットである。この水平多関節ロボット1は、半導体ウエハ2が搭載される2個のハンド4、5と、ハンド4、5が先端側に回動可能に連結されるとともに水平方向に動作するアーム6と、アーム6の基端側が回動可能に連結される本体部7とを備えている。以下の説明では、水平多関節ロボット1を「ロボット1」とし、半導体ウエハ2を「ウエハ2」とする。また、以下の説明では、上下方向に直交する図1等のX方向を「左右方向」とし、上下方向および左右方向に直交するY方向を「前後方向」とするとともに、X1方向側を「右」側、X2方向側を「左」側、Y1方向側を「前」側、Y2方向側を「後(後ろ)」側とする。 The horizontal articulated robot 1 of this embodiment is a robot for transporting a semiconductor wafer 2 (see FIG. 3) that is a transport object. The horizontal articulated robot 1 includes two hands 4 and 5 on which a semiconductor wafer 2 is mounted, arms 4 and 5 that are rotatably connected to the distal end side, and move in a horizontal direction. 6 is provided with a main body 7 to which the base end side of 6 is rotatably connected. In the following description, the horizontal articulated robot 1 is referred to as “robot 1”, and the semiconductor wafer 2 is referred to as “wafer 2”. Further, in the following description, the X direction in FIG. 1 or the like orthogonal to the vertical direction is referred to as “left-right direction”, the Y direction orthogonal to the vertical direction and the left-right direction is referred to as “front-rear direction”, and the X1 direction side is referred to as “right ”Side, the X2 direction side is the“ left ”side, the Y1 direction side is the“ front ”side, and the Y2 direction side is the“ rear (back) ”side.
 図3に示すように、ロボット1は、半導体製造システム9に組み込まれて使用される。この半導体製造システム9は、EFEM10と、ウエハ2に対して所定の処理を行う半導体ウエハ処理装置11とを備えている。EFEM10は、半導体ウエハ処理装置11の前側に配置されている。ロボット1は、EFEM10の一部を構成している。また、EFEM10は、FOUP12を開閉する複数のロードポート13と、ロボット1が収容される筺体14とを備えている。筺体14は、左右方向に細長い直方体の箱状に形成されている。筺体14の内部は、清浄空間となっている。すなわち、EFEM10の内部は、清浄空間となっており、EFEM10の内部では所定のクリーン度が確保されている。 As shown in FIG. 3, the robot 1 is used by being incorporated in a semiconductor manufacturing system 9. The semiconductor manufacturing system 9 includes an EFEM 10 and a semiconductor wafer processing apparatus 11 that performs predetermined processing on the wafer 2. The EFEM 10 is disposed on the front side of the semiconductor wafer processing apparatus 11. The robot 1 constitutes a part of the EFEM 10. The EFEM 10 includes a plurality of load ports 13 that open and close the FOUP 12 and a housing 14 in which the robot 1 is accommodated. The housing 14 is formed in a rectangular parallelepiped box shape elongated in the left-right direction. The inside of the housing 14 is a clean space. That is, the inside of the EFEM 10 is a clean space, and a predetermined cleanliness is secured inside the EFEM 10.
 FOUP12は、SEMI規格に基づいて製造されており、FOUP12には、25枚または13枚のウエハ2が上下方向に重なった状態で収容可能となっている。ロードポート13は、筺体14の前側に配置されている。本形態のEFEM10は、左右方向に所定のピッチで配列される4個のロードポート13を備えており、EFEM10では、4個のFOUP12が左右方向に所定のピッチで配列される。ロボット1は、4個のFOUP12と半導体ウエハ処理装置11との間でウエハ2を搬送する。 The FOUP 12 is manufactured based on the SEMI standard, and 25 or 13 wafers 2 can be accommodated in the FOUP 12 in a state where they are overlapped in the vertical direction. The load port 13 is disposed on the front side of the housing 14. The EFEM 10 of this embodiment includes four load ports 13 arranged at a predetermined pitch in the left-right direction. In the EFEM 10, four FOUPs 12 are arranged at a predetermined pitch in the left-right direction. The robot 1 transports the wafer 2 between the four FOUPs 12 and the semiconductor wafer processing apparatus 11.
 アーム6は、その基端側が本体部7に回動可能に連結される第1アーム部16と、第1アーム部16の先端側にその基端側が回動可能に連結される第2アーム部17と、第2アーム部17の先端側にその基端側が回動可能に連結される第3アーム部18とから構成されている。すなわち、アーム6は、互いに相対回動可能に連結される3個のアーム部を備えている。第1アーム部16、第2アーム部17および第3アーム部18は、中空状に形成されている。また、本形態では、第1アーム部16の長さと、第2アーム部17の長さと、第3アーム部18の長さとが等しくなっている。本体部7と第1アーム部16と第2アーム部17と第3アーム部18とは、上下方向において、下側からこの順番で配置されている。本形態の第3アーム部18は、ハンド側アーム部であり、第2アーム部17は、第2ハンド側アーム部である。 The arm 6 has a first arm part 16 whose base end side is rotatably connected to the main body part 7 and a second arm part whose base end side is rotatably connected to the distal end side of the first arm part 16. 17 and a third arm portion 18 whose base end side is rotatably connected to the distal end side of the second arm portion 17. That is, the arm 6 includes three arm portions that are connected to each other so as to be relatively rotatable. The first arm part 16, the second arm part 17, and the third arm part 18 are formed in a hollow shape. In this embodiment, the length of the first arm portion 16, the length of the second arm portion 17, and the length of the third arm portion 18 are equal. The main body part 7, the first arm part 16, the second arm part 17, and the third arm part 18 are arranged in this order from the lower side in the vertical direction. The 3rd arm part 18 of this form is a hand side arm part, and the 2nd arm part 17 is a 2nd hand side arm part.
 ハンド4、5は、上下方向から見たときの形状が略Y形状となるように形成されており、第3アーム部18に連結される連結部19と、ウエハ2が搭載されるウエハ搭載部20とから構成されている。ハンド4、5は、上下方向で重なるように配置されている。具体的には、ハンド4が上側に配置され、ハンド5が下側に配置されている。また、ハンド4、5は、第3アーム部18よりも上側に配置されている。 The hands 4 and 5 are formed so as to have a substantially Y shape when viewed in the vertical direction, and a connecting portion 19 connected to the third arm portion 18 and a wafer mounting portion on which the wafer 2 is mounted. 20. The hands 4 and 5 are arranged so as to overlap in the vertical direction. Specifically, the hand 4 is disposed on the upper side and the hand 5 is disposed on the lower side. Further, the hands 4 and 5 are disposed above the third arm portion 18.
 連結部19は、ハンド4、5の基端側部分を構成しており、第3アーム部18の先端側に回動可能に連結されている。ウエハ搭載部20は、ハンド4、5の先端側部分を構成しており、二股状に形成されている。ウエハ搭載部20の上面は、ウエハ2が搭載される搭載面20aとなっている。すなわち、ハンド4、5には、搭載面20aが形成されている。連結部19と第3アーム部18との連結箇所には、水平方向に対する搭載面20aの傾きを微調整するための調整用ボルト(図示省略)が取り付けられている。また、連結部19と第3アーム部18との連結箇所には、調整用ボルトが螺合するネジ孔が形成されており、調整用ボルトのネジ孔へのネジ込み量によって、水平方向に対する搭載面20aの傾きが調整される。 The connecting portion 19 constitutes a base end side portion of the hands 4 and 5 and is rotatably connected to the distal end side of the third arm portion 18. The wafer mounting portion 20 constitutes the tip side portion of the hands 4 and 5 and is formed in a bifurcated shape. The upper surface of the wafer mounting unit 20 is a mounting surface 20a on which the wafer 2 is mounted. That is, the mounting surfaces 20 a are formed on the hands 4 and 5. An adjustment bolt (not shown) for finely adjusting the inclination of the mounting surface 20a with respect to the horizontal direction is attached to a connection portion between the connection portion 19 and the third arm portion 18. In addition, a screw hole into which the adjustment bolt is screwed is formed at a connection portion between the connection portion 19 and the third arm portion 18, and mounting in the horizontal direction is performed depending on the screwing amount of the adjustment bolt into the screw hole. The inclination of the surface 20a is adjusted.
 なお、図3では、ハンド5の図示を省略している。また、本形態のロボット1の動作時には、ハンド4とハンド5とが上下方向で重なる場合もあるが、ほとんどの場合、ハンド4とハンド5とは、上下方向で重なっていない。たとえば、図3の二点鎖線で示すように、ハンド4がFOUP12の中へ入り込んでいるときには、ハンド5は、本体部7側へ回転しており、FOUP12の中に入っていない。このときのハンド4に対するハンド5の回転角度は、たとえば、120°~150°である。 In addition, illustration of the hand 5 is abbreviate | omitted in FIG. Further, during the operation of the robot 1 of this embodiment, the hand 4 and the hand 5 may overlap in the vertical direction, but in most cases, the hand 4 and the hand 5 do not overlap in the vertical direction. For example, as indicated by a two-dot chain line in FIG. 3, when the hand 4 enters the FOUP 12, the hand 5 rotates to the main body 7 side and does not enter the FOUP 12. At this time, the rotation angle of the hand 5 with respect to the hand 4 is, for example, 120 ° to 150 °.
 本体部7は、筺体21と、第1アーム部16の基端側が回動可能に連結される柱状部材22(図2参照)とを備えている。筺体21は、上下方向に細長い略直方体状に形成されており、上下方向から見たときの筺体21の形状は、略長方形状または略正方形状となっている。また、筺体21の前面および後面は、上下方向と左右方向とから構成される平面に略平行になっており、筺体21の左右の両側面は、上下方向と前後方向とから構成される平面に略平行になっている。また、筺体21の底面は、上下方向に略直交する平面状に形成されている。 The main body portion 7 includes a housing 21 and a columnar member 22 (see FIG. 2) to which the proximal end side of the first arm portion 16 is rotatably connected. The housing 21 is formed in a substantially rectangular parallelepiped shape elongated in the vertical direction, and the shape of the housing 21 when viewed from the vertical direction is a substantially rectangular shape or a substantially square shape. Further, the front surface and the rear surface of the housing 21 are substantially parallel to a plane composed of the up-down direction and the left-right direction, and the left and right side surfaces of the housing 21 are planar surfaces composed of the up-down direction and the front-back direction. It is almost parallel. The bottom surface of the housing 21 is formed in a planar shape that is substantially orthogonal to the vertical direction.
 柱状部材22は、上下方向の細長い柱状に形成されている。第1アーム部16の基端側は、柱状部材22の上端に回動可能に連結されている。筺体21の内部には、柱状部材22を昇降させるアーム昇降機構(図示省略)が収納されている。すなわち、筺体21の内部には、本体部7に対して第1アーム部16を昇降させる(すなわち、アーム6を昇降させる)アーム昇降機構が収納されている。このアーム昇降機構は、たとえば、上下方向を軸方向として配置されるボールネジ、このボールネジに係合するナット部材、および、ボールネジを回転させるモータ等によって構成されている。アーム昇降機構は、図1に示すように、柱状部材22が筺体21に収容される位置と、図2に示すように、柱状部材22が筺体21から上側に突出する位置との間で、アーム6および柱状部材22を昇降させる。 The columnar member 22 is formed in a vertically long and narrow columnar shape. The base end side of the first arm portion 16 is rotatably connected to the upper end of the columnar member 22. An arm elevating mechanism (not shown) for elevating the columnar member 22 is accommodated in the housing 21. That is, an arm elevating mechanism for elevating and lowering the first arm portion 16 relative to the main body portion 7 (that is, elevating and lowering the arm 6) is housed in the housing 21. The arm elevating mechanism includes, for example, a ball screw arranged with the vertical direction as an axial direction, a nut member that engages with the ball screw, a motor that rotates the ball screw, and the like. As shown in FIG. 1, the arm elevating mechanism has an arm between a position where the columnar member 22 is accommodated in the housing 21 and a position where the columnar member 22 protrudes upward from the housing 21 as shown in FIG. 6 and the columnar member 22 are moved up and down.
 柱状部材22は、筺体21の前端側に配置されている。また、左右方向において、柱状部材22は、筺体21の中心位置に配置されている。筺体21の上端側には、上側に突出する突出部21aが形成されている。突出部21aは、柱状部材22の左右両側および後ろ側を囲むように形成されている。突出部21aの上面は、上下方向に直交する平面状に形成されている。また、筺体21の下端の四隅には、水平方向に対するロボット1全体の傾きを微調整するための調整用ボルト(図示省略)が取り付けられるボルト取付部21bが形成されている。ボルト取付部21bには、調整用ボルトが螺合するネジ孔が上下方向に貫通するように形成されており、調整用ボルトのネジ孔へのネジ込み量によって、水平方向に対するロボット1の傾きが調整される。 The columnar member 22 is disposed on the front end side of the housing 21. The columnar member 22 is disposed at the center position of the housing 21 in the left-right direction. On the upper end side of the housing 21, a protruding portion 21 a that protrudes upward is formed. The protruding portion 21 a is formed so as to surround the left and right sides and the rear side of the columnar member 22. The upper surface of the protruding portion 21a is formed in a planar shape orthogonal to the vertical direction. In addition, bolt attachment portions 21 b to which adjustment bolts (not shown) for finely adjusting the inclination of the entire robot 1 with respect to the horizontal direction are formed at the four corners at the lower end of the housing 21. A screw hole into which the adjustment bolt is screwed is formed in the bolt mounting portion 21b so as to penetrate in the vertical direction. The inclination of the robot 1 with respect to the horizontal direction depends on the screwing amount of the adjustment bolt into the screw hole. Adjusted.
 突出部21aの上面側には、図1、図2に示すように、水準器23が取り付けられている。すなわち、本体部7には、水準器23が取り付けられている。本形態の水準器23は、気泡管を有する気泡管水準器である。具体的には、水準器23は、上下方向から見たときの気泡管の形状が円形状となっているいわゆる目玉水準器(目玉水平器、全方向水準器)であり、上下方向から見たときの気泡管の中心に円形状の基準線が印されている。なお、水準器23は、水平方向の一方向(たとえば、左右方向)の傾きを確認できる1軸型の気泡管水準器と、水平方向の一方向に直交する方向(たとえば、前後方向)の傾きを確認できる1軸型の気泡管水準器とが組み合わされた2軸型水準器等の目玉水準器以外の気泡管水準器であっても良い。 As shown in FIGS. 1 and 2, a level 23 is attached to the upper surface side of the protruding portion 21a. That is, a level 23 is attached to the main body 7. The level 23 in this embodiment is a bubble tube level having a bubble tube. Specifically, the level 23 is a so-called eyeball level (eyeball level, omnidirectional level) in which the shape of the bubble tube is circular when viewed from above and below, and viewed from above and below. A circular reference line is marked at the center of the bubble tube. The level 23 is a uniaxial bubble tube level that can confirm the inclination in one horizontal direction (for example, the left-right direction), and the inclination in a direction (for example, the front-rear direction) orthogonal to the one horizontal direction. It may be a bubble tube level other than the eye level, such as a two-axis level in combination with a single-axis type bubble level that can be confirmed.
 また、ロボット1は、第1アーム部16および第2アーム部17を回動させて第1アーム部16と第2アーム部17とからなるアーム6の一部を伸縮させるアーム部駆動機構と、第3アーム部18を回転駆動する第3アーム駆動機構と、ハンド4を回転駆動する第1ハンド駆動機構と、ハンド5を回転駆動する第2ハンド駆動機構とを備えている。 In addition, the robot 1 rotates the first arm unit 16 and the second arm unit 17 to extend and contract a part of the arm 6 composed of the first arm unit 16 and the second arm unit 17; A third arm drive mechanism that rotationally drives the third arm portion 18, a first hand drive mechanism that rotationally drives the hand 4, and a second hand drive mechanism that rotationally drives the hand 5 are provided.
 アーム部駆動機構は、図4に示すように、駆動源となるモータ125と、モータ125の動力を減速して第1アーム部16に伝達するための減速機126と、モー1タ25の動力を減速して第2アーム部17に伝達するための減速機127とを備えている。モータ125は、筺体21の内部に配置されている。減速機126は、本体部7と第1アーム部16とを繋ぐ関節部を構成している。減速機127は、第1アーム部16と第2アーム部17とを繋ぐ関節部を構成している。減速機126、127は、たとえば、波動歯車装置であるハーモニックドライブ(登録商標)である。上述の特許文献1に記載された水平多関節ロボットと同様に、モータ125と減速機126とは、図示を省略するプーリおよびベルトを介して連結され、モータ125と減速機127とは、図示を省略するプーリおよびベルトを介して連結されている。 As shown in FIG. 4, the arm unit driving mechanism includes a motor 125 as a driving source, a speed reducer 126 for decelerating and transmitting the power of the motor 125 to the first arm unit 16, and the power of the motor 25. And a speed reducer 127 for transmitting the speed to the second arm portion 17. The motor 125 is disposed inside the housing 21. The reduction gear 126 constitutes a joint portion that connects the main body portion 7 and the first arm portion 16. The speed reducer 127 constitutes a joint portion that connects the first arm portion 16 and the second arm portion 17. The reduction gears 126 and 127 are, for example, harmonic drive (registered trademark) which is a wave gear device. Similarly to the horizontal articulated robot described in the above-mentioned Patent Document 1, the motor 125 and the speed reducer 126 are connected via a pulley and a belt (not shown), and the motor 125 and the speed reducer 127 are illustrated. It is connected via an omitted pulley and belt.
 第3アーム部駆動機構は、図4に示すように、駆動源となるモータ128と、モータ128の動力を減速して第3アーム部18に伝達するための減速機129とを備えている。モータ28は、第2アーム部17の先端側の内部に配置されている。減速機129は、第2アーム部17と第3アーム部18とを繋ぐ関節部を構成している。減速機129は、たとえば、ハーモニックドライブ(登録商標)である。モータ128と減速機129とは、たとえば、図示を省略する歯車列を介して連結されている。 As shown in FIG. 4, the third arm unit driving mechanism includes a motor 128 serving as a driving source and a speed reducer 129 for decelerating the power of the motor 128 and transmitting it to the third arm unit 18. The motor 28 is disposed inside the distal end side of the second arm portion 17. The speed reducer 129 constitutes a joint portion that connects the second arm portion 17 and the third arm portion 18. The reducer 129 is, for example, a harmonic drive (registered trademark). The motor 128 and the speed reducer 129 are connected, for example, via a gear train (not shown).
 第1ハンド駆動機構は、図4に示すように、駆動源となるモータ130と、モータ130の動力を減速してハンド4に伝達するための減速機131とを備えている。第2ハンド駆動機構は、第1ハンド駆動機構と同様に、駆動源となるモータ132と、モータ132の動力を減速してハンド5に伝達するための減速機133とを備えている。モータ130、132および減速機131、133は、第3アーム部18の内部に配置されている。減速機131、133は、たとえば、ハーモニックドライブ(登録商標)である。上述の特許文献1に記載された水平多関節ロボットと同様に、減速機131は、モータ130の出力軸に取り付けられ、減速機133は、モータ132の出力軸に取り付けられている。また、ハンド4の連結部19と減速機131とは、図示を省略するプーリおよびベルトを介して連結され、ハンド5の連結部19と減速機133とは、図示を省略するプーリおよびベルトを介して連結されている。 As shown in FIG. 4, the first hand drive mechanism includes a motor 130 as a drive source and a speed reducer 131 for decelerating the power of the motor 130 and transmitting it to the hand 4. Similar to the first hand drive mechanism, the second hand drive mechanism includes a motor 132 serving as a drive source and a speed reducer 133 for decelerating and transmitting the power of the motor 132 to the hand 5. The motors 130 and 132 and the speed reducers 131 and 133 are disposed inside the third arm unit 18. The reducers 131 and 133 are, for example, harmonic drives (registered trademark). Similar to the horizontal articulated robot described in Patent Document 1 described above, the speed reducer 131 is attached to the output shaft of the motor 130, and the speed reducer 133 is attached to the output shaft of the motor 132. The connecting portion 19 of the hand 4 and the speed reducer 131 are connected via a pulley and a belt (not shown), and the connecting portion 19 and the speed reducer 133 of the hand 5 are connected via a pulley and a belt (not shown). Are connected.
 ロボット1の製造工程では、ハンド4、5とアーム6と本体部7とが連結されてロボット1が動作可能な状態になると、平面度が確保された所定の基準面上にロボット1が設置される。この状態では、水準器23は、本体部7に取り付けられていない。その後、第2アーム部17に対する第3アーム部18の回動中心軸の上下方向(鉛直方向)に対する傾きが調整される。また、水平方向に対するハンド4、5の搭載面20aの傾きが調整される。 In the manufacturing process of the robot 1, when the hands 4, 5, the arm 6, and the main body 7 are connected and the robot 1 is in an operable state, the robot 1 is installed on a predetermined reference surface that ensures flatness. The In this state, the level 23 is not attached to the main body portion 7. Thereafter, the inclination of the rotation center axis of the third arm portion 18 with respect to the second arm portion 17 with respect to the vertical direction (vertical direction) is adjusted. Further, the inclination of the mounting surface 20a of the hands 4, 5 with respect to the horizontal direction is adjusted.
 具体的には、アーム6がある方向へ伸びている状態、アーム6が他の方向へ伸びている状態、および、アーム6が縮んでいる状態等の様々な状態にロボット1の状態を変えながら、どの状態においても、第2アーム部17に対する第3アーム部18の回動中心軸が鉛直方向に対して所定の角度以上傾くことがないように、筺体21のボルト取付部21bに取り付けられた調整用ボルトによってロボット1全体の傾きを調整することで、第2アーム部17に対する第3アーム部18の回動中心軸の鉛直方向に対する傾きが調整される。 Specifically, while changing the state of the robot 1 to various states such as a state where the arm 6 extends in one direction, a state where the arm 6 extends in the other direction, and a state where the arm 6 is contracted. In any state, the rotation center axis of the third arm portion 18 with respect to the second arm portion 17 is attached to the bolt attachment portion 21b of the casing 21 so as not to be inclined more than a predetermined angle with respect to the vertical direction. By adjusting the tilt of the entire robot 1 with the adjusting bolt, the tilt of the rotation center axis of the third arm portion 18 with respect to the second arm portion 17 with respect to the vertical direction is adjusted.
 また、様々な状態にロボット1の状態を変えながら、どの状態においても、水平方向に対する搭載面20aの傾きが水平方向に対して所定の角度以上傾くことがないように、連結部19と第3アーム部18との連結箇所に取り付けられた調整用ボルトによって、水平方向に対する搭載面20aの傾きが調整される。なお、上下方向におけるハンド4とハンド5との間隔も調整される。 Further, while changing the state of the robot 1 to various states, in any state, the connecting portion 19 and the third portion are arranged so that the mounting surface 20a is not inclined more than a predetermined angle with respect to the horizontal direction. The inclination of the mounting surface 20a with respect to the horizontal direction is adjusted by an adjusting bolt attached to a connection portion with the arm portion 18. Note that the distance between the hand 4 and the hand 5 in the vertical direction is also adjusted.
 これらの調整が終了すると、水準器23が本体部7に取り付けられる。具体的には、水準器23の気泡管内の気泡が気泡管に印された基準線の中に収まるように、水準器23が本体部7に固定される。 When these adjustments are completed, the level 23 is attached to the main body 7. Specifically, the level 23 is fixed to the main body portion 7 so that the bubbles in the bubble tube of the level 23 are within the reference line marked on the bubble tube.
 (本第一の実施の形態の主な効果)
 以上説明したように、本形態では、第2アーム部17に対する第3アーム部18の回動中心軸の鉛直方向に対する傾き、および、水平方向に対するハンド4、5の搭載面20aの傾きが調整された後に、水準器23の気泡管内の気泡が気泡管に印された基準線の中に収まるように、本体部7に水準器23が取り付けられている。そのため、本形態では、EFEM10の筺体14にロボット1を設置する際に、水準器23の気泡管の中の気泡が基準線の中に収まるようにロボット1を設置することで、ハンド4、5が回動可能に連結される第3アーム部18の第2アーム部17に対する回動中心軸の鉛直方向に対する傾きが適切な傾きとなり、かつ、水平方向に対する搭載面20aの傾きが適切な傾きとなるように、ロボット1を設置することが可能になる。したがって、本形態では、比較的短時間で容易に、かつ、水平方向へハンド4、5が精度良く動作するようにロボット1を筺体14に設置することが可能になる。
(Main effects of the first embodiment)
As described above, in this embodiment, the inclination of the rotation center axis of the third arm portion 18 with respect to the second arm portion 17 with respect to the vertical direction and the inclination of the mounting surface 20a of the hands 4 and 5 with respect to the horizontal direction are adjusted. After that, the level 23 is attached to the main body portion 7 so that the bubbles in the bubble tube of the level 23 are within the reference line marked on the bubble tube. For this reason, in this embodiment, when the robot 1 is installed on the housing 14 of the EFEM 10, the robot 4 is installed so that the bubbles in the bubble tube of the level 23 are within the reference line. The third arm portion 18 that is rotatably connected to the second arm portion 17 has an appropriate inclination with respect to the vertical direction of the rotation center axis, and the inclination of the mounting surface 20a with respect to the horizontal direction is an appropriate inclination. Thus, the robot 1 can be installed. Therefore, in this embodiment, it is possible to install the robot 1 on the housing 14 so that the hands 4 and 5 can move with high precision in the horizontal direction easily in a relatively short time.
 ここで、ハンド4、5やアーム6に水準器23が取り付けられている場合には、アーム6の伸縮状態に応じて、水準器23の気泡管の中の気泡の位置が変動しやすくなるため、気泡が基準線の中に収まるようにロボット1を筺体14に設置しても、設置時のアーム6の伸縮状態によっては、水平方向へハンド4、5が精度良く動作するようにロボット1を筺体14に設置することができないおそれがある。これに対して、本形態では、水準器23が本体部7に取り付けられているため、アーム6の伸縮状態が変わっても、水準器23の気泡管の中の気泡の位置が変動しにくくなる。したがって、本形態では、水準器23の気泡が基準線の中に収まるようにロボット1を筺体14に設置することで、設置時のアーム6の伸縮状態にかかわらず、水平方向へハンド4、5が精度良く動作するようにロボット1を筺体14に設置することが可能になる。 Here, when the level 23 is attached to the hands 4, 5 and the arm 6, the position of the bubbles in the bubble tube of the level 23 tends to fluctuate according to the expansion / contraction state of the arm 6. Even if the robot 1 is installed on the housing 14 so that the bubbles are within the reference line, depending on the extension / contraction state of the arm 6 at the time of installation, the robot 1 can be moved so that the hands 4 and 5 can move in the horizontal direction with high accuracy. There is a possibility that it cannot be installed on the housing 14. On the other hand, in this embodiment, since the level 23 is attached to the main body 7, even if the expansion / contraction state of the arm 6 is changed, the position of the bubbles in the bubble tube of the level 23 is not easily changed. . Therefore, in this embodiment, the robot 1 is installed on the housing 14 so that the bubbles of the level 23 are within the reference line, so that the hands 4, 5 can be moved horizontally regardless of the extension / contraction state of the arm 6 at the time of installation. It is possible to install the robot 1 on the housing 14 so as to operate with high accuracy.
 (他の実施の形態)
 上述した第一の実施の形態は、本発明の好適な形態の一例ではあるが、これに限定されるものではなく本発明の要旨を変更しない範囲において種々変形実施が可能である。
(Other embodiments)
The above-described first embodiment is an example of a preferred embodiment of the present invention, but is not limited to this, and various modifications can be made without departing from the scope of the present invention.
 上述した形態では、第2アーム部17に対する第3アーム部18の回動中心軸の鉛直方向に対する傾き、および、水平方向に対するハンド4、5の搭載面20aの傾きが調整された後に、水準器23の気泡管内の気泡が気泡管に印された基準線の中に収まるように、本体部7に水準器23が取り付けられている。この他にもたとえば、第2アーム部17に対する第3アーム部18の回動中心軸の鉛直方向に対する傾きが調整された後であって、かつ、水平方向に対する搭載面20aの傾きが調整されていない状態で、水準器23の気泡管内の気泡が気泡管に印された基準線の中に収まるように、本体部7に水準器23が取り付けられても良い。第2アーム部17に対する第3アーム部18の回動中心軸の鉛直方向に対する傾きが調整されていれば、水平方向に対するハンド4、5の傾きを抑制することが可能になるため、この場合であっても、水準器23の気泡管の中の気泡が基準線の中に収まるようにロボット1を筺体14に設置することで、水平方向へハンド4、5が精度良く動作するようにロボット1を筺体14に設置することが可能になる。 In the embodiment described above, after the inclination of the rotation center axis of the third arm portion 18 with respect to the second arm portion 17 with respect to the vertical direction and the inclination of the mounting surface 20a of the hands 4 and 5 with respect to the horizontal direction are adjusted, A level 23 is attached to the main body portion 7 so that the bubbles in the bubble tube 23 fall within the reference line marked on the bubble tube. In addition to this, for example, the inclination of the rotation center axis of the third arm portion 18 with respect to the second arm portion 17 with respect to the vertical direction is adjusted, and the inclination of the mounting surface 20a with respect to the horizontal direction is adjusted. The level 23 may be attached to the main body unit 7 so that the bubbles in the bubble tube of the level 23 are within the reference line marked on the bubble tube in the absence of the level. If the inclination of the rotation center axis of the third arm part 18 with respect to the second arm part 17 with respect to the vertical direction is adjusted, the inclination of the hands 4 and 5 with respect to the horizontal direction can be suppressed. Even if the robot 1 is installed on the housing 14 so that the bubbles in the bubble tube of the level 23 are within the reference line, the robot 1 can move the hands 4 and 5 accurately in the horizontal direction. Can be installed in the housing 14.
 上述した形態では、水準器23は、本体部7に取り付けられている。この他にもたとえば、水準器23は、アーム6に取り付けられても良いし、ハンド4またはハンド5に取り付けられても良い。また、上述した形態では、水準器23は、気泡管水準器であるが、水準器23は、たとえば、レーザ水準器やデジタル水準器等の気泡管水準器以外の水準器であっても良い。 In the above-described form, the level 23 is attached to the main body 7. In addition, for example, the level 23 may be attached to the arm 6 or may be attached to the hand 4 or the hand 5. In the above-described form, the level 23 is a bubble tube level, but the level 23 may be a level other than the bubble level, such as a laser level or a digital level.
 上述した形態では、本体部7は、上下方向に細長い略直方体状に形成されているが、本体部7は、略円柱状に形成されても良いし、上下方向から見たときの形状が略六角形状や略八角形状となる多角柱状に形成されても良い。また、上述した形態では、第3アーム部18の先端側に2個のハンド4、5が取り付けられているが、第3アーム部18の先端側に1個のハンドが取り付けられても良い。また、上述した形態では、アーム6は、第1アーム部16、第2アーム部17および第3アーム部18の3個のアーム部によって構成されているが、アーム6は、2個のアーム部によって構成されても良いし、4個以上のアーム部によって構成されても良い。 In the embodiment described above, the main body portion 7 is formed in a substantially rectangular parallelepiped shape that is elongated in the vertical direction. However, the main body portion 7 may be formed in a substantially cylindrical shape, and the shape when viewed from the vertical direction is approximately. You may form in the polygonal column shape used as a hexagon shape or a substantially octagon shape. In the embodiment described above, the two hands 4 and 5 are attached to the distal end side of the third arm portion 18, but one hand may be attached to the distal end side of the third arm portion 18. Further, in the above-described form, the arm 6 is constituted by the three arm portions of the first arm portion 16, the second arm portion 17, and the third arm portion 18. However, the arm 6 has two arm portions. It may be comprised by 4 or more arm parts.
 上述した形態では、半導体製造システム9において、半導体ウエハ処理装置11は、EFEM10の後ろ側に配置されている。この他にもたとえば、半導体ウエハ処理装置11は、EFEM10の右側、左側または左右の両側に配置されても良い。たとえば、図3の二点鎖線で示すように、EFEM10の右側に半導体ウエハ処理装置11が配置されても良い。また、上述した形態では、ロボット1は、ウエハ2を搬送するためのロボットであるが、ロボット1は、液晶用のガラス基板等の他の搬送対象物を搬送するロボットであっても良い。 In the embodiment described above, in the semiconductor manufacturing system 9, the semiconductor wafer processing apparatus 11 is disposed behind the EFEM 10. In addition, for example, the semiconductor wafer processing apparatus 11 may be disposed on the right side, the left side, or the left and right sides of the EFEM 10. For example, the semiconductor wafer processing apparatus 11 may be disposed on the right side of the EFEM 10 as indicated by a two-dot chain line in FIG. In the embodiment described above, the robot 1 is a robot for transporting the wafer 2, but the robot 1 may be a robot for transporting other transport objects such as a glass substrate for liquid crystal.
(第二の実施の形態)
 以下、図面を参照しながら、本発明の第二の実施の形態を説明する。
(Second embodiment)
Hereinafter, a second embodiment of the present invention will be described with reference to the drawings.
 (水平多関節ロボットの全体構成)
 図5は、本発明の第二の実施の形態にかかる水平多関節ロボット1の斜視図である。図6は、図5に示す水平多関節ロボット1の、アーム6が上昇するとともに伸びている状態の斜視図である。図7は、図5に示す水平多関節ロボット1が使用される半導体製造システム9の概略平面図である。図8は、図5に示す水平多関節ロボット1の側面図である。なお、上述した第一の実施の形態と同じ構成には同じ符号を付している。
(Overall structure of horizontal articulated robot)
FIG. 5 is a perspective view of the horizontal articulated robot 1 according to the second embodiment of the present invention. FIG. 6 is a perspective view of the horizontal articulated robot 1 shown in FIG. 5 in a state where the arm 6 is raised and extended. FIG. 7 is a schematic plan view of a semiconductor manufacturing system 9 in which the horizontal articulated robot 1 shown in FIG. 5 is used. FIG. 8 is a side view of the horizontal articulated robot 1 shown in FIG. In addition, the same code | symbol is attached | subjected to the same structure as 1st Embodiment mentioned above.
 本第二の実施の形態の水平多関節ロボット1は、搬送体対象物である半導体ウエハ2(図7参照)を搬送するためのロボットである。この水平多関節ロボット1は、半導体ウエハ2が搭載される2個のハンド4、5と、ハンド4、5が先端側に回動可能に連結されるとともに水平方向に動作するアーム6と、アーム6の基端側が回動可能に連結される本体部7とを備えている。以下の説明では、水平多関節ロボット1を「ロボット1」とし、半導体ウエハ2を「ウエハ2」とする。また、以下の説明では、上下方向に直交する図5等のX方向を「左右方向」とし、上下方向および左右方向に直交するY方向を「前後方向」とするとともに、X1方向側を「右」側、X2方向側を「左」側、Y1方向側を「前」側、Y2方向側を「後(後ろ)」側とする。 The horizontal articulated robot 1 according to the second embodiment is a robot for transporting a semiconductor wafer 2 (see FIG. 7) which is a transport object. The horizontal articulated robot 1 includes two hands 4 and 5 on which a semiconductor wafer 2 is mounted, arms 4 and 5 that are rotatably connected to the distal end side, and move in a horizontal direction. 6 is provided with a main body 7 to which the base end side of 6 is rotatably connected. In the following description, the horizontal articulated robot 1 is referred to as “robot 1”, and the semiconductor wafer 2 is referred to as “wafer 2”. Further, in the following description, the X direction in FIG. 5 and the like orthogonal to the up and down direction is referred to as “left and right direction”, the Y direction orthogonal to the up and down direction and the left and right direction is referred to as “front and back direction”, and the X1 direction side is ”Side, the X2 direction side is the“ left ”side, the Y1 direction side is the“ front ”side, and the Y2 direction side is the“ rear (back) ”side.
 図7に示すように、ロボット1は、半導体製造システム9に組み込まれて使用される。この半導体製造システム9は、EFEM10と、ウエハ2に対して所定の処理を行う半導体ウエハ処理装置11とを備えている。EFEM10は、半導体ウエハ処理装置11の前側に配置されている。ロボット1は、EFEM10の一部を構成している。また、EFEM10は、FOUP12を開閉する複数のロードポート13と、ロボット1が収容される筺体14とを備えている。筺体14は、左右方向に細長い直方体の箱状に形成されている。筺体14の内部は、清浄空間となっている。すなわち、EFEM10の内部は、清浄空間となっており、EFEM10の内部では所定のクリーン度が確保されている。 As shown in FIG. 7, the robot 1 is incorporated into a semiconductor manufacturing system 9 and used. The semiconductor manufacturing system 9 includes an EFEM 10 and a semiconductor wafer processing apparatus 11 that performs predetermined processing on the wafer 2. The EFEM 10 is disposed on the front side of the semiconductor wafer processing apparatus 11. The robot 1 constitutes a part of the EFEM 10. The EFEM 10 includes a plurality of load ports 13 that open and close the FOUP 12 and a housing 14 in which the robot 1 is accommodated. The housing 14 is formed in a rectangular parallelepiped box shape elongated in the left-right direction. The inside of the housing 14 is a clean space. That is, the inside of the EFEM 10 is a clean space, and a predetermined cleanliness is secured inside the EFEM 10.
 FOUP12は、SEMI規格に基づいて製造されており、FOUP12には、25枚または13枚のウエハ2が収容可能となっている。ロードポート13は、筺体14の前側に配置されている。本形態のEFEM10は、左右方向に所定のピッチで配列される4個のロードポート13を備えており、EFEM10では、4個のFOUP12が左右方向に所定のピッチで配列される。ロボット1は、4個のFOUP12と半導体ウエハ処理装置11との間でウエハ2を搬送する。 The FOUP 12 is manufactured based on the SEMI standard, and the FOUP 12 can accommodate 25 or 13 wafers 2. The load port 13 is disposed on the front side of the housing 14. The EFEM 10 of this embodiment includes four load ports 13 arranged at a predetermined pitch in the left-right direction. In the EFEM 10, four FOUPs 12 are arranged at a predetermined pitch in the left-right direction. The robot 1 transports the wafer 2 between the four FOUPs 12 and the semiconductor wafer processing apparatus 11.
 アーム6は、その基端側が本体部7に回動可能に連結される第1アーム部16と、第1アーム部16の先端側にその基端側が回動可能に連結される第2アーム部17と、第2アーム部17の先端側にその基端側が回動可能に連結される第3アーム部18とから構成されている。すなわち、アーム6は、互いに相対回動可能に連結される3個のアーム部を備えている。第1アーム部16、第2アーム部17および第3アーム部18は、中空状に形成されている。また、本形態では、第1アーム部16の長さと、第2アーム部17の長さと、第3アーム部18の長さとが等しくなっている。本体部7と第1アーム部16と第2アーム部17と第3アーム部18とは、上下方向において、下側からこの順番で配置されている。本形態の第2アーム部17は、支持アーム部であり、第3アーム部18は、被支持アーム部である。 The arm 6 has a first arm part 16 whose base end side is rotatably connected to the main body part 7 and a second arm part whose base end side is rotatably connected to the distal end side of the first arm part 16. 17 and a third arm portion 18 whose base end side is rotatably connected to the distal end side of the second arm portion 17. That is, the arm 6 includes three arm portions that are connected to each other so as to be relatively rotatable. The first arm part 16, the second arm part 17, and the third arm part 18 are formed in a hollow shape. In this embodiment, the length of the first arm portion 16, the length of the second arm portion 17, and the length of the third arm portion 18 are equal. The main body part 7, the first arm part 16, the second arm part 17, and the third arm part 18 are arranged in this order from the lower side in the vertical direction. The 2nd arm part 17 of this form is a support arm part, and the 3rd arm part 18 is a supported arm part.
 ハンド4、5は、上下方向から見たときの形状が略Y形状となるように形成されており、第3アーム部18に連結される連結部19と、ウエハ2が搭載される搭載部20とから構成されている。ハンド4、5は、ハンド4の連結部19とハンド5の連結部19とが上下方向で重なるように配置されている。具体的には、ハンド4が上側に配置され、ハンド5が下側に配置されている。また、ハンド4、5は、第3アーム部18よりも上側に配置されている。本形態のハンド5は、第1ハンドであり、ハンド4は、第2ハンドである。 The hands 4 and 5 are formed so as to have a substantially Y shape when viewed from above and below, and a connecting portion 19 connected to the third arm portion 18 and a mounting portion 20 on which the wafer 2 is mounted. It consists of and. The hands 4 and 5 are arranged so that the connecting portion 19 of the hand 4 and the connecting portion 19 of the hand 5 overlap in the vertical direction. Specifically, the hand 4 is disposed on the upper side and the hand 5 is disposed on the lower side. Further, the hands 4 and 5 are disposed above the third arm portion 18. The hand 5 of this embodiment is a first hand, and the hand 4 is a second hand.
 連結部19は、ハンド4、5の基端側部分を構成しており、第3アーム部18の先端側に回動可能に連結されている。搭載部20は、ハンド4、5の先端側部分を構成しており、二股状に形成されている。また、搭載部20は、平板状に形成されている。図8に示すように、ハンド4では、搭載部20は、連結部19の下端側から水平方向へ伸びるように形成され、ハンド5では、搭載部20は、連結部19の上端側から水平方向へ伸びるように形成されている。搭載部20の上面は、ウエハ2が搭載される搭載面となっている。 The connecting portion 19 constitutes a base end side portion of the hands 4 and 5 and is rotatably connected to the distal end side of the third arm portion 18. The mounting portion 20 constitutes the tip side portion of the hands 4 and 5 and is formed in a bifurcated shape. Moreover, the mounting part 20 is formed in flat form. As shown in FIG. 8, in the hand 4, the mounting portion 20 is formed to extend in the horizontal direction from the lower end side of the connecting portion 19, and in the hand 5, the mounting portion 20 is in the horizontal direction from the upper end side of the connecting portion 19. It is formed to extend. The upper surface of the mounting unit 20 is a mounting surface on which the wafer 2 is mounted.
 なお、図7では、ハンド5の図示を省略している。また、本形態のロボット1の動作時には、ハンド4とハンド5とが上下方向で重なる場合もあるが、ほとんどの場合、ハンド4とハンド5とは、上下方向で重なっていない。たとえば、図7の二点鎖線で示すように、ハンド4がFOUP12の中へ入り込んでいるときには、ハンド5は、本体部7側へ回転しており、FOUP12の中に入っていない。このときのハンド4に対するハンド5の回転角度は、たとえば、120°~150°である。 In addition, illustration of the hand 5 is abbreviate | omitted in FIG. Further, during the operation of the robot 1 of this embodiment, the hand 4 and the hand 5 may overlap in the vertical direction, but in most cases, the hand 4 and the hand 5 do not overlap in the vertical direction. For example, as indicated by a two-dot chain line in FIG. 7, when the hand 4 enters the FOUP 12, the hand 5 rotates to the main body 7 side and does not enter the FOUP 12. At this time, the rotation angle of the hand 5 with respect to the hand 4 is, for example, 120 ° to 150 °.
 また、第3アーム部18には、上側へ突出する突出部18aが形成されている。突出部18aは、図8に示すように、第3アーム部18とハンド5とが上下方向で重なっている状態において、ハンド5の連結部19に接触しないように、第3アーム部18の長手方向(図8に示す状態では前後方向)においてハンド5の連結部19とずれた位置に形成されている。また、突出部18aは、ハンド5の搭載部20に接触しない高さまで上側へ突出している。 Further, the third arm portion 18 is formed with a protruding portion 18a protruding upward. As shown in FIG. 8, the protruding portion 18 a has a longitudinal length of the third arm portion 18 so as not to contact the connecting portion 19 of the hand 5 when the third arm portion 18 and the hand 5 overlap each other in the vertical direction. It is formed at a position shifted from the connecting portion 19 of the hand 5 in the direction (front-rear direction in the state shown in FIG. 8). Further, the protruding portion 18 a protrudes upward to a height that does not contact the mounting portion 20 of the hand 5.
 本体部7は、筺体21と、第1アーム部16の基端側が回動可能に連結される柱状部材22(図6参照)とを備えている。筺体21は、上下方向に細長い略直方体状に形成されており、上下方向から見たときの筺体21の形状は、略長方形状または略正方形状となっている。また、筺体21の前面および後面は、上下方向と左右方向とから構成される平面に略平行になっており、筺体21の左右の両側面は、上下方向と前後方向とから構成される平面に略平行になっている。 The main body portion 7 includes a housing 21 and a columnar member 22 (see FIG. 6) to which the proximal end side of the first arm portion 16 is rotatably connected. The housing 21 is formed in a substantially rectangular parallelepiped shape elongated in the vertical direction, and the shape of the housing 21 when viewed from the vertical direction is a substantially rectangular shape or a substantially square shape. In addition, the front surface and the rear surface of the housing 21 are substantially parallel to a plane composed of the up-down direction and the left-right direction. It is almost parallel.
 柱状部材22は、上下方向の細長い柱状に形成されている。第1アーム部16の基端側は、柱状部材22の上端に回動可能に連結されている。筺体21の内部には、柱状部材22を昇降させるアーム昇降機構(図示省略)が収納されている。すなわち、筺体21の内部には、本体部7に対して第1アーム部16を昇降させる(すなわち、アーム6を昇降させる)アーム昇降機構が収納されている。このアーム昇降機構は、たとえば、上下方向を軸方向として配置されるボールネジ、このボールネジに係合するナット部材、および、ボールネジを回転させるモータ等によって構成されている。アーム昇降機構は、図5に示すように、柱状部材22が筺体21に収容される位置と、図6に示すように、柱状部材22が筺体21から上側に突出する位置との間で、アーム6および柱状部材22を昇降させる。柱状部材22は、筺体21の前端側に配置されている。また、左右方向において、柱状部材22は、筺体21の中心位置に配置されている。 The columnar member 22 is formed in a vertically long and narrow columnar shape. The base end side of the first arm portion 16 is rotatably connected to the upper end of the columnar member 22. An arm elevating mechanism (not shown) for elevating the columnar member 22 is accommodated in the housing 21. That is, an arm elevating mechanism for elevating and lowering the first arm portion 16 relative to the main body portion 7 (that is, elevating and lowering the arm 6) is housed in the housing 21. The arm elevating mechanism includes, for example, a ball screw arranged with the vertical direction as an axial direction, a nut member that engages with the ball screw, a motor that rotates the ball screw, and the like. As shown in FIG. 5, the arm elevating mechanism has an arm between a position where the columnar member 22 is accommodated in the housing 21 and a position where the columnar member 22 protrudes upward from the housing 21 as shown in FIG. 6 and the columnar member 22 are moved up and down. The columnar member 22 is disposed on the front end side of the housing 21. The columnar member 22 is disposed at the center position of the housing 21 in the left-right direction.
 また、ロボット1は、第1アーム部16および第2アーム部17を回動させて第1アーム部16と第2アーム部17とからなるアーム6の一部を伸縮させるアーム部駆動機構25と、第2アーム部17に対して第3アーム部18を回動させる回動機構としての第3アーム部回動機構26と、第3アーム部18に対してハンド5を回動させる第1ハンド回動機構27と、第3アーム部18に対してハンド4を回動させる第2ハンド回動機構28とを備えている。 In addition, the robot 1 rotates the first arm portion 16 and the second arm portion 17 to expand and contract a part of the arm 6 including the first arm portion 16 and the second arm portion 17; , A third arm rotation mechanism 26 as a rotation mechanism for rotating the third arm 18 with respect to the second arm 17, and a first hand for rotating the hand 5 with respect to the third arm 18. A rotation mechanism 27 and a second hand rotation mechanism 28 that rotates the hand 4 with respect to the third arm portion 18 are provided.
 アーム部駆動機構25は、図8に示すように、駆動源となるモータ30と、モータ30の動力を減速して第1アーム部16に伝達するための減速機31と、モータ30の動力を減速して第2アーム部17に伝達するための減速機32とを備えている。モータ30は、筺体21の内部に配置されている。減速機31は、本体部7と第1アーム部16とを繋ぐ関節部を構成している。減速機32は、第1アーム部16と第2アーム部17とを繋ぐ関節部を構成している。減速機31、32は、波動歯車装置であるハーモニックドライブ(登録商標)である。モータ30と減速機31とは、たとえば、特開2011-230256号公報に記載された水平多関節ロボットと同様に、図示を省略するプーリおよびベルトを介して連結されている。また、モータ30と減速機32とは、たとえば、特開2011-230256号公報に記載された水平多関節ロボットと同様に、図示を省略するプーリおよびベルトを介して連結されている。 As shown in FIG. 8, the arm unit drive mechanism 25 includes a motor 30 serving as a drive source, a speed reducer 31 for decelerating and transmitting the power of the motor 30 to the first arm unit 16, and the power of the motor 30. A speed reducer 32 for decelerating and transmitting to the second arm portion 17. The motor 30 is disposed inside the housing 21. The speed reducer 31 constitutes a joint portion that connects the main body portion 7 and the first arm portion 16. The speed reducer 32 constitutes a joint portion that connects the first arm portion 16 and the second arm portion 17. The reduction gears 31 and 32 are harmonic drives (registered trademark) which are wave gear devices. The motor 30 and the speed reducer 31 are connected via a pulley and a belt (not shown) as in the horizontal articulated robot described in, for example, Japanese Patent Application Laid-Open No. 2011-230256. Further, the motor 30 and the speed reducer 32 are connected via a pulley and a belt (not shown) as in the horizontal articulated robot described in Japanese Patent Application Laid-Open No. 2011-230256, for example.
 第3アーム部回動機構26は、図8に示すように、駆動源となるモータ33と、モータ33の動力を減速して第3アーム部18に伝達するための減速機34とを備えている。第3アーム部回動機構26の具体的な構成については後述する。 As shown in FIG. 8, the third arm portion rotation mechanism 26 includes a motor 33 serving as a drive source, and a speed reducer 34 for decelerating and transmitting the power of the motor 33 to the third arm portion 18. Yes. A specific configuration of the third arm portion rotation mechanism 26 will be described later.
 第1ハンド回動機構27は、図8に示すように、駆動源となるモータ35と、モータ35の動力を減速してハンド5に伝達するための減速機36とを備えている。第2ハンド回動機構28は、第1ハンド回動機構27と同様に、駆動源となるモータ37と、モータ37の動力を減速してハンド4に伝達するための減速機38とを備えている。本形態のモータ35は、第1ハンド用モータであり、モータ37は、第2ハンド用モータである。 As shown in FIG. 8, the first hand rotating mechanism 27 includes a motor 35 serving as a drive source and a speed reducer 36 for decelerating the power of the motor 35 and transmitting it to the hand 5. Similar to the first hand rotation mechanism 27, the second hand rotation mechanism 28 includes a motor 37 as a drive source and a speed reducer 38 for decelerating the power of the motor 37 and transmitting it to the hand 4. Yes. The motor 35 of this embodiment is a first hand motor, and the motor 37 is a second hand motor.
 モータ35、37および減速機36、38は、第3アーム部18の内部に配置されている。また、モータ35、37は、その出力軸が下側を向くように、かつ、その反出力軸側の一部が第3アーム部18の突出部18aの中に配置されるように、第3アーム部18の内部に配置されている。減速機36、38は、ハーモニックドライブ(登録商標)である。減速機36は、下側へ突出するモータ35の出力軸に取り付けられ、減速機38は、下側へ突出するモータ37の出力軸に取り付けられている。また、たとえば、特開2011-230256号公報に記載された水平多関節ロボットと同様に、ハンド5の連結部19と減速機36とは、図示を省略するプーリおよびベルトを介して連結され、ハンド4の連結部19と減速機38とは、図示を省略するプーリおよびベルトを介して連結されている。 The motors 35 and 37 and the speed reducers 36 and 38 are disposed inside the third arm portion 18. In addition, the motors 35 and 37 are arranged so that their output shafts face downward and a part of the opposite output shaft side is arranged in the protruding portion 18 a of the third arm portion 18. Arranged inside the arm portion 18. The reduction gears 36 and 38 are harmonic drives (registered trademark). The reduction gear 36 is attached to the output shaft of the motor 35 protruding downward, and the reduction gear 38 is attached to the output shaft of the motor 37 protruding downward. Further, for example, similarly to the horizontal articulated robot described in Japanese Patent Application Laid-Open No. 2011-230256, the connecting portion 19 of the hand 5 and the speed reducer 36 are connected via a pulley and a belt (not shown), The four connecting portions 19 and the speed reducer 38 are connected via a pulley and a belt (not shown).
 (第3アーム部回動機構の構成)
 図9は、図8に示す第3アーム部回動機構26の構成を説明するための断面図である。
(Configuration of third arm rotation mechanism)
FIG. 9 is a cross-sectional view for explaining the configuration of the third arm rotation mechanism 26 shown in FIG.
 第3アーム部回動機構26は、上述のように、モータ33と減速機34とを備えている。モータ33は、第2アーム部17の内部に配置されている。また、モータ33は、その出力軸の軸方向が水平方向となるように第2アーム部17の内部に固定されている。具体的には、モータ33は、出力軸が第2アーム部17の先端側へ突出するように第2アーム部17の内部に固定されている。 The third arm portion rotation mechanism 26 includes the motor 33 and the speed reducer 34 as described above. The motor 33 is disposed inside the second arm portion 17. The motor 33 is fixed inside the second arm portion 17 so that the axial direction of the output shaft is horizontal. Specifically, the motor 33 is fixed inside the second arm portion 17 so that the output shaft protrudes toward the distal end side of the second arm portion 17.
 モータ33の出力軸には、カップリング41を介して回転軸42の一端側が連結されている。回転軸42は、その軸方向が水平方向と一致するように第2アーム部17の内部に配置されている。回転軸42の他端側には、第1のかさ歯車としてのかさ歯車43が固定されている。すなわち、モータ33の出力軸には、カップリング41および回転軸42を介してかさ歯車43が連結されている。また、回転軸42の他端側は、第2アーム部17の内部に固定される軸受44に回転可能に保持されている。 The one end side of the rotating shaft 42 is connected to the output shaft of the motor 33 through the coupling 41. The rotating shaft 42 is disposed inside the second arm portion 17 so that the axial direction thereof coincides with the horizontal direction. A bevel gear 43 as a first bevel gear is fixed to the other end side of the rotating shaft 42. That is, the bevel gear 43 is connected to the output shaft of the motor 33 via the coupling 41 and the rotating shaft 42. Further, the other end side of the rotating shaft 42 is rotatably held by a bearing 44 fixed inside the second arm portion 17.
 減速機34は、第2アーム部17と第3アーム部18とを繋ぐ関節部を構成している。すなわち、減速機34は、第2アーム部17と第3アーム部18との連結部分となる関節部を構成している。この減速機34は、その軸方向と上下方向とが一致するように配置されている。また、減速機34は、ハーモニックドライブ(登録商標)であり、図5に示すように、ウェーブジェネレータ45と、サーキュラスプライン46と、フレクスプライン47とから構成されている。フレクスプライン47は、フレーム48を介して第3アーム部18の基端側に固定されている。サーキュラスプライン46は、フレーム49を介して第2アーム部17の先端側に固定されている。ウェーブジェネレータ45の下端には、第2のかさ歯車としてのかさ歯車50が固定されている。すなわち、ウェーブジェネレータ45の下端には、かさ歯車50が連結されている。かさ歯車50は、かさ歯車43と噛み合っている。 The reduction gear 34 constitutes a joint part that connects the second arm part 17 and the third arm part 18. That is, the speed reducer 34 constitutes a joint portion that is a connection portion between the second arm portion 17 and the third arm portion 18. The speed reducer 34 is arranged so that its axial direction coincides with the vertical direction. The speed reducer 34 is a harmonic drive (registered trademark), and includes a wave generator 45, a circular spline 46, and a flex spline 47 as shown in FIG. The flex spline 47 is fixed to the base end side of the third arm portion 18 via the frame 48. The circular spline 46 is fixed to the distal end side of the second arm portion 17 via the frame 49. A bevel gear 50 as a second bevel gear is fixed to the lower end of the wave generator 45. That is, the bevel gear 50 is connected to the lower end of the wave generator 45. The bevel gear 50 meshes with the bevel gear 43.
 減速機34の外周側には、減速機34で発生する塵埃が第2アーム部17および第3アーム部18の外部へ流出するのを防止するための磁性流体シール51が配置されている。また、第3アーム部18の基端側には、減速機34の中心を通過するように配置される中空軸52が固定されている。ウェーブジェネレータ45は、中空軸52の外周側に回転可能に配置されている。なお、中空軸52の内周側を利用して、所定の配線が引き回されている。 A magnetic fluid seal 51 for preventing dust generated in the speed reducer 34 from flowing out of the second arm portion 17 and the third arm portion 18 is disposed on the outer peripheral side of the speed reducer 34. Further, a hollow shaft 52 disposed so as to pass through the center of the speed reducer 34 is fixed to the proximal end side of the third arm portion 18. The wave generator 45 is rotatably arranged on the outer peripheral side of the hollow shaft 52. A predetermined wiring is routed using the inner peripheral side of the hollow shaft 52.
 (本第2の実施の形態の主な効果)
 以上説明したように、本第2の実施の形態では、ハーモニックドライブ(登録商標)である減速機34によって、モータ33の動力が減速されて第3アーム部18に伝達されている。そのため、本形態では、モータ33から第3アーム部18への動力の伝達経路において、減速比を大きくすることが可能になる。したがって、本形態では、出力の小さなモータ33を使用しても、第2アーム部17に対して第3アーム部18を回動させることが可能になり、その結果、モータ33を小型化することが可能になる。また、本形態では、ハーモニックドライブ(登録商標)である減速機34によって、モータ33の動力が減速されて第3アーム部18に伝達されているため、モータ33から第3アーム部18への動力の伝達経路において、バックラッシュを低減することが可能になる。
(Main effects of the second embodiment)
As described above, in the second embodiment, the power of the motor 33 is decelerated and transmitted to the third arm unit 18 by the speed reducer 34 that is a harmonic drive (registered trademark). Therefore, in this embodiment, it is possible to increase the reduction ratio in the power transmission path from the motor 33 to the third arm unit 18. Therefore, in this embodiment, even if the motor 33 having a small output is used, the third arm portion 18 can be rotated with respect to the second arm portion 17, and as a result, the motor 33 can be downsized. Is possible. In this embodiment, since the power of the motor 33 is decelerated and transmitted to the third arm unit 18 by the reduction gear 34 that is a harmonic drive (registered trademark), the power from the motor 33 to the third arm unit 18 is reduced. It is possible to reduce backlash in the transmission path.
 本第2の実施の形態では、第3アーム部18に、上側へ突出する突出部18aが形成されている。この突出部18aは、第3アーム部18とハンド5とが上下方向で重なっている状態において、第3アーム部18の長手方向においてハンド5の連結部19とずれた位置に形成されるとともに、ハンド5の搭載部20に接触しない高さまで上側へ突出している。また、本形態では、モータ35、37は、その出力軸が下側を向くように、第3アーム部18の内部に配置されるとともに、モータ35、37の反出力軸側の一部は、突出部18aの中に配置されている。そのため、本形態では、上下方向において、ハンド5の搭載部20と第3アーム部18との間に形成されるデッドスペースに突出する突出部18aを利用して、モータ35、37の一部を配置することが可能になる。したがって、本形態では、ハンド4、5および第3アーム部18の全体の上下方向における厚みを薄くすることが可能になる。 In the second embodiment, the third arm portion 18 is formed with a protruding portion 18a protruding upward. The protruding portion 18a is formed at a position shifted from the connecting portion 19 of the hand 5 in the longitudinal direction of the third arm portion 18 in a state where the third arm portion 18 and the hand 5 overlap in the vertical direction. It protrudes upward to a height at which it does not contact the mounting portion 20 of the hand 5. Further, in this embodiment, the motors 35 and 37 are disposed inside the third arm portion 18 so that the output shaft faces downward, and a part of the motors 35 and 37 on the side opposite to the output shaft is It arrange | positions in the protrusion part 18a. Therefore, in this embodiment, in the vertical direction, a part of the motors 35 and 37 is partially used by using the protruding portion 18a protruding in the dead space formed between the mounting portion 20 of the hand 5 and the third arm portion 18. It becomes possible to arrange. Therefore, in this embodiment, it is possible to reduce the overall thickness of the hands 4, 5 and the third arm portion 18 in the vertical direction.
 (他の実施の形態)
 上述した第2の実施の形態は、本発明の好適な形態の一例ではあるが、これに限定されるものではなく本発明の要旨を変更しない範囲において種々変形実施が可能である。
(Other embodiments)
The above-described second embodiment is an example of a preferred embodiment of the present invention, but is not limited to this, and various modifications can be made without departing from the scope of the present invention.
 上述した形態では、モータ33は、第2アーム部17の内部に配置されているが、モータ33は、第3アーム部18の内部に配置されても良い。この場合には、サーキュラスプライン46がフレーム49を介して第3アーム部18の基端側に固定され、フレクスプライン47がフレーム48を介して第3アーム部18の基端側に固定される。また、この場合には、モータ33の動力は、減速機34によって減速されて第2アーム部17に伝達される。 In the embodiment described above, the motor 33 is disposed inside the second arm portion 17, but the motor 33 may be disposed inside the third arm portion 18. In this case, the circular spline 46 is fixed to the proximal end side of the third arm portion 18 via the frame 49, and the flex spline 47 is fixed to the proximal end side of the third arm portion 18 via the frame 48. In this case, the power of the motor 33 is decelerated by the speed reducer 34 and transmitted to the second arm unit 17.
 上述した形態では、アーム6は、第1アーム部16、第2アーム部17および第3アーム部18の3個のアーム部によって構成されているが、アーム6は、2個のアーム部によって構成されても良いし、4個以上のアーム部によって構成されても良い。また、上述した形態では、第3アーム部18の先端側に2個のハンド4、5が取り付けられているが、第3アーム部18の先端側に1個のハンドが取り付けられても良い。 In the embodiment described above, the arm 6 is configured by the three arm portions of the first arm portion 16, the second arm portion 17, and the third arm portion 18, but the arm 6 is configured by the two arm portions. It may be configured by four or more arm portions. In the embodiment described above, the two hands 4 and 5 are attached to the distal end side of the third arm portion 18, but one hand may be attached to the distal end side of the third arm portion 18.
 上述した形態では、半導体製造システム9において、半導体ウエハ処理装置11は、EFEM10の後ろ側に配置されている。この他にもたとえば、半導体ウエハ処理装置11は、EFEM10の右側、左側または左右の両側に配置されても良い。たとえば、図3の二点鎖線で示すように、EFEM10の右側に半導体ウエハ処理装置11が配置されても良い。また、上述した形態では、ロボット1は、ウエハ2を搬送するためのロボットであるが、ロボット1は、液晶用のガラス基板等の他の搬送対象物を搬送するロボットであっても良い。 In the embodiment described above, in the semiconductor manufacturing system 9, the semiconductor wafer processing apparatus 11 is disposed behind the EFEM 10. In addition, for example, the semiconductor wafer processing apparatus 11 may be disposed on the right side, the left side, or the left and right sides of the EFEM 10. For example, the semiconductor wafer processing apparatus 11 may be disposed on the right side of the EFEM 10 as indicated by a two-dot chain line in FIG. In the embodiment described above, the robot 1 is a robot for transporting the wafer 2, but the robot 1 may be a robot for transporting other transport objects such as a glass substrate for liquid crystal.
 1 ロボット(水平多関節ロボット)
 2 ウエハ(半導体ウエハ、搬送対象物)
 4、5 ハンド
 6 アーム
 7 本体部
 17 第2アーム部(第2ハンド側アーム部)
 18 第3アーム部(ハンド側アーム部)
 20a 搭載面
 23 水準器
 4 ハンド(第2ハンド)
 5 ハンド(第1ハンド)
 16 第1アーム部(アーム部)
 17 第2アーム部(支持アーム部、アーム部)
 18 第3アーム部(被支持アーム部、アーム部)
 18a 突出部
 19 連結部
 20 搭載部
 26 第3アーム部回動機構(回動機構)
 27 第1ハンド回動機構
 28 第2ハンド回動機構
 33 モータ
 34 減速機(ハーモニックドライブ(登録商標))
 35 モータ(第1ハンド用モータ)
 37 モータ(第2ハンド用モータ)
 43 かさ歯車(第1のかさ歯車)
 45 ウェーブジェネレータ
 50 かさ歯車(第2のかさ歯車)
 51 磁性流体シール
1 Robot (Horizontal articulated robot)
2 Wafer (semiconductor wafer, transfer object)
4, 5 hand 6 arm 7 body part 17 second arm part (second hand side arm part)
18 Third arm (hand side arm)
20a Mounting surface 23 Level 4 Hand (second hand)
5 hands (first hand)
16 First arm part (arm part)
17 Second arm part (support arm part, arm part)
18 3rd arm part (supported arm part, arm part)
18a Protrusion part 19 Connection part 20 Mounting part 26 3rd arm part rotation mechanism (rotation mechanism)
27 First hand rotation mechanism 28 Second hand rotation mechanism 33 Motor 34 Reducer (Harmonic Drive (registered trademark))
35 Motor (motor for the first hand)
37 Motor (second hand motor)
43 Bevel gear (first bevel gear)
45 Wave generator 50 Bevel gear (second bevel gear)
51 Magnetic fluid seal

Claims (9)

  1.  水平方向にアームが動作する水平多関節ロボットにおいて、
     搬送対象物が搭載されるハンドと、前記ハンドがその先端側に回動可能に連結されるハンド側アーム部と前記ハンド側アーム部の基端側がその先端側に回動可能に連結される第2ハンド側アーム部との少なくとも2個のアーム部を有する前記アームと、前記アームの基端側が回動可能に連結される本体部とを備えるとともに、
     少なくとも前記第2ハンド側アーム部に対する前記ハンド側アーム部の回動中心軸の鉛直方向に対する傾きが調整された後に、前記ハンド、前記アームまたは前記本体部に取り付けられた水準器を備えることを特徴とする水平多関節ロボット。
    In a horizontal articulated robot whose arm moves in the horizontal direction,
    A hand on which the object to be transported is mounted, a hand side arm part to which the hand is rotatably connected to the tip side thereof, and a base end side of the hand side arm part to which the base end side is rotatably connected to the tip side. The arm having at least two arm portions with a two-hand side arm portion, and a main body portion to which a base end side of the arm is rotatably connected,
    And a level attached to the hand, the arm, or the main body after at least an inclination of a rotation central axis of the hand side arm with respect to the second hand side arm is adjusted relative to a vertical direction. A horizontal articulated robot.
  2.  前記ハンドには、前記搬送対象物が搭載される搭載面が形成され、
     前記水準器は、水平方向に対する前記搭載面の傾きが調整された後に取り付けられていることを特徴とする請求項1記載の水平多関節ロボット。
    A mounting surface on which the transport object is mounted is formed on the hand,
    The horizontal articulated robot according to claim 1, wherein the level is attached after an inclination of the mounting surface with respect to a horizontal direction is adjusted.
  3.  前記水準器は、気泡管を有する気泡管水準器であり、少なくとも前記第2ハンド側アーム部に対する前記ハンド側アーム部の回動中心軸の鉛直方向に対する傾きが調整された後に、前記気泡管内の気泡が前記気泡管に印された基準線の中に収まるように取り付けられていることを特徴とする請求項1または2記載の水平多関節ロボット。 The bubble level is a bubble tube level having a bubble tube, and at least after the inclination of the rotation center axis of the hand side arm portion with respect to the second hand side arm portion with respect to the vertical direction is adjusted, The horizontal articulated robot according to claim 1 or 2, wherein bubbles are attached so as to be within a reference line marked on the bubble tube.
  4.  前記水準器は、前記本体部に取り付けられていることを特徴とする請求項1から3のいずれか記載の水平多関節ロボット。 The horizontal articulated robot according to any one of claims 1 to 3, wherein the level is attached to the main body.
  5.  搬送対象物が搭載されるハンドと、前記ハンドがその先端側に回動可能に連結されるハンド側アーム部と前記ハンド側アーム部の基端側がその先端側に回動可能に連結される第2ハンド側アーム部との少なくとも2個のアーム部を有するアームと、前記アームの基端側が回動可能に連結される本体部と、前記ハンド、前記アームまたは前記本体部に取り付けられる水準器とを備え、水平方向に前記アームが動作する水平多関節ロボットの製造方法であって、
     少なくとも前記第2ハンド側アーム部に対する前記ハンド側アーム部の回動中心軸の鉛直方向に対する傾きを調整した後に、前記水準器を取り付けることを特徴とする水平多関節ロボットの製造方法。
    A hand on which the object to be transported is mounted, a hand side arm part to which the hand is rotatably connected to the tip side thereof, and a base end side of the hand side arm part to which the base end side is rotatably connected to the tip side. An arm having at least two arm parts with a two-hand side arm part, a main body part rotatably connected to a proximal end side of the arm, and a level attached to the hand, the arm or the main body part A method for manufacturing a horizontal articulated robot in which the arm moves in a horizontal direction,
    A method for manufacturing a horizontal articulated robot, comprising: attaching the level after adjusting an inclination of a rotation center axis of the hand side arm portion with respect to a vertical direction at least with respect to the second hand side arm portion.
  6.  水平方向にアームが動作する水平多関節ロボットにおいて、
     搬送対象物が搭載されるハンドと、互いに相対回動可能に連結される支持アーム部および被支持アーム部の少なくとも2個のアーム部を有し前記ハンドが先端側に回動可能に連結される前記アームと、前記アームの基端側が回動可能に連結される本体部と、前記支持アーム部に対して前記被支持アーム部を回動させる回動機構とを備え、
     前記回動機構は、前記支持アーム部または前記被支持アーム部の内部に出力軸の軸方向が水平方向となるように配置されるモータと、前記支持アーム部と前記被支持アーム部との連結部分となる関節部を構成するとともに前記モータの動力を減速して前記支持アーム部または前記被支持アーム部に伝達するハーモニックドライブ(登録商標)と、前記モータの前記出力軸に連結される第1のかさ歯車と、前記ハーモニックドライブ(登録商標)のウェーブジェネレータに連結され前記第1のかさ歯車と噛み合う第2のかさ歯車とを備えることを特徴とする水平多関節ロボット。
    In a horizontal articulated robot whose arm moves in the horizontal direction,
    The hand has at least two arms, that is, a hand on which the object to be transported is mounted, a support arm portion and a supported arm portion that are connected to each other so as to be rotatable relative to each other, and the hand is rotatably connected to the distal end side. The arm, a main body part to which the base end side of the arm is rotatably connected, and a rotation mechanism for rotating the supported arm part with respect to the support arm part,
    The rotation mechanism includes a motor disposed in the support arm portion or the supported arm portion so that an axial direction of an output shaft is a horizontal direction, and a connection between the support arm portion and the supported arm portion. A first part connected to the output shaft of the motor and a harmonic drive (registered trademark) that constitutes a joint part as a part and decelerates the power of the motor and transmits it to the support arm part or the supported arm part A horizontal articulated robot comprising: a bevel gear; and a second bevel gear connected to the harmonic drive (registered trademark) wave generator and meshing with the first bevel gear.
  7.  前記アームは、前記アーム部として、その基端側が前記本体部に回動可能に連結される第1アーム部と、前記第1アーム部の先端側にその基端側が回動可能に連結される前記支持アーム部としての第2アーム部と、前記第2アーム部の先端側にその基端側が回動可能に連結される前記被支持アーム部としての第3アーム部とを備え、
     前記第3アーム部の先端側に前記ハンドが回動可能に連結されていることを特徴とする請求項6記載の水平多関節ロボット。
    The arm, as the arm portion, has a first arm portion whose base end side is rotatably connected to the main body portion, and a base end side rotatably connected to the distal end side of the first arm portion. A second arm portion as the support arm portion, and a third arm portion as the supported arm portion, the base end side of which is rotatably connected to the distal end side of the second arm portion,
    The horizontal articulated robot according to claim 6, wherein the hand is rotatably connected to a distal end side of the third arm portion.
  8.  前記ハンドとして、上下方向で重なるように配置される第1ハンドおよび第2ハンドを備えるとともに、前記第3アーム部に対して前記第1ハンドを回動させる第1ハンド回動機構と、前記第3アーム部に対して前記第2ハンドを回動させる第2ハンド回動機構とを備え、
     前記第1ハンド回動機構は、前記第3アーム部の内部に配置される第1ハンド用モータを備え、
     前記第2ハンド回動機構は、前記第3アーム部の内部に配置される第2ハンド用モータを備え、
     前記第1ハンドは、前記第3アーム部に連結される連結部と、前記搬送対象物が搭載される平板状の搭載部とを備えるとともに、前記第2ハンドよりも下側に配置され、
     前記搭載部は、前記連結部の上端側から水平方向へ伸びるように形成され、
     前記第3アーム部には、上側へ突出する突出部が形成され、
     前記突出部は、前記第3アーム部と前記第1ハンドとが上下方向で重なっている状態で、前記第3アーム部の長手方向において前記連結部とずれた位置に形成されるとともに、前記搭載部に接触しない高さまで上側へ突出しており、
     前記第1ハンド用モータおよび前記第2ハンド用モータは、その出力軸が下側を向くように、かつ、その一部が前記突出部の中に配置されるように、前記第3アーム部の内部に配置されていることを特徴とする請求項7記載の水平多関節ロボット。
    The hand includes a first hand and a second hand arranged so as to overlap in the vertical direction, a first hand turning mechanism for turning the first hand with respect to the third arm portion, and the first hand A second hand rotation mechanism for rotating the second hand relative to the three arm portions,
    The first hand rotation mechanism includes a first hand motor disposed inside the third arm portion,
    The second hand rotation mechanism includes a second hand motor disposed inside the third arm portion,
    The first hand includes a connecting part connected to the third arm part and a flat mounting part on which the transport object is mounted, and is disposed below the second hand,
    The mounting portion is formed to extend in the horizontal direction from the upper end side of the connecting portion,
    The third arm portion is formed with a protruding portion protruding upward.
    The protruding portion is formed at a position shifted from the connecting portion in the longitudinal direction of the third arm portion in a state where the third arm portion and the first hand overlap in the vertical direction, and the mounting Protruding upwards to a height that does not touch the part,
    The first hand motor and the second hand motor are arranged on the third arm portion so that the output shaft faces downward and a part thereof is disposed in the projecting portion. The horizontal articulated robot according to claim 7, wherein the robot is disposed inside.
  9.  前記回動機構は、前記ハーモニックドライブ(登録商標)の外周側に配置される磁性流体シールを備えることを特徴とする請求項6から8のいずれかに記載の水平多関節ロボット。 The horizontal articulated robot according to any one of claims 6 to 8, wherein the rotation mechanism includes a magnetic fluid seal disposed on an outer peripheral side of the harmonic drive (registered trademark).
PCT/JP2014/070736 2013-08-09 2014-08-06 Horizontal multi-joint robot and production method for horizontal multi-joint robot WO2015020089A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020167002891A KR102294107B1 (en) 2013-08-09 2014-08-06 Horizontal multi-joint robot and production method for horizontal multi-joint robot
US14/899,410 US10195743B2 (en) 2013-08-09 2014-08-06 Horizontal articulated robot and method for manufacturing horizontal articulated robot
CN201480040746.3A CN105408068B (en) 2013-08-09 2014-08-06 The manufacture method of horizontal articulated robot and horizontal articulated robot
US15/854,487 US20190001500A1 (en) 2013-08-09 2017-12-26 Horizontal multi-joint robot and production method for horizontal multi-joint robot
US16/580,276 US10780586B2 (en) 2013-08-09 2019-09-24 Horizontal articulated robot with bevel gears

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201361864272P 2013-08-09 2013-08-09
US61/864,272 2013-08-09
JP2013247026A JP6374156B2 (en) 2013-08-09 2013-11-29 Horizontal articulated robot and method of manufacturing horizontal articulated robot
JP2013247029A JP6607661B2 (en) 2013-08-09 2013-11-29 Horizontal articulated robot
JP2013-247029 2013-11-29
JP2013-247026 2013-11-29

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/899,410 A-371-Of-International US10195743B2 (en) 2013-08-09 2014-08-06 Horizontal articulated robot and method for manufacturing horizontal articulated robot
US15/854,487 Division US20190001500A1 (en) 2013-08-09 2017-12-26 Horizontal multi-joint robot and production method for horizontal multi-joint robot

Publications (1)

Publication Number Publication Date
WO2015020089A1 true WO2015020089A1 (en) 2015-02-12

Family

ID=52461420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/070736 WO2015020089A1 (en) 2013-08-09 2014-08-06 Horizontal multi-joint robot and production method for horizontal multi-joint robot

Country Status (1)

Country Link
WO (1) WO2015020089A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107534007A (en) * 2015-03-03 2018-01-02 川崎重工业株式会社 Substrate conveyance robot and lining treatment system
WO2018151210A1 (en) * 2017-02-17 2018-08-23 日本電産シンポ株式会社 Speed reducer with electric motor
EP3778141A1 (en) * 2015-08-07 2021-02-17 Nidec Sankyo Corporation Industrial robot
CN112573189A (en) * 2020-12-04 2021-03-30 安徽机电职业技术学院 Intelligent industrial robot system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04304985A (en) * 1991-03-30 1992-10-28 Sanyo Electric Co Ltd Supporting device for robot
JPH0890463A (en) * 1994-09-19 1996-04-09 Kansai Electric Power Co Inc:The Horizontal articulated robot
JP2001235036A (en) * 2000-02-23 2001-08-31 Shinano Kenshi Co Ltd Magnetic fluid sealing device
JP2002264067A (en) * 2001-03-06 2002-09-18 Yaskawa Electric Corp Robot
JP2005039047A (en) * 2003-07-14 2005-02-10 Kawasaki Heavy Ind Ltd Articulated robot

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04304985A (en) * 1991-03-30 1992-10-28 Sanyo Electric Co Ltd Supporting device for robot
JPH0890463A (en) * 1994-09-19 1996-04-09 Kansai Electric Power Co Inc:The Horizontal articulated robot
JP2001235036A (en) * 2000-02-23 2001-08-31 Shinano Kenshi Co Ltd Magnetic fluid sealing device
JP2002264067A (en) * 2001-03-06 2002-09-18 Yaskawa Electric Corp Robot
JP2005039047A (en) * 2003-07-14 2005-02-10 Kawasaki Heavy Ind Ltd Articulated robot

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107534007A (en) * 2015-03-03 2018-01-02 川崎重工业株式会社 Substrate conveyance robot and lining treatment system
CN107534007B (en) * 2015-03-03 2021-02-05 川崎重工业株式会社 Substrate transfer robot and substrate processing system
EP3778141A1 (en) * 2015-08-07 2021-02-17 Nidec Sankyo Corporation Industrial robot
WO2018151210A1 (en) * 2017-02-17 2018-08-23 日本電産シンポ株式会社 Speed reducer with electric motor
JP2018132154A (en) * 2017-02-17 2018-08-23 日本電産シンポ株式会社 Speed reducer with electric motor
CN110300863A (en) * 2017-02-17 2019-10-01 日本电产新宝株式会社 Has the speed reducer of motor
EP3584466A4 (en) * 2017-02-17 2020-10-21 Nidec Shimpo Corporation Speed reducer with electric motor
US11041557B2 (en) 2017-02-17 2021-06-22 Nidec-Shimpo Corporation Speed reducer with electric motor
CN112573189A (en) * 2020-12-04 2021-03-30 安徽机电职业技术学院 Intelligent industrial robot system
CN112573189B (en) * 2020-12-04 2021-08-10 安徽机电职业技术学院 Intelligent industrial robot system

Similar Documents

Publication Publication Date Title
JP6374156B2 (en) Horizontal articulated robot and method of manufacturing horizontal articulated robot
US10780586B2 (en) Horizontal articulated robot with bevel gears
US20110135437A1 (en) Horizontal multi-joint robot and transportation apparatus including the same
KR100592064B1 (en) Articulated robot
TWI481487B (en) Industrial robots
US20140286736A1 (en) Systems, apparatus and methods for transporting substrates in electronic device manufacturing
WO2015020089A1 (en) Horizontal multi-joint robot and production method for horizontal multi-joint robot
JP5847393B2 (en) Transfer robot
KR102612257B1 (en) Horizontally articulated robot and manufacturing system
WO2015020088A1 (en) Industrial robot
JP6630162B2 (en) Industrial robot
JP6722460B2 (en) Industrial robot
US10357877B2 (en) Industrial robot with notch
JP5463174B2 (en) Joint device and substrate transfer device
KR102339973B1 (en) Industrial robot
JP5770498B2 (en) Rotation drive device and transfer device
JP2022076059A (en) Industrial robot
JP4550164B2 (en) Conveying apparatus and vacuum processing apparatus

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480040746.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14834307

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14899410

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20167002891

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14834307

Country of ref document: EP

Kind code of ref document: A1