WO2015016034A1 - 電動モータの駆動装置及び駆動方法 - Google Patents

電動モータの駆動装置及び駆動方法 Download PDF

Info

Publication number
WO2015016034A1
WO2015016034A1 PCT/JP2014/068483 JP2014068483W WO2015016034A1 WO 2015016034 A1 WO2015016034 A1 WO 2015016034A1 JP 2014068483 W JP2014068483 W JP 2014068483W WO 2015016034 A1 WO2015016034 A1 WO 2015016034A1
Authority
WO
WIPO (PCT)
Prior art keywords
driver
relay
power
electric motor
power supply
Prior art date
Application number
PCT/JP2014/068483
Other languages
English (en)
French (fr)
Inventor
小関 知延
俊章 大山
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to CN201480002159.5A priority Critical patent/CN104584422A/zh
Priority to US14/427,086 priority patent/US20150249406A1/en
Priority to DE112014003575.0T priority patent/DE112014003575T5/de
Priority to KR1020157004074A priority patent/KR101512953B1/ko
Publication of WO2015016034A1 publication Critical patent/WO2015016034A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/032Preventing damage to the motor, e.g. setting individual current limits for different drive conditions
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/24Arrangements for stopping
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • H02H3/087Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current for dc applications

Definitions

  • the present invention relates to a drive device and a drive method for an electric motor including an inverter circuit and a power supply relay disposed on a power supply line of the inverter circuit.
  • Patent Document 1 discloses a drive device for an electric motor that supplies battery voltage to an inverter circuit via a power relay constituted by a semiconductor switch.
  • the power relay is turned off to supply power to the inverter circuit when an abnormality such as a short circuit occurs.
  • the system can be guided to the safe side by cutting off.
  • a failure occurs in the driver of the semiconductor switch that constitutes the power relay, even if there is no other abnormality, the power supply to the inverter circuit is cut off and the electric motor cannot be driven. was there.
  • the present invention has been made in view of the above circumstances, and provides an electric motor driving device and a driving method capable of suppressing a power supply to an inverter circuit from being cut off due to a failure of a driver driving a power relay. With the goal.
  • an electric motor drive device includes an inverter circuit that supplies electric power to the electric motor, a power supply relay that includes a semiconductor switch disposed in a power supply line that supplies electric power to the inverter circuit, and the power supply A first driver and a second driver for driving the relay are provided, and the power relay is configured to be turned on when at least one of the first driver and the second driver outputs an on signal.
  • the electric motor driving method is an electric motor in which a power supply relay composed of a semiconductor switch is arranged on a power supply line for supplying power to an inverter circuit, and a plurality of drivers for driving the power supply relay. The power relay is turned on when at least one of these outputs an on signal.
  • the other relay outputs an ON signal so that the power relay is turned on, and the power supply to the inverter circuit can be continued.
  • FIG. 1 shows an electric power steering apparatus as one application example of an electric motor driving apparatus and driving method.
  • An electric power steering apparatus 100 shown in FIG. 1 is an apparatus that is provided in a vehicle 200 and generates a steering assist force by an electric motor 130.
  • the steering torque sensor 120 and the speed reducer 160 are provided in a steering column 180 that includes a steering shaft 170.
  • a pinion gear 171 is provided at the tip of the steering shaft 170.
  • the rack gear 172 moves horizontally in the direction of travel of the vehicle 200.
  • Steering mechanisms 202 for the wheels 201 are provided at both ends of the rack gear 172, and the direction of the wheels 201 is changed by the horizontal movement of the rack gear 172.
  • the steering torque sensor 120 detects the steering torque generated in the steering shaft 170 when the driver of the vehicle performs a steering operation, and outputs the detected steering torque signal ST to the control unit 150.
  • a vehicle speed signal VSP output from the vehicle speed sensor 190 is input to the control unit 150 including a microcomputer.
  • the control unit 150 controls the driving device 140 based on the steering torque signal ST, the vehicle speed signal VSP, and the like, thereby controlling the torque generated by the electric motor 130, that is, the steering assist force.
  • the control unit 150 and the driving device 140 can be integrated.
  • the electric motor 130 is a three-phase DC brushless motor having three-phase windings of U phase, V phase and W phase, in other words, a three-phase synchronous motor.
  • the driving device 140 includes an inverter circuit 300, a pre-driver 400 that drives the inverter circuit 300, a power relay device 500, and the like.
  • the inverter circuit 300 includes three sets of semiconductor switches 320UH, 320UL, 320VH, 320VL, 320WH, and 320WL that respectively drive the U-phase, V-phase, and W-phase of the electric motor 130 via drive lines 310U, 310V, and 310W. It consists of a three-phase bridge circuit.
  • N-channel MOSFETs Metal-Oxide-Semiconductor Field-Effect Transistors
  • the drain and source are connected in series between the power supply line 510 and the ground point, and one end of the drive line 310U is connected to the connection point between the semiconductor switch 320UH and the semiconductor switch 320UL.
  • the U phase of the electric motor 130 is connected to the other end.
  • the drain and source are connected in series between the power supply line 510 and the ground point, and one end of the drive line 310V is connected to the connection point between the semiconductor switch 320VH and the semiconductor switch 320VL.
  • the V phase of the electric motor 130 is connected to the other end.
  • the drain and source are connected in series between the power supply line 510 and the ground point, and one end of the drive line 310W is connected to the connection point between the semiconductor switch 320WH and the semiconductor switch 320WL.
  • the W phase of the electric motor 130 is connected to the other end.
  • relays 330U, 330V, and 330W are provided on drive lines 310U, 310V, and 310W between the U phase, the V phase, and the W phase of the inverter circuit 300 and the electric motor 130.
  • N-channel MOSFETs are used as the relays 330U, 330V, and 330W.
  • Relays 330U, 330V, and 330W are driven by drivers 340U, 340V, and 340W, respectively.
  • the control unit 150 controls the drivers 340U, 340V, and 340W and outputs control signals to the gates of the MOSFETs constituting the relays 330U, 330V, and 330W, thereby individually controlling ON / OFF of the relays 330U, 330V, and 330W. To do.
  • the relays 330U, 330V, and 330W are in the off state, the power supply from the inverter circuit 300 to the U phase, the V phase, and the W phase is interrupted, and when the relays 330U, 330V, and 330W are in the on state, Power can be supplied to the phase, V phase, and W phase.
  • the pre-driver 400 includes drivers 410VH, 410UH, and 410WH that respectively drive upper arm switches 320VH, 320UH, and 320WH in the inverter circuit 300, and drivers 410VL and 410WL that respectively drive the lower arm switches 320VL, 320UL, and 320WL in the inverter circuit 300. 410UL, 410WL.
  • the pre-driver 400 can be configured by SOI (Silicon On Insulator), whereby the stray capacitance can be reduced, and the pre-driver 400 can be increased in speed and power consumption. Moreover, when a specific part fails, the possibility of spreading to other parts and causing the failure can be reduced.
  • the pre-driver 400 includes bootstrap circuits 420V, 420U, and 420W that are booster circuits that drive the upper arm switches 320VH, 320UH, and 320WH with charges charged in the bootstrap capacitors CU, CV, and CW.
  • the gates of MOSFETs 320VH, 320UH, and 320WH are connected to the output terminals of the drivers 410VH, 410UH, and 410WH, respectively, and the MOSFETs 320VH, 320UH, and 320WH are controlled to be turned on / off according to the outputs of the drivers 410VH, 410UH, and 410WH.
  • the gates of MOSFETs 320VL, 320UL, and 320WL are connected to the output terminals of the drivers 410VL, 410UL, and 410WL, respectively, and the MOSFETs 320VL, 320UL, and 320WL are controlled to be turned on / off according to the outputs of the drivers 410VL, 410UL, and 410WL.
  • the pre-driver 400 is a charge pump 430 that supplies power to the drivers 410UH, 410UL, 410VH, 410VL, 410WH, 410WL, and the drivers 340U, 340V, 340W of the relays 330U, 330V, 330W and the drivers constituting the power supply relay device 500. It has.
  • the charge pump 430 is a booster circuit that boosts the power supply of the pre-driver 400.
  • the drivers 410VH, 410UH, 410WH are configured to drive the MOSFETs 320VH, 320UH, 320WH using the higher voltage of the bootstrap circuits 420V, 420U, 420W and the charge pump 430.
  • the drivers 410VL, 410UL, 410WL The MOSFETs 320VL, 320UL, and 320WL are driven using the higher voltage of the battery power source 520 and the charge pump 430.
  • the power relay device 500 includes a battery 520 as a power source, and a first power relay 530 and a second power source relay 530 formed of N-channel MOSFETs whose drain-source are connected in series to a power line 510 that connects the battery 520 and the inverter circuit 300.
  • the power supply relay 540, the 1st power supply relay 530, the 1st driver 550a which drives the 2nd power supply relay 540, the 2nd driver 550b, and the 3rd driver 550c are provided.
  • the drain-source diodes D1-D11 are parasitic diodes, in other words, internal It is a diode.
  • the parasitic diode D10 of the first power supply relay 530 and the parasitic diode D11 of the second power supply relay 540 flow current.
  • the forward direction is the reverse direction.
  • the output terminals of the first driver 550a and the second driver 550b are connected to the gates of the MOSFETs constituting the first power supply relay 530, and the first driver 550a and the second driver 550b are connected to the gates of the MOSFETs constituting the second power supply relay 540.
  • the output terminal of the three driver 550c is connected.
  • the first power supply relay 530 is in an ON state in which current flows between the drain and the source when the output of at least one of the first driver 550a and the second driver 550b is at a high level
  • the second power supply relay 540 When at least one of the outputs of the first driver 550a and the third driver 550c is at a high level, an on state in which a current flows between the drain and the source is set.
  • a third diode D21 that flows current in a direction from the second driver 550b toward the first power supply relay 530 is connected to the line connecting the output terminal of the second driver 550b and the gate of the MOSFET constituting the first power supply relay 530. 'Is intervened.
  • the diodes D21, D22, D21 ′, D22 ′ of the line to be performed can be omitted.
  • the drivers 550a to 550c shown in FIG. 3 include a PNP transistor TR1, a resistor R, and an NPN transistor TR2.
  • the PNP transistor TR1 has an emitter-collector connected in series between the booster circuit 600 or the charge pump 430 as a power source and the gates of the MOSFETs 530 and 540 constituting the power relays 530 and 540.
  • the resistor R is connected in series between the base of the PNP transistor TR1 and the ground point.
  • the NPN transistor TR2 has a collector-emitter connected in series between the resistor R and the ground point.
  • the power supply configures the power relays 530 and 540 via the PNP transistor TR1. It is supplied to the gates of the MOSFETs 530 and 540.
  • the pre-driver 400 constituted by SOI and other devices can be integrated.
  • the pre-driver 400 and the booster circuit 600 can be integrated, or the pre-driver 400, the driver 550a, and the diodes D21 and D22 can be integrated.
  • the pre-driver 400, the driver 550a, and the diodes D21, D22, D21 ′ are integrated, or the pre-driver 400, the drivers 550a-550c, the diodes D21, D22, D21 ′, D22 ′, and the relay drivers 340U, 340V, 340W. And can be integrated.
  • the first driver 550a is supplied with power from the booster circuit 600
  • the second driver 550b and the third driver 550c are supplied with power from a charge pump 430 provided in the pre-driver 400. Furthermore, power is supplied from the booster circuit 600 and the charge pump 430 to the drivers 340U, 340V, and 340W of the relays 330U, 330V, and 330W.
  • a third diode D23 is interposed in a line connecting the booster circuit 600 and each driver 340U, 340V, 340W, and a fourth line is connected in a line connecting the charge pump 430 and each driver 340U, 340V, 340W.
  • the third diode D23 and the fourth diode D24 which are provided with the diode D24 and connected in parallel, flow current in the direction toward the drivers 340U, 340V, and 340W.
  • Each driver 340U, 340V, 340W, 550a, 550b, 550c, 410VH, 410UH, 410WH, 410VL, 410UL, 410WL constituting the driving device 140 is individually controlled by a control unit 150 including a microcomputer. That is, the control unit 150 controls each driver 550a, 550b, and 550c, thereby supplying a control signal to the gates of the MOSFETs constituting the first power relay 530 and the second power relay 540 of the power relay device 500. The on / off control of the first power supply relay 530 and the second power supply relay 540 is controlled.
  • the control unit 150 individually outputs a PWM (Pulse Width Modulation) signal to each of the drivers 410VH, 410UH, 410WH, 410VL, 410UL, 410WL of the pre-driver 400.
  • the drivers 410VH, 410UH, 410WH, 410VL, 410UL, 410WL are driven signals based on the PWM signal to the gates of the semiconductor switches 320UH, 320UL, 320VH, 320VL, 320WH, 320WL of the inverter circuit 300 based on the PWM signal.
  • the energization to each phase of the electric motor 130 is individually controlled.
  • control unit 150 individually controls the drivers 340U, 340V, and 340W, and supplies control signals to the gates of the MOSFETs constituting the relays 330U, 330V, and 330W from the drivers 340U, 340V, and 340W, and the relay 330U. , 330V and 330W are individually controlled.
  • the control unit 150 When driving the electric motor 130, the control unit 150 outputs an on signal to the drivers 550a, 550b, and 550c of the power relay device 500 to control the first power relay 530 and the second power relay 540 to be in an on state, and Then, an ON signal is output to the drivers 340U, 340V, and 340W to control the relays 330U, 330V, and 330W to be in an ON state.
  • the control unit 150 drives the electric motor 130 by controlling on / off of the semiconductor switches 320UH, 320UL, 320VH, 320VL, 320WH, and 320WL of the inverter circuit 300 by PWM.
  • the control unit 150 controls the rotational speed of the electric motor 130 by changing the duty ratio of the PWM signal based on the steering torque signal ST, the vehicle speed signal VSP, and the like.
  • relays 330U, 330V, and 330W are used to prevent the electric motor 130 from functioning as a generator and serving as a handle operation resistance when power supply to the electric motor 130 is stopped due to, for example, a circuit failure. Controlled off.
  • the fact that the electric motor 130 functions as a generator and becomes a resistance to handle operation is referred to as an electric brake.
  • the control unit 150 controls the first power supply relay 530 and the second power supply relay 540 of the power supply relay device 500 to be in an off state when the power supply to the electric motor 130 is stopped based on the occurrence of the circuit failure and is made fail safe. Thus, the supply of power to the inverter circuit 300 is shut off, and all the semiconductor switches of the inverter circuit 300 are controlled to be turned off, thereby protecting the circuit and suppressing the occurrence of an unexpected steering assist force. Further, the control unit 150 controls the MOSFETs constituting the relays 330U, 330V, and 330W to be turned off via the drivers 340U, 340V, and 340W, and interrupts the drive current from the inverter circuit 300 to the electric motor 130. As a result, when a circuit failure occurs, the current path that generates the closed loop is interrupted to suppress the generation of the electric brake.
  • the power relay device 500 includes a first power relay 530 and a second power relay 540 that are semiconductor relays using semiconductor elements such as MOSFETs, the contacts are physically moved using an electromagnet to be turned on / off. Compared to the case of using a switching electromagnetic relay, the product can be reduced in size and improved in reliability.
  • the MOSFETs constituting the first power relay 530 and the second power relay 540 include parasitic diodes D10 and D11, but the forward directions in which the parasitic diodes D10 and D11 flow current are reversed. Therefore, when the first power supply relay 530 and the second power supply relay 540 are controlled to be in the OFF state, the inverter circuit 300 is supplied with power via the parasitic diodes D10 and D11 of the first power supply relay 530 and the second power supply relay 540. Can be prevented from being supplied.
  • the first power supply relay 530 is turned on when at least one of the outputs of the first driver 550a and the second driver 550b is turned on, and the second power supply relay 540 is turned on by the first driver 550a and the third driver 550c. Is turned on when at least one of the outputs is on. That is, each of the first power relay 530 and the second power relay 540 is turned on when the output of at least one of the two drivers is turned on.
  • the first power relay 530 and the second power relay 540 are in response to the power relay ON instruction of the control unit 150. Can be turned on to supply power to the inverter circuit 300.
  • the first power supply relay 530 is turned on when the output of the driver 550b is turned on, and the output of the driver 550c is turned on in the second power supply relay 540. It becomes an ON state by becoming.
  • the first power supply relay 530 When the driver 550b breaks down and the output is fixed in the off state, the first power supply relay 530 is turned on when the output of the driver 550a is turned on, and the second power supply relay 540 includes the driver 550a and the driver 550a. When at least one of is turned on, it is turned on. Further, when the driver 550c breaks down and the output is fixed in the off state, the first power supply relay 530 is turned on when at least one of the driver 550a and the driver 550b is turned on, and the second power supply relay 540 is turned on. When 550a is turned on, it is turned on.
  • the control unit 150 controls the drivers 550a, 550b, and 550c to be turned on, so that the first power supply Both the relay 530 and the second power supply relay 540 can be controlled to be in an ON state, and power can be supplied to the inverter circuit 300.
  • the second driver 550b and the third driver 550c are connected to the booster circuit 600. Since power is supplied from the independent charge pump 430, the outputs of the second driver 550b and the third driver 550c can be turned on to turn on the first power relay 530 and the second power relay 540.
  • the first driver 550a Since power is supplied from the booster circuit 600 independent of the charge pump 430, the first power supply relay 530 and the second power supply relay 540 can be turned on by turning on the output of the first driver 550a. Therefore, even if one of the booster circuit 600 and the charge pump 430 breaks down, the first power supply relay 530 and the second power supply relay 540 can be controlled to be turned on, and power can be supplied to the inverter circuit 300.
  • the flow of the electric power supplied from the charge pump 430 to the first driver 550a side is suppressed by the diodes D21 and D22.
  • the first power relay 530 and the second power relay 540 are turned on when one of the two drivers is turned on.
  • a booster circuit 600 that supplies power to one of the two drivers and a charge pump 430 that supplies power to the other are individually provided, and power is supplied to the driver from one of the booster circuit 600 and the charge pump 430.
  • the first power relay 530 and the second power relay 540 can be turned on. Therefore, even if one of the drivers 550a, 550b, and 550c fails or one of the booster circuit 600 and the charge pump 430 fails, the first power supply relay 530 and the second power supply relay 540 are turned on. Electric power can be supplied to the inverter circuit 300, and the electric motor 130 can be driven to generate a steering assist force.
  • the driver 550a, 550b, 550c, the booster circuit 600, and the charge pump 430 fail in a state where the drive control of the electric motor 130 can be performed normally, power is supplied to the inverter circuit 300 so that the electric motor 130 is operated.
  • the steering assist force can be continuously generated and the driver's steering force can be prevented from increasing.
  • the pre-driver 400 includes the charge pump 430 and the bootstrap circuits 420V, 420U, and 420W are provided for each phase, even if the boost function by the charge pump 430 fails, the bootstrap circuit 420V,
  • the semiconductor switches 320VH, 320UH, and 320WH, which are upper arm switches, can be driven by the bootstrap capacitor voltages of 420U and 420W.
  • the bootstrap circuits 420V, 420U, and 420W when the duty ratio in PWM control of the electric motor 130 is set to 100% or 0%, the bootstrap capacitor cannot be charged, and the semiconductor switch 320VH, It becomes impossible to drive 320UH and 320WH. However, if the charge pump 430 is normal, the power supply voltage necessary for driving the semiconductor switches 320VH, 320UH, and 320WH is supplied from the charge pump 430 even when the duty ratio is set to 100% or 0%. be able to.
  • the booster circuit 600 and the charge pump 430 since power is supplied from the booster circuit 600 and the charge pump 430 to the drivers 340U, 340V, and 340W of the relays 330U, 330V, and 330W, even if one of the booster circuit 600 and the charge pump 430 fails, the other The power can be supplied from the relay 330U, 330V, 330W to turn on. Therefore, when driving the electric motor 130, even if at least one of the booster circuit 600 and the charge pump 430 is out of order, the U-phase, V-phase, and W-phase of the electric motor 130 are driven to increase the steering assist force. Can be generated.
  • one of the booster circuit 600 and the charge pump 430 functions as a backup power source for the other, and it is possible to prevent the electric motor 130 from being unable to be driven due to a failure of the power supply circuit.
  • the driving device 140 for the electric motor 130 can continue to drive the electric motor 130 even if a booster circuit or driver failure occurs. It is possible to suppress an increase in the driver's steering force due to the inability to generate a force.
  • two sets of the first power supply relay 530 and the second power supply relay 540 can be connected in series, and a total of four MOSFETs can be connected in series to the power supply line 510.
  • the MOSFET in which the current direction of the parasitic diode D is directed to the battery 520 is fixed in the ON state
  • the current direction of the parasitic diode D is also directed to the battery 520.
  • the combination of the two power supply relays 530 and 540 and the three drivers 550a, 550b, and 550c is illustrated.
  • one driver that receives power supply from the booster circuit 600 and the charge pump 430 One driver that receives power supply may be provided, and the outputs of these two drivers may be supplied to the first power relay 530 and the second power relay 540, respectively.
  • the first power supply relay 530 and the second power supply relay 540 each include a combination of one driver that receives power supply from the booster circuit 600 and one driver that receives power supply from the charge pump 430. A total of four drivers can be provided.
  • the output of three or more drivers is configured to be output to one power supply relay, and at least one of the three or more drivers is supplied with power from the booster circuit 600, and at least one of the three or more drivers is supplied.
  • One can be configured to receive power supply from the charge pump 430.
  • the semiconductor switch constituting the relay or inverter circuit is not limited to the N-channel MOSFET, and other semiconductor switches can be used.
  • the semiconductor switches constituting the relays 330U, 330V, and 330W can be P-channel MOSFETs.
  • N-channel MOSFETs connected in series to the parasitic diodes and formed with Schottky barrier diodes (SBDs) that flow current in the direction opposite to the direction in which the parasitic diodes flow are relays 330U, 330V, 330W and power relays. It can be used as a semiconductor switch constituting the device 500.
  • An N-channel MOSFET in which an SBD is formed is disclosed in, for example, Japanese Patent Application Laid-Open No. 07-015009. When the N-channel MOSFET in which the SBD is formed is used as the first power relay 530 of the power relay device 500, the second power relay 540 and the driver 550c can be omitted.
  • the electric motor 130 is not limited to an electric motor that generates a steering assist force in the electric power steering apparatus 100.
  • the electric motor 130 drives a fluid pump that circulates oil of a vehicle hydraulic device or cooling water of an internal combustion engine. It can be an electric motor.
  • the electric motor 130 is not limited to a three-phase DC brushless motor, and can be a synchronous motor having four or more phase windings.
  • DESCRIPTION OF SYMBOLS 100 ... Electric power steering apparatus, 130 ... Electric motor, 140 ... Drive apparatus, 150 ... Control unit, 300 ... Inverter circuit, 330U, 330V, 330W ... Relay, 340U, 340V, 340W ... Driver, 400 ... Pre-driver, 420V, 420U, 420W ... bootstrap circuit, 430 ... charge pump, 500 ... power relay device, 530 ... first power relay, 540 ... second power relay, 550a, 550b, 550c ... driver, 600 ... booster circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Power Steering Mechanism (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

 本発明は、インバータ回路と、インバータ回路の電源ラインに配置され半導体スイッチで構成される電源リレーと、を備える電動モータの駆動装置及び駆動方法に関する。本発明では、電源リレーを駆動する第1ドライバ及び第2ドライバを備え、第1ドライバと第2ドライバとの少なくとも一方がオン信号を出力する場合に電源リレーがオンするよう構成した。これにより、ドライバの故障によってインバータ回路への電源供給が断たれることを抑制できる。

Description

電動モータの駆動装置及び駆動方法
 本発明は、インバータ回路と、インバータ回路の電源ラインに配置された電源リレーと、を備える電動モータの駆動装置及び駆動方法に関する。
 特許文献1には、バッテリ電圧を、半導体スイッチで構成される電源リレーを介してインバータ回路に供給する、電動モータの駆動装置が開示されている。
特開2011-244611号公報
 ところで、電動モータの駆動装置において、電源リレーを介してインバータ回路への電源供給を行うようにすれば、回路の短絡などの異常が生じた場合に電源リレーをオフしてインバータ回路への電源供給を断つことでシステムを安全サイドに導くことができる。
 しかし、電源リレーを構成する半導体スイッチのドライバに故障が発生すると、他に異常がない場合であってもインバータ回路への電源供給が断たれ、電動モータを駆動することができなくなってしまうという問題があった。
 本発明は上記実情に鑑みなされたものであり、電源リレーを駆動するドライバの故障によってインバータ回路への電源供給が断たれてしまうことを抑制できる、電動モータの駆動装置及び駆動方法を提供することを目的とする。
 そのため、本願発明に係る電動モータの駆動装置は、電動モータに電力を供給するインバータ回路と、前記インバータ回路に電力を供給する電源ラインに配置された半導体スイッチで構成される電源リレーと、前記電源リレーを駆動する第1ドライバ及び第2ドライバと、を備え、前記第1ドライバと前記第2ドライバとの少なくとも一方がオン信号を出力する場合に前記電源リレーがオンするよう構成した。
 また、本願発明に係る電動モータの駆動方法は、インバータ回路に電力を供給する電源ラインに半導体スイッチで構成される電源リレーが配置された電動モータにおいて、前記電源リレーを駆動する複数のドライバのうちの少なくとも1つがオン信号を出力するときに前記電源リレーをオンさせるようにした。
 上記発明によると、第1ドライバと第2ドライバとの一方が故障しても他方がオン信号を出力することで電源リレーがオンし、インバータ回路への電源供給を継続させることができる。
本発明の実施形態における電動パワーステアリング装置の構成図である。 本発明の実施形態における電動モータの駆動装置を示す回路図である。 本発明の実施形態におけるドライバの一例を示す回路図である。
 以下に本発明の実施の形態を説明する。
 図1は、電動モータの駆動装置及び駆動方法の適用例の1つとしての電動パワーステアリング装置を示す。
 図1に示す電動パワーステアリング装置100は、車両200に備えられて操舵補助力を電動モータ130によって発生させる装置であり、ステアリングホイール110、操舵トルクセンサ120、電動モータ130、電動モータ130の駆動装置140、電動モータ130の制御装置を構成するコントロールユニット150、電動モータ130の回転を減速してステアリングシャフト170に伝達する減速機160などを含んで構成される。
 操舵トルクセンサ120及び減速機160は、ステアリングシャフト170を内包するステアリングコラム180内に設けられる。
 ステアリングシャフト170の先端にはピニオンギア171が設けられていて、このピニオンギア171が回転すると、ラックギア172が車両200の進行方向左右に水平移動する。
 ラックギア172の両端には、それぞれ車輪201の操舵機構202が設けられており、ラックギア172が水平移動することで車輪201の向きが変えられる。
 操舵トルクセンサ120は、車両の運転者がステアリング操作を行うことでステアリングシャフト170に発生する操舵トルクを検出し、検出した操舵トルクの信号STをコントロールユニット150に出力する。
 マイクロコンピュータを含むコントロールユニット150には、操舵トルク信号STの他、車速センサ190が出力する車速の信号VSPなどが入力される。
 そして、コントロールユニット150は、操舵トルク信号ST、車速信号VSPなどに基づいて駆動装置140を制御することで、電動モータ130の発生トルク、つまり、操舵補助力を制御する。
 なお、コントロールユニット150と駆動装置140とを一体とした構成とすることができる。
 次に、電動モータ130の駆動装置140を、図2を参照しつつ詳細に説明する。
 電動モータ130は、U相、V相及びW相の3相巻線を有する、3相DCブラシレスモータ、換言すれば、3相同期電動機である。
 そして、駆動装置140は、インバータ回路300、インバータ回路300を駆動するプリドライバ400、電源リレー装置500などを備える。
 インバータ回路300は、駆動ライン310U,310V,310Wを介して電動モータ130のU相、V相及びW相をそれぞれに駆動する3組の半導体スイッチ320UH,320UL,320VH,320VL,320WH,320WLを備えた3相ブリッジ回路からなる。
 本実施形態では、半導体スイッチ320UH,320UL,320VH,320VL,320WH,320WLとして、Nチャネル型のMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)を用いる。
 半導体スイッチ320UH,320ULは、電源ライン510と接地点との間にドレイン-ソース間が直列接続され、半導体スイッチ320UHと半導体スイッチ320ULとの接続点に駆動ライン310Uの一端が接続され、駆動ライン310Uの他端には電動モータ130のU相が接続される。
 半導体スイッチ320VH,320VLは、電源ライン510と接地点との間にドレイン-ソース間が直列接続され、半導体スイッチ320VHと半導体スイッチ320VLとの接続点に駆動ライン310Vの一端が接続され、駆動ライン310Vの他端には電動モータ130のV相が接続される。
 半導体スイッチ320WH,320WLは、電源ライン510と接地点との間にドレイン-ソース間が直列接続され、半導体スイッチ320WHと半導体スイッチ320WLとの接続点に駆動ライン310Wの一端が接続され、駆動ライン310Wの他端には電動モータ130のW相が接続される。
 また、インバータ回路300と電動モータ130のU相、V相及びW相との間の駆動ライン310U,310V,310Wには、リレー330U,330V,330Wが設けられている。これらのリレー330U,330V,330Wとして、本例ではNチャネル型MOSFETを用いている。
 リレー330U,330V,330Wは、それぞれドライバ340U,340V,340Wによって駆動される。
 コントロールユニット150は、ドライバ340U,340V,340Wを制御してリレー330U,330V,330Wを構成するMOSFETのゲートに制御信号を出力することで、リレー330U,330V,330Wのオン/オフを個別に制御する。
 ここで、リレー330U,330V,330Wのオフ状態では、インバータ回路300からU相,V相,W相への電力供給が遮断され、リレー330U,330V,330Wのオン状態では、インバータ回路300からU相、V相,W相への電力供給が行えるようになる。
 プリドライバ400は、インバータ回路300におけるアッパーアームスイッチ320VH,320UH,320WHをそれぞれに駆動するドライバ410VH,410UH,410WHと、インバータ回路300におけるローワーアームスイッチ320VL,320UL,320WLをそれぞれに駆動するドライバ410VL,410UL,410WLとを備えている。
 なお、プリドライバ400をSOI(Silicon On Insulator)で構成することができ、これによって、浮遊容量が低減され、プリドライバ400の高速度化及び低消費電力化を図ることができる。また、特定の部位が故障した際、他の部位に波及して故障させる可能性を低減することができる。
 また、プリドライバ400は、ブートストラップコンデンサCU,CV,CWに充電した電荷でアッパーアームスイッチ320VH,320UH,320WHを駆動する昇圧回路であるブートストラップ回路420V,420U,420Wを備えている。
 ドライバ410VH,410UH,410WHの出力端にはそれぞれMOSFET320VH,320UH,320WHのゲートが接続され、MOSFET320VH,320UH,320WHは、ドライバ410VH,410UH,410WHの出力に応じてオン/オフが制御される。
 同様に、ドライバ410VL,410UL,410WLの出力端にはそれぞれMOSFET320VL,320UL,320WLのゲートが接続され、MOSFET320VL,320UL,320WLは、ドライバ410VL,410UL,410WLの出力に応じてオン/オフが制御される。
 更に、プリドライバ400は、ドライバ410UH,410UL,410VH,410VL,410WH,410WL及びリレー330U,330V,330Wのドライバ340U,340V,340W及び電源リレー装置500を構成するドライバに電力を供給するチャージポンプ430を備えている。チャージポンプ430は、プリドライバ400の電源を昇圧する昇圧回路である。
 ドライバ410VH,410UH,410WHは、ブートストラップ回路420V,420U,420Wとチャージポンプ430との高い方の電圧を使用してMOSFET320VH,320UH,320WHを駆動するように構成され、ドライバ410VL,410UL,410WLは、バッテリ電源520とチャージポンプ430との高い方の電圧を使用してMOSFET320VL,320UL,320WLを駆動する。
 電源リレー装置500は、電源としてのバッテリ520と、バッテリ520とインバータ回路300とを接続する電源ライン510にドレイン-ソース間が直列接続されるNチャネル型MOSFETからなる第1電源リレー530及び第2電源リレー540と、第1電源リレー530,第2電源リレー540を駆動する第1ドライバ550a,第2ドライバ550b,第3ドライバ550cとを備えている。
 なお、インバータ回路300、リレー330U,330V,330W、第1電源リレー530、第2電源リレー540を構成する各MOSFETにおいて、ドレイン-ソース間のダイオードD1-D11は、寄生ダイオード、換言すれば、内部ダイオードである。
 ここで、第1電源リレー530のソースと第2電源リレー540のソースとを接続することで、第1電源リレー530の寄生ダイオードD10と第2電源リレー540の寄生ダイオードD11とは、電流を流す方向である順方向が逆向きになるようにしてある。
 また、第1電源リレー530を構成するMOSFETのゲートには第1ドライバ550a及び第2ドライバ550bの出力端が接続され、第2電源リレー540を構成するMOSFETのゲートには第1ドライバ550a及び第3ドライバ550cの出力端が接続される。
 そして、第1電源リレー530は、第1ドライバ550aと第2ドライバ550bとの少なくとも一方の出力がハイレベルである場合にドレイン-ソース間に電流が流れるオン状態となり、第2電源リレー540は、第1ドライバ550aと第3ドライバ550cとの少なくとも一方の出力がハイレベルである場合にドレイン-ソース間に電流が流れるオン状態となる。
 ここで、第1ドライバ550aの出力端と第1電源リレー530を構成するMOSFETのゲートとを接続するラインには、第1ドライバ550aから第1電源リレー530に向かう方向に電流を流す第1ダイオードD21が介装される。
 また、第1ドライバ550aの出力端と第2電源リレー540を構成するMOSFETのゲートとを接続するラインには、第1ドライバ550aから第2電源リレー540に向かう方向に電流を流す第2ダイオードD22が介装される。
 更に、第2ドライバ550bの出力端と第1電源リレー530を構成するMOSFETのゲートとを接続するラインには、第2ドライバ550bから第1電源リレー530に向かう方向に電流を流す第3ダイオードD21’が介装される。
 また、第3ドライバ550cの出力端と第2電源リレー540を構成するMOSFETのゲートとを接続するラインには、第3ドライバ550cから第2電源リレー540に向かう方向に電流を流す第4ダイオードD22’が介装される。
 なお、ドライバ550a-550cとして、例えば、図3に示すようなバイポーラトランジスタで構成される回路を用いる場合には、ドライバ550a-550cと電源リレー530,540を構成するMOSFET530,540のゲートとを接続するラインのダイオードD21,D22,D21’,D22’を省略することができる。
 図3のドライバ550a-550cは、PNPトランジスタTR1と、抵抗Rと、NPNトランジスタTR2とで構成される。PNPトランジスタTR1は、電源としての昇圧回路600又はチャージポンプ430と電源リレー530,540を構成するMOSFET530,540のゲートとの間に、エミッタ-コレクタ間が直列に接続される。
 また、抵抗Rは、PNPトランジスタTR1のベースと接地点との間に直列接続される。また、NPNトランジスタTR2は、抵抗Rと接地点との間にコレクタ-エミッタ間が直列に接続される。
 そして、NPNトランジスタTR2のベースにコントロールユニット150からの制御信号が出力され、NPNトランジスタTR2のベースにハイレベル信号が出力されると、PNPトランジスタTR1を介して電源が電源リレー530,540を構成するMOSFET530,540のゲートに供給される。
 尚、SOIで構成されるプリドライバ400と他のデバイスとを一体化することができる。
 例えば、プリドライバ400と昇圧回路600とを一体としたり、プリドライバ400とドライバ550aとダイオードD21,D22とを一体としたりすることができる。
 また、プリドライバ400とドライバ550aとダイオードD21,D22,D21’とを一体としたり、プリドライバ400とドライバ550a-550cとダイオードD21,D22,D21’,D22’とリレーのドライバ340U,340V,340Wとを一体としたりすることができる。
 また、第1ドライバ550aには昇圧回路600から電源が供給され、第2ドライバ550b及び第3ドライバ550cにはプリドライバ400に備えられたチャージポンプ430から電源が供給される。
 更に、リレー330U,330V,330Wのドライバ340U,340V,340Wには、昇圧回路600及びチャージポンプ430から電力が供給される。
 ここで、昇圧回路600と各ドライバ340U,340V,340Wとを接続するラインには第3ダイオードD23が介装され、チャージポンプ430と各ドライバ340U,340V,340Wとを接続するラインには第4ダイオードD24が介装され、並列接続される第3ダイオードD23及び第4ダイオードD24は共に、各ドライバ340U,340V,340Wに向かう方向に電流を流す。
 上記の駆動装置140を構成する各ドライバ340U,340V,340W,550a,550b,550c,410VH,410UH,410WH,410VL,410UL,410WLは、マイクロコンピュータを含むコントロールユニット150によって個別に制御される。
 すなわち、コントロールユニット150は、各ドライバ550a,550b,550cを制御することで、電源リレー装置500の第1電源リレー530,第2電源リレー540を構成するMOSFETのゲートに制御信号を供給し、第1電源リレー530,第2電源リレー540のオン/オフを制御する。
 また、コントロールユニット150は、プリドライバ400の各ドライバ410VH,410UH,410WH,410VL,410UL,410WLにPWM(Pulse Width Modulation)信号を個別に出力する。
 そして、ドライバ410VH,410UH,410WH,410VL,410UL,410WLは、上記PWM信号に基づいてインバータ回路300の半導体スイッチ320UH,320UL,320VH,320VL,320WH,320WLのゲートにそれぞれ上記PWM信号に基づく駆動信号を供給し、半導体スイッチ320UH,320UL,320VH,320VL,320WH,320WLのオン/オフを制御することで、電動モータ130の各相への通電を個別に制御する。
 更に、コントロールユニット150は、ドライバ340U,340V,340Wを個別に制御し、これらのドライバ340U,340V,340Wからリレー330U,330V,330Wを構成する各MOSFETのゲートに制御信号を供給し、リレー330U,330V,330Wのオン/オフを個別に制御する。
 電動モータ130を駆動する場合、コントロールユニット150は、電源リレー装置500のドライバ550a,550b,550cにオン信号を出力して第1電源リレー530及び第2電源リレー540をオン状態に制御し、更に、ドライバ340U,340V,340Wにオン信号を出力してリレー330U,330V,330Wをオン状態に制御する。
 そして、コントロールユニット150は、インバータ回路300の半導体スイッチ320UH,320UL,320VH,320VL,320WH,320WLのオン/オフをPWMによって制御することで、電動モータ130を駆動する。
 ここで、コントロールユニット150は、操舵トルク信号STや車速信号VSPなどに基づいてPWM信号のデューティ比を変更し、電動モータ130の回転速度を制御する。
 また、リレー330U,330V,330Wは、例えば、回路故障などによって電動モータ130への電力供給を停止する場合に、電動モータ130が発電機として機能してハンドル操作の抵抗になることを抑制するためにオフに制御される。
 以下では、電動モータ130が発電機として機能してハンドル操作の抵抗になることを、電気ブレーキと称する。
 コントロールユニット150は、回路故障の発生に基づき電動モータ130への電力供給を停止してフェイルセーフとする場合、電源リレー装置500の第1電源リレー530及び第2電源リレー540をオフ状態に制御してインバータ回路300への電源の供給を遮断し、また、インバータ回路300の半導体スイッチを全てオフに制御して、回路の保護及び予期せぬ操舵補助力の発生を抑制する。
 更に、コントロールユニット150は、ドライバ340U,340V,340Wを介してリレー330U,330V,330Wを構成するMOSFETをオフ状態に制御し、インバータ回路300から電動モータ130への駆動電流を遮断する。これによって、回路故障が発生したときに、閉ループを生成する電流路を遮断して電気ブレーキの発生を抑制する。
 ここで、電源リレー装置500の作用を説明する。
 電源リレー装置500は、MOSFETなどの半導体素子を用いた半導体リレーである第1電源リレー530及び第2電源リレー540で構成されるから、電磁石を用いて接点を物理的に動かしてオン/オフが切り替わる電磁リレーを用いる場合に比べ、製品の小型化と信頼性の向上とを図れる。
 なお、第1電源リレー530及び第2電源リレー540を構成するMOSFETは、寄生ダイオードD10,D11を備えるが、この寄生ダイオードD10,D11が電流を流す向きである順方向を逆にしてある。
 このため、第1電源リレー530及び第2電源リレー540がオフ状態に制御されている場合に、第1電源リレー530及び第2電源リレー540の寄生ダイオードD10,D11を介してインバータ回路300に電源が供給されることを抑制できる。
 また、第1電源リレー530は、第1ドライバ550aと第2ドライバ550bとの少なくとも一方の出力がオンである場合にオン状態となり、第2電源リレー540は、第1ドライバ550aと第3ドライバ550cとの少なくとも一方の出力がオンである場合にオン状態となる。
 つまり、第1電源リレー530及び第2電源リレー540は、それぞれ2つのドライバのうちの少なくとも一方の出力がオンであればオン状態になるようにしてある。
 従って、ドライバ550a,550b,550cのうちの1つが故障して出力がオフ状態に固着しても、コントロールユニット150の電源リレーのオン指示に対して、第1電源リレー530及び第2電源リレー540をオン状態にして、インバータ回路300に電力を供給できる。
 例えば、ドライバ550aが故障して出力がオフ状態に固着した場合、第1電源リレー530はドライバ550bの出力がオンになることでオン状態になり、第2電源リレー540はドライバ550cの出力がオンになることでオン状態になる。
 また、ドライバ550bが故障して出力がオフ状態に固着した場合、第1電源リレー530はドライバ550aの出力がオンになることでオン状態になり、第2電源リレー540はドライバ550aとドライバ550aとの少なくとも一方がオンになることでオン状態になる。
 更に、ドライバ550cが故障して出力がオフ状態に固着した場合、第1電源リレー530はドライバ550aとドライバ550bとの少なくとも一方がオンになることでオン状態になり、第2電源リレー540はドライバ550aがオンになることでオン状態になる。
 このように、ドライバ550a,550b,550cのうちの1つが故障して出力がオフ状態に固着しても、コントロールユニット150は、ドライバ550a,550b,550cをオンに制御することで、第1電源リレー530及び第2電源リレー540を共にオン状態に制御して、インバータ回路300に電源を供給することができる。
 また、昇圧回路600が故障し、第1ドライバ550aに電源を供給できずに第1ドライバ550aの出力をオンにできなくなっても、第2ドライバ550b及び第3ドライバ550cには、昇圧回路600とは独立したチャージポンプ430から電源が供給されるので、第2ドライバ550b及び第3ドライバ550cの出力をオンにして第1電源リレー530及び第2電源リレー540をオン状態にすることができる。
 逆に、チャージポンプ430が故障し、第2ドライバ550b及び第3ドライバ550cに電源を供給できずに第2ドライバ550b及び第3ドライバ550cの出力をオンにできなくなっても、第1ドライバ550aには、チャージポンプ430とは独立した昇圧回路600から電源が供給されるので、第1ドライバ550aの出力をオンにして第1電源リレー530及び第2電源リレー540をオン状態にすることができる。
 従って、昇圧回路600とチャージポンプ430との一方が故障しても、第1電源リレー530及び第2電源リレー540をオン状態に制御し、インバータ回路300に電力を供給できる。
 なお、チャージポンプ430から供給される電力の第1ドライバ550a側への流れ込みは、ダイオードD21,D22によって抑制される。
 このように、第1電源リレー530及び第2電源リレー540は、それぞれ2つのドライバのうちの一方がオンすればオン状態になる。
 更に、前記2つのドライバの一方に電源を供給する昇圧回路600と他方に電源を供給するチャージポンプ430とを個別に備え、昇圧回路600とチャージポンプ430との一方からドライバに電源が供給されれば、第1電源リレー530及び第2電源リレー540をオンさせることができる。
 従って、ドライバ550a,550b,550cのうちの1つが故障するか、又は、昇圧回路600とチャージポンプ430との一方が故障しても、第1電源リレー530及び第2電源リレー540をオン状態としてインバータ回路300に電力を供給でき、電動モータ130を駆動させて操舵補助力を発生させることができる。
 つまり、電動モータ130の駆動制御を正常に行える状態で、ドライバ550a,550b,550cや昇圧回路600,チャージポンプ430の故障が発生しても、インバータ回路300に電源を供給して電動モータ130を駆動し、操舵補助力を継続して発生させることができ、運転者の操舵力が増大することを抑制できる。
 また、上記のプリドライバ400では、チャージポンプ430を備えると共に、各相にブートストラップ回路420V,420U,420Wを設けてあるので、チャージポンプ430による昇圧機能が故障しても、ブートストラップ回路420V,420U,420Wのブートストラップコンデンサの電圧でアッパーアームスイッチである半導体スイッチ320VH,320UH,320WHを駆動できる。
 また、ブートストラップ回路420V,420U,420Wでは、電動モータ130のPWM制御におけるデューティ比を100%又は0%にすると、ブートストラップコンデンサへの充電が行えず、ブートストラップコンデンサの電圧で半導体スイッチ320VH,320UH,320WHを駆動することができなくなる。
 しかし、チャージポンプ430が正常であれば、デューティ比が100%又は0%に設定される場合であっても、チャージポンプ430から半導体スイッチ320VH,320UH,320WHの駆動に必要な電源電圧を供給することができる。
 更に、リレー330U,330V,330Wのドライバ340U,340V,340Wそれぞれに、昇圧回路600及びチャージポンプ430から電源が供給されるので、昇圧回路600とチャージポンプ430との一方が故障しても、他方から電源供給してリレー330U,330V,330Wをオン状態にすることができる。
 従って、電動モータ130を駆動する場合に、昇圧回路600とチャージポンプ430との少なくとも一方が故障していても、電動モータ130のU相、V相及びW相それぞれを駆動して操舵補助力を発生させることができる。
 つまり、昇圧回路600とチャージポンプ430とは一方が他方のバックアップ電源として機能し、電源回路の故障によって電動モータ130を駆動することができなくなることを抑制できる。
 以上のように、上記電動モータ130の駆動装置140では、昇圧回路やドライバの故障が発生しても、電動モータ130の駆動を継続させることが可能で、昇圧回路やドライバの故障によって直ちに操舵補助力を発生させることができなくなって運転者の操舵力が増大してしまうことを抑制できる。
 上記実施形態で説明した各技術的思想は、矛盾が生じない限りにおいて適宜組み合わせて使用することができる。
 また、好ましい実施形態を参照して本発明の内容を具体的に説明したが、本発明の基本的技術思想及び教示に基づいて、当業者であれば種々の変形態様を採り得ることは自明である。
 例えば、第1電源リレー530と第2電源リレー540との組み合わせを2組直列に接続し、計4個のMOSFETを電源ライン510に直列接続させることができる。
 この場合、例えば、寄生ダイオードDの電流方向がバッテリ520に向かう方向であるMOSFETがオン状態に固着する故障が発生した場合に、同じく寄生ダイオードDの電流方向がバッテリ520に向かう方向であるもう1つのMOSFETをオフに制御することで、インバータ回路300への電源供給を遮断することができる。
 また、上記実施形態では、2つの電源リレー530,540と3つのドライバ550a,550b,550cとの組み合わせを例示したが、例えば、昇圧回路600から電源供給を受ける1つのドライバと、チャージポンプ430から電源供給を受ける1つのドライバとを設け、これら2つのドライバの出力が、第1電源リレー530と第2電源リレー540とのそれぞれに供給される構成とすることができる。
 また、昇圧回路600から電源供給を受ける1つのドライバと、チャージポンプ430から電源供給を受ける1つのドライバとの組み合わせを、第1電源リレー530と第2電源リレー540とにそれぞれ設ける構成、つまり、計4つのドライバを備える構成とすることができる。
 更に、3つ以上のドライバの出力が1つの電源リレーに出力される構成とし、3つ以上のドライバのうちの少なくとも1つが昇圧回路600から電源供給を受け、3つ以上のドライバのうちの少なくとも1つがチャージポンプ430から電源供給を受ける構成とすることができる。
 また、リレーやインバータ回路を構成する半導体スイッチをNチャネル型MOSFETに限定するものではなく、他の半導体スイッチを用いることができる。例えば、リレー330U,330V,330Wを構成する半導体スイッチをPチャネル型MOSFETとすることができる。
 更に、寄生ダイオードに直列に接続され、寄生ダイオードが電流を流す方向の逆方向に電流を流すショットキ・バリア・ダイオード(SBD)が形成されるNチャネル型MOSFETをリレー330U,330V,330Wや電源リレー装置500を構成する半導体スイッチとして用いることができる。
 SBDが形成されるNチャネル型MOSFETは、例えば特開平07-015009号公報などに開示されている。
 そして、SBDが形成されるNチャネル型MOSFETを電源リレー装置500の第1電源リレー530として用いる場合には、第2電源リレー540及びドライバ550cを省略することができる。
 また、電動モータ130は、電動パワーステアリング装置100において操舵補助力を発生させる電動モータに限定されるものではなく、例えば、車両用油圧機器のオイルや内燃機関の冷却水を循環させる流体ポンプを駆動する電動モータとすることができる。
 また、電動モータ130を3相DCブラシレスモータに限定するものではなく、4相以上の巻線を有する同期電動機とすることができる。
 100…電動パワーステアリング装置、130…電動モータ、140…駆動装置、150…コントロールユニット、300…インバータ回路、330U,330V,330W…リレー、340U,340V,340W…ドライバ、400…プリドライバ、420V,420U,420W…ブートストラップ回路、430…チャージポンプ、500…電源リレー装置、530…第1電源リレー、540…第2電源リレー、550a,550b,550c…ドライバ、600…昇圧回路

Claims (15)

  1.  電動モータに電力を供給するインバータ回路と、
     前記インバータ回路に電力を供給する電源ラインに配置された半導体スイッチで構成される電源リレーと、
     前記電源リレーを駆動する第1ドライバ及び第2ドライバと、
     を備え、
     前記第1ドライバと前記第2ドライバとの少なくとも一方がオン信号を出力する場合に前記電源リレーがオンするよう構成した、電動モータの駆動装置。
  2.  前記第1ドライバ及び前記第2ドライバが正常である場合に前記第1ドライバ及び前記第2ドライバの双方からオン信号を出力して前記電源リレーをオンするよう構成した、請求項1記載の電動モータの駆動装置。
  3.  前記第1ドライバの電源を昇圧する第1昇圧回路と、前記第2ドライバの電源を昇圧する第2昇圧回路とを個別に備える、請求項1記載の電動モータの駆動装置。
  4.  前記第1昇圧回路と前記第2昇圧回路との一方が前記インバータ回路を駆動するプリドライバの電源を昇圧する昇圧回路である、請求項3記載の電動モータの駆動装置。
  5.  前記インバータ回路と前記電動モータのコイルとを接続するラインに半導体スイッチで構成される相リレーを備え、前記相リレーのドライバに前記第1昇圧回路及び前記第2昇圧回路から電源を供給する、請求項3記載の電動モータの駆動装置。
  6.  前記相リレーと当該相リレーのドライバとの組み合わせを、前記電動モータの相毎にそれぞれ備える、請求項5記載の電動モータの駆動装置。
  7.  前記電源リレーに接続される半導体スイッチからなる第2電源リレーと、前記第2電源リレーを駆動する第3ドライバとを備え、前記第2電源リレーには、前記第3ドライバと共に前記第1ドライバと前記第2ドライバとの少なくとも一方が接続され、前記第2電源リレーに接続される複数のドライバのうちの少なくとも1つがオン信号を出力するときに前記第2電源リレーがオンするよう構成した、請求項1記載の電動モータの駆動装置。
  8.  前記第2電源リレーを構成する半導体スイッチの寄生ダイオードが電流を流す方向と、前記電源リレーを構成する半導体スイッチの寄生ダイオードが電流を流す方向とが逆向きである、請求項7記載の電動モータの駆動装置。
  9.  前記第2電源リレーに接続される前記第1ドライバと前記第2ドライバとの少なくとも一方と、前記第3ドライバとは、それぞれ異なる昇圧回路を介して電源が供給される、請求項7記載の電動モータの駆動装置。
  10.  前記第2電源リレーに接続される前記第1ドライバ又は前記第2ドライバに供給される昇圧電源が、前記インバータ回路のプリドライバの電源として共用されていない昇圧電源である、請求項9記載の電動モータの駆動装置。
  11.  前記プリドライバの昇圧回路としてブートストラップ回路を備える、請求項10記載の電動モータの駆動装置。
  12.  前記第1-第3ドライバと前記電源リレーを構成する半導体スイッチとの間に、前記電源リレーに向かう電流を流すダイオードを接続した、請求項7記載の電動モータの駆動装置。
  13.  前記インバータ回路を駆動するプリドライバは、少なくとも2系統の昇圧回路から電源が供給される、請求項1記載の電動モータの駆動装置。
  14.  前記インバータ回路を駆動するプリドライバはSOI(Silicon On Insulator)で構成される、請求項1記載の電動モータの駆動装置。
  15.  インバータ回路に電力を供給する電源ラインに半導体スイッチで構成される電源リレーが配置された電動モータにおいて、
     前記電源リレーを駆動する複数のドライバのうちの少なくとも1つがオン信号を出力するときに前記電源リレーをオンさせる、電動モータの駆動方法。
PCT/JP2014/068483 2013-08-02 2014-07-10 電動モータの駆動装置及び駆動方法 WO2015016034A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480002159.5A CN104584422A (zh) 2013-08-02 2014-07-10 电动马达的驱动装置以及驱动方法
US14/427,086 US20150249406A1 (en) 2013-08-02 2014-07-10 Driving Device for Electric Motor
DE112014003575.0T DE112014003575T5 (de) 2013-08-02 2014-07-10 Antriebsvorrichtung für Elektro-Motor und Antriebsverfahren hierfür
KR1020157004074A KR101512953B1 (ko) 2013-08-02 2014-07-10 전동 모터의 구동 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-161548 2013-08-02
JP2013161548A JP2015033238A (ja) 2013-08-02 2013-08-02 電動モータの駆動装置

Publications (1)

Publication Number Publication Date
WO2015016034A1 true WO2015016034A1 (ja) 2015-02-05

Family

ID=52431574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/068483 WO2015016034A1 (ja) 2013-08-02 2014-07-10 電動モータの駆動装置及び駆動方法

Country Status (6)

Country Link
US (1) US20150249406A1 (ja)
JP (1) JP2015033238A (ja)
KR (1) KR101512953B1 (ja)
CN (1) CN104584422A (ja)
DE (1) DE112014003575T5 (ja)
WO (1) WO2015016034A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020066142A1 (ja) * 2018-09-28 2020-04-02 アイシン・エィ・ダブリュ株式会社 電力変換装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108352795B (zh) * 2015-11-02 2021-05-11 三菱电机株式会社 马达驱动装置、电动吸尘器以及干手器
JP2017158318A (ja) * 2016-03-02 2017-09-07 日立オートモティブシステムズ株式会社 モータ駆動装置
JP7184038B2 (ja) * 2017-07-31 2022-12-06 日本電産株式会社 電力変換装置、モータモジュールおよび電動パワーステアリング装置
DE102017218189A1 (de) * 2017-10-12 2019-04-18 Zf Friedrichshafen Ag Sicherer Zustand einer elektrischen Maschine
JP7096679B2 (ja) * 2018-03-16 2022-07-06 日立Astemo株式会社 モータ制御装置
JP6526291B1 (ja) * 2018-06-08 2019-06-05 三菱電機株式会社 電動パワーステアリング装置
JP7120075B2 (ja) * 2019-02-26 2022-08-17 トヨタ自動車株式会社 車両の制御装置
TWI697197B (zh) * 2020-01-30 2020-06-21 群光電能科技股份有限公司 應用於馬達逆變器的閘極驅動電路及閘極驅動方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6348156A (ja) * 1986-08-12 1988-02-29 Fuji Electric Co Ltd サイリスタ装置
JP2009159697A (ja) * 2007-12-26 2009-07-16 Hitachi Ltd モータ制御装置
JP2010114957A (ja) * 2008-11-04 2010-05-20 Jtekt Corp モータ駆動回路及び電動パワーステアリング装置
JP2011229222A (ja) * 2010-04-16 2011-11-10 Toyota Industries Corp 電源回路
JP2011244611A (ja) * 2010-05-19 2011-12-01 Omron Automotive Electronics Co Ltd モータ駆動装置
JP2013085122A (ja) * 2011-10-11 2013-05-09 Renesas Electronics Corp 半導体集積回路

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5195888B2 (ja) * 2010-06-24 2013-05-15 株式会社デンソー 電動機駆動装置、および、これを用いた電動パワーステアリング装置
JP5692588B2 (ja) * 2010-12-28 2015-04-01 株式会社デンソー 駆動装置
JP5532065B2 (ja) * 2012-02-29 2014-06-25 株式会社デンソー 電動機駆動装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6348156A (ja) * 1986-08-12 1988-02-29 Fuji Electric Co Ltd サイリスタ装置
JP2009159697A (ja) * 2007-12-26 2009-07-16 Hitachi Ltd モータ制御装置
JP2010114957A (ja) * 2008-11-04 2010-05-20 Jtekt Corp モータ駆動回路及び電動パワーステアリング装置
JP2011229222A (ja) * 2010-04-16 2011-11-10 Toyota Industries Corp 電源回路
JP2011244611A (ja) * 2010-05-19 2011-12-01 Omron Automotive Electronics Co Ltd モータ駆動装置
JP2013085122A (ja) * 2011-10-11 2013-05-09 Renesas Electronics Corp 半導体集積回路

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020066142A1 (ja) * 2018-09-28 2020-04-02 アイシン・エィ・ダブリュ株式会社 電力変換装置

Also Published As

Publication number Publication date
KR20150032336A (ko) 2015-03-25
JP2015033238A (ja) 2015-02-16
DE112014003575T5 (de) 2016-05-04
US20150249406A1 (en) 2015-09-03
CN104584422A (zh) 2015-04-29
KR101512953B1 (ko) 2015-04-16

Similar Documents

Publication Publication Date Title
WO2015016034A1 (ja) 電動モータの駆動装置及び駆動方法
US9806643B2 (en) Drive control apparatus for electric motor
JP6182385B2 (ja) 電動モータの制御装置
JP6010490B2 (ja) モータ駆動装置
JP6709325B2 (ja) モータシステム
US20130257328A1 (en) Motor drive apparatus
JP5446409B2 (ja) モータ制御装置および電動パワーステアリング装置
US9859794B2 (en) Semiconductor device and motor control unit
US10833614B2 (en) Motor drive device and electric power steering device
JP5946786B2 (ja) モータの駆動制御装置
CN110168922B (zh) 马达驱动装置以及电动助力转向装置
CN110915121B (zh) 电力转换装置、马达模块以及电动助力转向装置
JP7184038B2 (ja) 電力変換装置、モータモジュールおよび電動パワーステアリング装置
JP7128950B2 (ja) モータアクチュエータ
JP2016165174A (ja) 電動パワーステアリング装置
JP2015165745A (ja) 電源供給回路
WO2023079960A1 (ja) モータ駆動装置
JP2023068524A (ja) 負荷駆動装置
JP5527182B2 (ja) 電動パワーステアリング装置
CN113727812A (zh) 电气机器

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20157004074

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14427086

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14832061

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112014003575

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14832061

Country of ref document: EP

Kind code of ref document: A1