WO2015016648A1 - Method for preparing transition metal composite oxide, transition metal composite oxide prepared thereby, and lithium composite oxide prepared using same - Google Patents

Method for preparing transition metal composite oxide, transition metal composite oxide prepared thereby, and lithium composite oxide prepared using same Download PDF

Info

Publication number
WO2015016648A1
WO2015016648A1 PCT/KR2014/007082 KR2014007082W WO2015016648A1 WO 2015016648 A1 WO2015016648 A1 WO 2015016648A1 KR 2014007082 W KR2014007082 W KR 2014007082W WO 2015016648 A1 WO2015016648 A1 WO 2015016648A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal salt
aqueous solution
composite oxide
solution
nickel
Prior art date
Application number
PCT/KR2014/007082
Other languages
French (fr)
Korean (ko)
Inventor
선양국
윤성준
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Priority to US14/909,035 priority Critical patent/US10629903B2/en
Priority to CN201480042956.6A priority patent/CN105594029B/en
Priority claimed from KR1020140098660A external-priority patent/KR101903827B1/en
Publication of WO2015016648A1 publication Critical patent/WO2015016648A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • C01P2004/52Particles with a specific particle size distribution highly monodisperse size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for preparing a transition metal composite oxide, and a transition metal composite oxide prepared by the same, and a lithium composite oxide prepared using the same, and more particularly, a basic solution added during preparation of a transition metal composite oxide by a coprecipitation reaction.
  • a method for preparing a transition metal composite oxide, and a transition metal composite oxide prepared by the same, and a lithium composite oxide prepared using the same and more particularly, a basic solution added during preparation of a transition metal composite oxide by a coprecipitation reaction.
  • Li-ion secondary batteries have been widely used as power sources for portable devices since they emerged in 1991 as small, lightweight, and large capacity batteries.
  • lithium ion secondary battery As a power source to drive these portable electronic information communication devices It is increasing day by day.
  • Commercially available small lithium ion secondary batteries use LiCoO 2 for the positive electrode and carbon for the negative electrode.
  • LiNiO 2, LiCo x Ni 1-x O 2 and LiMn 2 O 4 are the anode materials currently being actively researched and developed.
  • LiCoO 2 is an excellent material having stable charging and discharging characteristics and a flat discharge voltage characteristic.
  • CoCo has a low reserve, a high cost, and toxicity to humans.
  • LiNiO 2 is not commercialized because of difficulty in material synthesis and thermal stability, and LiMn 2 O 4 is commercialized in low-cost products.
  • LiMn 2 O 4 having a spinel structure has a theoretical capacity of 148 mAh / g, which is smaller than that of other materials, and has a three-dimensional tunnel structure.
  • LiCoO 2 and LiNiO 2 It is lower than LiCoO 2 and LiNiO 2 , and has poor cycle characteristics due to the Jahn-Teller effect.
  • high temperature characteristics (description) of 55 ° C. are inferior to LiCoO 2 and are not widely used in actual batteries.
  • the nickel-manganese-cobalt composite oxide is manufactured by the co-precipitation method, if the amount of nickel is increased, there is a problem that the density of primary particles decreases during initial seed formation and consequently, the tap density decreases.
  • the present invention to improve the coprecipitation reaction conditions by adjusting the concentration of the initial base added in the reactor according to the nickel content in the particles prepared before the coprecipitation reaction to solve the above problems can improve the particle density and tap density It is an object to provide a method for producing a lithium composite oxide and a lithium composite oxide produced thereby.
  • the present invention to solve the above problems
  • the first metal forming aqueous solution for internal formation, the chelating agent and the basic aqueous solution are continuously mixed with the reactor, and the nickel, cobalt and manganese have a constant concentration and a radius of r1 (0.2 um ⁇ r1 ⁇ 5 um).
  • the mixing ratio of the first aqueous metal salt solution for internal formation and the second aqueous metal salt solution for internal formation is gradually changed from 100 v%: 0 v% to 0 v%: 100 v% while being supplied while mixing and chelating agent and Mixing a basic aqueous solution into a reactor to form particles including a second inside having a radius r2 (r2 ⁇ 10 um) at the first inside periphery;
  • in the second step is to adjust the concentration of the basic aqueous solution in the reaction solution to be 0.25 g / L to 0.5 g / L method for producing a transition metal complex oxide.
  • the conditions of the coprecipitation reaction for supplying the aqueous metal salt solution are optimized by adjusting the concentration of the basic aqueous solution in the reactor to be 0.25 g / L to 0.5 g / L before supplying the aqueous metal salt solution into the reactor. do.
  • the basic aqueous solution is then supplied continuously during the preparation of the transition metal complex oxide.
  • the pH of the solution in the reactor in the second step is characterized in that it is adjusted to 11.8 to 12.3.
  • the concentration of nickel in the first aqueous solution for forming metal salts is controlled to 0.8 to 1 mol%.
  • the present inventors have found that the growth rate of seed may be higher than the growth rate of particles from each seem when the pH is 12.3 or more in the reactor before the aqueous metal salt solution is supplied. As a result, as a result, individual particles were not produced, but only a large amount of seeds were generated. As a result, the excessively generated seeds coagulated with each other, and the individual particles were found to have a problem of poor growth. It is a technical feature to adjust the pH in the reactor to 12.3 or less.
  • the basic aqueous solution and ammonia are preferably continuously supplied through the reaction process, and after adjusting the initial pH in the reactor, supplying an aqueous metal salt solution showing acidity to form particles. As the reaction proceeds, the pH in the reactor decreases.
  • D50 is 4 ⁇ m or less in the size distribution of particles formed after the reaction for 30 minutes by the first step to the fourth step. That is, the method for producing a lithium composite oxide according to the present invention controls the formation rate of the individual seed and the growth rate of the particles from the individual seed, by reacting for 30 minutes by the first step to the fourth step of the particles formed
  • the size distribution is characterized by adjusting the D50 to 4 ⁇ m or less.
  • the method further comprises a fifth step of drying or heat-treating the transition metal composite oxide obtained by performing the first step to the fourth step.
  • the average diameter of the transition metal composite oxide particles is characterized in that 5 to 10 ⁇ m.
  • the present invention also provides a transition metal composite oxide prepared by the production method of the present invention.
  • the present invention also provides a method for producing a lithium composite oxide, and a lithium composite oxide prepared thereby further comprising; a fifth step of mixing and heat-treating the lithium salt to the transition metal composite oxide prepared in the fourth step.
  • the average composition of the whole particles of the lithium composite oxide according to the present invention is characterized by the following formula (1).
  • the nickel content in the average composition of the whole particles of the lithium composite oxide produced by the present invention is characterized in that the high nickel to 0.5 or more.
  • the present invention also provides a method for preparing a first aqueous metal salt solution containing nickel, manganese and cobalt;
  • a mixing ratio of the first metal salt aqueous solution and the second metal salt aqueous solution is 0 v% or more and 100 v% or less.
  • the first metal salt aqueous solution and the second metal salt aqueous solution containing nickel, manganese and cobalt may be mixed in a separate reactor with a raw material solution containing nickel, manganese and cobalt, respectively. Can be prepared by the process.
  • the content of nickel in the first metal salt solution is x1
  • the content of manganese is y1
  • the content of cobalt is z1
  • the content of nickel in the solution of the second metal salt is x2.
  • the transition metal composite oxide prepared by the method for producing a transition metal composite oxide according to the present invention may have a structure in which the concentration of any one of nickel, manganese, and cobalt is kept constant.
  • x1 is 0.8 or more and 1.0 or less.
  • x2 is 0.8 or less.
  • a high capacity transition metal composite oxide having a high nickel content may be prepared by adjusting the content of nickel in the first metal salt aqueous solution.
  • the mixing ratio of the aqueous solution of the first metal salt and the aqueous solution of the second metal salt is gradually changed from 100 v%: 0 v% to 0v%: 100 v%. do.
  • the method for producing a transition metal composite oxide according to the present invention is characterized in that at least a part of the transition metal in the particles is produced such that a concentration gradient shows.
  • Method for producing a transition metal composite oxide according to the present invention is to prepare a third metal salt aqueous solution containing nickel, manganese and cobalt; And providing a second mixed metal salt solution, ammonia and a basic aqueous solution in which the first mixed metal salt aqueous solution and the third metal salt aqueous solution are mixed in the reactor, wherein the first mixed metal salt aqueous solution and the first mixed metal salt aqueous solution are mixed with each other.
  • the mixing ratio of the third metal salt aqueous solution is more than 0 v% and is characterized by being 100 v% or less.
  • the second mixed metal salt aqueous solution is provided, the mixing ratio of the first mixed metal salt aqueous solution and the third metal salt aqueous solution is 100 v%: 0 v% to 0 v %: 100 incrementally, up to and including v%.
  • transition metal composite oxide having two or more gradients of concentration gradients of nickel, manganese and cobalt in a particle by supplying the second mixed metal salt aqueous solution.
  • the content of nickel in the first mixed metal salt solution is x3, the content of manganese y3, the content of cobalt is z3, and the content of nickel in the third metal salt solution is x4.
  • Lithium composite oxide production method by adjusting the amount of the basic solution added according to the nickel content in the initial reaction conditions in the coprecipitation reaction by adjusting the pH in the reactor to improve the particle density and high tap density of high capacity lithium An ion secondary battery can be manufactured.
  • 1 and 2 show the results of measuring the precursor particle size and the precursor particle size distribution upon completion of the reaction 30 minutes after the start of the coprecipitation reaction according to one embodiment of the present invention.
  • 3 and 4 show the results of measuring a cross-sectional SEM photograph of the precursor and the active material prepared according to an embodiment of the present invention.
  • 5 and 6 show the results of measuring the precursor particle size and the precursor particle size distribution upon completion of the reaction 30 minutes after the start of the coprecipitation reaction according to one embodiment of the present invention.
  • 7 and 8 show the results of measuring a cross-sectional SEM photograph of the precursor and the active material prepared according to an embodiment of the present invention.
  • 9 and 10 show the results of measuring the precursor particle size and the precursor particle size distribution upon completion of the reaction 30 minutes after the start of the coprecipitation reaction according to one embodiment of the present invention.
  • 11 and 12 show the results of measuring the cross-sectional SEM photograph of the precursor and the active material prepared according to an embodiment of the present invention.
  • 13 and 14 show the results of measuring the precursor particle size and the precursor particle size distribution upon completion of the reaction 30 minutes after the start of the coprecipitation reaction.
  • 15 and 16 show the results of measuring the cross-sectional SEM photograph of the precursor and the active material prepared according to an embodiment of the present invention.
  • 17 and 18 show the results of measuring the precursor particle size and the precursor particle size distribution upon completion of the reaction 30 minutes after the start of the coprecipitation reaction according to one embodiment of the present invention.
  • 19 and 20 show the results of measuring a cross-sectional SEM photograph of the precursor and the active material prepared according to an embodiment of the present invention.
  • 21 and 22 show the results of measuring the precursor particle size and the precursor particle size distribution at the completion of the reaction 30 minutes after the start of the coprecipitation reaction according to one embodiment of the present invention.
  • 23 and 24 show the results of measuring the cross-sectional SEM photograph of the precursor and the active material prepared according to an embodiment of the present invention.
  • 25 and 26 show the results of measuring the precursor particle size and the precursor particle size distribution upon completion of the reaction 30 minutes after the start of the coprecipitation reaction according to one embodiment of the present invention.
  • 27 and 28 show the results of measuring a cross-sectional SEM photograph of the precursor and the active material prepared according to an embodiment of the present invention.
  • a surface portion forming solution having a composition ratio of Ni: Co: Mn of 60:15:25 was prepared, and the mixing ratio of the aqueous metal salt solution for forming the center portion and the aqueous metal salt solution for forming the surface portion was 100 v%: 0 v% to 0
  • the chelating agent and the basic aqueous solution were mixed and fed into the reactor while mixing while gradually changing to v%: 100 v% to prepare transition metal composite oxide particles.
  • the precursor and the lithium compound were reacted with each other and then fired to prepare active material particles.
  • SEM photographs of the cross sections of the prepared precursor particles and active material particles were measured and the results are shown in FIGS. 3 and 4. It can be seen from FIG. 3 and FIG. 4 that the inside of the particles forms a dense structure.
  • a central forming solution having a composition ratio of Ni: Co: Mn of 95: 2: 3 was prepared, the initial NaOH was added at a rate of 10 g per 2.5 L of distilled water to adjust the pH of the reaction solution to 11.9, followed by coprecipitation reaction.
  • a transition metal composite oxide particle having a radius of 0.2 ⁇ m was prepared.
  • a second -1 internal forming solution having a composition ratio of Ni: Co: Mn of 85: 6: 9 and a second -2 internal forming solution having a composition ratio of Ni: Co: Mn of 65:10:25 was prepared.
  • the mixing ratio of the metal salt aqueous solution for forming the core and the second -1 internal forming solution is gradually changed from 100 v%: 0 v% to 0v%: 100 v% to prepare the first mixed metal aqueous solution and simultaneously chelating
  • the first and basic aqueous solutions were mixed and supplied to the reactor, first to prepare a 2-1 interior on the first inner surface, and the mixing ratio of the first mixed metal aqueous solution and the second -2 internal forming solution was 100 v%: 0 gradually mixing from v% to 0v%: 100 v% to prepare a second mixed metal aqueous solution and supply it to the reactor, and simultaneously supply and supply the chelating agent and the basic aqueous solution to the reactor to provide the 2-1 inner surface with
  • the prepared precursor and the lithium compound were reacted and then fired to prepare active material particles.
  • SEM photographs of the cross-sections of the prepared precursor particles and active material particles were measured and the results are shown in FIGS. 7 and 8. It can be seen from FIG. 7 and FIG. 8 that the internal structure of the particles is compactly formed.
  • a first internal forming solution having a composition ratio of Ni: Co: Mn of 95: 2: 3 was prepared, the initial NaOH was added at a rate of 7 g per 2.5 L of distilled water to adjust the pH to 11.7, and then transferred by coprecipitation reaction.
  • Metal composite oxide particles were prepared.
  • D50 is formed to 4 ⁇ m or more in particle size and particle size distribution when the reaction is completed 30 minutes after the start of the coprecipitation reaction.
  • the prepared transition metal composite oxide particles and the lithium compound were reacted and then fired to prepare active material particles.
  • SEM photographs of the cross sections of the prepared precursor particles and active material particles were measured and the results are shown in FIGS. 11 and 12. It can be seen from FIG. 11 and FIG. 12 that the inside of the particles has a dense structure, and the largest number of particles exhibiting a 10 ⁇ m size in the particle size distribution.
  • a first internal forming solution having a composition ratio of Ni: Co: Mn of 95: 2: 3 was prepared, the initial NaOH was added at a rate of 7 g per 2.5 L of distilled water to adjust the pH to 11.7, and then radiused by coprecipitation. This 0.2 micrometer precursor particle
  • grains were manufactured.
  • a second internal forming solution having a composition ratio of Ni: Co: Mn of 95: 2: 3
  • a first mixed metal aqueous solution which is a mixed solution of the metal salt aqueous solution for forming the center portion and the second internal forming solution.
  • the mixing rate of the metal salt aqueous solution for forming the core and the second internal forming solution is gradually changed from 100 v%: 0 v% to 0v%: 100 v%, while mixing the chelating agent and the basic aqueous solution into the reactor.
  • transition metal composite oxide particles having a concentration gradient of nickel, manganese, and cobalt were prepared in the whole particle.
  • the D50 is adjusted to 4 ⁇ m or less in the particle size and particle size distribution when the reaction is completed 30 minutes after the start of the coprecipitation reaction.
  • the prepared transition metal composite oxide particles and the lithium compound were reacted and then fired to prepare active material particles.
  • SEM photographs of the cross sections of the prepared precursor particles and active material particles were measured and the results are shown in FIGS. 15 and 16. It can be seen from FIG. 15 and FIG. 16 that the inside of the particles has a dense structure.
  • a first internal forming solution having a composition ratio of Ni: Co: Mn of 96: 2: 2 was prepared and fed into the reactor.
  • Precursor particles were prepared by coprecipitation reaction.
  • the precursor and the lithium compound were reacted with each other and then fired to prepare active material particles. SEM photographs of the cross sections of the prepared precursor particles and active material particles were measured and the results are shown in FIGS. 19 and 20.
  • a first internal forming solution having a composition ratio of Ni: Co: Mn of 98: 1: 1 was prepared, the initial NaOH was added at a rate of 12 g per 2.5 L of distilled water, and then the pH was adjusted to 12.
  • a precursor particle having a size of 0.2 ⁇ m was prepared.
  • the mixing ratio of the metal salt aqueous solution for forming the core and the second -1 internal forming solution is gradually changed from 100 v%: 0 v% to 0v%: 100 v% to prepare and supply the first mixed metal aqueous solution.
  • the chelating agent and the basic aqueous solution were mixed and supplied to the reactor to first prepare a 2-1 interior on the first inner surface, and the mixing ratio of the second -1 internal forming solution and the second -2 internal forming solution was 100.
  • a third internal formation solution having a composition ratio of Ni: Co: Mn is 57:16:27, and a third interior having a constant concentration of nickel, manganese, and cobalt is formed outside the second-2 by coprecipitation.
  • precursor particles having a composition ratio of Ni: Co: Mn is 57:16:27, and a third interior having a constant concentration of nickel, manganese, and cobalt is formed outside the second-2 by coprecipitation.
  • the transition metal composite oxide particle size prepared at 30 minutes after the start of the coprecipitation reaction and the transition metal composite oxide particle size distribution at the completion of the reaction were measured and the results are shown in FIGS. 21 and 22.
  • the prepared transition metal composite oxide was reacted with a lithium compound and then fired to prepare active material particles.
  • the precursor and the lithium compound were reacted with each other and then fired to prepare active material particles. SEM photographs of the cross sections of the prepared precursor particles and active material particles were measured and the results are shown in FIGS. 27 and 28.
  • Lithium composite oxide production method by adjusting the amount of the basic solution added according to the nickel content in the initial reaction conditions in the coprecipitation reaction by adjusting the pH in the reactor to improve the particle density and high tap density of high capacity lithium An ion secondary battery can be manufactured.

Abstract

The present invention relates to a method for preparing a lithium composite oxide and a lithium composite oxide prepared thereby and, more specifically, to: a method for preparing a lithium composite oxide, capable of preparing a lithium-ion secondary battery with high capacity by adjusting the amount of a basic solution added according to the nickel content during the preparation of a lithium composite oxide through a co-precipitational reaction, thereby adjusting the pH of the reactor, and thus improving the particle density and increasing the tap density; and a lithium composite oxide prepared thereby.

Description

전이금속 복합 산화물의 제조 방법 및 이에 의하여 제조된 전이금속 복합 산화물 및 이를 이용하여 제조된 리튬 복합 산화물Method for producing a transition metal composite oxide, and transition metal composite oxide prepared thereby and lithium composite oxide prepared using the same
본 발명은 전이금속 복합 산화물의 제조 방법 및 이에 의하여 제조된 전이금속 복합 산화물 및 이를 이용하여 제조된 리튬 복합 산화물에 관한 것으로서, 더욱 상세하게는 공침 반응에 의하여 전이금속 복합 산화물 제조시 첨가하는 염기성 용액의 양 및 반응 용액 내의 pH 를 조절함으로써, 이후 공침 반응에 의하여 형성되는 입자의 치밀도가 개선되고 탭밀도가 높은 고용량의 리튬 이온 이차 전지를 제조할 수 있는 전이금속 복합 산화물의 제조 방법 및 이에 의하여 제조된 전이금속 복합 산화물 및 이를 이용하여 제조된 리튬 복합 산화물에 관한 것이다.The present invention relates to a method for preparing a transition metal composite oxide, and a transition metal composite oxide prepared by the same, and a lithium composite oxide prepared using the same, and more particularly, a basic solution added during preparation of a transition metal composite oxide by a coprecipitation reaction. By adjusting the amount of and the pH in the reaction solution, there is improved the density of the particles formed by the coprecipitation reaction and a method for producing a transition metal composite oxide capable of producing a high capacity lithium ion secondary battery with high tap density and thereby It relates to a transition metal composite oxide prepared and a lithium composite oxide produced using the same.
리튬이온 2차전지는 소형, 경량, 대용량 전지로서 1991년에 등장한 이래, 휴대기기의 전원으로서 널리 사용되었다.Li-ion secondary batteries have been widely used as power sources for portable devices since they emerged in 1991 as small, lightweight, and large capacity batteries.
최근 들어 전자, 통신, 컴퓨터산업의 급속한 발전에 따라 캠코더, 휴대폰, 노트북 PC등이 출현하여 눈부신 발전을 거듭하고 있으며, 이들 휴대용 전자정보통신기기들을 구동할 동력원으로서 리튬이온 2차전지에 대한 수요가 나날이 증가하고 있다. 현재 시판되는 소형 리튬이온 2차전지는 양극에 LiCoO 2 를, 음극에 탄소를 사용한다. Recently, with the rapid development of electronics, telecommunications, and computer industry, camcorders, mobile phones, notebook PCs, etc. have emerged and are developing remarkably, and demand for lithium ion secondary battery as a power source to drive these portable electronic information communication devices It is increasing day by day. Commercially available small lithium ion secondary batteries use LiCoO 2 for the positive electrode and carbon for the negative electrode.
현재 활발하게 연구 개발되고 있는 양극재료로서 LiNiO2 ,LiCo x Ni 1-x O 2 와 LiMn 2 O 4 을 들 수 있다. LiCoO 2 는 안정된 충·방전특성과 평탄한 방전전압 특성을 갖는 뛰어난 물질이나, Co는 매장량이 적고 고가인 데다가 인체에 대한 독성이 있기 때문에 다른 양극 재료 개발이 요망된다. LiNiO 2 는 재료합성에 어려움이 있을 뿐만 아니라 열적 안정성에 문제가 있어 상품화되지 못하고 있으며, LiMn 2 O 4 는 저가격 제품에 일부가 상품화되고 있어 있다. 그러나, 스피넬 구조를 갖는 LiMn 2 O 4 는 이론용량이 148mAh/g 정도로 다른 재료에 비해 작고, 3차 원 터널 구조를 갖기 때문에 리튬이온의 삽입·탈리시 확산저항이 커서 확산 계수가 2차원 구조를 갖는 LiCoO2 와 LiNiO2 에 비해 낮으며, 얀-텔러 효과 (Jahn-Teller effect) 때문에 싸이클 특성이 좋지 않다. 특히, 55℃ 의 고온특성(설명 요)이 LiCoO2 에 비해 열악하여 실제 전지에 널리 사용되고 있지 못하고 있는 실정이다. LiNiO 2, LiCo x Ni 1-x O 2 and LiMn 2 O 4 are the anode materials currently being actively researched and developed. LiCoO 2 is an excellent material having stable charging and discharging characteristics and a flat discharge voltage characteristic. However, CoCo has a low reserve, a high cost, and toxicity to humans. LiNiO 2 is not commercialized because of difficulty in material synthesis and thermal stability, and LiMn 2 O 4 is commercialized in low-cost products. However, LiMn 2 O 4 having a spinel structure has a theoretical capacity of 148 mAh / g, which is smaller than that of other materials, and has a three-dimensional tunnel structure. It is lower than LiCoO 2 and LiNiO 2 , and has poor cycle characteristics due to the Jahn-Teller effect. In particular, high temperature characteristics (description) of 55 ° C. are inferior to LiCoO 2 and are not widely used in actual batteries.
이러한 단점을 극복하기 위해 공침법을 이용한 고밀도, 균일 입자 크기의 리튬이차전지활물질 제조방법 및 니켈-망간-코발트 혼합 상의 저가용 리튬이차전지활물질에 대한 연구가 제안되고 있다. In order to overcome these disadvantages, studies have been made on a method for preparing a high density, uniform particle size lithium secondary battery active material using a coprecipitation method and a low cost lithium secondary battery active material on a nickel-manganese-cobalt mixture.
그러나, 상기 공침법에 의하여 니켈-망간-코발트 복합 산화물을 제조하는 경우 니켈의 양이 증가하면 초기 씨드형성시 1차 입자간 치밀도가 떨어지고 결과적으로 탭밀도가 감소한다는 문제점이 있어왔다.However, when the nickel-manganese-cobalt composite oxide is manufactured by the co-precipitation method, if the amount of nickel is increased, there is a problem that the density of primary particles decreases during initial seed formation and consequently, the tap density decreases.
본 발명은 상기와 같은 과제를 해결하기 위하여 공침 반응 전에 제조되는 입자 내의 니켈 함량에 따라 반응기 내에 첨가되는 초기 염기의 농도를 조절함으로써 공침 반응 조건을 개선하여 입자 치밀도 및 탭밀도를 개선할 수 있는 리튬 복합 산화물의 제조 방법 및 이에 의하여 제조된 리튬 복합 산화물을 제공하는 것을 목적으로 한다.The present invention to improve the coprecipitation reaction conditions by adjusting the concentration of the initial base added in the reactor according to the nickel content in the particles prepared before the coprecipitation reaction to solve the above problems can improve the particle density and tap density It is an object to provide a method for producing a lithium composite oxide and a lithium composite oxide produced thereby.
본 발명은 상기와 같은 과제를 해결하기 위하여The present invention to solve the above problems
니켈, 코발트, 망간을 포함하고, 상기 니켈, 코발트, 망간의 농도는 서로 다른 제 1 내부 형성용 금속염 수용액과 제 2 내부 형성용 금속염 수용액을 준비하는 제 1 단계; A first step of preparing nickel, cobalt, and manganese, wherein the nickel, cobalt, and manganese have different concentrations of the first inner metal salt solution and the second metal salt solution;
반응기 내에 킬레이팅제 및 염기성 수용액을 공급하는 제 2 단계; Supplying a chelating agent and a basic aqueous solution into the reactor;
상기 제 1 내부 형성용 금속염 수용액과 킬레이팅제 및 염기성 수용액을 반응기에 계속적으로 공급하면서 혼합하여, 니켈, 코발트, 망간의 농도가 일정하고 반경이 r1 (0.2 um ≤r1≤ 5 um) 인 제 1 내부를 포함하는 입자를 성장시키는 제 3 단계; 및The first metal forming aqueous solution for internal formation, the chelating agent and the basic aqueous solution are continuously mixed with the reactor, and the nickel, cobalt and manganese have a constant concentration and a radius of r1 (0.2 um ≤ r1 ≤ 5 um). A third step of growing a particle comprising an interior; And
상기 제 1 내부 형성용 금속염 수용액과 상기 제 2 내부 형성용 금속염 수용액의 혼합 비율이 100 v% : 0 v% 에서 0 v% :100 v% 까지 점진적으로 변화하면서 혼합하면서 공급하는 동시에 킬레이팅제 및 염기성 수용액을 반응기에 혼합하여, 상기 제 1 내부 외곽에 반경이 r2 (r2≤10 um) 인 제 2 내부를 포함하는 입자를 형성하는 제 4 단계; 를 포함하는 전이금속 복합 산화물의 제조 방법에 있어서, 상기 제 2 단계에서는 상기 반응 용액에서의 염기성 수용액의 농도를 0.25 g/L 내지 0.5 g/L 가 되도록 조절하는 것인 전이금속 복합 산화물의 제조방법을 제공한다. The mixing ratio of the first aqueous metal salt solution for internal formation and the second aqueous metal salt solution for internal formation is gradually changed from 100 v%: 0 v% to 0 v%: 100 v% while being supplied while mixing and chelating agent and Mixing a basic aqueous solution into a reactor to form particles including a second inside having a radius r2 (r2 ≦ 10 um) at the first inside periphery; In the method for producing a transition metal complex oxide comprising a, in the second step is to adjust the concentration of the basic aqueous solution in the reaction solution to be 0.25 g / L to 0.5 g / L method for producing a transition metal complex oxide. To provide.
즉, 본원 발명에 있어서, 반응기 내에 금속염 수용액을 공급하기 전에 반응기 내의 염기성 수용액의 농도를 0.25 g/L 내지 0.5 g/L 가 되도록 조절함으로써 금속염 수용액을 공급하는 공침 반응의 조건을 최적화 하는 것을 특징으로 한다. 염기성 수용액은 이후 전이금속 복합 산화물 제조 과정에서 계속적으로 공급된다. That is, in the present invention, the conditions of the coprecipitation reaction for supplying the aqueous metal salt solution are optimized by adjusting the concentration of the basic aqueous solution in the reactor to be 0.25 g / L to 0.5 g / L before supplying the aqueous metal salt solution into the reactor. do. The basic aqueous solution is then supplied continuously during the preparation of the transition metal complex oxide.
본 발명에 의한 리튬 복합 산화물의 제조방법에 있어서, 상기 제 2 단계에서 반응기 내 용액의 pH 는 11.8 내지 12.3 으로 조절하는 것을 특징으로 한다. 본 발명에 의한 리튬 복합 산화물의 제조방법에 있어서, 상기 제 1 내부 형성용 금속염 수용액 내의 니켈 농도를 0.8 내지 1 몰% 로 조절하는 것을 특징으로 한다. In the method for producing a lithium composite oxide according to the present invention, the pH of the solution in the reactor in the second step is characterized in that it is adjusted to 11.8 to 12.3. In the method for producing a lithium composite oxide according to the present invention, the concentration of nickel in the first aqueous solution for forming metal salts is controlled to 0.8 to 1 mol%.
본 발명자들은 고용량 활물질을 제조하기 위해 니켈을 0.8 몰% 이상으로 공급하는 경우, 금속염 수용액을 공급하기 전 반응기 내의 pH 가 12.3 이상이면 금속염 수용액 공급시 seed 의 성장 속도가 각 seem 로부터 입자의 성장 속도보다 빨라서, 결과적으로 개별 입자가 생성되지 못하고 seed 만이 다량 생성되면서, 과량 생성된 seed 들이 서로 응집하여 개별 입자들이 성장이 부실하게 진행되는 문제점이 있다는 것을 발견하였으며, 본 발명은 이에 따라 금속염 수용액을 공급하기 전 반응기 내의 pH 를 12.3 이하로 조절하는 것을 기술적 특징으로 한다. When the inventors supply nickel at 0.8 mol% or more to prepare high capacity active materials, the present inventors have found that the growth rate of seed may be higher than the growth rate of particles from each seem when the pH is 12.3 or more in the reactor before the aqueous metal salt solution is supplied. As a result, as a result, individual particles were not produced, but only a large amount of seeds were generated. As a result, the excessively generated seeds coagulated with each other, and the individual particles were found to have a problem of poor growth. It is a technical feature to adjust the pH in the reactor to 12.3 or less.
본 발명에 의한 리튬 복합 산화물의 제조방법에 있어서, 상기 염기성 수용액 및 암모니아는 반응 과정을 통해 계속적으로 공급되는 것이 바람직하며, 반응기 내의 초기 pH 를 조절한 이후, 산성을 나타내는 금속염 수용액을 공급하여 입자 형성 반응이 진행함에 따라 반응기 내의 pH 는 반응이 감소하게 된다. In the method for producing a lithium composite oxide according to the present invention, the basic aqueous solution and ammonia are preferably continuously supplied through the reaction process, and after adjusting the initial pH in the reactor, supplying an aqueous metal salt solution showing acidity to form particles. As the reaction proceeds, the pH in the reactor decreases.
본 발명에 의한 리튬 복합 산화물의 제조방법에 있어서, 상기 제 1 단계 내지 제 4 단계에 의하여 30분간 반응시킨 후 형성되는 입자들의 크기 분포에서 D50 이 4 ㎛ 이하인 것을 특징으로 한다. 즉, 본 발명에 의한 리튬 복합 산화물의 제조방법은 개별 seed 의 생성 속도 및 개별 seed 로부터의 입자의 성장 속도를 조절함으로써, 상기 제 1 단계 내지 제 4 단계에 의하여 30분간 반응시킨 후 형성되는 입자들의 크기 분포에서 D50 이 4 ㎛ 이하로 조절하는 것을 특징으로 한다. In the method for producing a lithium composite oxide according to the present invention, D50 is 4 μm or less in the size distribution of particles formed after the reaction for 30 minutes by the first step to the fourth step. That is, the method for producing a lithium composite oxide according to the present invention controls the formation rate of the individual seed and the growth rate of the particles from the individual seed, by reacting for 30 minutes by the first step to the fourth step of the particles formed The size distribution is characterized by adjusting the D50 to 4 μm or less.
본 발명에 의한 전이 금속 복합 산화물의 제조방법에 있어서, 상기 제 1 단계 내지 상기 제 4 단계를 수행하여 얻어진 전이금속 복합 산화물을 건조하거나 열처리하는 제 5 단계를 더 포함하고, 상기 제 5 단계에서 제조된 전이 금속 복합 산화물 입자의 평균 직경은 5 내지 10 ㎛ 인 것을 특징으로 한다. In the method for producing a transition metal composite oxide according to the present invention, the method further comprises a fifth step of drying or heat-treating the transition metal composite oxide obtained by performing the first step to the fourth step. The average diameter of the transition metal composite oxide particles is characterized in that 5 to 10 ㎛.
본 발명은 또한, 본 발명의 제조 방법에 의하여 제조된 전이 금속 복합 산화물 을 제공한다. The present invention also provides a transition metal composite oxide prepared by the production method of the present invention.
본 발명은 또한, 상기 제 4 단계에서 제조된 전이금속 복합 산화물에 리튬염을 혼합하여 열처리하는 제 5단계;를 더 포함하는 리튬 복합 산화물의 제조 방법 및 이에 의하여 제조된 리튬 복합 산화물을 제공한다. The present invention also provides a method for producing a lithium composite oxide, and a lithium composite oxide prepared thereby further comprising; a fifth step of mixing and heat-treating the lithium salt to the transition metal composite oxide prepared in the fourth step.
본 발명에 의한 리튬 복합 산화물의 입자 전체의 평균 조성은 다음 화학식 1 로 나타내어 지는 것을 특징으로 한다. The average composition of the whole particles of the lithium composite oxide according to the present invention is characterized by the following formula (1).
[화학식 1] LiaaNixaCoyaMnzaO2+δ [Formula 1] Li aa Ni xa Co ya Mn za O 2 + δ
(상기 화학식 1 에서 0.5≤Xa≤1.0 임)(In Formula 1, 0.5 ≦ Xa ≦ 1.0)
즉, 본 발명에 의하여 제조되는 리튬 복합 산화물의 입자 전체의 평균 조성에서 니켈의 함량이 0.5 이상으로 고니켈인 것을 특징으로 한다. That is, the nickel content in the average composition of the whole particles of the lithium composite oxide produced by the present invention is characterized in that the high nickel to 0.5 or more.
본 발명은 또한, 니켈, 망간 및 코발트를 포함하는 제 1 금속염 수용액을 제조하는 것;The present invention also provides a method for preparing a first aqueous metal salt solution containing nickel, manganese and cobalt;
니켈, 망간 및 코발트를 포함하는 제 2 금속염 수용액을 제조하는 것;Preparing a second aqueous metal salt solution comprising nickel, manganese and cobalt;
반응기 내에서 염기성 수용액 및 암모니아 수용액을 혼합하여 반응 용액 내의 pH를 11.8 내지 12.3 으로 조절하는 것; 및Mixing the basic aqueous solution and the aqueous ammonia solution in the reactor to adjust the pH in the reaction solution to 11.8 to 12.3; And
상기 반응기 내로 상기 제1 금속염 수용액과 상기 제2 금속염 수용액이 혼합된 제1 혼합 금속염 수용액, 암모니아 및 염기성 수용액을 제공하는 것;을 포함하되,Providing a first mixed metal salt solution, ammonia and basic aqueous solution in which the first metal salt solution and the second metal salt solution are mixed into the reactor;
상기 제 1 혼합 금속염 수용액에서 상기 제1 금속염 수용액과 상기 제2 금속염 수용액의 혼합 비율은 0 v% 이상이고 100 v% 이하인 전이 금속 복합 산화물의 제조 방법을 제공한다. In the first mixed metal salt aqueous solution, a mixing ratio of the first metal salt aqueous solution and the second metal salt aqueous solution is 0 v% or more and 100 v% or less.
본 발명에 의한 전이 금속 복합 산화물의 제조 방법에 있어서, 상기 니켈, 망간 및 코발트를 포함하는 제 1 금속염 수용액 및 제 2 금속염 수용액은 니켈, 망간 및 코발트를 각각 포함하는 원료 용액을 별개 반응기에서 혼합하는 과정에 의해 준비될 수 있다. In the method for producing a transition metal composite oxide according to the present invention, the first metal salt aqueous solution and the second metal salt aqueous solution containing nickel, manganese and cobalt may be mixed in a separate reactor with a raw material solution containing nickel, manganese and cobalt, respectively. Can be prepared by the process.
본 발명에 의한 전이 금속 복합 산화물의 제조방법에 있어서, 상기 제1 금속염 수용액에서 니켈의 함량이 x1, 망간의 함량이 y1, 코발트의 함량이 z1이고, 상기 제2 금속염 수용액에서 니켈의 함량이 x2, 망간의 함량이 y2, 코발트의 함량이 z2 이고, x1+y1+z1 =1 이고, x2+y2+z2 =1 이되, x1≠x2, y1≠y2 및 z1≠z2 중에서 적어도 하나를 만족하는 것을 특징으로 한다. 즉, 본 발명에 의한 전이 금속 복합 산화물의 제조방법에 의하여 제조된 전이 금속 복합 산화물은 입자 전체에서 니켈, 망간 및 코발트 중 어느 하나의 농도가 일정하게 유지되는 구조인 것이 가능하다. In the method for preparing a transition metal composite oxide according to the present invention, the content of nickel in the first metal salt solution is x1, the content of manganese is y1, the content of cobalt is z1, and the content of nickel in the solution of the second metal salt is x2. , The content of manganese is y2, the content of cobalt is z2, x1 + y1 + z1 = 1, x2 + y2 + z2 = 1, and satisfies at least one of x1 ≠ x2, y1 ≠ y2 and z1 ≠ z2. It features. That is, the transition metal composite oxide prepared by the method for producing a transition metal composite oxide according to the present invention may have a structure in which the concentration of any one of nickel, manganese, and cobalt is kept constant.
본 발명에 의한 전이 금속 복합 산화물의 제조방법에 있어서, 상기 x1은 0.8 이상이고 1.0 이하인 것을 특징으로 한다. 본 발명에 의한 전이 금속 복합 산화물의 제조방법에 있어서, 상기 x2는 0.8 이하인 것을 특징으로 한다.In the method for producing a transition metal composite oxide according to the present invention, x1 is 0.8 or more and 1.0 or less. In the method for producing a transition metal composite oxide according to the present invention, x2 is 0.8 or less.
즉, 본 발명에 의한 전이 금속 복합 산화물의 제조방법에 있어서, 상기 제 1 금속염 수용액 내에서의 니켈의 함량을 조절하여 니켈의 함량이 높은 고용량의 전이 금속 복합 산화물을 제조할 수 있다.That is, in the method for producing a transition metal composite oxide according to the present invention, a high capacity transition metal composite oxide having a high nickel content may be prepared by adjusting the content of nickel in the first metal salt aqueous solution.
본 발명에 의한 전이 금속 복합 산화물의 제조방법에 있어서, 상기 1 금속염 수용액과 상기 제 2 금속염 수용액의 혼합 비율은 100 v%:0 v% 에서 0v% :100 v% 까지 점진적으로 변화하는 것을 특징으로 한다. 즉, 본원 발명에 의한 전이 금속 복합 산화물의 제조 방법은 입자 내의 적어도 일부에서 전이 금속의 일부가 농도 구배를 나타내도록 제조되는 것을 특징으로 한다. In the method for producing a transition metal composite oxide according to the present invention, the mixing ratio of the aqueous solution of the first metal salt and the aqueous solution of the second metal salt is gradually changed from 100 v%: 0 v% to 0v%: 100 v%. do. In other words, the method for producing a transition metal composite oxide according to the present invention is characterized in that at least a part of the transition metal in the particles is produced such that a concentration gradient shows.
본 발명에 의한 전이 금속 복합 산화물의 제조방법은 니켈, 망간 및 코발트를 포함하는 제3 금속염 수용액을 제조하는 것; 및 반응기 내에 상기 제1 혼합금속염 수용액과 상기 제 3 금속염 수용액이 혼합된 제2 혼합 금속염 수용액, 암모니아 및 염기성 수용액을 제공하는 것을 더 포함하고, 상기 제2 혼합 금속염 수용액에서 상기 제1 혼합 금속염 수용액과 상기 제3 금속염 수용액의 혼합 비율은 0 v%초과이고 100 v% 이하인 것을 특징으로 한다. 본 발명에 의한 전이 금속 복합 산화물의 제조방법에 있어서, 상기 제2 혼합 금속염 수용액을 제공하는 것은, 상기 제1 혼합 금속염 수용액과 상기 제 3 금속염 수용액의 혼합 비율은 100 v%:0 v% 에서 0v% :100 v% 까지 점진적으로 변화하는 것을 포함하는 것을 특징으로 한다. Method for producing a transition metal composite oxide according to the present invention is to prepare a third metal salt aqueous solution containing nickel, manganese and cobalt; And providing a second mixed metal salt solution, ammonia and a basic aqueous solution in which the first mixed metal salt aqueous solution and the third metal salt aqueous solution are mixed in the reactor, wherein the first mixed metal salt aqueous solution and the first mixed metal salt aqueous solution are mixed with each other. The mixing ratio of the third metal salt aqueous solution is more than 0 v% and is characterized by being 100 v% or less. In the method for producing a transition metal composite oxide according to the present invention, the second mixed metal salt aqueous solution is provided, the mixing ratio of the first mixed metal salt aqueous solution and the third metal salt aqueous solution is 100 v%: 0 v% to 0 v %: 100 incrementally, up to and including v%.
즉, 본 발명에 의한 전이 금속 복합 산화물의 제조방법은 상기 제 2 혼합 금속염 수용액을 공급함으로써 입자 내에서 니켈, 망간, 코발트의 농도 구배의 기울기가 2개 이상인 전이 금속 복합 산화물을 제조하는 것이 가능하다. That is, in the method for producing a transition metal composite oxide according to the present invention, it is possible to produce a transition metal composite oxide having two or more gradients of concentration gradients of nickel, manganese and cobalt in a particle by supplying the second mixed metal salt aqueous solution. .
본 발명에 의한 전이 금속 복합 산화물의 제조방법에 있어서, 상기 제1 혼합 금속염 수용액에서 니켈의 함량이 x3, 망간의 함량 y3, 코발트의 함량이 z3이고, 상기 제 3 금속염 수용액에서 니켈의 함량이 x4, 망간의 함량 y4, 코발트의 함량이 z4 이고, x3+y3+z3 =1 및 x4+y4+z4 =1 이고, x3≠x4, y3≠y4 및 z3≠z4 중에서 적어도 하나를 만족하는 것을 특징으로 한다. In the method for preparing a transition metal composite oxide according to the present invention, the content of nickel in the first mixed metal salt solution is x3, the content of manganese y3, the content of cobalt is z3, and the content of nickel in the third metal salt solution is x4. , Manganese content y4, cobalt content is z4, x3 + y3 + z3 = 1 and x4 + y4 + z4 = 1, and satisfies at least one of x3 ≠ x4, y3 ≠ y4 and z3 ≠ z4 do.
본 발명에 의한 리튬 복합 산화물의 제조 방법은 공침 반응에서 초기 반응 조건에서 니켈 함량에 따라 첨가하는 염기성 용액의 양을 조절함으로써 반응기 내의 pH 를 조절하여 입자 치밀도가 개선되고 탭밀도가 높아 고용량의리튬 이온 이차 전지를 제조할 수 있다. Lithium composite oxide production method according to the present invention by adjusting the amount of the basic solution added according to the nickel content in the initial reaction conditions in the coprecipitation reaction by adjusting the pH in the reactor to improve the particle density and high tap density of high capacity lithium An ion secondary battery can be manufactured.
도 1 및 도 2는 본 발명의 일 실시예에 의하여 공침 반응 시작후 30분 경과시전구체 입자 크기 및 반응 완료시전구체 입자 크기 분포를 측정한 결과를 나타내었다. 1 and 2 show the results of measuring the precursor particle size and the precursor particle size distribution upon completion of the reaction 30 minutes after the start of the coprecipitation reaction according to one embodiment of the present invention.
도 3 및 도 4는 본 발명의 일 실시예에 의하여 제조된 전구체 및 활물질의 단면 SEM 사진을 측정한 결과를 나타내었다. 3 and 4 show the results of measuring a cross-sectional SEM photograph of the precursor and the active material prepared according to an embodiment of the present invention.
도 5 및 도 6은 본 발명의 일 실시예에 의하여 공침 반응 시작후 30분 경과시 전구체 입자 크기 및 반응 완료시전구체 입자 크기 분포를 측정한 결과를 나타내었다. 5 and 6 show the results of measuring the precursor particle size and the precursor particle size distribution upon completion of the reaction 30 minutes after the start of the coprecipitation reaction according to one embodiment of the present invention.
도 7 및 도 8은 본 발명의 일 실시예에 의하여 제조된 전구체 및 활물질의 단면 SEM 사진을 측정한 결과를 나타내었다. 7 and 8 show the results of measuring a cross-sectional SEM photograph of the precursor and the active material prepared according to an embodiment of the present invention.
도 9 및 도 10은 본 발명의 일 실시예에 의하여 공침 반응 시작후 30분 경과시전구체 입자 크기 및 반응 완료시전구체 입자 크기 분포를 측정한 결과를 나타내었다. 9 and 10 show the results of measuring the precursor particle size and the precursor particle size distribution upon completion of the reaction 30 minutes after the start of the coprecipitation reaction according to one embodiment of the present invention.
도 11 및 도 12는 본 발명의 일 실시예에 의하여 제조된 전구체 및 활물질의 단면 SEM 사진을 측정한 결과를 나타내었다. 11 and 12 show the results of measuring the cross-sectional SEM photograph of the precursor and the active material prepared according to an embodiment of the present invention.
도 13 및 도 14는 본 발명의 일 실시예에 의하여 공침 반응 시작후 30분 경과시전구체 입자 크기 및 반응 완료시전구체 입자 크기 분포를 측정한 결과를 나타내었다. 13 and 14 show the results of measuring the precursor particle size and the precursor particle size distribution upon completion of the reaction 30 minutes after the start of the coprecipitation reaction.
도 15 및 도 16은 본 발명의 일 실시예에 의하여 제조된 전구체 및 활물질의 단면 SEM 사진을 측정한 결과를 나타내었다. 15 and 16 show the results of measuring the cross-sectional SEM photograph of the precursor and the active material prepared according to an embodiment of the present invention.
도 17 및 도 18은 본 발명의 일 실시예에 의하여 공침 반응 시작후 30분 경과시전구체 입자 크기 및 반응 완료시전구체 입자 크기 분포를 측정한 결과를 나타내었다. 17 and 18 show the results of measuring the precursor particle size and the precursor particle size distribution upon completion of the reaction 30 minutes after the start of the coprecipitation reaction according to one embodiment of the present invention.
도 19 및 도 20은 본 발명의 일 실시예에 의하여 제조된 전구체 및 활물질의 단면 SEM 사진을 측정한 결과를 나타내었다. 19 and 20 show the results of measuring a cross-sectional SEM photograph of the precursor and the active material prepared according to an embodiment of the present invention.
도 21 및 도 22는 본 발명의 일 실시예에 의하여 공침 반응 시작후 30분 경과시전구체 입자 크기 및 반응 완료시전구체 입자 크기 분포를 측정한 결과를 나타내었다. 21 and 22 show the results of measuring the precursor particle size and the precursor particle size distribution at the completion of the reaction 30 minutes after the start of the coprecipitation reaction according to one embodiment of the present invention.
도 23 및 도 24은 본 발명의 일 실시예에 의하여 제조된 전구체 및 활물질의 단면 SEM 사진을 측정한 결과를 나타내었다. 23 and 24 show the results of measuring the cross-sectional SEM photograph of the precursor and the active material prepared according to an embodiment of the present invention.
도 25 및 도 26는 본 발명의 일 실시예에 의하여 공침 반응 시작후 30분 경과시전구체 입자 크기 및 반응 완료시전구체 입자 크기 분포를 측정한 결과를 나타내었다. 25 and 26 show the results of measuring the precursor particle size and the precursor particle size distribution upon completion of the reaction 30 minutes after the start of the coprecipitation reaction according to one embodiment of the present invention.
도 27 및 도 28은 본 발명의 일 실시예에 의하여 제조된 전구체 및 활물질의 단면 SEM 사진을 측정한 결과를 나타내었다.27 and 28 show the results of measuring a cross-sectional SEM photograph of the precursor and the active material prepared according to an embodiment of the present invention.
이하에서는 본 발명을 실시예에 의하여 더욱 상세히 설명한다. 그러나, 본 발명이 이하의 실시예에 의하여 더욱 한정되는 것은 아니다. Hereinafter, the present invention will be described in more detail with reference to Examples. However, the present invention is not further limited by the following examples.
<실시예 1><Example 1>
초기 NaOH를 증류수 2.5 L 당 9 g 의 비율로 투입하여 반응 용액의 pH 를 11.9 로 조정한 후, Ni:Co:Mn 의 조성비가 85:5:10 조성인 중심부 형성 용액을 공급하여 공침 반응에 의하여 반지름의 크기가 0.2 ㎛ 인 입자를 제조하였다. Ni:Co:Mn 의 조성비가 60:15:25 조성인 표면부 형성 용액을 제조하고, 상기 중심부 형성용 금속염 수용액과 상기 표면부 형성용 금속염 수용액의 혼합 비율이 100 v%:0 v% 에서 0 v% :100 v% 까지 점진적으로 변화하면서 혼합하는 동시에 킬레이팅제 및 염기성 수용액을 반응기에 혼합 공급하여, 전이금속 복합 산화물 입자를 제조하였다. Initial NaOH was added at a rate of 9 g per 2.5 L of distilled water to adjust the pH of the reaction solution to 11.9. Then, a central forming solution having a composition ratio of Ni: Co: Mn was supplied with a composition of 85: 5: 10 to give a coprecipitation reaction. Particles having a radius of 0.2 μm were prepared. A surface portion forming solution having a composition ratio of Ni: Co: Mn of 60:15:25 was prepared, and the mixing ratio of the aqueous metal salt solution for forming the center portion and the aqueous metal salt solution for forming the surface portion was 100 v%: 0 v% to 0 The chelating agent and the basic aqueous solution were mixed and fed into the reactor while mixing while gradually changing to v%: 100 v% to prepare transition metal composite oxide particles.
공침 반응 시작후 30분 경과시 입자 크기 및 반응 완료시 입자 크기 분포를 측정하고 그 결과를 도 1 및 도 2에 나타내었다. 도 1 및 도 2에서 공침 반응 시작후 30분 경과시 입자 크기 및 반응 완료시 입자 크기 분포에서 D50 이 4 ㎛ 이하로 조절되는 것을 확인할 수 있다. The particle size at 30 minutes after the start of the coprecipitation reaction and the particle size distribution at the completion of the reaction were measured and the results are shown in FIGS. 1 and 2. 1 and 2 it can be seen that the D50 is adjusted to 4 μm or less in the particle size and particle size distribution when the reaction is completed 30 minutes after the start of the coprecipitation reaction.
제조된 전구체와리튬 화합물을 반응시킨 후 소성하여 활물질 입자를 제조하였다. 제조된 전구체 입자 및 활물질 입자의 단면에 대한 SEM 사진을 측정하고 그 결과를 도 3 및 도 4에 나타내었다. 도 3 및 도 4에서 입자 내부가 치밀한 구조를 형성하는 것을 확인할 수 있다. The precursor and the lithium compound were reacted with each other and then fired to prepare active material particles. SEM photographs of the cross sections of the prepared precursor particles and active material particles were measured and the results are shown in FIGS. 3 and 4. It can be seen from FIG. 3 and FIG. 4 that the inside of the particles forms a dense structure.
<실시예 2><Example 2>
Ni:Co:Mn 의 조성비가 95:2:3 인 중심부 형성 용액을 제조하고, 초기 NaOH를 증류수 2.5 L 당 10 g 의 비율로 투입하여 반응 용액의 pH 를 11.9 로 조정한 후, 공침 반응에 의하여 반지름의 크기가 0.2 ㎛ 인 전이금속 복합 산화물 입자를 제조하였다.A central forming solution having a composition ratio of Ni: Co: Mn of 95: 2: 3 was prepared, the initial NaOH was added at a rate of 10 g per 2.5 L of distilled water to adjust the pH of the reaction solution to 11.9, followed by coprecipitation reaction. A transition metal composite oxide particle having a radius of 0.2 μm was prepared.
Ni:Co:Mn 의 조성비가 85:6:9 조성인 제 2 -1 내부 형성 용액, Ni:Co:Mn 의 조성비가 65:10:25 조성인 제 2 -2 내부 형성 용액을 제조하고, 상기 중심부 형성용 금속염 수용액과 상기 제 2 -1 내부 형성 용액의 혼합 비율이 100 v%:0 v% 에서 0v% :100 v% 까지 점진적으로 변화하면서 혼합하여 제 1 혼합 금속 수용액을 제조하는 동시에 킬레이팅제 및 염기성 수용액을 반응기에 혼합 공급하여, 먼저 제 1 내부 표면에 제 2-1 내부를 제조하고, 상기 제 1 혼합 금속 수용액과 상기 제 2 -2 내부 형성 용액의 혼합 비율이 100 v%:0 v% 에서 0v% :100 v% 까지 점진적으로 변화하면서 혼합하여 제 2 혼합 금속 수용액을 제조하여 반응기에 공급하는 동시에 킬레이팅제 및 염기성 수용액을 반응기에 혼합 공급하여 상기 제 2-1 내부 표면에 상기 제 2-1 내부와는 니켈, 망간, 코발트의 농도 구배 중 적어도 하나의 농도 구배 기울기가 상이한 제 2-2 내부를 제조하였다. A second -1 internal forming solution having a composition ratio of Ni: Co: Mn of 85: 6: 9 and a second -2 internal forming solution having a composition ratio of Ni: Co: Mn of 65:10:25 was prepared. The mixing ratio of the metal salt aqueous solution for forming the core and the second -1 internal forming solution is gradually changed from 100 v%: 0 v% to 0v%: 100 v% to prepare the first mixed metal aqueous solution and simultaneously chelating The first and basic aqueous solutions were mixed and supplied to the reactor, first to prepare a 2-1 interior on the first inner surface, and the mixing ratio of the first mixed metal aqueous solution and the second -2 internal forming solution was 100 v%: 0 gradually mixing from v% to 0v%: 100 v% to prepare a second mixed metal aqueous solution and supply it to the reactor, and simultaneously supply and supply the chelating agent and the basic aqueous solution to the reactor to provide the 2-1 inner surface with 2-1 In the concentration gradient of nickel, manganese and cobalt Was also one gradient slope of producing the second-second inner different.
공침 반응 시작후 30분 경과시 입자 크기 및 반응 완료시 입자 크기 분포를 측정하고 그 결과를 도 5 및 도 6에 나타내었다. The particle size at 30 minutes after the start of the coprecipitation reaction and the particle size distribution at the completion of the reaction were measured and the results are shown in FIGS. 5 and 6.
공침 반응 시작후 30분 경과시 입자 크기 및 반응 완료시 입자 크기 분포를 측정하고 그 결과를 도 1 및 도 2에 나타내었다. 도 1 및 도 2에서 공침 반응 시작후 30분 경과시 입자 크기 및 반응 완료시 입자 크기 분포에서 D50 이 4 ㎛ 이하로 조절되는 것을 확인할 수 있다. The particle size at 30 minutes after the start of the coprecipitation reaction and the particle size distribution at the completion of the reaction were measured and the results are shown in FIGS. 1 and 2. 1 and 2 it can be seen that the D50 is adjusted to 4 μm or less in the particle size and particle size distribution when the reaction is completed 30 minutes after the start of the coprecipitation reaction.
제조된 전구체와 리튬 화합물을 반응시킨 후 소성하여 활물질 입자를 제조하였다. 제조된 전구체 입자 및 활물질 입자의 단면에 대한 SEM 사진을 측정하고 그 결과를 도 7 및 도 8에 나타내었다. 도 7 및 도 8에서 입자 내부 구조가 치밀하게 형성되는 것을 확인할 수 있다. The prepared precursor and the lithium compound were reacted and then fired to prepare active material particles. SEM photographs of the cross-sections of the prepared precursor particles and active material particles were measured and the results are shown in FIGS. 7 and 8. It can be seen from FIG. 7 and FIG. 8 that the internal structure of the particles is compactly formed.
<비교예 1>Comparative Example 1
Ni:Co:Mn 의 조성비가 95:2:3 인 제 1 내부 형성 용액을 제조하고, 초기 NaOH를 증류수 2.5 L 당 7 g 의 비율로 투입하여 pH 를 11.7 로 조정한 후, 공침 반응에 의하여 전이금속복합 산화물 입자를 제조하였다. A first internal forming solution having a composition ratio of Ni: Co: Mn of 95: 2: 3 was prepared, the initial NaOH was added at a rate of 7 g per 2.5 L of distilled water to adjust the pH to 11.7, and then transferred by coprecipitation reaction. Metal composite oxide particles were prepared.
공침 반응 시작후 30분 경과시 입자 크기 및 반응 완료시 입자 크기 분포를 측정하고 그 결과를 도 9 및 도 10에 나타내었다. The particle size at 30 minutes after the start of the coprecipitation reaction and the particle size distribution at the completion of the reaction were measured and the results are shown in FIGS. 9 and 10.
도 9 및 도 10에서 공침 반응 시작후 30분 경과시 입자 크기 및 반응 완료시 입자 크기 분포에서 D50 이 4 ㎛ 이상으로 형성되는 것을 확인할 수 있다. 9 and 10, it can be seen that D50 is formed to 4 μm or more in particle size and particle size distribution when the reaction is completed 30 minutes after the start of the coprecipitation reaction.
제조된 전이금속복합 산화물 입자와 리튬 화합물을 반응시킨 후 소성하여 활물질 입자를 제조하였다. 제조된 전구체 입자 및 활물질 입자의 단면에 대한 SEM 사진을 측정하고 그 결과를 도 11 및 도 12 에 나타내었다. 도 11 및 도 12 에서 입자 내부가 치밀 구조이고, 입자 크기 분포에서 10 ㎛ 크기를 나타내는 입자가 가장 많다는 것을 확인할 수 있다.The prepared transition metal composite oxide particles and the lithium compound were reacted and then fired to prepare active material particles. SEM photographs of the cross sections of the prepared precursor particles and active material particles were measured and the results are shown in FIGS. 11 and 12. It can be seen from FIG. 11 and FIG. 12 that the inside of the particles has a dense structure, and the largest number of particles exhibiting a 10 μm size in the particle size distribution.
<실시예 3><Example 3>
Ni:Co:Mn 의 조성비가 95:2:3 인 제 1 내부 형성 용액을 제조하고, 초기 NaOH를 증류수 2.5 L 당 7 g 의 비율로 투입하여 pH 를 11.7 로 조정한 후, 공침 반응에 의하여 반지름이 0.2㎛ 인 전구체 입자를 제조하였다. A first internal forming solution having a composition ratio of Ni: Co: Mn of 95: 2: 3 was prepared, the initial NaOH was added at a rate of 7 g per 2.5 L of distilled water to adjust the pH to 11.7, and then radiused by coprecipitation. This 0.2 micrometer precursor particle | grains were manufactured.
Ni:Co:Mn 의 조성비가 95:2:3 조성인 제 2 내부 형성 용액을 제조하고, 상기 중심부 형성용 금속염 수용액과 상기 제 2 내부 형성 용액의 혼합 용액인 제 1 혼합 금속 수용액을 제조하는데 있어서, 상기 중심부 형성용 금속염 수용액과 상기 제 2 내부 형성 용액의 혼합 비율이 100 v%:0 v% 에서 0v% :100 v% 까지 점진적으로 변화하면서 혼합하는 동시에 킬레이팅제 및 염기성 수용액을 반응기에 혼합 공급하여, 입자 전체에서 니켈, 망간, 코발트가 농도 구배를 나타내는 전이금속 복합 산화물 입자를 제조하였다. In preparing a second internal forming solution having a composition ratio of Ni: Co: Mn of 95: 2: 3, and preparing a first mixed metal aqueous solution which is a mixed solution of the metal salt aqueous solution for forming the center portion and the second internal forming solution. The mixing rate of the metal salt aqueous solution for forming the core and the second internal forming solution is gradually changed from 100 v%: 0 v% to 0v%: 100 v%, while mixing the chelating agent and the basic aqueous solution into the reactor. By supplying, transition metal composite oxide particles having a concentration gradient of nickel, manganese, and cobalt were prepared in the whole particle.
공침 반응 시작후 30분 경과시 입자 크기 및 반응 완료시 입자 크기 분포를 측정하고 그 결과를 도 13 및 도 14에 나타내었다. The particle size at 30 minutes after the start of the coprecipitation reaction and the particle size distribution at the completion of the reaction were measured and the results are shown in FIGS. 13 and 14.
도 13 및 도 14에서 공침 반응 시작후 30분 경과시 입자 크기 및 반응 완료시 입자 크기 분포에서 D50 이 4 ㎛ 이하로 조절되는 것을 확인할 수 있다. 13 and 14 it can be seen that the D50 is adjusted to 4 μm or less in the particle size and particle size distribution when the reaction is completed 30 minutes after the start of the coprecipitation reaction.
제조된 전이금속 복합 산화물 입자와 리튬 화합물을 반응시킨 후 소성하여 활물질 입자를 제조하였다. 제조된 전구체 입자 및 활물질 입자의 단면에 대한 SEM 사진을 측정하고 그 결과를 도 15 및 도 16 에 나타내었다. 도 15 및 도 16 에서 입자 내부가 치밀 구조로 형성되는 것을 확인할 수 있다.The prepared transition metal composite oxide particles and the lithium compound were reacted and then fired to prepare active material particles. SEM photographs of the cross sections of the prepared precursor particles and active material particles were measured and the results are shown in FIGS. 15 and 16. It can be seen from FIG. 15 and FIG. 16 that the inside of the particles has a dense structure.
<비교예 2>Comparative Example 2
반응기 내에 초기 NaOH를 증류수 2.5 L 당 7 g 의 비율로 투입하여 pH 를 11.7 로 조정한 후, Ni:Co:Mn 의 조성비가 96:2:2 인 제 1 내부 형성 용액을 제조하고 반응기 내로 공급하여 공침 반응에 의하여 전구체 입자를 제조하였다. After adjusting the pH to 11.7 by adding initial NaOH at a rate of 7 g per 2.5 L of distilled water, a first internal forming solution having a composition ratio of Ni: Co: Mn of 96: 2: 2 was prepared and fed into the reactor. Precursor particles were prepared by coprecipitation reaction.
공침 반응 시작후 30분 경과시 입자 크기 및 반응 완료시 입자 크기 분포를 측정하고 그 결과를 도 17 및 도 18에 나타내었다. The particle size at 30 minutes after the start of the coprecipitation reaction and the particle size distribution at the completion of the reaction were measured and the results are shown in FIGS. 17 and 18.
제조된 전구체와리튬 화합물을 반응시킨 후 소성하여 활물질 입자를 제조하였다. 제조된 전구체 입자 및 활물질 입자의 단면에 대한 SEM 사진을 측정하고 그 결과를 도 19 및 도 20 에 나타내었다. The precursor and the lithium compound were reacted with each other and then fired to prepare active material particles. SEM photographs of the cross sections of the prepared precursor particles and active material particles were measured and the results are shown in FIGS. 19 and 20.
<실시예 4><Example 4>
Ni:Co:Mn 의 조성비가 98:1:1 인 제 1 내부 형성 용액을 제조하고, 초기 NaOH를 증류수 2.5 L 당 12 g 의 비율로 투입하여 pH 를 12 로 조정한 후, 공침 반응에 의하여 반지름의 크기가 0.2 ㎛ 인 전구체 입자를 제조하였다.A first internal forming solution having a composition ratio of Ni: Co: Mn of 98: 1: 1 was prepared, the initial NaOH was added at a rate of 12 g per 2.5 L of distilled water, and then the pH was adjusted to 12. A precursor particle having a size of 0.2 μm was prepared.
Ni:Co:Mn 의 조성비가 91:3:6 조성인 제 2 -1 내부 형성 용액, Ni:Co:Mn 의 조성비가 80:7:13 조성인 제 2 -2 내부 형성 용액을 제조하고,상기 중심부 형성용 금속염 수용액과 상기 제 2 -1 내부 형성 용액의 혼합 비율이 100 v%:0 v% 에서 0v% :100 v% 까지 점진적으로 변화하면서 혼합하여 제 1 혼합 금속 수용액을 제조하여 공급하는 동시에 킬레이팅제 및 염기성 수용액을 반응기에 혼합 공급하여, 먼저 제 1 내부 표면에 제 2-1 내부를 제조하고, 상기 제 2 -1 내부 형성 용액과 상기 제 2 -2 내부 형성 용액의 혼합 비율이 100 v%:0 v% 에서 0v% :100 v% 까지 점진적으로 변화하면서 혼합하여 제 2 혼합 금속 수용액을 제조하여 공급하는 동시에 킬레이팅제 및 염기성 수용액을 반응기에 혼합 공급하여 상기 제 2-1 내부 표면에 제 2-2 내부를 제조하였다. Preparing a second -1 internal forming solution having a composition ratio of Ni: Co: Mn of 91: 3: 6 and a second -2 forming solution having a composition ratio of Ni: Co: Mn of 80: 7: 13, The mixing ratio of the metal salt aqueous solution for forming the core and the second -1 internal forming solution is gradually changed from 100 v%: 0 v% to 0v%: 100 v% to prepare and supply the first mixed metal aqueous solution. The chelating agent and the basic aqueous solution were mixed and supplied to the reactor to first prepare a 2-1 interior on the first inner surface, and the mixing ratio of the second -1 internal forming solution and the second -2 internal forming solution was 100. gradually varying from v%: 0 v% to 0v%: 100 v% to prepare and supply a second mixed metal aqueous solution, and simultaneously supply and supply a chelating agent and a basic aqueous solution to the reactor to provide the 2-1 inner surface. 2-2 was prepared inside.
이후 Ni:Co:Mn 의 조성비가 57:16:27 인 제 3 내부 형성 용액을 제조하고, 공침 반응에 의하여 상기 제 2-2 내부 외부에 니켈, 망간, 코발트의 농도가 일정한 제 3 내부를 포함하는 전구체 입자를 제조하였다.Thereafter, a third internal formation solution having a composition ratio of Ni: Co: Mn is 57:16:27, and a third interior having a constant concentration of nickel, manganese, and cobalt is formed outside the second-2 by coprecipitation. To prepare precursor particles.
공침 반응 시작 후 30분 경과시 제조되는 전이 금속 복합 산화물 입자 크기 및 반응 완료시 전이 금속 복합 산화물 입자 크기 분포를 측정하고 그 결과를 도 21 및 도 22에 나타내었다. The transition metal composite oxide particle size prepared at 30 minutes after the start of the coprecipitation reaction and the transition metal composite oxide particle size distribution at the completion of the reaction were measured and the results are shown in FIGS. 21 and 22.
제조된 전이 금속 복합 산화물과 리튬 화합물을 반응시킨 후 소성하여 활물질 입자를 제조하였다. The prepared transition metal composite oxide was reacted with a lithium compound and then fired to prepare active material particles.
제조된 전구체 입자 및 활물질 입자의 단면에 대한 SEM 사진을 측정하고 그 결과를 도 23 및 도 24 에 나타내었다. SEM photographs of the cross sections of the prepared precursor particles and active material particles were measured and the results are shown in FIGS. 23 and 24.
<비교예 3>Comparative Example 3
Ni:Co:Mn 의 조성비가 98:1:1 인 제 1 내부 형성 용액을 제조하고, 초기 NaOH를 증류수 2.5 L 당 9 g 의 비율로 투입하여 pH 를 11.8 로 조정한 것을 제외하고는 상기 실시예 3과 동일하게 입자를 제조하고, 공침 반응 시작후 30분 경과시 입자 크기 및 반응 완료시 입자 크기 분포를 측정하고 그 결과를 도 25 및 도 26에 나타내었다. Except for preparing the first internal forming solution having a composition ratio of Ni: Co: Mn of 98: 1: 1 and adjusting the pH to 11.8 by adding initial NaOH at a rate of 9 g per 2.5 L of distilled water. Particles were prepared in the same manner as 3, and the particle size at 30 minutes after the start of the coprecipitation reaction and the particle size distribution at the completion of the reaction were measured, and the results are shown in FIGS. 25 and 26.
제조된 전구체와리튬 화합물을 반응시킨 후 소성하여 활물질 입자를 제조하였다. 제조된 전구체 입자 및 활물질 입자의 단면에 대한 SEM 사진을 측정하고 그 결과를 도 27 및 도 28 에 나타내었다. The precursor and the lithium compound were reacted with each other and then fired to prepare active material particles. SEM photographs of the cross sections of the prepared precursor particles and active material particles were measured and the results are shown in FIGS. 27 and 28.
<실험예>탭밀도 측정<Experimental example> Tap density measurement
상기 실시예 1 내지 4 및 비교예 1 내지 3에서 제조된 전구체 및 활물질에 대하여 탭밀도를 측정하고 그 결과를 표 1에 나타내었다. The tap densities of the precursors and the active materials prepared in Examples 1 to 4 and Comparative Examples 1 to 3 were measured, and the results are shown in Table 1.
아래 표 1에서 본 발명에 의하여 제조된 전구체 및 활물질의 탭밀도가 비교예보다 15% 이상 크게 개선되는 것을 알 수 있다. In Table 1 below it can be seen that the tap density of the precursor and the active material prepared by the present invention is significantly improved by at least 15% than the comparative example.
표 1
Figure PCTKR2014007082-appb-T000001
Table 1
Figure PCTKR2014007082-appb-T000001
<실험예> 수명 특성 측정Experimental Example Measurement of Life Characteristics
상기 실시예 1 내지 4 및 비교예 1 내지 3에서 제조된 활물질을 이용하여 코인셀을 제조하고, 각각의 코인셀에 대한 수명 특성을 측정하여 그 결과를 표 2에 나타내었다. Coin cells were prepared using the active materials prepared in Examples 1 to 4 and Comparative Examples 1 to 3, and the life characteristics of each coin cell were measured, and the results are shown in Table 2.
표 2
Figure PCTKR2014007082-appb-T000002
TABLE 2
Figure PCTKR2014007082-appb-T000002
본 발명에 의한 리튬 복합 산화물의 제조 방법은 공침 반응에서 초기 반응 조건에서 니켈 함량에 따라 첨가하는 염기성 용액의 양을 조절함으로써 반응기 내의 pH 를 조절하여 입자 치밀도가 개선되고 탭밀도가 높아 고용량의리튬 이온 이차 전지를 제조할 수 있다. Lithium composite oxide production method according to the present invention by adjusting the amount of the basic solution added according to the nickel content in the initial reaction conditions in the coprecipitation reaction by adjusting the pH in the reactor to improve the particle density and high tap density of high capacity lithium An ion secondary battery can be manufactured.

Claims (17)

  1. 니켈, 코발트, 망간을 포함하고, 상기 니켈, 코발트, 망간의 농도는 서로 다른 제 1 내부 형성용 금속염 수용액과 제 2 내부 형성용 금속염 수용액을 준비하는 제 1 단계; A first step of preparing nickel, cobalt, and manganese, wherein the nickel, cobalt, and manganese have different concentrations of the first inner metal salt solution and the second metal salt solution;
    반응기 내에 킬레이팅제 및 염기성 수용액을 공급하는 제 2 단계; Supplying a chelating agent and a basic aqueous solution into the reactor;
    상기 제 1 내부 형성용 금속염 수용액과 킬레이팅제 및 염기성 수용액을 반응기에 계속적으로 공급하면서 혼합하여, 니켈, 코발트, 망간의 농도가 일정하고 반경이 r1 (0.2 um ≤r1≤ 5 um) 인 제 1 내부를 포함하는 입자를 성장시키는 제 3 단계; 및The first metal forming aqueous solution for internal formation, the chelating agent and the basic aqueous solution are continuously mixed with the reactor, and the nickel, cobalt and manganese have a constant concentration and a radius of r1 (0.2 um ≤ r1 ≤ 5 um). A third step of growing a particle comprising an interior; And
    상기 제 1 내부 형성용 금속염 수용액과 상기 제 2 내부 형성용 금속염 수용액의 혼합 비율이 100 v% : 0 v% 에서 0 v% :100 v% 까지 점진적으로 변화하면서 혼합하면서 공급하는 동시에 킬레이팅제 및 염기성 수용액을 반응기에 혼합하여, 상기 제 1 내부 외곽에 반경이 r2 (r2≤10 um) 인 제 2 내부를 포함하는 입자를 형성하는 제 4 단계; 를 포함하는 전이금속 복합 산화물의 제조 방법에 있어서, The mixing ratio of the first aqueous metal salt solution for internal formation and the second aqueous metal salt solution for internal formation is gradually changed from 100 v%: 0 v% to 0 v%: 100 v% while being supplied while mixing and chelating agent and Mixing a basic aqueous solution into a reactor to form particles including a second inside having a radius r2 (r2 ≦ 10 um) at the first inside periphery; In the method for producing a transition metal complex oxide comprising:
    상기 제 2 단계에서는 상기 반응 용액에서의 염기성 수용액의 농도를 0.25 g/L 내지 0.5 g/L 가 되도록 조절하는 것인 전이금속 복합 산화물의 제조 방법의 제조방법.In the second step, the concentration of the basic aqueous solution in the reaction solution is adjusted to be 0.25 g / L to 0.5 g / L.
  2. 제 1 항에 있어서, The method of claim 1,
    상기 제 2 단계에서 반응기 내 용액의 pH 는 11.8 내지 12.3 으로 조절하는 것인 리튬 복합 산화물의 제조방법PH of the solution in the reactor in the second step is adjusted to 11.8 to 12.3 method for producing a lithium composite oxide
  3. 제 1 항에 있어서, The method of claim 1,
    상기 제 1 내부 형성용 금속염 수용액 내의 니켈 농도를 0.8 내지 1 몰% 로 조절하는 것인 전이금속 복합 산화물의 제조 방법의 제조방법.The method for producing a transition metal composite oxide of controlling the nickel concentration in the first aqueous solution for forming metal to 0.8 to 1 mol%.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 제 1 단계 내지 제 4 단계에 의하여 상기 제 1 내부 형성용 금속염 수용액, 킬레이팅제 및 염기성 수용액을 반응기에 혼합하여 30분간 반응시킨 후 형성되는 입자들의 크기 분포에서 D50 이 4 ㎛ 이하인 것인 전이 금속 복합 산화물 의 제조방법The first to the fourth step by the first metal salt aqueous solution for forming, the chelating agent and the basic aqueous solution is mixed in a reactor for 30 minutes, the transition is D50 less than 4 ㎛ in the size distribution of the particles formed Method for producing metal composite oxide
  5. 제 1 항에 있어서, The method of claim 1,
    상기 제 1 단계 내지 상기 제 4 단계를 수행하여 얻어진 전이금속 복합 산화물을 건조하거나 열처리하는 제 5 단계를 더 포함하고,Further comprising a fifth step of drying or heat-treating the transition metal composite oxide obtained by performing the first step to the fourth step,
    상기 제 5 단계에서 제조된 전이 금속 복합 산화물 입자의 평균 직경은 5 내지 10 ㎛ 인 것인 전이금속 복합 산화물의 제조방법Method for producing a transition metal composite oxide of the average diameter of the transition metal composite oxide particles prepared in the fifth step is 5 to 10 ㎛.
  6. 제 1 항 내지 제 5 항 중 어느 하나의 제조 방법에 의하여 제조된 전이금속 복합 산화물A transition metal composite oxide prepared by the method of any one of claims 1 to 5.
  7. 제 6 항에 있어서,The method of claim 6,
    상기 제 5 단계에서 제조된 전이금속 복합 산화물에 리튬염을 혼합하여 열처리하는 제 6 단계;를 더 포함하는 리튬 복합 산화물의 제조 방법A sixth step of mixing and heat treating a lithium salt with the transition metal composite oxide prepared in the fifth step;
  8. 제 7 항에 의하여 제조된 리튬 복합 산화물Lithium composite oxide prepared according to claim 7
  9. 제 8 항에 의하여 제조된 리튬 복합 산화물은 아래 화학식 1로 표시되는 것을 특징으로 하는 리튬 복합 산화물The lithium composite oxide prepared according to claim 8 is represented by the formula (1) below
    [화학식 1] LiaaNixaCoyaMnzaO2+δ [Formula 1] Li aa Ni xa Co ya Mn za O 2 + δ
    (상기 화학식 1 에서 0.5≤Xa≤1.0 임)(In Formula 1, 0.5 ≦ Xa ≦ 1.0)
  10. 니켈, 망간 및 코발트를 포함하는 제 1 금속염 수용액을 제조하는 것;Preparing a first aqueous metal salt solution comprising nickel, manganese and cobalt;
    니켈, 망간 및 코발트를 포함하는 제 2 금속염 수용액을 제조하는 것;Preparing a second aqueous metal salt solution comprising nickel, manganese and cobalt;
    반응기 내에서 염기성 수용액 및 암모니아 수용액을 혼합하여 반응 용액 내의 pH를 11.8 내지 12.3 으로 조절하는 것; 및Mixing the basic aqueous solution and the aqueous ammonia solution in the reactor to adjust the pH in the reaction solution to 11.8 to 12.3; And
    상기 반응기 내로 상기 제1 금속염 수용액과 상기 제2 금속염 수용액이 혼합된 제1 혼합 금속염 수용액, 암모니아 및 염기성 수용액을 제공하는 것;을 포함하되,Providing a first mixed metal salt solution, ammonia and basic aqueous solution in which the first metal salt solution and the second metal salt solution are mixed into the reactor;
    상기 제 1 혼합 금속염 수용액에서 상기 제1 금속염 수용액과 상기 제2 금속염 수용액의 혼합 비율은 0 v% 이상이고 100 v% 이하인 전이 금속 복합 산화물의 제조 방법.The mixing ratio of the first metal salt aqueous solution and the second metal salt aqueous solution in the first mixed metal salt aqueous solution is 0 v% or more and 100 v% or less.
  11. 제 9 항에 있어서,The method of claim 9,
    상기 제1 금속염 수용액에서 니켈의 함량이 x1, 망간의 함량y1, 코발트의 함량이 z1이고,In the first metal salt solution, the nickel content is x1, the manganese content y1, and the cobalt content is z1.
    상기 제2 금속염 수용액에서 니켈의 함량이 x2, 망간의 함량 y2, 코발트의 함량이 z2 이고, In the second aqueous metal salt solution, the nickel content is x2, the manganese content y2, and the cobalt content is z2,
    x1+y1+z1 =1 이고, x2+y2+z2 =1 이되,x1 + y1 + z1 = 1, x2 + y2 + z2 = 1,
    x1≠x2, y1≠y2 및 z1≠z2 중에서 적어도 하나를 만족하는 전이 금속 복합 산화물의 제조 방법.A method for producing a transition metal composite oxide that satisfies at least one of x1 ≠ x2, y1 ≠ y2, and z1 ≠ z2.
  12. 제 10 항에 있어서,The method of claim 10,
    상기 x1은 0.8 이상이고 1.0 이하인 전이 금속 복합 산화물의 제조 방법.X1 is 0.8 or more and 1.0 or less.
  13. 제 10 항에 있어서,The method of claim 10,
    상기 x2는 0.8 이하인 전이 금속 복합 산화물의 제조 방법.X2 is 0.8 or less.
  14. 제 9 항에 있어서,The method of claim 9,
    상기 제1 혼합 금속염 수용액을 제공하는 것은,Providing the first mixed metal salt aqueous solution,
    상기 1 금속염 수용액과 상기 제 2 금속염 수용액의 혼합 비율은 100 v%:0 v% 에서 0v% :100 v% 까지 점진적으로 변화하는 것을 포함하는 전이 금속 복합 산화물의 제조 방법.Mixing ratio of the aqueous solution of the first metal salt and the aqueous solution of the second metal salt is a method of producing a transition metal complex oxide comprising gradually changing from 100 v%: 0 v% to 0v%: 100 v%.
  15. 제 9 항에 있어서The method of claim 9
    니켈, 망간 및 코발트를 포함하는 제3 금속염 수용액을 제조하는 것; 및Preparing an aqueous solution of a third metal salt comprising nickel, manganese and cobalt; And
    반응기 내에 상기 제1 혼합금속염 수용액과 상기 제 3 금속염 수용액이 혼합된 제2 혼합 금속염 수용액, 암모니아 및 염기성 수용액을 제공하는 것을 더 포함하고,Providing a second mixed metal salt aqueous solution, ammonia and basic aqueous solution in which the first mixed metal salt aqueous solution and the third metal salt aqueous solution are mixed in a reactor;
    상기 제2 혼합 금속염 수용액에서 상기 제1 혼합 금속염 수용액과 상기 제3 금속염 수용액의 혼합 비율은 0 v%초과이고 100 v% 이하인 전이 금속 복합 산화물의 제조 방법.The mixing ratio of the first mixed metal salt aqueous solution and the third metal salt aqueous solution in the second mixed metal salt aqueous solution is more than 0 v% and 100 v% or less.
  16. 제 14 항에 있어서,The method of claim 14,
    상기 제1 혼합 금속염 수용액에서 니켈의 함량이 x3, 망간의 함량 y3, 코발트의 함량이 z3이고,In the first mixed metal salt solution, the nickel content is x3, the manganese content y3, and the cobalt content is z3.
    상기 제 3 금속염 수용액에서 니켈의 함량이 x4, 망간의 함량 y4, 코발트의 함량이 z4 이고, In the third metal salt aqueous solution, the content of nickel is x4, the content of manganese y4, and the content of cobalt is z4,
    x3+y3+z3 =1 및 x4+y4+z4 =1 이고,x3 + y3 + z3 = 1 and x4 + y4 + z4 = 1,
    x3≠x4, y3≠y4 및 z3≠z4 중에서 적어도 하나를 만족하는 전이 금속 복합 산화물의 제조 방법.A method for producing a transition metal composite oxide that satisfies at least one of x3 ≠ x4, y3 ≠ y4 and z3 ≠ z4.
  17. 제 14 항에 있어서,The method of claim 14,
    상기 제2 혼합 금속염 수용액을 제공하는 것은,Providing the second mixed metal salt aqueous solution,
    상기 제1 혼합 금속염 수용액과 상기 제 3 금속염 수용액의 혼합 비율은 100 v%:0 v% 에서 0v% :100 v% 까지 점진적으로 변화하는 것을 포함하는 전이 금속 복합 산화물의 제조 방법.The mixing ratio of the first mixed metal salt aqueous solution and the third metal salt aqueous solution is gradually changed from 100 v%: 0 v% to 0v%: 100 v%.
PCT/KR2014/007082 2013-07-31 2014-07-31 Method for preparing transition metal composite oxide, transition metal composite oxide prepared thereby, and lithium composite oxide prepared using same WO2015016648A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/909,035 US10629903B2 (en) 2013-07-31 2014-07-31 Method for preparing transition metal composite oxide, transition metal composite oxide prepared thereby, and lithium composite oxide prepared using same
CN201480042956.6A CN105594029B (en) 2013-07-31 2014-07-31 Shift the manufacturing method of composite oxide of metal and the lithium composite xoide for shifting composite oxide of metal and manufacture using it according to its manufacture

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2013-0091245 2013-07-31
KR20130091245 2013-07-31
KR1020140098660A KR101903827B1 (en) 2013-07-31 2014-07-31 Manufacturing method of transition metal complex oxide, transition metal complex oxide made by the same, and lithium metal complex oxide made using the same
KR10-2014-0098660 2014-07-31

Publications (1)

Publication Number Publication Date
WO2015016648A1 true WO2015016648A1 (en) 2015-02-05

Family

ID=52432098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/007082 WO2015016648A1 (en) 2013-07-31 2014-07-31 Method for preparing transition metal composite oxide, transition metal composite oxide prepared thereby, and lithium composite oxide prepared using same

Country Status (1)

Country Link
WO (1) WO2015016648A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100752703B1 (en) * 2006-06-29 2007-08-29 한양대학교 산학협력단 Positive active material for lithium secondary battery, method of preparing same and a lithium secondary battery comprising the same
KR100815583B1 (en) * 2006-10-13 2008-03-20 한양대학교 산학협력단 Positive active material for a lithium secondary battery, method of preparing thereof, and lithium secondary battery comprising the same
JP2009137834A (en) * 2007-11-12 2009-06-25 Toda Kogyo Corp Li-Ni-BASED COMPLEX OXIDE PARTICLE POWDER FOR NONAQUEOUS ELECTROLYTE SECONDARY BATTERY, MANUFACTURING METHOD THEREOF, AND NONAQUEOUS ELECTROLYTE SECONDARY BATTERY
KR20120009891A (en) * 2010-07-22 2012-02-02 주식회사 에코프로 Manufacturing method of positive active material for lithium secondary battery, positive active material manufactured by the same and lithium secondary battery using positive active material
KR20120084585A (en) * 2011-01-20 2012-07-30 한양대학교 산학협력단 Cathod active material, method for preparing the same, lithium secondary battery comprising the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100752703B1 (en) * 2006-06-29 2007-08-29 한양대학교 산학협력단 Positive active material for lithium secondary battery, method of preparing same and a lithium secondary battery comprising the same
KR100815583B1 (en) * 2006-10-13 2008-03-20 한양대학교 산학협력단 Positive active material for a lithium secondary battery, method of preparing thereof, and lithium secondary battery comprising the same
JP2009137834A (en) * 2007-11-12 2009-06-25 Toda Kogyo Corp Li-Ni-BASED COMPLEX OXIDE PARTICLE POWDER FOR NONAQUEOUS ELECTROLYTE SECONDARY BATTERY, MANUFACTURING METHOD THEREOF, AND NONAQUEOUS ELECTROLYTE SECONDARY BATTERY
KR20120009891A (en) * 2010-07-22 2012-02-02 주식회사 에코프로 Manufacturing method of positive active material for lithium secondary battery, positive active material manufactured by the same and lithium secondary battery using positive active material
KR20120084585A (en) * 2011-01-20 2012-07-30 한양대학교 산학협력단 Cathod active material, method for preparing the same, lithium secondary battery comprising the same

Similar Documents

Publication Publication Date Title
WO2013147537A1 (en) Method for preparing cathode active material precursor for lithium secondary battery, cathode active material precursor for lithium secondary battery prepared thereby, and cathode active material for lithium secondary battery containing same
WO2012093798A2 (en) Anode active material with whole particle concentration gradient for lithium secondary battery, method for preparing same, and lithium secondary battery having same
WO2014178625A1 (en) Anode active material for lithium secondary battery
WO2014104759A1 (en) Cathode active material for lithium secondary batteries
WO2016052820A1 (en) Positive electrode active material for lithium secondary battery and lithium secondary battery including same
WO2014193203A1 (en) Anode active material for lithium cell and method for manufacturing same
WO2014133370A1 (en) Cathode active material for lithium secondary battery
WO2013002457A1 (en) Positive electrode active material, electrode including the positive electrode active material, and lithium electrochemical battery
WO2020111580A1 (en) Cathode additive for lithium secondary battery, preparation method therefor, cathode for lithium secondary battery, comprising same, and lithium secondary battery comprising same
WO2015016647A1 (en) Lithium composite oxide and manufacturing method therefor
WO2015122554A1 (en) Method for continuously preparing nickel cobalt manganese composite precursor using couette-taylor reactor
WO2019103522A2 (en) Method for preparing cathode active material
WO2012161476A2 (en) High energy density lithium secondary battery having enhanced energy density characteristic
WO2014077662A1 (en) Method for producing anode active material precursor for sodium secondary battery by using coprecipitation technique and anode active material precursor for sodium secondary battery produced thereby
WO2015105225A1 (en) Method for preparing nickel-cobalt-manganese composite precursor
WO2012161479A2 (en) High output lithium secondary battery having enhanced output density characteristic
WO2014077663A1 (en) Anode active material for sodium secondary battery and method for producing same
WO2014104811A1 (en) Method for producing cathode active material for lithium secondary battery, and cathode active material for lithium secondary battery produded thereby
WO2017069407A1 (en) Precursor comprising multi-layered transition metal oxides for producing cathode active material, and cathode active material produced using precursor for lithium secondary battery
WO2016175426A1 (en) Surface treatment method for lithium cobalt oxide, and lithium secondary battery comprising same
WO2011129636A2 (en) Method for synthesizing nanoelectrode materials using an ultra-fast combustion method, and nanoelectrode materials synthesized by the method
WO2014168286A1 (en) Method of manufacturing cathode active material precursor for lithium secondary battery, method of manufacturing cathode active material for lithium secondary battery, cathode including cathode active material and lithium secondary battery
WO2016108375A1 (en) Method for producing positive active material precursor and positive active material for lithium secondary batteries, exhibiting concentration gradient, and positive active material precursor and positive active material for lithium secondary batteries, exhibiting concentration gradient, produced by same
WO2020091199A1 (en) Method for preparing negative electrode active material, for lithium secondary battery, comprising silica-metal composite, and negative electrode active material prepared thereby
WO2013085306A1 (en) Method for manufacturing cathode active material for lithium secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14832132

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14909035

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14832132

Country of ref document: EP

Kind code of ref document: A1