WO2015016082A1 - Organic electroluminescent element production method, production device and organic electroluminescent element - Google Patents

Organic electroluminescent element production method, production device and organic electroluminescent element Download PDF

Info

Publication number
WO2015016082A1
WO2015016082A1 PCT/JP2014/069148 JP2014069148W WO2015016082A1 WO 2015016082 A1 WO2015016082 A1 WO 2015016082A1 JP 2014069148 W JP2014069148 W JP 2014069148W WO 2015016082 A1 WO2015016082 A1 WO 2015016082A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
film substrate
gas barrier
barrier layer
layer
Prior art date
Application number
PCT/JP2014/069148
Other languages
French (fr)
Japanese (ja)
Inventor
林 建二
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2015529515A priority Critical patent/JPWO2015016082A1/en
Publication of WO2015016082A1 publication Critical patent/WO2015016082A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/841Self-supporting sealing arrangements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/851Division of substrate

Definitions

  • the present invention relates to an organic electroluminescence element manufacturing method, a manufacturing apparatus, and an organic electroluminescence element.
  • the present invention relates to an organic electroluminescent element manufacturing method, a manufacturing apparatus, and an organic electroluminescent element with little damage to a gas barrier layer.
  • An organic electroluminescence (EL) element generally includes an organic functional layer including a light emitting layer and an anode and a cathode that sandwich the organic functional layer on a substrate.
  • the light emitting layer contains a light emitting organic compound, and when voltage is applied between the anode and the cathode, holes are injected from the anode into the light emitting layer, and electrons are injected from the cathode into the light emitting layer. Then, the injected holes and electrons are recombined in the light emitting layer, thereby generating excitons (exingtons). When the exciton is deactivated, energy is released, and the energy is emitted from the light emitting layer as light.
  • Such an organic EL element can emit light at a specific light wavelength by selecting an optimal organic compound as a material of the light emitting layer.
  • the organic EL element can be formed as a thin film in each layer, and can emit light in a thin and solid form. Due to these characteristics, the commercialization of organic EL elements as a thin, large-area full-color display, a light source device for electrophotography, a backlight for a liquid crystal display, a light source for biological recognition such as a vein sensor, surface emitting illumination, etc. It is peeling off.
  • a glass substrate is used as a substrate, and the glass substrate is mechanically cut with a metal blade or a diamond blade (see, for example, Patent Document 1), or immersed in a chemical and etched to be cut. It was general. Moreover, it cut
  • the film substrate can be supplied in a roll body and is suitable for integrated production.
  • Resin film is often used as the film substrate, but the resin film is easy to infiltrate gases such as water and oxygen in the atmosphere over time. Spot phenomenon is likely to occur. For this reason, the surroundings of the electrode and the light emitting layer are covered with a gas barrier layer exhibiting high gas barrier properties to shield the gas from entering the electrode and the light emitting layer.
  • the gas barrier layer is required to have a stable gas barrier property in a wide temperature range, and it is preferable that the gas barrier layer has high transparency in consideration of light extraction. Therefore, inorganic compounds such as silicon oxide and aluminum oxide are usually used for the gas barrier layer. Since the gas barrier layer mainly containing such an inorganic compound has brittle and hard properties, damage such as cracks is likely to occur when the blade is in direct contact during cutting. Since the film substrate on which the gas barrier layer is formed is highly flexible, if the film substrate is deformed by being bent or pulled during use, the damage caused at the cut portion is likely to expand, and the reliability of the gas barrier layer is increased. descend.
  • the film substrate has lower heat resistance than the glass substrate.
  • the film substrate may be melted and carbonized and deformed by high thermal energy. Due to the deformation, the gas barrier layer on the film substrate is distorted and easily damaged. Etching using chemicals is not suitable because the film substrate is hydrolyzed and corroded by chemicals.
  • the present invention has been made in view of the above-mentioned problems and circumstances, and its solution is a method for manufacturing an organic electroluminescence element, a manufacturing apparatus, and an organic It is to provide an electroluminescent device.
  • the present inventor tends to cause damage to the gas barrier layer when trying to completely cut the film substrate on which the gas barrier layer is formed at once.
  • the blade contacts the gas barrier layer to cause damage, and when irradiating laser light, the film substrate is deformed and damaged by irradiation for a long time.
  • the present inventor has intensively studied a cutting and dividing method in which the blade is not brought into contact with the gas barrier layer and the deformation of the film substrate is small. As a result, the cutting process is divided into two stages, and the film substrate is partially cut to form dividing grooves. After forming the film, it was found that there was little damage to the gas barrier layer by cutting and dividing along the dividing groove, which led to the present invention.
  • a plurality of organic EL elements including at least an organic functional layer including a light emitting layer and a pair of electrodes sandwiching the organic functional layer are formed, and the film substrate is cut and divided for each organic EL element
  • a method for manufacturing an organic EL element (A) forming a first gas barrier layer on the film substrate, and forming the organic functional layer and the pair of electrodes of a plurality of organic EL elements on the first gas barrier layer; (B) forming a dividing groove on a second surface which is a surface opposite to the first surface on which the first gas barrier layer is formed in the film substrate along a boundary line of each organic EL element; , (C) cutting and dividing the film substrate on which the first gas barrier layer is formed along the dividing grooves to obtain a plurality of organic EL elements;
  • the manufacturing method of the organic EL element characterized by including.
  • step (D) forming a second gas barrier layer so as to cover the organic functional layer and the pair of electrodes on the first gas barrier layer; (E) further including a step of bonding a protective film on the second gas barrier layer, In the step (b), a dividing groove is further formed on the second surface that is the surface opposite to the first surface facing the second gas barrier layer in the protective film along the boundary line of each organic EL element. Forming, In the step (c), the film substrate on which the second gas barrier layer is formed is cut and divided along the dividing grooves formed on the film substrate and the protective film, respectively.
  • the manufacturing method of the organic EL element of description is described.
  • step (b) a tapered dividing groove is formed.
  • the taper-shaped dividing groove has a V-shaped section, a curved V-shaped slope, a stepped shape, or a combination of two or more thereof. Manufacturing method of organic EL element.
  • the dividing groove is formed in a plurality of stages, and the sectional shape of the dividing groove formed in each stage is varied, so that the sectional shape of the dividing groove is V-shaped and the slope is curved V. 5.
  • a divided groove having a V-shaped cross section is formed in a plurality of stages, and the inclination angle of the slope of the divided groove formed in each stage is varied, so that the cross-sectional shape is V-shaped. 5.
  • the division grooves are formed by irradiating laser light, performing thermal imprinting, or a combination thereof, any one of items 1 to 6
  • the manufacturing method of the organic EL element of description is a simple process for manufacturing a semiconductor device.
  • step (c) air is blown into the dividing grooves, the film substrate is air-sucked and pulled for each organic EL element, or the film substrate is sandwiched and pulled to be cut and divided.
  • the manufacturing method of the organic EL element as described in any one of 1st term
  • an underlayer is further formed between the film substrate and the first gas barrier layer.
  • Item 11 The method for manufacturing an organic EL element according to Item 9 or 10, wherein the underlayer contains inorganic compound particles.
  • an extraction wiring for the pair of electrodes is further formed for each organic EL element, and the extraction wiring is adjacent between the organic EL elements and is continuous in the transport direction of the film substrate.
  • Each organic EL element is arrange
  • a plurality of organic EL elements including at least an organic functional layer including a light emitting layer and a pair of electrodes sandwiching the organic functional layer are formed, and the film substrate is cut and divided for each organic EL element
  • An apparatus for manufacturing an organic EL element Forming a first gas barrier layer on the film substrate, and forming a main body forming portion on the first gas barrier layer to form the organic functional layer of the plurality of organic EL elements and the pair of electrodes; A first cutting portion that forms a dividing groove on a second surface of the film substrate opposite to the first surface on which the first gas barrier layer is formed along a boundary line of each organic EL element; , Cutting and dividing the film substrate on which the first gas barrier layer is formed along the dividing grooves, to obtain a plurality of organic EL elements; and
  • a device for manufacturing an organic EL element comprising:
  • a first gas barrier layer is formed on a film substrate, and an organic EL device comprising at least an organic functional layer including a light emitting layer on the first gas barrier layer and a pair of electrodes sandwiching the organic functional layer, Of the first surface of the film substrate on which the first gas barrier layer is formed and the second surface that is the surface opposite to the first surface, the area of the second surface is the area of the first surface.
  • An organic EL element wherein a dividing groove is formed on the second surface so as to be smaller, and the film substrate is cut and divided along the dividing groove.
  • Item 17 The organic EL device according to Item 15 or 16, further comprising an underlayer between the film substrate and the first gas barrier layer.
  • Item 18 The organic EL element according to Item 17, wherein the underlayer contains a binder resin and has a hardness higher than that of the film substrate.
  • Item 19 The organic EL element according to Item 17 or 18, wherein the underlayer contains inorganic compound particles.
  • a second gas barrier layer formed to cover the organic functional layer and the pair of electrodes on the first gas barrier layer; A protective film bonded onto the second gas barrier layer; 20.
  • the organic EL element according to any one of items 15 to 19, characterized by comprising:
  • the protective film has an area of the second surface that is the area of the first surface. 21.
  • Item 20 The organic EL element according to Item 20 or 21, wherein the end shape of the protective film is a slope shape, a curved surface shape, a step shape, or a combination of two or more thereof.
  • the expression mechanism or action mechanism of the effect of the present invention is as follows. That is, according to the manufacturing method and manufacturing apparatus of the present invention, the dividing groove is formed in the film substrate on which the first gas barrier layer is formed, and the dividing groove is cut and divided along the dividing groove.
  • the film substrate can be cut without bringing the blade into contact with the first gas barrier layer and without deforming the film substrate by melting or the like. Therefore, damage to the first gas barrier layer due to contact of the blade or deformation of the film substrate can be prevented.
  • the stress applied to the film substrate at the time of cutting can be concentrated in the dividing groove, so that the deformation of the film substrate can be suppressed and damage to the first gas barrier layer due to the deformation can be prevented.
  • Sectional drawing which shows the structural example of an organic EL element.
  • the top view of the organic EL element of FIG. Sectional drawing which shows one organic EL element modularized.
  • Sectional drawing which shows the some organic EL element modularized.
  • Sectional drawing which shows the example of the edge part shape of a film substrate.
  • Sectional drawing which shows the example of the edge part shape of a film substrate.
  • Sectional drawing which shows the example of the edge part shape of a film substrate.
  • Sectional drawing which shows the example of the edge part shape of a film substrate.
  • Sectional drawing which shows the example of the edge part shape of a film substrate Sectional drawing which shows the example of the edge part shape of a film substrate.
  • Sectional drawing which shows the example of the edge part shape of a film substrate.
  • Sectional drawing which shows the example of the edge part shape of a film substrate.
  • Sectional drawing which shows the other structural example of an organic EL element.
  • the top view which shows the example of arrangement
  • the front view which shows schematic structure of the manufacturing apparatus of an organic EL element.
  • the top view which shows the example of arrangement
  • the front view which shows schematic structure of a layer formation part.
  • Sectional drawing which shows the example of the cross-sectional shape of a division
  • Sectional drawing which shows the example of the cross-sectional shape of a division
  • Sectional drawing which shows the example of the cross-sectional shape of a division
  • Sectional drawing which shows the example of the cross-sectional shape of a division
  • Sectional drawing which shows the example of the cross-sectional shape of a division
  • Sectional drawing which shows the example of the cross-sectional shape of a division
  • Sectional drawing which shows the example of the cross-sectional shape of a division
  • the front view which shows schematic structure of the 1st cutting part in the case of irradiating a laser beam.
  • the front view which shows schematic structure of the 1st cutting part in the case of performing a thermal imprint.
  • the front view which shows schematic structure of the 2nd cutting part in the case of carrying out cutting division
  • the front view which shows schematic structure of the 2nd cutting part in the case of carrying out cutting division by air suction.
  • Sectional drawing which represented the process of bonding a protective film from the conveyance direction of a film substrate.
  • Sectional drawing which represented the process of forming a division
  • Sectional drawing which represented the process of forming a division
  • Sectional drawing which represented the process of forming a division
  • Sectional drawing which represented the organic EL element obtained by cutting and dividing by blowing of air from the conveyance direction of a film substrate.
  • Sectional drawing which represented the process of forming the division
  • Sectional drawing which represented the process of forming the division groove of the 2nd step by irradiation of a laser beam from the conveyance direction of a film substrate.
  • Sectional drawing which represented the organic EL element obtained by cutting and dividing by blowing of air from the conveyance direction of a film substrate.
  • Sectional drawing which represented the process of forming the division
  • Sectional drawing which represented the process of forming the division groove of the 2nd step by irradiation of a laser beam from the conveyance direction of a film substrate.
  • Sectional drawing which represented the process of bonding a protective film from the conveyance direction of a film substrate.
  • Sectional drawing which represented the process of forming a division groove in a film substrate and a protective film by irradiation of a laser beam from the conveyance direction of the film substrate.
  • Sectional drawing which represented the organic EL element obtained by cutting and dividing by blowing of air from the conveyance direction of a film substrate.
  • the manufacturing method of the organic EL element of the present invention uses a same film substrate to form a plurality of organic EL elements each including at least an organic functional layer including a light emitting layer and a pair of electrodes sandwiching the organic functional layer, A method of manufacturing an organic EL element, in which the film substrate is cut and divided for each organic EL element, wherein (a) a first gas barrier layer is formed on the film substrate, and a plurality of organic layers are formed on the first gas barrier layer. A step of forming the organic functional layer and the pair of electrodes of an EL element; and (b) a first surface on which the first gas barrier layer is formed on the film substrate along a boundary line of each organic EL element.
  • This feature is a technical feature common to or corresponding to the inventions according to claims 1 to 23.
  • the method further includes the step (d) and the step (e), further forming a dividing groove on the second surface of the protective film along the boundary line of each organic EL element,
  • the step (c) it is preferable that the film substrate on which the second gas barrier layer is formed is cut and divided along the divided grooves formed on the film substrate and the protective film, respectively.
  • tapered dividing grooves it is preferable to form tapered dividing grooves because stress applied to the film substrate is concentrated on the dividing grooves and damage to the first and second gas barrier layers is reduced.
  • a base layer is further formed between the film substrate and the first gas barrier layer in the step (a).
  • the underlayer can function as a buffer material when forming the dividing grooves.
  • the organic EL device of the present invention includes a first gas barrier layer formed on a film substrate, and an organic functional layer including a light emitting layer on the first gas barrier layer and a pair of electrodes sandwiching the organic functional layer.
  • An organic EL device comprising: a first surface on which the first gas barrier layer is formed on the film substrate; and a second surface that is a surface opposite to the first surface. A dividing groove is formed on the second surface so that an area is smaller than an area of the first surface, and the film substrate is cut and divided along the dividing groove.
  • the end shape of the film substrate is a slope shape, a curved surface shape, a step shape, or a combination of two or more of these, improving the strength of the end portion of the film substrate. This is preferable.
  • the present invention further includes a second gas barrier layer and a protective film
  • the protective film includes a first surface facing the second gas barrier layer, and a surface opposite to the first surface.
  • a split groove is formed in the second surface so that the area of the second surface is smaller than the area of the first surface, and the protective film is cut and divided along the split groove. It is preferable that Thereby, an organic EL element with little damage to the second gas barrier layer can be provided.
  • the organic EL device manufacturing method, the manufacturing apparatus, and the organic EL device of the present invention are cut in two stages as described above, that is, after forming a dividing groove on the film substrate and partially cutting it, along the dividing groove. It is characterized by being completely cut and divided.
  • the form or aspect for implementing the manufacturing method of this invention, a manufacturing apparatus, and an organic EL element is demonstrated in detail.
  • “to” means that the numerical values described before and after are included as the lower limit value and the upper limit value.
  • FIG.1 and FIG.2 has shown the organic EL element 1 as an example of the organic EL element manufactured with the manufacturing method and manufacturing apparatus of this invention.
  • 1 is a cross-sectional view taken along line AA in FIG.
  • the organic EL element 1 includes a flexible film substrate 20, a base layer 21 and a first gas barrier layer 22 formed on the film substrate 20, and the first gas.
  • An anode 23 formed on the barrier layer 22, an extraction wiring 24, an organic functional layer 25, a cathode 26, and a second gas barrier layer 27 are provided.
  • the organic EL element 1 includes a protective film 4 bonded on the second gas barrier layer 27 through the adhesive layer 3.
  • the organic EL element 1 has a completely solid structure, not a hollow structure in which a gas or a liquid is enclosed as shown in FIG.
  • light obtained from the light emitting layer in the organic functional layer 25 can be extracted only from the anode 23 side or only from the cathode 26 side, or can be extracted from both the anode 23 and the cathode 26. .
  • the organic EL element 1 can be modularized by attaching a protective frame 6a via an adhesive layer 5 as shown in FIG.
  • the protective frame 6 a can be formed of a highly transparent resin or the like, and the adhesive layer 5 can be configured in the same manner as the adhesive layer 3.
  • a plurality of organic EL elements 1 may be attached to one plate-like protective frame 6b to be unitized and modularized.
  • the modularized organic EL element 1 can be connected to a printed circuit board, a flexible circuit board, or the like in which the extraction wiring 24 includes a power source and an IC that adjusts the amount of current supplied by the power source. Furthermore, the organic EL element 1 is reinforced by a housing, a frame member, a fixing substrate, and the like, and can be used as a light emitting device such as a lighting device or a display device.
  • the organic EL element 1 includes a first surface 20A on the film substrate 20 on which the first gas barrier layer 22 is formed, and a second surface 20B that is a surface opposite to the first surface 20A.
  • the dividing groove is formed in the second surface 20B so that the area of the second surface 20B is smaller than the area of the first surface 20A, and the film substrate 20 is cut and divided along the dividing groove. Therefore, the end of the film substrate 20 is inclined at an inclination angle ⁇ with respect to the first surface 20A.
  • the organic EL element 1 cut and divided in this manner has little damage to the first gas barrier layer 22 and the second gas barrier layer 27, and has little deterioration in light emitting performance even in a high temperature and high humidity environment. Since the damage is small, it is not necessary to provide a wide non-light emitting portion at the end of the organic EL element 1 in consideration of the damage, and the non-light emitting portion can be reduced.
  • the end shape of the film substrate 20 is inclined, curved, or stepped. Or it can be the shape which combined 2 or more of these. If it is these shapes, the intensity
  • FIGS. 5A to 5G show examples of the end shape of the film substrate 20.
  • FIG. 5A shows an example of a simple slope-shaped end, but as shown in FIGS. 5B and 5C, the end shape of the film substrate 20 is a combination of two slopes with different tilt angles. There can also be.
  • FIG. 5D shows an example of an end shape formed as a curved surface as a whole by combining three or more inclined surfaces having different inclination angles.
  • FIG. 5E shows an example of a stepped end shape.
  • FIG. 5F and FIG. 5G show examples of end shapes combining a step shape and a slope shape. As shown in FIGS.
  • the organic EL element 1 includes a first surface 4A that faces the second gas barrier layer 27 in the protective film 4 and a second surface 4B that is a surface opposite to the first surface 4A.
  • a dividing groove is formed in the second surface 4B so that the area is smaller than the area of the first surface 4A, the protective film 4 is cut along the dividing groove, and the end of the protective film 4 is inclined. Preferably it is. As a result, it is easier to cut and divide the organic EL element 1 with less damage to the first gas barrier layer 22 and the second gas barrier layer 27.
  • FIG. 6 shows a cross-sectional configuration of the organic EL element 2 that is cut and divided so that the area of the second surface 4B of the protective film 4 is smaller than that of the first surface 4A.
  • the end shape of the protective film 4 is not limited to this, and may be the same end shape as the film substrate 20 illustrated in FIGS. 5A to 5G. When the protective film 4 has such an end shape, the strength of the end of the protective film 4 can be improved, and the durability of the organic EL element 1 against bending is improved.
  • the film substrate 20 is a flexible substrate formed into a film shape. By using the film substrate 20, the organic EL element 1 having flexibility is obtained.
  • the film substrate 20 for example, a thin film ceramic, a resin film, a resin film containing glass fiber or carbon fiber, SUS (Steel Use Stainless), a Ni—Fe alloy such as Invar, a metal film such as aluminum or titanium, or the like is used. Can do.
  • a resin film is preferable from the viewpoint of weight reduction, impact resistance improvement, and cost reduction, and a resin film with high transparency is more preferable in consideration of light extraction from the film substrate 20 side.
  • highly transparent resin film materials include polyolefins such as polyethylene, polypropylene, and cyclic olefin copolymer (COP), polyamides, polyimides, polyethylene terephthalate (PET), polyesters such as polyethylene naphthalate (PEN), cellophane, Cellulose esters such as cellulose diacetate, cellulose acetate butyrate, cellulose acetate propionate (CAP), triacetyl cellulose (TAC), cellulose nitrate, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol copolymer (EVOH) , Syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyetherketone, polyimide, polyether Sulfone (PES), polyphenylene sulfide, polysulfones, polyetherimides, polyether ketone imide, fluorocarbon resins, polymethyl methacrylate (PMMA) acrylic
  • the thickness of the film substrate 20 is preferably in the range of 30 to 300 ⁇ m from the viewpoint of improving the handleability when supplied as a roll body.
  • the underlayer 21 can be formed between the film substrate 20 and the first gas barrier layer 22 as a buffer so that the dividing grooves formed in the film substrate 20 do not damage the first gas barrier layer 22.
  • the base layer 21 can flatten the surface of the film substrate 20 to improve the surface hardness and improve the adhesion between the film substrate 20 and the first gas barrier layer 22.
  • the underlayer 21 preferably has a higher hardness than the film substrate 20 in order to improve the function as a buffer material. Thereby, even when the dividing groove is formed deeply without intention, the underlayer 21 can suppress the formation of the dividing groove in the first gas barrier layer 22. Moreover, the durability with respect to the bending of the organic EL element 1 is also improved.
  • the base layer 21 can contain, as a main material, a transparent binder resin such as a curable acrylic resin, an epoxy resin, or a urethane resin from the viewpoint of making the hardness higher than that of the film substrate 20.
  • a transparent binder resin such as a curable acrylic resin, an epoxy resin, or a urethane resin from the viewpoint of making the hardness higher than that of the film substrate 20.
  • the underlayer 21 preferably contains inorganic compound particles such as silicon oxide as an additive from the viewpoint of scattering incident light from the film substrate 20.
  • inorganic compound particles having a refractive index different from that of the binder resin are preferable because light can be effectively scattered.
  • the underlayer 21 containing the inorganic compound particles can scatter and attenuate the laser light that is irradiated when the dividing grooves are formed and transmitted through the film substrate 20.
  • the energy of the laser beam is weakened by the underlayer 21, and the first gas barrier layer 22 can be prevented from being damaged by the laser beam.
  • substrate layer 21 can be enlarged more by containing inorganic compound particle
  • the underlayer 21 can also contain, for example, a silane coupling agent such as epoxy silane or aminosilane, the inorganic compound particles, and the like as additives. From the viewpoint of improving the surface hardness and heat resistance of the underlayer 21 and preventing the occurrence of defects during the formation of the first gas barrier layer 22, inorganic compound particles are particularly preferable.
  • the particle diameter of the inorganic compound particles described above is preferably 10 ⁇ m or less so that the inorganic compound particles do not appear as protrusions on the surface of the base layer 21.
  • nano-sized inorganic compound particles having a particle size in the range of 10 to 1000 nm in consideration of transparency when light is extracted from the film substrate 20 side, it is preferable to use nano-sized inorganic compound particles having a particle size in the range of 10 to 1000 nm in consideration of transparency.
  • the thickness of the underlayer 21 can be arbitrarily set, but is preferably in the range of 0.1 to 10.0 ⁇ m.
  • the first gas barrier layer 22 shields gases such as water and oxygen in the atmosphere that enter the anode 23, the organic functional layer 25, and the cathode 26 through the film substrate 20, and therefore the first surface 20 ⁇ / b> A of the film substrate 20. It is formed so as to cover the entire surface.
  • the first gas barrier layer 22 has a water vapor permeability (environmental condition: 25 ⁇ 0.5 ° C., relative humidity (90 ⁇ 2)% RH) of about 0.01 g / [m 2 ⁇ day ⁇ atm] or less, It preferably has a gas barrier property with an oxygen permeability of about 0.01 cm 3 / [m 2 ⁇ day ⁇ atm] or less, and a water vapor permeability of about 0.0001 g / [m 2 ⁇ day ⁇ atm] or less. It is more preferable to have a high gas barrier property in which oxygen permeability is 0.0001 cm 3 / [m 2 ⁇ day ⁇ atm] or less.
  • the first gas barrier layer 22 preferably has a multilayer structure in which a plurality of layers having gas barrier properties are laminated.
  • water vapor permeability is a value measured by an infrared sensor method in accordance with JIS (Japanese Industrial Standard) -K7129 (1992), and “oxygen permeability” is JIS-K7126 (1987). ) Measured by a coulometric method in accordance with JIS (Japanese Industrial Standard) -K7129 (1992), and “oxygen permeability” is JIS-K7126 (1987). ) Measured by a coulometric method in accordance with
  • the first gas barrier layer 22 is preferably an insulating layer that electrically insulates the film substrate 20 from the anode 23, the extraction wiring 24, and the cathode 26.
  • the first gas barrier layer 22 preferably has an insulating property with an electrical resistivity of 1 ⁇ 10 12 ⁇ ⁇ cm or more from the viewpoint of functioning also as an insulating layer.
  • the first gas barrier layer 22 preferably has a transparency with a light transmittance of about 80% or more in the visible light region when extracting light from the film substrate 20 side.
  • the first gas barrier layer 22 having gas barrier properties, insulating properties, and transparency as described above is mainly composed of silicon compounds such as silicon oxide, silicon nitride, silicon oxynitride, silicon carbide, silicon oxycarbide, Inorganic compounds such as aluminum oxide, aluminum nitride, titanium oxide, zirconium oxide, niobium oxide, and molybdenum oxide can be contained.
  • silicon compounds such as silicon oxide, silicon nitride, silicon oxynitride, silicon carbide, silicon oxycarbide
  • Inorganic compounds such as aluminum oxide, aluminum nitride, titanium oxide, zirconium oxide, niobium oxide, and molybdenum oxide can be contained.
  • a silicon compound is preferable because it is excellent in gas barrier properties, transparency, and cleaving at the time of cutting and dividing, and light can be taken out from either the film substrate 20 side or the protective film 4 side, and luminous efficiency is improved. .
  • the first gas barrier layer 22 is a hybrid layer in which an organic compound layer is laminated on a layer made of a composite material of an inorganic compound and an organic compound or an inorganic compound layer if it mainly contains the inorganic compound as described above. Can be. From the viewpoint of improving the brittleness of the first gas barrier layer 22, a layer or a hybrid layer made of a composite material of an inorganic compound and an organic compound is preferable. The order of lamination of the inorganic compound and organic compound layers in the hybrid layer is arbitrary, and the layers may be alternately and repeatedly laminated.
  • the outermost surface of the first gas barrier layer 22 on the side where the anode 23 and the like are formed is made of an inorganic compound layer, so that the insulation and gas barrier properties are improved, and the second gas barrier layer 27 In view of sealing the organic functional layer 25 and the like.
  • the thickness of the first gas barrier layer 22 can be arbitrarily set as long as it exhibits the gas barrier properties, insulating properties, and transparency. Considering the flexibility of the organic EL element 1, the thickness of the first gas barrier layer 22 is preferably in the range of 50 to 1000 nm.
  • the anode 23 and the cathode 26 are a pair of electrode layers formed so as to sandwich the organic functional layer 25.
  • FIG. 1 shows an example in which the organic functional layer 25 is laminated on the anode 23 and the cathode 26 is laminated on the organic functional layer 25, but the order of lamination of the anode 23 and the cathode 26 is not limited to this. The reverse is also true.
  • the anode 23 is an electrode layer that supplies (injects) holes to the light emitting layer.
  • the anode 23 is formed in a predetermined pattern shape on the first gas barrier layer 22 and is connected to one or more extraction wirings 24.
  • the anode 23 can be formed using a material having a large work function of 4 eV or more, for example, an electrode material such as a metal, an alloy, a conductive compound, or a mixture thereof.
  • the anode 23 When taking out light from the anode 23 side in the organic EL element 1, the anode 23 has a light transmittance of about 50% or more in the visible light region, and has a sheet resistivity (surface resistivity) of 300 ⁇ / ⁇ or less. It is preferable that When extracting light from the anode 23 side, for example, metals such as gold, silver, and aluminum, ITO (indium tin oxide), tin oxide (SnO 2 ), zinc oxide (ZnO), gallium zinc oxide (GZO), indium gallium A transparent metal oxide such as zinc oxide (IGZO) can be used as the electrode material of the anode 23.
  • ITO indium tin oxide
  • SnO 2 tin oxide
  • ZnO zinc oxide
  • GZO gallium zinc oxide
  • IGZO indium gallium
  • IGZO indium gallium
  • the anode 23 can be configured similarly to the case where light is extracted from the anode 23 side described above.
  • a high reflectance layer may be added as appropriate.
  • the anode 23 may have a multilayer structure.
  • the anode 23 has a structure in which a flattening layer, an adhesion layer, a high refractive index layer that improves light extraction efficiency, and a light scattering layer are stacked on a base layer, and then the electrode material layer described above is stacked. Can be.
  • the thickness of the anode 23 can be appropriately set according to the layer structure of the anode 23, the electrical resistivity or the light transmittance of the electrode material, and is preferably in the range of 10 to 500 nm.
  • the cathode 26 is an electrode layer that supplies (injects) electrons to the light emitting layer.
  • the cathode 26 can be generally formed of an electrode material having a work function as small as 4 eV or less. Examples of such electrode materials include metals (electron-injecting metals), alloys, conductive compounds, and mixtures thereof.
  • specific electrode materials for the cathode 26 include, for example, metals such as aluminum, sodium, lithium, indium, magnesium, rare earth, sodium-potassium alloy, magnesium-silver Alloys, magnesium-copper alloys, magnesium-silver alloys, magnesium-aluminum alloys, magnesium-indium alloys, lithium-aluminum alloys, ITO (indium tin oxide), tin oxide (SnO 2 ), zinc oxide (ZnO) And conductive compounds such as metal oxides such as gallium zinc oxide (GZO), indium gallium zinc oxide (IGZO), and aluminum oxide.
  • metals such as aluminum, sodium, lithium, indium, magnesium, rare earth, sodium-potassium alloy, magnesium-silver Alloys, magnesium-copper alloys, magnesium-silver alloys, magnesium-aluminum alloys, magnesium-indium alloys, lithium-aluminum alloys, ITO (indium tin oxide), tin oxide (SnO 2 ), zinc oxide (
  • a highly transparent metal oxide is used as the material of the cathode 26, or a thin film cathode having a thickness in the range of 5 to 50 nm using the material. 26 is preferably formed.
  • the cathode 26 can have a multilayer structure.
  • the multilayer structure of the cathode 26 includes, for example, a laminated structure of a magnesium layer and an aluminum layer, a laminated structure of a magnesium-silver alloy layer and a silver layer, a silver layer and an aluminum layer, from the viewpoint of achieving both high transparency and a desired electrical resistivity. And the like.
  • the thickness of the cathode 26 can be appropriately set depending on the layer configuration of the cathode 26, the electrical resistivity and the light transmittance of the electrode material, and is preferably in the range of 10 to 500 nm. When light is extracted from the cathode 26 side, it is preferable that the thickness of the cathode 26 be in the range of 5 to 50 nm because the cathode 26 can be thinned.
  • the extraction wiring 24 electrically connects each of the anode 23 and the cathode 26 to an external power source.
  • the material of the extraction wiring 24 is not particularly limited, and a known material can be suitably used.
  • a metal film such as a MAM electrode (Mo / Al ⁇ Nd alloy / Mo) having a three-layer structure can be used.
  • the extraction wiring 24 may be formed first on the first gas barrier layer 22, but may be formed after the anode 23, and the order of formation can be changed as appropriate.
  • the organic functional layer 25 When the organic EL element 1 emits light in three colors, the organic functional layer 25 has three light emitting layers having different light emission colors, and a cathode 26 is provided for each light emitting layer. In this case, the four extraction wirings 24 can be arranged as illustrated in FIG. On the other hand, at the time of monochromatic light emission in which the organic EL element 1 emits light in one color, the organic functional layer 25 has one light emitting layer, and one cathode 26 is provided for the light emitting layer. In this case, the two extraction wirings 24 can be arranged as illustrated in FIG.
  • the organic functional layer 25 has a plurality of organic layers including at least a light emitting layer.
  • Examples of the organic layer other than the light emitting layer include a hole injection layer, a hole transport layer, a blocking layer, an electron transport layer, an electron injection layer, and the like, and these are provided as necessary.
  • each organic layer will be described.
  • the hole injecting layer is also called an anode buffer layer, and for the purpose of lowering the driving voltage of the organic EL element 1 and improving the light emission brightness, the anode 23 and the light emitting layer or the anode 23 and the hole transport. It can be provided between layers.
  • a material for the hole injection layer for example, a known material described in JP-A No. 2000-160328 such as copper phthalocyanine can be used.
  • the hole transport layer is a layer that transports (injects) holes supplied from the anode 23 to the light emitting layer.
  • the hole transport layer also acts as a barrier that prevents the inflow of electrons from the cathode 26 side. Therefore, the hole transport layer may be formed to function as a hole injection layer, an electron blocking layer, or both.
  • any of an organic compound and an inorganic compound can be used as a material as long as the function of transporting holes and the function of blocking the inflow of electrons can be exhibited.
  • the material for the hole transport layer include triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene.
  • Derivatives fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aniline copolymers, conductive polymer oligomers (particularly thiophene oligomers) and the like can be used.
  • a porphyrin compound, an aromatic tertiary amine compound, or the like can be used, and an aromatic tertiary amine compound is particularly preferable.
  • Aromatic tertiary amine compounds include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl, N, N′-diphenyl-N, N′-bis (3-methylphenyl) -[1,1'-biphenyl] -4,4'-diamine (TPD), 2,2-bis (4-di-p-tolylaminophenyl) propane, 1,1-bis (4-di-p- Tolylaminophenyl) cyclohexane, N, N, N ′, N′-tetra-p-tolyl-4,4′-diaminobiphenyl, 1,1-bis (4-di-p-tolylaminophenyl) -4-phenyl Cyclohexane, bis (4-dimethylamino-2-methylphenyl) phenylmethane, bis (4-di-p-tolylaminophenyl) phenylmethan
  • aromatic tertiary amine compound examples include 4- (di-p-tolylamino) -4 ′-[4- (di-p-tolylamino) styryl] stilbene, 4-N, N-diphenylamino- (2 And styrylamine compounds such as -diphenylvinyl) benzene and 3-methoxy-4'-N, N-diphenylaminostilbenzene.
  • aromatic tertiary amine compounds those having two condensed aromatic rings in the molecule as described in US Pat. No.
  • 5,061,569 for example, 4,4′-bis [N— ( 1-naphthyl) -N-phenylamino] biphenyl (abbreviation: NPD), 4,4 ′ in which three triphenylamine units as described in JP-A-4-308688 are linked in a starburst type , 4 ′′ -tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine (MTDATA) and the like.
  • NPD 1-naphthyl) -N-phenylamino] biphenyl
  • MTDATA triphenylamine
  • Examples of other materials for the hole transport layer include a polymer material obtained by introducing the above-described various materials for the hole transport layer into a polymer chain, or a polymer material using the polymer as a main chain.
  • inorganic compounds such as p-type-Si and p-type-SiC can also be used as the material for the hole transport layer.
  • the hole transport layer As other materials for the hole transport layer, a so-called p-type positive layer described in JP-A-11-251067, J. Huang et al. (Applied Physics Letters 80 (2002), p. 139), etc. A hole transport material can also be used. When a p-type hole transport material is used, the organic EL element 1 with higher luminous efficiency can be obtained.
  • the hole transport layer can be a hole transport layer having a high p property and a rich hole by doping with impurities.
  • Such hole transport layers are described in, for example, JP-A-4-297076, JP-A-2000-196140, JP-A-2001-102175, J. Appl. Phys., 95, 5773 (2004) and the like. Has been. When the hole-rich hole transport layer is used, the organic EL element 1 with lower power consumption can be obtained.
  • the thickness of the hole transport layer can be appropriately set depending on the material, but is preferably in the range of 5 to 500 nm.
  • One or more hole transport layers may be provided. When providing one hole transport layer, it is preferable to use one or more materials among the above-described hole transport materials.
  • the light-emitting layer includes holes injected directly from the anode 23 or injected from the anode 23 via a hole transport layer, and directly injected from the cathode 26 or an electron transport layer. This is a layer that emits light by recombination with electrons injected therethrough. The light emission may be performed in the layer of the light emitting layer, or may be performed at the interface between the light emitting layer and the adjacent layer.
  • the light emitting layer contains a host compound (also referred to as a light emitting host) and a dopant (also referred to as a light emitting dopant) as a light emitting organic compound.
  • a host compound also referred to as a light emitting host
  • a dopant also referred to as a light emitting dopant
  • an arbitrary emission color can be obtained by appropriately adjusting the emission wavelength, type, and the like of the dopant.
  • the host compound preferably has a phosphorescence quantum yield of phosphorescence emission at room temperature (25 ° C.) of less than about 0.1, and more preferably less than about 0.01.
  • the host compound is preferably a compound having a hole transporting function, an electron transporting function, and a function of preventing emission of longer wavelengths and a high glass transition temperature Tg.
  • Glass transition temperature Tg is a value obtained by a method based on JIS-K7121 using a DSC (Differential Scanning Calorimetry) method.
  • Examples of the host compound having the above-described characteristics include known low-molecular compounds, high-molecular compounds having repeating units, and low-molecular compounds having a polymerizable group such as a vinyl group or an epoxy group (evaporation polymerizable light-emitting host). Etc.
  • the host compound include Japanese Patent Application Laid-Open Nos. 2001-257076, 2002-308855, 2001-313179, 2002-319491, 2001-357777, and 2002-334786. Gazette, 2002-8860, 2002-334787, 2002-15871, 2002-334788, 2002-43056, 2002-334789, 2002-75645 No. 2002-338579, No. 2002-105445, No. 2002-343568, No. 2002-141173, No. 2002-352957, No. 2002-203683, No. 2002-363227.
  • a host compound is a carbazole derivative, and it is preferable that it is a dibenzofuran compound among carbazole derivatives.
  • the host compounds only one type can be used, or a plurality of types can be used in combination.
  • the mobility (amount of movement) of charges (holes or electrons) can be adjusted, and the light emission efficiency of the organic EL element 1 can be improved.
  • the volume ratio of the host compound in the light emitting layer is preferably about 50% or more.
  • a phosphorescent dopant also referred to as a phosphorescent compound or a phosphorescent compound
  • a fluorescent dopant also referred to as a fluorescent emitter or a fluorescent dopant
  • phosphorescent dopants are preferable from the viewpoint of improving luminous efficiency.
  • a phosphorescent dopant is a compound that can emit light from an excited triplet.
  • the phosphorescent dopant is a compound that emits phosphorescence at room temperature (25 ° C.) and has a phosphorescence quantum yield of about 0.01 or more at 25 ° C.
  • a compound having a phosphorescence quantum yield of about 0.1 or more is preferable.
  • the phosphorescence quantum yield can be measured, for example, by the method described on page 398 of "4th edition Experimental Chemistry Course 7 Spectroscopy II" (1992 edition, Maruzen). Although the phosphorescence quantum yield in a solution can be measured using various solvents, the phosphorescence dopant used in the present invention achieves a phosphorescence quantum yield of 0.01 or more in any solvent. Just do it.
  • the light emission principle of the phosphorescent light emitting dopant there are two energy transfer types and carrier trap types.
  • the energy transfer type carrier recombination occurs on the host compound to which carriers (holes or electrons) are transported, and an excited state of the host compound is generated. Light emitted from the phosphorescent dopant is obtained by transferring the energy generated at this time from the host compound to the phosphorescent dopant.
  • the carrier trap type the phosphorescent light-emitting dopant traps carriers (holes or electrons), so that carrier recombination occurs on the phosphorescent light-emitting dopant, and light emission from the phosphorescent light-emitting dopant is obtained. In either case, the condition is that the excited state energy level of the phosphorescent dopant is lower than the excited state energy level of the host compound.
  • a phosphorescent dopant that causes the above-described emission process various known phosphorescent dopants used in conventional organic EL devices can be appropriately selected and used.
  • a phosphorescent dopant for example, a metal complex containing a group 8 to group 10 metal element in the periodic table of elements can be given.
  • metal complexes it is preferable to use any one of an iridium complex, an osmium complex, a platinum complex, and a rare earth complex as a phosphorescent dopant.
  • fluorescent emission dopant examples include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes, pyrylium dyes, perylene dyes, stilbene dyes. System dyes, polythiophene dyes, rare earth complex phosphors, and the like.
  • one kind of dopant can be used, or a plurality of kinds of dopants having different emission maximum wavelengths can be used in combination.
  • a plurality of lights having different emission wavelengths can be mixed, whereby light of any color can be obtained.
  • white light can be obtained by including three kinds of dopants of a blue dopant, a green dopant, and a red dopant in the light emitting layer.
  • the color of light emitted from the organic EL element 1 is determined by measuring the light emitted from the organic EL element 1 with a spectral radiance meter (CS-1000, manufactured by Konica Minolta Co., Ltd.). Committee) It is determined by applying to chromaticity coordinates (for example, refer to FIG. 7.16 on page 108 of “New Color Science Handbook” (edited by the Japan Color Society, University of Tokyo Press, 1985)).
  • the light emitting layer can be provided as a single layer or a plurality of layers.
  • a plurality of light emitting layers When a plurality of light emitting layers are provided, they can be stacked as light emitting layers having different emission colors. For example, a blue light-emitting layer, a green light-emitting layer, and a red light-emitting layer may be stacked, and the toned light may be emitted so that white light can be obtained from the light from each light-emitting layer.
  • a non-light emitting intermediate layer can be provided between adjacent light emitting layers. The intermediate layer can be formed using the same material as the host compound contained in the light emitting layer.
  • the thickness of the light emitting layer can be arbitrarily set.
  • the thickness of the light emitting layer is within the range of 5 to 200 nm from the viewpoint of improving the homogeneity of the light emitting layer, avoiding unnecessary application of high voltage during light emission, and improving the stability of the light emission color with respect to the drive current. Preferably there is.
  • the electron transport layer is a layer that transports (injects) electrons supplied from the cathode 26 to the light emitting layer.
  • the electron transport layer also acts as a barrier that prevents the inflow of holes from the anode 23 side. Therefore, the electron transport layer may be formed to function as an electron injection layer, a hole blocking layer, or both.
  • a conventionally known compound can be used as long as it is a material that also serves as a hole blocking material and has a function of transmitting (transporting) electrons injected from the cathode 26 to the light emitting layer.
  • Examples of conventionally known electron transport layer materials include fluorene derivatives, carbazole derivatives, azacarbazole derivatives, oxadiazole derivatives, trizole derivatives, silole derivatives, pyridine derivatives, pyrimidine derivatives, 8-quinolinol derivatives, aluminum quinolates (Alq 3). ) And the like.
  • examples of other materials for the electron transport layer include metal phthalocyanine, metal free phthalocyanine, and compounds obtained by substituting their terminal groups with alkyl groups, sulfonic acid groups, and the like.
  • the electron transport layer may be an electron transport layer having a high n property and an electron rich state in which impurities are doped as a guest material (also referred to as a doping material).
  • impurities include JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, 2001-102175, J. Appl. Phys., 95, 5773 (2004).
  • an alkali metal salt of an organic substance can be used as the guest material.
  • the type of organic substance is arbitrary, but for example, formate, acetate, propionate, butyrate, valerate, caproate, enanthate, caprylate, oxalate, malonate, succinic acid Salt, benzoate, phthalate, isophthalate, terephthalate, salicylate, pyruvate, lactate, malate, adipate, mesylate, tosylate, benzenesulfonate, etc. It can be used as an organic substance.
  • formate, acetate, propionate, butyrate, valerate, caprate, enanthate, caprylate, oxalate, malonate, succinate or benzoate are preferred. More preferred are aliphatic carboxylic acids such as formate, acetate, propionate and butyrate, more preferred are aliphatic carboxylic acids having 4 or less carbon atoms, and particularly preferred is acetate.
  • the kind of alkali metal constituting the alkali metal salt of the organic substance is arbitrary, and for example, Li, Na, K, Cs, etc. can be used. Of these, K or Cs is preferable, and Cs is more preferable.
  • the organic alkali metal salt that can be used as the guest material of the electron transport layer is a compound in which the organic substance and the alkali metal are combined.
  • guest materials for example, formic acid Li, formic acid K, formic acid Na, formic acid Cs, acetic acid Li, acetic acid K, Na acetate, acetic acid Cs, propionic acid Li, propionic acid Na, propionic acid K, propionic acid Cs, Oxalic acid Li, oxalic acid Na, oxalic acid K, oxalic acid Cs, malonic acid Li, malonic acid Na, malonic acid K, malonic acid Cs, succinic acid Li, succinic acid Na, succinic acid K, succinic acid Cs, benzoic acid Li, Na benzoate, benzoic acid K, benzoic acid Cs, and the like can be used.
  • Li acetate, K acetate, Na acetate or Cs acetate is preferred, and
  • the content of the guest material is preferably in the range of about 1.5 to 35.0% by mass, more preferably in the range of about 3 to 25% by mass with respect to the electron transport layer. More preferably, it is in the range of about 5 to 15% by mass.
  • the thickness of the electron transport layer can be appropriately set according to the material of the electron transport layer, but is preferably in the range of 5 to 200 nm.
  • Only one electron transport layer can be provided, or a plurality of electron transport layers can be provided.
  • Electron Injection Layer is also called an electron buffer layer, and is provided between the cathode 26 and the light emitting layer or between the cathode 26 and the electron transport layer for the purpose of lowering the driving voltage and improving the light emission luminance of the organic EL element 1.
  • An electron injection layer is also called an electron buffer layer, and is provided between the cathode 26 and the light emitting layer or between the cathode 26 and the electron transport layer for the purpose of lowering the driving voltage and improving the light emission luminance of the organic EL element 1.
  • Although detailed description of the structure of the electron injection layer is omitted, for example, lithium fluoride or the like can be used.
  • “Organic EL device and its forefront of industrialization” published by NTT Corporation on November 30, 1998)
  • the structure of the electron injection layer described in the second volume, Chapter 2, “Electrode Material” (pages 123 to 166), etc. can be employed.
  • the second gas barrier layer 27 is composed of the anode 23, the organic functional layer 25, and the cathode 26 in order to prevent the anode 23, the organic functional layer 25, and the cathode 26 from being deteriorated by reacting with water or oxygen in the atmosphere. It is formed so as to cover the entire surface including the side surfaces of 26. By forming the second gas barrier layer 27, the anode 23, the organic functional layer 25, and the cathode 26 are sealed between the first gas barrier layer 22 and the second gas barrier layer 27. It also functions as a sealing layer.
  • the second gas barrier layer 27 preferably has the same gas barrier properties, insulating properties, and transparency as the first gas barrier layer 22. That is, the second gas barrier layer 27 has a water vapor permeability (environmental condition: 25 ⁇ 0.5 ° C., relative humidity (90 ⁇ 2)% RH) of about 0.01 g / [m 2 ⁇ day ⁇ atm] or less. And having an oxygen permeability of about 0.01 cm 3 / [m 2 ⁇ day ⁇ atm] or less and a water vapor permeability of about 0.0001 g / [m 2 ⁇ day ⁇ atm] or less. More preferably, it has a high gas barrier property with an oxygen permeability of 0.0001 cm 3 / [m 2 ⁇ day ⁇ atm] or less.
  • the second gas barrier layer 27 preferably has an insulating property with an electric resistivity of 1 ⁇ 10 12 ⁇ ⁇ cm or more.
  • the second gas barrier layer 27 preferably has a light transmittance of about 80% or more in the visible light region.
  • Examples of the material for the second gas barrier layer 27 having gas barrier properties, insulating properties, and transparency as described above include silicon compounds such as silicon oxide, silicon nitride, and silicon oxynitride, and inorganic compounds such as aluminum oxide and zirconium oxide. Is mentioned. Among them, nitrides such as silicon nitride and silicon oxynitride are not only excellent in water resistance, gas barrier properties, transparency and cleaving property at the time of cutting and dividing, but also by reducing the amount of oxygen gas used as a raw material and by oxidation Deterioration of the organic functional layer 25 and the cathode 26 can be suppressed, which is preferable. Moreover, light can be taken out from either the film substrate 20 side or the protective film 4 side, which is preferable in terms of improving luminous efficiency.
  • the thickness of the second gas barrier layer 27 can be appropriately set according to conditions, but is preferably in the range of 100 to 1000 nm.
  • the thickness is 100 nm or more, pinholes due to particles or the like are hardly generated, and the softened adhesive layer 3 can be prevented from entering the cathode 26 and the organic functional layer 25 through the pinholes. Oxidation and alteration of the cathode 26 and the organic functional layer 25 can be suppressed by the components of the adhesive layer 3, and an increase in dark spots can be suppressed.
  • the thickness of the second gas barrier layer 27 is 1000 nm or less, it is possible to suppress a decrease in production efficiency due to the increase in thickness and a decrease in durability against bending of the organic EL element 1. Further, the film formation time of the second gas barrier layer 27 becomes longer due to the increase in film thickness, and it is possible to prevent the film substrate 20 from being deformed due to heat storage during film formation.
  • the adhesive layer 3 is provided for bonding the protective film 4 onto the second gas barrier layer 27.
  • the material for the adhesive layer 3 include photo-curing or thermosetting adhesives having reactive vinyl groups such as acrylic acid oligomers and methacrylic acid oligomers, and thermosetting or chemical curing properties such as epoxy resins (two-component mixing). ) Hot melt adhesives using adhesives, polyamides, polyesters, polyolefins, and the like, and cationically curable ultraviolet curable epoxy resin adhesives.
  • thermosetting adhesive is preferable from the viewpoint of simplifying the manufacturing process.
  • a suitable thermosetting adhesive can be appropriately selected in consideration of the adhesion between the second gas barrier layer 27 and the protective film 4.
  • a resin mainly composed of a compound having an ethylenic double bond at the terminal or side chain of the molecule and a thermal polymerization initiator can be used.
  • an epoxy resin or an acrylic resin can be used.
  • a melt-type thermosetting adhesive can be used according to the bonding method and the curing method.
  • the adhesive layer 3 can contain the same inorganic compound particles as the underlayer 21 from the viewpoint of scattering incident light from the protective film 4 side. Thereby, the hardness of the contact bonding layer 3 can be enlarged, and when the division
  • the adhesive layer 3 can also contain the same silane coupling agent as the underlayer 21, the above-mentioned inorganic compound particles, and the like from the viewpoint of improving the adhesiveness with the second gas barrier layer 27.
  • thermosetting adhesive is preferably processed into a sheet.
  • a thermosetting adhesive that exhibits non-flowability near normal temperature (25 ° C.) and fluidity within a temperature range of 50 to 120 ° C. is preferable.
  • the adhesive layer 3 preferably has a moisture content of about 1.0% or less in consideration of extending the life of the organic EL element 1 and the like. This moisture content is a value measured by a method according to ASTM (American Society for Testing and Materials) -D570.
  • the protective film 4 is bonded onto the second gas barrier layer 27 via the adhesive layer 3 in order to protect each layer of the organic EL element 1 from external impact and to improve heat dissipation during light emission.
  • the protective film 4 preferably has a smaller film surface area than the second gas barrier layer 27 as shown in FIG.
  • the organic EL element is improved by increasing the accuracy of forming each layer of the organic EL element 1 into a predetermined pattern shape without being affected by the bonding accuracy.
  • the area of the non-light emitting portion at one end can be reduced. As the area of the non-light-emitting portion is smaller, the practical area of the film substrate 20 is increased and the cost can be reduced, and the commercial value when the organic EL element 1 is used as a display device or a lighting device is improved.
  • the protective film 4 has a film shape or a plate shape and is positioned so as to face the film substrate 20.
  • a film having flexibility similar to that of the film substrate 20 can be used.
  • a metal film such as an Fe alloy, aluminum, or titanium can be used.
  • the protective film 4 When taking out light from the protective film 4 side, it is preferable that the protective film 4 is a highly transparent resin film like the film substrate 20. In this case, it is preferable to provide a gas barrier layer similar to the first gas barrier layer 22 between the protective film 4 and the adhesive layer 3 to suppress gas intrusion from the protective film 4 to the adhesive layer 3.
  • the gas barrier layer preferably has a water vapor permeability of 0.01 g / [m 2 ⁇ day ⁇ atm] or less.
  • the protective film 4 is a laminate of the above-described highly transparent resin film and metal film from the viewpoint of improving handleability, moisture resistance, and heat dissipation when supplied as a roll body. Preferably there is.
  • the thickness of the protective film 4 is in the range of 30 to 300 ⁇ m from the viewpoint of improving the handling and operability when supplied as a roll body and reducing the load applied to the second gas barrier layer 27 at the time of bonding. Preferably there is.
  • the protective film 4 on which the adhesive layer 3 is laminated in advance is bonded to the second gas barrier layer 27 via the adhesive layer 3 because the manufacturing process becomes easy.
  • the protective film 4 laminated with the adhesive layer 3 and cut into a predetermined shape can be used for bonding a roll body temporarily fixed to a release film, or the protective layer 3 is formed into a predetermined shape.
  • the roll body of the film 4 can also be used for bonding.
  • FIG. 8 shows a schematic configuration of the manufacturing apparatus 100 of the present embodiment.
  • the manufacturing apparatus 100 includes an unwinder 101, a pretreatment unit R10, a main body forming unit R20, a sealing unit R30, an accumulation chamber R40, a bonding unit R50, a first cutting unit R60, and a second cutting unit.
  • R70 and winder 102 are provided.
  • a plurality of guide rollers for conveying the film substrate 20 are provided between the unwinder 101 and the winder 102.
  • the base layer 21 and the first gas barrier layer 22 are formed on the film substrate 20, and the obtained roll body of the film substrate 20 is set on the unwinder 101.
  • Examples of the formation method of the underlayer 21 include a dry process such as a vapor deposition method, a spray coating method, a coating method using a gravure coater, a comma coater, a die coater, and the like, and a wet process such as an inkjet method.
  • the first gas barrier layer 22 can be formed by, for example, vacuum deposition, sputtering, magnetron sputtering, molecular beam epitaxy, cluster ion beam, ion plating, plasma polymerization, atmospheric pressure plasma polymerization (special Open 2004-68143), plasma CVD (Chemical Vapor Deposition) method, laser CVD method, thermal CVD method, ALD (atomic layer deposition) method, wet coating method and the like.
  • the unwinder 101 unwinds the roll body of the film substrate 20.
  • the pretreatment unit R10 performs dry cleaning on the surface of the film substrate 20 after the slit, that is, the surface of the first gas barrier layer 22 in a vacuum atmosphere within a range of 1 ⁇ 10 ⁇ 5 to 10 Pa, and performs dehydration treatment.
  • the film substrate 20 subjected to the surface treatment in the pretreatment unit R10 is sequentially conveyed to the main body forming unit R20.
  • the main body forming portion R20 includes four layer forming portions R21 to R24 as shown in FIG. Between the pre-processing unit R10 and the layer forming unit R21, a gate valve or a pressure adjusting unit for adjusting each pressure difference is provided. Further, an accumulator is provided between the layer forming portions R21 to R24 to absorb the difference in processing speed between the layer forming portions R21 to R24. Each of the layer forming portions R21 to R24 is evacuated independently and kept in a vacuum state or a reduced pressure state. The pressure in each of the layer forming portions R21 to R24 varies depending on the film forming method, but is set in a range of about 1 ⁇ 10 ⁇ 6 to 10 Pa.
  • the main body forming portion R20 has the anode 23, the extraction wiring 24, the organic functional layer 25, and the cathode 26 of the plurality of organic EL elements 1 on the first gas barrier layer 22 of the film substrate 20 by the layer forming portions R21 to R24.
  • the pattern shape is formed.
  • the base layer 21 and the first gas barrier layer 22 on the film substrate 20 may also be configured to be formed by the main body forming portion R20.
  • FIG. 9 shows an arrangement example of the plurality of organic EL elements 1 on the film substrate 20.
  • a one-dot chain line in FIG. 9 indicates a boundary line L 1 of each organic EL element 1.
  • the main body forming portion R ⁇ b> 20 is configured so that the extraction wiring 24 of each organic EL element 1 is adjacent between the organic EL elements 1 and is continuous in the transport direction L ⁇ b> 2 of the film substrate 20. It is preferable to dispose the element 1.
  • the second gas barrier layer 27 can be continuously formed in a stripe shape in the transport direction of the film substrate 20, and the formation of the second gas barrier layer 27 is facilitated.
  • the film substrate 20 is cut and divided along the boundary line L1 of each organic EL element 1, but the conventional method of cutting and dividing at a time considers damage to the first gas barrier layer 22 and the second gas barrier layer 27.
  • the non-light-emitting portion at the end of each organic EL element 1 must be provided widely.
  • the first gas barrier layer 22 and the second gas barrier layer 27 at the time of cutting and dividing are not damaged or little, so that the non-light emitting portion can be reduced. Thereby, many organic EL elements 1 can be arrange
  • the layer forming part R ⁇ b> 21 forms the anode 23 of each organic EL element 1 on the first gas barrier layer 22 of the film substrate 20.
  • Examples of the method for forming the anode 23 include a vacuum deposition method, a sputtering method, a magnetron sputtering method, a molecular beam epitaxy method, a cluster ion beam method, an ion plating method, a plasma polymerization method, and a wet coating method.
  • FIG. 10 shows a schematic configuration of the layer forming portion R21.
  • the layer forming unit R21 includes a plurality of transport rollers 51 and 52, a cooling roller 53, a continuous mask 54, a material supply unit 55, and a cleaning unit 56.
  • the film substrate 20 is transported by a plurality of transport rollers 51.
  • the continuous mask 54 is continuously conveyed so that it may pass over the some conveyance roller 52, and may circulate.
  • a part of the transport path of the film substrate 20 and the continuous mask 54 is common, and the film substrate 20 and the continuous mask 54 are overlapped and transported by the transport rollers 51 and 52 in the common transport path.
  • the cooling roller 53 is disposed at a position facing the material supply unit 55 across the film substrate 20, and stretches the film substrate 20 and the continuous mask 54 so that the film substrate 20 and the continuous mask 54 overlap each other.
  • the cooling roller 53 incorporates a cooling mechanism inside the roller, contacts the second surface 20 ⁇ / b> B of the first gas barrier layer 22 of the film substrate 20, and cools the film substrate 20. Thereby, the film substrate 20 in a high temperature state can be cooled by the material supply from the material supply unit 55.
  • the continuous mask 54 is a loop-shaped shielding material in which openings corresponding to the pattern shape of the layer to be formed are provided at predetermined intervals. Since the continuous mask 54 is superimposed on the film substrate 20 being conveyed, it is preferable that the continuous mask 54 has flexibility like the film substrate 20.
  • Examples of the material of the continuous mask 54 having flexibility include SUS300 series, Invar, 42 alloy alloys, Fe—Ni alloys such as Hastelloy (registered trademark) and Inconel (registered trademark), metals such as aluminum, magnesium, and titanium, Excellent heat resistance of these alloys, ceramics such as glass, silicon, alumina, boron nitride, thermoplastic resins such as polyester, polyurethane, polyimide, epoxy resin, acrylic resin, urea resin, phenol resin, bakelite resin, polycarbonate, etc. A thermosetting resin etc. are mentioned.
  • thermosetting resin contains glass fiber, carbon fiber, etc. from a viewpoint of a heat resistant improvement and a reduction of a linear expansion coefficient. Thereby, the dimensional accuracy of the continuous mask 54 can be improved.
  • the thickness of the continuous mask 54 is preferably in the range of 0.1 to 3.0 mm from the viewpoint of obtaining flexibility and durability.
  • the continuous mask 54 may be subjected to surface treatment from the viewpoint of improving durability against dry cleaning and improving the peelability of the material attached to the continuous mask 54.
  • Examples of the surface treatment include Ni plating treatment, alumite treatment, fluorine coating treatment, and the like.
  • the material supply unit 55 supplies the material of the anode 23 to the film substrate 20 on which the continuous mask 54 is superimposed. Thereby, the anode 23 is formed in a predetermined pattern shape at a portion corresponding to the opening of the continuous mask 54 on the first gas barrier layer 22 of the film substrate 20.
  • the material supply unit 55 supplies the material by a method corresponding to the adopted method for forming the anode 23.
  • the cleaning unit 56 dry-cleans the continuous mask 54 away from the film substrate 20 after the anode 23 is formed, and removes the material remaining on the continuous mask 54.
  • the cleaning unit 56 includes a cooling unit 561 and a plasma etching unit 562.
  • the cooling unit 561 cools the continuous mask 54 in a high temperature state by supplying the material.
  • the plasma etching unit 562 sprays a gas that has been turned into a plasma by applying a high-frequency voltage to the continuous mask 54 and etches and removes the material attached to the continuous mask 54.
  • a gas such as O 2 , NF 3 , Ar, or N 2 can be used as the gas to be converted into plasma.
  • the layer forming portion R22 forms the extraction wiring 24 of the anode 23 and the cathode 26 of each organic EL element 1 on the film substrate 20 on which the anode 23 is formed.
  • the lead-out wiring 24 of the anode 23 is formed at a position in contact with the anode 23 on the film substrate 20.
  • the layer forming part R22 is configured similarly to the layer forming part R21. That is, the layer forming portion R22 takes out in the same manner as the layer forming portion R21 except that the material supply unit 55 supplies the material of the extraction wiring 24 using the continuous mask 54 corresponding to the pattern shape of the extraction wiring 24.
  • the wiring 24 can be formed.
  • the anode 23 and the extraction wiring 24 can be made of the same material, and the layer forming portion R21 can form both the anode 23 and the extraction wiring 24 at a time using one continuous mask. This forming method is preferable because the production cost can be reduced.
  • the layer forming unit R23 forms the organic functional layer 25 of each organic EL element 1 on the film substrate 20 on which the extraction wiring 24 is formed.
  • Examples of the method for forming the organic functional layer 25 include a vacuum deposition method.
  • the layer forming portion R23 is preferably set to a high vacuum region of 1 ⁇ 10 ⁇ 6 to 1 ⁇ 10 ⁇ 4 Pa in order to form the organic functional layer 25.
  • the layer forming part R23 is configured similarly to the layer forming part R21. That is, the layer forming unit R23 is similar to the layer forming unit R21 except that the material supplying unit 55 supplies the material of the organic functional layer 25 using the continuous mask 54 corresponding to the pattern shape of the organic functional layer 25.
  • the organic functional layer 25 can be formed.
  • the layer forming unit R23 laminates each layer of the organic functional layer 25 in the same pattern shape with one continuous mask 54, and the organic functional layer 25 Is preferably formed.
  • the layer forming unit R24 forms the cathode 26 of each organic EL element 1 on the film substrate 20 on which the organic functional layer 25 is formed.
  • the layer forming portion R24 forms the cathode 26 so as to partially contact the extraction wiring 24 of the cathode 26.
  • Examples of the method for forming the cathode 26 include a vacuum deposition method, a sputtering method, and an ion plating method.
  • the layer forming portion R24 is configured similarly to the layer forming portion R21. That is, the layer forming portion R24 uses the continuous mask 54 corresponding to the pattern shape of the cathode 26 to supply the cathode 26 in the same manner as the layer forming portion R21, except that the material supplying portion 55 supplies the material of the cathode 26. Can be formed.
  • the inside of the layer forming portion R24 is preferably under a pressure in the range of 1 ⁇ 10 ⁇ 6 to 10 Pa.
  • the sealing part R30 forms the second gas barrier layer 27 on the film substrate 20 on which the cathode 26 is formed.
  • the method for forming the second gas barrier layer 27 include a vacuum deposition method, a sputtering method, a magnetron sputtering method, a molecular beam epitaxy method, a cluster ion beam method, an ion plating method, a plasma polymerization method, an atmospheric pressure plasma polymerization method, and a plasma.
  • Examples include CVD, laser CVD, and thermal CVD.
  • the method with favorable step coverage from a viewpoint which coat
  • substrate 20 may be planarized.
  • the method having good step coverage include a sputtering method, an ion plating method, or a CVD method in which the pressure is relatively high and the source gas is easily diffused.
  • the sealing portion R30 is configured in the same manner as the layer forming portion R21. That is, the sealing unit R30 is a layer forming unit R21 except that the material supplying unit 55 supplies the material of the second gas barrier layer 27 using the continuous mask 54 corresponding to the pattern shape of the second gas barrier layer 27. In the same manner, the second gas barrier layer 27 can be formed.
  • the sealing portion R30 can form the second gas barrier layer 27 so as to cover the respective layers 21 to 26 on the film substrate 20 entirely, and the organic EL element 1 is as shown in FIG. In the case of being arranged in the above, it can be formed in a striped pattern shape as described above.
  • the film substrate 20 on which the second gas barrier layer 27 is formed by the sealing portion R30 is transported to the accumulation chamber R40.
  • the accumulation chamber R40 adjusts the pressure difference between the sealing portion R30 and the bonding portion R50. Moreover, the accumulation chamber R40 adjusts the conveyance speed of the film substrate 20 by an accumulator. The film substrate 20 having the adjusted pressure and conveyance speed is conveyed from the accumulation chamber R40 to the bonding unit R50.
  • the bonding portion R50 bonds the protective film 4 to the second gas barrier layer 27 of the film substrate 20 via the adhesive layer 3.
  • the bonding unit R50 includes a winder 91 and a plurality of transport rollers 92 and 93 as shown in FIG. A roll body of the protective film 4 on which the adhesive layer 3 is formed in advance is set on the winder 91.
  • the bonding unit R50 unwinds the roll body of the protective film 4 by the winder 91 and superimposes and transports the film substrate 20 and the protective film 4 by the transport rollers 92 and 93.
  • the film substrate 20 and the protective film 4 are bonded via the adhesive layer 3 by the nip pressure of the transport rollers 92 and 93.
  • the film substrate 20 to which the protective film 4 is bonded is conveyed to the first cutting part R60.
  • the bonding portion R50 can bond the protective film 4 so as to cover the entire surface of the film substrate 20. In this case, bonding of the protective film 4 is easy, the time for alignment can be shortened, and the conveying speed can be increased, so that productivity is improved.
  • the bonding portion R50 can bond the protective film 4 in a stripe shape as described above. In this case, the cost required for the protective film 4 can be reduced.
  • the striped protective film 4 preferably has a smaller film surface than the second gas barrier layer 27.
  • 1st cutting part R60 forms a division
  • the first cutting portion R60 preferably forms a tapered dividing groove that tapers in the thickness direction of the film substrate 20.
  • the stress applied to the film substrate 20 when the film substrate 20 is cut and divided can be concentrated on the tip of the dividing groove. Thereby, the deformation of the film substrate 20 can be prevented, and the deformation of the first gas barrier layer 22 and the second gas barrier layer 27 due to the deformation can be prevented.
  • the organic EL element 1 with little damage can maintain high gas barrier properties and thus reliability with respect to light emission performance even when the non-light emitting portion is reduced. Further, cutting and dividing along the dividing groove is facilitated, and productivity is improved.
  • the tapered dividing groove preferably has a V-shaped cross section, a V-shaped sloped surface, a stepped shape, or a combination of two or more of these.
  • FIG. 11A to 11D illustrate the cross-sectional shape of the tapered dividing groove.
  • FIG. 11A shows an example of a dividing groove having a V-shaped cross section. The slope of the dividing groove is inclined at an inclination angle ⁇ with respect to the first surface 20A of the film substrate 20.
  • 11B and 11C show an example in which a V-shaped divided groove having a different inclination angle ⁇ is combined with a divided groove having a V-shaped cross section and an inclination angle ⁇ 1 or ⁇ 2.
  • FIG. 11D shows an example of a dividing groove having a V-shaped cross-section with a curved slope.
  • the slopes of the divided grooves are slopes having different inclination angles ⁇ 3 to ⁇ 5 ( ⁇ 5> ⁇ 4> ⁇ 3), and are formed in a curved surface as a whole. Since this division groove is cut and divided at the center of the width of the division groove, the inclination angle of the end portion of the film substrate 20 after the division is not the inclination angle ⁇ 5 but the inclination angle ⁇ .
  • FIG. 11E shows an example of a dividing groove having a stepped cross section.
  • FIG. 11F and FIG. 11G show an example in which a V-shaped dividing groove is further combined with the tip of the dividing groove having a step-like cross section.
  • the shape shown in FIGS. 11B to 11G can prevent the evaporation component of the film substrate 20 from being reattached to the film substrate 20 due to the laser light irradiation.
  • the dividing groove is preferably formed from the second surface 20B of the film substrate 20 to the vicinity of the interface of the base layer 21 in order to facilitate cutting and dividing.
  • the depth of the dividing groove is preferably in the range of about 70 to 100% of the thickness of the film substrate 20 so that the dividing groove is not formed from the base layer 21 to the first gas barrier layer 22. .
  • the first cutting portion R60 can form the tapered dividing grooves by irradiating laser light, performing thermal imprinting, or a combination thereof.
  • the film substrate 20 to which the protective film 4 is bonded is completely cut at once by laser light or thermal imprinting, it is necessary to apply a large amount of heat energy for a long time, so that the film substrate 20 is easily melted and carbonized. Due to the deformation of the film substrate 20 due to carbonization and melting, the first gas barrier layer 22 and the second gas barrier layer 27 may be distorted and damaged.
  • the thermal energy required for forming the dividing grooves is sufficiently smaller than the heat energy required for complete cutting, and the formation of the dividing grooves hardly causes carbonization and melting of the film substrate 20. Therefore, damage to the first gas barrier layer 22 and the second gas barrier layer 27 as described above can be avoided.
  • the first cutting part R60 includes a laser irradiation part 61 disposed at a position facing the second surface 20B of the film substrate 20, as shown in FIG. A dividing groove is formed.
  • the laser irradiation unit 61 irradiates the second surface 20 ⁇ / b> B of the film substrate 20 with laser light to etch the film substrate 20, thereby forming divided grooves.
  • a dividing groove having a V-shaped cross section can be formed.
  • the laser irradiation unit 61 can adjust the width and depth of the division grooves to be formed and the inclination angle of the slope by changing the laser output or the irradiation time.
  • the laser irradiation part 61 can change the wavelength of the laser beam to irradiate according to the material of the film substrate 20 and the base layer 21.
  • the wavelength of the laser beam is adjusted to a wavelength that absorbs more energy on the side of the film substrate 20 than the underlayer 21, thereby dividing the groove into the underlayer 21. Can be slowed. Before the laser beam energy reaches the first gas barrier layer 22, the irradiation of the laser beam can be stopped, and an effect of preventing damage can be obtained.
  • the laser irradiation unit 61 is divided into a plurality of stages to form a split groove having a V-shaped cross section, and the slope of the inclined surface of the split groove formed at each stage is varied to thereby have a V-shaped cross section.
  • the slope of the dividing groove can be formed into a curved surface.
  • the laser irradiation unit 61 irradiates laser light in three stages, increases the laser output for each stage, and reduces the spot diameter of the laser light.
  • slopes having inclination angles of ⁇ 3, ⁇ 4, and ⁇ 5 ( ⁇ 5> ⁇ 4> ⁇ 3) can be continuously formed, and a V-shaped shape having a curved slope as a whole. It can be a dividing groove.
  • the laser light emitted by the laser irradiation unit 61 for example, an excimer laser, a carbon dioxide (CO 2 ) laser, a YAG laser, an Nd: YAG laser, a ruby laser, a YVO 4 laser, a semiconductor laser, or the like can be used.
  • the first cutting part R60 can move the single laser irradiation part 61 according to each boundary line to form a dividing groove, or can arrange a plurality of laser irradiation parts 61 on each boundary line to make a plurality of divisions.
  • the grooves can also be formed in parallel.
  • the first cutting part R60 When performing thermal imprinting, the first cutting part R60 includes a molding part 62 disposed at a position facing the second surface 20B of the film substrate 20 as shown in FIG. Grooves are formed.
  • the molding unit 62 heats a mold having a protrusion corresponding to the shape of the divided groove to be formed, and presses the mold against the second surface 20B of the film substrate 20 to form the divided groove. According to the thermal imprint, it is possible to form a division groove having an arbitrary cross-sectional shape by changing the shape of the protrusion of the mold.
  • the mold used by the molding unit 62 can be made of glass, ceramic, or metal.
  • the heating temperature of the mold may be appropriately selected according to the film substrate 20, but is generally in the range of 20 to 200 ° C.
  • the mold may be subjected to a surface treatment such as fluorine coating in order to improve the peelability from the film substrate 20.
  • the first cutting portion R60 combines laser light irradiation and thermal imprinting to form divided grooves in a plurality of stages, and the sectional shape of the divided grooves formed in each stage is different.
  • the shape can be a V shape, a V shape having a curved slope, or a shape combining two or more of steps.
  • the 1st cutting part R60 is provided with both the laser irradiation part 61 and the shaping
  • a dividing groove having a V shape in cross section is formed by the laser irradiation portion 61, thereby forming a staircase as shown in FIG. 11F or FIG. 11G.
  • a dividing groove having a V-shaped tip can be formed.
  • the dividing grooves can be formed with higher accuracy than thermal imprinting. Therefore, by combining laser light irradiation with thermal imprinting, it is possible to form a groove up to the boundary of the base layer 21 or to form a fine groove shape.
  • the first cutting portion R ⁇ b> 60 is not only on the second surface 20 ⁇ / b> B of the film substrate 20 but also on the boundary line of each organic EL element 1.
  • a similar dividing groove can be formed along the second surface 4B of the protective film 4.
  • Each dividing groove makes cutting and dividing easier.
  • the film substrate 20 and the protective film 4 can be cut
  • the first cutting portion R60 irradiates the laser beam at positions facing the second surface 20B of the film substrate 20 and the second surface 4B of the protective film 4, respectively.
  • the part 61 or the molding part 62 is provided, and the dividing grooves of the second surface 20B and the second surface 4B can be formed in parallel.
  • the first cutting portion R60 is formed only on the protective film 4 so that the dividing groove does not reach the second gas barrier layer 27 when the second gas barrier layer 27 is formed on the entire surface of the film substrate 20. It is preferable to form dividing grooves. When the dividing groove is also formed in the adhesive layer 3, a sufficient distance from the tip of the dividing groove to the second gas barrier layer 27 is provided, for example, within a range of 30 to 90% of the thickness of the adhesive layer 3. Is preferred.
  • the second cutting part R70 cuts and divides the film substrate 20 on which the protective film 4 is bonded along the dividing groove formed by the first cutting part R70 to obtain a plurality of organic EL elements 1.
  • the second cutting part R70 can be cut and divided by blowing air onto the film substrate 20. In this case, it is possible to perform cutting division on the film substrate 20 without contact. Further, the second cutting part R70 can be cut and divided by sucking the film substrate 20 for each organic EL element 1 or by holding and pulling it. By such cutting and dividing, cutting and dividing can be performed with a simple configuration, and high productivity can be obtained.
  • the second cutting portion R70 can be configured to include an air blowing portion 71 as shown in FIG.
  • the air blowing unit 71 blows air to the dividing grooves formed in the film substrate 20, and cuts and divides the film substrate 20 for each organic EL element 1 by the wind pressure.
  • a collection box 78 is provided below the air blowing unit 71.
  • Each organic EL element 1 obtained by cutting and dividing is accommodated in the collection box 78.
  • the remaining film substrate 20 from which the organic EL element 1 has been cut is wound up by a winder 102.
  • the second cutting part R70 can be configured to include a suction arm 72 as shown in FIG.
  • the suction arm 72 sucks air, sucks the film substrate 20 for each organic EL element, applies a pulling force, and cuts and divides the film substrate 20.
  • the suction arm 72 moves the organic EL element 1 obtained by cutting and dividing into a collection box (not shown).
  • the remaining film substrate 20 from which the organic EL element 1 has been cut is wound up by a winder 102.
  • the second cutting portion R70 can be configured to include rollers 74 to 76 and a conveyor belt 77 as shown in FIG.
  • the roller 75 rotates the conveyance belt 77 by winding the conveyance belt 77 together with the roller 76 positioned downstream in the conveyance direction.
  • the conveyor belt 77 is provided with an air suction portion that is provided with an intake hole on the belt surface and is disposed inside the belt surface.
  • the transport belt 77 can suck air by an air suction unit and suck and transport the film substrate 20.
  • the pair of rollers 74 and 75 sandwich the film substrate 20 for each organic EL element 1 and transport it at a transport speed faster than the transport speed of the film substrate 20 to apply a tensile force.
  • the film substrate 20 to which the tensile force is applied by the rollers 74 and 75 is adsorbed by the conveying belt 77 and further applied with a tensile force, and is cut and divided into one unit of the organic EL element.
  • the conveyance belt 77 can adsorb
  • the organic EL element 1 obtained by cutting and dividing is transported into the collection box 78 by the transport belt 77.
  • the remaining film substrate 20 from which the organic EL element 1 has been cut is conveyed by a roller 74 and taken up by a winder 102.
  • the pencil hardness of the film substrate 20 was HB.
  • a coating solution in which an acrylic resin was mixed with a silicon oxide filler having an average particle diameter of 20 nm was prepared, and the coating solution was applied on the film substrate 20 to form a base layer 21 having a thickness of 5 ⁇ m.
  • the pencil hardness of the underlayer 21 was 2H to 3H.
  • the first gas barrier layer is formed on the underlayer 21 by depositing a silicon oxide SiO x having a ratio of oxygen O to silicon Si in the range of 1.5 to 2.0 by vapor phase growth. 22 was formed.
  • the thickness of the first gas barrier layer 22 was 300 nm.
  • an anode 23 an extraction wiring 24, an organic functional layer 25, and a cathode 26 of a plurality of organic EL elements were sequentially formed.
  • An ITO layer having a thickness of 150 nm was formed as the anode 23 by a radio frequency (RF) sputtering method, and an aluminum layer having a thickness of 300 nm was formed as the extraction wiring 24.
  • RF radio frequency
  • a hole injection layer (copper phthalocyanine (CuPc), thickness 30 nm) / hole transport layer (NPD, thickness 100 nm) / fluorescent blue light emitting layer (thickness 30 nm) / electron transport layer (Aluminum quinolate (Alq 3 ), thickness 30 nm) / electron injection layer (lithium fluoride, thickness 1 nm) was formed, and an aluminum layer 200 nm thick was formed as the cathode 26. Further, a silicon nitride (SiN) layer was formed by vapor deposition so as to cover each of these layers, and a second gas barrier layer 27 having a thickness of 300 nm was formed. Next, as shown in FIG. 17A, a stripe-shaped protective film 4 provided with the adhesive layer 3 in advance was bonded onto the second gas barrier layer 27.
  • CuPc copper phthalocyanine
  • NPD hole transport layer
  • NPD thickness 100 nm
  • thickness 30 nm / electron transport layer
  • the second surface 20B of the film substrate 20 is irradiated with a carbon dioxide laser beam by the laser irradiation unit 61 to etch the film substrate 20, and the slope angle of the inclined surface is about 45 °.
  • a character-shaped dividing groove was formed.
  • carbon dioxide laser light was condensed by a condenser lens, and the boundary line of each organic EL element was scanned at a scanning speed of 300 m / min.
  • the carbon dioxide laser beam had a wavelength of 10.5 ⁇ m, a laser output of 30 W, and a spot diameter after focusing of 50 ⁇ m.
  • the irradiation time of the carbon dioxide laser beam was adjusted so that the division grooves were formed up to the vicinity of the interface of the base layer 21.
  • each organic EL element S1 has an area of the second surface 20B of the film substrate 20 smaller than that of the first surface 20A, and the end shape of the film substrate 20 is an inclined surface having an inclination angle ⁇ of about 45 ° as shown in FIG. 5A. It was in the shape.
  • a SUS mold is pressed against the second surface 20 ⁇ / b> B of the film substrate 20 in a temperature atmosphere of 70 ° C. by the molding unit 62, and the cross-sectional shape is V-shaped.
  • a dividing groove was formed.
  • the mold had a protrusion having a V-shaped cross section, and the protrusion had a height of 150 ⁇ m and a width of 100 ⁇ m.
  • the mold was pressed so that up to about 80% of the height of the protrusion was buried in the film substrate 20 to form a dividing groove having a depth of about 120 ⁇ m.
  • each organic EL element S2 has an inclined surface shape in which the area of the second surface 20B of the film substrate 20 is smaller than that of the first surface 20A, the end shape of the film substrate 20 is the same as the organic EL element S1, and the inclination angle ⁇ is about 70 °. Met.
  • the laser irradiation unit 61 irradiates the second surface 20B of the film substrate 20 with carbon dioxide laser light, and etches about 70% of the thickness of the film substrate 20, thereby A V-shaped dividing groove having an inclination angle of about 45 ° was formed.
  • carbon dioxide laser light was condensed by a condenser lens, and the boundary line of each organic EL element was scanned at a scanning speed of 300 m / min.
  • the carbon dioxide laser beam had a wavelength of 10.5 ⁇ m, a laser output of 30 W, and a spot diameter after focusing of 50 ⁇ m.
  • the condensing lens was changed, and etching was performed to the vicinity of the interface of the base layer 21 by the laser irradiation unit 61 to form a V-shaped divided groove having an inclined angle of about 70 °. .
  • air was blown in the same manner as in the organic EL element S1, and the film substrate 20 was cut and divided along the dividing grooves to obtain a plurality of organic EL elements S3 as shown in FIG. 19C.
  • Each organic EL element S3 has an area of the second surface 20B of the film substrate 20 smaller than that of the first surface 20A, and the end shape of the film substrate 20 has an inclination angle of about 45 ° and about 45 °, respectively, as shown in FIG. 5C.
  • the shape was a combination of 70 ° slopes.
  • a molding unit 62 presses a SUS mold against the second surface 20B of the film substrate 20 in a temperature atmosphere of 70 ° C. About 70% of the dividing grooves were formed.
  • the mold had a stepped protrusion having a height of 150 ⁇ m and a width of 100 ⁇ m, and the formed dividing groove had a stepped cross section.
  • the mold was pressed so that up to about 80% of the height of the protrusion was buried in the film substrate 20 to form a dividing groove having a depth of about 120 ⁇ m.
  • carbon dioxide laser light is irradiated by the laser irradiation unit 61, and the laser light is focused on the tip of the step-shaped split groove by a condenser lens, and the inside of the split groove is 300 mm / min. Scanned at scan speed.
  • the carbon dioxide laser beam had a light wavelength of 10.5 ⁇ m, an output of 30 W, and a spot diameter of 50 ⁇ m after focusing.
  • the film substrate 20 was etched to the vicinity of the interface of the base layer 21, and the tip portion of the step-shaped dividing groove was processed into a V shape with an inclined angle of about 45 °.
  • each organic EL element S4 has an area of the second surface 20B of the film substrate 20 smaller than that of the first surface 20A, and the end shape of the film substrate 20 is a shape combining a stepped shape and a sloped shape as shown in FIG. 5G. there were. Further, the inclination angle ⁇ of the end portion of the film substrate 20 was about 45 °.
  • carbon dioxide gas is condensed at the scanning speed of 300 mm / min on each of the second surface 20B of the film substrate 20 and the second surface 4B of the protective film 4 with a condensing lens.
  • Laser light was irradiated.
  • the carbon dioxide laser beam had a light wavelength of 10.5 ⁇ m, an output of 30 W, and a spot diameter of 50 ⁇ m after focusing.
  • the film substrate 20 is etched to the vicinity of the interface of the base layer 21, and the protective film 4 and the adhesive layer 3 are etched to the vicinity of the interface of the take-out wiring 24 to form divided grooves having a V-shaped cross section, respectively did.
  • the inclination angle ⁇ of the dividing groove was about 45 °.
  • each organic EL element S5 has an area of the second surface 20B of the film substrate 20 smaller than that of the first surface 20A, and the end shape of the film substrate 20 is an inclined surface as shown in FIG. It was about 45 °. Further, the area of the second surface 4B of the protective film 4 was smaller than that of the first surface 4A, and the end shape of the protective film 4 was an inclined surface with an inclination angle of about 45 °, like the film substrate 20.
  • the film substrate 20 was passed between a pair of rollers 74 and 75 as shown in FIG. While the film substrate 20 was sandwiched between the rollers 74 and 75, the film substrate 20 was sucked and pulled in units of organic EL elements by the transport belt 77, and was cut and divided. By this cutting and dividing, a plurality of organic EL elements S6 were obtained. Each organic EL element S6 had the same shape as the organic EL element S5.
  • each organic EL element S7 the areas of the first surface 20A and the second surface 20B of the film substrate 20 were substantially the same, and the end shape of the film substrate 20 was a right-angled shape. Moreover, the area of the 1st surface 4A and the 2nd surface 4B of the protective film 4 was substantially the same, and the edge part shape of the protective film 4 was a right-angled shape.
  • a bending test was conducted on each of the manufactured organic EL elements S1 to S7.
  • the bending test an operation in which each organic EL element S1 to S7 was wound around a roller having a diameter of 5 mm and bent while applying a tension of 200 N / m was repeated 100 times.
  • a high-temperature and high-humidity test was performed on each of the organic EL elements S1 to S7.
  • each of the organic EL elements S1 to S7 was left in a high temperature and high humidity environment at a temperature of 85 ° C. and a relative humidity of 85% for 500 hours.
  • each of the organic EL elements S1 to S7 was connected to a power source, and the light emission performance was confirmed depending on whether or not light was emitted.
  • Table 1 below shows the evaluation results of the organic EL elements S1 to S7.
  • the organic EL elements S1 to S6 have high strength and resistance to bending without affecting the light emission characteristics even after 100 bending tests using a ⁇ 5 mm roller.
  • the organic EL elements S1 to S6 have good light emitting performance even in a high temperature and high humidity environment, and the first gas barrier layer 22 and the second gas barrier layer 27 are not damaged at the time of cutting and dividing. It is presumed that the gas barrier property capable of maintaining the initial light emission performance was maintained even after the high temperature and high humidity test.
  • the first gas barrier layer 2 and the second gas barrier layer 27 in the vicinity of the cut end portion were damaged and many cracks were generated, and the cracks expanded after the bending test.
  • the light emission unevenness occurred.
  • water vapor entered from the cracks, and light emission was not possible.
  • the first gas barrier layer 22 and the second gas barrier layer 27 are damaged due to the direct contact of the metal blade, and the light emitting layer and the like deteriorate due to water vapor entering from the damaged portion in a high temperature and high humidity environment. Therefore, it is estimated that the light emission performance has deteriorated.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

The purpose of the present invention is to provide a production method and a production device for an organic EL element, causing little damage in the gas barrier layer and little deterioration in light-emitting capability even under an environment of high temperature and high humidity. This organic EL element production method is a production method wherein the same film substrate is used to form a plurality of organic EL elements provided with an organic functional layer containing a light-emitting layer and one pair of electrodes sandwiching the organic functional layer, and the film substrate is cut to separate each of the organic EL elements, characterized in that the method comprises (a) a step of forming a first gas barrier layer on the film substrate, and form the organic functional layer and the one pair of electrodes for the plurality of organic EL elements on the first gas barrier layer, (b) a step of forming a separation groove along the border line of each organic EL element on a second side facing away from a first side where the first gas barrier layer of the film substrate has been formed, and (c) a step of cutting along the separation groove the film substrate whereon the first gas barrier layer has been formed to separate and obtain the plurality of organic EL elements.

Description

有機エレクトロルミネッセンス素子の製造方法、製造装置及び有機エレクトロルミネッセンス素子Organic electroluminescence element manufacturing method, manufacturing apparatus, and organic electroluminescence element
 本発明は、有機エレクトロルミネッセンス素子の製造方法、製造装置及び有機エレクトロルミネッセンス素子に関する。特に、ガスバリアー層の損傷が少ない有機エレクトロルミネッセンス素子の製造方法、製造装置及び有機エレクトロルミネッセンス素子に関する。 The present invention relates to an organic electroluminescence element manufacturing method, a manufacturing apparatus, and an organic electroluminescence element. In particular, the present invention relates to an organic electroluminescent element manufacturing method, a manufacturing apparatus, and an organic electroluminescent element with little damage to a gas barrier layer.
 有機エレクトロルミネッセンス(EL;Electro Luminescence)素子は、一般的に、発光層を含む有機機能層と、当該有機機能層を挟持する陽極及び陰極と、を基板上に備えて構成されている。
 発光層は発光性の有機化合物を含有し、陽極と陰極間に電圧を印加すると、陽極から発光層に正孔が注入され、陰極から発光層に電子が注入される。そして、注入された正孔及び電子が、発光層において再結合することにより、励起子(エキシントン)が生成する。この励起子が失活する際にエネルギーを放出し、当該エネルギーが光として発光層から放出される。
An organic electroluminescence (EL) element generally includes an organic functional layer including a light emitting layer and an anode and a cathode that sandwich the organic functional layer on a substrate.
The light emitting layer contains a light emitting organic compound, and when voltage is applied between the anode and the cathode, holes are injected from the anode into the light emitting layer, and electrons are injected from the cathode into the light emitting layer. Then, the injected holes and electrons are recombined in the light emitting layer, thereby generating excitons (exingtons). When the exciton is deactivated, energy is released, and the energy is emitted from the light emitting layer as light.
 このような有機EL素子は、発光層の材料として最適な有機化合物を選択することにより、特定の光波長で面発光することができる。また、有機EL素子は、各層を薄膜として形成することができ、薄型かつ固体形状で発光可能である。これらの特性から、薄型で大面積のフルカラーディスプレイ、電子写真用の光源デバイス、液晶ディスプレイ用のバックライト、静脈センサー等の生体認識用光源、面発光照明等として、有機EL素子の商品化が急がれている。 Such an organic EL element can emit light at a specific light wavelength by selecting an optimal organic compound as a material of the light emitting layer. In addition, the organic EL element can be formed as a thin film in each layer, and can emit light in a thin and solid form. Due to these characteristics, the commercialization of organic EL elements as a thin, large-area full-color display, a light source device for electrophotography, a backlight for a liquid crystal display, a light source for biological recognition such as a vein sensor, surface emitting illumination, etc. It is peeling off.
 有機EL素子の用途をさらに拡大するため、低コスト化及び信頼性向上に向けて、材料の開発、構造の最適化、生産プロセスの効率化等、品質向上を目的とする開発が活発に進められている。
 例えば、有機EL素子の大型化及び生産性の向上のため、大面積の基板上に複数の有機EL素子を形成し、基板を切断分割することにより、複数の有機EL素子を一貫生産する大規模な生産技術の確立が図られている。
In order to further expand the applications of organic EL elements, development aimed at improving quality, such as material development, structure optimization, and production process efficiency, has been actively promoted to reduce costs and improve reliability. ing.
For example, in order to increase the size of organic EL elements and improve productivity, a large-scale integrated production of a plurality of organic EL elements by forming a plurality of organic EL elements on a large area substrate and cutting and dividing the substrate. Establishment of new production technology.
 従来は、基板としてガラス基板が用いられ、当該ガラス基板を金属刃又はダイヤモンド刃によって機械的に切断するか(例えば、特許文献1参照)、又は化学薬品に浸漬してエッチングして切断することが一般的であった。また、高エネルギーのレーザー光を照射して切断することも行われていた(例えば、特許文献2及び3参照)。 Conventionally, a glass substrate is used as a substrate, and the glass substrate is mechanically cut with a metal blade or a diamond blade (see, for example, Patent Document 1), or immersed in a chemical and etched to be cut. It was general. Moreover, it cut | disconnecting by irradiating a high energy laser beam (for example, refer patent document 2 and 3).
 一方、有機EL素子のさらなる薄型化、軽量化及び耐衝撃性の向上を目的として、可撓性が高いフィルム基板の使用も一般的である。フィルム基板は、ロール体で供給することができ、一貫生産にも適している。 On the other hand, it is also common to use a highly flexible film substrate for the purpose of further reducing the thickness, weight, and impact resistance of the organic EL element. The film substrate can be supplied in a roll body and is suitable for integrated production.
 フィルム基板としては樹脂フィルムが用いられることが多いが、樹脂フィルムは経時により大気中の水、酸素等のガスが浸入しやすく、浸入したガスによって電極及び発光層が劣化して非発光化するダークスポット現象が起こりやすい。
 そのため、電極及び発光層の周囲を、高いガスバリアー性を示すガスバリアー層で被覆し、電極及び発光層へのガスの進入を遮蔽することが行われている。
Resin film is often used as the film substrate, but the resin film is easy to infiltrate gases such as water and oxygen in the atmosphere over time. Spot phenomenon is likely to occur.
For this reason, the surroundings of the electrode and the light emitting layer are covered with a gas barrier layer exhibiting high gas barrier properties to shield the gas from entering the electrode and the light emitting layer.
 ガスバリアー層は、幅広い温度域で安定したガスバリアー性が求められ、光の取出しを考慮すると透明性が高い方が好ましい。よって、ガスバリアー層には、通常は酸化ケイ素、酸化アルミニウム等の無機化合物が用いられる。
 このような無機化合物を主に含有するガスバリアー層は、脆く硬い性質を持つため、切断時に刃が直接接触すると、クラック等の損傷が生じやすい。ガスバリアー層が形成されるフィルム基板は可撓性が高いため、使用時に曲げられるか、引っ張られてフィルム基板が変形すると、切断部分で生じた損傷が拡大しやすく、ガスバリアー層の信頼性が低下する。
The gas barrier layer is required to have a stable gas barrier property in a wide temperature range, and it is preferable that the gas barrier layer has high transparency in consideration of light extraction. Therefore, inorganic compounds such as silicon oxide and aluminum oxide are usually used for the gas barrier layer.
Since the gas barrier layer mainly containing such an inorganic compound has brittle and hard properties, damage such as cracks is likely to occur when the blade is in direct contact during cutting. Since the film substrate on which the gas barrier layer is formed is highly flexible, if the film substrate is deformed by being bent or pulled during use, the damage caused at the cut portion is likely to expand, and the reliability of the gas barrier layer is increased. descend.
 フィルム基板の切断にレーザー光が用いられることもあるが(例えば、特許文献4及び5参照)、フィルム基板は、ガラス基板に比べて耐熱性が低い。完全切断のため、レーザー光を長時間照射すると、高い熱エネルギーによってフィルム基板が溶融及び炭化して変形することがある。変形によってフィルム基板上のガスバリアー層に歪みが生じ、損傷しやすくなる。
 化学薬品を用いたエッチングについては、化学薬品によってフィルム基板が加水分解し腐食されるため、適さない。
Although laser light may be used for cutting the film substrate (see, for example, Patent Documents 4 and 5), the film substrate has lower heat resistance than the glass substrate. When the laser beam is irradiated for a long time for complete cutting, the film substrate may be melted and carbonized and deformed by high thermal energy. Due to the deformation, the gas barrier layer on the film substrate is distorted and easily damaged.
Etching using chemicals is not suitable because the film substrate is hydrolyzed and corroded by chemicals.
 さらに、有機EL素子は、端部の非発光部分の面積が小さいほど、基板の実用面積が増えてコストの低減が可能であり、表示装置又は照明装置として使用する際にも商品価値が上がることから、非発光部分の縮小化が図られている。
 この縮小化にともない、同じフィルム基板上で隣接する有機EL素子間の距離も小さくなるため、いずれかの有機EL素子のガスバリアー層に損傷が生じると、隣接する有機EL素子のガスバリアー層にも損傷が拡大しやすいという問題もあった。
Furthermore, the smaller the area of the non-light emitting portion at the end of the organic EL element, the larger the practical area of the substrate and the cost can be reduced, and the commercial value increases when used as a display device or lighting device. Therefore, the non-light emitting portion is reduced.
Along with this reduction, the distance between adjacent organic EL elements on the same film substrate also becomes smaller. Therefore, when the gas barrier layer of any organic EL element is damaged, the gas barrier layer of the adjacent organic EL element There was also a problem that damage was easy to spread.
特許第4650095号公報Japanese Patent No. 4650095 特開2013-75818号公報JP 2013-75818 A 特開2009-242185号公報JP 2009-242185 A 国際公開第2013/019763号パンフレットInternational Publication No. 2013/019763 Pamphlet 特開2011-128481号公報JP 2011-128481 A
 本発明は上記問題・状況に鑑みてなされ、その解決課題は、ガスバリアー層の損傷が少なく、高温高湿環境下においても発光性能の劣化が少ない有機エレクトロルミネッセンス素子の製造方法、製造装置及び有機エレクトロルミネッセンス素子を提供することである。 The present invention has been made in view of the above-mentioned problems and circumstances, and its solution is a method for manufacturing an organic electroluminescence element, a manufacturing apparatus, and an organic It is to provide an electroluminescent device.
 本発明者は、上記課題を解決すべく、上記問題の原因等について検討した結果、ガスバリアー層が形成されたフィルム基板を一度に完全切断しようとすると、ガスバリアー層に損傷が生じやすいことが分かった。例えば、刃を用いる場合は刃がガスバリアー層に当接して損傷が生じ、レーザー光を照射する場合は長時間の照射によってフィルム基板が変形して損傷が生じる。本発明者は、ガスバリアー層に刃を当接させず、フィルム基板の変形が少ない切断分割方法を鋭意検討したところ、切断工程を2段階に分けて、フィルム基板を一部切断して分割溝を形成した後、当該分割溝に沿って切断分割すると、ガスバリアー層の損傷が少ないことを見出し、本発明に至った。 As a result of studying the cause of the above-mentioned problem in order to solve the above problems, the present inventor tends to cause damage to the gas barrier layer when trying to completely cut the film substrate on which the gas barrier layer is formed at once. I understood. For example, when using a blade, the blade contacts the gas barrier layer to cause damage, and when irradiating laser light, the film substrate is deformed and damaged by irradiation for a long time. The present inventor has intensively studied a cutting and dividing method in which the blade is not brought into contact with the gas barrier layer and the deformation of the film substrate is small. As a result, the cutting process is divided into two stages, and the film substrate is partially cut to form dividing grooves. After forming the film, it was found that there was little damage to the gas barrier layer by cutting and dividing along the dividing groove, which led to the present invention.
 すなわち、本発明に係る課題は、以下の手段によって解決される。
 1.同一のフィルム基板を用いて、発光層を含む有機機能層と当該有機機能層を挟持する一対の電極とを少なくとも備える有機EL素子を複数形成し、当該有機EL素子ごとに前記フィルム基板を切断分割する有機EL素子の製造方法であって、
(a)前記フィルム基板上に第1ガスバリアー層を形成し、当該第1ガスバリアー層上に複数の有機EL素子の前記有機機能層及び前記一対の電極を形成する工程と、
(b)各有機EL素子の境界線に沿って、前記フィルム基板において前記第1ガスバリアー層が形成された第1面の反対側の面である第2面に、分割溝を形成する工程と、
(c)前記第1ガスバリアー層が形成された前記フィルム基板を、前記分割溝に沿って切断分割し、複数の有機EL素子を得る工程と、
 を含むことを特徴とする有機EL素子の製造方法。
That is, the subject concerning this invention is solved by the following means.
1. Using the same film substrate, a plurality of organic EL elements including at least an organic functional layer including a light emitting layer and a pair of electrodes sandwiching the organic functional layer are formed, and the film substrate is cut and divided for each organic EL element A method for manufacturing an organic EL element,
(A) forming a first gas barrier layer on the film substrate, and forming the organic functional layer and the pair of electrodes of a plurality of organic EL elements on the first gas barrier layer;
(B) forming a dividing groove on a second surface which is a surface opposite to the first surface on which the first gas barrier layer is formed in the film substrate along a boundary line of each organic EL element; ,
(C) cutting and dividing the film substrate on which the first gas barrier layer is formed along the dividing grooves to obtain a plurality of organic EL elements;
The manufacturing method of the organic EL element characterized by including.
 2.(d)前記第1ガスバリアー層上の前記有機機能層及び前記一対の電極を被覆するように、第2ガスバリアー層を形成する工程と、
(e)前記第2ガスバリアー層上に保護フィルムを貼り合わせる工程と、をさらに含み、
 前記(b)工程では、各有機EL素子の境界線に沿って、前記保護フィルムにおいて前記第2ガスバリアー層と対向する第1面の反対側の面である第2面に、分割溝をさらに形成し、
 前記(c)工程では、前記フィルム基板及び前記保護フィルムのそれぞれに形成された分割溝に沿って、前記第2ガスバリアー層が形成されたフィルム基板を切断分割することを特徴とする第1項に記載の有機EL素子の製造方法。
2. (D) forming a second gas barrier layer so as to cover the organic functional layer and the pair of electrodes on the first gas barrier layer;
(E) further including a step of bonding a protective film on the second gas barrier layer,
In the step (b), a dividing groove is further formed on the second surface that is the surface opposite to the first surface facing the second gas barrier layer in the protective film along the boundary line of each organic EL element. Forming,
In the step (c), the film substrate on which the second gas barrier layer is formed is cut and divided along the dividing grooves formed on the film substrate and the protective film, respectively. The manufacturing method of the organic EL element of description.
 3.前記(b)工程では、テーパー形状の分割溝を形成することを特徴とする第1項又は第2項に記載の有機EL素子の製造方法。 3. In the step (b), a tapered dividing groove is formed. The method for manufacturing an organic EL element according to item 1 or 2.
 4.前記テーパー形状の分割溝は、断面形状がV字状、斜面が曲面状のV字状、階段状又はこれらのうちの2以上を組み合わせた形状であることを特徴とする第3項に記載の有機EL素子の製造方法。 4. The taper-shaped dividing groove has a V-shaped section, a curved V-shaped slope, a stepped shape, or a combination of two or more thereof. Manufacturing method of organic EL element.
 5.前記(b)工程では、複数の段階に分けて分割溝を形成し、各段階で形成する分割溝の断面形状を異ならせて、分割溝の断面形状をV字状、斜面が曲面状のV字状又は階段状のうちの2以上を組み合わせた形状とすることを特徴とする第4項に記載の有機EL素子の製造方法。 5. In the step (b), the dividing groove is formed in a plurality of stages, and the sectional shape of the dividing groove formed in each stage is varied, so that the sectional shape of the dividing groove is V-shaped and the slope is curved V. 5. The method for producing an organic EL element according to item 4, wherein the shape is a combination of two or more of a letter shape or a step shape.
 6.前記(b)工程では、複数の段階に分けて断面形状がV字状の分割溝を形成し、各段階で形成する分割溝の斜面の傾斜角度を異ならせて、断面形状がV字状の分割溝の斜面を曲面状に形成することを特徴とする第4項に記載の有機EL素子の製造方法。 6. In the step (b), a divided groove having a V-shaped cross section is formed in a plurality of stages, and the inclination angle of the slope of the divided groove formed in each stage is varied, so that the cross-sectional shape is V-shaped. 5. The method for producing an organic EL element according to item 4, wherein the slope of the dividing groove is formed into a curved surface.
 7.前記(b)工程では、レーザー光を照射するか、熱インプリントを行うか又はこれらの組み合わせにより、前記分割溝を形成することを特徴とする第1項から第6項までのいずれか一項に記載の有機EL素子の製造方法。 7. In the step (b), the division grooves are formed by irradiating laser light, performing thermal imprinting, or a combination thereof, any one of items 1 to 6 The manufacturing method of the organic EL element of description.
 8.前記(c)工程では、前記分割溝にエアーを吹き付けるか、有機EL素子ごとに前記フィルム基板をエアー吸引して引っ張るか又は前記フィルム基板を挟持して引っ張ることにより、切断分割することを特徴とする第1項から第7項までのいずれか一項に記載の有機EL素子の製造方法。 8. In the step (c), air is blown into the dividing grooves, the film substrate is air-sucked and pulled for each organic EL element, or the film substrate is sandwiched and pulled to be cut and divided. The manufacturing method of the organic EL element as described in any one of 1st term | claim to 7th term | claim.
 9.前記(a)工程では、前記フィルム基板と前記第1ガスバリアー層間に、下地層をさらに形成することを特徴とする第1項から第8項までのいずれか一項に記載の有機EL素子の製造方法。 9. In the step (a), an underlayer is further formed between the film substrate and the first gas barrier layer. The organic EL element according to any one of items 1 to 8, Production method.
 10.前記下地層は、バインダー樹脂を含有し、前記フィルム基板よりも硬度が大きいことを特徴とする第9項に記載の有機EL素子の製造方法。 10. The method for producing an organic EL element according to item 9, wherein the underlayer contains a binder resin and has a hardness higher than that of the film substrate.
 11.前記下地層は、無機化合物粒子を含有することを特徴とする第9項又は第10項に記載の有機EL素子の製造方法。 11. Item 11. The method for manufacturing an organic EL element according to Item 9 or 10, wherein the underlayer contains inorganic compound particles.
 12.前記(a)工程では、有機EL素子ごとに前記一対の電極の取出し配線をさらに形成し、当該取出し配線が、各有機EL素子間で隣接し、かつフィルム基板の搬送方向において連続するように、前記フィルム基板上に各有機EL素子を配置することを特徴とする第1項から第11項までのいずれか一項に記載の有機EL素子の製造方法。 12. In the step (a), an extraction wiring for the pair of electrodes is further formed for each organic EL element, and the extraction wiring is adjacent between the organic EL elements and is continuous in the transport direction of the film substrate. Each organic EL element is arrange | positioned on the said film substrate, The manufacturing method of the organic EL element as described in any one of 1st term | claim to 11th term | claim characterized by the above-mentioned.
 13.前記第1ガスバリアー層又は前記第2ガスバリアー層は、無機化合物を含有することを特徴とする第2項から第12項までのいずれか一項に記載の有機EL素子の製造方法。 13. The method for producing an organic EL element according to any one of Items 2 to 12, wherein the first gas barrier layer or the second gas barrier layer contains an inorganic compound.
 14.同一のフィルム基板を用いて、発光層を含む有機機能層と当該有機機能層を挟持する一対の電極とを少なくとも含む有機EL素子を複数形成し、当該有機EL素子ごとに前記フィルム基板を切断分割する有機EL素子の製造装置であって、
 前記フィルム基板上に第1ガスバリアー層を形成し、当該第1ガスバリアー層上に複数の有機EL素子の前記有機機能層及び前記一対の電極を形成する本体形成部と、
 各有機EL素子の境界線に沿って、前記フィルム基板において前記第1ガスバリアー層が形成された第1面の反対側の面である第2面に、分割溝を形成する第1切断部と、
 前記第1ガスバリアー層が形成された前記フィルム基板を、前記分割溝に沿って切断分割し、複数の有機EL素子を得る第2切断部と、
 を備えることを特徴とする有機EL素子の製造装置。
14 Using the same film substrate, a plurality of organic EL elements including at least an organic functional layer including a light emitting layer and a pair of electrodes sandwiching the organic functional layer are formed, and the film substrate is cut and divided for each organic EL element An apparatus for manufacturing an organic EL element,
Forming a first gas barrier layer on the film substrate, and forming a main body forming portion on the first gas barrier layer to form the organic functional layer of the plurality of organic EL elements and the pair of electrodes;
A first cutting portion that forms a dividing groove on a second surface of the film substrate opposite to the first surface on which the first gas barrier layer is formed along a boundary line of each organic EL element; ,
Cutting and dividing the film substrate on which the first gas barrier layer is formed along the dividing grooves, to obtain a plurality of organic EL elements; and
A device for manufacturing an organic EL element, comprising:
 15.フィルム基板上に第1ガスバリアー層が形成され、当該第1ガスバリアー層上に発光層を含む有機機能層と当該有機機能層を挟持する一対の電極とを少なくとも備える有機EL素子であって、
 前記フィルム基板において前記第1ガスバリアー層が形成された第1面と、前記第1面の反対側の面である第2面とのうち、前記第2面の面積が前記第1面の面積より小さくなるように、前記第2面に分割溝が形成され、当該分割溝に沿って前記フィルム基板が切断分割されていることを特徴とする有機EL素子。
15. A first gas barrier layer is formed on a film substrate, and an organic EL device comprising at least an organic functional layer including a light emitting layer on the first gas barrier layer and a pair of electrodes sandwiching the organic functional layer,
Of the first surface of the film substrate on which the first gas barrier layer is formed and the second surface that is the surface opposite to the first surface, the area of the second surface is the area of the first surface. An organic EL element, wherein a dividing groove is formed on the second surface so as to be smaller, and the film substrate is cut and divided along the dividing groove.
 16.前記フィルム基板の端部形状が、斜面状、曲面状、階段状又はこれらのうちの2以上を組み合わせた形状であることを特徴とする第15項に記載の有機EL素子。 16. 16. The organic EL device according to item 15, wherein the end shape of the film substrate is a slope shape, a curved surface shape, a step shape, or a combination of two or more thereof.
 17.前記フィルム基板と前記第1ガスバリアー層間に、下地層を備えることを特徴とする第15項又は第16項に記載の有機EL素子。 17. Item 17. The organic EL device according to Item 15 or 16, further comprising an underlayer between the film substrate and the first gas barrier layer.
 18.前記下地層は、バインダー樹脂を含有し、前記フィルム基板より硬度が大きいことを特徴とする第17項に記載の有機EL素子。 18. Item 18. The organic EL element according to Item 17, wherein the underlayer contains a binder resin and has a hardness higher than that of the film substrate.
 19.前記下地層は、無機化合物粒子を含有することを特徴とする第17項又は第18項に記載の有機EL素子。 19. Item 19. The organic EL element according to Item 17 or 18, wherein the underlayer contains inorganic compound particles.
 20.前記第1ガスバリアー層上の前記有機機能層及び前記一対の電極を被覆するように形成された第2ガスバリアー層と、
 前記第2ガスバリアー層上に貼り合わされた保護フィルムと、
 を備えることを特徴とする第15項から第19項までのいずれか一項に記載の有機EL素子。
20. A second gas barrier layer formed to cover the organic functional layer and the pair of electrodes on the first gas barrier layer;
A protective film bonded onto the second gas barrier layer;
20. The organic EL element according to any one of items 15 to 19, characterized by comprising:
 21.前記保護フィルムは、前記第2ガスバリアー層と対向する第1面と、前記第1面の反対側の面である第2面とのうち、前記第2面の面積が前記第1面の面積より小さくなるように、前記第2面に分割溝が形成され、当該分割溝に沿って前記保護フィルムが切断分割されていることを特徴とする第20項に記載の有機EL素子。 21. Of the first surface facing the second gas barrier layer and the second surface that is the surface opposite to the first surface, the protective film has an area of the second surface that is the area of the first surface. 21. The organic EL element according to item 20, wherein a dividing groove is formed on the second surface so as to be smaller, and the protective film is cut and divided along the dividing groove.
 22.前記保護フィルムの端部形状が、斜面状、曲面状、階段状又はこれらのうちの2以上を組み合わせた形状であることを特徴とする第20項又は第21項に記載の有機EL素子。 22. Item 20. The organic EL element according to Item 20 or 21, wherein the end shape of the protective film is a slope shape, a curved surface shape, a step shape, or a combination of two or more thereof.
 23.前記第1ガスバリアー層又は前記第2ガスバリアー層が、ケイ素化合物を含有することを特徴とする第20項から第22項までのいずれか一項に記載の有機EL素子。 23. The organic EL device according to any one of Items 20 to 22, wherein the first gas barrier layer or the second gas barrier layer contains a silicon compound.
 本発明の上記手段により、ガスバリアー層の損傷が少なく、高温高湿環境下においても発光性能の劣化が少ない有機エレクトロルミネッセンス素子の製造方法、製造装置及び有機エレクトロルミネッセンス素子を提供できる。 By the above means of the present invention, it is possible to provide an organic electroluminescence element production method, production apparatus, and organic electroluminescence element with little damage to the gas barrier layer and little deterioration in light emission performance even in a high temperature and high humidity environment.
 本発明の効果の発現機構ないし作用機構は、以下のとおりである。
 すなわち、本発明の製造方法及び製造装置によれば、第1ガスバリアー層が形成されたフィルム基板に分割溝を形成し、当該分割溝に沿って切断分割する。このように、2段階で切断分割を実現することにより、第1ガスバリアー層に刃を当接させることも、溶融等によってフィルム基板を変形させることもなく、フィルム基板を切断することができる。よって、刃の当接又はフィルム基板の変形に起因する第1ガスバリアー層の損傷を防ぐことができる。また、切断時にフィルム基板に加えられる応力を分割溝に集中させることができ、フィルム基板の変形を抑えて、変形に起因する第1ガスバリアー層の損傷を防ぐことができる。
The expression mechanism or action mechanism of the effect of the present invention is as follows.
That is, according to the manufacturing method and manufacturing apparatus of the present invention, the dividing groove is formed in the film substrate on which the first gas barrier layer is formed, and the dividing groove is cut and divided along the dividing groove. Thus, by realizing the cutting and dividing in two stages, the film substrate can be cut without bringing the blade into contact with the first gas barrier layer and without deforming the film substrate by melting or the like. Therefore, damage to the first gas barrier layer due to contact of the blade or deformation of the film substrate can be prevented. In addition, the stress applied to the film substrate at the time of cutting can be concentrated in the dividing groove, so that the deformation of the film substrate can be suppressed and damage to the first gas barrier layer due to the deformation can be prevented.
有機EL素子の構成例を示す断面図。Sectional drawing which shows the structural example of an organic EL element. 図1の有機EL素子の平面図。The top view of the organic EL element of FIG. モジュール化された一つの有機EL素子を示す断面図。Sectional drawing which shows one organic EL element modularized. モジュール化された複数の有機EL素子を示す断面図。Sectional drawing which shows the some organic EL element modularized. フィルム基板の端部形状の例を示す断面図。Sectional drawing which shows the example of the edge part shape of a film substrate. フィルム基板の端部形状の例を示す断面図。Sectional drawing which shows the example of the edge part shape of a film substrate. フィルム基板の端部形状の例を示す断面図。Sectional drawing which shows the example of the edge part shape of a film substrate. フィルム基板の端部形状の例を示す断面図。Sectional drawing which shows the example of the edge part shape of a film substrate. フィルム基板の端部形状の例を示す断面図。Sectional drawing which shows the example of the edge part shape of a film substrate. フィルム基板の端部形状の例を示す断面図。Sectional drawing which shows the example of the edge part shape of a film substrate. フィルム基板の端部形状の例を示す断面図。Sectional drawing which shows the example of the edge part shape of a film substrate. 有機EL素子の他の構成例を示す断面図。Sectional drawing which shows the other structural example of an organic EL element. 単色発光時の取出し配線の配置例を示す平面図。The top view which shows the example of arrangement | positioning of the extraction wiring at the time of monochromatic light emission. 有機EL素子の製造装置の概略構成を示す正面図。The front view which shows schematic structure of the manufacturing apparatus of an organic EL element. フィルム基板上の複数の有機EL素子の配置例を示す平面図。The top view which shows the example of arrangement | positioning of the some organic EL element on a film substrate. 層形成部の概略構成を示す正面図。The front view which shows schematic structure of a layer formation part. 分割溝の断面形状の例を示す断面図。Sectional drawing which shows the example of the cross-sectional shape of a division | segmentation groove | channel. 分割溝の断面形状の例を示す断面図。Sectional drawing which shows the example of the cross-sectional shape of a division | segmentation groove | channel. 分割溝の断面形状の例を示す断面図。Sectional drawing which shows the example of the cross-sectional shape of a division | segmentation groove | channel. 分割溝の断面形状の例を示す断面図。Sectional drawing which shows the example of the cross-sectional shape of a division | segmentation groove | channel. 分割溝の断面形状の例を示す断面図。Sectional drawing which shows the example of the cross-sectional shape of a division | segmentation groove | channel. 分割溝の断面形状の例を示す断面図。Sectional drawing which shows the example of the cross-sectional shape of a division | segmentation groove | channel. 分割溝の断面形状の例を示す断面図。Sectional drawing which shows the example of the cross-sectional shape of a division | segmentation groove | channel. レーザー光を照射する場合の第1切断部の概略構成を示す正面図。The front view which shows schematic structure of the 1st cutting part in the case of irradiating a laser beam. 熱インプリントを行う場合の第1切断部の概略構成を示す正面図。The front view which shows schematic structure of the 1st cutting part in the case of performing a thermal imprint. エアー吹き付けにより切断分割する場合の第2切断部の概略構成を示す正面図。The front view which shows schematic structure of the 2nd cutting part in the case of carrying out cutting division | segmentation by air blowing. エアー吸引により切断分割する場合の第2切断部の概略構成を示す正面図。The front view which shows schematic structure of the 2nd cutting part in the case of carrying out cutting division by air suction. 挟持により切断分割する場合の第2切断部の概略構成を示す正面図。The front view which shows schematic structure of the 2nd cutting part at the time of carrying out cutting division by clamping. 保護フィルムを貼り合わせる工程を、フィルム基板の搬送方向から表した断面図。Sectional drawing which represented the process of bonding a protective film from the conveyance direction of a film substrate. レーザー光の照射によりフィルム基板に分割溝を形成する工程を、フィルム基板の搬送方向から表した断面図。Sectional drawing which represented the process of forming a division | segmentation groove | channel on a film substrate by irradiation of a laser beam from the conveyance direction of a film substrate. エアーの吹き付けにより切断分割して有機EL素子を製造する工程を、フィルム基板の搬送方向から表した断面図。Sectional drawing which represented the process of cutting and dividing by air blowing and manufacturing an organic EL element from the conveyance direction of a film substrate. 切断分割により得られた有機EL素子を、フィルム基板の搬送方向から表した断面図。Sectional drawing which represented the organic EL element obtained by cutting and dividing from the conveyance direction of a film substrate. 熱インプリントによりフィルム基板に分割溝を形成する工程を、フィルム基板の搬送方向から表した断面図。Sectional drawing which represented the process of forming a division | segmentation groove | channel on a film substrate by thermal imprint from the conveyance direction of a film substrate. 熱インプリントによりフィルム基板に分割溝を形成する工程を、フィルム基板の搬送方向から表した断面図。Sectional drawing which represented the process of forming a division | segmentation groove | channel on a film substrate by thermal imprint from the conveyance direction of a film substrate. エアーの吹き付けにより切断分割により得られた有機EL素子を、フィルム基板の搬送方向から表した断面図。Sectional drawing which represented the organic EL element obtained by cutting and dividing by blowing of air from the conveyance direction of a film substrate. レーザー光の照射により1段階目の分割溝を形成する工程を、フィルム基板の搬送方向から表した断面図。Sectional drawing which represented the process of forming the division | segmentation groove | channel of the 1st step by irradiation of a laser beam from the conveyance direction of a film substrate. レーザー光の照射により2段階目の分割溝を形成する工程を、フィルム基板の搬送方向から表した断面図。Sectional drawing which represented the process of forming the division groove of the 2nd step by irradiation of a laser beam from the conveyance direction of a film substrate. エアーの吹き付けにより切断分割して得られた有機EL素子を、フィルム基板の搬送方向から表した断面図。Sectional drawing which represented the organic EL element obtained by cutting and dividing by blowing of air from the conveyance direction of a film substrate. 熱インプリントにより1段階目の分割溝を形成する工程を、フィルム基板の搬送方向から表した断面図。Sectional drawing which represented the process of forming the division | segmentation groove | channel of the 1st step by thermal imprint from the conveyance direction of a film substrate. レーザー光の照射により2段階目の分割溝を形成する工程を、フィルム基板の搬送方向から表した断面図。Sectional drawing which represented the process of forming the division groove of the 2nd step by irradiation of a laser beam from the conveyance direction of a film substrate. エアーの吹き付けにより切断分割して得られた有機EL素子を、フィルム基板の搬送方向から表した断面図。Sectional drawing which represented the organic EL element obtained by cutting and dividing by blowing of air from the conveyance direction of a film substrate. 保護フィルムを貼り合わせる工程を、フィルム基板の搬送方向から表した断面図。Sectional drawing which represented the process of bonding a protective film from the conveyance direction of a film substrate. レーザー光の照射によりフィルム基板及び保護フィルムに分割溝を形成する工程を、フィルム基板の搬送方向から表した断面図。Sectional drawing which represented the process of forming a division groove in a film substrate and a protective film by irradiation of a laser beam from the conveyance direction of the film substrate. エアーの吹き付けにより切断分割して得られた有機EL素子を、フィルム基板の搬送方向から表した断面図。Sectional drawing which represented the organic EL element obtained by cutting and dividing by blowing of air from the conveyance direction of a film substrate.
 本発明の有機EL素子の製造方法は、同一のフィルム基板を用いて、発光層を含む有機機能層と当該有機機能層を挟持する一対の電極とを少なくとも備える有機EL素子を複数形成し、当該有機EL素子ごとに前記フィルム基板を切断分割する有機EL素子の製造方法であって、(a)前記フィルム基板上に第1ガスバリアー層を形成し、当該第1ガスバリアー層上に複数の有機EL素子の前記有機機能層及び前記一対の電極を形成する工程と、(b)各有機EL素子の境界線に沿って、前記フィルム基板において前記第1ガスバリアー層が形成された第1面の反対側の面である第2面に、分割溝を形成する工程と、(c)前記第1ガスバリアー層が形成された前記フィルム基板を、前記分割溝に沿って切断分割し、複数の有機EL素子を得る工程と、を含むことを特徴とする。
 この特徴は請求項1から請求項23までの各請求項に係る発明に共通する又は対応する技術的特徴である。
The manufacturing method of the organic EL element of the present invention uses a same film substrate to form a plurality of organic EL elements each including at least an organic functional layer including a light emitting layer and a pair of electrodes sandwiching the organic functional layer, A method of manufacturing an organic EL element, in which the film substrate is cut and divided for each organic EL element, wherein (a) a first gas barrier layer is formed on the film substrate, and a plurality of organic layers are formed on the first gas barrier layer. A step of forming the organic functional layer and the pair of electrodes of an EL element; and (b) a first surface on which the first gas barrier layer is formed on the film substrate along a boundary line of each organic EL element. A step of forming a dividing groove on the second surface which is the opposite surface; and (c) the film substrate on which the first gas barrier layer is formed is cut and divided along the dividing groove to form a plurality of organic Get EL element Characterized in that it comprises a step.
This feature is a technical feature common to or corresponding to the inventions according to claims 1 to 23.
 本発明の実施態様としては、前記(d)工程及び前記(e)工程をさらに含み、各有機EL素子の境界線に沿って、前記保護フィルムの第2面に分割溝をさらに形成し、前記(c)工程では、前記フィルム基板及び前記保護フィルムのそれぞれに形成された分割溝に沿って、前記第2ガスバリアー層が形成されたフィルム基板を切断分割することが好ましい。
 これにより、第2ガスバリアー層の損傷も少ない有機EL素子を製造することができる。
As an embodiment of the present invention, the method further includes the step (d) and the step (e), further forming a dividing groove on the second surface of the protective film along the boundary line of each organic EL element, In the step (c), it is preferable that the film substrate on which the second gas barrier layer is formed is cut and divided along the divided grooves formed on the film substrate and the protective film, respectively.
Thereby, an organic EL element with little damage to the second gas barrier layer can be manufactured.
 本発明の実施態様としては、テーパー形状の分割溝を形成することが、フィルム基板に加わる応力を分割溝に集中させ、第1及び第2ガスバリアー層の損傷を少なくすることから、好ましい。 As an embodiment of the present invention, it is preferable to form tapered dividing grooves because stress applied to the film substrate is concentrated on the dividing grooves and damage to the first and second gas barrier layers is reduced.
 また、本発明の実施態様としては、前記(a)工程では、前記フィルム基板と前記第1ガスバリアー層間に、下地層をさらに形成することが好ましい。分割溝を形成する際の緩衝材として、下地層を機能させることができる。 As an embodiment of the present invention, it is preferable that a base layer is further formed between the film substrate and the first gas barrier layer in the step (a). The underlayer can function as a buffer material when forming the dividing grooves.
 本発明の有機EL素子は、フィルム基板上に第1ガスバリアー層が形成され、当該第1ガスバリアー層上に発光層を含む有機機能層と当該有機機能層を挟持する一対の電極とを少なくとも備える有機EL素子であって、前記フィルム基板において前記第1ガスバリアー層が形成された第1面と、前記第1面の反対側の面である第2面とのうち、前記第2面の面積が前記第1面の面積より小さくなるように、前記第2面に分割溝が形成され、当該分割溝に沿って前記フィルム基板が切断分割されていることを特徴とする。 The organic EL device of the present invention includes a first gas barrier layer formed on a film substrate, and an organic functional layer including a light emitting layer on the first gas barrier layer and a pair of electrodes sandwiching the organic functional layer. An organic EL device comprising: a first surface on which the first gas barrier layer is formed on the film substrate; and a second surface that is a surface opposite to the first surface. A dividing groove is formed on the second surface so that an area is smaller than an area of the first surface, and the film substrate is cut and divided along the dividing groove.
 本発明の実施態様としては、前記フィルム基板の端部形状が、斜面状、曲面状、階段状又はこれらのうちの2以上を組み合わせた形状であることが、フィルム基板の端部の強度を向上させることができ、好ましい。 As an embodiment of the present invention, the end shape of the film substrate is a slope shape, a curved surface shape, a step shape, or a combination of two or more of these, improving the strength of the end portion of the film substrate. This is preferable.
 本発明の実施態様としては、さらに第2ガスバリアー層と保護フィルムとを備え、当該保護フィルムは、前記第2ガスバリアー層と対向する第1面と、前記第1面の反対側の面である第2面とのうち、前記第2面の面積が前記第1面の面積より小さくなるように、前記第2面に分割溝が形成され、当該分割溝に沿って前記保護フィルムが切断分割されていることが好ましい。
 これにより、第2ガスバリアー層の損傷も少ない有機EL素子を提供することができる。
As an embodiment of the present invention, it further includes a second gas barrier layer and a protective film, and the protective film includes a first surface facing the second gas barrier layer, and a surface opposite to the first surface. A split groove is formed in the second surface so that the area of the second surface is smaller than the area of the first surface, and the protective film is cut and divided along the split groove. It is preferable that
Thereby, an organic EL element with little damage to the second gas barrier layer can be provided.
 本発明の有機EL素子の製造方法、製造装置及び有機EL素子は、上述のように2段階で切断すること、すなわちフィルム基板に分割溝を形成して一部切断した後、当該分割溝に沿って完全に切断分割することを特徴としている。
 以下、本発明の製造方法、製造装置及び有機EL素子を実施するための形態又は態様について詳細を説明する。
 なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含むことを意味する。
The organic EL device manufacturing method, the manufacturing apparatus, and the organic EL device of the present invention are cut in two stages as described above, that is, after forming a dividing groove on the film substrate and partially cutting it, along the dividing groove. It is characterized by being completely cut and divided.
Hereinafter, the form or aspect for implementing the manufacturing method of this invention, a manufacturing apparatus, and an organic EL element is demonstrated in detail.
In the present application, “to” means that the numerical values described before and after are included as the lower limit value and the upper limit value.
〔有機EL素子〕
 図1及び図2は、本発明の製造方法及び製造装置によって製造される有機EL素子の一例としての有機EL素子1を示している。図1は、図2のA-A線における断面図である。
 図1及び図2に示すように、有機EL素子1は、可撓性を有するフィルム基板20と、フィルム基板20上に形成された下地層21及び第1ガスバリアー層22と、当該第1ガスバリアー層22上に形成された陽極23、取出し配線24、有機機能層25、陰極26及び第2ガスバリアー層27と、を備えて構成されている。
 また、有機EL素子1は、接着層3を介して第2ガスバリアー層27上に貼り合わされた保護フィルム4を備えている。
[Organic EL device]
FIG.1 and FIG.2 has shown the organic EL element 1 as an example of the organic EL element manufactured with the manufacturing method and manufacturing apparatus of this invention. 1 is a cross-sectional view taken along line AA in FIG.
As shown in FIGS. 1 and 2, the organic EL element 1 includes a flexible film substrate 20, a base layer 21 and a first gas barrier layer 22 formed on the film substrate 20, and the first gas. An anode 23 formed on the barrier layer 22, an extraction wiring 24, an organic functional layer 25, a cathode 26, and a second gas barrier layer 27 are provided.
In addition, the organic EL element 1 includes a protective film 4 bonded on the second gas barrier layer 27 through the adhesive layer 3.
 有機EL素子1は、図1に示すように気体又は液体を封入した中空構造ではなく、完全固体構造を有する。
 有機EL素子1において、有機機能層25中の発光層から得られた光を、陽極23側からのみ又は陰極26側からのみ取り出すこともできるし、陽極23及び陰極26の両方から取り出すこともできる。
The organic EL element 1 has a completely solid structure, not a hollow structure in which a gas or a liquid is enclosed as shown in FIG.
In the organic EL element 1, light obtained from the light emitting layer in the organic functional layer 25 can be extracted only from the anode 23 side or only from the cathode 26 side, or can be extracted from both the anode 23 and the cathode 26. .
 上記有機EL素子1は、端部補強のため、図3に示すように接着層5を介して保護枠6aが取り付けられ、モジュール化され得る。
 保護枠6aは、透明性の高い樹脂等によって成形することができ、接着層5は、接着層3と同様に構成することができる。
 発光面を大きくするため、図4に示すように、複数の有機EL素子1がプレート状の一つの保護枠6bに取り付けられてユニット化され、モジュール化される場合もある。
The organic EL element 1 can be modularized by attaching a protective frame 6a via an adhesive layer 5 as shown in FIG.
The protective frame 6 a can be formed of a highly transparent resin or the like, and the adhesive layer 5 can be configured in the same manner as the adhesive layer 3.
In order to enlarge the light emitting surface, as shown in FIG. 4, a plurality of organic EL elements 1 may be attached to one plate-like protective frame 6b to be unitized and modularized.
 モジュール化された有機EL素子1は、取出し配線24が、電源と当該電源により供給する電流量を調整するICとを備えるプリント基板、フレキシブル基板等に接続され得る。さらに、筐体、フレーム部材、固定用基板等によって、有機EL素子1は補強され、照明装置、表示装置等の発光装置として用いられ得る。 The modularized organic EL element 1 can be connected to a printed circuit board, a flexible circuit board, or the like in which the extraction wiring 24 includes a power source and an IC that adjusts the amount of current supplied by the power source. Furthermore, the organic EL element 1 is reinforced by a housing, a frame member, a fixing substrate, and the like, and can be used as a light emitting device such as a lighting device or a display device.
 有機EL素子1は、図1に示すように、フィルム基板20において第1ガスバリアー層22が形成された第1面20Aと、第1面20Aの反対側の面である第2面20Bのうち、第2面20Bの面積が第1面20Aの面積より小さくなるように、第2面20Bに分割溝が形成され、当該分割溝に沿ってフィルム基板20が切断分割されている。そのため、フィルム基板20の端部は、第1面20Aに対して傾斜角度θで傾斜している。 As shown in FIG. 1, the organic EL element 1 includes a first surface 20A on the film substrate 20 on which the first gas barrier layer 22 is formed, and a second surface 20B that is a surface opposite to the first surface 20A. The dividing groove is formed in the second surface 20B so that the area of the second surface 20B is smaller than the area of the first surface 20A, and the film substrate 20 is cut and divided along the dividing groove. Therefore, the end of the film substrate 20 is inclined at an inclination angle θ with respect to the first surface 20A.
 このように切断分割された有機EL素子1は、第1ガスバリアー層22及び第2ガスバリアー層27の損傷が少なく、高温高湿環境下においても発光性能の劣化が少ない。損傷が少ないので、損傷を考慮して有機EL素子1端部の非発光部分を広く設ける必要がなく、非発光部分の縮小が可能である。 The organic EL element 1 cut and divided in this manner has little damage to the first gas barrier layer 22 and the second gas barrier layer 27, and has little deterioration in light emitting performance even in a high temperature and high humidity environment. Since the damage is small, it is not necessary to provide a wide non-light emitting portion at the end of the organic EL element 1 in consideration of the damage, and the non-light emitting portion can be reduced.
 第2面20Bの面積が第1面20Aよりも小さくなるように、フィルム基板20の端部が傾斜しているのであれば、フィルム基板20の端部形状は、斜面状、曲面状、階段状又はこれらのうちの2以上を組み合わせた形状であることができる。
 これらの形状であれば、フィルム基板20の端部の強度を向上させることができ、曲げに対する有機EL素子1の耐久性が向上する。また、有機EL素子1のフィルム基板20がこのような端部形状を有することにより、保護枠6aへの取り付けが容易となる。
If the end of the film substrate 20 is inclined so that the area of the second surface 20B is smaller than that of the first surface 20A, the end shape of the film substrate 20 is inclined, curved, or stepped. Or it can be the shape which combined 2 or more of these.
If it is these shapes, the intensity | strength of the edge part of the film substrate 20 can be improved, and the durability of the organic EL element 1 with respect to a bending will improve. Moreover, when the film substrate 20 of the organic EL element 1 has such an end shape, attachment to the protective frame 6a is facilitated.
 図5A~図5Gは、フィルム基板20の端部形状の例を示している。
 図5Aは、単純な斜面状の端部の例を示しているが、図5B及び図5Cに示すように、フィルム基板20の端部形状は、傾斜角度が異なる二つの斜面を組み合わせた形状であることもできる。図5Dは、傾斜角度が異なる3以上の斜面を組み合わせて、全体として曲面状に形成された端部形状の例を示している。
 図5Eは、階段状の端部形状の例を示している。
 図5F及び図5Gは、階段状と斜面状を組み合わせた端部形状の例を示している。
 なお、図5D及び図5Eに示すように、フィルム基板20の端部形状が階段状又は曲面状である場合、第1面20A及び第2面20Bにおけるフィルム基板20の端部を結ぶ線と、第1面20Aとがなす角度を、傾斜角度θとする。
5A to 5G show examples of the end shape of the film substrate 20.
FIG. 5A shows an example of a simple slope-shaped end, but as shown in FIGS. 5B and 5C, the end shape of the film substrate 20 is a combination of two slopes with different tilt angles. There can also be. FIG. 5D shows an example of an end shape formed as a curved surface as a whole by combining three or more inclined surfaces having different inclination angles.
FIG. 5E shows an example of a stepped end shape.
FIG. 5F and FIG. 5G show examples of end shapes combining a step shape and a slope shape.
As shown in FIGS. 5D and 5E, when the end shape of the film substrate 20 is stepped or curved, a line connecting the ends of the film substrate 20 on the first surface 20A and the second surface 20B, An angle formed by the first surface 20A is an inclination angle θ.
 有機EL素子1は、保護フィルム4において第2ガスバリアー層27と対向する第1面4Aと、当該第1面4Aの反対側の面である第2面4Bとのうち、第2面4Bの面積が第1面4Aの面積よりも小さくなるように、第2面4Bに分割溝が形成され、当該分割溝にそって保護フィルム4が切断されて、保護フィルム4の端部が傾斜していることが好ましい。
 これにより、より切断分割が容易となり、第1ガスバリアー層22及び第2ガスバリアー層27の損傷がより少ない有機EL素子1が得られる。
The organic EL element 1 includes a first surface 4A that faces the second gas barrier layer 27 in the protective film 4 and a second surface 4B that is a surface opposite to the first surface 4A. A dividing groove is formed in the second surface 4B so that the area is smaller than the area of the first surface 4A, the protective film 4 is cut along the dividing groove, and the end of the protective film 4 is inclined. Preferably it is.
As a result, it is easier to cut and divide the organic EL element 1 with less damage to the first gas barrier layer 22 and the second gas barrier layer 27.
 図6は、保護フィルム4の第2面4Bの面積が第1面4Aよりも小さくなるように、切断分割された有機EL素子2の断面構成を示している。保護フィルム4の端部形状は、これに限らず、図5A~図5Gに例示されたフィルム基板20と同様の端部形状であり得る。
 保護フィルム4がこのような端部形状を有することにより、保護フィルム4の端部の強度を向上させることができ、曲げに対する有機EL素子1の耐久性が向上する。
FIG. 6 shows a cross-sectional configuration of the organic EL element 2 that is cut and divided so that the area of the second surface 4B of the protective film 4 is smaller than that of the first surface 4A. The end shape of the protective film 4 is not limited to this, and may be the same end shape as the film substrate 20 illustrated in FIGS. 5A to 5G.
When the protective film 4 has such an end shape, the strength of the end of the protective film 4 can be improved, and the durability of the organic EL element 1 against bending is improved.
 以下、有機EL素子1の各層について詳細に説明する。 Hereinafter, each layer of the organic EL element 1 will be described in detail.
〔フィルム基板〕
 フィルム基板20は、フィルム状に成形された可撓性を有する基板である。フィルム基板20を用いることにより、可撓性を有する有機EL素子1が得られる。
[Film substrate]
The film substrate 20 is a flexible substrate formed into a film shape. By using the film substrate 20, the organic EL element 1 having flexibility is obtained.
 フィルム基板20としては、例えば薄膜セラミック、樹脂フィルム、ガラス繊維又は炭素繊維を含む樹脂フィルム、SUS(Steel Use Stainless)、インバー等のNi-Feの合金、アルミニウム、チタン等の金属フィルム等を用いることができる。なかでも、軽量化、耐衝撃性の向上及び低コスト化の観点から、樹脂フィルムが好ましく、フィルム基板20側からの光の取出しを考慮すると、透明性が高い樹脂フィルムがより好ましい。 As the film substrate 20, for example, a thin film ceramic, a resin film, a resin film containing glass fiber or carbon fiber, SUS (Steel Use Stainless), a Ni—Fe alloy such as Invar, a metal film such as aluminum or titanium, or the like is used. Can do. Among these, a resin film is preferable from the viewpoint of weight reduction, impact resistance improvement, and cost reduction, and a resin film with high transparency is more preferable in consideration of light extraction from the film substrate 20 side.
 透明性が高い樹脂フィルムの材料としては、例えばポリエチレン、ポリプロピレン、環状オレフィン共重合体(COP)等のポリオレフィン、ポリアミド、ポリイミド、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、セロファン、セルロースジアセテート、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、トリアセチルセルロース(TAC)、セルロースナイトレート等のセルロースエステル類、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール共重合体(EVOH)、シンジオタクティックポリスチレン、ポリカーボネイト、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、フッ素樹脂、ポリメチルメタクリレート(PMMA)等のアクリル樹脂、ポリアリレート類等とそれらの誘導体が挙げられる。市販品としては、例えばアートン(登録商標:JSR社製)、アペル(登録商標:三井化学社製)等のシクロオレフィン系樹脂を用いることができる。 Examples of highly transparent resin film materials include polyolefins such as polyethylene, polypropylene, and cyclic olefin copolymer (COP), polyamides, polyimides, polyethylene terephthalate (PET), polyesters such as polyethylene naphthalate (PEN), cellophane, Cellulose esters such as cellulose diacetate, cellulose acetate butyrate, cellulose acetate propionate (CAP), triacetyl cellulose (TAC), cellulose nitrate, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol copolymer (EVOH) , Syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyetherketone, polyimide, polyether Sulfone (PES), polyphenylene sulfide, polysulfones, polyetherimides, polyether ketone imide, fluorocarbon resins, polymethyl methacrylate (PMMA) acrylic resins, polyarylate, and the like and derivatives thereof. As commercially available products, for example, cycloolefin-based resins such as Arton (registered trademark: manufactured by JSR) and Apel (registered trademark: manufactured by Mitsui Chemicals) can be used.
 フィルム基板20の厚さは、ロール体として供給する場合の取扱い性を高める観点から、30~300μmの範囲内であることが好ましい。 The thickness of the film substrate 20 is preferably in the range of 30 to 300 μm from the viewpoint of improving the handleability when supplied as a roll body.
〔下地層〕
 下地層21は、フィルム基板20に形成される分割溝が第1ガスバリアー層22を損傷させないように、緩衝材として、フィルム基板20と第1ガスバリアー層22間に形成され得る。
 また、下地層21により、フィルム基板20の表面を平坦化し、表面硬度を向上させるとともに、フィルム基板20と第1ガスバリアー層22との密着性を向上させることもできる。
[Underlayer]
The underlayer 21 can be formed between the film substrate 20 and the first gas barrier layer 22 as a buffer so that the dividing grooves formed in the film substrate 20 do not damage the first gas barrier layer 22.
In addition, the base layer 21 can flatten the surface of the film substrate 20 to improve the surface hardness and improve the adhesion between the film substrate 20 and the first gas barrier layer 22.
 下地層21は、緩衝材としての機能を向上させるため、フィルム基板20よりも硬度が大きいことが好ましい。
 これにより、意図せず分割溝が深く形成されてしまった場合にも、第1ガスバリアー層22への分割溝の形成を下地層21が抑制することができる。また、有機EL素子1の曲げに対する耐久性も向上する。
The underlayer 21 preferably has a higher hardness than the film substrate 20 in order to improve the function as a buffer material.
Thereby, even when the dividing groove is formed deeply without intention, the underlayer 21 can suppress the formation of the dividing groove in the first gas barrier layer 22. Moreover, the durability with respect to the bending of the organic EL element 1 is also improved.
 下地層21は、フィルム基板20よりも硬度を大きくする観点から、例えば硬化性のアクリル樹脂、エポキシ樹脂、ウレタン樹脂等の透明なバインダー樹脂を、主な材料として含有することができる。 The base layer 21 can contain, as a main material, a transparent binder resin such as a curable acrylic resin, an epoxy resin, or a urethane resin from the viewpoint of making the hardness higher than that of the film substrate 20.
 下地層21は、フィルム基板20からの入射光を散乱させる観点から、酸化ケイ素等の無機化合物粒子を、添加剤として含有することが好ましい。なかでも、上記バインダー樹脂と屈折率が異なる無機化合物粒子であれば、効果的に光散乱させることができ、好ましい。
 無機化合物粒子の含有する下地層21は、分割溝の形成時に照射され、フィルム基板20を透過したレーザー光を散乱かつ減衰させることができる。下地層21によりレーザー光のエネルギーが弱められ、第1ガスバリアー層22がレーザー光によって損傷することを防ぐことができる。また、無機化合物粒子の含有によって下地層21の硬度をより大きくすることができ、緩衝材としての機能が向上する。
The underlayer 21 preferably contains inorganic compound particles such as silicon oxide as an additive from the viewpoint of scattering incident light from the film substrate 20. Among these, inorganic compound particles having a refractive index different from that of the binder resin are preferable because light can be effectively scattered.
The underlayer 21 containing the inorganic compound particles can scatter and attenuate the laser light that is irradiated when the dividing grooves are formed and transmitted through the film substrate 20. The energy of the laser beam is weakened by the underlayer 21, and the first gas barrier layer 22 can be prevented from being damaged by the laser beam. Moreover, the hardness of the foundation | substrate layer 21 can be enlarged more by containing inorganic compound particle | grains, and the function as a buffering material improves.
 下地層21は、第1ガスバリアー層22との密着性を向上させる観点から、例えばエポキシシラン、アミノシラン等のシランカップリング剤、上記無機化合物粒子等を、添加剤として含有することもできる。下地層21の表面硬度及び耐熱性を向上させ、第1ガスバリアー層22の形成時に欠陥が生じることを防止する観点からは、特に無機化合物粒子が好ましい。 From the viewpoint of improving the adhesion with the first gas barrier layer 22, the underlayer 21 can also contain, for example, a silane coupling agent such as epoxy silane or aminosilane, the inorganic compound particles, and the like as additives. From the viewpoint of improving the surface hardness and heat resistance of the underlayer 21 and preventing the occurrence of defects during the formation of the first gas barrier layer 22, inorganic compound particles are particularly preferable.
 上述した無機化合物粒子の粒径は、下地層21の表面上で無機化合物粒子が突起として現れないように、直径10μm以下であることが好ましい。
 また、フィルム基板20側から光を取り出す場合、透明性を考慮して、粒径が10~1000nmの範囲内にあるナノサイズの無機化合物粒子を用いることが好ましい。
The particle diameter of the inorganic compound particles described above is preferably 10 μm or less so that the inorganic compound particles do not appear as protrusions on the surface of the base layer 21.
In addition, when light is extracted from the film substrate 20 side, it is preferable to use nano-sized inorganic compound particles having a particle size in the range of 10 to 1000 nm in consideration of transparency.
 下地層21の厚さは、任意に設定できるが、0.1~10.0μmの範囲内であることが好ましい。 The thickness of the underlayer 21 can be arbitrarily set, but is preferably in the range of 0.1 to 10.0 μm.
〔第1ガスバリアー層〕
 第1ガスバリアー層22は、フィルム基板20を介して、陽極23、有機機能層25及び陰極26に浸入する大気中の水、酸素等のガスを遮蔽するため、フィルム基板20の第1面20A上を全面的に被覆するように形成されている。
[First gas barrier layer]
The first gas barrier layer 22 shields gases such as water and oxygen in the atmosphere that enter the anode 23, the organic functional layer 25, and the cathode 26 through the film substrate 20, and therefore the first surface 20 </ b> A of the film substrate 20. It is formed so as to cover the entire surface.
 第1ガスバリアー層22は、水蒸気透過度(環境条件:25±0.5℃、相対湿度(90±2)%RH)が約0.01g/[m・day・atm]以下であり、酸素透過度が約0.01cm/[m・day・atm]以下であるガスバリアー性を有することが好ましく、水蒸気透過度が約0.0001g/[m・day・atm]以下であり、かつ酸素透過度が0.0001cm/[m・day・atm]以下であるハイガスバリアー性を有することがより好ましい。ハイガスバリアー性を得る観点から、第1ガスバリアー層22はガスバリアー性を有する複数の層が積層された多層構造であることが好ましい。
 なお、上記「水蒸気透過度」は、JIS(日本工業規格)-K7129(1992年)に準拠した赤外センサー法により測定された値であり、「酸素透過度」は、JIS-K7126(1987年)に準拠したクーロメトリック法により測定された値である。
The first gas barrier layer 22 has a water vapor permeability (environmental condition: 25 ± 0.5 ° C., relative humidity (90 ± 2)% RH) of about 0.01 g / [m 2 · day · atm] or less, It preferably has a gas barrier property with an oxygen permeability of about 0.01 cm 3 / [m 2 · day · atm] or less, and a water vapor permeability of about 0.0001 g / [m 2 · day · atm] or less. It is more preferable to have a high gas barrier property in which oxygen permeability is 0.0001 cm 3 / [m 2 · day · atm] or less. From the viewpoint of obtaining high gas barrier properties, the first gas barrier layer 22 preferably has a multilayer structure in which a plurality of layers having gas barrier properties are laminated.
The above-mentioned “water vapor permeability” is a value measured by an infrared sensor method in accordance with JIS (Japanese Industrial Standard) -K7129 (1992), and “oxygen permeability” is JIS-K7126 (1987). ) Measured by a coulometric method in accordance with
 第1ガスバリアー層22は、フィルム基板20として金属フィルムが使用されている場合、フィルム基板20と陽極23、取出し配線24及び陰極26とを電気的に絶縁する絶縁層であることが好ましい。
 第1ガスバリアー層22は、絶縁層としても機能する観点から、電気抵抗率が1×1012Ω・cm以上の絶縁性を有することが好ましい。
When a metal film is used as the film substrate 20, the first gas barrier layer 22 is preferably an insulating layer that electrically insulates the film substrate 20 from the anode 23, the extraction wiring 24, and the cathode 26.
The first gas barrier layer 22 preferably has an insulating property with an electrical resistivity of 1 × 10 12 Ω · cm or more from the viewpoint of functioning also as an insulating layer.
 また、第1ガスバリアー層22は、フィルム基板20側から光を取り出す場合、光線透過率が可視光領域で約80%以上である透明性を有することが好ましい。 The first gas barrier layer 22 preferably has a transparency with a light transmittance of about 80% or more in the visible light region when extracting light from the film substrate 20 side.
 上述したようなガスバリアー性、絶縁性及び透明性を有する第1ガスバリアー層22は、主な材料として、例えば酸化ケイ素、窒化ケイ素、酸窒化ケイ素、炭化ケイ素、酸炭化ケイ素等のケイ素化合物、酸化アルミニウム、窒化アルミニウム、酸化チタン、酸化ジルコニウム、酸化ニオブ、酸化モリブデン等の無機化合物を含有することができる。なかでも、ケイ素化合物はガスバリアー性、透明性及び切断分割時の割断性に優れ、フィルム基板20側又は保護フィルム4側のいずれからでも光の取出しが可能となり、発光効率が向上するため、好ましい。 The first gas barrier layer 22 having gas barrier properties, insulating properties, and transparency as described above is mainly composed of silicon compounds such as silicon oxide, silicon nitride, silicon oxynitride, silicon carbide, silicon oxycarbide, Inorganic compounds such as aluminum oxide, aluminum nitride, titanium oxide, zirconium oxide, niobium oxide, and molybdenum oxide can be contained. Among these, a silicon compound is preferable because it is excellent in gas barrier properties, transparency, and cleaving at the time of cutting and dividing, and light can be taken out from either the film substrate 20 side or the protective film 4 side, and luminous efficiency is improved. .
 第1ガスバリアー層22は、上述したような無機化合物を主に含有するのであれば、無機化合物と有機化合物の複合材料からなる層又は無機化合物の層に有機化合物の層を積層したハイブリッド層であることができる。第1ガスバリアー層22の脆弱性を改良する観点からは、無機化合物と有機化合物の複合材料からなる層又はハイブリッド層であることが好ましい。
 ハイブリッド層における無機化合物及び有機化合物の各層の積層順序は任意であり、各層が交互に繰り返し積層されていてもよい。各層を繰り返し積層する場合、第1ガスバリアー層22の陽極23等が形成される側の最表面は無機化合物の層とすることが、絶縁性及びガスバリアー性を高め、第2ガスバリアー層27と接して有機機能層25等を封止する観点から好ましい。
The first gas barrier layer 22 is a hybrid layer in which an organic compound layer is laminated on a layer made of a composite material of an inorganic compound and an organic compound or an inorganic compound layer if it mainly contains the inorganic compound as described above. Can be. From the viewpoint of improving the brittleness of the first gas barrier layer 22, a layer or a hybrid layer made of a composite material of an inorganic compound and an organic compound is preferable.
The order of lamination of the inorganic compound and organic compound layers in the hybrid layer is arbitrary, and the layers may be alternately and repeatedly laminated. When each layer is repeatedly laminated, the outermost surface of the first gas barrier layer 22 on the side where the anode 23 and the like are formed is made of an inorganic compound layer, so that the insulation and gas barrier properties are improved, and the second gas barrier layer 27 In view of sealing the organic functional layer 25 and the like.
 第1ガスバリアー層22の厚さは、上記ガスバリアー性、絶縁性及び透明性を示すのであれば、任意に設定できる。有機EL素子1の可撓性を考慮すると、第1ガスバリアー層22の厚さは、50~1000nmの範囲内であることが好ましい。 The thickness of the first gas barrier layer 22 can be arbitrarily set as long as it exhibits the gas barrier properties, insulating properties, and transparency. Considering the flexibility of the organic EL element 1, the thickness of the first gas barrier layer 22 is preferably in the range of 50 to 1000 nm.
〔電極〕
 陽極23及び陰極26は、有機機能層25を挟持するようにして形成される一対の電極層である。
 図1は、陽極23上に有機機能層25が積層され、当該有機機能層25上に陰極26が積層された例を示しているが、陽極23及び陰極26の積層順はこれに限定されず、逆の場合もある。
〔electrode〕
The anode 23 and the cathode 26 are a pair of electrode layers formed so as to sandwich the organic functional layer 25.
FIG. 1 shows an example in which the organic functional layer 25 is laminated on the anode 23 and the cathode 26 is laminated on the organic functional layer 25, but the order of lamination of the anode 23 and the cathode 26 is not limited to this. The reverse is also true.
 陽極23は、発光層に正孔を供給(注入)する電極層である。
 陽極23は、第1ガスバリアー層22上に所定のパターン形状で形成され、一つ以上の取出し配線24と接続されている。
The anode 23 is an electrode layer that supplies (injects) holes to the light emitting layer.
The anode 23 is formed in a predetermined pattern shape on the first gas barrier layer 22 and is connected to one or more extraction wirings 24.
 陽極23は、仕事関数が4eV以上と大きい材料、例えば金属、合金、導電性化合物、これらの混合物等の電極材料を用いて形成することができる。 The anode 23 can be formed using a material having a large work function of 4 eV or more, for example, an electrode material such as a metal, an alloy, a conductive compound, or a mixture thereof.
 陽極23は、有機EL素子1において陽極23側から光を取り出す場合、光線透過率が可視光領域で約50%以上の透明性を有し、シート抵抗率(表面抵抗率)が300Ω/□以下であることが好ましい。
 陽極23側から光を取り出す場合、例えば金、銀、アルミニウム等の金属、ITO(インジウムスズ酸化物)、酸化スズ(SnO)、酸化亜鉛(ZnO)、ガリウム亜鉛酸化物(GZO)、インジウムガリウム亜鉛酸化物(IGZO)等の透明性を有する金属酸化物等が、陽極23の電極材料として用いられ得る。
When taking out light from the anode 23 side in the organic EL element 1, the anode 23 has a light transmittance of about 50% or more in the visible light region, and has a sheet resistivity (surface resistivity) of 300Ω / □ or less. It is preferable that
When extracting light from the anode 23 side, for example, metals such as gold, silver, and aluminum, ITO (indium tin oxide), tin oxide (SnO 2 ), zinc oxide (ZnO), gallium zinc oxide (GZO), indium gallium A transparent metal oxide such as zinc oxide (IGZO) can be used as the electrode material of the anode 23.
 一方、有機EL素子1において、陽極23側から光を取り出さない場合であっても、上述した陽極23側から光を取り出す場合と同様に、陽極23を構成することができる。この場合、光の取出し効率を向上させるため、高反射率層が適宜追加されていてもよい。 On the other hand, in the organic EL element 1, even when light is not extracted from the anode 23 side, the anode 23 can be configured similarly to the case where light is extracted from the anode 23 side described above. In this case, in order to improve the light extraction efficiency, a high reflectance layer may be added as appropriate.
 陽極23は、多層構造であってもよい。例えば、陽極23は、下地層に、平坦化層、密着層、光の取出し効率を向上させる高屈折率層及び光散乱層が積層された後、上述した電極材料の層が積層された構造であることができる。 The anode 23 may have a multilayer structure. For example, the anode 23 has a structure in which a flattening layer, an adhesion layer, a high refractive index layer that improves light extraction efficiency, and a light scattering layer are stacked on a base layer, and then the electrode material layer described above is stacked. Can be.
 陽極23の厚さは、陽極23の層構造、電極材料の電気抵抗率又は光線透過率に応じて適宜設定できるが、好ましくは10~500nmの範囲内である。 The thickness of the anode 23 can be appropriately set according to the layer structure of the anode 23, the electrical resistivity or the light transmittance of the electrode material, and is preferably in the range of 10 to 500 nm.
 陰極26は、発光層に電子を供給(注入)する電極層である。
 陰極26は、通常、仕事関数が4eV以下と小さい電極材料により形成され得る。そのような電極材料としては、例えば金属(電子注入性金属)、合金、導電性化合物、これらの混合物等が挙げられる。
The cathode 26 is an electrode layer that supplies (injects) electrons to the light emitting layer.
The cathode 26 can be generally formed of an electrode material having a work function as small as 4 eV or less. Examples of such electrode materials include metals (electron-injecting metals), alloys, conductive compounds, and mixtures thereof.
 有機EL素子1において陰極26側から光を取り出さない場合、具体的な陰極26の電極材料としては、例えばアルミニウム、ナトリウム、リチウム、インジウム、マグネシウム、希土類等の金属、ナトリウム-カリウム合金、マグネシウム-銀合金、マグネシウム-銅合金、マグネシウム-銀合金、マグネシウム-アルミニウム合金、マグネシウム-インジウム合金、リチウム-アルミニウム合金等の合金、ITO(インジウムスズ酸化物)、酸化スズ(SnO)、酸化亜鉛(ZnO)、ガリウム亜鉛酸化物(GZO)、インジウムガリウム亜鉛酸化物(IGZO)、アルミニウム酸化物等の金属酸化物等の導電性化合物が挙げられる。 In the case where light is not extracted from the cathode 26 side in the organic EL element 1, specific electrode materials for the cathode 26 include, for example, metals such as aluminum, sodium, lithium, indium, magnesium, rare earth, sodium-potassium alloy, magnesium-silver Alloys, magnesium-copper alloys, magnesium-silver alloys, magnesium-aluminum alloys, magnesium-indium alloys, lithium-aluminum alloys, ITO (indium tin oxide), tin oxide (SnO 2 ), zinc oxide (ZnO) And conductive compounds such as metal oxides such as gallium zinc oxide (GZO), indium gallium zinc oxide (IGZO), and aluminum oxide.
 陰極26側から光を取り出す場合、陰極26の材料として、上記材料のなかでも透明性の高い金属酸化物を用いるか、上記材料を用いて厚さが5~50nmの範囲内である薄膜の陰極26を形成することが好ましい。 When light is extracted from the cathode 26 side, a highly transparent metal oxide is used as the material of the cathode 26, or a thin film cathode having a thickness in the range of 5 to 50 nm using the material. 26 is preferably formed.
 陰極26は、多層構造であることができる。陰極26の多層構造としては、高い透明性と目的の電気抵抗率を両立させる観点から、例えばマグネシウム層とアルミニウム層の積層構造、マグネシウム-銀合金層と銀層の積層構造、銀層とアルミニウム層の積層構造等が挙げられる。
 陰極26の厚さは、陰極26の層構成、電極材料の電気抵抗率及び光線透過率によって適宜設定することができるが、好ましくは10~500nmの範囲内である。
 陰極26側から光を取り出す場合、陰極26の厚さが5~50nmの範囲内であると、陰極26を薄膜化することができ、好ましい。
The cathode 26 can have a multilayer structure. The multilayer structure of the cathode 26 includes, for example, a laminated structure of a magnesium layer and an aluminum layer, a laminated structure of a magnesium-silver alloy layer and a silver layer, a silver layer and an aluminum layer, from the viewpoint of achieving both high transparency and a desired electrical resistivity. And the like.
The thickness of the cathode 26 can be appropriately set depending on the layer configuration of the cathode 26, the electrical resistivity and the light transmittance of the electrode material, and is preferably in the range of 10 to 500 nm.
When light is extracted from the cathode 26 side, it is preferable that the thickness of the cathode 26 be in the range of 5 to 50 nm because the cathode 26 can be thinned.
〔取出し配線〕
 取出し配線24は、陽極23及び陰極26のそれぞれを外部電源に電気的に接続する。
 取出し配線24の材料は特に限定されず、公知の材料を好適に使用できる。例えば、3層構造からなるMAM電極(Mo/Al・Nd合金/Mo)等の金属膜を用いることができる。
 取出し配線24は、第1ガスバリアー層22上に最初に形成されてもよいが、陽極23より後に形成されてもよく、形成順は適宜変更が可能である。
[Extraction wiring]
The extraction wiring 24 electrically connects each of the anode 23 and the cathode 26 to an external power source.
The material of the extraction wiring 24 is not particularly limited, and a known material can be suitably used. For example, a metal film such as a MAM electrode (Mo / Al · Nd alloy / Mo) having a three-layer structure can be used.
The extraction wiring 24 may be formed first on the first gas barrier layer 22, but may be formed after the anode 23, and the order of formation can be changed as appropriate.
 有機EL素子1を3色で発光させる調色発光時、有機機能層25は発光色が異なる三つの発光層を有し、発光層ごとに陰極26が設けられる。この場合、四つの取出し配線24を、図2に例示するように配置することができる。
 これに対し、有機EL素子1を1色で発光させる単色発光時、有機機能層25は一つの発光層を有し、当該発光層に対して一つの陰極26が設けられる。この場合、二つの取出し配線24を、図7に例示するように配置することができる。
When the organic EL element 1 emits light in three colors, the organic functional layer 25 has three light emitting layers having different light emission colors, and a cathode 26 is provided for each light emitting layer. In this case, the four extraction wirings 24 can be arranged as illustrated in FIG.
On the other hand, at the time of monochromatic light emission in which the organic EL element 1 emits light in one color, the organic functional layer 25 has one light emitting layer, and one cathode 26 is provided for the light emitting layer. In this case, the two extraction wirings 24 can be arranged as illustrated in FIG.
〔有機機能層〕
 有機機能層25は、少なくとも発光層を含む複数の有機層を有している。発光層以外の有機層としては、例えば正孔注入層、正孔輸送層、阻止層、電子輸送層、電子注入層等が挙げられ、これらは必要に応じて設けられる。以下、各有機層について説明する。
[Organic functional layer]
The organic functional layer 25 has a plurality of organic layers including at least a light emitting layer. Examples of the organic layer other than the light emitting layer include a hole injection layer, a hole transport layer, a blocking layer, an electron transport layer, an electron injection layer, and the like, and these are provided as necessary. Hereinafter, each organic layer will be described.
(1)正孔注入層
 正孔注入層は、陽極バッファー層とも呼ばれ、有機EL素子1の駆動電圧の低下及び発光輝度の向上を目的として、陽極23と発光層間又は陽極23と正孔輸送層間に設けられ得る。
 正孔注入層の材料としては、例えば銅フタロシアニン等の特開2000-160328号公報等に記載の公知の材料を用いることができる。
(1) Hole Injecting Layer The hole injecting layer is also called an anode buffer layer, and for the purpose of lowering the driving voltage of the organic EL element 1 and improving the light emission brightness, the anode 23 and the light emitting layer or the anode 23 and the hole transport. It can be provided between layers.
As a material for the hole injection layer, for example, a known material described in JP-A No. 2000-160328 such as copper phthalocyanine can be used.
(2)正孔輸送層
 正孔輸送層は、陽極23から供給された正孔を発光層に輸送(注入)する層である。また、正孔輸送層は、陰極26側からの電子の流入を阻止する障壁としても作用する。そのため、正孔輸送層は、正孔注入層、電子阻止層又はその両方として機能させるために形成されることもある。
(2) Hole Transport Layer The hole transport layer is a layer that transports (injects) holes supplied from the anode 23 to the light emitting layer. The hole transport layer also acts as a barrier that prevents the inflow of electrons from the cathode 26 side. Therefore, the hole transport layer may be formed to function as a hole injection layer, an electron blocking layer, or both.
 正孔輸送層としては、正孔を輸送する作用及び電子の流入を阻止する作用を発現できれば、有機化合物又は無機化合物のいずれも材料として用いることができる。
 正孔輸送層の材料としては、例えばトリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、導電性高分子オリゴマー(特に、チオフェンオリゴマー)等を用いることができる。
 正孔輸送層の材料として、ポルフィリン化合物、芳香族第3級アミン化合物等も用いることができ、特に芳香族第3級アミン化合物を用いることが好ましい。
As the hole transport layer, any of an organic compound and an inorganic compound can be used as a material as long as the function of transporting holes and the function of blocking the inflow of electrons can be exhibited.
Examples of the material for the hole transport layer include triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene. Derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aniline copolymers, conductive polymer oligomers (particularly thiophene oligomers) and the like can be used.
As a material for the hole transport layer, a porphyrin compound, an aromatic tertiary amine compound, or the like can be used, and an aromatic tertiary amine compound is particularly preferable.
 芳香族第3級アミン化合物としては、N,N,N′,N′-テトラフェニル-4,4′-ジアミノフェニル、N,N′-ジフェニル-N,N′-ビス(3-メチルフェニル)-〔1,1′-ビフェニル〕-4,4′-ジアミン(TPD)、2,2-ビス(4-ジ-p-トリルアミノフェニル)プロパン、1,1-ビス(4-ジ-p-トリルアミノフェニル)シクロヘキサン、N,N,N′,N′-テトラ-p-トリル-4,4′-ジアミノビフェニル、1,1-ビス(4-ジ-p-トリルアミノフェニル)-4-フェニルシクロヘキサン、ビス(4-ジメチルアミノ-2-メチルフェニル)フェニルメタン、ビス(4-ジ-p-トリルアミノフェニル)フェニルメタン、N,N′-ジフェニル-N,N′-ジ(4-メトキシフェニル)-4,4′-ジアミノビフェニル、N,N,N′,N′-テトラフェニル-4,4′-ジアミノジフェニルエーテル、4,4′-ビス(ジフェニルアミノ)クオードリフェニル、N,N,N-トリ(p-トリル)アミン等が挙げられる。 Aromatic tertiary amine compounds include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl, N, N′-diphenyl-N, N′-bis (3-methylphenyl) -[1,1'-biphenyl] -4,4'-diamine (TPD), 2,2-bis (4-di-p-tolylaminophenyl) propane, 1,1-bis (4-di-p- Tolylaminophenyl) cyclohexane, N, N, N ′, N′-tetra-p-tolyl-4,4′-diaminobiphenyl, 1,1-bis (4-di-p-tolylaminophenyl) -4-phenyl Cyclohexane, bis (4-dimethylamino-2-methylphenyl) phenylmethane, bis (4-di-p-tolylaminophenyl) phenylmethane, N, N'-diphenyl-N, N'-di (4-methoxyphenyl) ) -4 4'-diaminobiphenyl, N, N, N ', N'-tetraphenyl-4,4'-diaminodiphenyl ether, 4,4'-bis (diphenylamino) quadriphenyl, N, N, N-tri (p -Tolyl) amine and the like.
 また、芳香族第3級アミン化合物としては、4-(ジ-p-トリルアミノ)-4′-〔4-(ジ-p-トリルアミノ)スチリル〕スチルベン、4-N,N-ジフェニルアミノ-(2-ジフェニルビニル)ベンゼン、3-メトキシ-4′-N,N-ジフェニルアミノスチルベンゼン等のスチリルアミン化合物が挙げられる。
 さらに、芳香族第3級アミン化合物として、米国特許第5061569号明細書に記載されているような2個の縮合芳香族環を分子内に有するもの、例えば4,4′-ビス〔N-(1-ナフチル)-N-フェニルアミノ〕ビフェニル(略称:NPD)、特開平4-308688号公報に記載されているようなトリフェニルアミンユニットが三つ、スターバースト型に連結された4,4′,4″-トリス〔N-(3-メチルフェニル)-N-フェニルアミノ〕トリフェニルアミン(MTDATA)等が挙げられる。
Examples of the aromatic tertiary amine compound include 4- (di-p-tolylamino) -4 ′-[4- (di-p-tolylamino) styryl] stilbene, 4-N, N-diphenylamino- (2 And styrylamine compounds such as -diphenylvinyl) benzene and 3-methoxy-4'-N, N-diphenylaminostilbenzene.
Further, as aromatic tertiary amine compounds, those having two condensed aromatic rings in the molecule as described in US Pat. No. 5,061,569, for example, 4,4′-bis [N— ( 1-naphthyl) -N-phenylamino] biphenyl (abbreviation: NPD), 4,4 ′ in which three triphenylamine units as described in JP-A-4-308688 are linked in a starburst type , 4 ″ -tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine (MTDATA) and the like.
 正孔輸送層の他の材料としては、上述した正孔輸送層の各種材料を、高分子鎖に導入した高分子材料又は高分子の主鎖として用いた高分子材料等が挙げられる。
 また、p型-Si、p型-SiC等の無機化合物も、正孔輸送層の材料として使用することができる。
Examples of other materials for the hole transport layer include a polymer material obtained by introducing the above-described various materials for the hole transport layer into a polymer chain, or a polymer material using the polymer as a main chain.
In addition, inorganic compounds such as p-type-Si and p-type-SiC can also be used as the material for the hole transport layer.
 正孔輸送層の他の材料として、特開平11-251067号公報、J.Huang et.al.著文献(Applied Physics Letters 80(2002),p.139)等に記載された、いわゆるp型正孔輸送材料を用いることもできる。p型正孔輸送材料を用いた場合、より発光効率が高い有機EL素子1を得ることができる。 As other materials for the hole transport layer, a so-called p-type positive layer described in JP-A-11-251067, J. Huang et al. (Applied Physics Letters 80 (2002), p. 139), etc. A hole transport material can also be used. When a p-type hole transport material is used, the organic EL element 1 with higher luminous efficiency can be obtained.
 正孔輸送層は、不純物のドープにより、p性が高い、正孔リッチな正孔輸送層とすることができる。そのような正孔輸送層は、例えば特開平4-297076号公報、特開2000-196140号公報、特開2001-102175号公報、J.Appl.Phys.,95,5773(2004)等に記載されている。正孔リッチな正孔輸送層を用いた場合、より低消費電力の有機EL素子1を得ることができる。 The hole transport layer can be a hole transport layer having a high p property and a rich hole by doping with impurities. Such hole transport layers are described in, for example, JP-A-4-297076, JP-A-2000-196140, JP-A-2001-102175, J. Appl. Phys., 95, 5773 (2004) and the like. Has been. When the hole-rich hole transport layer is used, the organic EL element 1 with lower power consumption can be obtained.
 正孔輸送層の厚さは、材料に応じて適宜設定することができるが、5~500nmの範囲内であることが好ましい。
 正孔輸送層は、1層又は複数層設けることもできる。1層の正孔輸送層を設ける場合、上述した正孔輸送材料のうち1種又は2種以上の材料が用いられるようにすることが好ましい。
The thickness of the hole transport layer can be appropriately set depending on the material, but is preferably in the range of 5 to 500 nm.
One or more hole transport layers may be provided. When providing one hole transport layer, it is preferable to use one or more materials among the above-described hole transport materials.
(3)発光層
 発光層は、陽極23から直接注入されるか又は陽極23から正孔輸送層等を介して注入される正孔と、陰極26から直接注入されるか又は電子輸送層等を介して注入される電子とが、再結合して発光する層である。
 発光は、発光層の層内で行われてもよいし、発光層と隣接する層との界面で行われてもよい。
(3) Light-Emitting Layer The light-emitting layer includes holes injected directly from the anode 23 or injected from the anode 23 via a hole transport layer, and directly injected from the cathode 26 or an electron transport layer. This is a layer that emits light by recombination with electrons injected therethrough.
The light emission may be performed in the layer of the light emitting layer, or may be performed at the interface between the light emitting layer and the adjacent layer.
 発光層は、発光性の有機化合物として、ホスト化合物(発光ホストともいう)と、ドーパント(発光ドーパントともいう)とを含有する。
 ホスト化合物及びドーパントを含む発光層において、ドーパントの発光波長、種類等を適宜調整することにより、任意の発光色を得ることができる。
The light emitting layer contains a host compound (also referred to as a light emitting host) and a dopant (also referred to as a light emitting dopant) as a light emitting organic compound.
In the light emitting layer containing a host compound and a dopant, an arbitrary emission color can be obtained by appropriately adjusting the emission wavelength, type, and the like of the dopant.
(3-1)ホスト化合物
 ホスト化合物は、室温(25℃)におけるリン光発光のリン光量子収率が、約0.1未満であることが好ましく、約0.01未満であることがより好ましい。
 また、ホスト化合物は、正孔輸送機能、電子輸送機能及び発光の長波長化を防止する機能を有し、ガラス転移温度Tgが高い化合物であることが好ましい。「ガラス転移温度Tg」とは、DSC(Differential Scanning Calorimetry:示差走査熱量)法を用いて、JIS-K7121に準拠した手法により求められる値である。
(3-1) Host Compound The host compound preferably has a phosphorescence quantum yield of phosphorescence emission at room temperature (25 ° C.) of less than about 0.1, and more preferably less than about 0.01.
The host compound is preferably a compound having a hole transporting function, an electron transporting function, and a function of preventing emission of longer wavelengths and a high glass transition temperature Tg. “Glass transition temperature Tg” is a value obtained by a method based on JIS-K7121 using a DSC (Differential Scanning Calorimetry) method.
 上述のような特性を有するホスト化合物としては、例えば公知の低分子化合物、繰り返し単位をもつ高分子化合物、ビニル基又はエポキシ基のような重合性基を有する低分子化合物(蒸着重合性発光ホスト)等が挙げられる。 Examples of the host compound having the above-described characteristics include known low-molecular compounds, high-molecular compounds having repeating units, and low-molecular compounds having a polymerizable group such as a vinyl group or an epoxy group (evaporation polymerizable light-emitting host). Etc.
 具体的なホスト化合物としては、例えば特開2001-257076号公報、同2002-308855号公報、同2001-313179号公報、同2002-319491号公報、同2001-357977号公報、同2002-334786号公報、同2002-8860号公報、同2002-334787号公報、同2002-15871号公報、同2002-334788号公報、同2002-43056号公報、同2002-334789号公報、同2002-75645号公報、同2002-338579号公報、同2002-105445号公報、同2002-343568号公報、同2002-141173号公報、同2002-352957号公報、同2002-203683号公報、同2002-363227号公報、同2002-231453号公報、同2003-3165号公報、同2002-234888号公報、同2003-27048号公報、同2002-255934号公報、同2002-260861号公報、同2002-280183号公報、同2002-299060号公報、同2002-302516号公報、同2002-305083号公報、同2002-305084号公報、同2002-308837号公報等に記載されている化合物が挙げられる。
 なかでも、ホスト化合物は、カルバゾール誘導体であることが好ましく、カルバゾール誘導体のなかでもジベンゾフラン化合物であることが好ましい。
Specific examples of the host compound include Japanese Patent Application Laid-Open Nos. 2001-257076, 2002-308855, 2001-313179, 2002-319491, 2001-357777, and 2002-334786. Gazette, 2002-8860, 2002-334787, 2002-15871, 2002-334788, 2002-43056, 2002-334789, 2002-75645 No. 2002-338579, No. 2002-105445, No. 2002-343568, No. 2002-141173, No. 2002-352957, No. 2002-203683, No. 2002-363227. 2002-231453, 2003-3165, 2002-234888, 2003-27048, 2002-255934, 2002-260861, 2002-280183, Examples thereof include compounds described in 2002-299060, 2002-302516, 2002-305083, 2002-305084, 2002-308837 and the like.
Especially, it is preferable that a host compound is a carbazole derivative, and it is preferable that it is a dibenzofuran compound among carbazole derivatives.
 上記ホスト化合物のうち、1種類のみを用いることもできるし、複数種を併用することもできる。複数種のホスト化合物を併用する場合、電荷(正孔又は電子)の移動度(移動量)を調整することができ、有機EL素子1の発光効率を向上させることができる。
 発光層中のホスト化合物の体積比は、約50%以上とすることが好ましい。
Among the host compounds, only one type can be used, or a plurality of types can be used in combination. When a plurality of types of host compounds are used in combination, the mobility (amount of movement) of charges (holes or electrons) can be adjusted, and the light emission efficiency of the organic EL element 1 can be improved.
The volume ratio of the host compound in the light emitting layer is preferably about 50% or more.
(3-2)ドーパント
 ドーパントとしては、例えばリン光発光ドーパント(リン光性化合物又はリン光発光性化合物とも呼ばれる)、蛍光発光ドーパント(蛍光発光体又は蛍光性ドーパントとも呼ばれる)等を用いることができる。なかでも、発光効率を向上させる観点からは、リン光発光ドーパントが好ましい。
(3-2) Dopant As the dopant, for example, a phosphorescent dopant (also referred to as a phosphorescent compound or a phosphorescent compound), a fluorescent dopant (also referred to as a fluorescent emitter or a fluorescent dopant), or the like can be used. . Among these, phosphorescent dopants are preferable from the viewpoint of improving luminous efficiency.
 リン光発光ドーパントは、励起三重項からの発光が得られる化合物である。具体的には、リン光発光ドーパントは、室温(25℃)においてリン光発光する化合物であり、リン光量子収率が25℃において約0.01以上となる化合物である。なかでも、リン光量子収率が約0.1以上の化合物が好ましい。
 リン光量子収率は、例えば「第4版実験化学講座7・分光II」(1992年版、丸善)の398頁に記載の方法により測定できる。溶液中でのリン光量子収率は種々の溶媒を用いて測定できるが、本発明に用いられるリン光発光ドーパントは、任意の溶媒のいずれかにおいて上記0.01以上のリン光量子収率が達成されればよい。
A phosphorescent dopant is a compound that can emit light from an excited triplet. Specifically, the phosphorescent dopant is a compound that emits phosphorescence at room temperature (25 ° C.) and has a phosphorescence quantum yield of about 0.01 or more at 25 ° C. Among these, a compound having a phosphorescence quantum yield of about 0.1 or more is preferable.
The phosphorescence quantum yield can be measured, for example, by the method described on page 398 of "4th edition Experimental Chemistry Course 7 Spectroscopy II" (1992 edition, Maruzen). Although the phosphorescence quantum yield in a solution can be measured using various solvents, the phosphorescence dopant used in the present invention achieves a phosphorescence quantum yield of 0.01 or more in any solvent. Just do it.
 リン光発光ドーパントの発光原理としては、エネルギー移動型とキャリアトラップ型の二つを挙げることができる。
 エネルギー移動型の場合、キャリア(正孔又は電子)が輸送されるホスト化合物上でキャリアの再結合が起こり、ホスト化合物の励起状態が生成する。この際に発生したエネルギーをホスト化合物からリン光発光ドーパントに移動させることで、リン光発光ドーパントからの発光を得る。
 キャリアトラップ型の場合、リン光発光ドーパントがキャリア(正孔又は電子)をトラップすることで、リン光発光ドーパント上でキャリアの再結合が起こり、リン光発光ドーパントからの発光を得る。
 いずれの場合においても、リン光発光ドーパントの励起状態のエネルギー準位が、ホスト化合物の励起状態のエネルギー準位より低いことが条件である。
As the light emission principle of the phosphorescent light emitting dopant, there are two energy transfer types and carrier trap types.
In the case of the energy transfer type, carrier recombination occurs on the host compound to which carriers (holes or electrons) are transported, and an excited state of the host compound is generated. Light emitted from the phosphorescent dopant is obtained by transferring the energy generated at this time from the host compound to the phosphorescent dopant.
In the case of the carrier trap type, the phosphorescent light-emitting dopant traps carriers (holes or electrons), so that carrier recombination occurs on the phosphorescent light-emitting dopant, and light emission from the phosphorescent light-emitting dopant is obtained.
In either case, the condition is that the excited state energy level of the phosphorescent dopant is lower than the excited state energy level of the host compound.
 上述のような発光過程を生じさせるリン光発光ドーパントとしては、従来の有機EL素子で用いられる公知の各種リン光発光ドーパントを適宜選択して用いることができる。
 そのようなリン光発光ドーパントとしては、例えば元素の周期表で8族~10族の金属元素を含有する金属錯体が挙げられる。金属錯体のなかでも、イリジウム錯体、オスミウム錯体、白金錯体及び希土類錯体のいずれかをリン光発光ドーパントとして用いることが好ましい。
As the phosphorescent dopant that causes the above-described emission process, various known phosphorescent dopants used in conventional organic EL devices can be appropriately selected and used.
As such a phosphorescent dopant, for example, a metal complex containing a group 8 to group 10 metal element in the periodic table of elements can be given. Among metal complexes, it is preferable to use any one of an iridium complex, an osmium complex, a platinum complex, and a rare earth complex as a phosphorescent dopant.
 蛍光発光ドーパントとしては、例えばクマリン系色素、ピラン系色素、シアニン系色素、クロコニウム系色素、スクアリウム系色素、オキソベンツアントラセン系色素、フルオレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチルベン系色素、ポリチオフェン系色素、希土類錯体系蛍光体等が挙げられる。 Examples of the fluorescent emission dopant include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes, pyrylium dyes, perylene dyes, stilbene dyes. System dyes, polythiophene dyes, rare earth complex phosphors, and the like.
 上述したドーパントのうち、1種類のドーパントを用いることもできるし、発光極大波長の異なる複数種のドーパントを併用することもできる。複数種のドーパントを用いる場合、発光波長の異なる複数の光を混合することができ、これにより、任意の色の発光を得ることができる。例えば、青色ドーパント、緑色ドーパント及び赤色ドーパントの3種類のドーパントを、発光層に含有させることにより、白色光を得ることができる。 Among the above-mentioned dopants, one kind of dopant can be used, or a plurality of kinds of dopants having different emission maximum wavelengths can be used in combination. In the case of using a plurality of types of dopants, a plurality of lights having different emission wavelengths can be mixed, whereby light of any color can be obtained. For example, white light can be obtained by including three kinds of dopants of a blue dopant, a green dopant, and a red dopant in the light emitting layer.
 なお、有機EL素子1から発光する光の色は、有機EL素子1から発光する光を分光放射輝度計(コニカミノルタ社製、CS-1000)で測定し、その測定結果を、CIE(国際照明委員会)色度座標(例えば、「新編色彩科学ハンドブック」(日本色彩学会編、東京大学出版会、1985)の108頁の図7.16参照)に当てはめて決定する。
 発光色の「白色」とは、2度視野角正面輝度を上記手法により測定した際に、1000cd/mでのCIE1931表色系における色度が、X=0.33±0.07、Y=0.33±0.07の領域内にある色をいう。
The color of light emitted from the organic EL element 1 is determined by measuring the light emitted from the organic EL element 1 with a spectral radiance meter (CS-1000, manufactured by Konica Minolta Co., Ltd.). Committee) It is determined by applying to chromaticity coordinates (for example, refer to FIG. 7.16 on page 108 of “New Color Science Handbook” (edited by the Japan Color Society, University of Tokyo Press, 1985)).
The emission color “white” means that the chromaticity in the CIE 1931 color system at 1000 cd / m 2 is X = 0.33 ± 0.07 when the 2 ° viewing angle front luminance is measured by the above method. = Color in the region of 0.33 ± 0.07.
 発光層は、1層又は複数層設けることができる。
 複数の発光層を設ける場合、互いに発光色の異なる発光層として積層することができる。例えば、青色発光層、緑色発光層及び赤色発光層を積層し、各発光層からの光から白色光が得られるように調色発光させてもよい。
 また、複数の発光層を設ける場合、隣り合う発光層間に非発光性の中間層を設けることができる。当該中間層は、発光層が含有するホスト化合物と同様の材料で形成することができる。
The light emitting layer can be provided as a single layer or a plurality of layers.
When a plurality of light emitting layers are provided, they can be stacked as light emitting layers having different emission colors. For example, a blue light-emitting layer, a green light-emitting layer, and a red light-emitting layer may be stacked, and the toned light may be emitted so that white light can be obtained from the light from each light-emitting layer.
When a plurality of light emitting layers are provided, a non-light emitting intermediate layer can be provided between adjacent light emitting layers. The intermediate layer can be formed using the same material as the host compound contained in the light emitting layer.
 発光層の厚さは、任意に設定することが可能である。発光層の均質性を高めるとともに、発光時の不要な高電圧の印加を避け、駆動電流に対する発光色の安定性を向上させる観点からは、発光層の厚さは、5~200nmの範囲内であることが好ましい。 The thickness of the light emitting layer can be arbitrarily set. The thickness of the light emitting layer is within the range of 5 to 200 nm from the viewpoint of improving the homogeneity of the light emitting layer, avoiding unnecessary application of high voltage during light emission, and improving the stability of the light emission color with respect to the drive current. Preferably there is.
(4)電子輸送層
 電子輸送層は、陰極26から供給された電子を発光層に輸送(注入)する層である。電子輸送層は、陽極23側からの正孔の流入を阻止する障壁としても作用する。そのため、電子輸送層は、電子注入層、正孔阻止層又はその両方として機能させるために形成されることもある。
(4) Electron Transport Layer The electron transport layer is a layer that transports (injects) electrons supplied from the cathode 26 to the light emitting layer. The electron transport layer also acts as a barrier that prevents the inflow of holes from the anode 23 side. Therefore, the electron transport layer may be formed to function as an electron injection layer, a hole blocking layer, or both.
 電子輸送層の材料としては、正孔阻止材料を兼ね、陰極26より注入された電子を発光層に伝達(輸送)する機能を有する材料であれば、従来公知の化合物を用いることができる。
 従来公知の電子輸送層の材料としては、例えばフルオレン誘導体、カルバゾール誘導体、アザカルバゾール誘導体、オキサジアゾール誘導体、トリゾール誘導体、シロール誘導体、ピリジン誘導体、ピリミジン誘導体、8-キノリノール誘導体、アルミニウムキノレート(Alq)等の金属錯体が挙げられる。
 電子輸送層の他の材料としては、例えばメタルフタロシアニン、メタルフリーフタロシアニン、それらの末端基をアルキル基、スルホン酸基等で置換した化合物等が挙げられる。
As a material for the electron transport layer, a conventionally known compound can be used as long as it is a material that also serves as a hole blocking material and has a function of transmitting (transporting) electrons injected from the cathode 26 to the light emitting layer.
Examples of conventionally known electron transport layer materials include fluorene derivatives, carbazole derivatives, azacarbazole derivatives, oxadiazole derivatives, trizole derivatives, silole derivatives, pyridine derivatives, pyrimidine derivatives, 8-quinolinol derivatives, aluminum quinolates (Alq 3). ) And the like.
Examples of other materials for the electron transport layer include metal phthalocyanine, metal free phthalocyanine, and compounds obtained by substituting their terminal groups with alkyl groups, sulfonic acid groups, and the like.
 電子輸送層は、不純物がゲスト材料(ドープ材ともいう)としてドープされた、n性の高い、電子リッチな電子輸送層であってもよい。不純物がドープされた電子輸送層の具体例は、特開平4-297076号公報、同10-270172号公報、特開2000-196140号公報、同2001-102175号公報、J.Appl.Phys.,95,5773(2004)等に記載されている。 The electron transport layer may be an electron transport layer having a high n property and an electron rich state in which impurities are doped as a guest material (also referred to as a doping material). Specific examples of the electron transport layer doped with impurities include JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, 2001-102175, J. Appl. Phys., 95, 5773 (2004).
 ゲスト材料としては、有機物のアルカリ金属塩を用いることができる。
 有機物の種類は任意であるが、例えば、ギ酸塩、酢酸塩、プロピオン酸塩、酪酸塩、吉草酸塩、カプロン酸塩、エナント酸塩、カプリル酸塩、シュウ酸塩、マロン酸塩、コハク酸塩、安息香酸塩、フタル酸塩、イソフタル酸塩、テレフタル酸塩、サリチル酸塩、ピルビン酸塩、乳酸塩、リンゴ酸塩、アジピン酸塩、メシル酸塩、トシル酸塩、ベンゼンスルホン酸塩等を、有機物として用いることができる。なかでも、ギ酸塩、酢酸塩、プロピオン酸塩、酪酸塩、吉草酸塩、カプロン酸塩、エナント酸塩、カプリル酸塩、シュウ酸塩、マロン酸塩、コハク酸塩又は安息香酸塩が好ましい。より好ましくは、ギ酸塩、酢酸塩、プロピオン酸塩、酪酸塩等の脂肪族カルボン酸であり、さらに好ましくは炭素数が4以下の脂肪族カルボン酸であり、特に好ましくは、酢酸塩である。
As the guest material, an alkali metal salt of an organic substance can be used.
The type of organic substance is arbitrary, but for example, formate, acetate, propionate, butyrate, valerate, caproate, enanthate, caprylate, oxalate, malonate, succinic acid Salt, benzoate, phthalate, isophthalate, terephthalate, salicylate, pyruvate, lactate, malate, adipate, mesylate, tosylate, benzenesulfonate, etc. It can be used as an organic substance. Of these, formate, acetate, propionate, butyrate, valerate, caprate, enanthate, caprylate, oxalate, malonate, succinate or benzoate are preferred. More preferred are aliphatic carboxylic acids such as formate, acetate, propionate and butyrate, more preferred are aliphatic carboxylic acids having 4 or less carbon atoms, and particularly preferred is acetate.
 有機物のアルカリ金属塩を構成するアルカリ金属の種類は任意であり、例えばLi、Na、K、Cs等を用いることができる。なかでも、K又はCsが好ましく、Csがより好ましい。 The kind of alkali metal constituting the alkali metal salt of the organic substance is arbitrary, and for example, Li, Na, K, Cs, etc. can be used. Of these, K or Cs is preferable, and Cs is more preferable.
 そのため、電子輸送層のゲスト材料として用い得る有機物のアルカリ金属塩は、上記有機物と上記アルカリ金属とを組み合わせた化合物になる。
 具体的には、ゲスト材料として、例えばギ酸Li、ギ酸K、ギ酸Na、ギ酸Cs、酢酸Li、酢酸K、酢酸Na、酢酸Cs、プロピオン酸Li、プロピオン酸Na、プロピオン酸K、プロピオン酸Cs、シュウ酸Li、シュウ酸Na、シュウ酸K、シュウ酸Cs、マロン酸Li、マロン酸Na、マロン酸K、マロン酸Cs、コハク酸Li、コハク酸Na、コハク酸K、コハク酸Cs、安息香酸Li、安息香酸Na、安息香酸K、安息香酸Cs等を用いることができる。なかでも、酢酸Li、酢酸K、酢酸Na又は酢酸Csが好ましく、酢酸Csが最も好ましい。
Therefore, the organic alkali metal salt that can be used as the guest material of the electron transport layer is a compound in which the organic substance and the alkali metal are combined.
Specifically, as guest materials, for example, formic acid Li, formic acid K, formic acid Na, formic acid Cs, acetic acid Li, acetic acid K, Na acetate, acetic acid Cs, propionic acid Li, propionic acid Na, propionic acid K, propionic acid Cs, Oxalic acid Li, oxalic acid Na, oxalic acid K, oxalic acid Cs, malonic acid Li, malonic acid Na, malonic acid K, malonic acid Cs, succinic acid Li, succinic acid Na, succinic acid K, succinic acid Cs, benzoic acid Li, Na benzoate, benzoic acid K, benzoic acid Cs, and the like can be used. Of these, Li acetate, K acetate, Na acetate or Cs acetate is preferred, and Cs acetate is most preferred.
 上記ゲスト材料の含有量は、電子輸送層に対して、約1.5~35.0質量%の範囲内であることが好ましく、約3~25質量%の範囲内であることがより好ましく、約5~15質量%の範囲内であることがさらに好ましい。 The content of the guest material is preferably in the range of about 1.5 to 35.0% by mass, more preferably in the range of about 3 to 25% by mass with respect to the electron transport layer. More preferably, it is in the range of about 5 to 15% by mass.
 電子輸送層の厚さは、電子輸送層の材料に応じて適宜設定することができるが、5~200nmの範囲内であることが好ましい。 The thickness of the electron transport layer can be appropriately set according to the material of the electron transport layer, but is preferably in the range of 5 to 200 nm.
 電子輸送層は、1層のみ設けることもできるし、複数層設けることもできる。
 電子輸送層を1層のみ設ける場合、当該1層に上述した材料の1種又は2種以上が用いられることが好ましい。
 また、電子輸送層を複数層設ける場合、発光層に最も近い電子輸送層の材料としては、上述した材料の1種又は2種以上が用いられることが好ましい。
Only one electron transport layer can be provided, or a plurality of electron transport layers can be provided.
When only one electron transport layer is provided, it is preferable to use one or more of the materials described above for the one layer.
In the case where a plurality of electron transport layers are provided, it is preferable to use one or more of the materials described above as the material of the electron transport layer closest to the light emitting layer.
(5)電子注入層
 電子注入層は、電子バッファー層とも呼ばれ、有機EL素子1の駆動電圧の低下及び発光輝度の向上を目的として、陰極26と発光層間又は陰極26と電子輸送層間に設けられ得る。
 電子注入層の構成の詳細な説明は省略するが、例えばフッ化リチウム等を用いることができ、「有機EL素子とその工業化最前線」(1998年11月30日エヌ・ティー・エス社発行)の第2編第2章「電極材料」(123-166頁)等に記載された電子注入層の構成を採用し得る。
(5) Electron Injection Layer The electron injection layer is also called an electron buffer layer, and is provided between the cathode 26 and the light emitting layer or between the cathode 26 and the electron transport layer for the purpose of lowering the driving voltage and improving the light emission luminance of the organic EL element 1. Can be.
Although detailed description of the structure of the electron injection layer is omitted, for example, lithium fluoride or the like can be used. “Organic EL device and its forefront of industrialization” (published by NTT Corporation on November 30, 1998) The structure of the electron injection layer described in the second volume, Chapter 2, “Electrode Material” (pages 123 to 166), etc. can be employed.
〔第2ガスバリアー層〕
 第2ガスバリアー層27は、陽極23、有機機能層25及び陰極26が、大気中の水又は酸素等と反応して変質し、劣化することを防ぐため、陽極23、有機機能層25及び陰極26の側面も含めて全面的に被覆するように形成されている。第2ガスバリアー層27の形成により、陽極23、有機機能層25及び陰極26は、第1ガスバリアー層22と第2ガスバリアー層27間に封止されるため、第2ガスバリアー層27は封止層としても機能する。
[Second gas barrier layer]
The second gas barrier layer 27 is composed of the anode 23, the organic functional layer 25, and the cathode 26 in order to prevent the anode 23, the organic functional layer 25, and the cathode 26 from being deteriorated by reacting with water or oxygen in the atmosphere. It is formed so as to cover the entire surface including the side surfaces of 26. By forming the second gas barrier layer 27, the anode 23, the organic functional layer 25, and the cathode 26 are sealed between the first gas barrier layer 22 and the second gas barrier layer 27. It also functions as a sealing layer.
 第2ガスバリアー層27は、第1ガスバリアー層22と同様のガスバリアー性、絶縁性及び透明性を有することが好ましい。
 すなわち、第2ガスバリアー層27は、水蒸気透過度(環境条件:25±0.5℃、相対湿度(90±2)%RH)が約0.01g/[m・day・atm]以下であり、酸素透過度が約0.01cm/[m・day・atm]以下のガスバリアー性を有することが好ましく、水蒸気透過度が約0.0001g/[m・day・atm]以下であり、かつ酸素透過度が0.0001cm/[m・day・atm]以下のハイガスバリアー性を有することがより好ましい。
The second gas barrier layer 27 preferably has the same gas barrier properties, insulating properties, and transparency as the first gas barrier layer 22.
That is, the second gas barrier layer 27 has a water vapor permeability (environmental condition: 25 ± 0.5 ° C., relative humidity (90 ± 2)% RH) of about 0.01 g / [m 2 · day · atm] or less. And having an oxygen permeability of about 0.01 cm 3 / [m 2 · day · atm] or less and a water vapor permeability of about 0.0001 g / [m 2 · day · atm] or less. More preferably, it has a high gas barrier property with an oxygen permeability of 0.0001 cm 3 / [m 2 · day · atm] or less.
 第2ガスバリアー層27は、電気抵抗率が1×1012Ω・cm以上の絶縁性を有することが好ましい。
 また、第2ガスバリアー層27は、光線透過率が可視光領域で約80%以上の透明性を有することが好ましい。
The second gas barrier layer 27 preferably has an insulating property with an electric resistivity of 1 × 10 12 Ω · cm or more.
The second gas barrier layer 27 preferably has a light transmittance of about 80% or more in the visible light region.
 上述したようなガスバリアー性、絶縁性及び透明性を有する第2ガスバリアー層27の材料としては、例えば酸化ケイ素、窒化ケイ素、酸窒化ケイ素等のケイ素化合物、酸化アルミニウム、酸化ジルコニウム等の無機化合物が挙げられる。なかでも、窒化ケイ素、酸窒化ケイ素等の窒化物は耐水性、ガスバリアー性、透明性及び切断分割時の割断性に優れるだけでなく、原料となる酸素ガスの使用量を減らして、酸化による有機機能層25及び陰極26の劣化を抑えることができ、好ましい。また、フィルム基板20側又は保護フィルム4側のいずれからでも光の取出しが可能となり、発光効率が向上する点においても、好ましい。 Examples of the material for the second gas barrier layer 27 having gas barrier properties, insulating properties, and transparency as described above include silicon compounds such as silicon oxide, silicon nitride, and silicon oxynitride, and inorganic compounds such as aluminum oxide and zirconium oxide. Is mentioned. Among them, nitrides such as silicon nitride and silicon oxynitride are not only excellent in water resistance, gas barrier properties, transparency and cleaving property at the time of cutting and dividing, but also by reducing the amount of oxygen gas used as a raw material and by oxidation Deterioration of the organic functional layer 25 and the cathode 26 can be suppressed, which is preferable. Moreover, light can be taken out from either the film substrate 20 side or the protective film 4 side, which is preferable in terms of improving luminous efficiency.
 第2ガスバリアー層27の厚さは、条件に応じて適宜設定することができるが、100~1000nmの範囲内であることが好ましい。
 厚さが100nm以上であると、パーティクル等によるピンホールが発生しにくく、軟化した接着層3が当該ピンホールを介して陰極26及び有機機能層25に入りこむことを抑えることができる。接着層3の成分によって、陰極26及び有機機能層25が酸化し、変質することを抑えることができ、ダークスポットの増大を抑えることができる。一方、第2ガスバリアー層27の厚さが1000nm以下であると、厚膜化による生産効率の低下及び有機EL素子1の曲げに対する耐久性の低下を抑えることができる。また、厚膜化によって第2ガスバリアー層27の製膜時間が長時間となり、製膜時の蓄熱によりフィルム基板20が変形することを防ぐことができる。
The thickness of the second gas barrier layer 27 can be appropriately set according to conditions, but is preferably in the range of 100 to 1000 nm.
When the thickness is 100 nm or more, pinholes due to particles or the like are hardly generated, and the softened adhesive layer 3 can be prevented from entering the cathode 26 and the organic functional layer 25 through the pinholes. Oxidation and alteration of the cathode 26 and the organic functional layer 25 can be suppressed by the components of the adhesive layer 3, and an increase in dark spots can be suppressed. On the other hand, when the thickness of the second gas barrier layer 27 is 1000 nm or less, it is possible to suppress a decrease in production efficiency due to the increase in thickness and a decrease in durability against bending of the organic EL element 1. Further, the film formation time of the second gas barrier layer 27 becomes longer due to the increase in film thickness, and it is possible to prevent the film substrate 20 from being deformed due to heat storage during film formation.
〔接着層〕
 接着層3は、保護フィルム4を第2ガスバリアー層27上に貼り合わせるために設けられている。
 接着層3の材料としては、例えばアクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応性ビニル基を有する光硬化性又は熱硬化性接着剤、エポキシ樹脂等の熱硬化性又は化学硬化性(二液混合)接着剤、ポリアミド、ポリエステル、ポリオレフィン等を用いたホットメルト型接着剤、カチオン硬化性の紫外線硬化型エポキシ樹脂接着剤等が挙げられる。
(Adhesive layer)
The adhesive layer 3 is provided for bonding the protective film 4 onto the second gas barrier layer 27.
Examples of the material for the adhesive layer 3 include photo-curing or thermosetting adhesives having reactive vinyl groups such as acrylic acid oligomers and methacrylic acid oligomers, and thermosetting or chemical curing properties such as epoxy resins (two-component mixing). ) Hot melt adhesives using adhesives, polyamides, polyesters, polyolefins, and the like, and cationically curable ultraviolet curable epoxy resin adhesives.
 なかでも、製造プロセスを簡略化する観点から、熱硬化性接着剤が好ましい。
 熱硬化性接着剤は、第2ガスバリアー層27及び保護フィルム4との密着性を考慮して、好適な熱硬化性接着剤を適宜選択することができる。例えば、分子の末端又は側鎖にエチレン性二重結合を有する化合物と、熱重合開始剤とを主成分とする樹脂等を用いることができ、より具体的には、エポキシ系樹脂、アクリル系樹脂等を用いた熱硬化性接着剤を用いることができる。また、貼り合わせ方法及び硬化方法に応じて溶融タイプの熱硬化性接着剤を用いることができる。
Among these, a thermosetting adhesive is preferable from the viewpoint of simplifying the manufacturing process.
As the thermosetting adhesive, a suitable thermosetting adhesive can be appropriately selected in consideration of the adhesion between the second gas barrier layer 27 and the protective film 4. For example, a resin mainly composed of a compound having an ethylenic double bond at the terminal or side chain of the molecule and a thermal polymerization initiator can be used. More specifically, an epoxy resin or an acrylic resin can be used. Or the like can be used. Moreover, a melt-type thermosetting adhesive can be used according to the bonding method and the curing method.
 接着層3は、保護フィルム4側からの入射光を散乱させる観点から、下地層21と同様の無機化合物粒子を含有することができる。
 これにより、接着層3の硬度を大きくすることができ、保護フィルム4に分割溝が形成された場合に第2ガスバリアー層の損傷を防ぐ緩衝材として、接着層3機能させることができる。また、分割溝の形成時に照射され、保護フィルム4を透過したレーザー光を、接着層3が散乱させることができ、レーザー光による第2ガスバリアー層27の損傷を防ぐことができる。
The adhesive layer 3 can contain the same inorganic compound particles as the underlayer 21 from the viewpoint of scattering incident light from the protective film 4 side.
Thereby, the hardness of the contact bonding layer 3 can be enlarged, and when the division | segmentation groove | channel is formed in the protective film 4, the contact bonding layer 3 can be functioned as a buffer material which prevents damage to a 2nd gas barrier layer. Moreover, the adhesive layer 3 can scatter the laser beam irradiated at the time of formation of a division | segmentation groove | channel, and permeate | transmitted the protective film 4, and the damage to the 2nd gas barrier layer 27 by a laser beam can be prevented.
 また、接着層3は、第2ガスバリアー層27との接着性を向上させる観点から、下地層21と同様のシランカップリング剤、上記無機化合物粒子等を含有することもできる。 The adhesive layer 3 can also contain the same silane coupling agent as the underlayer 21, the above-mentioned inorganic compound particles, and the like from the viewpoint of improving the adhesiveness with the second gas barrier layer 27.
 熱硬化性接着剤は、シート状に加工されていることが好ましい。シート状の熱硬化性接着剤を用いる場合、常温(25℃)付近では非流動性を示し、50~120℃の温度範囲内では流動性を示す熱硬化性接着剤が好ましい。 The thermosetting adhesive is preferably processed into a sheet. When a sheet-like thermosetting adhesive is used, a thermosetting adhesive that exhibits non-flowability near normal temperature (25 ° C.) and fluidity within a temperature range of 50 to 120 ° C. is preferable.
 接着層3は、有機EL素子1の長寿命化等を考慮して、含水率が約1.0%以下であることが好ましい。この含水率は、ASTM(米国材料試験協会)-D570に準拠した手法で測定された値である。 The adhesive layer 3 preferably has a moisture content of about 1.0% or less in consideration of extending the life of the organic EL element 1 and the like. This moisture content is a value measured by a method according to ASTM (American Society for Testing and Materials) -D570.
〔保護フィルム〕
 保護フィルム4は、有機EL素子1の各層を外部衝撃から保護し、発光時の放熱性を高めるため、接着層3を介して第2ガスバリアー層27上に貼り合わされている。
 保護フィルム4は、放熱性を高める目的から、図1に示すようにフィルム面の面積が第2ガスバリアー層27よりも小さいことが好ましい。保護フィルム4の面積が第2ガスバリアー層27より小さいと、貼り合わせの精度に左右されることなく、有機EL素子1の各層を所定のパターン形状に形成する精度を高めることで、有機EL素子1端部の非発光部分の面積を縮小することができる。非発光部分の面積が小さいほど、フィルム基板20の実用面積が増えてコストの低減が可能であり、有機EL素子1が表示装置、照明装置として使用された場合の商品価値が向上する。
〔Protective film〕
The protective film 4 is bonded onto the second gas barrier layer 27 via the adhesive layer 3 in order to protect each layer of the organic EL element 1 from external impact and to improve heat dissipation during light emission.
The protective film 4 preferably has a smaller film surface area than the second gas barrier layer 27 as shown in FIG. When the area of the protective film 4 is smaller than the second gas barrier layer 27, the organic EL element is improved by increasing the accuracy of forming each layer of the organic EL element 1 into a predetermined pattern shape without being affected by the bonding accuracy. The area of the non-light emitting portion at one end can be reduced. As the area of the non-light-emitting portion is smaller, the practical area of the film substrate 20 is increased and the cost can be reduced, and the commercial value when the organic EL element 1 is used as a display device or a lighting device is improved.
 保護フィルム4は、フィルム状又は板状であり、フィルム基板20と対向するように位置する。
 保護フィルム4としては、フィルム基板20と同様の可撓性を有するフィルムを用いることができ、例えば薄膜ガラス、薄膜セラミック、樹脂フィルム、ガラス繊維又は炭素繊維を含む樹脂フィルム、SUS、インバー等のNi-Fe合金、アルミニウム、チタン等の金属フィルム等を用いることができる。
The protective film 4 has a film shape or a plate shape and is positioned so as to face the film substrate 20.
As the protective film 4, a film having flexibility similar to that of the film substrate 20 can be used. For example, a thin film glass, a thin film ceramic, a resin film, a resin film containing glass fiber or carbon fiber, Ni such as SUS, Invar, etc. A metal film such as an Fe alloy, aluminum, or titanium can be used.
 保護フィルム4側から光を取り出す場合、保護フィルム4は、上記フィルム基板20と同様に透明性の高い樹脂フィルムであることが好ましい。この場合、保護フィルム4と接着層3間に、第1ガスバリアー層22と同様のガスバリアー層を設けて、保護フィルム4から接着層3へのガスの浸入を抑制することが好ましい。当該ガスバリアー層の水蒸気透過度は、0.01g/[m・day・atm]以下であることが好ましい。 When taking out light from the protective film 4 side, it is preferable that the protective film 4 is a highly transparent resin film like the film substrate 20. In this case, it is preferable to provide a gas barrier layer similar to the first gas barrier layer 22 between the protective film 4 and the adhesive layer 3 to suppress gas intrusion from the protective film 4 to the adhesive layer 3. The gas barrier layer preferably has a water vapor permeability of 0.01 g / [m 2 · day · atm] or less.
 保護フィルム4から光を取り出さない場合、保護フィルム4は、ロール体として供給する場合の取扱い性、防湿性及び放熱性の向上の観点から、上記透明性の高い樹脂フィルムと金属フィルムの積層体であることが好ましい。 When light is not extracted from the protective film 4, the protective film 4 is a laminate of the above-described highly transparent resin film and metal film from the viewpoint of improving handleability, moisture resistance, and heat dissipation when supplied as a roll body. Preferably there is.
 保護フィルム4の厚さは、ロール体として供給された場合の取扱い性及び操作性の向上、貼り合わせ時に第2ガスバリアー層27に与える負荷の軽減等の観点から、30~300μmの範囲内であることが好ましい。 The thickness of the protective film 4 is in the range of 30 to 300 μm from the viewpoint of improving the handling and operability when supplied as a roll body and reducing the load applied to the second gas barrier layer 27 at the time of bonding. Preferably there is.
 貼り合わせ時、接着層3があらかじめ積層された保護フィルム4が、当該接着層3を介して第2ガスバリアー層27に貼り合わされることが、製造プロセスが容易となり、好ましい。
 接着層3が積層され、所定の形状に断裁された保護フィルム4を、離型フィルムに仮固定したロール体を貼り合わせに用いることもできるし、接着層3が所定の形状に形成された保護フィルム4のロール体を、貼り合わせに用いることもできる。
At the time of bonding, it is preferable that the protective film 4 on which the adhesive layer 3 is laminated in advance is bonded to the second gas barrier layer 27 via the adhesive layer 3 because the manufacturing process becomes easy.
The protective film 4 laminated with the adhesive layer 3 and cut into a predetermined shape can be used for bonding a roll body temporarily fixed to a release film, or the protective layer 3 is formed into a predetermined shape. The roll body of the film 4 can also be used for bonding.
〔有機EL素子の製造方法〕
 次に、上記有機EL素子1を製造する本実施の形態の製造方法及び製造装置を説明する。
 図8は、本実施の形態の製造装置100の概略構成を示している。
 製造装置100は、図8に示すように、アンワインダー101、前処理部R10、本体形成部R20、封止部R30、アキューム室R40、貼り合わせ部R50、第1切断部R60、第2切断部R70及びワインダー102を備えている。
 アンワインダー101からワインダー102までの間には、フィルム基板20を搬送する複数のガイドローラーが設けられている。
[Method for producing organic EL element]
Next, the manufacturing method and manufacturing apparatus of the present embodiment for manufacturing the organic EL element 1 will be described.
FIG. 8 shows a schematic configuration of the manufacturing apparatus 100 of the present embodiment.
As shown in FIG. 8, the manufacturing apparatus 100 includes an unwinder 101, a pretreatment unit R10, a main body forming unit R20, a sealing unit R30, an accumulation chamber R40, a bonding unit R50, a first cutting unit R60, and a second cutting unit. R70 and winder 102 are provided.
A plurality of guide rollers for conveying the film substrate 20 are provided between the unwinder 101 and the winder 102.
 あらかじめ、フィルム基板20上に下地層21及び第1ガスバリアー層22を形成し、得られたフィルム基板20のロール体をアンワインダー101にセットする。 First, the base layer 21 and the first gas barrier layer 22 are formed on the film substrate 20, and the obtained roll body of the film substrate 20 is set on the unwinder 101.
 下地層21の形成方法としては、例えば蒸着法等のドライプロセス、スプレー塗布法、グラビアコーター、コンマコーター、ダイコーター等を用いた塗布法、インクジェット法等のウェットプロセスが挙げられる。 Examples of the formation method of the underlayer 21 include a dry process such as a vapor deposition method, a spray coating method, a coating method using a gravure coater, a comma coater, a die coater, and the like, and a wet process such as an inkjet method.
 第1ガスバリアー層22の形成方法としては、例えば真空蒸着法、スパッター法、マグネトロンスパッター法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法(特開2004-68143号公報参照)、プラズマCVD(Chemical Vapor Deposition)法、レーザーCVD法、熱CVD法、ALD(原子層堆積)法、湿式塗布法等が挙げられる。 The first gas barrier layer 22 can be formed by, for example, vacuum deposition, sputtering, magnetron sputtering, molecular beam epitaxy, cluster ion beam, ion plating, plasma polymerization, atmospheric pressure plasma polymerization (special Open 2004-68143), plasma CVD (Chemical Vapor Deposition) method, laser CVD method, thermal CVD method, ALD (atomic layer deposition) method, wet coating method and the like.
 アンワインダー101は、フィルム基板20のロール体を巻き出す。
 前処理部R10は、1×10-5~10Paの範囲内の真空雰囲気下において、スリット後のフィルム基板20の表面、すなわち第1ガスバリアー層22の表面をドライクリーニングし、脱水処理する。
 前処理部R10において表面処理されたフィルム基板20は、本体形成部R20へと順次搬送される。
The unwinder 101 unwinds the roll body of the film substrate 20.
The pretreatment unit R10 performs dry cleaning on the surface of the film substrate 20 after the slit, that is, the surface of the first gas barrier layer 22 in a vacuum atmosphere within a range of 1 × 10 −5 to 10 Pa, and performs dehydration treatment.
The film substrate 20 subjected to the surface treatment in the pretreatment unit R10 is sequentially conveyed to the main body forming unit R20.
 本体形成部R20は、図8に示すように四つの層形成部R21~R24を備えている。
 前処理部R10と層形成部R21間には、それぞれの圧力差を調整するゲートバルブ又は圧力調整部が設けられている。
 また、各層形成部R21~R24間には、各層形成部R21~R24での処理速度の差を吸収するためのアキュムレーターが設けられている。
 各層形成部R21~R24は、独立して排気を行い、真空状態又は減圧状態に保たれている。各層形成部R21~R24内の圧力は、製膜方法によって異なるが、1×10-6~10Pa程度の範囲に設定されている。
The main body forming portion R20 includes four layer forming portions R21 to R24 as shown in FIG.
Between the pre-processing unit R10 and the layer forming unit R21, a gate valve or a pressure adjusting unit for adjusting each pressure difference is provided.
Further, an accumulator is provided between the layer forming portions R21 to R24 to absorb the difference in processing speed between the layer forming portions R21 to R24.
Each of the layer forming portions R21 to R24 is evacuated independently and kept in a vacuum state or a reduced pressure state. The pressure in each of the layer forming portions R21 to R24 varies depending on the film forming method, but is set in a range of about 1 × 10 −6 to 10 Pa.
 本体形成部R20は、各層形成部R21~R24により、フィルム基板20の第1ガスバリアー層22上に、複数の有機EL素子1の陽極23、取出し配線24、有機機能層25及び陰極26を所定のパターン形状で形成する。
 なお、フィルム基板20上の下地層21及び第1ガスバリアー層22も、本体形成部R20が形成する構成であってもよい。
The main body forming portion R20 has the anode 23, the extraction wiring 24, the organic functional layer 25, and the cathode 26 of the plurality of organic EL elements 1 on the first gas barrier layer 22 of the film substrate 20 by the layer forming portions R21 to R24. The pattern shape is formed.
The base layer 21 and the first gas barrier layer 22 on the film substrate 20 may also be configured to be formed by the main body forming portion R20.
 図9は、フィルム基板20上の複数の有機EL素子1の配置例を示している。図9中の一点鎖線は各有機EL素子1の境界線L1を示している。
 本体形成部R20は、図9に示すように、各有機EL素子1の取出し配線24が各有機EL素子1間で隣接し、かつフィルム基板20の搬送方向L2において連続するように、各有機EL素子1を配置することが好ましい。
 これにより、第2ガスバリアー層27をフィルム基板20の搬送方向に連続してストライプ状に形成することができ、第2ガスバリアー層27の形成が容易となる。また、接着層3及び保護フィルム4もロール体として供給してストライプ状に貼り合わせればよく、貼り合わせが容易となる。第2ガスバリアー層27及び保護フィルム4の位置合わせのための時間を短縮することができ、フィルム基板20の搬送速度も高速化することができるため、生産性が向上する。
FIG. 9 shows an arrangement example of the plurality of organic EL elements 1 on the film substrate 20. A one-dot chain line in FIG. 9 indicates a boundary line L 1 of each organic EL element 1.
As shown in FIG. 9, the main body forming portion R <b> 20 is configured so that the extraction wiring 24 of each organic EL element 1 is adjacent between the organic EL elements 1 and is continuous in the transport direction L <b> 2 of the film substrate 20. It is preferable to dispose the element 1.
Thereby, the second gas barrier layer 27 can be continuously formed in a stripe shape in the transport direction of the film substrate 20, and the formation of the second gas barrier layer 27 is facilitated. Moreover, what is necessary is just to supply the adhesive layer 3 and the protective film 4 as a roll body, and to bond them together in stripe form, and bonding becomes easy. The time for aligning the second gas barrier layer 27 and the protective film 4 can be shortened, and the transport speed of the film substrate 20 can be increased, so that productivity is improved.
 フィルム基板20は、各有機EL素子1の境界線L1に沿って切断分割されるが、1度に切断分割する従来の方法では第1ガスバリアー層22及び第2ガスバリアー層27の損傷を考慮して、各有機EL素子1の端部の非発光部分を広く設けなければならない。しかし、製造装置100によれば、切断分割時の第1ガスバリアー層22及び第2ガスバリアー層27の損傷がないか、あっても少ないため、非発光部分を縮小することができる。これにより、フィルム基板20上により多くの有機EL素子1を配置することができ、生産性が向上する。 The film substrate 20 is cut and divided along the boundary line L1 of each organic EL element 1, but the conventional method of cutting and dividing at a time considers damage to the first gas barrier layer 22 and the second gas barrier layer 27. Thus, the non-light-emitting portion at the end of each organic EL element 1 must be provided widely. However, according to the manufacturing apparatus 100, the first gas barrier layer 22 and the second gas barrier layer 27 at the time of cutting and dividing are not damaged or little, so that the non-light emitting portion can be reduced. Thereby, many organic EL elements 1 can be arrange | positioned on the film board | substrate 20, and productivity improves.
 層形成部R21は、フィルム基板20の第1ガスバリアー層22上に、各有機EL素子1の陽極23を形成する。
 陽極23の形成方法としては、例えば真空蒸着法、スパッター法、マグネトロンスパッター法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、湿式塗布法等が挙げられる。
The layer forming part R <b> 21 forms the anode 23 of each organic EL element 1 on the first gas barrier layer 22 of the film substrate 20.
Examples of the method for forming the anode 23 include a vacuum deposition method, a sputtering method, a magnetron sputtering method, a molecular beam epitaxy method, a cluster ion beam method, an ion plating method, a plasma polymerization method, and a wet coating method.
 図10は、層形成部R21の概略構成を示している。
 層形成部R21は、図10に示すように、複数の搬送ローラー51及び52、冷却ローラー53、連続マスク54、材料供給部55並びにクリーニング部56を備えている。
FIG. 10 shows a schematic configuration of the layer forming portion R21.
As shown in FIG. 10, the layer forming unit R21 includes a plurality of transport rollers 51 and 52, a cooling roller 53, a continuous mask 54, a material supply unit 55, and a cleaning unit 56.
 層形成部R21において、フィルム基板20は複数の搬送ローラー51により搬送される。
 また、連続マスク54は、複数の搬送ローラー52に掛け渡されて、周回するように連続的に搬送される。
 フィルム基板20及び連続マスク54の搬送路は、図10に示すように一部共通しており、共通の搬送路では、搬送ローラー51及び52により、フィルム基板20及び連続マスク54は重ねて搬送される。
In the layer forming unit R <b> 21, the film substrate 20 is transported by a plurality of transport rollers 51.
Moreover, the continuous mask 54 is continuously conveyed so that it may pass over the some conveyance roller 52, and may circulate.
As shown in FIG. 10, a part of the transport path of the film substrate 20 and the continuous mask 54 is common, and the film substrate 20 and the continuous mask 54 are overlapped and transported by the transport rollers 51 and 52 in the common transport path. The
 冷却ローラー53は、フィルム基板20を挟んで材料供給部55と対向する位置に配置され、フィルム基板20及び連続マスク54が重なるように、フィルム基板20及び連続マスク54を張架している。
 冷却ローラー53は、ローラー内部に冷却機構を内蔵し、フィルム基板20の第1ガスバリアー層22の第2面20Bに当接して、フィルム基板20を冷却する。これにより、材料供給部55からの材料供給によって高温状態にあるフィルム基板20を冷却することができる。
The cooling roller 53 is disposed at a position facing the material supply unit 55 across the film substrate 20, and stretches the film substrate 20 and the continuous mask 54 so that the film substrate 20 and the continuous mask 54 overlap each other.
The cooling roller 53 incorporates a cooling mechanism inside the roller, contacts the second surface 20 </ b> B of the first gas barrier layer 22 of the film substrate 20, and cools the film substrate 20. Thereby, the film substrate 20 in a high temperature state can be cooled by the material supply from the material supply unit 55.
 連続マスク54は、形成する層のパターン形状に応じた開口部が所定間隔で設けられたループ状の遮蔽材である。
 連続マスク54は、搬送中のフィルム基板20と重ね合わせられるため、フィルム基板20と同様に可撓性を有することが好ましい。
The continuous mask 54 is a loop-shaped shielding material in which openings corresponding to the pattern shape of the layer to be formed are provided at predetermined intervals.
Since the continuous mask 54 is superimposed on the film substrate 20 being conveyed, it is preferable that the continuous mask 54 has flexibility like the film substrate 20.
 可撓性を有する連続マスク54の材料としては、例えばSUS300系、インバー、42アロイ合金、ハステロイ(登録商標)、インコネル(登録商標)等のFe-Ni合金、アルミニウム、マグネシウム、チタン等の金属又はこれらの合金、ガラス、シリコン、アルミナ、窒化ホウ素等のセラミックス、ポリエステル、ポリウレタン等の熱可塑性樹脂、ポリイミド、エポキシ樹脂、アクリル樹脂、尿素樹脂、フェノール樹脂、ベークライト樹脂、ポリカーボネイト等の耐熱性に優れた熱硬化性樹脂等が挙げられる。 Examples of the material of the continuous mask 54 having flexibility include SUS300 series, Invar, 42 alloy alloys, Fe—Ni alloys such as Hastelloy (registered trademark) and Inconel (registered trademark), metals such as aluminum, magnesium, and titanium, Excellent heat resistance of these alloys, ceramics such as glass, silicon, alumina, boron nitride, thermoplastic resins such as polyester, polyurethane, polyimide, epoxy resin, acrylic resin, urea resin, phenol resin, bakelite resin, polycarbonate, etc. A thermosetting resin etc. are mentioned.
 なかでも、金属は、開口部の加工が容易であり、耐熱性が高く、線膨張係数の低い連続マスク54を得ることができ、クリーニング部56によるドライクリーニングに対する耐久性に優れることから好ましい。
 また、上記熱硬化性樹脂は、耐熱性の向上及び線膨張係数の低減の観点から、ガラス繊維、炭素繊維等を含有することが好ましい。これにより、連続マスク54の寸法精度を向上させることができる。
Among them, metal is preferable because the opening can be easily processed, a continuous mask 54 having high heat resistance and a low linear expansion coefficient can be obtained, and durability against dry cleaning by the cleaning unit 56 is excellent.
Moreover, it is preferable that the said thermosetting resin contains glass fiber, carbon fiber, etc. from a viewpoint of a heat resistant improvement and a reduction of a linear expansion coefficient. Thereby, the dimensional accuracy of the continuous mask 54 can be improved.
 連続マスク54の厚さは、可撓性及び耐久性を得る観点から、0.1~3.0mmの範囲内であることが好ましい。
 連続マスク54は、ドライクリーニングに対する耐久性及び連続マスク54に付着した材料の剥離性を向上させる観点から、表面処理が施され得る。表面処理としては、例えばNiメッキ処理、アルマイト処理、フッ素コーティング処理等が挙げられる。
The thickness of the continuous mask 54 is preferably in the range of 0.1 to 3.0 mm from the viewpoint of obtaining flexibility and durability.
The continuous mask 54 may be subjected to surface treatment from the viewpoint of improving durability against dry cleaning and improving the peelability of the material attached to the continuous mask 54. Examples of the surface treatment include Ni plating treatment, alumite treatment, fluorine coating treatment, and the like.
 材料供給部55は、連続マスク54が重ね合わされたフィルム基板20に対し、陽極23の材料を供給する。これにより、フィルム基板20の第1ガスバリアー層22上の連続マスク54の開口部と対応する部分に、陽極23が所定のパターン形状で形成される。
 材料供給部55は、採用された陽極23の形成方法に対応した方法で材料を供給する。
The material supply unit 55 supplies the material of the anode 23 to the film substrate 20 on which the continuous mask 54 is superimposed. Thereby, the anode 23 is formed in a predetermined pattern shape at a portion corresponding to the opening of the continuous mask 54 on the first gas barrier layer 22 of the film substrate 20.
The material supply unit 55 supplies the material by a method corresponding to the adopted method for forming the anode 23.
 クリーニング部56は、陽極23の形成後、フィルム基板20から離れた連続マスク54をドライクリーニングし、連続マスク54上に残存する材料を除去する。 The cleaning unit 56 dry-cleans the continuous mask 54 away from the film substrate 20 after the anode 23 is formed, and removes the material remaining on the continuous mask 54.
 具体的には、クリーニング部56は、冷却部561及びプラズマエッチング部562を備えている。
 冷却部561は、材料供給によって高温状態にある連続マスク54を冷却する。
 プラズマエッチング部562は、高周波電圧を印加してプラズマ化したガスを連続マスク54に吹き付け、連続マスク54に付着した材料をエッチングして取り除く。プラズマ化するガスとしては、O、NF、Ar、N等のガスが用いられ得る。
Specifically, the cleaning unit 56 includes a cooling unit 561 and a plasma etching unit 562.
The cooling unit 561 cools the continuous mask 54 in a high temperature state by supplying the material.
The plasma etching unit 562 sprays a gas that has been turned into a plasma by applying a high-frequency voltage to the continuous mask 54 and etches and removes the material attached to the continuous mask 54. A gas such as O 2 , NF 3 , Ar, or N 2 can be used as the gas to be converted into plasma.
 層形成部R22は、陽極23が形成されたフィルム基板20上に、各有機EL素子1の陽極23及び陰極26の取出し配線24を形成する。陽極23の取出し配線24は、フィルム基板20上の陽極23と接する位置に形成される。
 層形成部R22は、層形成部R21と同様に構成されている。すなわち、層形成部R22は、取出し配線24のパターン形状に応じた連続マスク54を用いて、材料供給部55により取出し配線24の材料を供給する以外は、層形成部R21と同様にして、取出し配線24を形成することができる。
The layer forming portion R22 forms the extraction wiring 24 of the anode 23 and the cathode 26 of each organic EL element 1 on the film substrate 20 on which the anode 23 is formed. The lead-out wiring 24 of the anode 23 is formed at a position in contact with the anode 23 on the film substrate 20.
The layer forming part R22 is configured similarly to the layer forming part R21. That is, the layer forming portion R22 takes out in the same manner as the layer forming portion R21 except that the material supply unit 55 supplies the material of the extraction wiring 24 using the continuous mask 54 corresponding to the pattern shape of the extraction wiring 24. The wiring 24 can be formed.
 なお、陽極23と取出し配線24を同一材料として、層形成部R21が一つの連続マスクを用いて陽極23及び取出し配線24の両方を一度に形成することもできる。この形成方法によれば、生産コストを減らすことができ、好ましい。 The anode 23 and the extraction wiring 24 can be made of the same material, and the layer forming portion R21 can form both the anode 23 and the extraction wiring 24 at a time using one continuous mask. This forming method is preferable because the production cost can be reduced.
 層形成部R23は、取出し配線24が形成されたフィルム基板20上に、各有機EL素子1の有機機能層25を形成する。
 有機機能層25の形成方法としては、例えば真空蒸着法が挙げられる。
 層形成部R23は、有機機能層25を形成するため、1×10-6~1×10-4Paの高真空領域に設定されていることが好ましい。
The layer forming unit R23 forms the organic functional layer 25 of each organic EL element 1 on the film substrate 20 on which the extraction wiring 24 is formed.
Examples of the method for forming the organic functional layer 25 include a vacuum deposition method.
The layer forming portion R23 is preferably set to a high vacuum region of 1 × 10 −6 to 1 × 10 −4 Pa in order to form the organic functional layer 25.
 層形成部R23は、層形成部R21と同様に構成されている。すなわち、層形成部R23は、有機機能層25のパターン形状に応じた連続マスク54を用いて、材料供給部55により有機機能層25の材料を供給する以外は、層形成部R21と同様にして、有機機能層25を形成することができる。
 有機機能層25が発光層以外にも複数の有機層を有する場合、層形成部R23は、有機機能層25の各層を、一つの連続マスク54により同一パターン形状で積層して、有機機能層25を形成することが好ましい。
The layer forming part R23 is configured similarly to the layer forming part R21. That is, the layer forming unit R23 is similar to the layer forming unit R21 except that the material supplying unit 55 supplies the material of the organic functional layer 25 using the continuous mask 54 corresponding to the pattern shape of the organic functional layer 25. The organic functional layer 25 can be formed.
When the organic functional layer 25 has a plurality of organic layers in addition to the light emitting layer, the layer forming unit R23 laminates each layer of the organic functional layer 25 in the same pattern shape with one continuous mask 54, and the organic functional layer 25 Is preferably formed.
 層形成部R24は、有機機能層25が形成されたフィルム基板20上に、各有機EL素子1の陰極26を形成する。層形成部R24は、陰極26の取出し配線24と一部接するように陰極26を形成する。
 陰極26の形成方法としては、例えば真空蒸着法、スパッター法、イオンプレーティング法等が挙げられる。
The layer forming unit R24 forms the cathode 26 of each organic EL element 1 on the film substrate 20 on which the organic functional layer 25 is formed. The layer forming portion R24 forms the cathode 26 so as to partially contact the extraction wiring 24 of the cathode 26.
Examples of the method for forming the cathode 26 include a vacuum deposition method, a sputtering method, and an ion plating method.
 層形成部R24は、層形成部R21と同様に構成されている。すなわち、層形成部R24は、陰極26のパターン形状に応じた連続マスク54を用いて、材料供給部55により陰極26の材料を供給する以外は、層形成部R21と同様にして、陰極26を形成することができる。
 層形成部R24内は、1×10-6~10Paの範囲内の圧力下にあることが好ましい。
The layer forming portion R24 is configured similarly to the layer forming portion R21. That is, the layer forming portion R24 uses the continuous mask 54 corresponding to the pattern shape of the cathode 26 to supply the cathode 26 in the same manner as the layer forming portion R21, except that the material supplying portion 55 supplies the material of the cathode 26. Can be formed.
The inside of the layer forming portion R24 is preferably under a pressure in the range of 1 × 10 −6 to 10 Pa.
 封止部R30は、陰極26が形成されたフィルム基板20上に、第2ガスバリアー層27を形成する。
 第2ガスバリアー層27の形成方法としては、例えば真空蒸着法、スパッター法、マグネトロンスパッター法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法等が挙げられる。
The sealing part R30 forms the second gas barrier layer 27 on the film substrate 20 on which the cathode 26 is formed.
Examples of the method for forming the second gas barrier layer 27 include a vacuum deposition method, a sputtering method, a magnetron sputtering method, a molecular beam epitaxy method, a cluster ion beam method, an ion plating method, a plasma polymerization method, an atmospheric pressure plasma polymerization method, and a plasma. Examples include CVD, laser CVD, and thermal CVD.
 なかでも、フィルム基板20上の各層間の段差及び凹凸を平面化するように被覆する観点から、ステップカバーレッジ性が良好な方法で形成されることが好ましい。
 ステップカバーレッジ性が良好な方法としては、比較的圧力が高く、原料ガスが拡散しやすいスパッター法、イオンプレーティング法又はCVD法が挙げられる。これらの形成方法を採用することにより、緻密で、ステップカバーレッジ性及びガスバリアー性に優れた第2ガスバリアー層27を形成することができる。
Especially, it is preferable to form by the method with favorable step coverage from a viewpoint which coat | covers so that the level | step difference and unevenness | corrugation between each layer on the film board | substrate 20 may be planarized.
Examples of the method having good step coverage include a sputtering method, an ion plating method, or a CVD method in which the pressure is relatively high and the source gas is easily diffused. By adopting these forming methods, it is possible to form the second gas barrier layer 27 which is dense and excellent in step coverage and gas barrier properties.
 封止部R30は、層形成部R21と同様に構成されている。すなわち、封止部R30は、第2ガスバリアー層27のパターン形状に応じた連続マスク54を用いて、材料供給部55により第2ガスバリアー層27の材料を供給する以外は、層形成部R21と同様にして、第2ガスバリアー層27を形成することができる。 The sealing portion R30 is configured in the same manner as the layer forming portion R21. That is, the sealing unit R30 is a layer forming unit R21 except that the material supplying unit 55 supplies the material of the second gas barrier layer 27 using the continuous mask 54 corresponding to the pattern shape of the second gas barrier layer 27. In the same manner, the second gas barrier layer 27 can be formed.
 なお、封止部R30は、フィルム基板20上の各層21~26を全面的に被覆するように、第2ガスバリアー層27を形成することもできるし、有機EL素子1が図9に示すように配置される場合は前述のようにストライプ状のパターン形状で形成することもできる。 The sealing portion R30 can form the second gas barrier layer 27 so as to cover the respective layers 21 to 26 on the film substrate 20 entirely, and the organic EL element 1 is as shown in FIG. In the case of being arranged in the above, it can be formed in a striped pattern shape as described above.
 封止部R30により第2ガスバリアー層27が形成されたフィルム基板20は、アキューム室R40へ搬送される。 The film substrate 20 on which the second gas barrier layer 27 is formed by the sealing portion R30 is transported to the accumulation chamber R40.
 アキューム室R40は、封止部R30と貼り合わせ部R50間の圧力差を調整する。また、アキューム室R40は、アキュムレーターによりフィルム基板20の搬送速度を調整する。
 圧力及び搬送速度が調整されたフィルム基板20は、アキューム室R40から貼り合わせ部R50へ搬送される。
The accumulation chamber R40 adjusts the pressure difference between the sealing portion R30 and the bonding portion R50. Moreover, the accumulation chamber R40 adjusts the conveyance speed of the film substrate 20 by an accumulator.
The film substrate 20 having the adjusted pressure and conveyance speed is conveyed from the accumulation chamber R40 to the bonding unit R50.
 貼り合わせ部R50は、フィルム基板20の第2ガスバリアー層27に、接着層3を介して保護フィルム4を貼り合わせる。
 貼り合わせ部R50は、図8に示すようにワインダー91、複数の搬送ローラー92及び93を備えている。ワインダー91には、接着層3があらかじめ形成された保護フィルム4のロール体がセットされている。
The bonding portion R50 bonds the protective film 4 to the second gas barrier layer 27 of the film substrate 20 via the adhesive layer 3.
The bonding unit R50 includes a winder 91 and a plurality of transport rollers 92 and 93 as shown in FIG. A roll body of the protective film 4 on which the adhesive layer 3 is formed in advance is set on the winder 91.
 貼り合わせ部R50は、保護フィルム4のロール体をワインダー91により巻き出し、搬送ローラー92及び93によりフィルム基板20と保護フィルム4を重ね合わせて搬送する。搬送ローラー92及び93のニップ圧により、接着層3を介してフィルム基板20と保護フィルム4が接着される。
 保護フィルム4が貼り合わされたフィルム基板20は、第1切断部R60へ搬送される。
The bonding unit R50 unwinds the roll body of the protective film 4 by the winder 91 and superimposes and transports the film substrate 20 and the protective film 4 by the transport rollers 92 and 93. The film substrate 20 and the protective film 4 are bonded via the adhesive layer 3 by the nip pressure of the transport rollers 92 and 93.
The film substrate 20 to which the protective film 4 is bonded is conveyed to the first cutting part R60.
 貼り合わせ部R50は、フィルム基板20上を全面的に被覆するように保護フィルム4を貼り合わせることができる。この場合、保護フィルム4の貼り合わせが容易であり、位置合わせの時間を短縮化し、搬送速度を高速化できるので、生産性が向上する。
 貼り合わせ部R50は、有機EL素子1が図9に示すように配置される場合は、前述のように保護フィルム4をストライプ状に貼り合わせることができる。この場合、保護フィルム4に要するコストを低減することができる。なお、ストライプ状の保護フィルム4は、第2ガスバリアー層27よりもフィルム面が小さいことが好ましい。
The bonding portion R50 can bond the protective film 4 so as to cover the entire surface of the film substrate 20. In this case, bonding of the protective film 4 is easy, the time for alignment can be shortened, and the conveying speed can be increased, so that productivity is improved.
When the organic EL element 1 is disposed as shown in FIG. 9, the bonding portion R50 can bond the protective film 4 in a stripe shape as described above. In this case, the cost required for the protective film 4 can be reduced. The striped protective film 4 preferably has a smaller film surface than the second gas barrier layer 27.
 第1切断部R60は、各有機EL素子1の境界線に沿って、フィルム基板20の第2面20Bに分割溝を形成する。 1st cutting part R60 forms a division | segmentation groove | channel on the 2nd surface 20B of the film board | substrate 20 along the boundary line of each organic EL element 1. As shown in FIG.
 第1切断部R60は、フィルム基板20の厚さ方向において先細るテーパー形状の分割溝を形成することが好ましい。
 分割溝がテーパー形状であると、フィルム基板20を切断分割する際にフィルム基板20に加わる応力を分割溝の先端に集中させることができる。これにより、フィルム基板20の変形を防ぐことができ、変形によって第1ガスバリアー層22及び第2ガスバリアー層27が歪み、損傷することを防ぐことができる。損傷が少ない有機EL素子1は、非発光部分が縮小されても高いガスバリアー性、ひいては発光性能に対する信頼性を維持できる。また、分割溝に沿っての切断分割が容易となり、生産性が向上する。
The first cutting portion R60 preferably forms a tapered dividing groove that tapers in the thickness direction of the film substrate 20.
When the dividing groove is tapered, the stress applied to the film substrate 20 when the film substrate 20 is cut and divided can be concentrated on the tip of the dividing groove. Thereby, the deformation of the film substrate 20 can be prevented, and the deformation of the first gas barrier layer 22 and the second gas barrier layer 27 due to the deformation can be prevented. The organic EL element 1 with little damage can maintain high gas barrier properties and thus reliability with respect to light emission performance even when the non-light emitting portion is reduced. Further, cutting and dividing along the dividing groove is facilitated, and productivity is improved.
 テーパー形状の分割溝は、断面形状がV字状、斜面が曲面状のV字状、階段状又はこれらのうちの2以上を組み合わせた形状であることが好ましい。
 これにより、図5A~図5Gに例示したような端部形状のフィルム基板20を有する有機EL素子1を得ることができる。
The tapered dividing groove preferably has a V-shaped cross section, a V-shaped sloped surface, a stepped shape, or a combination of two or more of these.
Thus, the organic EL element 1 having the end-shaped film substrate 20 illustrated in FIGS. 5A to 5G can be obtained.
 図11A~図11Dは、上記テーパー形状の分割溝の断面形状を例示している。
 図11Aは、断面形状がV字状の分割溝の例を示している。当該分割溝の斜面はフィルム基板20の第1面20Aに対し、傾斜角度θで傾斜している。
 図11B及び図11Cは、断面形状がV字状で傾斜角度θ1又はθ2の分割溝に、さらに異なる傾斜角度θのV字状の分割溝を組み合わせた例を示している。
 図11Dは、斜面が曲面のV字状の断面形状を持つ分割溝の例を示している。当該分割溝の斜面は、異なる傾斜角度θ3~θ5(θ5>θ4>θ3)の斜面からなり、全体として曲面状に形成されている。この分割溝は、分割溝の幅中心で切断分割されるため、切断分割後のフィルム基板20端部の傾斜角度は、傾斜角度θ5ではなく、傾斜角度θとなる。
 図11Eは、断面形状が階段状の分割溝の例を示している。
 図11F及び図11Gは、断面形状が階段状の分割溝の先端に、さらにV字状の分割溝を組み合わせた例を示している。
11A to 11D illustrate the cross-sectional shape of the tapered dividing groove.
FIG. 11A shows an example of a dividing groove having a V-shaped cross section. The slope of the dividing groove is inclined at an inclination angle θ with respect to the first surface 20A of the film substrate 20.
11B and 11C show an example in which a V-shaped divided groove having a different inclination angle θ is combined with a divided groove having a V-shaped cross section and an inclination angle θ1 or θ2.
FIG. 11D shows an example of a dividing groove having a V-shaped cross-section with a curved slope. The slopes of the divided grooves are slopes having different inclination angles θ3 to θ5 (θ5>θ4> θ3), and are formed in a curved surface as a whole. Since this division groove is cut and divided at the center of the width of the division groove, the inclination angle of the end portion of the film substrate 20 after the division is not the inclination angle θ5 but the inclination angle θ.
FIG. 11E shows an example of a dividing groove having a stepped cross section.
FIG. 11F and FIG. 11G show an example in which a V-shaped dividing groove is further combined with the tip of the dividing groove having a step-like cross section.
 特に、図11B~図11Gに示す形状であれば、レーザー光の照射によるフィルム基板20の蒸発成分がフィルム基板20に再付着することを防ぐことができる。 In particular, the shape shown in FIGS. 11B to 11G can prevent the evaporation component of the film substrate 20 from being reattached to the film substrate 20 due to the laser light irradiation.
 分割溝は、切断分割を容易とするため、フィルム基板20の第2面20Bから下地層21の界面付近まで形成されることが好ましい。一方、下地層21を超えて第1ガスバリアー層22まで分割溝が形成されないように、分割溝の深さは、フィルム基板20の厚さの70~100%程度の範囲内であることが好ましい。 The dividing groove is preferably formed from the second surface 20B of the film substrate 20 to the vicinity of the interface of the base layer 21 in order to facilitate cutting and dividing. On the other hand, the depth of the dividing groove is preferably in the range of about 70 to 100% of the thickness of the film substrate 20 so that the dividing groove is not formed from the base layer 21 to the first gas barrier layer 22. .
 第1切断部R60は、レーザー光を照射するか、熱インプリントを行うか又はこれらの組み合わせにより、上記テーパー形状の分割溝を形成することができる。
 レーザー光又は熱インプリントにより、保護フィルム4が貼り合わされたフィルム基板20を一度に完全切断する場合、多くの熱エネルギーを長時間加える必要があるため、フィルム基板20が溶融及び炭化しやすい。炭化及び溶融に起因するフィルム基板20の変形によって、第1ガスバリアー層22及び第2ガスバリアー層27が歪み、損傷することがある。しかし、分割溝の形成に必要な熱エネルギーは、完全切断に必要な熱エネルギーに比較して十分に小さく、分割溝の形成によって、フィルム基板20の炭化及び溶融はほとんど生じない。そのため、上述したような第1ガスバリアー層22及び第2ガスバリアー層27の損傷も回避することができる。
The first cutting portion R60 can form the tapered dividing grooves by irradiating laser light, performing thermal imprinting, or a combination thereof.
When the film substrate 20 to which the protective film 4 is bonded is completely cut at once by laser light or thermal imprinting, it is necessary to apply a large amount of heat energy for a long time, so that the film substrate 20 is easily melted and carbonized. Due to the deformation of the film substrate 20 due to carbonization and melting, the first gas barrier layer 22 and the second gas barrier layer 27 may be distorted and damaged. However, the thermal energy required for forming the dividing grooves is sufficiently smaller than the heat energy required for complete cutting, and the formation of the dividing grooves hardly causes carbonization and melting of the film substrate 20. Therefore, damage to the first gas barrier layer 22 and the second gas barrier layer 27 as described above can be avoided.
 レーザー光を照射する場合、第1切断部R60は、図12に示すように、フィルム基板20の第2面20Bと対向する位置に配置されたレーザー照射部61を備え、当該レーザー照射部61により分割溝を形成する。 In the case of irradiating laser light, the first cutting part R60 includes a laser irradiation part 61 disposed at a position facing the second surface 20B of the film substrate 20, as shown in FIG. A dividing groove is formed.
 レーザー照射部61は、フィルム基板20の第2面20Bにレーザー光を照射してフィルム基板20をエッチングし、分割溝を形成する。レーザー光の照射によれば、断面形状がV字状の分割溝を形成することができる。
 レーザー照射部61は、レーザー出力又は照射時間を異ならせて、形成する分割溝の幅、深さ及び斜面の傾斜角度を調整することができる。
 また、レーザー照射部61は、フィルム基板20及び下地層21の材料に応じて、照射するレーザー光の波長を異ならせることができる。例えば、フィルム基板20と下地層21の吸収波長が異なる場合、レーザー光の波長を、下地層21よりもフィルム基板20側に多くエネルギーが吸収される波長に合わせることで、下地層21に分割溝が形成される速度を遅らせることができる。レーザー光のエネルギーが第1ガスバリアー層22に到達する前に、レーザー光の照射を停止することができ、損傷を防ぐ効果が得られる。
The laser irradiation unit 61 irradiates the second surface 20 </ b> B of the film substrate 20 with laser light to etch the film substrate 20, thereby forming divided grooves. By irradiation with laser light, a dividing groove having a V-shaped cross section can be formed.
The laser irradiation unit 61 can adjust the width and depth of the division grooves to be formed and the inclination angle of the slope by changing the laser output or the irradiation time.
Moreover, the laser irradiation part 61 can change the wavelength of the laser beam to irradiate according to the material of the film substrate 20 and the base layer 21. For example, when the absorption wavelengths of the film substrate 20 and the underlayer 21 are different, the wavelength of the laser beam is adjusted to a wavelength that absorbs more energy on the side of the film substrate 20 than the underlayer 21, thereby dividing the groove into the underlayer 21. Can be slowed. Before the laser beam energy reaches the first gas barrier layer 22, the irradiation of the laser beam can be stopped, and an effect of preventing damage can be obtained.
 レーザー照射部61は、複数の段階に分けて断面形状がV字状の分割溝を形成し、各段階で形成する分割溝の斜面の傾斜角度を異ならせることにより、断面形状がV字状の分割溝の斜面を曲面状に形成することができる。
 例えば、レーザー照射部61は、3段階に分けてレーザー光を照射し、段階ごとにレーザー出力を大きくし、レーザー光のスポット径を小さくする。これにより、図11Dに示すように、傾斜角度がそれぞれθ3、θ4及びθ5(θ5>θ4>θ3)の斜面を連続して形成することができ、全体として曲面状の斜面を持つV字状の分割溝とすることができる。
The laser irradiation unit 61 is divided into a plurality of stages to form a split groove having a V-shaped cross section, and the slope of the inclined surface of the split groove formed at each stage is varied to thereby have a V-shaped cross section. The slope of the dividing groove can be formed into a curved surface.
For example, the laser irradiation unit 61 irradiates laser light in three stages, increases the laser output for each stage, and reduces the spot diameter of the laser light. As a result, as shown in FIG. 11D, slopes having inclination angles of θ3, θ4, and θ5 (θ5>θ4> θ3) can be continuously formed, and a V-shaped shape having a curved slope as a whole. It can be a dividing groove.
 レーザー照射部61が照射するレーザー光としては、例えばエキシマレーザー、炭酸ガス(CO)レーザー、YAGレーザー、Nd:YAGレーザー、ルビーレーザー、YVO4レーザー、半導体レーザー等を用いることができる。 As the laser light emitted by the laser irradiation unit 61, for example, an excimer laser, a carbon dioxide (CO 2 ) laser, a YAG laser, an Nd: YAG laser, a ruby laser, a YVO 4 laser, a semiconductor laser, or the like can be used.
 第1切断部R60は、一つのレーザー照射部61を各境界線に合わせて移動して分割溝を形成することもできるし、各境界線上に複数のレーザー照射部61を配置して複数の分割溝を並行して形成することもできる。 The first cutting part R60 can move the single laser irradiation part 61 according to each boundary line to form a dividing groove, or can arrange a plurality of laser irradiation parts 61 on each boundary line to make a plurality of divisions. The grooves can also be formed in parallel.
 熱インプリントを行う場合、第1切断部R60は、図13に示すように、フィルム基板20の第2面20Bと対向する位置に配置された成形部62を備えて、当該成形部62により分割溝を形成する。
 成形部62は、形成する分割溝の形状に応じた突起部を有する金型を加熱して、当該金型をフィルム基板20の第2面20Bに押し当てて分割溝を形成する。
 熱インプリントによれば、金型の突起部の形状を変えることにより、任意の断面形状の分割溝を形成することが可能である。
When performing thermal imprinting, the first cutting part R60 includes a molding part 62 disposed at a position facing the second surface 20B of the film substrate 20 as shown in FIG. Grooves are formed.
The molding unit 62 heats a mold having a protrusion corresponding to the shape of the divided groove to be formed, and presses the mold against the second surface 20B of the film substrate 20 to form the divided groove.
According to the thermal imprint, it is possible to form a division groove having an arbitrary cross-sectional shape by changing the shape of the protrusion of the mold.
 成形部62が用いる金型は、ガラス製、セラミック製又は金属製であることができる。
 金型の加熱温度は、フィルム基板20に応じて適宜選択すればよいが、一般的には20~200℃の範囲内である。
 金型は、フィルム基板20からの剥離性を高めるため、フッ素コーティング等の表面処理が施されていてもよい。
The mold used by the molding unit 62 can be made of glass, ceramic, or metal.
The heating temperature of the mold may be appropriately selected according to the film substrate 20, but is generally in the range of 20 to 200 ° C.
The mold may be subjected to a surface treatment such as fluorine coating in order to improve the peelability from the film substrate 20.
 第1切断部R60は、レーザー光の照射と熱インプリントを組み合わせて、複数の段階に分けて分割溝を形成し、各段階で形成する分割溝の断面形状を異ならせて、分割溝の断面形状をV字状、斜面が曲面状のV字状又は階段状のうちの2以上を組み合わせた形状とすることができる。この場合、第1切断部R60は、レーザー照射部61及び成形部62の両方を備え、それぞれにより複数の段階的に分けて分割溝を形成する。 The first cutting portion R60 combines laser light irradiation and thermal imprinting to form divided grooves in a plurality of stages, and the sectional shape of the divided grooves formed in each stage is different. The shape can be a V shape, a V shape having a curved slope, or a shape combining two or more of steps. In this case, the 1st cutting part R60 is provided with both the laser irradiation part 61 and the shaping | molding part 62, and forms a division | segmentation groove | channel divided into several steps by each.
 例えば、成形部62により断面形状が階段状の分割溝を形成した後、レーザー照射部61により断面形状がV字状の分割溝を形成することにより、図11F又は図11Gに示すように、階段状の分割溝の先端がV字状である分割溝を形成することができる。
 任意の形状の分割溝を1度に形成できる熱インプリントと組み合わせることにより、レーザー光の照射を1回のみとすることができ、生産性が高いとともに、レーザー光による第1ガスバリアー層22の損傷を抑えることができる。また、レーザー光の照射単独で分割溝を形成する場合に比較してタクトタイムを短縮することができ、生産性が向上する。一方、レーザー光の照射によれば、熱インプリントよりも、分割溝を精度良く形成できる。よって、熱インプリントにレーザー光の照射を組み合わせることにより、下地層21の界面ぎりぎりまで溝を形成したり、精細な溝形状を形成したりすることができる。
For example, after forming a dividing groove having a step shape in cross section by the forming portion 62, a dividing groove having a V shape in cross section is formed by the laser irradiation portion 61, thereby forming a staircase as shown in FIG. 11F or FIG. 11G. A dividing groove having a V-shaped tip can be formed.
Combining with the thermal imprint capable of forming the dividing groove of any shape at a time, the laser beam can be irradiated only once, the productivity is high, and the first gas barrier layer 22 by the laser beam is high. Damage can be suppressed. Further, the tact time can be shortened as compared with the case where the division grooves are formed by laser light irradiation alone, and the productivity is improved. On the other hand, by irradiation with laser light, the dividing grooves can be formed with higher accuracy than thermal imprinting. Therefore, by combining laser light irradiation with thermal imprinting, it is possible to form a groove up to the boundary of the base layer 21 or to form a fine groove shape.
 第1切断部R60は、フィルム基板20上を全面的に被覆するように保護フィルム4が貼り合わされている場合、フィルム基板20の第2面20Bだけでなく、各有機EL素子1の境界線に沿って、保護フィルム4の第2面4Bにも同様の分割溝を形成することができる。
 各分割溝により、切断分割がより容易となる。また、フィルム基板20と保護フィルム4を並行して切断することができ、生産性が向上する。切断分割時の第1ガスバリアー層22及び第2ガスバリアー層27の損傷が少ないため、損傷を考慮することなく、フィルム基板20における各有機EL素子1間の距離を縮小することができ、単位面積あたりの有機EL素子1の製造量が増え、コストを低減することができる。
When the protective film 4 is bonded so as to cover the entire surface of the film substrate 20, the first cutting portion R <b> 60 is not only on the second surface 20 </ b> B of the film substrate 20 but also on the boundary line of each organic EL element 1. Along the second surface 4B of the protective film 4, a similar dividing groove can be formed.
Each dividing groove makes cutting and dividing easier. Moreover, the film substrate 20 and the protective film 4 can be cut | disconnected in parallel, and productivity improves. Since the first gas barrier layer 22 and the second gas barrier layer 27 are less damaged at the time of cutting and dividing, the distance between the organic EL elements 1 in the film substrate 20 can be reduced without considering the damage. The production amount of the organic EL element 1 per area increases, and the cost can be reduced.
 保護フィルム4の第2面4Bにも分割溝を形成する場合、第1切断部R60は、フィルム基板20の第2面20B及び保護フィルム4の第2面4Bのそれぞれに対向する位置にレーザー照射部61又は成形部62を備えて、第2面20B及び第2面4Bの分割溝を並行して形成することができる。 When the dividing groove is also formed on the second surface 4B of the protective film 4, the first cutting portion R60 irradiates the laser beam at positions facing the second surface 20B of the film substrate 20 and the second surface 4B of the protective film 4, respectively. The part 61 or the molding part 62 is provided, and the dividing grooves of the second surface 20B and the second surface 4B can be formed in parallel.
 また、第1切断部R60は、第2ガスバリアー層27がフィルム基板20上に全面的に形成されている場合、第2ガスバリアー層27まで分割溝が到達しないように、保護フィルム4のみに分割溝を形成することが好ましい。接着層3にも分割溝を形成する場合には、接着層3の厚さの30~90%の範囲内とする等、分割溝の先端から第2ガスバリアー層27まで十分な距離を設けることが好ましい。 Further, the first cutting portion R60 is formed only on the protective film 4 so that the dividing groove does not reach the second gas barrier layer 27 when the second gas barrier layer 27 is formed on the entire surface of the film substrate 20. It is preferable to form dividing grooves. When the dividing groove is also formed in the adhesive layer 3, a sufficient distance from the tip of the dividing groove to the second gas barrier layer 27 is provided, for example, within a range of 30 to 90% of the thickness of the adhesive layer 3. Is preferred.
 第2切断部R70は、保護フィルム4が貼り合わされたフィルム基板20を、第1切断部R70により形成された分割溝に沿って切断分割し、複数の有機EL素子1を得る。
 第2切断部R70は、フィルム基板20にエアーを吹き付けることにより、切断分割することができる。この場合、フィルム基板20に非接触で切断分割を行うことができる。また、第2切断部R70は、有機EL素子1ごとにフィルム基板20をエアー吸引するか又は挟持して引っ張ることにより、切断分割することもできる。このような切断分割により、簡易な構成で切断分割することができ、高い生産性が得られる。
The second cutting part R70 cuts and divides the film substrate 20 on which the protective film 4 is bonded along the dividing groove formed by the first cutting part R70 to obtain a plurality of organic EL elements 1.
The second cutting part R70 can be cut and divided by blowing air onto the film substrate 20. In this case, it is possible to perform cutting division on the film substrate 20 without contact. Further, the second cutting part R70 can be cut and divided by sucking the film substrate 20 for each organic EL element 1 or by holding and pulling it. By such cutting and dividing, cutting and dividing can be performed with a simple configuration, and high productivity can be obtained.
 エアーの吹付けにより切断分割する場合、第2切断部R70は、図14に示すようにエアー吹付け部71を備えた構成とすることができる。
 エアー吹付け部71は、フィルム基板20に形成された分割溝にエアーを吹付けて、その風圧によりフィルム基板20を有機EL素子1ごとに切断分割する。
In the case of cutting and dividing by air blowing, the second cutting portion R70 can be configured to include an air blowing portion 71 as shown in FIG.
The air blowing unit 71 blows air to the dividing grooves formed in the film substrate 20, and cuts and divides the film substrate 20 for each organic EL element 1 by the wind pressure.
 エアー吹付け部71の下方には、回収ボックス78が設けられている。切断分割により得られた各有機EL素子1は、この回収ボックス78に収容される。
 有機EL素子1が切断された残りのフィルム基板20は、ワインダー102によって巻き取られる。
A collection box 78 is provided below the air blowing unit 71. Each organic EL element 1 obtained by cutting and dividing is accommodated in the collection box 78.
The remaining film substrate 20 from which the organic EL element 1 has been cut is wound up by a winder 102.
 エアー吸引により切断分割する場合、第2切断部R70は、図15に示すように吸引アーム72を備えた構成とすることができる。
 吸引アーム72は、エアーを吸引して、有機EL素子ごとにフィルム基板20を吸着して引っ張り力を加え、切断分割する。吸引アーム72は、切断分割により得られた有機EL素子1を図示しない回収ボックス内に移動する。
 有機EL素子1が切断された残りのフィルム基板20は、ワインダー102によって巻き取られる。
When cutting and dividing by air suction, the second cutting part R70 can be configured to include a suction arm 72 as shown in FIG.
The suction arm 72 sucks air, sucks the film substrate 20 for each organic EL element, applies a pulling force, and cuts and divides the film substrate 20. The suction arm 72 moves the organic EL element 1 obtained by cutting and dividing into a collection box (not shown).
The remaining film substrate 20 from which the organic EL element 1 has been cut is wound up by a winder 102.
 フィルム基板20を挟持して切断分割する場合、第2切断部R70は、図16に示すようにローラー74~76並びに搬送ベルト77を備えた構成とすることができる。
 ローラー75は、搬送方向下流に位置するローラー76とともに搬送ベルト77を巻き回して、搬送ベルト77を回動させている。搬送ベルト77は、ベルト面に吸気孔が設けられ、当該ベルト面の内側に配置されたエアー吸引部を備えている。搬送ベルト77は、エアー吸引部によりエアーを吸引し、フィルム基板20を吸着して搬送することができる。
When the film substrate 20 is sandwiched and cut and divided, the second cutting portion R70 can be configured to include rollers 74 to 76 and a conveyor belt 77 as shown in FIG.
The roller 75 rotates the conveyance belt 77 by winding the conveyance belt 77 together with the roller 76 positioned downstream in the conveyance direction. The conveyor belt 77 is provided with an air suction portion that is provided with an intake hole on the belt surface and is disposed inside the belt surface. The transport belt 77 can suck air by an air suction unit and suck and transport the film substrate 20.
 一対のローラー74及び75は、有機EL素子1ごとにフィルム基板20を挟持して、フィルム基板20の搬送速度より早い搬送速度で搬送して引っ張り力を加える。
 ローラー74及び75により引っ張り力が加えられたフィルム基板20を、搬送ベルト77が吸着してさらに引っ張り力を加え、有機EL素子1単位に切断分割する。なお、搬送ベルト77がフィルム基板20を吸着できるのであれば、ベルト表面に粘着層が設けられた構成であってもよい。
 切断分割されて得られた有機EL素子1は、搬送ベルト77により回収ボックス78内へ搬送される。
 有機EL素子1が切断された残りのフィルム基板20は、ローラー74により搬送されてワインダー102によって巻き取られる。
The pair of rollers 74 and 75 sandwich the film substrate 20 for each organic EL element 1 and transport it at a transport speed faster than the transport speed of the film substrate 20 to apply a tensile force.
The film substrate 20 to which the tensile force is applied by the rollers 74 and 75 is adsorbed by the conveying belt 77 and further applied with a tensile force, and is cut and divided into one unit of the organic EL element. In addition, as long as the conveyance belt 77 can adsorb | suck the film substrate 20, the structure by which the adhesion layer was provided in the belt surface may be sufficient.
The organic EL element 1 obtained by cutting and dividing is transported into the collection box 78 by the transport belt 77.
The remaining film substrate 20 from which the organic EL element 1 has been cut is conveyed by a roller 74 and taken up by a winder 102.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
〔有機EL素子S1の製造〕
 厚さ125μmのポリエチレンテレフタレート(PET)フィルムのロール体をフィルム基板20として用いた。このフィルム基板20の鉛筆硬度は、HBであった。
 次に、アクリル樹脂に平均粒径20nmの酸化ケイ素フィラーを混合した塗布液を調製し、当該塗布液をフィルム基板20上に塗布して、厚さ5μmの下地層21を形成した。下地層21の鉛筆硬度は、2H~3Hであった。
 さらに、ケイ素Siに対する酸素Oの原子数比が1.5~2.0の範囲内にある酸化ケイ素SiOを用いて気相成長法により製膜し、下地層21上に第1ガスバリアー層22を形成した。第1ガスバリアー層22の厚さは300nmであった。
[Manufacture of organic EL element S1]
A roll of a polyethylene terephthalate (PET) film having a thickness of 125 μm was used as the film substrate 20. The pencil hardness of the film substrate 20 was HB.
Next, a coating solution in which an acrylic resin was mixed with a silicon oxide filler having an average particle diameter of 20 nm was prepared, and the coating solution was applied on the film substrate 20 to form a base layer 21 having a thickness of 5 μm. The pencil hardness of the underlayer 21 was 2H to 3H.
Further, the first gas barrier layer is formed on the underlayer 21 by depositing a silicon oxide SiO x having a ratio of oxygen O to silicon Si in the range of 1.5 to 2.0 by vapor phase growth. 22 was formed. The thickness of the first gas barrier layer 22 was 300 nm.
 次に、第1ガスバリアー層22上に、複数の有機EL素子の陽極23、取出し配線24、有機機能層25、陰極26を順次形成した。陽極23として厚さ150nmのITO層を高周波(RF:Radio Frequency)スパッター法により形成し、取出し配線24として、厚さ300nmのアルミニウム層を形成した。また、有機機能層25として、正孔注入層(銅フタロシアニン(CuPc)、厚さ30nm)/正孔輸送層(NPD、厚さ100nm)/蛍光系青色発光層(厚さ30nm)/電子輸送層(アルミニウムキノレート(Alq)、厚さ30nm)/電子注入層(フッ化リチウム、厚さ1nm)を形成し、陰極26として、厚さ200nmのアルミニウム層を形成した。さらに、それら各層を被覆するように、気相成長法で窒化ケイ素(SiN)層を形成し、厚さ300nmの第2ガスバリアー層27を形成した。
 次に、図17Aに示すように、第2ガスバリアー層27上に、あらかじめ接着層3が設けられたストライプ状の保護フィルム4を貼り合わせた。
Next, on the first gas barrier layer 22, an anode 23, an extraction wiring 24, an organic functional layer 25, and a cathode 26 of a plurality of organic EL elements were sequentially formed. An ITO layer having a thickness of 150 nm was formed as the anode 23 by a radio frequency (RF) sputtering method, and an aluminum layer having a thickness of 300 nm was formed as the extraction wiring 24. Further, as the organic functional layer 25, a hole injection layer (copper phthalocyanine (CuPc), thickness 30 nm) / hole transport layer (NPD, thickness 100 nm) / fluorescent blue light emitting layer (thickness 30 nm) / electron transport layer (Aluminum quinolate (Alq 3 ), thickness 30 nm) / electron injection layer (lithium fluoride, thickness 1 nm) was formed, and an aluminum layer 200 nm thick was formed as the cathode 26. Further, a silicon nitride (SiN) layer was formed by vapor deposition so as to cover each of these layers, and a second gas barrier layer 27 having a thickness of 300 nm was formed.
Next, as shown in FIG. 17A, a stripe-shaped protective film 4 provided with the adhesive layer 3 in advance was bonded onto the second gas barrier layer 27.
 次に、図17Bに示すように、フィルム基板20の第2面20Bに、レーザー照射部61により炭酸ガスレーザー光を照射してフィルム基板20をエッチングし、斜面の傾斜角度が約45°のV字状の分割溝を形成した。照射時、炭酸ガスレーザー光を集光レンズで集光しながら、各有機EL素子の境界線上を300m/minの走査速度で走査した。炭酸ガスレーザー光は、波長10.5μm、レーザー出力30W、集光後のスポット径50μmであった。下地層21の界面付近まで分割溝が形成されるように、炭酸ガスレーザー光の照射時間を調整した。 Next, as shown in FIG. 17B, the second surface 20B of the film substrate 20 is irradiated with a carbon dioxide laser beam by the laser irradiation unit 61 to etch the film substrate 20, and the slope angle of the inclined surface is about 45 °. A character-shaped dividing groove was formed. During irradiation, carbon dioxide laser light was condensed by a condenser lens, and the boundary line of each organic EL element was scanned at a scanning speed of 300 m / min. The carbon dioxide laser beam had a wavelength of 10.5 μm, a laser output of 30 W, and a spot diameter after focusing of 50 μm. The irradiation time of the carbon dioxide laser beam was adjusted so that the division grooves were formed up to the vicinity of the interface of the base layer 21.
 分割溝を形成後、図17Cに示すように、エアー吹付け部71により分割溝にエアーを吹き付けて、分割溝に沿ってフィルム基板20を切断分割し、図17Dに示すように複数の有機EL素子S1を得た。
 各有機EL素子S1は、フィルム基板20の第2面20Bの面積が第1面20Aよりも小さく、フィルム基板20の端部形状は、図5Aに示すように傾斜角度θが約45°の斜面状であった。
After forming the dividing grooves, as shown in FIG. 17C, air is blown to the dividing grooves by the air blowing unit 71, and the film substrate 20 is cut and divided along the dividing grooves. As shown in FIG. Element S1 was obtained.
Each organic EL element S1 has an area of the second surface 20B of the film substrate 20 smaller than that of the first surface 20A, and the end shape of the film substrate 20 is an inclined surface having an inclination angle θ of about 45 ° as shown in FIG. 5A. It was in the shape.
〔有機EL素子S2の製造〕
 上記有機EL素子S1と同様にして、フィルム基板20上に複数の有機EL素子の陽極23、取出し配線24、有機機能層25、陰極26及び第2ガスバリアー層27を形成し、保護フィルム4を貼り合わせた。
[Manufacture of organic EL element S2]
Similarly to the organic EL element S1, the anode 23, the extraction wiring 24, the organic functional layer 25, the cathode 26, and the second gas barrier layer 27 of the plurality of organic EL elements are formed on the film substrate 20, and the protective film 4 is formed. Pasted together.
 貼り合わせ後、図18Aに示すように、成形部62により、70℃の温度雰囲気下で、フィルム基板20の第2面20BにSUS製の金型を押し当てて、断面形状がV字状の分割溝を形成した。金型は、断面形状がV字状である突起部を有し、当該突起部の高さは150μm、幅は100μmであった。分割溝の形成時、この突起部の高さ80%程度までがフィルム基板20に埋没するよう金型を押し当てて、深さが120μm程度の分割溝を形成した。 After bonding, as shown in FIG. 18A, a SUS mold is pressed against the second surface 20 </ b> B of the film substrate 20 in a temperature atmosphere of 70 ° C. by the molding unit 62, and the cross-sectional shape is V-shaped. A dividing groove was formed. The mold had a protrusion having a V-shaped cross section, and the protrusion had a height of 150 μm and a width of 100 μm. At the time of forming the dividing groove, the mold was pressed so that up to about 80% of the height of the protrusion was buried in the film substrate 20 to form a dividing groove having a depth of about 120 μm.
 分割溝の形成後、図18Bに示すように金型を離型した。そして、上記有機EL素子S1と同様にしてエアーを吹き付け、分割溝に沿ってフィルム基板20を切断分割した。切断分割により、図18Cに示すように複数の有機EL素子S2を得た。
 各有機EL素子S2は、フィルム基板20の第2面20Bの面積が第1面20Aよりも小さく、フィルム基板20の端部形状が有機EL素子S1と同じ傾斜角度θが約70°の斜面状であった。
After forming the dividing grooves, the mold was released as shown in FIG. 18B. Then, air was blown in the same manner as the organic EL element S1, and the film substrate 20 was cut and divided along the dividing grooves. By cutting and dividing, a plurality of organic EL elements S2 were obtained as shown in FIG. 18C.
Each organic EL element S2 has an inclined surface shape in which the area of the second surface 20B of the film substrate 20 is smaller than that of the first surface 20A, the end shape of the film substrate 20 is the same as the organic EL element S1, and the inclination angle θ is about 70 °. Met.
〔有機EL素子S3の製造〕
 上記有機EL素子S1と同様にして、フィルム基板20上に複数の有機EL素子の陽極23、取出し配線24、有機機能層25、陰極26及び第2ガスバリアー層27を形成し、保護フィルム4を貼り合わせた。
[Manufacture of organic EL element S3]
Similarly to the organic EL element S1, the anode 23, the extraction wiring 24, the organic functional layer 25, the cathode 26, and the second gas barrier layer 27 of the plurality of organic EL elements are formed on the film substrate 20, and the protective film 4 is formed. Pasted together.
 貼り合わせ後、図19Aに示すように、レーザー照射部61によりフィルム基板20の第2面20Bに炭酸ガスレーザー光を照射して、フィルム基板20の厚さの70%程度をエッチングし、斜面の傾斜角度が約45°のV字状の分割溝を形成した。照射時、炭酸ガスレーザー光を集光レンズで集光しながら、各有機EL素子の境界線上を300m/minの走査速度で走査した。炭酸ガスレーザー光は、波長10.5μm、レーザー出力30W、集光後のスポット径50μmであった。 After bonding, as shown in FIG. 19A, the laser irradiation unit 61 irradiates the second surface 20B of the film substrate 20 with carbon dioxide laser light, and etches about 70% of the thickness of the film substrate 20, thereby A V-shaped dividing groove having an inclination angle of about 45 ° was formed. During irradiation, carbon dioxide laser light was condensed by a condenser lens, and the boundary line of each organic EL element was scanned at a scanning speed of 300 m / min. The carbon dioxide laser beam had a wavelength of 10.5 μm, a laser output of 30 W, and a spot diameter after focusing of 50 μm.
 次に、図19Bに示すように、集光レンズを変更してレーザー照射部61により下地層21の界面付近までエッチングし、斜面の傾斜角度が約70°のV字状の分割溝を形成した。
 分割溝の形成後、上記有機EL素子S1と同様にしてエアーを吹き付け、分割溝に沿ってフィルム基板20を切断分割し、図19Cに示すように複数の有機EL素子S3を得た。
 各有機EL素子S3は、フィルム基板20の第2面20Bの面積が第1面20Aよりも小さく、フィルム基板20の端部形状は、図5Cに示すように傾斜角度がそれぞれ約45°及び約70°の斜面状を組み合わせた形状であった。
Next, as shown in FIG. 19B, the condensing lens was changed, and etching was performed to the vicinity of the interface of the base layer 21 by the laser irradiation unit 61 to form a V-shaped divided groove having an inclined angle of about 70 °. .
After forming the dividing grooves, air was blown in the same manner as in the organic EL element S1, and the film substrate 20 was cut and divided along the dividing grooves to obtain a plurality of organic EL elements S3 as shown in FIG. 19C.
Each organic EL element S3 has an area of the second surface 20B of the film substrate 20 smaller than that of the first surface 20A, and the end shape of the film substrate 20 has an inclination angle of about 45 ° and about 45 °, respectively, as shown in FIG. 5C. The shape was a combination of 70 ° slopes.
〔有機EL素子S4の製造〕
 上記有機EL素子S1と同様にして、フィルム基板20上に複数の有機EL素子の陽極23、取出し配線24、有機機能層25、陰極26及び第2ガスバリアー層27を形成し、保護フィルム4を貼り合わせた。
[Manufacture of organic EL element S4]
Similarly to the organic EL element S1, the anode 23, the extraction wiring 24, the organic functional layer 25, the cathode 26, and the second gas barrier layer 27 of the plurality of organic EL elements are formed on the film substrate 20, and the protective film 4 is formed. Pasted together.
 貼り合わせ後、図20Aに示すように、成形部62により、70℃の温度雰囲気下で、フィルム基板20の第2面20BにSUS製の金型を押し当てて、フィルム基板20の厚さの70%程度の分割溝を形成した。金型は、高さが150μm、幅が100μmである階段状の突起部を有し、形成された分割溝は断面形状が階段状であった。分割溝の形成時、この突起部の高さ80%程度までがフィルム基板20に埋没するよう金型を押し当てて、深さが120μm程度の分割溝を形成した。 After the bonding, as shown in FIG. 20A, a molding unit 62 presses a SUS mold against the second surface 20B of the film substrate 20 in a temperature atmosphere of 70 ° C. About 70% of the dividing grooves were formed. The mold had a stepped protrusion having a height of 150 μm and a width of 100 μm, and the formed dividing groove had a stepped cross section. At the time of forming the dividing groove, the mold was pressed so that up to about 80% of the height of the protrusion was buried in the film substrate 20 to form a dividing groove having a depth of about 120 μm.
 さらに、図20Bに示すようにレーザー照射部61により炭酸ガスレーザー光を照射し、当該レーザー光を集光レンズで階段状の分割溝の先端に集光させながら、分割溝内を300mm/分の走査速度で走査した。炭酸ガスレーザー光は、光波長が10.5μm、出力30W、集光後のスポット径50μmであった。この光走査により下地層21の界面付近までフィルム基板20をエッチングし、階段状の分割溝の先端部分を、斜面の傾斜角度が約45°のV字状に加工した。 Further, as shown in FIG. 20B, carbon dioxide laser light is irradiated by the laser irradiation unit 61, and the laser light is focused on the tip of the step-shaped split groove by a condenser lens, and the inside of the split groove is 300 mm / min. Scanned at scan speed. The carbon dioxide laser beam had a light wavelength of 10.5 μm, an output of 30 W, and a spot diameter of 50 μm after focusing. By this optical scanning, the film substrate 20 was etched to the vicinity of the interface of the base layer 21, and the tip portion of the step-shaped dividing groove was processed into a V shape with an inclined angle of about 45 °.
 分割溝の形成後、上記有機EL素子S1と同様にしてエアーを吹き付け、分割溝に沿ってフィルム基板20を切断分割し、図20Cに示すように複数の有機EL素子S4を得た。
 各有機EL素子S4は、フィルム基板20の第2面20Bの面積が第1面20Aよりも小さく、フィルム基板20の端部形状は、図5Gに示すよう階段状と斜面状を組み合わせた形状であった。また、フィルム基板20の端部の傾斜角度θは、約45°であった。
After forming the dividing grooves, air was blown in the same manner as in the organic EL element S1, and the film substrate 20 was cut and divided along the dividing grooves to obtain a plurality of organic EL elements S4 as shown in FIG. 20C.
Each organic EL element S4 has an area of the second surface 20B of the film substrate 20 smaller than that of the first surface 20A, and the end shape of the film substrate 20 is a shape combining a stepped shape and a sloped shape as shown in FIG. 5G. there were. Further, the inclination angle θ of the end portion of the film substrate 20 was about 45 °.
〔有機EL素子S5の製造〕
 上記有機EL素子S1と同様にして、フィルム基板20上に複数の有機EL素子の陽極23、取出し配線24、有機機能層25、陰極26及び第2ガスバリアー層27を形成した。次に、図21Aに示すように、フィルム基板20上に形成された各第2ガスバリアー層27を全面的に覆うように、保護フィルム4を貼り合わせた。
[Manufacture of organic EL element S5]
A plurality of organic EL element anodes 23, extraction wirings 24, organic functional layers 25, cathodes 26, and second gas barrier layers 27 were formed on the film substrate 20 in the same manner as the organic EL element S <b> 1. Next, as shown in FIG. 21A, the protective film 4 was bonded so as to cover the entire surface of each second gas barrier layer 27 formed on the film substrate 20.
 貼り合わせ後、図21Bに示すように、フィルム基板20の第2面20B及び保護フィルム4の第2面4Bのそれぞれに、集光レンズで集光しながら、300mm/分の走査速度で炭酸ガスレーザー光を照射した。炭酸ガスレーザー光は、光波長が10.5μm、出力30W、集光後のスポット径50μmであった。この光走査により、下地層21の界面付近までフィルム基板20をエッチングし、取出し配線24の界面付近まで保護フィルム4及び接着層3をエッチングして、それぞれ断面形状がV字状の分割溝を形成した。分割溝の傾斜角度θは、約45°であった。 After the bonding, as shown in FIG. 21B, carbon dioxide gas is condensed at the scanning speed of 300 mm / min on each of the second surface 20B of the film substrate 20 and the second surface 4B of the protective film 4 with a condensing lens. Laser light was irradiated. The carbon dioxide laser beam had a light wavelength of 10.5 μm, an output of 30 W, and a spot diameter of 50 μm after focusing. By this optical scanning, the film substrate 20 is etched to the vicinity of the interface of the base layer 21, and the protective film 4 and the adhesive layer 3 are etched to the vicinity of the interface of the take-out wiring 24 to form divided grooves having a V-shaped cross section, respectively did. The inclination angle θ of the dividing groove was about 45 °.
 分割溝の形成後、上記有機EL素子S1と同様にしてエアーを吹き付け、分割溝に沿ってフィルム基板20を切断分割し、図21Cに示すように複数の有機EL素子S5を得た。
 各有機EL素子S5は、フィルム基板20の第2面20Bの面積が第1面20Aよりも小さく、フィルム基板20の端部形状は、図5Aに示すように斜面状であり、傾斜角度θが約45°であった。また、保護フィルム4の第2面4Bの面積が第1面4Aよりも小さく、保護フィルム4の端部形状は、フィルム基板20と同様に傾斜角度が約45°の斜面状であった。
After forming the dividing grooves, air was blown in the same manner as in the organic EL element S1, and the film substrate 20 was cut and divided along the dividing grooves to obtain a plurality of organic EL elements S5 as shown in FIG. 21C.
Each organic EL element S5 has an area of the second surface 20B of the film substrate 20 smaller than that of the first surface 20A, and the end shape of the film substrate 20 is an inclined surface as shown in FIG. It was about 45 °. Further, the area of the second surface 4B of the protective film 4 was smaller than that of the first surface 4A, and the end shape of the protective film 4 was an inclined surface with an inclination angle of about 45 °, like the film substrate 20.
〔有機EL素子S6の製造〕
 上記有機EL素子S5と同様にして、フィルム基板20上に複数の有機EL素子の陽極23、取出し配線24、有機機能層25、陰極26及び第2ガスバリアー層27を形成し、接着層3及び保護フィルム4を貼り合わせた。また、上記有機EL素子S5と同様にして、フィルム基板20の第2面20B及び保護フィルム4の第2面4Bのそれぞれに分割溝を形成した。
[Manufacture of organic EL element S6]
Similarly to the organic EL element S5, the anode 23, the extraction wiring 24, the organic functional layer 25, the cathode 26, and the second gas barrier layer 27 of the plurality of organic EL elements are formed on the film substrate 20, and the adhesive layer 3 and The protective film 4 was bonded together. Further, in the same manner as the organic EL element S <b> 5, division grooves were formed on each of the second surface 20 </ b> B of the film substrate 20 and the second surface 4 </ b> B of the protective film 4.
 分割溝の形成後、図16に示すように一対のローラー74及び75間にフィルム基板20を通した。ローラー74及び75によりフィルム基板20を挟持しながら、搬送ベルト77によりフィルム基板20を有機EL素子単位で吸引して引っ張り、切断分割した。この切断分割により、複数の有機EL素子S6を得た。
 各有機EL素子S6は、上記有機EL素子S5と同様の形状を有していた。
After forming the dividing grooves, the film substrate 20 was passed between a pair of rollers 74 and 75 as shown in FIG. While the film substrate 20 was sandwiched between the rollers 74 and 75, the film substrate 20 was sucked and pulled in units of organic EL elements by the transport belt 77, and was cut and divided. By this cutting and dividing, a plurality of organic EL elements S6 were obtained.
Each organic EL element S6 had the same shape as the organic EL element S5.
〔有機EL素子S7の製造〕
 上記有機EL素子S1と同様にして、フィルム基板20上に複数の有機EL素子の陽極23、取出し配線24、有機機能層25、陰極26及び第2ガスバリアー層27を形成し、保護フィルム4を貼り合わせた。
 次に、各有機EL素子の境界線に沿って、フィルム基板20の第2面20Bに金属刃を押し当てて、フィルム基板20を一度に完全切断し、複数の有機EL素子S7を得た。金属刃は、SUS製のピナクル金型を用いた。
 各有機EL素子S7は、フィルム基板20の第1面20Aと第2面20Bの面積がほぼ同じであり、フィルム基板20の端部形状が直角形状であった。また、保護フィルム4の第1面4Aと第2面4Bの面積がほぼ同じであり、保護フィルム4の端部形状は直角形状であった。
[Manufacture of organic EL element S7]
Similarly to the organic EL element S1, the anode 23, the extraction wiring 24, the organic functional layer 25, the cathode 26, and the second gas barrier layer 27 of the plurality of organic EL elements are formed on the film substrate 20, and the protective film 4 is formed. Pasted together.
Next, a metal blade was pressed against the second surface 20B of the film substrate 20 along the boundary line of each organic EL element, and the film substrate 20 was completely cut at a time to obtain a plurality of organic EL elements S7. As the metal blade, a SUS pinnacle mold was used.
In each organic EL element S7, the areas of the first surface 20A and the second surface 20B of the film substrate 20 were substantially the same, and the end shape of the film substrate 20 was a right-angled shape. Moreover, the area of the 1st surface 4A and the 2nd surface 4B of the protective film 4 was substantially the same, and the edge part shape of the protective film 4 was a right-angled shape.
〔評価〕
 上記製造した各有機EL素子S1~S7の屈曲試験を実施した。屈曲試験では、各有機EL素子S1~S7を直径φ5mmのローラーに巻き付けて、200N/mの張力を加えながら曲げる操作を100回繰り返し行った。次に、各有機EL素子S1~S7の高温高湿試験を実施した。高温高湿試験では、各有機EL素子S1~S7を温度85℃・相対湿度85%の高温高湿環境下に500時間放置した。それぞれの試験後、各有機EL素子S1~S7を電源に接続し、発光できたか否かによって、発光性能を確認した。
[Evaluation]
A bending test was conducted on each of the manufactured organic EL elements S1 to S7. In the bending test, an operation in which each organic EL element S1 to S7 was wound around a roller having a diameter of 5 mm and bent while applying a tension of 200 N / m was repeated 100 times. Next, a high-temperature and high-humidity test was performed on each of the organic EL elements S1 to S7. In the high temperature and high humidity test, each of the organic EL elements S1 to S7 was left in a high temperature and high humidity environment at a temperature of 85 ° C. and a relative humidity of 85% for 500 hours. After each test, each of the organic EL elements S1 to S7 was connected to a power source, and the light emission performance was confirmed depending on whether or not light was emitted.
 下記表1は、各有機EL素子S1~S7の評価結果を示している。
Figure JPOXMLDOC01-appb-T000001
 
Table 1 below shows the evaluation results of the organic EL elements S1 to S7.
Figure JPOXMLDOC01-appb-T000001
 上記表1に示すように、実施例に係る有機EL素子S1~S6は、φ5mmのローラーを用いた100回の屈曲試験後でも発光特性に影響なく、強度及び曲げに対する耐性が高いことが分かる。また、有機EL素子S1~S6は、高温高湿環境下においても良好な発光性能が得られており、切断分割の際、第1ガスバリアー層22及び第2ガスバリアー層27の損傷が無いため、高温高湿試験後でも初期時の発光性能を維持できるガスバリアー性を保つことができたと推定される。
 一方、比較例に係る有機EL素子S7は、切断端部付近の第1ガスバリアー層2及び第2ガスバリアー層27が損傷してクラックが多数発生してしまい、屈曲試験後にクラックが拡大したことで発光ムラが発生した。さらに、85℃85%RH500時間の高温高湿試験後にはクラックから水蒸気が浸入して発光できない状態となった。切断分割の際、金属刃が直接当接したことによって、第1ガスバリアー層22及び第2ガスバリアー層27が損傷し、高温高湿環境下において損傷部分から浸入した水蒸気によって発光層等が劣化したため、発光性能が劣化したと推定される。
As shown in Table 1, it can be seen that the organic EL elements S1 to S6 according to the examples have high strength and resistance to bending without affecting the light emission characteristics even after 100 bending tests using a φ5 mm roller. In addition, the organic EL elements S1 to S6 have good light emitting performance even in a high temperature and high humidity environment, and the first gas barrier layer 22 and the second gas barrier layer 27 are not damaged at the time of cutting and dividing. It is presumed that the gas barrier property capable of maintaining the initial light emission performance was maintained even after the high temperature and high humidity test.
On the other hand, in the organic EL element S7 according to the comparative example, the first gas barrier layer 2 and the second gas barrier layer 27 in the vicinity of the cut end portion were damaged and many cracks were generated, and the cracks expanded after the bending test. The light emission unevenness occurred. Furthermore, after the high temperature and high humidity test at 85 ° C. and 85% RH for 500 hours, water vapor entered from the cracks, and light emission was not possible. When cutting and dividing, the first gas barrier layer 22 and the second gas barrier layer 27 are damaged due to the direct contact of the metal blade, and the light emitting layer and the like deteriorate due to water vapor entering from the damaged portion in a high temperature and high humidity environment. Therefore, it is estimated that the light emission performance has deteriorated.
 複数の有機EL素子を一貫生産する大規模な生産技術に利用することができる。 ∙ It can be used for large-scale production technology that consistently produces multiple organic EL elements.
1、2  有機EL素子
20  フィルム基板
21  下地層
22  第1ガスバリアー層
23  陽極
24  取出し配線
25  有機機能層
26  陰極
27  第2ガスバリアー層
3  接着層
4  保護フィルム
100  製造装置
R20  本体形成部
R30  封止部
R40  貼り合わせ部
R60  第1切断部
61  レーザー照射部
62  成形部
R70  第2切断部
71  エアー吹付け部
72  吸引アーム
74、75、76  ローラー
77  搬送ベルト
DESCRIPTION OF SYMBOLS 1, 2 Organic EL element 20 Film substrate 21 Underlayer 22 First gas barrier layer 23 Anode 24 Extraction wiring 25 Organic functional layer 26 Cathode 27 Second gas barrier layer 3 Adhesive layer 4 Protective film 100 Manufacturing apparatus R20 Main body forming part R30 Stop part R40 Bonding part R60 First cutting part 61 Laser irradiation part 62 Molding part R70 Second cutting part 71 Air blowing part 72 Suction arms 74, 75, 76 Roller 77 Conveyor belt

Claims (23)

  1.  同一のフィルム基板を用いて、発光層を含む有機機能層と当該有機機能層を挟持する一対の電極とを少なくとも備える有機エレクトロルミネッセンス素子を複数形成し、当該有機エレクトロルミネッセンス素子ごとに前記フィルム基板を切断分割する有機エレクトロルミネッセンス素子の製造方法であって、
    (a)前記フィルム基板上に第1ガスバリアー層を形成し、当該第1ガスバリアー層上に複数の有機エレクトロルミネッセンス素子の前記有機機能層及び前記一対の電極を形成する工程と、
    (b)各有機エレクトロルミネッセンス素子の境界線に沿って、前記フィルム基板において前記第1ガスバリアー層が形成された第1面の反対側の面である第2面に、分割溝を形成する工程と、
    (c)前記第1ガスバリアー層が形成された前記フィルム基板を、前記分割溝に沿って切断分割し、複数の有機エレクトロルミネッセンス素子を得る工程と、
     を含むことを特徴とする有機エレクトロルミネッセンス素子の製造方法。
    Using the same film substrate, a plurality of organic electroluminescent elements including at least an organic functional layer including a light emitting layer and a pair of electrodes sandwiching the organic functional layer are formed, and the film substrate is formed for each organic electroluminescent element. A method for producing an organic electroluminescence device to be cut and divided,
    (A) forming a first gas barrier layer on the film substrate, and forming the organic functional layer and the pair of electrodes of a plurality of organic electroluminescence elements on the first gas barrier layer;
    (B) A step of forming dividing grooves on the second surface, which is the surface opposite to the first surface on which the first gas barrier layer is formed, in the film substrate along the boundary line of each organic electroluminescence element. When,
    (C) cutting and dividing the film substrate on which the first gas barrier layer is formed along the dividing grooves to obtain a plurality of organic electroluminescence elements;
    The manufacturing method of the organic electroluminescent element characterized by including.
  2. (d)前記第1ガスバリアー層上の前記有機機能層及び前記一対の電極を被覆するように、第2ガスバリアー層を形成する工程と、
    (e)前記第2ガスバリアー層上に保護フィルムを貼り合わせる工程と、をさらに含み、
     前記(b)工程では、各有機エレクトロルミネッセンス素子の境界線に沿って、前記保護フィルムにおいて前記第2ガスバリアー層と対向する第1面の反対側の面である第2面に、分割溝をさらに形成し、
     前記(c)工程では、前記フィルム基板及び前記保護フィルムのそれぞれに形成された分割溝に沿って、前記第2ガスバリアー層が形成されたフィルム基板を切断分割することを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子の製造方法。
    (D) forming a second gas barrier layer so as to cover the organic functional layer and the pair of electrodes on the first gas barrier layer;
    (E) further including a step of bonding a protective film on the second gas barrier layer,
    In the step (b), a dividing groove is formed on the second surface which is the surface opposite to the first surface facing the second gas barrier layer in the protective film along the boundary line of each organic electroluminescence element. Further forming,
    The step (c) is characterized in that the film substrate on which the second gas barrier layer is formed is cut and divided along division grooves formed on the film substrate and the protective film, respectively. The manufacturing method of the organic electroluminescent element of description.
  3.  前記(b)工程では、テーパー形状の分割溝を形成することを特徴とする請求項1又は請求項2に記載の有機エレクトロルミネッセンス素子の製造方法。 3. The method of manufacturing an organic electroluminescence element according to claim 1, wherein in the step (b), a tapered dividing groove is formed.
  4.  前記テーパー形状の分割溝は、断面形状がV字状、斜面が曲面状のV字状、階段状又はこれらのうちの2以上を組み合わせた形状であることを特徴とする請求項3に記載の有機エレクトロルミネッセンス素子の製造方法。 The taper-shaped dividing groove has a V-shaped cross-section, a V-shaped slope, a stepped shape, or a combination of two or more thereof. Manufacturing method of organic electroluminescent element.
  5.  前記(b)工程では、複数の段階に分けて分割溝を形成し、各段階で形成する分割溝の断面形状を異ならせて、分割溝の断面形状をV字状、斜面が曲面状のV字状又は階段状のうちの2以上を組み合わせた形状とすることを特徴とする請求項4に記載の有機エレクトロルミネッセンス素子の製造方法。 In the step (b), the dividing groove is formed in a plurality of stages, and the sectional shape of the dividing groove formed in each stage is varied, so that the sectional shape of the dividing groove is V-shaped and the slope is curved V The method for producing an organic electroluminescence element according to claim 4, wherein the shape is a combination of two or more of a letter shape or a step shape.
  6.  前記(b)工程では、複数の段階に分けて断面形状がV字状の分割溝を形成し、各段階で形成する分割溝の斜面の傾斜角度を異ならせて、断面形状がV字状の分割溝の斜面を曲面状に形成することを特徴とする請求項4に記載の有機エレクトロルミネッセンス素子の製造方法。 In the step (b), a divided groove having a V-shaped cross section is formed in a plurality of stages, and the inclination angle of the slope of the divided groove formed in each stage is varied, so that the cross-sectional shape is V-shaped. The method of manufacturing an organic electroluminescent element according to claim 4, wherein the slope of the dividing groove is formed in a curved surface shape.
  7.  前記(b)工程では、レーザー光を照射するか、熱インプリントを行うか又はこれらの組み合わせにより、前記分割溝を形成することを特徴とする請求項1から請求項6までのいずれか一項に記載の有機エレクトロルミネッセンス素子の製造方法。 The said division groove | channel is formed in said (b) process by irradiating a laser beam, performing a thermal imprint, or these combination, The any one of Claim 1-6 characterized by the above-mentioned. The manufacturing method of the organic electroluminescent element of description.
  8.  前記(c)工程では、前記分割溝にエアーを吹き付けるか、有機エレクトロルミネッセンス素子ごとに前記フィルム基板をエアー吸引して引っ張るか又は前記フィルム基板を挟持して引っ張ることにより、切断分割することを特徴とする請求項1から請求項7までのいずれか一項に記載の有機エレクトロルミネッセンス素子の製造方法。 In the step (c), air is blown into the dividing groove, or the film substrate is air-sucked and pulled for each organic electroluminescence element, or the film substrate is sandwiched and pulled to be cut and divided. The manufacturing method of the organic electroluminescent element as described in any one of Claim 1- Claim 7.
  9.  前記(a)工程では、前記フィルム基板と前記第1ガスバリアー層間に、下地層をさらに形成することを特徴とする請求項1から請求項8までのいずれか一項に記載の有機エレクトロルミネッセンス素子の製造方法。 9. The organic electroluminescence device according to claim 1, wherein in the step (a), an underlayer is further formed between the film substrate and the first gas barrier layer. 10. Manufacturing method.
  10.  前記下地層は、バインダー樹脂を含有し、前記フィルム基板よりも硬度が大きいことを特徴とする請求項9に記載の有機エレクトロルミネッセンス素子の製造方法。 The method for producing an organic electroluminescent element according to claim 9, wherein the underlayer contains a binder resin and has a hardness higher than that of the film substrate.
  11.  前記下地層は、無機化合物粒子を含有することを特徴とする請求項9又は請求項10に記載の有機エレクトロルミネッセンス素子の製造方法。 The method for producing an organic electroluminescent element according to claim 9 or 10, wherein the underlayer contains inorganic compound particles.
  12.  前記(a)工程では、有機エレクトロルミネッセンス素子ごとに前記一対の電極の取出し配線をさらに形成し、当該取出し配線が、各有機エレクトロルミネッセンス素子間で隣接し、かつフィルム基板の搬送方向において連続するように、前記フィルム基板上に各有機エレクトロルミネッセンス素子を配置することを特徴とする請求項1から請求項11までのいずれか一項に記載の有機エレクトロルミネッセンス素子の製造方法。 In the step (a), an extraction wiring for the pair of electrodes is further formed for each organic electroluminescence element so that the extraction wiring is adjacent between the organic electroluminescence elements and is continuous in the transport direction of the film substrate. Each organic electroluminescent element is arrange | positioned on the said film substrate, The manufacturing method of the organic electroluminescent element as described in any one of Claim 1- Claim 11 characterized by the above-mentioned.
  13.  前記第1ガスバリアー層又は前記第2ガスバリアー層は、無機化合物を含有することを特徴とする請求項2から請求項12までのいずれか一項に記載の有機エレクトロルミネッセンス素子の製造方法。 The method for producing an organic electroluminescent element according to any one of claims 2 to 12, wherein the first gas barrier layer or the second gas barrier layer contains an inorganic compound.
  14.  同一のフィルム基板を用いて、発光層を含む有機機能層と当該有機機能層を挟持する一対の電極とを少なくとも含む有機エレクトロルミネッセンス素子を複数形成し、当該有機エレクトロルミネッセンス素子ごとに前記フィルム基板を切断分割する有機エレクトロルミネッセンス素子の製造装置であって、
     前記フィルム基板上に第1ガスバリアー層を形成し、当該第1ガスバリアー層上に複数の有機エレクトロルミネッセンス素子の前記有機機能層及び前記一対の電極を形成する本体形成部と、
     各有機エレクトロルミネッセンス素子の境界線に沿って、前記フィルム基板において前記第1ガスバリアー層が形成された第1面の反対側の面である第2面に、分割溝を形成する第1切断部と、
     前記第1ガスバリアー層が形成された前記フィルム基板を、前記分割溝に沿って切断分割し、複数の有機エレクトロルミネッセンス素子を得る第2切断部と、
     を備えることを特徴とする有機エレクトロルミネッセンス素子の製造装置。
    Using the same film substrate, a plurality of organic electroluminescent elements including at least an organic functional layer including a light emitting layer and a pair of electrodes sandwiching the organic functional layer are formed, and the film substrate is formed for each organic electroluminescent element. An apparatus for manufacturing an organic electroluminescence element to be cut and divided,
    Forming a first gas barrier layer on the film substrate, and forming a main body forming portion on the first gas barrier layer to form the organic functional layer and the pair of electrodes of a plurality of organic electroluminescence elements;
    A first cut portion that forms a dividing groove on a second surface of the film substrate opposite to the first surface on which the first gas barrier layer is formed along a boundary line of each organic electroluminescence element. When,
    A second cutting section that cuts and divides the film substrate on which the first gas barrier layer is formed along the dividing grooves to obtain a plurality of organic electroluminescence elements;
    An organic electroluminescence element manufacturing apparatus comprising:
  15.  フィルム基板上に第1ガスバリアー層が形成され、当該第1ガスバリアー層上に発光層を含む有機機能層と当該有機機能層を挟持する一対の電極とを少なくとも備える有機エレクトロルミネッセンス素子であって、
     前記フィルム基板において前記第1ガスバリアー層が形成された第1面と、前記第1面の反対側の面である第2面とのうち、前記第2面の面積が前記第1面の面積より小さくなるように、前記第2面に分割溝が形成され、当該分割溝に沿って前記フィルム基板が切断分割されていることを特徴とする有機エレクトロルミネッセンス素子。
    An organic electroluminescence device comprising: a first gas barrier layer formed on a film substrate; and an organic functional layer including a light emitting layer on the first gas barrier layer and a pair of electrodes sandwiching the organic functional layer. ,
    Of the first surface of the film substrate on which the first gas barrier layer is formed and the second surface that is the surface opposite to the first surface, the area of the second surface is the area of the first surface. An organic electroluminescence element, wherein a dividing groove is formed on the second surface so as to be smaller, and the film substrate is cut and divided along the dividing groove.
  16.  前記フィルム基板の端部形状が、斜面状、曲面状、階段状又はこれらのうちの2以上を組み合わせた形状であることを特徴とする請求項15に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to claim 15, wherein the end shape of the film substrate is a slope shape, a curved surface shape, a step shape, or a combination of two or more thereof.
  17.  前記フィルム基板と前記第1ガスバリアー層間に、下地層を備えることを特徴とする請求項15又は請求項16に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescent element according to claim 15 or 16, further comprising a base layer between the film substrate and the first gas barrier layer.
  18.  前記下地層は、バインダー樹脂を含有し、前記フィルム基板より硬度が大きいことを特徴とする請求項17に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to claim 17, wherein the underlayer contains a binder resin and has a hardness higher than that of the film substrate.
  19.  前記下地層は、無機化合物粒子を含有することを特徴とする請求項17又は請求項18に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to claim 17 or 18, wherein the underlayer contains inorganic compound particles.
  20.  前記第1ガスバリアー層上の前記有機機能層及び前記一対の電極を被覆するように形成された第2ガスバリアー層と、
     前記第2ガスバリアー層上に貼り合わされた保護フィルムと、
     を備えることを特徴とする請求項15から請求項19までのいずれか一項に記載の有機エレクトロルミネッセンス素子。
    A second gas barrier layer formed to cover the organic functional layer and the pair of electrodes on the first gas barrier layer;
    A protective film bonded onto the second gas barrier layer;
    The organic electroluminescent element according to claim 15, comprising:
  21.  前記保護フィルムは、前記第2ガスバリアー層と対向する第1面と、前記第1面の反対側の面である第2面とのうち、前記第2面の面積が前記第1面の面積より小さくなるように、前記第2面に分割溝が形成され、当該分割溝に沿って前記保護フィルムが切断分割されていることを特徴とする請求項20に記載の有機エレクトロルミネッセンス素子。 Of the first surface facing the second gas barrier layer and the second surface that is the surface opposite to the first surface, the protective film has an area of the second surface that is the area of the first surface. 21. The organic electroluminescence device according to claim 20, wherein a dividing groove is formed on the second surface so as to be smaller, and the protective film is cut and divided along the dividing groove.
  22.  前記保護フィルムの端部形状が、斜面状、曲面状、階段状又はこれらのうちの2以上を組み合わせた形状であることを特徴とする請求項20又は請求項21に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to claim 20 or 21, wherein an end shape of the protective film is a slope shape, a curved surface shape, a step shape, or a combination of two or more thereof.
  23.  前記第1ガスバリアー層又は前記第2ガスバリアー層が、ケイ素化合物を含有することを特徴とする請求項20から請求項22までのいずれか一項に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to any one of claims 20 to 22, wherein the first gas barrier layer or the second gas barrier layer contains a silicon compound.
PCT/JP2014/069148 2013-07-29 2014-07-18 Organic electroluminescent element production method, production device and organic electroluminescent element WO2015016082A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015529515A JPWO2015016082A1 (en) 2013-07-29 2014-07-18 Organic electroluminescence element manufacturing method, manufacturing apparatus, and organic electroluminescence element

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-156536 2013-07-29
JP2013-156533 2013-07-29
JP2013156533 2013-07-29
JP2013156536 2013-07-29

Publications (1)

Publication Number Publication Date
WO2015016082A1 true WO2015016082A1 (en) 2015-02-05

Family

ID=52431620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/069148 WO2015016082A1 (en) 2013-07-29 2014-07-18 Organic electroluminescent element production method, production device and organic electroluminescent element

Country Status (2)

Country Link
JP (1) JPWO2015016082A1 (en)
WO (1) WO2015016082A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6375015B1 (en) * 2017-04-25 2018-08-15 住友化学株式会社 Method for manufacturing organic electronic device
WO2019027014A1 (en) * 2017-08-02 2019-02-07 住友化学株式会社 Method for manufacturing organic device, and organic device
US11121350B2 (en) 2017-04-26 2021-09-14 Sumitomo Chemical Company, Limited Electrode-attached substrate, laminated substrate, and organic device manufacturing method
EP4291006A3 (en) * 2022-05-16 2023-12-27 Samsung Display Co., Ltd. Display device, electronic device including the same, and method of manufacturing the display device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005262727A (en) * 2004-03-19 2005-09-29 Shibaura Mechatronics Corp System and method for splitting brittle material
JP2006159747A (en) * 2004-12-09 2006-06-22 Japan Steel Works Ltd:The Laser beam machining method and its apparatus
WO2010024006A1 (en) * 2008-09-01 2010-03-04 シャープ株式会社 Organic electroluminescence panel, organic electroluminescence display, organic electroluminescence illumination and method for manufacturing such panel, display and illumination
JP2012089313A (en) * 2010-10-18 2012-05-10 Fujifilm Corp Light-extracting sheet, organic electroluminescent device, and method for manufacturing the same
JP2012109255A (en) * 2005-03-10 2012-06-07 Konica Minolta Holdings Inc Resin film substrate for organic electroluminescence and organic electroluminescence device
WO2013046545A1 (en) * 2011-09-26 2013-04-04 パナソニック株式会社 Method for manufacturing light emitting device, and light emitting device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005262727A (en) * 2004-03-19 2005-09-29 Shibaura Mechatronics Corp System and method for splitting brittle material
JP2006159747A (en) * 2004-12-09 2006-06-22 Japan Steel Works Ltd:The Laser beam machining method and its apparatus
JP2012109255A (en) * 2005-03-10 2012-06-07 Konica Minolta Holdings Inc Resin film substrate for organic electroluminescence and organic electroluminescence device
WO2010024006A1 (en) * 2008-09-01 2010-03-04 シャープ株式会社 Organic electroluminescence panel, organic electroluminescence display, organic electroluminescence illumination and method for manufacturing such panel, display and illumination
JP2012089313A (en) * 2010-10-18 2012-05-10 Fujifilm Corp Light-extracting sheet, organic electroluminescent device, and method for manufacturing the same
WO2013046545A1 (en) * 2011-09-26 2013-04-04 パナソニック株式会社 Method for manufacturing light emitting device, and light emitting device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6375015B1 (en) * 2017-04-25 2018-08-15 住友化学株式会社 Method for manufacturing organic electronic device
JP2018185927A (en) * 2017-04-25 2018-11-22 住友化学株式会社 Manufacturing method for organic electronic device
US11108028B2 (en) 2017-04-25 2021-08-31 Sumitomo Chemical Company, Limited Manufacturing method for organic electronic device
US11121350B2 (en) 2017-04-26 2021-09-14 Sumitomo Chemical Company, Limited Electrode-attached substrate, laminated substrate, and organic device manufacturing method
WO2019027014A1 (en) * 2017-08-02 2019-02-07 住友化学株式会社 Method for manufacturing organic device, and organic device
EP4291006A3 (en) * 2022-05-16 2023-12-27 Samsung Display Co., Ltd. Display device, electronic device including the same, and method of manufacturing the display device

Also Published As

Publication number Publication date
JPWO2015016082A1 (en) 2017-03-02

Similar Documents

Publication Publication Date Title
JP6572885B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT AND METHOD FOR PRODUCING ORGANIC ELECTROLUMINESCENT ELEMENT
JP6111822B2 (en) Method and apparatus for manufacturing organic electroluminescence element
JP5895762B2 (en) Organic electroluminescent device and organic electroluminescent panel sealing method
JP6362330B2 (en) Organic electroluminescence device and planar light emitter
JP6337883B2 (en) Electronic devices
WO2016103889A1 (en) Method for manufacturing organic electroluminescent element, and organic electroluminescent element
JP5447244B2 (en) Method for manufacturing organic electroluminescence panel
JP5888095B2 (en) Organic electroluminescence device
WO2015016082A1 (en) Organic electroluminescent element production method, production device and organic electroluminescent element
JP2016177992A (en) Method of manufacturing organic electroluminescence element and organic electroluminescence element
JP6592915B2 (en) Transparent electrode substrate and manufacturing method thereof, electronic device and organic EL device
JP6119606B2 (en) Organic electroluminescence panel and method for manufacturing organic electroluminescence panel
JP6061450B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT AND METHOD FOR PRODUCING ORGANIC ELECTROLUMINESCENT ELEMENT
WO2013176069A1 (en) Organic electroluminescence element and method for manufacturing same
WO2015037463A1 (en) Organic electroluminescence element and production method therefore
WO2010084816A1 (en) Organic electroluminescent element, and method for producing same
JP6252590B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT AND METHOD FOR PRODUCING ORGANIC ELECTROLUMINESCENT ELEMENT
JP5895699B2 (en) Organic electroluminescence device
WO2014189094A1 (en) Device for manufacturing transparent electrode and device for manufacturing electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14831892

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015529515

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14831892

Country of ref document: EP

Kind code of ref document: A1