WO2015018339A1 - 无线通信设备 - Google Patents

无线通信设备 Download PDF

Info

Publication number
WO2015018339A1
WO2015018339A1 PCT/CN2014/083788 CN2014083788W WO2015018339A1 WO 2015018339 A1 WO2015018339 A1 WO 2015018339A1 CN 2014083788 W CN2014083788 W CN 2014083788W WO 2015018339 A1 WO2015018339 A1 WO 2015018339A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
wireless communication
communication device
point
electrical length
Prior art date
Application number
PCT/CN2014/083788
Other languages
English (en)
French (fr)
Inventor
李元鹏
于亚芳
侯猛
Original Assignee
华为终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为终端有限公司 filed Critical 华为终端有限公司
Priority to EP14834561.4A priority Critical patent/EP2991363A4/en
Publication of WO2015018339A1 publication Critical patent/WO2015018339A1/zh
Priority to US14/961,397 priority patent/US20160087667A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/3827Portable transceivers
    • H04B1/3833Hand-held transceivers
    • H04B1/3838Arrangements for reducing RF exposure to the user, e.g. by changing the shape of the transceiver while in use
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/245Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with means for shaping the antenna pattern, e.g. in order to protect user against rf exposure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/378Combination of fed elements with parasitic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q1/00Details of selecting apparatus or arrangements
    • H04Q1/02Constructional details
    • H04Q1/13Patch panels for monitoring, interconnecting or testing circuits, e.g. patch bay, patch field or jack field; Patching modules
    • H04Q1/135Patch panels for monitoring, interconnecting or testing circuits, e.g. patch bay, patch field or jack field; Patching modules characterized by patch cord details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components
    • H04M1/0277Details of the structure or mounting of specific components for a printed circuit board assembly

Definitions

  • the present invention relates to communication technologies, and in particular, to a wireless communication device.
  • BACKGROUND OF THE INVENTION With the development of information technology, the public enjoys the convenience brought by information technology, and also pays attention to the damage of electromagnetic radiation of wireless communication devices to the human body.
  • the specific absorption rate hereinafter referred to as SAR
  • SAR the specific absorption rate
  • the value is an important indicator to measure the damage of electromagnetic radiation to the human body. The higher the SAR value, the greater the damage to the human body.
  • the SAR value is reduced by reducing the transmission power of the wireless communication device.
  • the transmission power of the wireless communication device is related to the communication quality, reducing the transmission power of the wireless communication device, and at the same time reducing the communication quality of the wireless communication device.
  • the prior art method reduces the communication quality of the wireless communication device while reducing the SAR.
  • Embodiments of the present invention provide a wireless communication device that reduces SAR without degrading communication quality of a wireless communication device.
  • a first aspect of the embodiments of the present invention provides a wireless communication device, including:
  • the electrical length of the first antenna is N times the electrical length of the second antenna, and the N is an integer greater than or equal to 1;
  • the first antenna and the second antenna are connected in common to the printed circuit board.
  • the first antenna and the second antenna are symmetrically disposed in a horizontal direction of the wireless communications device;
  • the first antenna and the second antenna are symmetrically disposed in a vertical direction of the wireless communication device.
  • the wireless communication Letter equipment also includes:
  • a first parasitic branch is separately disposed at a feeding end of the first antenna, and a second parasitic branch is disposed at a feeding end of the second antenna.
  • the wireless communications device is a mobile phone.
  • the wireless communication device has two antennas, that is, a first antenna and a second antenna, wherein the electrical length of the first antenna is N times the electrical length of the second antenna, and N is greater than or equal to 1.
  • An integer and the first antenna and the second antenna are connected in common on the printed circuit board, that is, the ground points of the first antenna and the second antenna are the same point, thereby reducing the first antenna and the second antenna
  • the input impedance of the grounding point is such that the energy fed from the antenna is relatively evenly distributed in the horizontal direction and the vertical direction of the printed circuit board, thereby reducing SAR without degrading the communication quality of the wireless communication device.
  • Embodiment 1 is a schematic structural diagram of Embodiment 1 of a wireless communication device according to the present invention.
  • FIG. 2 is a schematic structural diagram of a wireless communication device of the prior art
  • Embodiment 2 of a wireless communication device is a schematic structural diagram of Embodiment 2 of a wireless communication device according to the present invention.
  • Embodiment 3 of a wireless communication device is a schematic structural diagram of Embodiment 3 of a wireless communication device according to the present invention.
  • FIG. 5 is a schematic structural diagram of Embodiment 4 of a wireless communication device according to the present invention.
  • FIG. 6 is a schematic structural diagram of Embodiment 5 of a wireless communication device according to the present invention.
  • the technical solutions in the embodiments of the present invention are clearly and completely described in the following with reference to the accompanying drawings in the embodiments of the present invention.
  • the embodiments are a part of the embodiments of the invention, and not all of the embodiments. All other embodiments obtained by those skilled in the art based on the embodiments of the present invention without creative efforts are within the scope of the present invention.
  • two antennas are commonly connected on the wireless communication device, and an electrical length of one of the two antennas is N times the electrical length of the other antenna, and N is an integer greater than or equal to 1, thereby reducing
  • the input impedance of the grounding point of the two antennas is such that the energy fed from the antenna feeding point is relatively evenly distributed in the horizontal direction and the vertical direction of the printed circuit board (PCB).
  • the SAR is reduced without degrading the communication quality of the wireless communication device.
  • the horizontal direction and the vertical direction are perpendicular to each other, and both are on the same plane parallel to the plane of the PCB.
  • the wireless communication device of the present embodiment includes a mobile phone, a notebook, a tablet (PAD), and the like, and the mobile phone is taken as an example.
  • the wireless communication device includes: a first antenna 11, a second antenna 12, and a PCB board, wherein an electrical length of the first antenna 11 is N times an electrical length of the second antenna 12, N is an integer greater than or equal to 1, and An antenna 11 and a second antenna 12 are connected in common on the PCB.
  • the common connection means that the grounding point of the first antenna and the grounding point of the second antenna are the same grounding point.
  • the specific value of N is related to the size of the wireless communication device.
  • the mobile phone can take N as 1, that is, the electrical length of the first antenna is the same as the electrical length of the second antenna.
  • the first antenna and the second antenna are opposite as long as the electrical length of one of the wires is N times the electrical length of the other antenna.
  • the electrical length of the antenna differs from the physical length in that it refers to the ratio of the length of the transmission line of the antenna to the operating wavelength, while the transmission line of the antenna includes the radiating and grounding branches of the antenna (see the detailed example below).
  • the principle of reducing the input impedance of the grounding points of the two antennas is as follows. It is assumed that one of the two antennas is the first antenna and the other is the second antenna.
  • the electrical length of the second antenna is N times the electrical length of the first antenna, the first antenna and the second antenna are connected to the PCB on the common ground, and the second antenna is equivalent to an open microstrip line in parallel with the first antenna.
  • the microstrip line can be equivalent to an inductor or a capacitor.
  • the end of the microstrip line (second antenna) with one open end (the end opposite to the ground point) has an infinite input impedance, which is N times. After the point length of the first antenna, the input impedance will become small. Therefore, it is equivalent to a small impedance connected in parallel with the grounding point of the first antenna. From the basic circuit theory, the parallel impedance mainly depends on the value of the small impedance. The input impedance of the common ground connection will decrease.
  • FIG. 2 is a schematic structural diagram of a wireless communication device of the prior art, as shown in FIG. 2, wherein the first antenna and the second antenna have no N-fold relationship and/or non-co-connected, and the first antenna 21 is connected.
  • the grounding point is the grounding point 1
  • the grounding point of the second antenna 22 is the grounding point 2. Since the SAR value is related to the distribution of the energy fed from the antenna feeding point on the PCB, when the first antenna and the second antenna are non- When the ground connection is set, the input impedance of the first grounding point 1 and the input impedance of the second grounding point 2 are both very large, so that the energy fed from the antenna feeding point 1 and the antenna feeding point 2 is on the PCB board. The horizontal direction and the vertical direction are unevenly distributed.
  • two antennas are disposed on the wireless communication device, that is, the first antenna 11 and the second antenna 12, wherein the electrical length 11 of the first antenna is the electrical length of the second antenna. N times of 12, N is an integer greater than or equal to 1, and the first antenna 11 and the second antenna 12 are commonly connected to the PCB, and the grounding point of the first antenna is the same as the grounding point of the second antenna.
  • the ground point 1 and the second antenna of the first antenna can be reduced.
  • the input impedance of the grounding point 2 is such that the energy fed from the antenna is relatively evenly distributed in the horizontal direction and the vertical direction of the PCB, thereby achieving a reduction in SAR without degrading the communication quality of the wireless communication device.
  • the first antenna and the second antenna may be symmetrically arranged in the horizontal direction of the wireless communication device, or may be symmetric in the vertical direction of the wireless communication device.
  • the horizontal direction and the vertical direction of the wireless communication device are on the same plane parallel to the plane of the PCB of the wireless communication device, and the horizontal direction and the vertical direction are perpendicular to each other.
  • the first antenna and the second antenna in this embodiment may be in wireless communication.
  • the symmetrical arrangement of the device in the horizontal direction means that the electrical lengths of the first antenna and the second antenna are the same, the set position of the first antenna and the set position of the second antenna are symmetrical in the horizontal direction, and the structure of the first antenna and the second
  • the antennas are also symmetric in structure; the first antenna and the second antenna in this embodiment can be symmetrically arranged in the vertical direction of the wireless communication device, which means that the electrical lengths of the first antenna and the second antenna are the same, and the first antenna is disposed.
  • the arrangement position of the second antenna is symmetrical in the vertical direction, and the structure of the first antenna is also symmetrical with the structure of the second antenna; how to set it specifically depends on the specific specifications of the wireless communication device.
  • FIG. 3 is a schematic structural diagram of Embodiment 2 of a wireless communication device according to the present invention.
  • the first antenna and the second antenna are completely symmetrical in structure, and the set position of the first antenna and the set position of the second antenna are in a horizontal direction.
  • Symmetrical wherein the first antenna 31 and the second antenna 32 have the same electrical length, that is, when the value of N is 1, F1 is the feeding point of the first antenna, and F2 is the feeding point of the second antenna.
  • the feed point is the point at which the antenna feeds or feeds energy, and the co-location of the first antenna and the second antenna is not shown.
  • a first parasitic branch 33 is disposed at a feeding end of the first antenna 31, and a second parasitic branch 34 is disposed at a feeding end of the second antenna 32.
  • the feeding end refers to an end of the feeding point of the antenna.
  • the first parasitic branch 33 and the second parasitic branch 34 are used to extend the available bandwidth of the wireless communication device. It can be understood by those skilled in the art that the wireless communication device of the present invention may not be provided with the first parasitic branch and the second parasitic branch.
  • FIG. 4 is a schematic structural diagram of Embodiment 3 of the wireless communication device according to the present invention. In the embodiment shown in FIG. 4, the first parasitic branch and the second parasitic branch are not disposed, and the setting and non-setting of the first parasitic branch and the second parasitic branch do not affect the SAR performance of the wireless communication device of the present invention.
  • Table 1 is data tested by using the wireless communication device shown in FIG. 3 and an existing wireless communication terminal, wherein the prior art refers to having two antennas with an electrical length not N times and/or non-commonly connected.
  • the test data of the wireless communication device, the present invention refers to two antennas having the same electrical length (N is 1) and connected in common. Test data for wireless communication devices. As shown in Table 1.
  • Table 1 shows the data tested by the wireless communication device shown in FIG. 3 and the existing wireless communication terminal.
  • Channel 1, channel 2, and channel 3 are in different frequency bands.
  • TRP Total Radiated Power
  • Table 2 shows the data tested by the wireless communication device shown in Fig. 4 and the existing wireless communication terminal, as shown in Table 2,
  • Channel 1, channel 2, and channel 3 are in different frequency bands.
  • the SAR can be significantly reduced under the same Total Radiated Power (TRP).
  • TRP Total Radiated Power
  • FIG. 5 is a schematic structural diagram of Embodiment 4 of the wireless communication device according to the present invention.
  • the installation position of the first antenna and the installation position of the second antenna are symmetric in the horizontal direction.
  • This embodiment and the embodiment shown in FIG. The first antenna and the second antenna in this embodiment are completely symmetrical in structure, but the second antenna is rotated, but does not affect the SAR performance of the wireless communication device of the present invention.
  • the first antenna 51 and the second antenna 52 have the same electrical length
  • F1 is the feeding point of the first antenna
  • F2 is the feeding point of the second antenna
  • the first antenna and the second antenna are The common location is not shown.
  • a first parasitic branch 53 is provided at a feeding end of the first antenna 51, and a second parasitic branch 54 is provided at a feeding end of the second antenna 52.
  • the first parasitic branch 51 and the second parasitic branch 54 are used for expansion.
  • the available bandwidth of the wireless communication device may also not set the first parasitic branch and the second parasitic branch, and the setting and not setting of the first parasitic branch and the second parasitic branch do not affect the SAR performance of the wireless communication device of the present invention.
  • the SAR performance of the wireless communication device shown in FIG. 5 is the same as that of Table 1, and details are not described herein again.
  • FIG. 3 to FIG. 5 are only examples of the antenna setting structure of the wireless communication device of the present invention, as long as two antennas are commonly connected to each other on the wireless communication device, and the electrical length of one of the two antennas is another antenna. N times the electrical length, N is an integer greater than or equal to 1, and can achieve the effect of reducing SAR.
  • the present invention also provides a schematic structural diagram of Embodiment 5 of the wireless communication device of the present invention as shown in FIG. 6, as shown in FIG.
  • the length L1 is the radiation branch of the first antenna 61, and from the point B to the point C to the point G, is the ground line branch of the first antenna 61, wherein the point G is the co-location of the first antenna 61 and the second antenna 62, That is, the grounding point, the length L4 of the point D to the point E is the radiation branch of the second antenna 62, and the point from the point E to the point C to the point G is the ground line branch of the second antenna 62.
  • the length from point B to point C is L2, the length from point E to point C is L3, and the length from point C to point G is L5.
  • Point F1 is the feeding point of the first antenna
  • point F2 is the feeding point of the second antenna
  • the electrical length of the first antenna is N times the electrical length of the second antenna, which refers to the first antenna (L1+L2+ L5 ) / is equal to N times (L3 + L4 + L5 ) / of the second antenna, where represents the wavelength.
  • the first antenna and the second antenna are opposite, and the electrical length of the second electric wire 62 may be N times the electrical length of the first antenna 61. When N is 1, the electrical length is the same (as shown in Figure 6).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Support Of Aerials (AREA)
  • Transceivers (AREA)
  • Telephone Set Structure (AREA)

Abstract

本发明实施例提供一种无线通信设备,无线通信设备上设置两个天线,即第一天线和第二天线,其中,第一天线的电长度是第二天线的电长度的N倍,N为大于等于1的整数,并且第一天线与第二天线共地连接设置于印制电路板上,也就是,第一天线与第二天线的接地点为同一接地点,从而减小第一天线与第二天线的接地点的输入阻抗,使得从天线馈入的能量,在印制电路板的水平方向和垂直方向相对均匀分布,从而,实现在不降低无线通信设备的通信质量的情况下,降低SAR。

Description

无线通信设备 技术领域 本发明实施例涉及通信技术, 尤其涉及一种无线通信设备。 背景技术 随着信息技术的发展, 大众在享受信息技术带来的便利的同时, 也在关注无线通信 设备的电磁辐射对人体的伤害, 其中, 电磁波吸收比率 (Specific Absorption Rate , 以下简称: SAR)值是衡量电磁辐射对人体伤害的一项重要指标, SAR值越高, 对人体的 伤害越大。
为了减小电磁辐射对人体的伤害, 现有技术中, 通过降低无线通信设备的发射功率 来降低 SAR值。
然而, 无线通信设备的发射功率与通信质量相关, 降低无线通信设备的发射功率, 同时, 也相当于降低了无线通信设备的通信质量。 换句话说, 也就是, 采用现有技术的 方法在降低 SAR的同时, 也降低了无线通信设备的通信质量。 发明内容 本发明实施例提供一种无线通信设备, 实现了在不降低无线通信设备的通信质量的 情况下, 降低 SAR。
本发明实施例第一方面提供一种无线通信设备, 包括:
印制电路板;
第一天线和第二天线;
所述第一天线的电长度是所述第二天线的电长度的 N倍, 所述 N为大于等于 1的整 数;
所述第一天线与所述第二天线共地连接设置于所述印制电路板上。
结合第一方面, 在第一种可能的实现方式中, 所述第一天线与所述第二天线在所述 无线通信设备的水平方向上对称设置; 或者,
所述第一天线与所述第二天线在所述无线通信设备的垂直方向上对称设置。
结合第一方面或第一种可能的实现方式, 在第二种可能的实现方式中, 所述无线通 信设备, 还包括:
在所述第一天线的馈电端分离设置有第一寄生分支, 在所述第二天线的馈电端分离 设置有第二寄生分支。
结合第一方面或第一种可能的实现方式或第二种可能的实现方式, 在第三种可能的 实现方式中, 所述无线通信设备为手机。
本发明实施例提供的无线通信设备, 其上设置两个天线, 即第一天线和第二天线, 其中, 第一天线的电长度是第二天线的电长度的 N倍, N为大于等于 1的整数, 并且第 一天线与第二天线共地连接设置于印制电路板上, 也就是, 第一天线与第二天线的接地 点为同一点, 从而减小第一天线与第二天线的接地点的输入阻抗, 使得从天线馈入的能 量, 在印制电路板的水平方向和垂直方向相对均匀分布, 从而, 实现在不降低无线通信 设备的通信质量的情况下, 降低 SAR。 附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实施例或现有 技术描述中所需要使用的附图作一简单地介绍, 显而易见地, 下面描述中的附图是本发 明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动性的前提下, 还 可以根据这些附图获得其他的附图。
图 1为本发明无线通信设备实施例一的结构示意图;
图 2为现有技术的无线通信设备的结构示意图;
图 3为本发明无线通信设备实施例二的结构示意图;
图 4为本发明无线通信设备实施例三的结构示意图;
图 5为本发明无线通信设备实施例四的结构示意图;
图 6为本发明无线通信设备实施例五的结构示意图。 具体实施方式 为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发明实施例中 的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述的实施例 是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技 术人员在没有作出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范 围。 本发明实施例在无线通信设备上共地连接设置两个天线, 并且这两个天线中的一个 天线的电长度是另外一个天线的电长度的 N倍, N为大于等于 1的整数, 从而减小两个 天线的接地点的输入阻抗, 使得从天线馈电点馈入的能量, 在印制电路板 (Printed Circuit Board, 以下简称: PCB) 的水平方向和垂直方向相对均匀分布, 从而, 实现在 不降低无线通信设备的通信质量的情况下, 降低 SAR。 其中, 所述水平方向与垂直方向 相互垂直, 且都在与 PCB的平面平行的同一平面上。
图 1为本发明无线通信设备实施例一的结构示意图, 本实施例的无线通信设备包括 手机、 笔记本、 平板电脑 (PAD) 等, 以手机为例, 如图 1所示, 本实施例提供的无线 通信设备包括: 第一天线 11、 第二天线 12, PCB板, 其中, 第一天线 11的电长度是第 二天线 12的电长度的 N倍, N为大于等于 1的整数, 并且, 第一天线 11与第二天线 12 共地连接设置于 PCB板上,共地连接设置是指第一天线的接地点与第二天线的接地点为 同一接地点。 N的具体取值与无线通信设备的规格大小有关, 手机可以取 N为 1, 也就 是第一天线的电长度与第二天线的电长度相同。 当然, 第一天线和第二天线是相对的, 只要其中一个电线的电长度是另一个天线的电长度的 N倍即可。
天线的电长度不同于物理长度, 它是指天线的传输线的长度与工作波长之比, 而天 线的传输线包括天线的辐射分支和地线分支(后面会有详细的示例)。当两个电长度为 N 倍关系的天线公地连接设置时, 能够减小两个天线的接地点的输入阻抗的原理如下, 假 设两个天线中一个是第一天线, 一个是第二天线, 第二天线的电长度是第一天线的电长 度的 N倍, 第一天线与第二天线公地连接设置于 PCB板上, 第二天线则相当于第一天线 并联的一个开路的微带线,从微波原理基本的理论可知,微带线可以等效为电感或电容, 一端开路的微带线 (第二天线) 的末端 (与接地点相反的一端)输入阻抗无限大, 经过 N倍的第一天线的点长度后, 输入阻抗将变的很小, 因此, 相当于在第一天线的接地点 并联了一个小阻抗, 从基本电路理论可知, 并联阻抗主要取决于小阻抗的值, 因此, 公 地连接的输入阻抗会减小。
图 2为现有技术的无线通信设备的结构示意图, 如图 2所示, 其中, 第一天线与第 二天线电长度没有 N倍关系和 /或非共地连接设置, 第一天线 21的接地点为接地点 1, 第二天线 22的接地点为接地点 2, 由于 SAR值的高低与从天线馈电点馈入的能量在 PCB 板上的分布有关, 当第一天线与第二天线非共地连接设置时, 第一接地点 1的输入阻抗 与第二接地点 2的输入阻抗都非常大, 从而导致从天线馈电点 1和天线馈电点 2馈入的 能量在在 PCB板上的水平方向与垂直方向分布不均匀,由于能量在 PCB板上分布不均匀, 因此, 会存在能量比较集中的区域 (热点区域), 由于存在能量比较集中的区域, 因而 会造成无线通信设备的 SAR值高。 本发明实施例中, 如图 1所示, 通过在无线通信设备 上设置两个天线, 即第一天线 11与第二天线 12, 其中, 第一天线的电长度 11是第二天 线的电长度 12的 N倍, N为大于等于 1的整数, 并且将上述第一天线 11与第二天线 12 共地连接设置于 PCB板上, 第一天线的接地点与第二天线的接地点为同一接地点, 通过 上述设置, 相较于图 2所示的第一天线与第二天线电长度没有 N倍关系和 /或非共地连 接设置, 能够减小第一天线的接地点 1与第二天线的接地点 2的输入阻抗, 使得从天线 馈入的能量, 在 PCB板的水平方向和垂直方向相对均匀分布, 从而, 实现在不降低无线 通信设备的通信质量的情况下, 降低 SAR。
在上述实施例中,第一天线与第二天线可以在无线通信设备的水平方向上对称设置, 也可以在无线通信设备的垂直方向上对称设备。 其中, 无线通信设备的水平方向与垂直 方向在与无线通信设备的 PCB板的平面平行的同一平面上,水平方向与垂直方向相互垂 直, 本实施例的第一天线与第二天线可以在无线通信设备的水平方向上对称设置, 是指 第一天线与第二天线的电长度相同,第一天线的设置位置与第二天线的设置位置在水平 方向上对称, 并且第一天线的结构与第二天线的结构上也对称; 本实施例的第一天线与 第二天线可以在无线通信设备的垂直方向上对称设置, 是指第一天线与第二天线的电长 度相同, 第一天线的设置位置与第二天线的设置位置在垂直方向上对称, 并且第一天线 的结构与第二天线的结构上也对称; 具体如何设置, 以无线通信设备的具体规格而定。
图 3为本发明无线通信设备实施例二的结构示意图, 如图 3所示, 第一天线与第二 天线结构上完全对称, 第一天线的设置位置与第二天线的设置位置在水平方向上对称, 其中, 第一天线 31与第二天线 32具有相同的电长度, 也就是 N取值为 1时的情况, F1 为第一天线的馈电点, F2为第二天线的馈电点, 馈电点为天线馈入或馈出能量的点, 第 一天线与第二天线的共地点未示出。 在第一天线 31的馈电端分离设置有第一寄生分支 33, 在第二天线 32的馈电端分离设置有第二寄生分支 34, 馈电端是指天线的馈电点所 在的一端,第一寄生分支 33与第二寄生分支 34用于扩展无线通信设备的可用频带宽度。 本领域技术人员可以理解的是,本发明的无线通信设备也可以不设置第一寄生分支和第 二寄生分支, 如图 4所示, 图 4为本发明无线通信设备实施例三的结构示意图, 图 4所 示的实施例中没有设置第一寄生分支与第二寄生分支,第一寄生分支与第二寄生分支的 设置与不设置, 不影响本发明的无线通信设备的降 SAR性能。
表 1为采用图 3所示的无线通信设备与现有的无线通信终端测试的数据, 其中, 现 有技术, 是指具有电长度没有 N倍关系和 /或非共地连接设置两个天线的无线通信设备 的测试数据, 本发明, 是指具有电长度相同 (N取 1 ) 并且共地连接设置的两个天线的 无线通信设备的测试数据。 如表 1所示。
表 1为采用图 3所示的无线通信设备与现有的无线通信终端测试的数据
Figure imgf000007_0001
其中信道 1、 信道 2、 信道 3处于不同的频段。
从表 1可以看出, 采用本发明的无线通信设备终端, 在相同的总辐射功率 (Total Radiated Power, 以下简称: TRP) 下, 能够明显降低 SAR。
表 2为采用图 4所示的无线通信设备与现有的无线通信终端测试的数据, 如表 2所 不,
Figure imgf000007_0002
其中信道 1、 信道 2、 信道 3处于不同的频段。
从表 2可以看出, 采用本发明的无线通信设备终端, 在相同的总辐射功率 (Total Radiated Power, 以下简称: TRP) 下, 能够明显降低 SAR。
图 5为本发明无线通信设备实施例四的结构示意图, 如图 5所示, 第一天线的设置 位置与第二天线的设置位置在水平方向上对称, 本实施例与图 3所示实施例不同的是, 本实施例中的第一天线与第二天线非结构上的完全对称, 而是对其中的第二天线进行了 旋转处理, 但并不影响本发明的无线通信设备的降 SAR性能, 如图 5所示, 第一天线 51 与第二天线 52具有相同的电长度, F1为第一天线的馈电点, F2为第二天线的馈电点, 第一天线与第二天线的共地点未示出。 在第一天线 51的馈电端分离设置有第一寄生分 支 53, 在第二天线 52的馈电端设置分离有第二寄生分支 54, 第一寄生分支 51与第二 寄生分支 54用于扩展无线通信设备的可用频带宽度。 本领域技术人员可以理解的是, 本发明的无线通信设备也可以不设置第一寄生分支与第二寄生分支,第一寄生分支与第 二寄生分支的设置与不设置, 不影响本发明的无线通信设备的降 SAR性能。 图 5所示无 线通信设备的降 SAR性能与表 1的相同, 此处不再赘述。
图 1、 图 3-图 5只是对本发明无线通信设备的天线设置结构的举例说明, 只要无线通信设备上共地连接设置两个天线, 并且两个天线中的一个天线的电长度 是另一个天线的电长度的 N倍, N为大于等于 1的整数, 都能够实现降 SAR的效果。
为了更清楚的描述上述各个实施例所述的电长度, 本发明还提供了如图 6所示的本 发明无线通信设备实施例五的结构示意图,如图 6所示, A点到 B点的长度 L1为第一天 线 61的辐射分支, 从点 B到点 C再到点 G, 为第一天线 61的地线分支, 其中点 G为第 一天线 61与第二天线 62的共地点, 也就是接地点, 点 D到点 E的长度 L4为第二天线 62的辐射分支, 从点 E到点 C再到点 G为第二天线 62的地线分支。 点 B到点 C的长度 为 L2, 从点 E到点 C的长度为 L3, 另外 C到 G点的长度为 L5。 点 F1为第一天线的馈电 点, 点 F2为第二天线的馈电点, 第一天线的电长度是第二天线的电长度的 N倍, 是指 第一天线的 (L1+L2+L5 ) / 等于第二天线的 (L3+L4+L5 ) / 的 N倍, 其中, 表示波 长。 当然, 第一天线和第二天线是相对的, 也可以第二电线 62的电长度是第一天线 61 的电长度的 N倍。 当 N为 1的时候, 电长度相同 (如图 6所示)。
最后应说明的是: 以上各实施例仅用以说明本发明的技术方案, 而非对其限制; 尽 管参照前述各实施例对本发明进行了详细的说明, 本领域的普通技术人员应当理解: 其 依然可以对前述各实施例所记载的技术方案进行修改, 或者对其中部分或者全部技术特 征进行等同替换; 而这些修改或者替换, 并不使相应技术方案的本质脱离本发明各实施 例技术方案的范围。

Claims

权利要求
1、 一种无线通信设备, 其特征在于, 包括:
印制电路板;
第一天线和第二天线;
所述第一天线的电长度是所述第二天线的电长度的 N倍, 所述 N为大于等于 1的整 数;
所述第一天线与所述第二天线共地连接设置于所述印制电路板上。
2、根据权利要求 1所述的无线通信设备, 其特征在于, 所述第一天线与所述第二天 线在所述无线通信设备的水平方向上对称设置; 或者,
所述第一天线与所述第二天线在所述无线通信设备的垂直方向上对称设置。
3、 根据权利要求 1或 2所述的无线通信设备, 其特征在于, 还包括:
在所述第一天线的馈电端分离设置有第一寄生分支, 在所述第二天线的馈电端分离 设置有第二寄生分支。
4、根据权利要求 1-3任一项所述的无线通信设备, 其特征在于, 所述无线通信设备 为手机。
PCT/CN2014/083788 2013-08-06 2014-08-06 无线通信设备 WO2015018339A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14834561.4A EP2991363A4 (en) 2013-08-06 2014-08-06 WIRELESS COMMUNICATION DEVICE
US14/961,397 US20160087667A1 (en) 2013-08-06 2015-12-07 Wireless Communications Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310339216.6 2013-08-06
CN2013103392166A CN103441330A (zh) 2013-08-06 2013-08-06 无线通信设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/961,397 Continuation US20160087667A1 (en) 2013-08-06 2015-12-07 Wireless Communications Device

Publications (1)

Publication Number Publication Date
WO2015018339A1 true WO2015018339A1 (zh) 2015-02-12

Family

ID=49695015

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/083788 WO2015018339A1 (zh) 2013-08-06 2014-08-06 无线通信设备

Country Status (4)

Country Link
US (1) US20160087667A1 (zh)
EP (1) EP2991363A4 (zh)
CN (1) CN103441330A (zh)
WO (1) WO2015018339A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103441330A (zh) * 2013-08-06 2013-12-11 华为终端有限公司 无线通信设备
CN106207406A (zh) * 2016-06-24 2016-12-07 宇龙计算机通信科技(深圳)有限公司 一种mimo天线结构及移动终端
CN106452490A (zh) * 2016-10-11 2017-02-22 深圳市万普拉斯科技有限公司 调整辐射的方法及装置
CN206163692U (zh) * 2016-10-24 2017-05-10 中磊电子(苏州)有限公司 多输入多输出天线及无线装置
WO2018139691A1 (ko) 2017-01-26 2018-08-02 엘지전자 주식회사 이동 단말기
CN113471665B (zh) * 2020-03-31 2022-09-16 华为技术有限公司 一种天线及终端
CN111682324B (zh) * 2020-06-22 2022-01-21 华勤技术股份有限公司 降低天线sar的电路及方法
CN111952724B (zh) * 2020-09-28 2022-11-08 西安电子科技大学 天线模组及电子设备
CN114389005B (zh) * 2020-10-19 2023-07-28 华为技术有限公司 一种电子设备
CN113594694B (zh) * 2021-07-30 2022-10-25 联想(北京)有限公司 电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6414113A (en) * 1987-03-23 1989-01-18 Rhone Poulenc Chimie Separation of rare earth elements by liquid-liquid extraction
JP2000068736A (ja) * 1998-08-21 2000-03-03 Toshiba Corp 多周波アンテナ
CN1582106A (zh) * 2003-08-08 2005-02-16 三星电子株式会社 用于移动终端的接地装置
CN102074786A (zh) * 2009-11-19 2011-05-25 雷凌科技股份有限公司 用于电子装置的双频印刷电路天线
CN103441330A (zh) * 2013-08-06 2013-12-11 华为终端有限公司 无线通信设备

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3457351B2 (ja) * 1992-09-30 2003-10-14 株式会社東芝 携帯無線装置
JP4297012B2 (ja) * 2003-12-10 2009-07-15 パナソニック株式会社 アンテナ
US7388543B2 (en) * 2005-11-15 2008-06-17 Sony Ericsson Mobile Communications Ab Multi-frequency band antenna device for radio communication terminal having wide high-band bandwidth
KR100842082B1 (ko) * 2006-12-05 2008-06-30 삼성전자주식회사 추가 그라운드를 갖는 안테나
CA2699166C (en) * 2007-09-12 2013-03-12 Victor Rabinovich Symmetrical printed meander dipole antenna
WO2010095136A1 (en) * 2009-02-19 2010-08-26 Galtronics Corporation Ltd. Compact multi-band antennas
KR101013388B1 (ko) * 2009-02-27 2011-02-14 주식회사 모비텍 기생소자를 갖는 mimo 안테나
JP5532866B2 (ja) * 2009-11-30 2014-06-25 船井電機株式会社 マルチアンテナ装置および携帯機器
CN102426656B (zh) * 2011-08-16 2016-12-28 中兴通讯股份有限公司 降低比吸收率的多天线手机数据卡及方法
KR101293660B1 (ko) * 2011-08-29 2013-08-13 엘에스엠트론 주식회사 높은 격리도를 갖는 미모/다이버시티 안테나
US20130285857A1 (en) * 2011-10-26 2013-10-31 John Colin Schultz Antenna arrangement
KR101378847B1 (ko) * 2012-07-27 2014-03-27 엘에스엠트론 주식회사 광대역 특성을 갖는 내장형 안테나
CN103001005B (zh) * 2012-10-25 2014-12-17 中兴通讯股份有限公司 降低电磁辐射比吸收率的装置及移动终端

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6414113A (en) * 1987-03-23 1989-01-18 Rhone Poulenc Chimie Separation of rare earth elements by liquid-liquid extraction
JP2000068736A (ja) * 1998-08-21 2000-03-03 Toshiba Corp 多周波アンテナ
CN1582106A (zh) * 2003-08-08 2005-02-16 三星电子株式会社 用于移动终端的接地装置
CN102074786A (zh) * 2009-11-19 2011-05-25 雷凌科技股份有限公司 用于电子装置的双频印刷电路天线
CN103441330A (zh) * 2013-08-06 2013-12-11 华为终端有限公司 无线通信设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2991363A4 *

Also Published As

Publication number Publication date
CN103441330A (zh) 2013-12-11
EP2991363A4 (en) 2016-04-27
US20160087667A1 (en) 2016-03-24
EP2991363A1 (en) 2016-03-02

Similar Documents

Publication Publication Date Title
WO2015018339A1 (zh) 无线通信设备
JP2013051644A (ja) アンテナ装置とこのアンテナ装置を備えた電子機器
TW201909480A (zh) 天線結構
WO2021078260A1 (zh) 双频天线和飞行器
CN103825091A (zh) 超宽带定向天线
TWI398039B (zh) 多頻天線
WO2015085567A1 (zh) 一种缝隙耦合印制天线
CN105098371B (zh) 一种电子设备及其天线装置
WO2015165007A1 (zh) 一种天线装置和终端
US9160573B1 (en) Transmission line load antenna module
CN105811088B (zh) 天线装置及移动终端
CN105576352B (zh) 一种天线及终端
WO2013078793A1 (zh) 一种天线及终端
TW201304271A (zh) 天線
CN102856634B (zh) 一种适用于笔记本或平板电脑的新型宽带lte天线
CN103811867A (zh) 一种天线及终端
TWM450086U (zh) 多頻天線
KR101520223B1 (ko) 전송선 로드 안테나 모듈
JP5985725B1 (ja) 多周波アンテナ
CN106299685B (zh) 天线***
TWI628863B (zh) 天線結構及應用該天線結構的無線通訊裝置
TW201740616A (zh) 寬頻多頻雙迴路天線
Guo et al. A penta‐band folded antenna for mobile phone application
TWI542075B (zh) 應用於lte/wwan八波段等寬度平面帶線之天線裝置
TWI542074B (zh) 應用於lte/wwan八波段平面倒f型天線裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14834561

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014834561

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE