WO2015018132A1 - 一种管状跟踪聚光光伏组件 - Google Patents

一种管状跟踪聚光光伏组件 Download PDF

Info

Publication number
WO2015018132A1
WO2015018132A1 PCT/CN2013/085658 CN2013085658W WO2015018132A1 WO 2015018132 A1 WO2015018132 A1 WO 2015018132A1 CN 2013085658 W CN2013085658 W CN 2013085658W WO 2015018132 A1 WO2015018132 A1 WO 2015018132A1
Authority
WO
WIPO (PCT)
Prior art keywords
concentrating
photovoltaic module
tubular
tubular tracking
concentrating photovoltaic
Prior art date
Application number
PCT/CN2013/085658
Other languages
English (en)
French (fr)
Inventor
刘庆云
Original Assignee
Liu Qingyun
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liu Qingyun filed Critical Liu Qingyun
Publication of WO2015018132A1 publication Critical patent/WO2015018132A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/052Cooling means directly associated or integrated with the PV cell, e.g. integrated Peltier elements for active cooling or heat sinks directly associated with the PV cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/008Circuit arrangements for ac mains or ac distribution networks involving trading of energy or energy transmission rights
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/30Supporting structures being movable or adjustable, e.g. for angle adjustment
    • H02S20/32Supporting structures being movable or adjustable, e.g. for angle adjustment specially adapted for solar tracking
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/10The network having a local or delimited stationary reach
    • H02J2310/12The local stationary network supplying a household or a building
    • H02J2310/14The load or loads being home appliances
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving

Definitions

  • the invention relates to a photovoltaic power generation assembly, in particular to a tubular concentrating photovoltaic module capable of tracking solar rays. Background technique
  • photovoltaic power generation components are the main components for photoelectric conversion, and are also the largest part of the cost of photovoltaic power generation systems.
  • the mainstream photovoltaic modules are all plate-shaped photovoltaic modules, which directly package the photovoltaic cells in the glass plates, and generate electricity by receiving sunlight rays of normal irradiation intensity.
  • most of the cost of photovoltaic modules comes from photovoltaic cells, and the cost of batteries is hard to be greatly reduced, resulting in high cost of photovoltaic systems.
  • plate-shaped photovoltaic modules are easily affected by wind and need to be sturdy.
  • the metal bracket is fixed and the cost is high.
  • a large shaded area is formed at the rear of the light receiving surface of the photovoltaic module, which seriously affects the lighting of the rear space and hinders the installation of the photovoltaic module.
  • the concentrating photovoltaic module uses an optical concentrating system to concentrate the solar light to a certain multiple and then illuminate the photovoltaic cell module to generate electricity, which can save a lot of battery cost.
  • tracking by the concentrating system can achieve higher power generation efficiency of the concentrating photovoltaic module, the movement tracking device needs to be added during the general concentrating tracking process, which not only increases part of the cost, but also is produced and installed due to the motion tracking device.
  • the sunlight is concentrated by the concentrating system, the light density received by the photovoltaic module is greatly increased.
  • the heat dissipation of the photovoltaic module must be increased. There is data showing that the power generation efficiency decreases every time the temperature of the photovoltaic cell rises rc.
  • transmissive concentrating tends to use an organic material lens such as a Fresnel lens structure.
  • the Fresnel lens structure is often formed by injection of a polyolefin material, and the organic material is inevitably exposed to sunlight, causing aging and a decrease in light transmittance. , affecting the life and efficiency of concentrating photovoltaic modules.
  • the general concentrating photovoltaic module has a high multiple (from seven times to more than one thousand times) and can only receive direct light and a small amount of scattered light, regardless of Fresnel transmissive or parabolic reflective structure.
  • the scattered light of the optical system is not able to reach the surface of the photovoltaic cell module due to the large angle from the optical axis of the collecting light.
  • solar radiation contains more scattered light. If the scattered light cannot be effectively received, it will have a large impact on the annual power generation of the unit power component, resulting in a decrease in overall annual power generation efficiency and an increase in the power generation cost per unit photovoltaic module.
  • the tubular structure of the photovoltaic module has good mechanical strength, especially the transparent glass tube outer casing has the advantages of light weight, low cost, excellent sealing performance, good weather resistance, strong self-supporting force and long service life. Summary of the invention
  • the object of the present invention is to overcome the problems of the conventional flat-panel photovoltaic module described above, the high cost of the steel frame support and packaging, the high cost of the steel frame support and the packaging, the inconvenient installation, and the complicated structure and the high manufacturing cost of the conventional concentrating photovoltaic module.
  • the implementation of single-axis or dual-axis motion tracking is costly, long-term operational reliability is not high, and conventional concentrating photovoltaic modules can only receive direct light and other problems to provide a tubular tracking concentrating photovoltaic module.
  • a tubular tracking concentrating photovoltaic module provided by the present invention comprises a concentrating system, a photovoltaic cell assembly and a heat dissipating device in good thermal contact with the photovoltaic cell assembly, wherein the tubular tracking concentrating photovoltaic module has two ends closed The glass tube casing, and the tubular tracking concentrating photovoltaic module implements a light-receiving surface for sunlight tracking to implement efficient concentrating power generation.
  • the angle at which the conventional trough parabolic concentrating photovoltaic module needs to be tracked around the north-south axis rotation is defined as ⁇ , and the ⁇ value described in the present invention may be specifically the sun ray.
  • the length of the glass tube casing of the tubular tracking concentrating photovoltaic module exceeds 2.5 meters; preferably, the length of the glass tube casing of the tubular tracking concentrating photovoltaic module exceeds 5 meters, which can fully utilize the strength and self-sufficiency of the glass tube casing Supporting ability, simplifying the installation process, saving material and labor costs, while minimizing the proportion of the non-effectively utilized parts of the concentrating photovoltaic module in the overall length, reducing the effect of the end effect.
  • the glass tube outer casing has a diameter ranging from 30 mm to 200 mm.
  • the diameter of the glass tube casing ranges from 45 mm to 150 mm, and the thickness of the glass tube outer wall can be reduced while minimizing the light receiving area to reduce the cost.
  • the photovoltaic cells constituting the photovoltaic cell module are a single crystal silicon battery, a polycrystalline silicon battery, a cadmium telluride battery, or a CIGS thin film solar battery.
  • the photovoltaic cell is a monocrystalline silicon cell or a polycrystalline silicon cell fabricated by standard general materials and processes or a photovoltaic cell having only different sizes and leads formed by cutting or combining the above two kinds of cells to fully digest Utilize the existing PV industry capacity.
  • the concentrating system is a low-concentration compounding compound parabolic collector (CPC), and the optical reflecting surface is arranged on the side of the bottom photovoltaic cell assembly, and the incident light in a certain angular range is effectively reflected to
  • the surface of the photovoltaic cell forms a concentrating effect; the photovoltaic cell component directly faces the incident direction of the solar ray, and can directly receive a relatively high proportion of direct and scattered light without reflection by the concentrating optical system, thereby improving the light utilization efficiency of the concentrating photovoltaic module. , increase power generation.
  • the compound parabolic concentrating system is a one-dimensional compound parabolic concentrating system, and optical reflection surfaces on the left and right sides of the photovoltaic cell are arranged in an elongated shape along the axial direction of the glass tube casing, and the circumference of the glass tube casing is The direction (or diametrical direction) is concentrated, and the light is not concentrated in the axial direction of the glass tube casing, so that one-dimensional linear concentrating is realized, which is simple and reliable, and can obtain better economy and practicability.
  • the concentrating magnification of the compound parabolic concentrating system is designed to be 2.5 to 5 times, so that the cost of the photovoltaic cell can be reduced at the same time, the optical tolerance angle is maintained, the design difficulty of the heat sink is reduced, and the solar light is efficiently received.
  • the advantage is that the concentrating magnification is defined as the ratio of the entrance width of the concentrating optical system to the width of the photovoltaic module.
  • the higher concentrating ratio can reduce the cost of the battery, the higher concentrating will put forward some special requirements for the photovoltaic cell. Under normal circumstances, after the concentrating more than 5 times, the impact of the continuous decrease of the battery cost on the system cost is not obvious. At the same time, the higher magnification of the collecting optics has a small tolerance angle.
  • the concentrating magnification of the composite parabolic concentrating system is 2.5 to 3.5 times; the single crystal or polycrystalline silicon battery produced by using the photovoltaic cell material and the process under the concentrating magnification can fully satisfy the use requirement, thereby being able to greatly Reduce battery cost in concentrating photovoltaic modules.
  • the concentrating system still has good tracking tolerance, has a good concentrating effect, and has good heat dissipation, and the overall cost of the system is reduced.
  • the optical parabolic reflecting surface of the compound parabolic concentrating system is optimally designed, that is, the multi-fold plane combined mirror surface fitting formed by using more than one plane mirror surface is replaced, so that the light concentrated on the photovoltaic cell is not As for excessive concentration, the distribution is more uniform, achieving better luminescence effect, protecting photovoltaic cells from damage and improving power generation efficiency.
  • the multi-fold plane combined mirror surface is formed by splicing (for example, bonding) of more than one plane glass lens, which has the advantages of simple structure, high strength, low manufacturing cost and good reflectivity.
  • the planar mirror surface has a mirror front reflective film layer, for example, the flat glass lens has a mirror front reflective film layer, which can reduce solar light transmission absorption, protect the mirror base body, and improve reflectance, and reduce the mirror body.
  • the light leakage caused by the thickness increases the reflected light received by the photovoltaic cell assembly and improves the power generation efficiency of the photovoltaic cell module.
  • the photovoltaic cell assembly of the tubular tracking concentrating photovoltaic module is arranged to face the light, and the tubular tracking concentrating photovoltaic module is arranged in the north-south axis direction to track the sun rays in the east-west direction.
  • tubular tracking concentrating photovoltaic module is arranged to face the light, and the rotation axis of the glass tube outer casing is arranged at an angle to the horizontal plane, for example, in the high latitude region of the northern hemisphere, fixed in the north-south axis direction, and arranged in a south low north height. .
  • the rotation axis of the glass tube outer casing of the tubular tracking concentrating photovoltaic module is arranged at a local latitude angle with the horizontal plane (polar axis arrangement), for example, in the high latitude region of the northern hemisphere, fixed in the north-south axis direction, and is south low and north high. Arrangement.
  • the two end positions of the glass tube outer casing or the wall near the two end positions include two extraction electrodes, and the extraction electrodes are located from the two end positions of the glass tube outer casing or near two The end of the pipe wall is led out.
  • more than one of the tubular tracking concentrating photovoltaic modules are arranged in a parallel array to form a series connection in series or parallel or series and parallel, that is, more than one of the tubular tracking concentrating photovoltaic modules are arranged in a parallel array, in series, Parallel or series-parallel string connection forms a low-concentration photovoltaic module array.
  • this string connection mode i.e., the array
  • adjacent ends of the tubular tracking concentrating photovoltaic module are directly connected by the extraction electrodes, and the size thereof is short, which can save the cost of the connection cable of the photovoltaic power generation system.
  • the photovoltaic cell assembly is overlapped to cover the bus bar, thereby improving the utilization rate of the concentrated light and improving the power generation efficiency.
  • the heat dissipating device is made of a material having good thermal conductivity, such as an aluminum sheet, and the aluminum sheet has good thermal contact with the photovoltaic cell assembly, such as an aluminum sheet closely attached to the back of the photovoltaic cell assembly, the aluminum sheet
  • the extension portion is disposed on the inner wall surface of the glass tube outer casing from the light portion, and effectively diffuses the heat of the photovoltaic cell to the wall of the glass tube outer casing.
  • the present invention also provides an array of tubular tracking concentrating photovoltaic modules formed by parallel arrays of one or more tubular tracking concentrating photovoltaic modules as described above, in parallel tracking drive.
  • the invention also provides an array of tubular tracking concentrating photovoltaic modules, which are formed by parallel arrangement of one or more tubular tracking concentrating photovoltaic modules as described above, in series, parallel or series-parallel connection, wherein the tubular tracking concentrating photovoltaic Adjacent ends of the assembly are directly connected by the extraction electrodes.
  • 1 is a schematic view showing a cross-sectional structure of a tubular tracking concentrating photovoltaic module
  • 2 is a schematic view showing the received light of a tubular tracking concentrating photovoltaic module
  • FIG. 3 is a schematic view showing the internal structure of a tubular tracking concentrating photovoltaic module
  • Figure 4-1 and Figure 4-2 show the comparison of the effects of the concentrating system on the luminescence of photovoltaic modules.
  • FIG. 5 is a schematic diagram of overlapping of photovoltaic cell components of a tubular tracking concentrating photovoltaic module
  • FIG. 6 is a schematic view showing a series connection of photovoltaic cell modules of a tubular tracking concentrating photovoltaic module
  • Figure 7-1 is a schematic diagram showing the angular arrangement of the north-south axis of the tubular tracking concentrating photovoltaic module
  • Figure 7-2 is a schematic view showing the structure of the main direction of Figure 7-1;
  • Figure 7-3 is a partial enlarged view of Figure 7-2;
  • FIG. 8 is a schematic diagram of a unified rotating structure of a tubular tracking concentrating photovoltaic module array
  • Figure 9-1 is a schematic view showing the structure of a first example of a tubular tracking concentrating photovoltaic module
  • Figure 9-2 is a schematic view showing the structure of a second example of a tubular tracking concentrating photovoltaic module array. detailed description
  • FIG. 1 is a schematic illustration of the cross-sectional structure of a tubular tracking concentrating photovoltaic module.
  • the tubular tracking concentrating photovoltaic module of the present invention comprises a concentrating system, such as a one-dimensional concentrating system 102, a photovoltaic cell assembly 103, and a thermal contact with the photovoltaic cell assembly 103 disposed on the back of the photovoltaic cell assembly 103.
  • the tubular tracking concentrating photovoltaic module has a glass tube shell 101; and a conventional north-south axis arrangement for single-axis tracking one-dimensional linear concentrating, for example, defining a conventional trough parabolic concentrating photovoltaic module
  • the angle of rotation required to rotate around the north-south axis is ⁇ .
  • the ⁇ value described in the present invention may specifically be the angle between the ray vector projected by the solar ray to the east-west plane and the normal vector of the horizontal plane (for example, the uniaxial tracking is arranged for the east-west axis) Then, the value of ⁇ can be specifically the angle between the ray vector projected by the sun ray to the north-south plane and the normal vector of the horizontal plane).
  • the one-dimensional concentrating system 102 is symmetrically distributed on both sides of the photovoltaic cell assembly 103, and the heat-dissipating aluminum sheet 104 is in good thermal contact with the photovoltaic cell assembly 103.
  • the heat-dissipating aluminum sheet 104 is closely disposed on the back of the photovoltaic cell module 103, and the extension thereof Partially disposed on the inner wall surface of the glass tube outer casing 101 without the light portion, the heat of the photovoltaic cell is effectively diffused onto the inner wall of the glass tube outer casing 101 to achieve a cooling effect.
  • the glass tube outer casing 101 is sealed at both ends into a sealed structure, which has high light transmittance, good self-supporting strength, low cost, long service life, and good isolation of the external environment to the internal components (one-dimensional concentrating system 102, photovoltaic The influence and destruction of the battery assembly 103, the heat sink, and the like.
  • the length of the glass tube casing 101 of the tubular tracking concentrating photovoltaic module exceeds 2.5 meters; preferably, the length of the glass tube casing 101 of the tubular tracking concentrating photovoltaic module exceeds 5 meters, and the glass tube casing can be fully utilized.
  • Strength and self-supporting ability simplifying the installation process, saving material and labor costs, while minimizing the proportion of the non-effectively utilized parts of the concentrating photovoltaic module in the overall length, reducing the effect of end effects and further reducing costs.
  • the diameter of the glass tube casing 101 ranges from 30 mm to 200 mm; preferably, The diameter of the glass tube casing 101 ranges from 45 mm to 150 mm.
  • the thickness of the glass tube outer wall is reduced, and the wall thickness is controlled within 3 mm, preferably within 2 mm or even 1.5 mm. To reduce costs.
  • FIG. 2 is a schematic diagram of the scattered light reception of a tubular tracking concentrating photovoltaic module.
  • a concentrating system 202 is disposed inside the glass tube housing 201, and the concentrating system 202 may be a Compound Parabolic Collector (CPC system), and the compound parabolic concentrating system may be Low concentration ratio compound parabolic concentrating system.
  • the optical reflecting surface of the concentrating system 202 is disposed on both sides of the photovoltaic cell assembly 203, and can reflect all incident light in a certain angular range to the surface of the photovoltaic cell to achieve a concentrating effect, and the angular range is called the capacity of the concentrating system 202.
  • the range of the difference angle (that is, the incident angle of part of the solar ray that is not directly incident on the surface of the photovoltaic cell module due to tracking accuracy or other reasons, if it is within the range of angles, the sunlight may be re-applied after one or more reflections.
  • the photovoltaic cell component directly faces the incident direction of the solar light, and can receive a relatively high proportion of direct light and scattered light without reflection by the collecting optical system, thereby improving the light utilization of the tubular tracking concentrating photovoltaic module. Rate, increase power generation.
  • the angle of the sun's scattered light is a Gaussian distribution with the incident angle of the direct light. It is not an isotropic distribution at the incident angle.
  • the angle of the scattered light of most of the energy is within a certain range of angles close to the direct solar ray angle.
  • the concentrating system of the present invention performs precise tracking of the solar rays, and the direct light and most of the scattered light can be efficiently received and efficiently generated, so that it can be inferred that the tubular tracking concentrating light of the present invention is more in the case of scattered light.
  • Photovoltaic modules can also effectively receive high-density scattered light for power generation. In most areas, especially in urban areas where distributed photovoltaic systems are deployed, solar radiation contains more scattered light, and a very small amount of received light will have an impact on the annual power generation of the unit power module. Large, overall reducing annual power generation efficiency, but also increasing the cost of power generation per unit of photovoltaic modules.
  • the internal structure of the tubular tracking concentrating photovoltaic module includes a photovoltaic cell assembly 303 and a compound parabolic concentrating system 302; the composite parabolic concentrating system 302 is a one-dimensional compound parabolic concentrating system, and the photovoltaic cell assembly 303 is two
  • the optical reflecting surface of the side is arranged in an elongated strip along the axial direction of the glass tube outer casing, condensing in the circumferential direction (or diametrical direction) of the glass tube outer casing, and not concentrating in the axial direction of the glass tube outer casing, realizing one-dimensional Linear concentrating for better economy and practicality.
  • the compound parabolic concentrating system 302 can be a multi-fold plane mirror formed by sequentially bonding a plurality of flat glass lenses.
  • the utility model has the advantages of simple structure, low manufacturing cost and good concentrating effect, and the flat glass mirror is a mirror front reflective film layer, which can reduce the transmission of sunlight, improve the reflectivity of the mirror, and reduce the light leakage through the thickness section of the glass plate. Increase the reflected light received by the photovoltaic module and improve the power generation efficiency of the photovoltaic module.
  • FIG. 4-1 and Figure 4-2 show the comparison of the effects of the concentrating system on the luminescence of photovoltaic modules.
  • the sunlight incident on the inside of the glass tube casing passes through the collection of the concentrating system 411 symmetrically arranged on both sides of the photovoltaic cell assembly 403, and is reflected to the photovoltaic cell assembly 403 for power generation, and the concentrating system 411
  • the concentrating rate is designed to be 2.5 ⁇ 5 times, which can reduce the cost of photovoltaic cells, maintain a certain optical tolerance angle, and reduce the difficulty of designing the heat sink.
  • the concentrating ratio is defined as the ratio of the entrance width of the concentrating optical system to the width of the photovoltaic module; while the excessive concentrating ratio can reduce the battery cost, the higher concentrating will put some special requirements on the photovoltaic cell, and at the same time higher
  • the multiple concentrating optical system has a small tolerance angle. Under normal circumstances, after the concentrating magnification exceeds 5 times, the impact of the battery cost reduction on the system cost is not obvious. In addition, in order to solve the heat dissipation problem caused by the higher multiple concentrating It is necessary to increase the heat dissipation device with better performance, resulting in an increase in system cost.
  • the concentrating ratio of the concentrating system 411 is 2.5 to 3.5 times; the single crystal silicon or polycrystalline silicon battery produced by the ordinary photovoltaic cell material and process at the concentrating magnification can fully satisfy the use requirements.
  • the cost of the battery in the concentrating photovoltaic module has been greatly reduced, and the heat dissipation is good, and the cost of the concentrating photovoltaic module is low.
  • the nominal efficiency of photovoltaic cells is the photovoltaic cell power generation efficiency measured under standard lighting conditions. In practical applications, the normal light intensity is generally lower than the standard light intensity, especially in cities suitable for distributed installation of photovoltaic systems. Most of the time, the light intensity is much lower than the standard light intensity.
  • the actual power generation efficiency of the photovoltaic cell under the standard light intensity is lower than the nominal efficiency under the standard light condition, and is higher than the standard light intensity.
  • the actual power generation efficiency under light intensity conditions is higher than the nominal efficiency.
  • the tubular tracking concentrating photovoltaic module of the present invention provides 2.5 to 5 times, especially 2.5 to 3.5 times, of the concentrating effect, which can precisely raise the normal light intensity generally lower than the standard illumination to an appropriate level exceeding the standard light intensity.
  • the ordinary light intensity is very good (to reach the standard light intensity)
  • the battery will not be damaged due to the high convergence rate, and the photovoltaic battery can always work to reach and exceed the nominal conversion efficiency, and improve the power generation efficiency of the concentrating photovoltaic module. .
  • the concentrating system 411 is a compound parabolic concentrating system, and the optical parabolic reflecting surface of the compound parabolic concentrating system is optimally designed, that is, formed by sequentially bonding one or more plane mirrors at an angle
  • the multi-fold plane mirror surface fitting is replaced, so that the light concentrated on the photovoltaic cell is not excessively concentrated, and the distribution is relatively uniform, achieving a better luminescence effect, protecting the photovoltaic cell from damage and improving power generation efficiency.
  • the incident light at a certain angle is reflected by the plane mirror to the photovoltaic cell assembly with a width dl, and the light incident on the photovoltaic cell assembly is parallel incident light.
  • Figure 4-2 shows the optical parabolic reflector of a compound parabolic concentrating system for accuracy
  • light of the same angle is incident on the optical parabolic reflecting surface 412 of the compound parabolic concentrating system at the same position, and is reflected by the optical parabolic reflecting surface to the photovoltaic cell assembly 403, and the width formed on the photovoltaic cell assembly 403 is d2, very Obviously d2 is less than dl, the photovoltaic cell assembly 403 receives a concentrated light, the focal spot is small, and more heat is generated in a smaller area of the photovoltaic cell assembly 403, which is a huge heat dissipation for the photovoltaic cell assembly.
  • the test; and the photovoltaic cell module does not have a good solar absorption effect on the non-uniform hook, which will cause the local battery temperature to be too high, forming a bright spot, causing the battery to fail or even turning the photovoltaic cell component into a load, and the output power is unstable and greatly reduced. small.
  • FIG. 5 is a schematic diagram of the overlapping of photovoltaic cell components of a tubular tracking concentrating photovoltaic module.
  • the photovoltaic cell module 503-1 and the photovoltaic cell module 503-2 are obliquely overlapped to cover the bus bar 509, thereby improving the utilization ratio of the concentrated light and improving the power generation efficiency.
  • the photovoltaic cells constituting the photovoltaic cell module are single crystal silicon cells, polycrystalline silicon cells, cadmium telluride cells or CIGS thin film solar cells.
  • the photovoltaic cell is a single crystal silicon cell or a polycrystalline silicon cell fabricated by standard general materials and processes or a photovoltaic cell having only different sizes and bus leads formed by cutting or combining the above two kinds of cells, so as to fully digest and utilize There is capacity in the photovoltaic industry.
  • FIG. 6 is a schematic illustration of a series connection of photovoltaic cell assemblies of a tubular tracking concentrating photovoltaic module of the present invention.
  • the photovoltaic cell module is a series combination structure formed of a plurality of photovoltaic cells, each of the series cells is arranged along the length of the glass tube casing.
  • the photovoltaic cell assembly includes a plurality of photovoltaic cells, and the heat dissipating devices at the bottom of each cell are insulated from each other.
  • the photovoltaic cell unit 603 includes a photovoltaic cell 603 and a heat dissipating aluminum sheet 604.
  • the upper portion of the photovoltaic cell 603 is a negative electrode and the lower portion is a positive electrode.
  • the photovoltaic cell 603 is not insulated from the heat dissipating aluminum sheet 604, that is, the heat dissipating aluminum sheet 604 is a positive electrode.
  • the heat dissipating aluminum sheet 604 is connected to the upper portion of the photovoltaic cell 613 of the next photovoltaic cell unit through a connection structure 608, in which each photovoltaic cell unit in the photovoltaic cell module is arranged such that the photovoltaic cell units of the photovoltaic cell module are connected in series
  • the electrical energy is output from both ends of the photovoltaic cell assembly.
  • Figure 7-1 is a schematic view showing the structure of the tubular tracking concentrating photovoltaic module in the north-south axis direction.
  • the tubular tracking concentrating photovoltaic module 720 includes a glass tube housing 713, a sealing joint 714 disposed at both ends of the glass tube housing 713, and a photovoltaic cell assembly 711 disposed at an intermediate position.
  • the photovoltaic cell assembly 711 of the tubular tracking concentrating photovoltaic module is arranged to face the light, and the tubular tracking concentrating photovoltaic module is arranged in the north-south axis direction, performing solar ray tracking in the east-west direction, and the rotation axis and the horizontal plane of the glass tube casing 713 Arranged at an angle, for example, in the high latitudes of the northern hemisphere, fixed in the direction of the north-south axis, and arranged in a south-lower north.
  • the axis of rotation of the glass tube casing 713 of the tubular tracking concentrating photovoltaic module is arranged at an angle of the local latitude to the horizontal plane, and the tracking energy of the tubular tracking concentrating photovoltaic module is synchronized with the time angle; for example, the time angle of the day ⁇ (the time angle ⁇ is a function of local time, longitude and time difference, and the hook speed changes by 15 ° per hour as the time hooks change), that is, the tracking angle ⁇ value is numerically equal to The angle ⁇ , which needs to be rotated 15° per hour, rotates from east to west.
  • Figure 7-2 is a schematic diagram of the main direction structure of Figure 7-1. As shown in Figure 7-2, the figure shows the state of the tubular tracking concentrating photovoltaic module rotating to an instant, and the optical parabolic reflecting surface of the composite parabolic concentrating system of the tubular tracking concentrating photovoltaic module is optimized.
  • the multi-fold plane combined mirror surface fitting formed by sequentially bonding more than one plane mirror surface angle is used instead, so that the light concentrated on the photovoltaic cell is not excessively concentrated, and the distribution is relatively uniform, achieving a better hooking effect.
  • the multi-fold plane combined mirror surface is formed by bonding more than one plane glass lens, which has the advantages of simple structure, high strength, low manufacturing cost and good reflectivity.
  • the figure also shows that the width of the photovoltaic cell module is ⁇ , and the width of the concentrating photovoltaic system is 3.5 ⁇ .
  • the concentrating magnification of the tubular tracking concentrating photovoltaic module is 3.5, and the concentrating magnification adopts ordinary photovoltaic cell materials and
  • the single crystal silicon or polycrystalline silicon battery produced by the process can fully meet the requirements of use.
  • the cost of the battery in the concentrating photovoltaic module has been greatly reduced, and the heat dissipation is good, and the cost is very low, which can be generally lower than the standard illumination.
  • the normal light intensity convergence is raised to an appropriate level above the standard light intensity.
  • the battery will not be damaged due to the high convergence rate, and the photovoltaic battery can always work at and above the nominal.
  • the state of conversion efficiency improves the power generation efficiency of concentrating photovoltaic modules.
  • Figure 7-3 is a partial enlarged view of Figure 7-2.
  • the plane mirror surface (specifically, the flat glass lens) has a mirror front reflective film layer, which can reduce the transmission and absorption of sunlight, protect the mirror base, improve the reflectivity, and reduce the thickness of the mirror body.
  • the light leakage increases the reflected light received by the photovoltaic cell and improves the power generation efficiency of the photovoltaic cell module.
  • the incident light passes through the junction of the plurality of flat glass lenses of the concentrating system, because the front mirror reflection layer of the plane mirror reflects the light into c light, and the c light finally reaches the photovoltaic cell.
  • the surface of the component, and the mirror-reflecting film layer using the plane mirror surface will pass through the connection gap of the flat glass lens to become light d, and cannot reach the surface of the photovoltaic cell module.
  • the mirror front reflective film layer of the flat glass lens can reflect the light into the light f and enter the surface of the photovoltaic cell assembly, and the mirror reflective film layer passing through the flat glass lens will The light is reflected as light e, which is incident on the back of the photovoltaic cell module, so that the photovoltaic cell module does not receive this part of the sun's rays.
  • Figure 8 is a schematic view showing the unified rotating structure of the tubular tracking concentrating photovoltaic module array of the present invention.
  • the array of this embodiment includes a plurality of tubular tracking concentrating photovoltaic modules, each of which is arranged in a parallel array, and the parallel tracking drive, for example, the number of groups of tubular tracking concentrating photovoltaic modules is six groups, that is, tubular tracking concentrating Photovoltaic assembly 821 - tubular tracking concentrating photovoltaic assembly 823.
  • the tubular tracking concentrating photovoltaic modules of the plurality of arrays are arranged in a horizontal east-west arrangement or a horizontal north-south axis arrangement or a north-south axis inclination angle, and preferably the north-south axis inclination angle is a local latitude angle, and is arranged in a sunny direction.
  • the horizontal tracking concentrating photovoltaic module 821 to the tubular concentrating photovoltaic module 823 are arranged in parallel on the same rotating support, and rotate around the same rotating central axis 807 to perform solar ray tracing. , converts incident sunlight into electrical energy and outputs it.
  • the tubular tracking concentrating photovoltaic module array is arranged to be driven by a driving device, and each of the tubular tracking concentrating photovoltaic modules rotates about its own central rotating axis. This unified tracking implementation simplifies the tracking mechanism and reduces tracking costs.
  • Figure 9-1 is a schematic view of the first example of a tubular tracking concentrating photovoltaic module array.
  • the two electrodes of the tubular tracking concentrating photovoltaic module respectively lead the power line 908 and the power source from the end of the glass tube housing 901 or the tube wall near the two end positions.
  • Line 909 more than one of the tubular tracking concentrating photovoltaic modules are arranged in a parallel array, and an array is formed in series, parallel or series-parallel string connection, and adjacent ends of the tubular tracking concentrating photovoltaic modules are formed by the electrodes Direct connection, which is short in size, saves the cost of connecting cables for photovoltaic systems.
  • the glass tube outer casing 901 of each tubular tracking concentrating photovoltaic power generation assembly has a length of 5 m, an outer diameter of 70 mm, and a glass tube outer casing thickness of 2 mm; each of the two tubular tracking concentrating photovoltaic power generation components form a U-shaped Structure, each U-shaped structure only needs 0.2m self-contained cable connection, and each 10 U-shaped structures form a complete array of tubular tracking concentrating photovoltaic power generation components; multiple similar tubular tracking concentrating photovoltaic power generation components juxtaposed confluence On the bus, the power transmission of a small number of cables is implemented.
  • Figure 9-2 is a schematic view showing the structure of a second example of a tubular tracking concentrating photovoltaic module array. As shown in Figure 9-2, each of the two or more tubular tracking concentrating photovoltaic power generation components are arranged in series, and two or more sets of tubular tracking concentrating photovoltaic power generation components arranged in series are arranged in parallel to form an array unit, and the plurality of identical array units are mutually connected. Parallel connection of the electrical energy generated by the photovoltaic cells to the outside of the system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种管状跟踪聚光光伏组件包括聚光***(102)、光伏电池组件(103)及与光伏电池组件(103)良好导热接触的散热装置(104),其特征在于,管状跟踪聚光光伏组件(103)具有两端封闭的玻璃管外壳(101),并且聚光光伏电池组件(103)实施受光面面向阳光地跟踪,实施高效聚光发电;该管状跟踪聚光光伏组件具有成本低、密封性能优异、耐候性好、机械强度大、自支撑力强及使用寿命长的优点。

Description

一种管状跟踪聚光光伏组件
技术领域
本发明涉及一种光伏发电组件,尤其涉及一种可跟踪太阳光线的管状聚光光伏组件。 背景技术
太阳能作为一种可再生绿色能源, 具有广阔的发展前景, 太阳能发电已成为新能源 利用的一种重要方法。 太阳能光伏发电***中, 光伏发电组件是实现光电转换的主要器 件, 也是占光伏发电***中最大一部分成本的器件。 目前的主流光伏模组均为板状光伏 模组,其直接将光伏电池封装在玻璃板内,通过接收正常辐照强度的太阳光线照射发电。 一方面, 光伏模组的成本绝大部分来自光伏电池, 电池成本很难再有大幅度降低, 造成 光伏***成本居高不下; 另一方面, 板状光伏模组很容易受风力影响, 需要坚固的金属 支架予以固定, 成本较高。 此外, 光伏模组受光面后部会形成大块阴影区域, 严重影响 到后部空间的采光, 也会阻碍光伏模组的安装。
聚光光伏组件采用光学聚光***将太阳光线汇聚一定倍数后照射到光伏电池组件上 进行发电, 其可以节省大量电池成本。 虽然通过聚光***进行跟踪, 可使聚光光伏组件 获得较高发电效率, 但因一般的聚光跟踪过程中需要加装运动跟踪装置, 不仅增加了一 部分成本, 并且由于运动跟踪装置制作、 安装、 运行过程中的实际精度与***要求存在 一定偏差, 也会对***运行的可靠性和效率产生不良影响。 此外, 太阳光线经聚光*** 聚光后, 光伏电池组件接收的光照密度大幅增加, 为保持光伏电池组件发电效率, 必须 增加光伏电池组件的散热量。 有数据表明, 光伏电池温度每升高 rc, 发电效率下降
0.35%〜0.5%左右,因此需要额外增加散热装置,才能保持光伏电池组件正常的发电效率。 另外, 透射式聚光往往采用有机材料透镜如菲涅尔透镜结构, 该菲涅尔透镜结构常采用 聚烯烃材料注压形成薄片, 有机材料暴晒在阳光中不可避免地产生老化、 透光率下降, 影响聚光光伏电池组件的寿命及效率。
另外, 一般聚光光伏组件倍数较高(从七倍至一千多倍), 并且只能接收直射光及很 少部分散射光, 无论菲涅尔透射式还是抛物面反射式结构, 经过这类聚光***的散射光 由于偏离聚光光轴角度较大, 绝大部分散射光都无法到达光伏电池组件表面。 在绝大部 分地区,特别是适合分布式布置光伏***的市区,太阳光线全辐照中包含较多的散射光, 如果无法对散射光进行有效接收, 会对单位功率组件年发电量产生较大影响, 导致整体 年发电效率降低, 也增加了单位光伏电池组件的发电成本。
管状结构的光伏组件具有很好的机械强度, 特别是透明玻璃管外壳具有重量轻、 成 本低、 密封性能优异、 耐候性好、 自支撑力强及使用寿命长等优点。 发明内容
本发明目的在于克服以上描述的传统平板光伏组件使用的电池较多, 钢架支撑及封 装成本较高, 易受风力影响, 安装不方便等问题; 以及传统聚光光伏组件结构复杂, 制 造成本高昂, 实施单轴或双轴的运动跟踪成本较高, 长期运行可靠性不高, 且传统聚光 光伏组件基本只能接收直射光等问题而提供一种管状跟踪聚光光伏组件。
本发明提供的一种管状跟踪聚光光伏组件包括聚光***、 光伏电池组件及与所述光 伏电池组件良好导热接触的散热装置, 其特征在于, 所述管状跟踪聚光光伏组件具有两 端封闭的玻璃管外壳, 并且所述管状跟踪聚光光伏组件实施受光面面向阳光跟踪, 以实 施高效聚光发电。
以传统的南北轴布置单轴跟踪一维线性聚光为例, 定义传统槽式抛物面聚光光伏组 件绕南北轴向旋转需要跟踪的角度为 β, 本发明所述的 β值可具体为太阳光线投影至东 西垂面的光线向量与水平面法向量之间的夹角 (如单轴跟踪为东西轴布置, 则 β值可具 体为太阳光线投影至南北垂面的光线向量与水平面法向量之间的夹角)。
进一步地, 所述管状跟踪聚光光伏组件的玻璃管外壳长度超过 2.5米; 优选地, 所述 管状跟踪聚光光伏组件的玻璃管外壳长度超过 5米, 可充分利用玻璃管外壳的强度和自 支撑能力, 简化安装工序, 节省材料及人工成本, 同时尽量减少聚光光伏组件两端非有 效利用部分在整体长度中所占的比例, 降低端部效应影响。
进一步地, 所述玻璃管外壳直径范围为 30毫米〜 200毫米。
优选地, 所述玻璃管外壳直径范围为 45毫米〜 150毫米, 在尽量获得较大受光面积 的同时, 可减小玻璃管外壳壁厚度, 以降低成本。
进一步地, 构成所述光伏电池组件的光伏电池为单晶硅电池、 多晶硅电池、 碲化镉 电池或 CIGS薄膜太阳能电池等。
优选地, 所述光伏电池为采用标准通用材料和工艺制造的单晶硅电池或多晶硅电池 或对上述两种电池进行切割或组合形成的仅仅尺寸和引线不同的光伏电池, 以充分消化 利用现有光伏行业产能。
进一步地, 所述聚光***为低聚光倍率的复合抛物聚光*** (Compound Parabolic Collector, CPC), 其光学反射面布置在底部光伏电池组件侧面, 将一定角度范围内的入射 光有效反射到光伏电池表面形成聚光效果; 光伏电池组件直接面对太阳光线入射方向, 可不经聚光光学***反射就能直接接收相当高比例的直射和散射光线, 从而提高本聚光 光伏组件的光线利用率, 增加发电量。
优选地, 所述复合抛物聚光***为一维复合抛物聚光***, 光伏电池左右两侧的光 学反射面沿所述玻璃管外壳轴向呈长条状布置, 在所述玻璃管外壳的圆周方向 (或叫作 直径方向) 聚光, 在所述玻璃管外壳的轴向方向不聚光, 实现一维的线性聚光, 其简单 可靠, 可获得较好的经济性和实用性。
进一步地, 所述复合抛物聚光***的聚光倍率设计为 2.5〜5倍, 使之能够同时具备 降低光伏电池成本, 保持一定的光学容差角度, 降低散热装置设计难度, 实施高效接收 太阳光线等优点, 其中聚光倍率定义为聚光光学***的入口宽度与光伏电池组件宽度的 比值。 较高的聚光倍数虽然能降低电池成本, 但较高倍的聚光会对光伏电池提出一些特 殊要求, 一般情况下聚光超过 5倍后, 电池成本的继续下降对***成本的影响已经不明 显, 同时较高倍数的聚光光学***容差角度很小。
优选地, 所述复合抛物聚光***的聚光倍率为 2.5〜3.5倍; 在该聚光倍率下采用光伏 电池材料及工艺生产的单晶或多晶硅电池即可完全满足使用要求, 从而可大幅度降低聚 光光伏组件中的电池成本。该聚光***仍具有较好的跟踪容差性,具有很好的聚光效果, 同时散热良好, ***的整体成本降低。
优选地, 对所述复合抛物聚光***的光学抛物反射面进行优化设计, 即, 采用一个 以上的平面反射镜面形成的多折平面组合反射镜面拟合替代, 使汇聚到光伏电池上的光 线不至于过分集中, 分布较为均勾, 达到较好的勾光效果, 保护光伏电池免受损伤, 提 高发电效率。
优选地, 所述多折平面组合反射镜面由一个以上的平面玻璃镜片拼接 (例如粘接) 形成, 其结构简单、 强度高、 制作成本较低并且具有很好的反射率。
进一步地, 所述平面反射镜面具有镜前反射膜层, 例如所述平面玻璃镜片具有镜前 反射膜层, 其可减少太阳光透射吸收, 保护反射镜基体, 并提高反射率, 减少由于镜体 厚度造成的漏光,增加光伏电池组件接收到的反射光线,提高光伏电池组件的发电效率。 进一步地, 所述管状跟踪聚光光伏组件的光伏电池组件受光面向阳布置, 且所述管 状跟踪聚光光伏组件南北轴方向布置, 实施东西方向跟踪太阳光线。
进一步地, 所述管状跟踪聚光光伏组件受光面向阳布置, 且玻璃管外壳的旋转轴线 与水平面成一定角度布置, 例如在北半球高纬度区域, 呈南北轴方向固定, 且呈南低北 高布置。
进一步地, 所述管状跟踪聚光光伏组件的玻璃管外壳的旋转轴线与水平面成当地纬 度角度布置 (极轴布置), 例如在北半球高纬度区域, 呈南北轴方向固定, 且呈南低北高布 置。
进一步地, 所述玻璃管外壳的两个端头位置或靠近两个端头位置的管壁上包括两个 引出电极, 所述引出电极从所述玻璃管外壳的两个端头位置或靠近两个端头位置的管壁 上引出。
进一步地, 一个以上的所述管状跟踪聚光光伏组件平行阵列布置, 形成串联或并联 或串并联的组串连接方式, 即一个以上的所述管状跟踪聚光光伏组件平行阵列布置, 以 串联、 并联或串并联的组串连接方式形成一种低倍聚光光伏组件阵列。 在此组串连接方 式(即所述阵列)中,所述管状跟踪聚光光伏组件的相邻端部由所述引出电极直接连接, 其尺寸很短, 可以节省光伏发电***的连接电缆成本。
进一步地, 将所述光伏电池组件搭接, 互相遮住汇流母线, 提高汇聚光线利用率, 提高发电效率。
进一步地, 所述散热装置为热导率良好的材料制成, 例如铝片, 该铝片与所述光伏 电池组件具有良好的导热接触, 如铝片紧贴布置于光伏电池组件背部, 铝片的延伸部分 布置于玻璃管外壳不受光部分的内壁面上,将光伏电池热量有效扩散到玻璃管外壳壁上。
本发明还提供一种管状跟踪聚光光伏组件阵列, 由上述的一个以上的管状跟踪聚光 光伏组件平行阵列布置, 并联跟踪驱动形成。
本发明还提供一种管状跟踪聚光光伏组件阵列, 由上述的一个以上的管状跟踪聚光 光伏组件平行布置, 以串联、 并联或串并联的组串连接方式形成, 所述管状跟踪聚光光 伏组件的相邻端部由所述引出电极直接连接。 附图说明
图 1为管状跟踪聚光光伏组件的横截面结构的示意图; 图 2为管状跟踪聚光光伏组件散射光线接收示意图;
图 3为管状跟踪聚光光伏组件的内部结构示意图;
图 4-1和图 4-2为聚光***对光伏电池组件勾光的影响对比示意图;
图 5为管状跟踪聚光光伏组件的光伏电池组件搭接示意图;
图 6为管状跟踪聚光光伏组件的光伏电池组件串联连接的示意图;
图 7-1为管状跟踪聚光光伏组件南北轴方向呈角度布置结构示意图;
图 7-2为图 7-1的主视方向结构示意图;
图 7-3为图 7-2的局部放大示意图;
图 8为管状跟踪聚光光伏组件阵列统一旋转结构示意图;
图 9-1为管状跟踪聚光光伏组件阵列第一例结构示意图;
图 9-2为管状跟踪聚光光伏组件阵列第二例的结构示意图。 具体实施方式
图 1为管状跟踪聚光光伏组件的横截面结构的示意图。 如图 1所示, 本发明中的管 状跟踪聚光光伏组件包括聚光***,例如一维聚光*** 102、光伏电池组件 103及布置于 光伏电池组件 103背部的与光伏电池组件 103 良好导热接触的散热装置, 例如散热铝片 104; 所述管状跟踪聚光光伏组件具有玻璃管外壳 101 ; 以传统的南北轴布置单轴跟踪一 维线性聚光为例, 定义传统槽式抛物面聚光光伏组件绕南北轴方向旋转需要跟踪的角度 为 β, 本发明所述的 β值可具体为太阳光线投影至东西垂面的光线向量与水平面法向量 之间的夹角 (如单轴跟踪为东西轴布置, 则 β值可具体为太阳光线投影至南北垂面的光 线向量与水平面法向量之间的夹角)。
一维聚光*** 102对称地分布于光伏电池组件 103的两侧, 散热铝片 104与所述光 伏电池组件 103 良好导热接触, 如散热铝片 104紧贴布置于光伏电池组件 103背部, 其 延伸部分布置于玻璃管外壳 101不受光部分的内壁面上, 将光伏电池热量有效扩散到玻 璃管外壳 101内壁上以达到冷却效果。具体地,玻璃管外壳 101两端密封成为密闭结构, 其透光率高, 自支撑强度好, 成本低, 使用寿命长, 可良好的隔绝外界环境对内部器件 (一维聚光*** 102、 光伏电池组件 103及散热装置等) 的影响及破坏。
进一步地, 所述管状跟踪聚光光伏组件的玻璃管外壳 101长度超过 2.5米; 优选地, 所述管状跟踪聚光光伏组件的玻璃管外壳 101长度超过 5米, 可充分利用玻璃管外壳的 强度和自支撑能力, 简化安装工序, 节省材料及人工成本, 同时尽量减少聚光光伏组件 两端非有效利用部分在整体长度中所占的比例, 降低端部效应影响, 进一步降低成本。 由于玻璃管外壳的壁厚与直径有一定关系, 一般管径越大壁厚越厚, 为控制壁厚节省材 料,所述玻璃管外壳 101的直径范围为 30毫米〜 200毫米;优选地,所述玻璃管外壳 101 的直径范围为 45毫米〜 150毫米, 在尽量获得较大受光面积的同时, 减小玻璃管外壳壁 厚度, 尽量控制壁厚在 3毫米以内, 优选在 2毫米甚至 1.5毫米以内, 以降低成本。
图 2为管状跟踪聚光光伏组件散射光线接收示意图。 如图 2所示, 玻璃管外壳 201 的内部布置有聚光*** 202, 所述聚光*** 202 可以为复合抛物聚光*** (Compound Parabolic Collector, CPC***), 所述复合抛物聚光***可以为低聚光倍率的复合抛物聚 光***。 聚光*** 202的光学反射面布置在光伏电池组件 203两侧, 其能将一定角度范 围内的入射光全部反射到光伏电池表面, 达到聚光效果, 该角度范围称为聚光*** 202 的容差角度范围 (即, 因跟踪精度或其他原因造成未直接入射至光伏电池组件表面的部分 太阳光线的入射角度若在该角度范围内, 可经过一次或大于一次的反射后将这部分太阳 光重新入射至光伏电池组件表面), 光伏电池组件直接面对太阳光线入射方向, 可不经聚 光光学***的反射就能接收相当高比例的直射光线和散射光线, 提高管状跟踪聚光光伏 组件的光线利用率, 增加发电量。 太阳散射光线角度与直射光入射角度成一定的高斯分 布, 并非严格的入射角度上的各向同性分布, 绝大部分能量的散射光的角度均在接近直 射太阳光线角度的一定角度范围内。 而本发明的聚光***实施太阳光线精确跟踪, 直射 光及大部分的散射光线均可被有效接收并进行高效发电, 如此可以推论在散射光线较多 的情况下, 本发明的管状跟踪聚光光伏组件也能有效接收密度较高的散射光线, 进行发 电。 在大部分地区, 特别是适合分布式布置光伏***的市区, 太阳光线全辐照中包含较 多的散射光, 对散射光的极少量接收将会对单位功率模组的年发电量影响较大, 整体上 降低了年发电效率, 也增加了单位光伏电池组件的发电成本。
图 3为管状跟踪聚光光伏组件的内部结构示意图。 如图 3所示, 管状跟踪聚光光伏 组件内部结构包括光伏电池组件 303及复合抛物聚光*** 302; 所述复合抛物聚光*** 302为一维复合抛物聚光***,光伏电池组件 303左右两侧的光学反射面沿玻璃管外壳轴 向呈长条状布置, 在玻璃管外壳的圆周方向 (或叫作直径方向) 聚光, 在玻璃管外壳的 轴向方向不聚光, 实现一维的线性聚光, 获得较好的经济性和实用性。 优选地, 所述复 合抛物聚光*** 302可以为采用多个平面玻璃镜片顺次呈角度粘结形成的多折平面镜, 其结构简单, 制作成本较低, 具有较好的聚光效果, 平面玻璃镜为镜前反射膜层, 可减 少太阳光的透射, 提高反射镜的反射率, 减少通过玻璃板厚度断面处的漏光, 增加光伏 电池组件接收到的反射光线, 提高光伏电池组件的发电效率。
图 4-1和图 4-2为聚光***对光伏电池组件勾光的影响对比示意图。 如图 4-1所示, 入射至玻璃管外壳内部的太阳光经过光伏电池组件 403两侧对称布置的聚光*** 411的 汇集, 反射至光伏电池组件 403进行发电, 所述聚光*** 411 的聚光倍率设计为 2.5~5 倍, 可降低光伏电池成本, 保持一定的光学容差角度, 降低散热装置设计难度等。 聚光 倍率定义为聚光光学***的入口宽度与光伏电池组件宽度的比值; 过高的聚光倍率虽然 能降低电池成本, 但较高倍的聚光会对光伏电池提出一些特殊要求, 同时较高倍数的聚 光光学***容差角度很小, 一般情况下聚光倍率超过 5倍后, 电池成本的下降对***成 本的影响已经不明显, 此外, 为解决较高倍数聚光带来的散热问题, 需增加性能较好的 散热装置,从而造成***成本上升。优选地,所述聚光*** 411的聚光倍率为 2.5〜3.5倍; 在该聚光倍率下采用普通光伏电池材料及工艺生产的单晶硅或多晶硅电池即可完全满足 使用要求。 此时, 聚光光伏组件中的电池成本已经有大幅度下降, 同时散热良好, 聚光 光伏组件的成本较低。 另外, 光伏电池的标称效率是在标准光照条件下测量获得的光伏 电池发电效率, 在实际应用过程中, 正常光照强度一般低于标准光照强度, 特别是在适 合分布式安装光伏***的城市, 绝大部分时间的光照强度都远低于标准光照强度, 光伏 电池在低于标准光照强度下的实际发电效率要比标准光照条件下的标称效率低一些, 而 在比标准光照强度适当高一些的光照强度条件下的实际发电效率要比标称效率高一些。 本发明所述管状跟踪聚光光伏组件提供的 2.5〜5倍, 特别是 2.5〜3.5倍的聚光效果, 正好 可以将普遍低于标准光照的正常光照强度汇聚提升至超过标准光照强度的合适水平, 在 普通光照强度很好 (达到标准光照强度) 时不会由于汇聚倍率过高造成电池损坏, 能够 使光伏电池始终工作在达到和超过标称转换效率的状态,提高聚光光伏组件的发电效率。
优选地, 所述聚光*** 411 为复合抛物聚光***, 并且对所述复合抛物聚光***的 光学抛物反射面进行优化设计, 即采用一个以上的平面反射镜面顺次呈角度粘结形成的 多折平面反射镜面拟合替代, 使汇聚到光伏电池上的光线不至于过分集中, 分布较为均 勾, 达到较好的勾光效果, 保护光伏电池免受损伤, 提高发电效率。从图 4-1可以看出, 某角度入射光线经平面反射镜面反射至光伏电池组件上的宽度为 dl, 其入射至光伏电池 组件的光线为平行入射光线。 图 4-2 显示复合抛物聚光***的光学抛物反射面进行精确 会聚情况, 相同角度的光线入射至相同位置的复合抛物聚光***的光学抛物反射面 412 上, 经光学抛物反射面反射至光伏电池组件 403, 在光伏电池组件 403上形成的宽度为 d2, 很明显 d2小于 dl, 光伏电池组件 403接收的是一个会聚的光线, 焦斑很小, 在光伏 电池组件 403 的较小面积内会产生较多的热量, 这对光伏电池组件的散热是一个巨大的 考验; 且光伏电池组件对非均勾的太阳光吸收效果并不好, 会造成局部电池温度过高, 形成亮斑, 使电池失效甚至将光伏电池组件变成负载, 输出功率不稳定且大幅减小。
图 5为管状跟踪聚光光伏组件的光伏电池组件搭接示意图。 如图 5所示, 所述光伏 电池组件 503-1与光伏电池组件 503-2倾斜搭接, 互相遮住汇流母线 509, 提高汇聚光线 的利用率,提高发电效率。进一步地,构成所述光伏电池组件的光伏电池为单晶硅电池、 多晶硅电池、 碲化镉电池或 CIGS 薄膜太阳能电池。 优选地, 所述光伏电池为采用标准 通用材料和工艺制造的单晶硅电池或多晶硅电池或对上述两种电池进行切割或组合形成 的仅仅尺寸和汇流引线不同的光伏电池, 以充分消化利用现有光伏行业产能。
图 6是本发明的管状跟踪聚光光伏组件的光伏电池组件串联连接的示意图。 当光伏 电池组件为由多个光伏电池单元形成的串联组合结构时, 各串联单元沿所述玻璃管外壳 长度方向排布。 如图 6所示, 光伏电池组件包括多个光伏电池单元, 各单元底部的散热 装置之间绝缘布置。 所述光伏电池单元包括光伏电池 603和散热铝片 604, 光伏电池 603 的上部为负极, 下部为正极, 例如光伏电池 603与散热铝片 604非绝缘, 即散热铝片 604 为正极。 所述散热铝片 604与下一个光伏电池单元的光伏电池 613的上部通过连接结构 608连接,按照此方式布置光伏电池组件中的各光伏电池单元,使光伏电池组件的各光伏 电池单元之间串联, 电能由光伏电池组件两端输出。
图 7-1为管状跟踪聚光光伏组件南北轴方向呈角度布置的结构示意图。如图 7-1所示, 管状跟踪聚光光伏组件 720包括玻璃管外壳 713、 玻璃管外壳 713两端布置的密封接头 714 及中间位置布置的光伏电池组件 711。 所述管状跟踪聚光光伏组件的光伏电池组件 711受光面向阳布置,且管状跟踪聚光光伏组件整体呈南北轴方向布置, 实施东西方向的 太阳光线跟踪, 且玻璃管外壳 713 的旋转轴线与水平面成一定角度布置, 例如在北半球 高纬度区域, 呈南北轴方向固定, 且呈南低北高布置。 优选地, 管状跟踪聚光光伏组件 的玻璃管外壳 713 的旋转轴线与水平面夹角成当地纬度角度布置, 此时管状跟踪聚光光 伏组件的跟踪能与时角具有同步性; 例如当天的时角 ω (时角 ω是当地时间、 经度和时 差的函数, 随着时间勾速变化, 每小时勾速变化 15 ° ), 即跟踪角度 β值从数值上等于时 角 ω, 每小时需要旋转 15°, 自东向西旋转。
图 7-2为图 7-1的主视方向结构示意图。 如图 7-2所示, 图中显示的是管状跟踪聚光 光伏组件旋转到某一个瞬间的状态, 对管状跟踪聚光光伏组件的复合抛物聚光***的光 学抛物反射面进行优化设计, 即采用一个以上的平面反射镜面顺次呈角度粘结形成的多 折平面组合反射镜面拟合替代, 使汇聚到光伏电池上的光线不至于过分集中, 分布较为 均勾, 达到较好的勾光效果, 保护光伏电池免受损伤, 提高发电效率。 优选地, 所述多 折平面组合反射镜面由一个以上的平面玻璃镜片粘接形成, 其结构简单、 强度高、 制作 成本较低并且具有很好的反射率。 图中还显示了光伏电池组件的宽度为 Α, 聚光光伏系 统的宽度为 3.5Α,此时该管状跟踪聚光光伏组件的聚光倍率为 3.5,该聚光倍率下采用普 通光伏电池材料及工艺生产的单晶硅或多晶硅电池即可完全满足使用要求, 此时, 聚光 光伏组件中的电池成本已经有大幅度下降, 同时散热良好, 成本很低, 正好可以将普遍 低于标准光照的正常光照强度汇聚提升至超过标准光照强度的合适水平, 在普通光照强 度很好 (达到标准光照强度) 时不会由于汇聚倍率过高造成电池损坏, 能够使光伏电池 始终工作在达到和超过标称转换效率的状态, 提高聚光光伏组件的发电效率。
图 7-3为图 7-2的局部放大示意图。 如图 7-3所示, 所述平面反射镜面(具体为平面 玻璃镜片) 具有镜前反射膜层, 可减少太阳光透射吸收, 保护反射镜基体, 并提高反射 率, 减少由于镜体厚度造成的漏光, 增加光伏电池接收到的反射光线, 提高光伏电池组 件的发电效率。 如图 7-3 所示, 入射光线经过所述聚光***的多个平面玻璃镜片的连接 处, 因为平面反射镜面的镜前反射膜层将光线反射成 c光线, c光线最终可以到达光伏电 池组件表面, 而利用平面反射镜面的镜后反射膜层会穿过平面玻璃镜片的连接缝隙变成 光线 d,而无法到达光伏电池组件表面。相同光线入射靠近光伏电池组件的平面玻璃镜片 时经过平面玻璃镜片的镜前反射膜层可以将光线反射成光线 f,入射至光伏电池组件表面, 而经过平面玻璃镜片的镜后反射膜层则将光线反射成光线 e,入射至光伏电池组件的背部, 致使光伏电池组件接收不到此部分太阳光线。
图 8是本发明的管状跟踪聚光光伏组件阵列统一旋转结构示意图。 如图 8所示, 该 实施例的阵列包括若干个管状跟踪聚光光伏组件,各组件平行阵列布置,并联跟踪驱动, 例如管状跟踪聚光光伏组件的组数为 6组, 即管状跟踪聚光光伏组件 821〜管状跟踪聚光 光伏组件 823。该多个阵列的管状跟踪聚光光伏组件整体呈水平东西布置或水平南北轴布 置或南北轴倾斜角度布置, 优选为南北轴倾斜角度为当地纬度角度, 且向阳布置。 图中 显示以南北轴倾斜当地纬度角度向阳布置为例, 所述管状跟踪聚光光伏组件 821〜管状聚 光光伏组件 823平行布置于同一旋转支架上, 绕同一个旋转中心轴 807旋转, 实施太阳 光线追踪, 将入射的太阳光转化为电能并输出。 该管状跟踪聚光光伏组件阵列设置在驱 动装置的驱动下, 各个管状跟踪聚光光伏组件绕自身的中心旋转轴旋转。 这种统一跟踪 实施方式, 可简化跟踪机构, 降低跟踪成本。
图 9-1为管状跟踪聚光光伏组件阵列第一例结构示意图。如图 9-1所示,所述管状跟 踪聚光光伏组件的两个电极分别从所述玻璃管外壳 901 的两端头位置或靠近两个端头位 置的管壁上引出电源线 908和电源线 909。进一步地,一个以上的所述管状跟踪聚光光伏 组件平行阵列布置, 以串联、 并联或串并联的组串连接方式形成阵列, 所述管状跟踪聚 光光伏组件的相邻端部由所述电极直接连接, 其尺寸很短, 可以节省光伏发电***的连 接电缆成本。 具体实施例为, 每个管状跟踪聚光光伏发电组件的玻璃管外壳 901 的长度 为 5m, 外径为 70mm, 玻璃管外壳厚度为 2mm; 每两个管状跟踪聚光光伏发电组件形成 一个 U型结构,每两个 U型结构只需 0.2m的自带电缆连接,每 10个 U型结构组成一个 完整的管状跟踪聚光光伏发电组件阵列; 多个类似的管状跟踪聚光光伏发电组件并列汇 流总线上, 实施小量电缆线的电量输送。
图 9-2为管状跟踪聚光光伏组件阵列第二例的结构示意图。如图 9-2所示,每两个以 上的管状跟踪聚光光伏发电组件串联布置, 两组以上相同串联布置的管状跟踪聚光光伏 发电组件相互并联组成阵列单元, 多个相同的阵列单元相互并联将光伏电池产生的电能 共同输送至***外部。
显而易见, 在不偏离本发明的真实精神和范围的前提下, 在此描述的本发明可以有 许多变化。 因此, 所有对于本领域技术人员来说显而易见的改变, 都应包括在本权利要 求书所涵盖的范围之内。 本发明所要求保护的范围仅由所述的权利要求书进行限定。

Claims

权利 要 求
1. 一种管状跟踪聚光光伏组件, 包括聚光***、 光伏电池组件及与所述光伏电池组 件良好导热接触的散热装置, 其特征在于, 所述管状跟踪聚光光伏组件具有两端封闭的 玻璃管外壳, 并且所述管状跟踪聚光光伏电池组件实施受光面面向阳光跟踪, 以实施高 效聚光发电。
2. 根据权利要求 1所述的一种管状跟踪聚光光伏组件, 其特征在于, 所述玻璃管外 壳长度超过 2.5米。
3. 根据权利要求 1或 2所述的一种管状跟踪聚光光伏组件, 其特征在于, 所述玻璃 管外壳长度超过 5米。
4. 根据权利要求 1或 2所述的一种管状跟踪聚光光伏组件, 其特征在于, 所述玻璃 管外壳直径范围为 45毫米〜 150毫米。
5. 根据权利要求 1所述的一种管状跟踪聚光光伏组件, 其特征在于, 构成所述光伏 电池组件的光伏电池为单晶硅电池、多晶硅电池、碲化镉电池或 CIGS薄膜太阳能电池。
6. 根据权利要求 5所述的一种管状跟踪聚光光伏组件, 其特征在于, 所述光伏电池 为采用标准通用材料和工艺制造的单晶硅电池或多晶硅电池或对上述两种电池进行切割 或组合形成的仅仅尺寸和引线不同的光伏电池。
7. 根据权利要求 1所述的一种管状跟踪聚光光伏组件, 其特征在于, 所述聚光*** 为低聚光倍率的复合抛物聚光***。
8. 根据权利要求 7所述的一种管状跟踪聚光光伏组件, 其特征在于, 所述复合抛物 聚光***为一维复合抛物聚光***, 可实现一维的线性聚光。
9. 根据权利要求 7所述的一种管状跟踪聚光光伏组件, 其特征在于, 所述复合抛物 聚光***的聚光倍率为 2.5~5倍。
10. 根据权利要求 7所述的一种管状跟踪聚光光伏组件,其特征在于,所述复合抛物 聚光***的光学抛物反射面为采用一个以上的平面反射镜面形成的多折平面组合反射镜 面。
11. 根据权利要求 10所述的一种管状跟踪聚光光伏组件, 其特征在于, 所述多折平 面组合反射镜面由一个以上的平面玻璃镜片拼接形成。
12. 根据权利要求 10所述的一种管状跟踪聚光光伏组件, 其特征在于, 所述平面反 射镜面具有镜前反射膜层。
13. 根据权利要求 1所述的一种管状跟踪聚光光伏组件,其特征在于,所述管状跟踪 聚光光伏组件的光伏电池组件受光面向阳布置, 整体南北轴方向布置, 实施东西方向跟 踪太阳光线。
14. 根据权利要求 1所述的一种管状跟踪聚光光伏组件,其特征在于,所述管状跟踪 聚光光伏组件受光面向阳布置,且玻璃管外壳的旋转轴线与水平面成当地纬度角度布置。
15. 根据权利要求 1所述的一种管状跟踪聚光光伏组件,其特征在于,所述玻璃管外 壳的两个端头位置或靠近两个端头位置的管壁上包括两个引出电极。
16. 根据权利要求 15所述的一种管状跟踪聚光光伏组件, 其特征在于, 所述引出电 极从所述玻璃管外壳的两个端头位置或靠近两个端头位置的管壁上引出。
17. 根据权利要求 1所述的一种管状跟踪聚光光伏组件,其特征在于,一个以上的所 述管状跟踪聚光光伏组件平行阵列布置, 并联跟踪驱动。
18. 根据权利要求 15所述的一种管状跟踪聚光光伏组件, 其特征在于, 一个以上的 所述管状跟踪聚光光伏组件平行阵列布置, 形成串联或并联或串并联的组串连接方式, 所述管状跟踪聚光光伏组件的相邻端部由所述引出电极直接连接。
19. 根据权利要求 1所述的一种管状跟踪聚光光伏组件,其特征在于,所述光伏电池 组件互相遮住汇流母线。
20. 根据权利要求 1所示的一种管状跟踪聚光光伏组件,其特征在于,所述光伏电池 组件包括多个光伏电池单元, 各光伏单元底部的散热装置之间绝缘布置。
21. 根据权利要求 1所述的一种管状跟踪聚光光伏组件,其特征在于,所述散热装置 紧贴布置于光伏电池组件背部,其延伸部分布置于玻璃管外壳不能受光部分的内壁面上。
22. —种管状跟踪聚光光伏组件阵列,其特征在于, 由权利要求 1所述的一个以上的 管状跟踪聚光光伏组件平行阵列布置, 并联跟踪驱动形成。
23. —种管状跟踪聚光光伏组件阵列, 其特征在于, 由权利要求 15所述的一个以上 的管状跟踪聚光光伏组件平行阵列布置, 以串联、 并联或串并联的组串连接方式形成, 所述管状跟踪聚光光伏组件的相邻端部由所述引出电极直接连接。
PCT/CN2013/085658 2013-08-08 2013-10-22 一种管状跟踪聚光光伏组件 WO2015018132A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2013103445981A CN103456824A (zh) 2013-08-08 2013-08-08 一种管状跟踪聚光光伏组件
CN201310344598.1 2013-08-08

Publications (1)

Publication Number Publication Date
WO2015018132A1 true WO2015018132A1 (zh) 2015-02-12

Family

ID=49738992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/085658 WO2015018132A1 (zh) 2013-08-08 2013-10-22 一种管状跟踪聚光光伏组件

Country Status (2)

Country Link
CN (1) CN103456824A (zh)
WO (1) WO2015018132A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112885916A (zh) * 2021-03-30 2021-06-01 华北电力大学 基于晶硅电池及环形菲涅尔聚光镜的高倍聚光光伏装置
CN114242844A (zh) * 2022-01-04 2022-03-25 南京日托光伏新能源有限公司 一种多版型多数量的光伏组件同时生产的方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108011580A (zh) * 2016-10-28 2018-05-08 刘阳 一种管状聚光光伏电池组件及阵列
CN113630084B (zh) * 2021-10-12 2021-12-10 南通睿博电器有限公司 一种光伏组件

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102080882A (zh) * 2010-12-01 2011-06-01 卢莉华 一种太阳能锅炉光热模块
CN102589159A (zh) * 2012-03-08 2012-07-18 中国科学技术大学 真空管光伏光热复合抛物面聚光器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85101607B (zh) * 1985-04-01 1987-09-16 郑州大学 复合平面太阳能聚光器
CN85100948A (zh) * 1985-04-01 1986-07-23 刘二中 高效线聚焦非跟踪式太阳能集能器
US20070227579A1 (en) * 2006-03-30 2007-10-04 Benyamin Buller Assemblies of cylindrical solar units with internal spacing
CN101281938B (zh) * 2008-05-28 2011-10-05 安泰科技股份有限公司 薄膜太阳能电池组件拼接组装方法和设备
EP2308099A1 (en) * 2008-08-07 2011-04-13 SAVIO S.p.A. High-concentration photovoltaic system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102080882A (zh) * 2010-12-01 2011-06-01 卢莉华 一种太阳能锅炉光热模块
CN102589159A (zh) * 2012-03-08 2012-07-18 中国科学技术大学 真空管光伏光热复合抛物面聚光器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112885916A (zh) * 2021-03-30 2021-06-01 华北电力大学 基于晶硅电池及环形菲涅尔聚光镜的高倍聚光光伏装置
CN114242844A (zh) * 2022-01-04 2022-03-25 南京日托光伏新能源有限公司 一种多版型多数量的光伏组件同时生产的方法
CN114242844B (zh) * 2022-01-04 2023-12-22 江苏日托光伏科技股份有限公司 一种多版型多数量的光伏组件同时生产的方法

Also Published As

Publication number Publication date
CN103456824A (zh) 2013-12-18

Similar Documents

Publication Publication Date Title
US8049150B2 (en) Solar collector with end modifications
CN201359397Y (zh) 一种太阳能聚集装置和采用该装置的建筑构件
KR101032515B1 (ko) 각도조절이 가능한 반사판을 구비한 태양광 발전장치
US20080210292A1 (en) Stationary Photovoltaic Module With Low Concentration Ratio of Solar Radiation
Li Design and development of a lens-walled compound parabolic concentrator-a review
CN101189480A (zh) 太阳能集中器
US10554168B2 (en) Light-concentrating solar system
JP2014232739A (ja) 太陽光発電装置
WO2015018132A1 (zh) 一种管状跟踪聚光光伏组件
WO2014026610A1 (zh) 一种太阳能聚集***
CN101702410B (zh) 一种双斜面反射聚光太阳能光伏电池组件
WO2018077223A1 (zh) 一种管状聚光光伏电池组件及阵列
WO2014176881A1 (zh) 一种管状聚光光伏电池组件
CN102683461B (zh) 一种聚光太阳能装置
CN111953290B (zh) 一种热电联合多功能玻璃装置
CN206237360U (zh) 一种管状聚光光伏电池组件及阵列
WO2015018131A1 (zh) 一种低倍聚光光伏组件
CN208385421U (zh) 一种反光散热高效平板太阳能电池薄型组件
CN108417654B (zh) 一种散热高效平板太阳能电池薄型组件
CN101782280A (zh) 一种太阳能聚集装置和采用该装置的建筑构件
CN203118979U (zh) 一种双面聚能光电池
CN101776325A (zh) 内聚光与外聚光结合的复合抛物面聚光器
CN113865114B (zh) 一种聚光集热和发电的太阳能综合利用装置
CN108417655B (zh) 一种反光散热高效平板太阳能电池薄型组件
KR102251708B1 (ko) 태양광 발전장치 및 이를 이용한 태양광 발전 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13891175

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13891175

Country of ref document: EP

Kind code of ref document: A1