WO2015015612A1 - Display device and display system - Google Patents

Display device and display system Download PDF

Info

Publication number
WO2015015612A1
WO2015015612A1 PCT/JP2013/070824 JP2013070824W WO2015015612A1 WO 2015015612 A1 WO2015015612 A1 WO 2015015612A1 JP 2013070824 W JP2013070824 W JP 2013070824W WO 2015015612 A1 WO2015015612 A1 WO 2015015612A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
optical element
video
display unit
display
Prior art date
Application number
PCT/JP2013/070824
Other languages
French (fr)
Japanese (ja)
Inventor
芳晴 桃井
達夫 最首
Original Assignee
株式会社東芝
東芝ライフスタイル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝, 東芝ライフスタイル株式会社 filed Critical 株式会社東芝
Priority to JP2014552411A priority Critical patent/JPWO2015015612A1/en
Priority to PCT/JP2013/070824 priority patent/WO2015015612A1/en
Publication of WO2015015612A1 publication Critical patent/WO2015015612A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133526Lenses, e.g. microlenses or Fresnel lenses

Definitions

  • Embodiments of the present invention relate to a display device and a display system.
  • the frame portion exists at the outer edge portion of the display unit of the display device, when the viewer views the image of the display device, not only the image but also the frame portion is viewed. For example, when a plurality of video display devices are arranged adjacent to each other, a joint is generated by the frame portion. For this reason, there is proposed a technique of providing an optical element (lens) or the like in front of a display unit of a display device to magnify an image, thereby making the frame optically invisible. And when enlarging using an optical element, it is necessary to adjust so that a viewer may see a suitable image.
  • an optical element lens
  • the display device of the embodiment includes a display unit, an optical element, and a setting unit.
  • the display unit includes an image display unit on which an image is displayed, and a frame provided outside the outer edge of the image display unit.
  • the optical element is provided so as to cover the outer edge area and the frame provided inside from the outer edge in the video display unit, and enlarges the video displayed from the video display unit to the frame side.
  • the setting unit reduces the size of the image enlarged by the optical element by the reduction ratio corresponding to the enlargement ratio so that the image and the pixel size match the image without the optical element.
  • a reduction area for outputting the reduced image is set in the image display unit.
  • FIG. 1 is a view showing an example of a four-sided tiling display which is an embodiment of a video display system, which is configured by four video display devices according to the first embodiment.
  • FIG. 2 is a schematic view for explaining the enlargement direction of the image by the linear lens of the image display device according to the first embodiment.
  • FIG. 3 is a schematic view for explaining the enlargement direction of the image by the circular lens and the linear lens of the image display device according to the first embodiment.
  • FIG. 4 is a schematic view for explaining how an image displayed by the image display apparatus according to the first embodiment is viewed.
  • FIG. 5 is a block diagram showing the hardware configuration of the video display apparatus according to the first embodiment.
  • FIG. 6 is a view showing an example of a six-sided tiling display which is an example of a video display system, which is configured by six video display devices according to the first embodiment.
  • FIG. 7 is a diagram showing the relationship between the angle ⁇ 1 and the angle ⁇ 2 generated by the same optical element.
  • FIG. 8 is a diagram showing an example of the amount of luminance correction by the luminance correction unit according to the first embodiment.
  • FIG. 9 is a diagram showing details of the luminance correction amount.
  • FIG. 10 is a diagram showing details of the amount of change in luminance.
  • FIG. 11 is a view showing an example of a six-sided tiling display which is an example of a video display system, which is configured by six video display devices according to the second embodiment.
  • FIG. 12 is a block diagram showing the hardware configuration of the video display apparatus according to the second embodiment.
  • FIG. 13 is a conceptual diagram showing an example of setting the width of the reduction area according to the position of the viewer in the video display apparatus according to the second embodiment.
  • FIG. 14 is a schematic view showing a configuration of an optical element of a video display apparatus according to a third embodiment and an example of setting a reduction area by the video display apparatus.
  • FIG. 1 is a view showing an example of a four-sided tiling display which is an embodiment of a video display system, which is configured by four video display devices according to the present embodiment.
  • a four-sided tiling display which is an embodiment of a video display system, which is configured by four video display devices according to the present embodiment.
  • four image display apparatuses 100 are arranged in a tile shape, two each in the horizontal direction (X direction) and the upper and lower direction (Y direction). Is configured by.
  • each of the four video display devices 100 includes a display panel including the video display unit 10 and the frame unit 20, and an optical element 30.
  • the video display device 100 when displaying the conventional video display apparatus 100 side by side and displaying on a large screen, the video is interrupted at the joint by the frame portion 20.
  • the optical element 30 enlarges and displays the video output from the video display device 100 on the frame portion 20 side.
  • the frame 20 appears to be thin or invisible to the viewer.
  • the video can be displayed as one display in which the four video display devices 100 have a connection. Furthermore, it is possible to prevent the viewer from seeing the rectangular outer frame configured by the frame portion 20 located outside the entire tiling display 1000.
  • the image display unit 10 of the image display device 100 has a long side (first side) 10 a extending in the X direction (first direction) and a short side (second side) 10 b extending in the Y direction (second direction). It is formed in a rectangular shape (rectangular shape).
  • the video display unit 10 is configured to be able to output a video such as a moving image or a still image.
  • the image display unit 10 according to the present embodiment is configured to output a reduced image reduced at a reduction ratio corresponding to the enlargement ratio of the optical element 30.
  • the frame portion 20 surrounds the outside from the outer edge portions 10a and 10b of the image display unit 10 (see the dotted mesh portion in FIG. 1), in other words, along the long side 10a and the short side 10b of the image display unit 10 It is provided to extend.
  • the optical element 30 has an outer edge region and a frame portion provided on the inner side from the outer edge portions 10a and 10b of the image display unit 10 (a boundary portion with the frame portion 20: a portion constituted by a pair of long sides 10a and short sides 10b) And 20 are provided so as to cover them. Then, the optical element 30 suppresses the view of the frame portion 20 to the viewer by enlarging the reduced video displayed from the outer edge area of the video display unit 10.
  • the optical element 30 includes a linear lens 31 having a rectangular shape provided extending along four sides of the image display unit 10 and a circular lens having a square shape or a rectangular shape provided at four corners of the image display unit 10. It consists of a combination of 32.
  • the linear lens 31 is configured to magnify the image output from the outer edge area of the image display unit 10 only in one direction (see the arrow in FIG. 2) in the X direction or the Y direction.
  • the circular lens 32 is configured to magnify the image output from the outer edge area of the image display unit 10 in two directions (see arrows in FIG. 3) in the X direction and the Y direction.
  • the shapes of the linear lens 31 and the circular lens 32 are not limited, as long as they have an appropriate shape according to the embodiment.
  • FIG. 2 is a schematic diagram for explaining the enlargement direction of the image by the linear lens 31 of the image display device 100 in the region 151 of FIG.
  • An area 151 shown in FIG. 2 includes the frame portion 20 in the X direction of the tiling display 1000 and is an area located near the central portion in the Y direction.
  • the linear lens 31 has an optical axis l1 extending along the side of the image display unit 10, and magnifies the image outputted from the outer edge region in line symmetry with respect to the optical axis l1. Is configured. That is, the linear lens 31 enlarges the image in the one-dimensional direction. In other words, from the area of the image display unit 10 that outputs an image enlarged by the linear lens 31, a reduced image reduced in the one-dimensional direction with respect to the optical axis l1 is output.
  • the linear lens 31 includes the frame portion 20, an outer edge region (region from the outer edge portion 10a of the image display unit 10 to the optical axis l1) provided inside the outer edge portion 10a in the image display unit 10, and an outer edge region It covers at least the inner edge area (area from the optical axis l1 to the end 31a) provided on the inner side. Then, in the outer edge area, the linear lens 31 enlarges the video displayed from the video display unit 10 to the frame 20 side. Furthermore, in the inner edge area, the linear lens 31 enlarges the video displayed from the video display unit 10 from the frame 20 to the video display unit 10 side.
  • FIG. 3 is a schematic diagram for explaining the enlargement direction of the image by the circular lens 32 and the linear lens 31 of the image display device 100 in the region 152 of FIG.
  • An area 152 shown in FIG. 3 includes the frame portions 20 in the X direction and the Y direction of the tiling display 1000, and is an area located near the central portion in the Y direction.
  • the linear lens 31 is configured to expand in line symmetry with respect to the optical axis l1 as in FIG.
  • the circular lens 32 has a center C at a position where two optical axes 11 corresponding to the two adjacent linear lenses 31 intersect with each other, and the outer edge region (image display portion 10 The image output from the outer edge portion 10a to the optical axis l1) and the inner edge region (region from the optical axis l1 to the end portion 31a) provided inside the outer edge region are point symmetric with respect to the center C It is configured to expand.
  • the circular lens 32 enlarges the image on the frame 20 side (outer edge region) from the center C to the frame 20 side. Furthermore, the circular lens 32 enlarges the image on the side (inner edge region) opposite to the frame portion 20 from the center C to the side opposite to the frame portion 20. In other words, from the area of the image display unit 10 that outputs an image enlarged by the circular lens 32, a reduced image reduced in two dimensions with respect to the center C is output.
  • the linear lens 31 is configured of a Fresnel-shaped lens divided in line symmetry with respect to the optical axis l1 (see FIG. 2).
  • the circular lens 32 is composed of Fresnel-shaped lenses divided point-symmetrically (concentrically) with respect to the center C (see FIG. 3).
  • the thickness d1 (see FIG. 4) in the front-rear direction (Z direction) of the linear lens 31 and the circular lens 32 can be made smaller than that of a normal convex lens.
  • FIG. 4 is a schematic view for explaining how an image displayed by the image display apparatus 100 of the present embodiment is viewed.
  • the appearance of the image output from the image display apparatus 100 of the present embodiment will be described using FIG. 4.
  • the video display unit 10 of the video display apparatus 100 uses the normal area R1 in which a normal video which is neither enlarged nor reduced and the reduction ratio corresponding to the enlargement ratio of the optical element 30.
  • a reduced area R2 peripheral area 11
  • the dashed-two dotted line of FIG. 4 has shown the image (virtual image) which a viewer visually recognizes via the optical element 30.
  • the configuration for supporting the optical element 30 from the display panel 40 may be any configuration, for example, the space between the image display unit 10 and A flat plate portion provided to cover the image display unit 10 in a separated state and a support portion provided to support the flat plate portion may be provided, or the space may be filled with a resin or the like.
  • the optical element 30 magnifies the reduced image output from the reduction region R2 as a virtual image V1 having a larger width than the optical element 30.
  • the virtual image V1 in an enlarged manner on the side of the frame portion 20, as an example, it can be seen that an image can be viewed continuously (without passing through the frame portion 20) with the adjacent video display device 100.
  • the width ( ⁇ + ⁇ + ⁇ ) of the reduction region R2 is smaller than the entire length d2 of the optical element 30.
  • the width (m ⁇ ( ⁇ + ⁇ + ⁇ )) of the virtual image V1 corresponding to the outer peripheral region 11 is larger than the entire length d2 of the optical element 30.
  • the video display device 100 it is difficult to eliminate the frame portion provided outside the video display unit due to the restriction of the seal portion and the electrode terminal.
  • the video can be displayed as if the frame portion 20 does not exist by providing the above-described configuration.
  • the virtual image V1 has a region R3 that protrudes outside the end of the image display device 100 on the outer side (frame 20 side).
  • the region R4 of a part of the reduced region R2 corresponding to the region R3 is a region adjacent to the other video display device 100 adjacent to the video display device 100 shown in FIG.
  • the image displayed near the end of the image display apparatus 100 is output in a reduced state.
  • a region R4 in which a video output in another region (for example, in the vicinity of an end of another video display device 100) is output (in a reduced state) is referred to as an overlapping region.
  • the viewer when the viewer views the tiling display 1000 (see FIG. 1) configured by the plurality of video display devices 100, the viewer can view the overlapping video in the area R3 at the border portion of the video display device 100. It is possible to suppress giving a sense of discomfort to the person. That is, even when the viewer looks at the image display apparatus 100 from the viewpoint P3 inside (the opposite side to the frame 20) by the angle ⁇ 3 with respect to the outer end of the optical element 30, the image without failure in the viewer You can see
  • the length of the portion on the outer side is d3. It is represented by following formula (1) based on length (beta) of area
  • the frame portion 20 is not visually recognized when viewed from at least the front side (one side in the Z direction: the upper side in FIG. 4). Further, in the present embodiment, by providing the overlapping region R4 of the length ⁇ , the viewer can reach the viewpoint P3 inside (the side opposite to the frame 20) by the angle ⁇ 3 with respect to the outer end of the optical element 30. Can make the image visible without failure.
  • the distance A between the image display unit 10 and the optical element 30 is expressed by the following equation (3).
  • the distance B at which the virtual image V1 is visually recognized is expressed by the following equation (4).
  • FIG. 5 is a block diagram showing the hardware configuration of the video display apparatus 100 according to the present embodiment.
  • the video display apparatus 100 shown in FIG. 5 includes an input terminal 501, a signal processing unit 502, a speaker 503, a control unit 504, an operation unit 505, an HDD (Hard Disk Drive) 506, and a memory 507. Have.
  • an HDD Hard Disk Drive
  • the input terminal 501 supplies a video signal and an audio signal input from the outside to the signal processing unit 502.
  • the signal processing unit 502 performs predetermined signal processing, scaling processing, and the like on the input video signal, and supplies the processed video signal to the display panel 40. Further, the signal processing unit 502 performs predetermined signal processing on the input digital audio signal, converts it into an analog audio signal, and outputs the analog audio signal to the speaker 503. Further, the signal processing unit 502 also generates an OSD (On Screen Display) signal to be displayed on the display panel 40.
  • OSD On Screen Display
  • the speaker 503 receives an audio signal supplied from the signal processing unit 502, and outputs an audio using the audio signal.
  • the display panel 40 and the optical element 30 have been described above, the description will be omitted.
  • the control unit 504 reads a program and centrally controls various operations in the image display apparatus 100.
  • the control unit 504 is a microprocessor incorporating a CPU (central processing unit) and the like, receives operation information from the operation unit 505, and controls each unit according to the operation information.
  • the HDD 506 has a function as recording means for recording the input video signal and audio signal.
  • the video display device 100 can reproduce video and audio using digital video and audio signals recorded in the HDD 506.
  • the control unit 504 uses the memory 507 as a work area.
  • the memory 507 mainly includes a ROM (Read Only Memory) storing a control program (including the video control program 510) executed by the CPU built in the control unit 504, and a RAM (a memory for providing a work area to the CPU).
  • ROM Read Only Memory
  • RAM a memory for providing a work area to the CPU.
  • a random access memory and a non-volatile memory in which various setting information, control information and the like are stored.
  • the control unit 504 realizes the configuration of the setting unit 511 and the luminance correction unit 512 by executing the video control program 510 stored in the ROM.
  • the setting unit 511 When the image display unit 10 is viewed from a certain viewing position, the setting unit 511 enlarges the optical element 30 so that the image enlarged by the optical element 30 matches the pixel size with the image not via the optical element 30. A reduced area for outputting a reduced image reduced at a reduction rate corresponding to the rate is set in the video display unit 10. That is, in the video display device 100 according to the present embodiment, a part of the video output from the video display unit 10 passes through the optical element 30, so the video to be viewed changes according to the position viewed by the viewer. Therefore, the setting unit 511 sets the reduction area on the basis of the position where the viewer is assumed to be present so that the viewer does not feel uncomfortable when viewing the video display unit 10.
  • FIG. 6 is a view showing an example of a six-sided tiling display which is an embodiment of a video display system, which is configured of six video display devices according to the present embodiment.
  • six image display devices 100 are tiled in three in the horizontal direction (X direction) and in two in the upper and lower direction (Y direction). Arranged side by side.
  • the six-sided tiling display 600 sets a viewing position P6 separated by a distance d6 from the center 611 of the six-sided tiling display 600 as a reference position for viewing by the viewer. Then, the setting unit 511 of each video display device 100 sets the reduction area of the video display unit 10 so that the viewer does not feel discomfort when viewed from the viewing position P6.
  • the setting unit 511 sets the width of the area in which the normal video is output and the width of the reduction area so that the visual line 601 does not have a sense of incongruity.
  • the width of the area to which a normal image is output and the width of the reduction area are set so that the line of sight 602 does not cause discomfort.
  • the setting unit 511 of the present embodiment sets the width of the reduction area according to the angle between the line of sight 601 (or the line of sight 602) and the vertical line perpendicular to the plane when the optical element 30 is a plane. .
  • the method of calculating the width will be described later.
  • the line of sight 603 is a line of sight that looks into between the end of the linear lens (optical element) 31 and the image display unit 10 as compared with the line of sight 601. Therefore, the setting unit 511 of the image display apparatus 100 on the right side from the center sets the width of the reduction area so that the line of sight 603 does not cause a sense of incongruity.
  • the setting unit 511 sets the size of the reduction area in accordance with the angles ⁇ 61 , ⁇ 62 , and ⁇ 63 between the line connecting the center 611 and the viewing position P 6 and the sight lines 601, 602, and 603. For example, after the line of sight 601 and the line of sight 603 contact the end of the optical element 31 of the image display apparatus 100 provided at the center and right end of the six-sided tiled display 600, 20), which is a boundary where the viewer at the viewing position P6 can look into.
  • the line of sight 602 contacts the end of the optical element 31 of the image display device 100 provided at the right end of the six-sided tiled display 600, and then inward from the outside (frame 20 side) of the image display unit 10. It is a line of sight, which is a boundary at which the viewer at the viewing position P6 can view through the optical element 31.
  • the angle of the line of sight intersects the display screen (plane) of the six-sided tiling display 600 as the line of sight moves away from the center of the six-sided tiling display 600 Can be considered as increasing the angle at which the magnified image can be viewed directly through the optical element 31. Therefore, it is necessary to increase the angle ⁇ 2 in FIG. 4 in order to prevent the image of the normal pixel size from being further magnified and seen through the optical element 31. Therefore, the setting unit 511 sets the reduction area large.
  • the reduced area in the vicinity of the image display unit 10 in which the opening between the optical element 31 and the six-sided tiled display 600 faces the center side is set because the reduced image is easily viewed directly from the viewing position P6.
  • the unit 511 sets the width of the reduction area to be smaller than when the image display unit 10 is viewed from the front.
  • the reduction area in the vicinity of the image display unit 10 in which the opening between the optical element 31 and the center of the six-sided tiled display 600 faces the opposite side (outside) usually passes through the optical element 31 from the viewing position P6.
  • the setting unit 511 sets the width of the reduced area to be larger than when the image display unit 10 is viewed from the front.
  • the viewer and the video display apparatus are three times the width of the video display apparatus in the vertical direction It is considered standard that they are separated by a distance of 3 H).
  • the angle of view in the horizontal direction is ⁇ 16 degrees
  • the angle of view in the vertical direction is ⁇ 9 degrees.
  • the horizontal direction with respect to the center of the six-sided tiling display 600 considering the viewing of the video display device from the center of the screen from a standard distance, and applying the above-described conditions to each of the combined video display devices 100, the horizontal direction with respect to the center of the six-sided tiling display 600 Then, the inclination of the boundary angle (the angle ⁇ 1 in FIG. 4) at which the reduced image can not be viewed at least must be 16 degrees or more. (For example, the angle ⁇ 61 of the six-sided tiling display 600 may be set to about 16 degrees or more.) In addition, if the screen width is increased by forming a tiling display, the angle of view is increased.
  • the setting unit 511 of the present embodiment sets the angle ⁇ 1 and sets the reduction area according to the angle ⁇ 1.
  • the viewing position When the viewing position is set at the center of the screen of the six-sided tiling display 600, the viewing position is away from the center (for example, the viewing position P6) and viewed from an oblique direction from the outside of the screen of the six-sided tiling display 600
  • the visibility of may be reduced as compared to the case of viewing from the center of the screen.
  • the reduction area is on the inner side (screen center side) of the frame 20 near the reduction area with respect to the screen center of the six-sided tiled display 600 in order to enhance the visibility from near the center.
  • the setting unit is configured such that the angle ⁇ 1 at which the reduced image is directly observed increases and the angle ⁇ 2 at which the image through the optical element 30 (31, 32) looks like a normal pixel size is reduced.
  • 511 may set a reduction area.
  • the setting unit 511 sets the display area of the image display unit 10 covered by the optical element 30 (31, 32) near the center (for example, The reduction area may be set so that the angle ⁇ 1 and the angle ⁇ 2 in FIG. 4 are substantially equal to each other, and the optical element 30 with respect to the screen center of the six-sided tiling display 600.
  • the setting unit 511 determines the reduction area. It is set to be smaller than the other reduction area outside the frame 20 (opposite to the screen center). That is, the reduction area is set so that the angle ⁇ 1 (and also ⁇ 3 in some cases) in FIG. 4 is larger than the angle ⁇ 2.
  • the width d4 of the optical element 30 on the side opposite to the frame 20 and the width R6 of the reduction area on the side opposite to the frame 20 from the optical axis l1 of the lens The distance between the optical element 30 and the display panel 40 is
  • the magnification m
  • the angle ⁇ 1 can be expressed as equation (10), and the angle ⁇ 2 can be expressed as equation (11).
  • ⁇ 1 tan ⁇ 1 ((d 4 ⁇ R 6) /
  • ) (10) ⁇ 2 tan ⁇ 1 ((m ⁇ R 6 ⁇ d 4) /
  • FIG. 7 is a diagram showing the relationship between the angle ⁇ 1 and the angle ⁇ 2 generated by the same optical element 30 (31, 32).
  • the width d4 of the optical element 30 can not be changed, but the angle ⁇ 1 and the angle ⁇ 2 can be changed by changing the width R6 of the reduction area.
  • the setting unit 511 sets the width d4 of the reduction area small, the angle ⁇ 2 can be set large and the angle ⁇ 1 can be set small.
  • the setting unit 511 changes the setting of the width d4 of the reduced area of the line of sight of the viewer according to the angle between the line of sight and the vertical line perpendicular to the plane when the optical element 30 is a plane. By doing this, it is possible to adjust the width of the reduction area so that the viewer does not feel discomfort even when viewing the image display apparatus 100 from the line of sight.
  • the setting unit 511 sets the width d4 of the reduction area according to the distance from the center of the screen of the video display device 100 to the angle ⁇ 1 and the angle ⁇ 2 according to the position of the viewer. Can be assigned. For example, as the position of the viewer is farther from the screen, the angle between the line connecting the viewer and the center of the screen and the line connecting the viewer and the end of the optical element 30 opposite to the frame 20 decreases. . In other words, the setting unit 511 sets the width d4 of the reduction area so that the angle ⁇ 1 decreases and the angle ⁇ 2 increases as the position of the viewer is farther from the screen.
  • the setting unit 511 uses the central position of the six-sided tiling display 600 as a reference, and the reduction area (two reductions extending in the vertical direction) located at the center side of the frame 20 covered by the same optical element 30. Among the regions, the reduction region far from the viewer side is set to be smaller than that of the other video display device 100 whose distance is close to the center.
  • the setting unit 511 is a reduced area located on the opposite side to the center than the frame 20 covered with the same optical element. (The reduction area closer to the viewer side among the two reduction areas extending in the vertical direction) is set larger than that of the other video display apparatus 100 whose distance is close to the center.
  • the virtual image when viewed from a position away from the front of the image display apparatus 100 instead of the center of the screen of the image display If the viewing position is inclined in a predetermined direction from a vertical line perpendicular to the display surface, the virtual image may be displaced.
  • the setting unit 511 of the present embodiment calculates the amount of deviation in accordance with the expected angle from the center of the screen, and corrects the reduced image output from the reduced area in accordance with the amount of deviation.
  • the amount of displacement to be visually recognized is the difference in distance between the distance from the optical element 30 to the surface of the display panel 40 and the distance from the optical element 30 to the virtual image. It can be calculated from the perspective angle when looking at.
  • the amount of deviation may be corrected to create a reduced image. For example, when the viewer sees from a position inclined in a predetermined direction from the center of the screen, the virtual image of the reduced image appears to be shifted in the opposite direction to the predetermined direction as compared to the case of viewing from the screen height.
  • the setting unit 511 sets the reduced image output from the reduction area to be shifted in the predetermined direction. Do. That is, when viewing the image display unit 10 from the viewing position, the setting unit 511 views the viewing position so that the image enlarged by the optical element 30 does not shift in the border with the image not via the optical element 30.
  • the reduced image output from the reduced area is shifted in a certain direction with reference to an optical path connecting the optical axis of the optical element 30 and the optical element 30.
  • the setting unit 511 outputs the reduced screen on the basis of the position at which the angle ⁇ 1 is shifted from the optical axis l1. In other words, the setting unit 511 reduces the position on the basis of the position shifted by the distance
  • the magnification for enlarging the image changes due to the relationship of the aberration of the optical element 30.
  • a change in the enlargement factor of the optical element 30 may occur due to the perspective angle.
  • the setting unit 511 sets the reduction ratio of the reduced image so that the displayed image does not change even when the enlargement ratio of the optical element 30 changes. For example, in the reduced image displayed from the reduced area of the image display unit 10, the setting unit 511 performs adjustment so as to increase the reduction ratio as the distance from the optical axis l1 of the optical element 30 increases. Thereby, as an example, continuity can be secured.
  • this reduction ratio for example, an image pattern such as a checkered pattern is photographed by a camera or the like from a viewing position assumed to exist as a viewer. Then, the setting unit 511 acquires the difference in the enlargement ratio from the viewing position where the viewer exists based on the captured image data obtained by capturing the image pattern, and the reduction ratio of the reduced image according to the location where the viewer exists You may set it so that they differ.
  • the luminance correction unit 512 corrects the luminance value of the video output from the video display unit 10 as it goes away from the optical axis l1 of the optical element 30.
  • the characteristic at the time of seeing the optical element 30 from the diagonal deteriorates.
  • the boundary of the step portion can be seen, which further causes deterioration.
  • the video display unit 10 often has directivity, and in general, when the angle at which the viewer looks at the video display unit 10 increases from the front of the screen, the luminance tends to decrease. Due to the directivity and the deterioration of the lens, even if the unevenness of the distribution of luminance is corrected based on the case of viewing from the front, when the angle at which the viewer looks at the image display unit 10 changes, The change in luminance is large.
  • the degree of luminance correction different according to the position of the lens from the center of the image display unit 10
  • the uniformity of the screen can be maintained.
  • human beings are sensitive to luminance changes at short distances, they have visual characteristics insensitive to luminance changes at long distances, so the correction coefficient is changed according to the distance from the viewer to the image display unit 10. Also good.
  • FIG. 8 is a diagram showing an example of the luminance correction amount by the luminance correction unit 512 according to the present embodiment.
  • the boundary of the plurality of video display devices 100 is indicated as a position x1.
  • the luminance correction amount by the luminance correction unit 512 is set to be smaller as the screen becomes closer to the screen center from the boundary (the outer edge portion of the video display device 100).
  • FIG. 9 is a diagram showing details of the luminance correction amount of the region 801.
  • the brightness correction amount as shown in FIG. 9 is based on the brightness change as shown in FIG. That is, since the optical element 30 is an opaque portion in the region 1001, the luminance is reduced. And since the area 1002 is a lens end, the luminance is lowered. And since the area 1003 is on the optical axis of the optical element 30, the luminance does not deteriorate much.
  • the brightness correction unit 512 makes the brightness correction amount different according to the decrease in the brightness. That is, the amount of luminance correction is increased in the regions 901 and 902, and the amount of luminance correction is decreased as the region 903 is approached.
  • the method of luminance correction differs in accordance with the characteristics of the optical element 30.
  • a method of reducing the luminance correction amount in the vicinity of the optical element 30 may be used.
  • the width or the like of the reduction area is set in advance, assuming the position of the viewer in advance.
  • the width or the like of the reduction area may be set in accordance with the changing position of the viewer instead of assuming the position of the viewer beforehand.
  • a reduction area is set according to the position of the viewer captured by the imaging unit.
  • FIG. 11 is a view showing an example of a six-sided tiling display which is an example of the video display system, which is configured by six video display devices according to the present embodiment.
  • a six-sided tiled display 1100 As shown in FIG. 11, in the six-sided tiled display 1100 according to the present embodiment, three six image display apparatuses 1101 are arranged in the horizontal direction (X direction), as in the first embodiment. In addition to arranging two tiles in the Y direction, an imaging unit 1102 is further added.
  • the reduction area of the video display unit 10 is set so that the viewer does not feel discomfort. That is, at the position P11_1, the reduced image can not be seen with the line of sight 1111, and the image can be seen with the normal pixel size even with the line of sight 1112. Adjust the width of the reduced area so that the reduced image can not be seen.
  • FIG. 12 is a block diagram showing the hardware configuration of the video display apparatus 1101 according to the present embodiment.
  • the video display device 1101 shown in FIG. 12 has the same configuration as the video display device 100 of the first embodiment, but the video control program 1201 is changed.
  • the video control program 1201 includes a detection unit 1211, a setting unit 1212, and a luminance correction unit 512.
  • a detection unit 1211 receives a signal from the video control program 1201 and a signal from the video control program 1201.
  • a setting unit 1212 receives a signal from the video control program 1201.
  • a luminance correction unit 512 receives a signal from the video control program 1201.
  • symbol is assigned and description is abbreviate
  • the detection unit 1211 detects the position of the viewer from the captured image data captured by the imaging unit 1102.
  • description is abbreviate
  • the setting unit 1212 adjusts the width of the reduction area according to the position of the viewer.
  • FIG. 13 is a conceptual diagram showing an example of setting the width of the reduction area according to the position of the viewer in the video display device 1101. As shown in FIG. 13, when viewed from the position P11_1, while looking into the space between the optical element 30 and the image display unit 10 at an angle ⁇ 11, an image through the optical element 30 is viewed up to an angle ⁇ 12. . Therefore, the setting unit 1212 sets the width R11 of the normal video and the width R12 of the reduction area, and sets the width R13 of the reduction area.
  • the widths R11, R12, and R13 are shown to explain the concept, and are different from the actual widths.
  • the setting unit 1212 sets the width R23 of the normal video and the width R22 of the reduction area, and sets the width R21 of the reduction area.
  • the widths R21, R22, and R23 are shown to explain the concept, and are different from the actual widths. Furthermore, the specific setting method is the same as that of the first embodiment, and the description will be omitted.
  • the reduction direction of the reduced image output from the reduction area is based on the optical axis l1 as in the first embodiment. Further, in the example shown in FIG. 13, since the viewer sees through the optical element 30, the frame portion 20 is naturally not visible to the viewer. Furthermore, it is assumed that overlapping regions are set as in the first embodiment. This ensures the continuity of the video.
  • the setting unit 1212 may set the brightness correction, the shift amount, the enlargement ratio, and the like. Since these setting methods are also the same as in the first embodiment, the description will be omitted.
  • the reduced image is enlarged on the side of the frame portion 20 with reference to the optical axis l1, and the reduced image is also enlarged on the opposite side of the frame portion 20.
  • the reduced image does not necessarily have to be enlarged on the side opposite to the frame portion 20. Therefore, in the third embodiment, the optical element enlarges the image only on the side of the frame 20 with reference to the optical axis, and does not enlarge the reduced image on the side opposite to the frame 20 with respect to the optical axis.
  • the configuration other than the optical element is the same as that of the first embodiment, and the description is omitted.
  • FIG. 14 is a schematic view showing the configuration of the optical element 1401 of the image display apparatus 1400 of the third embodiment and an example of setting the reduction area by the image display apparatus 1400.
  • the optical element 1401 does not extend from the optical axis 12 to the side opposite to the frame 20.
  • the setting unit 511 sets a reduction area in consideration of the influence of the angle of view by perspective projection.
  • the setting unit 511 sets the width R32 of the reduction area. Is set from the position by a distance A ⁇ tan ( ⁇ 31) from the optical axis 12 to the frame 20 side. In this case, the setting unit 511 performs setting so as to reduce sampling at a reduction ratio corresponding to the enlargement ratio of the optical element 30 based on the position shifted by A ⁇ tan ( ⁇ 31). The normal video is set to be displayed from the region R31.
  • the setting unit 511 sets the width R33 of the reduction area. From the position by the distance A ⁇ tan ( ⁇ 32) from the optical axis l2, the frame 20 is set. In this case, the setting unit 511 performs setting so as to perform sampling while reducing at a reduction ratio corresponding to the enlargement ratio of the optical element 30 based on the position shifted by A ⁇ tan ( ⁇ 32). Note that the overlapping region R34 is the same region whether the angle by the sight line is the angle ⁇ 32 or the angle ⁇ 31. Then, the setting unit 511 sets the width of the overlapping area R34 so as to be output in a state in which the video of the adjacent video display device 1400 is reduced.
  • the video is enlarged in the direction of the frame portion 20 by the optical element 30 to prevent the viewer from seeing the frame portion 20, and a plurality of video display devices are arranged in sequence. It can be displayed. Furthermore, by changing the reduction area for outputting the reduced image according to the position of the viewer, it is possible to suppress the viewer from feeling uncomfortable when viewing the video with the continuity ensured.
  • the example which applies this invention to the tiling display comprised with four or six image display apparatuses was shown in the said embodiment, it is applicable also to the image display apparatus used independently. Furthermore, it is applicable also to the tiling display comprised by 2 or more and 3 or less video display apparatuses, and is applicable also to the tiling display comprised by 5 or more video display apparatuses.
  • the optical elements are provided so as to correspond to all four sides of each of the image display devices. However, even if the optical elements are provided only at the boundary between two adjacent image display devices. Good. When an optical element is provided at the boundary, the frame located in the cross-shaped portion inside the tiling display becomes less visible, while the frame 20 located in the rectangular shaped portion outside the tiling display is It can be easily viewed.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Transforming Electric Information Into Light Information (AREA)

Abstract

A display device in an embodiment is provided with a display unit, an optical element, and a setting unit. The display unit is provided with a video display unit on which video is displayed and a frame that is provided outside the outside edge of said video display unit. The optical element is provided so as to cover both the frame and an outside-edge region of the video display unit, said outside-edge region being provided inside the outside edge of the video display unit. The video displayed by the video display unit is enlarged toward the frame by the optical element. The setting unit sets, within the video display unit, a reduction region in which to output reduced video reduced by a reduction ratio that corresponds to the enlargement ratio such that, when the video display unit is viewed from a given viewing position, the pixel size of the video enlarged by the optical element is the same as the pixel size that the video would have if not viewed through the optical element.

Description

表示装置、及び表示システムDisplay device and display system
 本発明の実施形態は、表示装置、及び表示システムに関する。 Embodiments of the present invention relate to a display device and a display system.
 表示装置の表示部の外縁部には枠部が存在するため、視聴者が表示装置の映像を見る場合に、映像のみではなく枠部も見ていた。例えば、複数の映像表示装置を隣接して配置すると、当該枠部による継ぎ目が生じる。このため、表示装置の表示部の前に光学素子(レンズ)等を設けて、映像を拡大することで、枠部を光学的に見えなくする技術が提案されている。そして、光学素子を用いて拡大する場合に、視聴者に適切な映像が見えるように調整する必要がある。 Since the frame portion exists at the outer edge portion of the display unit of the display device, when the viewer views the image of the display device, not only the image but also the frame portion is viewed. For example, when a plurality of video display devices are arranged adjacent to each other, a joint is generated by the frame portion. For this reason, there is proposed a technique of providing an optical element (lens) or the like in front of a display unit of a display device to magnify an image, thereby making the frame optically invisible. And when enlarging using an optical element, it is necessary to adjust so that a viewer may see a suitable image.
特開2009-162999号公報JP, 2009-162999, A
 しかしながら、従来技術においては、表示装置から光学素子を介して映像を出力する際に、視聴者が視聴する位置については考慮されていなかった。 However, in the prior art, when the image is output from the display device through the optical element, the position at which the viewer views is not considered.
 実施形態の表示装置は、表示部と、光学素子と、設定部と、を備える。表示部は、映像が表示される映像表示部と、当該映像表示部の外縁部から外側に設けられた枠部と、を備える。光学素子は、映像表示部内で外縁部から内側に設けられた外縁領域と枠部とを覆うように設けられ、映像表示部から表示される映像を枠部側に拡大させる。設定部は、ある視聴位置から映像表示部を見た場合に、光学素子により拡大された映像が、光学素子を介さない映像と画素サイズが一致するように、拡大率に対応する縮小率で縮小された縮小映像を出力する縮小領域を、映像表示部内に設定する。 The display device of the embodiment includes a display unit, an optical element, and a setting unit. The display unit includes an image display unit on which an image is displayed, and a frame provided outside the outer edge of the image display unit. The optical element is provided so as to cover the outer edge area and the frame provided inside from the outer edge in the video display unit, and enlarges the video displayed from the video display unit to the frame side. When the image display unit is viewed from a certain viewing position, the setting unit reduces the size of the image enlarged by the optical element by the reduction ratio corresponding to the enlargement ratio so that the image and the pixel size match the image without the optical element. A reduction area for outputting the reduced image is set in the image display unit.
図1は、第1の実施形態にかかる4個の映像表示装置で構成される、映像表示システムの一形態である4面タイリングディスプレイの例を示した図である。FIG. 1 is a view showing an example of a four-sided tiling display which is an embodiment of a video display system, which is configured by four video display devices according to the first embodiment. 図2は、第1の実施形態にかかる映像表示装置のリニアレンズによる映像の拡大方向を説明するための模式図である。FIG. 2 is a schematic view for explaining the enlargement direction of the image by the linear lens of the image display device according to the first embodiment. 図3は、第1の実施形態にかかる映像表示装置のサーキュラレンズとリニアレンズと、による映像の拡大方向を説明するための模式図である。FIG. 3 is a schematic view for explaining the enlargement direction of the image by the circular lens and the linear lens of the image display device according to the first embodiment. 図4は、第1の実施形態にかかる映像表示装置により出力される映像の見え方を説明するための模式図である。FIG. 4 is a schematic view for explaining how an image displayed by the image display apparatus according to the first embodiment is viewed. 図5は、第1の実施形態にかかる映像表示装置のハードウェア構成を示すブロック図である。FIG. 5 is a block diagram showing the hardware configuration of the video display apparatus according to the first embodiment. 図6は、第1の実施形態にかかる6個の映像表示装置で構成される、映像表示システムの一形態である6面タイリングディスプレイの例を示した図である。FIG. 6 is a view showing an example of a six-sided tiling display which is an example of a video display system, which is configured by six video display devices according to the first embodiment. 図7は、同一の光学素子で生じる角度θ1と角度θ2との関係を示した図である。FIG. 7 is a diagram showing the relationship between the angle θ1 and the angle θ2 generated by the same optical element. 図8は、第1の実施形態にかかる輝度補正部による輝度補正量の例を示した図である。FIG. 8 is a diagram showing an example of the amount of luminance correction by the luminance correction unit according to the first embodiment. 図9は、輝度補正量の詳細を示した図である。FIG. 9 is a diagram showing details of the luminance correction amount. 図10は、輝度の変化量の詳細を示した図である。FIG. 10 is a diagram showing details of the amount of change in luminance. 図11は、第2の実施形態にかかる6個の映像表示装置で構成される、映像表示システムの一形態である6面タイリングディスプレイの例を示した図である。FIG. 11 is a view showing an example of a six-sided tiling display which is an example of a video display system, which is configured by six video display devices according to the second embodiment. 図12は、第2の実施形態にかかる映像表示装置のハードウェア構成を示すブロック図である。FIG. 12 is a block diagram showing the hardware configuration of the video display apparatus according to the second embodiment. 図13は、第2の実施形態にかかる映像表示装置において、視聴者の位置に応じた縮小領域の幅の設定例を示した概念図である。FIG. 13 is a conceptual diagram showing an example of setting the width of the reduction area according to the position of the viewer in the video display apparatus according to the second embodiment. 図14は、第3の実施形態の映像表示装置の光学素子の構成と、当該映像表示装置による縮小領域の設定例を示した模式図である。FIG. 14 is a schematic view showing a configuration of an optical element of a video display apparatus according to a third embodiment and an example of setting a reduction area by the video display apparatus.
(第1の実施形態)
 図1は、本実施形態にかかる4個の映像表示装置で構成される、映像表示システムの一形態である4面タイリングディスプレイの例を示した図である。図1に示すように、本実施形態によるタイリングディスプレイ1000は、4個の映像表示装置100が水平方向(X方向)および上下方向(Y方向)にそれぞれ2個ずつタイル状に並べて配置されることにより構成されている。
First Embodiment
FIG. 1 is a view showing an example of a four-sided tiling display which is an embodiment of a video display system, which is configured by four video display devices according to the present embodiment. As shown in FIG. 1, in the tiling display 1000 according to the present embodiment, four image display apparatuses 100 are arranged in a tile shape, two each in the horizontal direction (X direction) and the upper and lower direction (Y direction). Is configured by.
 図1に示す例では、4個の映像表示装置100の各々は、映像表示部10と枠部20とで構成された表示パネルと、光学素子30と、を備える。 In the example illustrated in FIG. 1, each of the four video display devices 100 includes a display panel including the video display unit 10 and the frame unit 20, and an optical element 30.
 そして、図1に示す様に、4個の映像表示装置100を配置した場合に、枠部20による継ぎ目51、52が十字状に形成される。 Then, as shown in FIG. 1, when the four video display devices 100 are arranged, the joints 51 and 52 by the frame portion 20 are formed in a cross shape.
 換言すれば、従来の映像表示装置100を並べて大画面表示する場合、枠部20による継ぎ目で映像が途切れることになる。これに対して、実施形態の映像表示装置100は、光学素子30で、映像表示装置100から出力される映像を枠部20側に拡大表示することとした。これにより、視聴者からは、当該枠部20が細くなっているように見える又は見えなくさせることを実現する。これにより、4個の映像表示装置100がつながりを有する一つのディスプレイとして映像を表示できる。さらには、タイリングディスプレイ1000全体の外側に位置する枠部20により構成される矩形形状の外枠が視聴者に見えるのを抑制できる。 In other words, when displaying the conventional video display apparatus 100 side by side and displaying on a large screen, the video is interrupted at the joint by the frame portion 20. On the other hand, in the video display device 100 according to the embodiment, the optical element 30 enlarges and displays the video output from the video display device 100 on the frame portion 20 side. Thereby, it is realized that the frame 20 appears to be thin or invisible to the viewer. Thus, the video can be displayed as one display in which the four video display devices 100 have a connection. Furthermore, it is possible to prevent the viewer from seeing the rectangular outer frame configured by the frame portion 20 located outside the entire tiling display 1000.
 次に、映像表示装置100について説明する。映像表示装置100の映像表示部10は、X方向(第1方向)に延びる長辺(第1の辺)10aおよびY方向(第2方向)に延びる短辺(第2の辺)10bを有する矩形形状(長方形形状)に形成されている。そして、映像表示部10は、動画や静止画などの映像を出力可能に構成されている。さらに、本実施形態の映像表示部10は、光学素子30の拡大率に対応する縮小率で縮小された縮小映像を出力するように構成されている。 Next, the video display device 100 will be described. The image display unit 10 of the image display device 100 has a long side (first side) 10 a extending in the X direction (first direction) and a short side (second side) 10 b extending in the Y direction (second direction). It is formed in a rectangular shape (rectangular shape). The video display unit 10 is configured to be able to output a video such as a moving image or a still image. Furthermore, the image display unit 10 according to the present embodiment is configured to output a reduced image reduced at a reduction ratio corresponding to the enlargement ratio of the optical element 30.
 枠部20は、映像表示部10の外縁部10a、10bから外側を取り囲むように(図1の点状の網目部参照)、換言すれば映像表示部10の長辺10a及び短辺10bに沿って延びるように設けられている。 The frame portion 20 surrounds the outside from the outer edge portions 10a and 10b of the image display unit 10 (see the dotted mesh portion in FIG. 1), in other words, along the long side 10a and the short side 10b of the image display unit 10 It is provided to extend.
 光学素子30は、映像表示部10の外縁部10a、10b(枠部20との境界部分:一対の長辺10aおよび短辺10bにより構成される部分)から内側に設けられた外縁領域と枠部20とを覆うように設けられている。そして、光学素子30は、映像表示部10の外縁領域から表示される縮小映像を拡大することで、視聴者に枠部20が見えるのを抑制している。 The optical element 30 has an outer edge region and a frame portion provided on the inner side from the outer edge portions 10a and 10b of the image display unit 10 (a boundary portion with the frame portion 20: a portion constituted by a pair of long sides 10a and short sides 10b) And 20 are provided so as to cover them. Then, the optical element 30 suppresses the view of the frame portion 20 to the viewer by enlarging the reduced video displayed from the outer edge area of the video display unit 10.
 光学素子30は、映像表示部10の4辺に沿って延びるように設けられた長方形形状を有するリニアレンズ31と、映像表示部10の4隅に設けられた正方形形状もしくは長方形形状を有するサーキュラレンズ32との組み合わせで構成されている。リニアレンズ31は、映像表示部10の外縁領域から出力される映像をX方向またはY方向の1方向(図2の矢印参照)にのみ拡大するように構成されている。また、サーキュラレンズ32は、映像表示部10の外縁領域から出力される映像をX方向およびY方向の2方向(図3の矢印参照)に拡大するように構成されている。なお、本実施形態は、リニアレンズ31及びサーキュラレンズ32の形状を制限するものではなく、実施の態様に合わせて適切な形状を有していれば良い。 The optical element 30 includes a linear lens 31 having a rectangular shape provided extending along four sides of the image display unit 10 and a circular lens having a square shape or a rectangular shape provided at four corners of the image display unit 10. It consists of a combination of 32. The linear lens 31 is configured to magnify the image output from the outer edge area of the image display unit 10 only in one direction (see the arrow in FIG. 2) in the X direction or the Y direction. Further, the circular lens 32 is configured to magnify the image output from the outer edge area of the image display unit 10 in two directions (see arrows in FIG. 3) in the X direction and the Y direction. In the present embodiment, the shapes of the linear lens 31 and the circular lens 32 are not limited, as long as they have an appropriate shape according to the embodiment.
 図2は、図1の領域151における、映像表示装置100のリニアレンズ31による映像の拡大方向を説明するための模式図である。図2に示される領域151は、タイリングディスプレイ1000のX方向の枠部20を含み、Y方向の中央部近傍に位置する領域とする。図2に示されるように、リニアレンズ31は、映像表示部10の辺に沿って延びる光軸l1を有し、外縁領域から出力される映像を光軸l1に対して線対称に拡大するように構成されている。つまり、リニアレンズ31は、1次元方向に映像を拡大させる。換言すると、リニアレンズ31で拡大される映像を出力する映像表示部10の領域からは、光軸l1を基準に、1次元方向に縮小された縮小映像が出力される。 FIG. 2 is a schematic diagram for explaining the enlargement direction of the image by the linear lens 31 of the image display device 100 in the region 151 of FIG. An area 151 shown in FIG. 2 includes the frame portion 20 in the X direction of the tiling display 1000 and is an area located near the central portion in the Y direction. As shown in FIG. 2, the linear lens 31 has an optical axis l1 extending along the side of the image display unit 10, and magnifies the image outputted from the outer edge region in line symmetry with respect to the optical axis l1. Is configured. That is, the linear lens 31 enlarges the image in the one-dimensional direction. In other words, from the area of the image display unit 10 that outputs an image enlarged by the linear lens 31, a reduced image reduced in the one-dimensional direction with respect to the optical axis l1 is output.
 つまり、リニアレンズ31は、枠部20と、映像表示部10内で外縁部10aから内側に設けられた外縁領域(映像表示部10の外縁部10aから光軸l1までの領域)と、外縁領域より内側に設けられた内縁領域(光軸l1から端部31aまでの領域)と、を少なくとも覆っている。そして、リニアレンズ31は、外縁領域では、映像表示部10から表示される映像を、枠部20側に拡大させる。さらに、リニアレンズ31は、内縁領域では、映像表示部10から表示される映像を、枠部20から映像表示部10側に拡大させる。 That is, the linear lens 31 includes the frame portion 20, an outer edge region (region from the outer edge portion 10a of the image display unit 10 to the optical axis l1) provided inside the outer edge portion 10a in the image display unit 10, and an outer edge region It covers at least the inner edge area (area from the optical axis l1 to the end 31a) provided on the inner side. Then, in the outer edge area, the linear lens 31 enlarges the video displayed from the video display unit 10 to the frame 20 side. Furthermore, in the inner edge area, the linear lens 31 enlarges the video displayed from the video display unit 10 from the frame 20 to the video display unit 10 side.
 図3は、図1の領域152における、映像表示装置100のサーキュラレンズ32とリニアレンズ31と、による映像の拡大方向を説明するための模式図である。図3に示される領域152は、タイリングディスプレイ1000のX方向及びY方向の枠部20を含み、Y方向の中央部近傍に位置する領域とする。リニアレンズ31は、図2と同様に、光軸l1に対して線対称に拡大するように構成されている。 FIG. 3 is a schematic diagram for explaining the enlargement direction of the image by the circular lens 32 and the linear lens 31 of the image display device 100 in the region 152 of FIG. An area 152 shown in FIG. 3 includes the frame portions 20 in the X direction and the Y direction of the tiling display 1000, and is an area located near the central portion in the Y direction. The linear lens 31 is configured to expand in line symmetry with respect to the optical axis l1 as in FIG.
 図3に示されるように、サーキュラレンズ32は、隣接する2個のリニアレンズ31にそれぞれ対応する2本の光軸l1が交差する位置に中心Cを有し、外縁領域(映像表示部10の外縁部10aから光軸l1までの領域)と、外縁領域より内側に設けられた内縁領域(光軸l1から端部31aまでの領域)と、から出力される映像を中心Cに対して点対称に拡大するように構成されている。 As shown in FIG. 3, the circular lens 32 has a center C at a position where two optical axes 11 corresponding to the two adjacent linear lenses 31 intersect with each other, and the outer edge region (image display portion 10 The image output from the outer edge portion 10a to the optical axis l1) and the inner edge region (region from the optical axis l1 to the end portion 31a) provided inside the outer edge region are point symmetric with respect to the center C It is configured to expand.
 つまり、サーキュラレンズ32は、中心Cより枠部20側(外縁領域)の映像については、枠部20側に拡大させる。さらに、サーキュラレンズ32は、中心Cより枠部20と反対側(内縁領域)の映像については、枠部20と反対側に拡大させる。換言すると、サーキュラレンズ32で拡大される映像を出力する映像表示部10の領域からは、中心Cを基準に2次元方向に縮小された縮小映像が出力される。 That is, the circular lens 32 enlarges the image on the frame 20 side (outer edge region) from the center C to the frame 20 side. Furthermore, the circular lens 32 enlarges the image on the side (inner edge region) opposite to the frame portion 20 from the center C to the side opposite to the frame portion 20. In other words, from the area of the image display unit 10 that outputs an image enlarged by the circular lens 32, a reduced image reduced in two dimensions with respect to the center C is output.
 ここで、本実施形態では、リニアレンズ31は、光軸l1(図2参照)に対して線対称に分割されたフレネル形状のレンズにより構成されている。同様に、サーキュラレンズ32は、中心C(図3参照)に対して点対称に(同心円状に)分割されたフレネル形状のレンズにより構成されている。これにより、リニアレンズ31およびサーキュラレンズ32の前後方向(Z方向)の厚みd1(図4参照)を通常の凸形状のレンズに比べて小さくすることができる。 Here, in the present embodiment, the linear lens 31 is configured of a Fresnel-shaped lens divided in line symmetry with respect to the optical axis l1 (see FIG. 2). Similarly, the circular lens 32 is composed of Fresnel-shaped lenses divided point-symmetrically (concentrically) with respect to the center C (see FIG. 3). As a result, the thickness d1 (see FIG. 4) in the front-rear direction (Z direction) of the linear lens 31 and the circular lens 32 can be made smaller than that of a normal convex lens.
 図4は、本実施形態の映像表示装置100により出力される映像の見え方を説明するための模式図である。図4を用いて、本実施形態の映像表示装置100から出力される映像の見え方について説明する。図4に示されるように、映像表示装置100の映像表示部10は、拡大も縮小もされていない通常の映像が出力される通常領域R1と、光学素子30の拡大率に対応する縮小率で縮小された映像(縮小映像)が出力される縮小領域R2(外周領域11)とを有する。なお、図4の二点鎖線は、光学素子30を介して視聴者が視認する映像(虚像)を示している。 FIG. 4 is a schematic view for explaining how an image displayed by the image display apparatus 100 of the present embodiment is viewed. The appearance of the image output from the image display apparatus 100 of the present embodiment will be described using FIG. 4. As shown in FIG. 4, the video display unit 10 of the video display apparatus 100 uses the normal area R1 in which a normal video which is neither enlarged nor reduced and the reduction ratio corresponding to the enlargement ratio of the optical element 30. And a reduced area R2 (peripheral area 11) in which a reduced image (reduced image) is output. In addition, the dashed-two dotted line of FIG. 4 has shown the image (virtual image) which a viewer visually recognizes via the optical element 30. FIG.
 なお、表示パネル40(映像表示部10と枠部20とで構成される)から光学素子30を支持する構成は、どのような構成も良く、例えば、映像表示部10に対して空間を隔てて離間した状態で映像表示部10を覆うように設けられた平板部と、平板部を支持するように設けられた支持部で構成しても良いし、空間を樹脂等で埋めても良い。 The configuration for supporting the optical element 30 from the display panel 40 (consisting of the image display unit 10 and the frame unit 20) may be any configuration, for example, the space between the image display unit 10 and A flat plate portion provided to cover the image display unit 10 in a separated state and a support portion provided to support the flat plate portion may be provided, or the space may be filled with a resin or the like.
 図4に示すように、光学素子30(拡大率をmとする)は、縮小領域R2から出力される縮小映像を、光学素子30よりも大きい幅を有する虚像V1として拡大する。このように、虚像V1として枠部20側に拡大して表示することで、一例として、隣接する映像表示装置100との間で画像が(枠部20を介さずに)連続して見えることを実現する。 As shown in FIG. 4, the optical element 30 (magnification ratio is m) magnifies the reduced image output from the reduction region R2 as a virtual image V1 having a larger width than the optical element 30. As described above, by displaying the virtual image V1 in an enlarged manner on the side of the frame portion 20, as an example, it can be seen that an image can be viewed continuously (without passing through the frame portion 20) with the adjacent video display device 100. To realize.
 本実施形態では、縮小領域R2の幅(α+β+γ)は、光学素子30の全体の長さd2よりも小さい。これにより、視聴者が光学素子30の内側(枠部20とは反対側)の端部に対して角度θ1だけ内側の視点P1から映像表示装置100を覗き込んだ場合に、その視聴者には縮小映像(縮小領域R2)ではなく通常の映像(通常領域R1)が視認されるので、視聴者に違和感を与えるのを抑制できる。 In the present embodiment, the width (α + β + γ) of the reduction region R2 is smaller than the entire length d2 of the optical element 30. As a result, when the viewer looks into the image display apparatus 100 from the viewpoint P1 inside by an angle θ1 with respect to the inside of the optical element 30 (the side opposite to the frame portion 20), Since a normal video (normal region R1) is visually recognized instead of a reduced video (reduced region R2), it is possible to suppress giving a sense of discomfort to the viewer.
 また、本実施形態では、外周領域11に対応する虚像V1の幅(m×(α+β+γ))は、光学素子30の全体の長さd2よりも大きい。これにより、視聴者が光学素子30の内側の端部に対して角度θ2だけ外側(枠部20側)の視点P2から映像表示装置100を見た場合でも、その視聴者には通常の映像(通常領域R1)が拡大された映像(虚像V2)ではなく縮小映像(縮小領域R2)が拡大された映像(虚像V1)が視認されるので、視聴者に違和感を与えるのを抑制できる。 Further, in the present embodiment, the width (m × (α + β + γ)) of the virtual image V1 corresponding to the outer peripheral region 11 is larger than the entire length d2 of the optical element 30. Thus, even when the viewer looks at the image display apparatus 100 from the viewpoint P2 outside (frame 20 side) by an angle θ2 with respect to the inner end of the optical element 30, a normal video (for the viewer Since an image (virtual image V1) in which the reduced image (reduced region R2) is enlarged is visually recognized instead of the image (virtual image V2) in which the normal region R1) is expanded, it is possible to suppress giving a sense of discomfort to the viewer.
 つまり、従来から、映像表示部においては、映像表示部の外側に設けられる枠部を、シール部や電極端子の制約でなくすのは難しい。しかしながら、本実施形態の映像表示装置100では、上述した構成を備えることで、枠部20が無いかのように映像を表示できる。 That is, conventionally, in the video display unit, it is difficult to eliminate the frame portion provided outside the video display unit due to the restriction of the seal portion and the electrode terminal. However, in the video display device 100 according to the present embodiment, the video can be displayed as if the frame portion 20 does not exist by providing the above-described configuration.
 さらに、本実施形態では、視聴者が映像表示装置100の映像表示部10の正面からだけではなく、傾いた角度から見た場合でも、枠部20等が見えないように表示制御を行う。具体的には、本実施形態では、虚像V1は、映像表示装置100の外側(枠部20側)の端部よりも外側にはみ出した領域R3を有する。なお、領域R3に対応する縮小領域R2の一部の領域R4は、図4に示される映像表示装置100に隣接している他の映像表示装置100に近傍している領域のため、当該他の映像表示装置100の端部近傍に表示される映像が縮小された状態で出力される。以下では、他の領域(例えば他の映像表示装置100の端部近傍)で出力される映像が(縮小された状態で)出力される領域R4を重複領域と称する。これにより、一例として、視点P3からの映像表示装置100を見た場合でも、隣接する映像表示装置100の枠部20が見えるのを抑止できる。 Furthermore, in the present embodiment, display control is performed so that the viewer does not see the frame portion 20 and the like even when viewed from an inclined angle as well as from the front of the video display unit 10 of the video display device 100. Specifically, in the present embodiment, the virtual image V1 has a region R3 that protrudes outside the end of the image display device 100 on the outer side (frame 20 side). Note that the region R4 of a part of the reduced region R2 corresponding to the region R3 is a region adjacent to the other video display device 100 adjacent to the video display device 100 shown in FIG. The image displayed near the end of the image display apparatus 100 is output in a reduced state. Hereinafter, a region R4 in which a video output in another region (for example, in the vicinity of an end of another video display device 100) is output (in a reduced state) is referred to as an overlapping region. Thus, as an example, even when the video display device 100 is viewed from the viewpoint P3, it is possible to prevent the frame portion 20 of the adjacent video display device 100 from being viewed.
 従って、複数の映像表示装置100により構成されたタイリングディスプレイ1000(図1参照)を視聴者が見た場合に、領域R3において重複映像を視認可能な分、映像表示装置100の境界部分において視聴者に違和感を与えるのを抑制できる。すなわち、視聴者が光学素子30の外側の端部に対して角度θ3だけ内側(枠部20とは反対側)の視点P3から映像表示装置100を見た場合でも、視聴者に破綻のない映像を視認できる。 Therefore, when the viewer views the tiling display 1000 (see FIG. 1) configured by the plurality of video display devices 100, the viewer can view the overlapping video in the area R3 at the border portion of the video display device 100. It is possible to suppress giving a sense of discomfort to the person. That is, even when the viewer looks at the image display apparatus 100 from the viewpoint P3 inside (the opposite side to the frame 20) by the angle θ3 with respect to the outer end of the optical element 30, the image without failure in the viewer You can see
 以下、視聴者に破綻のない映像を視認させるための光学系の一例について式を用いてより詳細に説明する。 Hereinafter, an example of an optical system for causing a viewer to visually recognize an image without a failure will be described in more detail using formulas.
 まず、光学素子30の拡大率mは、光学素子30の光軸l1に対して外側(枠部20側)の部分の長さをd3とすると、縮小領域R2の光軸l1に対して外側の領域のうち重複領域R4を含まない領域R5の長さβに基づいて、下記の式(1)で表される。 First, assuming that the enlargement factor m of the optical element 30 is d3 with respect to the optical axis l1 of the optical element 30, the length of the portion on the outer side (frame portion 20 side) is d3. It is represented by following formula (1) based on length (beta) of area | region R5 which does not contain duplication area | region R4 among area | regions.
 m=d3/β…(1) M = d3 / β (1)
 そして、枠部20の幅をWとし、重複領域R4の長さをαとすると、枠部20を視聴者に視認させないようにする(光学素子30を覆うような虚像V1を視聴者に視認させる)ための上記長さd3は、下記の式(2)で表される。 Then, assuming that the width of the frame portion 20 is W and the length of the overlapping region R4 is α, the viewer is prevented from visually recognizing the frame portion 20 (the virtual image V1 covering the optical element 30 is viewed by the viewer The above-mentioned length d3)) is expressed by the following equation (2).
 d3=β+α+W…(2) D3 = β + α + W (2)
 この場合において、たとえばd3=mβの条件を満たす場合には、少なくとも正面側(Z方向の一方側:図4では上側)から見た場合に枠部20が視認されない。また、本実施形態では、長さαの重複領域R4を設けることによって、光学素子30の外側の端部に対して角度θ3だけ内側(枠部20とは反対側)の視点P3まで、視聴者に破綻のない映像を視認させることができる。 In this case, for example, when the condition of d3 = mβ is satisfied, the frame portion 20 is not visually recognized when viewed from at least the front side (one side in the Z direction: the upper side in FIG. 4). Further, in the present embodiment, by providing the overlapping region R4 of the length α, the viewer can reach the viewpoint P3 inside (the side opposite to the frame 20) by the angle θ3 with respect to the outer end of the optical element 30. Can make the image visible without failure.
 また、光学素子30の焦点距離をfとすると、映像表示部10と光学素子30との間の距離Aは、下記の式(3)で表される。 Further, assuming that the focal length of the optical element 30 is f, the distance A between the image display unit 10 and the optical element 30 is expressed by the following equation (3).
 A=f((β/d3)-1)=f(1/m-1)…(3) A = f ((β / d3) -1) = f (1 / m-1) (3)
 また、虚像V1が視認される距離Bは、下記の式(4)で表される。 Further, the distance B at which the virtual image V1 is visually recognized is expressed by the following equation (4).
 B=A(d3/β)=m×A…(4) B = A (d 3 / β) = m × A (4)
 そして、上記重複領域R4が視認される角度θ3は、下記の式(5)で表される。 And angle theta 3 in which the above-mentioned duplication field R4 is recognized visually is denoted by a following formula (5).
 tan(θ3)=-(α/B)×(d3/β)=-(α/B)×m…(5) Tan (θ3) =-(α / B) × (d3 / β) =-(α / B) × m (5)
 ここで、仮に、|θ3|=|θ2|=|θ1|の条件を満足するようにした場合には、通常領域R1のうち、光学素子30の背面に位置する部分の幅a1と、この幅a1を有する部分に隣接する部分の幅a2との関係は、下記の式(6)で表される。 Here, assuming that the condition of | θ3 | = | θ2 | = | θ1 | is satisfied, the width a1 of the portion positioned on the back surface of the optical element 30 in the normal region R1 and the width The relationship between the width a2 of the portion adjacent to the portion having a1 and the width a2 is represented by the following equation (6).
 |a1|=|a2|…(6) | A1 | = | a2 | (6)
 そして、これらの幅a1およびa2と、縮小領域R2の光軸l1に対して内側(枠部20とは反対側)の領域R6の長さγとの関係は、下記の式(7)で表される。 The relationship between these widths a1 and a2 and the length γ of the region R6 inside (opposite to the frame 20) with respect to the optical axis l1 of the reduction region R2 is shown in the following equation (7) Be done.
 |m|γ=γ+a1+|m|×a2=γ+a1+|m|×a1…(7) | M | γ = γ + a1 || m | × a2 = γ + a1 + | m | × a1 (7)
 また、上記幅a1と、光学素子30と映像表示部10との距離Aとの間には、下記の式(8)の関係が成立する。 Further, the relationship of the following equation (8) is established between the width a1 and the distance A between the optical element 30 and the image display unit 10.
 |a1|=|A|*tan|θ1|=|A|*tan|θ3|…(8) | A1 | = | A | * tan | θ1 | = | A | * tan | θ3 | (8)
 そして、上記の式(7)と式(8)とから、下記の式(9)が導き出される。 Then, the following equation (9) is derived from the above equation (7) and the equation (8).
 γ=|A|×tan|θ3|×(1+|m|)/(|m|-1)…(9) Γ = | A | × tan | θ3 | × (1+ | m |) / (| m | −1) (9)
 上記の式(9)により、角度θ3(θ1、θ2)の視点P3(P1、P2)で映像表示装置100を見た場合に視聴者に破綻の無い映像を視認させるための縮小領域R2の光軸l1に対して内側の領域R6の長さγを計算できる。 According to the above equation (9), when the image display apparatus 100 is viewed at the viewpoint P3 (P1, P2) of the angle θ3 (θ1, θ2), the light of the reduced area R2 for making the viewer visually recognize the image without a break The length γ of the region R6 inside the axis l1 can be calculated.
 図5は、本実施形態にかかる映像表示装置100のハードウェア構成を示すブロック図である。図5に示される映像表示装置100は、入力端子501と、信号処理部502と、スピーカ503と、制御部504と、操作部505と、HDD(Hard Disk Drive)506と、メモリ507と、を備えている。 FIG. 5 is a block diagram showing the hardware configuration of the video display apparatus 100 according to the present embodiment. The video display apparatus 100 shown in FIG. 5 includes an input terminal 501, a signal processing unit 502, a speaker 503, a control unit 504, an operation unit 505, an HDD (Hard Disk Drive) 506, and a memory 507. Have.
 入力端子501は、外部から入力された映像信号および音声信号を、信号処理部502に供給する。 The input terminal 501 supplies a video signal and an audio signal input from the outside to the signal processing unit 502.
 信号処理部502は、入力される映像信号について、所定の信号処理やスケーリング処理等を施し、処理後の映像信号を表示パネル40に供給する。また、信号処理部502は、入力されたデジタル音声信号に所定の信号処理を施し、アナログ音声信号に変換して、スピーカ503に出力する。さらに、信号処理部502は、表示パネル40に表示させるためのOSD(On Screen display)信号も生成している。 The signal processing unit 502 performs predetermined signal processing, scaling processing, and the like on the input video signal, and supplies the processed video signal to the display panel 40. Further, the signal processing unit 502 performs predetermined signal processing on the input digital audio signal, converts it into an analog audio signal, and outputs the analog audio signal to the speaker 503. Further, the signal processing unit 502 also generates an OSD (On Screen Display) signal to be displayed on the display panel 40.
 スピーカ503は、信号処理部502から供給される音声信号を入力し、その音声信号を用いて音声を出力する。なお、表示パネル40及び光学素子30については上述したため、説明を省略する。 The speaker 503 receives an audio signal supplied from the signal processing unit 502, and outputs an audio using the audio signal. In addition, since the display panel 40 and the optical element 30 have been described above, the description will be omitted.
 制御部504は、プログラムを読み出して、映像表示装置100における種々の動作を統括的に制御する。制御部504は、CPU(central processing unit)等を内蔵したマイクロプロセッサであり、操作部505からの操作情報を入力し、それらの操作情報に従って各部をそれぞれ制御する。 The control unit 504 reads a program and centrally controls various operations in the image display apparatus 100. The control unit 504 is a microprocessor incorporating a CPU (central processing unit) and the like, receives operation information from the operation unit 505, and controls each unit according to the operation information.
 HDD506は、入力された映像信号及び音声信号を記録する記録手段としての機能を有している。映像表示装置100は、HDD506に記録されたデジタルの映像信号及び音声信号を用いて映像および音声を再生できる。 The HDD 506 has a function as recording means for recording the input video signal and audio signal. The video display device 100 can reproduce video and audio using digital video and audio signals recorded in the HDD 506.
 制御部504は、メモリ507を作業領域として利用する。メモリ507は、主として、制御部504に内蔵されているCPUが実行する制御プログラム(映像制御プログラム510を含む)を格納したROM(Read Only Memory)と、CPUに作業エリアを提供するためのRAM(Random Access Memory)と、各種の設定情報及び制御情報等が格納される不揮発性メモリとを有している。 The control unit 504 uses the memory 507 as a work area. The memory 507 mainly includes a ROM (Read Only Memory) storing a control program (including the video control program 510) executed by the CPU built in the control unit 504, and a RAM (a memory for providing a work area to the CPU). A random access memory) and a non-volatile memory in which various setting information, control information and the like are stored.
 制御部504は、ROMに格納されている映像制御プログラム510を実行することで、設定部511と、輝度補正部512と、の構成を実現する。 The control unit 504 realizes the configuration of the setting unit 511 and the luminance correction unit 512 by executing the video control program 510 stored in the ROM.
 設定部511は、ある視聴位置から映像表示部10を見た場合に、光学素子30により拡大された映像が、光学素子30を介さない映像と画素サイズが一致するように、光学素子30の拡大率に対応する縮小率で縮小された縮小映像を出力する縮小領域を、映像表示部10内に設定する。つまり、本実施形態における映像表示装置100においては、映像表示部10から出力される映像の一部が光学素子30を介しているため、視聴者が視聴する位置に応じて見える映像が変化する。そこで、設定部511が、視聴者が存在すると想定される位置を基準に、当該視聴者が映像表示部10を見る際に違和感が生じないように、縮小領域を設定する。 When the image display unit 10 is viewed from a certain viewing position, the setting unit 511 enlarges the optical element 30 so that the image enlarged by the optical element 30 matches the pixel size with the image not via the optical element 30. A reduced area for outputting a reduced image reduced at a reduction rate corresponding to the rate is set in the video display unit 10. That is, in the video display device 100 according to the present embodiment, a part of the video output from the video display unit 10 passes through the optical element 30, so the video to be viewed changes according to the position viewed by the viewer. Therefore, the setting unit 511 sets the reduction area on the basis of the position where the viewer is assumed to be present so that the viewer does not feel uncomfortable when viewing the video display unit 10.
 図6は、本実施形態にかかる6個の映像表示装置で構成される、映像表示システムの一形態である6面タイリングディスプレイの例を示した図である。図6に示されるように、本実施形態による6面タイリングディスプレイ600は、6個の映像表示装置100が水平方向(X方向)に3個、上下方向(Y方向)に2個タイル状に並べて配置している。 FIG. 6 is a view showing an example of a six-sided tiling display which is an embodiment of a video display system, which is configured of six video display devices according to the present embodiment. As shown in FIG. 6, in the six-sided tiled display 600 according to the present embodiment, six image display devices 100 are tiled in three in the horizontal direction (X direction) and in two in the upper and lower direction (Y direction). Arranged side by side.
 本実施形態では、6面タイリングディスプレイ600は、6面タイリングディスプレイ600の中心611から距離d6離れた視聴位置P6を、視聴者が視聴する際の基準となる位置として設定する。そして、各映像表示装置100の設定部511は、当該視聴位置P6から視聴した際に、視聴者の違和感が生じないように、映像表示部10の縮小領域を設定する。 In the present embodiment, the six-sided tiling display 600 sets a viewing position P6 separated by a distance d6 from the center 611 of the six-sided tiling display 600 as a reference position for viewing by the viewer. Then, the setting unit 511 of each video display device 100 sets the reduction area of the video display unit 10 so that the viewer does not feel discomfort when viewed from the viewing position P6.
 例えば、視聴位置P6から映像表示装置100を視聴した場合に、視線601では、リニアレンズ31の端部と映像表示部10との間をのぞき込むような視線となる。このため、設定部511は、当該視線601で違和感が生じないように、通常の映像が出力される領域の幅と、縮小領域の幅と、を設定する。他の例としては、中心から右側の映像表示装置100では、視線602で違和感が生じないように、通常の映像が出力される領域の幅と、縮小領域の幅と、を設定する。本実施形態の設定部511は、視線601(又は視線602)と、光学素子30を面とした場合の当該面と垂直な垂直線との間の角度に応じて、縮小領域の幅を設定する。なお、幅の算出手法については後述する。 For example, when the video display device 100 is viewed from the viewing position P6, the line of sight 601 is a line of sight that looks into the space between the end of the linear lens 31 and the image display unit 10. For this reason, the setting unit 511 sets the width of the area in which the normal video is output and the width of the reduction area so that the visual line 601 does not have a sense of incongruity. As another example, in the image display apparatus 100 on the right side from the center, the width of the area to which a normal image is output and the width of the reduction area are set so that the line of sight 602 does not cause discomfort. The setting unit 511 of the present embodiment sets the width of the reduction area according to the angle between the line of sight 601 (or the line of sight 602) and the vertical line perpendicular to the plane when the optical element 30 is a plane. . The method of calculating the width will be described later.
 さらに、視線603は、視線601と比べて、さらに、リニアレンズ(光学素子)31の端部と映像表示部10との間をのぞき込むような視線となる。そこで、中心から右側の映像表示装置100の設定部511は、視線603で違和感が生じないように、縮小領域の幅を設定する。 Furthermore, the line of sight 603 is a line of sight that looks into between the end of the linear lens (optical element) 31 and the image display unit 10 as compared with the line of sight 601. Therefore, the setting unit 511 of the image display apparatus 100 on the right side from the center sets the width of the reduction area so that the line of sight 603 does not cause a sense of incongruity.
 さらに、設定部511は、中心611から視聴位置P6を結ぶ線と、視線601、602、603との間の角度θ61、θ62、θ63に応じて、縮小領域のサイズを設定する。例えば、視線601、視線603は、6面タイリングディスプレイ600の中央、右端に設けられた映像表示装置100の光学素子31の端部に接した後、映像表示部10の内側から外側(枠部20側)に向かう視線であり、視聴位置P6にいる視聴者が覗き込むことが可能な境界となる。このように、視線601から視線603へと視線が6面タイリングディスプレイ600の中心から離れるにつれて(6面タイリングディスプレイ600の表示画面(平面)と交わる視線の角度が小さくなるにつれて)、直接縮小画像を見込める角度が増加していると考えることができる。そこで、視線で直接縮小画像が見えるのを抑止するために、映像表示装置100において、中央から右端側(左端側も同様に)に設置されるにつれて、図4の角度θ1を増加させる必要がある。このため、設定部511は、縮小画像領域を小さくする。 Furthermore, the setting unit 511 sets the size of the reduction area in accordance with the angles θ 61 , θ 62 , and θ 63 between the line connecting the center 611 and the viewing position P 6 and the sight lines 601, 602, and 603. For example, after the line of sight 601 and the line of sight 603 contact the end of the optical element 31 of the image display apparatus 100 provided at the center and right end of the six-sided tiled display 600, 20), which is a boundary where the viewer at the viewing position P6 can look into. Thus, as the line of sight moves from the line of sight 601 to the line of sight 603 away from the center of the six-sided tiled display 600 (as the angle of the line of sight intersecting the display screen (plane) of the six-sided tiled display 600 decreases), It can be considered that the angle at which the image can be viewed is increasing. Therefore, in order to prevent the reduced image from being viewed directly by the line of sight, it is necessary to increase the angle θ1 in FIG. 4 as the image display device 100 is installed from the center to the right end . For this reason, the setting unit 511 reduces the reduced image area.
 一方、視線602は、6面タイリングディスプレイ600の右端に設けられた映像表示装置100の、光学素子31の端部に接した後、映像表示部10の外側(枠部20側)から内側に向かう視線であり、視聴位置P6にいる視聴者が光学素子31を通して見ることが可能な境界となる。映像表示部10の外側(枠部20側)から内側に向かう視線では、視線が6面タイリングディスプレイ600の中心から離れるにつれて(6面タイリングディスプレイ600の表示画面(平面)と交わる視線の角度が小さくなるにつれて)、直接光学素子31を通して拡大された画像を見込める角度が増加していると考えることができる。そこで、光学素子31を通して通常の画素サイズの画像がさらに拡大されて見えるのを抑止するために図4の角度θ2を増加させる必要がある。このため、設定部511は、縮小領域を大きく設定する。 On the other hand, the line of sight 602 contacts the end of the optical element 31 of the image display device 100 provided at the right end of the six-sided tiled display 600, and then inward from the outside (frame 20 side) of the image display unit 10. It is a line of sight, which is a boundary at which the viewer at the viewing position P6 can view through the optical element 31. As for the line of sight going inward from the outside (frame 20 side) of the image display unit 10, the angle of the line of sight intersects the display screen (plane) of the six-sided tiling display 600 as the line of sight moves away from the center of the six-sided tiling display 600 Can be considered as increasing the angle at which the magnified image can be viewed directly through the optical element 31. Therefore, it is necessary to increase the angle θ2 in FIG. 4 in order to prevent the image of the normal pixel size from being further magnified and seen through the optical element 31. Therefore, the setting unit 511 sets the reduction area large.
 つまり、光学素子31との間の開口部が6面タイリングディスプレイ600中心側を向いている映像表示部10近傍の縮小領域は、視聴位置P6から直接縮小画像が覗き込まれやすくなるため、設定部511は、当該縮小領域の幅を、映像表示部10を正面から見る場合と比べて小さくなるよう設定する。一方、光学素子31との間の開口部が6面タイリングディスプレイ600中心に対して反対側(外側)を向いている映像表示部10近傍の縮小領域は、視聴位置P6から光学素子31を通して通常画像がさらに拡大されて見えないようにするため、設定部511は縮小領域の幅を、映像表示部10を正面から見る場合と比べて大きくなるよう設定する。 That is, the reduced area in the vicinity of the image display unit 10 in which the opening between the optical element 31 and the six-sided tiled display 600 faces the center side is set because the reduced image is easily viewed directly from the viewing position P6. The unit 511 sets the width of the reduction area to be smaller than when the image display unit 10 is viewed from the front. On the other hand, the reduction area in the vicinity of the image display unit 10 in which the opening between the optical element 31 and the center of the six-sided tiled display 600 faces the opposite side (outside) usually passes through the optical element 31 from the viewing position P6. In order to make the image further enlarged and invisible, the setting unit 511 sets the width of the reduced area to be larger than when the image display unit 10 is viewed from the front.
 このように、縮小領域のサイズを設定することで、視聴位置P6から6面タイリングディスプレイ600を見た際の画面の連続性を精度良く保つことができる。 As described above, by setting the size of the reduction area, it is possible to accurately maintain the continuity of the screen when viewing the six-sided tiling display 600 from the viewing position P6.
 一般に、フルハイビジョンの放送規格では16:9のアスペクト比を有する映像が表示される映像表示装置では、視聴者と映像表示装置とは、映像表示装置の上下方向の幅の3倍の距離(いわゆる3Hの距離)だけ離れているのが標準的であるとされている。この場合、水平方向の画角は±約16度となるとともに、上下方向の画角は±約9度となる。 Generally, in a video display apparatus in which a video having an aspect ratio of 16: 9 is displayed in the full high-definition broadcast standard, the viewer and the video display apparatus are three times the width of the video display apparatus in the vertical direction It is considered standard that they are separated by a distance of 3 H). In this case, the angle of view in the horizontal direction is ± 16 degrees, and the angle of view in the vertical direction is ± 9 degrees.
 つまり、映像表示装置を画面中央から標準的な距離から視聴することを考慮して、組み合わさる映像表示装置100の各々で上述した条件を当てはめると、6面タイリングディスプレイ600中心に対して水平方向では最低でも縮小画像が見えない境界の角度(図4の角度θ1)の傾きは、16度以上でなければならない。(例えば、6面タイリングディスプレイ600の角度θ61は約16度以上に設定されることも考えられる。)また、タイリングディスプレイ化して画面幅が大きくなれば、画角が大きくなる。その点を考慮して、本実施形態の設定部511は、角度θ1を設定し、当該角度θ1に従って縮小領域を設定する。これにより、一例として、画面中央の標準的な位置から視聴者が映像表示装置を視聴した場合に縮小画像が見えるのを抑止できる。 That is, considering the viewing of the video display device from the center of the screen from a standard distance, and applying the above-described conditions to each of the combined video display devices 100, the horizontal direction with respect to the center of the six-sided tiling display 600 Then, the inclination of the boundary angle (the angle θ1 in FIG. 4) at which the reduced image can not be viewed at least must be 16 degrees or more. (For example, the angle θ 61 of the six-sided tiling display 600 may be set to about 16 degrees or more.) In addition, if the screen width is increased by forming a tiling display, the angle of view is increased. Taking this point into consideration, the setting unit 511 of the present embodiment sets the angle θ1 and sets the reduction area according to the angle θ1. Thereby, as an example, when the viewer views the video display apparatus from a standard position in the center of the screen, it is possible to prevent the reduced image from being viewed.
 視聴者が見る位置を6面タイリングディスプレイ600の画面中央に設定した場合、視聴位置が中央(例えば、視聴位置P6)から離れて6面タイリングディスプレイ600の画面外側からの斜め方向から見る場合の視認性は、画面中央から視聴する場合と比べて低減させてもよい。換言すると、中央付近からの視認性を高めるために、6面タイリングディスプレイ600の画面中心に対して、縮小領域が、当該縮小領域の近傍の枠部20よりも内側(画面中心側)にある場合、縮小画像が直接観察される境界となる角度θ1が増加し、光学素子30(31、32)を介した映像が通常の画素サイズに見える境界となる角度θ2が低減するように、設定部511が、縮小領域を設定しても良い。 When the viewing position is set at the center of the screen of the six-sided tiling display 600, the viewing position is away from the center (for example, the viewing position P6) and viewed from an oblique direction from the outside of the screen of the six-sided tiling display 600 The visibility of may be reduced as compared to the case of viewing from the center of the screen. In other words, the reduction area is on the inner side (screen center side) of the frame 20 near the reduction area with respect to the screen center of the six-sided tiled display 600 in order to enhance the visibility from near the center. In this case, the setting unit is configured such that the angle θ1 at which the reduced image is directly observed increases and the angle θ2 at which the image through the optical element 30 (31, 32) looks like a normal pixel size is reduced. 511 may set a reduction area.
 設定部511は、視聴者の位置から、6面タイリングディスプレイ600を見る際に、中央近傍となる光学素子30(31、32)に覆われている映像表示部10の表示領域については(例えば、上下隔てる枠部20付近)、図4の角度θ1と角度θ2とがほぼ等しくなるように、縮小領域を設定すれば良いが、6面タイリングディスプレイ600の画面中心に対して、光学素子30(31、32)で覆われている映像表示部10の縮小領域が、当該縮小領域近傍の枠部20より内側(画面中心側)にある場合については、設定部511は、当該縮小領域について、枠部20より外側(画面中心の反対側)にある他の縮小領域より小さく設定する。つまり、図4の角度θ1(場合によってはθ3も)を、角度θ2よりも大きくなるように、縮小領域を設定する。 When viewing the six-sided tiled display 600 from the position of the viewer, the setting unit 511 sets the display area of the image display unit 10 covered by the optical element 30 (31, 32) near the center (for example, The reduction area may be set so that the angle θ1 and the angle θ2 in FIG. 4 are substantially equal to each other, and the optical element 30 with respect to the screen center of the six-sided tiling display 600. In the case where the reduction area of the video display unit 10 covered by (31, 32) is on the inner side (center side of the screen) than the frame 20 near the reduction area, the setting unit 511 determines the reduction area. It is set to be smaller than the other reduction area outside the frame 20 (opposite to the screen center). That is, the reduction area is set so that the angle θ1 (and also θ3 in some cases) in FIG. 4 is larger than the angle θ2.
 図4に示されるように、光学素子30の光軸l1から、枠部20と反対側の光学素子30の幅d4と、レンズの光軸l1から枠部20と反対側の縮小領域の幅R6と、光学素子30と表示パネル40との間の距離を|A|と、光学素子30から虚像の像面までの仮想的な距離を|B|とする。この場合、光学素子30で拡大される倍率m=|B|/|A|となる。この場合に、角度θ1を式(10)として、角度θ2を式(11)として表すことができる。 As shown in FIG. 4, from the optical axis l1 of the optical element 30, the width d4 of the optical element 30 on the side opposite to the frame 20 and the width R6 of the reduction area on the side opposite to the frame 20 from the optical axis l1 of the lens The distance between the optical element 30 and the display panel 40 is | A |, and the virtual distance from the optical element 30 to the image plane of the virtual image is | B |. In this case, the magnification m = | B | / | A | In this case, the angle θ1 can be expressed as equation (10), and the angle θ2 can be expressed as equation (11).
 θ1=tan-1((d4―R6)/|A|)…(10)
 θ2=tan-1((m・R6―d4)/|B|)…(11)
θ1 = tan −1 ((d 4 −R 6) / | A |) (10)
θ 2 = tan −1 ((m · R 6 −d 4) / | B |) (11)
 この式(10)と式(11)とから角度θ1と角度θ2との関係を導出できる。図7は、同一の光学素子30(31、32)で生じる角度θ1と角度θ2との関係を示した図である。図7に示されるように、光学素子30の幅d4を変更することができないが、縮小領域の幅R6を変更することで、角度θ1と角度θ2とを変更することができる。例えば、設定部511が、縮小領域の幅d4を小さく設定することで、角度θ2を大きくし、角度θ1を小さくなるように設定できる。換言すれば、設定部511は、視線と、光学素子30を面とした場合の当該面と垂直な垂直線との間の角度に応じて、視聴者の視線の縮小領域の幅d4の設定変更を行うことで、視聴者が当該視線から映像表示装置100を見ても違和感が生じないように縮小領域の幅を調整できる。 The relationship between the angle θ1 and the angle θ2 can be derived from the equation (10) and the equation (11). FIG. 7 is a diagram showing the relationship between the angle θ1 and the angle θ2 generated by the same optical element 30 (31, 32). As shown in FIG. 7, the width d4 of the optical element 30 can not be changed, but the angle θ1 and the angle θ2 can be changed by changing the width R6 of the reduction area. For example, when the setting unit 511 sets the width d4 of the reduction area small, the angle θ2 can be set large and the angle θ1 can be set small. In other words, the setting unit 511 changes the setting of the width d4 of the reduced area of the line of sight of the viewer according to the angle between the line of sight and the vertical line perpendicular to the plane when the optical element 30 is a plane. By doing this, it is possible to adjust the width of the reduction area so that the viewer does not feel discomfort even when viewing the image display apparatus 100 from the line of sight.
 例えば、映像表示装置100の外縁部の各辺全てを覆うように光学素子30が設けられ、視聴者が画面中央から見ることを想定している場合、視聴者は、当該映像表示装置100の全ての辺の光学素子30について、光学素子30と映像表示部10との間を覗き込むような状況となる。この場合、設定部511は、映像表示装置100の画面中央から視聴者までの距離に応じて、縮小領域の幅d4を設定することで、当該視聴者の位置に応じた角度θ1と角度θ2とを割り当てることができる。例えば、視聴者の位置が画面から遠くなるほど、視聴者と画面中央を結ぶ線と、視聴者と光学素子30の枠部20と反対側の端部とを結ぶ線との間の角度が小さくなる。換言すれば、視聴者の位置が画面から遠くなるほど、角度θ1が小さくなり、角度θ2が大きくなるように、設定部511が、縮小領域の幅d4を設定する。 For example, in the case where it is assumed that the optical element 30 is provided to cover all the sides of the outer edge of the image display device 100 and the viewer views from the center of the screen, the viewer With regard to the optical element 30 on the side of the image, it is possible to look into the space between the optical element 30 and the image display unit 10. In this case, the setting unit 511 sets the width d4 of the reduction area according to the distance from the center of the screen of the video display device 100 to the angle θ1 and the angle θ2 according to the position of the viewer. Can be assigned. For example, as the position of the viewer is farther from the screen, the angle between the line connecting the viewer and the center of the screen and the line connecting the viewer and the end of the optical element 30 opposite to the frame 20 decreases. . In other words, the setting unit 511 sets the width d4 of the reduction area so that the angle θ1 decreases and the angle θ2 increases as the position of the viewer is farther from the screen.
 換言すれば、設定部511は、6面タイリングディスプレイ600の中央の位置を基準とし、同じ光学素子30で覆われている枠部20より中央側にある縮小領域(上下方向に延びる2つの縮小領域のうち、視聴者側から遠い縮小領域)を、中央と距離が近い他の映像表示装置100と比べて小さく設定する。なお、6面以上のタイリングディスプレイを実現している場合(例えば8面タイリングディスプレイ)、設定部511は、同じ光学素子で覆われている枠部20より当該中央と反対側にある縮小領域(上下方向に延びる2つの縮小領域のうち、視聴者側に近い縮小領域)を、当該中央と距離が近い他の映像表示装置100と比べて大きく設定する。 In other words, the setting unit 511 uses the central position of the six-sided tiling display 600 as a reference, and the reduction area (two reductions extending in the vertical direction) located at the center side of the frame 20 covered by the same optical element 30. Among the regions, the reduction region far from the viewer side is set to be smaller than that of the other video display device 100 whose distance is close to the center. In addition, when the tiling display of six or more surfaces is realized (for example, eight-sided tiling display), the setting unit 511 is a reduced area located on the opposite side to the center than the frame 20 covered with the same optical element. (The reduction area closer to the viewer side among the two reduction areas extending in the vertical direction) is set larger than that of the other video display apparatus 100 whose distance is close to the center.
 ところで、映像表示装置100の光学素子30で映像を拡大し、視聴者が虚像を見る場合に、視聴者が映像表示装置100の画面中央ではなく、正面から離れた位置から見ると(表示パネルの表示面に垂直な垂直線から、視聴位置が所定の方向に傾いている場合)、虚像がずれる可能性がある。 By the way, when the image is enlarged by the optical element 30 of the image display apparatus 100 and the viewer sees a virtual image, when viewed from a position away from the front of the image display apparatus 100 instead of the center of the screen of the image display If the viewing position is inclined in a predetermined direction from a vertical line perpendicular to the display surface, the virtual image may be displaced.
 そこで、本実施形態の設定部511は、画面中央からの見込み角に合わせ、ズレ量を計算し、当該ズレ量に合わせて、縮小領域から出力される縮小映像を補正する。図4に示されるように、視認されるズレ量は、光学素子30から表示パネル40の面までの距離と光学素子30から虚像までの距離との間の距離差、及び視聴者が表示パネル40を見る場合の見込み角から算出できる。そのズレ量を補正して縮小画像を作成すればよい。例えば、視聴者が画面中央から所定の方向に傾いた位置から見る場合に、縮小画像の虚像は画面中高から見た場合と比べて、所定の方向と反対側にずれて見える。 Therefore, the setting unit 511 of the present embodiment calculates the amount of deviation in accordance with the expected angle from the center of the screen, and corrects the reduced image output from the reduced area in accordance with the amount of deviation. As shown in FIG. 4, the amount of displacement to be visually recognized is the difference in distance between the distance from the optical element 30 to the surface of the display panel 40 and the distance from the optical element 30 to the virtual image. It can be calculated from the perspective angle when looking at. The amount of deviation may be corrected to create a reduced image. For example, when the viewer sees from a position inclined in a predetermined direction from the center of the screen, the virtual image of the reduced image appears to be shifted in the opposite direction to the predetermined direction as compared to the case of viewing from the screen height.
 そこで、設定部511は、映像表示部10の表示面に垂直な垂直線から、視聴位置がある方向に傾いている場合に、縮小領域から出力される縮小映像を当該ある方向にずらすように設定する。つまり、設定部511は、視聴位置から映像表示部10を見た場合に、光学素子30により拡大された映像が、光学素子30を介さない映像との境で像がずれないように、視聴位置と光学素子30の光軸を結ぶ光路を基準として、縮小領域から出力される縮小映像を当該ある方向にシフトさせる。このように、利用者の位置に応じて、出力される縮小画像をシフトさせることで、当該位置から映像表示部10を見た場合に、光学素子30を介さない通常の映像と、光学素子30を介して拡大された映像と、の間のずれを抑止できる。 Therefore, when the viewing position is inclined in a direction from the vertical line perpendicular to the display surface of the image display unit 10, the setting unit 511 sets the reduced image output from the reduction area to be shifted in the predetermined direction. Do. That is, when viewing the image display unit 10 from the viewing position, the setting unit 511 views the viewing position so that the image enlarged by the optical element 30 does not shift in the border with the image not via the optical element 30. The reduced image output from the reduced area is shifted in a certain direction with reference to an optical path connecting the optical axis of the optical element 30 and the optical element 30. Thus, when the image display unit 10 is viewed from the position by shifting the reduced image to be output according to the position of the user, the normal image without the optical element 30 and the optical element 30 It is possible to suppress the deviation between the image enlarged through the
 図4に示される例において、視聴者が角度θ2から、映像表示部10を見た場合に、光軸l1を基準として縮小画像を出力すると、視聴者が映像表示部10を見る場合に映像にずれが生じる。そこで、設定部511は、光軸l1から角度θ1をずらした位置を基準として縮小画面を出力する、換言すれば、設定部511が、距離|A|×tanθ1だけずらした位置を基準として、縮小映像を出力するように設定することで、視聴者が映像表示部10を見た際のずれを抑止できる。 In the example shown in FIG. 4, when the viewer sees the video display unit 10 from the angle θ 2, when the reduced image is output based on the optical axis l 1, the viewer sees the video display unit 10 as a video Deviation occurs. Therefore, the setting unit 511 outputs the reduced screen on the basis of the position at which the angle θ1 is shifted from the optical axis l1. In other words, the setting unit 511 reduces the position on the basis of the position shifted by the distance | A | × tan θ1. By setting so as to output a video, it is possible to suppress a shift when the viewer looks at the video display unit 10.
 ところで、視聴者が映像表示装置100を見る際に、画面中央から斜めの方向で見ると、光学素子30の収差の関係で、映像を拡大する倍率が変化する。例えば、光学素子30の糸巻き型や樽型の歪みにより、光学素子30の拡大率の変化が見込み角によって起こる可能性がある。 By the way, when the viewer looks at the image display apparatus 100, when viewed from the center of the screen in an oblique direction, the magnification for enlarging the image changes due to the relationship of the aberration of the optical element 30. For example, due to the pincushion type or barrel type distortion of the optical element 30, a change in the enlargement factor of the optical element 30 may occur due to the perspective angle.
 そこで、設定部511は、光学素子30の拡大率が変化した場合でも、表示される映像は変化しないように、縮小映像の縮小率を設定する。例えば、設定部511は、映像表示部10の縮小領域から表示される縮小映像において、光学素子30の光軸l1から離れるに従って縮小率を上げるように調整する。これにより、一例として、連続性を確保できる。 Therefore, the setting unit 511 sets the reduction ratio of the reduced image so that the displayed image does not change even when the enlargement ratio of the optical element 30 changes. For example, in the reduced image displayed from the reduced area of the image display unit 10, the setting unit 511 performs adjustment so as to increase the reduction ratio as the distance from the optical axis l1 of the optical element 30 increases. Thereby, as an example, continuity can be secured.
 この縮小率の設定手法としては、例えば、視聴者が存在するものとして想定される視聴位置からカメラ等で、市松模様などの画像パターンを撮影する。そして、設定部511が、画像パターンを撮影した撮像画像データに基づいて、視聴者が存在する視聴位置から拡大率の違いを取得し、視聴者が存在する位置に応じて、縮小映像の縮小率を異ならせるように、設定しても良い。 As a setting method of this reduction ratio, for example, an image pattern such as a checkered pattern is photographed by a camera or the like from a viewing position assumed to exist as a viewer. Then, the setting unit 511 acquires the difference in the enlargement ratio from the viewing position where the viewer exists based on the captured image data obtained by capturing the image pattern, and the reduction ratio of the reduced image according to the location where the viewer exists You may set it so that they differ.
 輝度補正部512は、光学素子30の光軸l1から離れるに従って、映像表示部10から出力される映像の輝度値を高く補正する。 The luminance correction unit 512 corrects the luminance value of the video output from the video display unit 10 as it goes away from the optical axis l1 of the optical element 30.
 ところで、光学素子30を正面から見た場合の特性と比べて、光学素子30を斜めから見た場合の特性は劣化する。例えば、光学素子30としてフレネルレンズなどを用いた場合、段差部の境界が見えてくるためさらに劣化を伴う。また、映像表示部10は、指向性を持つことが多く、一般的に画面の正面から、視聴者が映像表示部10を見る角度が大きくなるについて輝度が低くなる傾向がある。この指向性とレンズの劣化により、正面で見た場合に基づいて輝度の分布のムラを補正しても、視聴者が映像表示部10を見る角度が変化すると、光学素子30を介したことによる輝度の変化が大きくなる。 By the way, compared with the characteristic when the optical element 30 is seen from the front, the characteristic at the time of seeing the optical element 30 from the diagonal deteriorates. For example, when a Fresnel lens or the like is used as the optical element 30, the boundary of the step portion can be seen, which further causes deterioration. In addition, the video display unit 10 often has directivity, and in general, when the angle at which the viewer looks at the video display unit 10 increases from the front of the screen, the luminance tends to decrease. Due to the directivity and the deterioration of the lens, even if the unevenness of the distribution of luminance is corrected based on the case of viewing from the front, when the angle at which the viewer looks at the image display unit 10 changes, The change in luminance is large.
 そこで、輝度補正部512が、輝度補正の度合いを映像表示部10の中央からのレンズの位置に従って異ならせることで、画面の均一性を保持できる。人間は短い距離の輝度変化に敏感であるが、長い距離の輝度変化に鈍感な視覚特性を有しているため、視聴者から映像表示部10までの距離に応じて、補正係数を変化させても良い。 Therefore, by making the degree of luminance correction different according to the position of the lens from the center of the image display unit 10, the uniformity of the screen can be maintained. Although human beings are sensitive to luminance changes at short distances, they have visual characteristics insensitive to luminance changes at long distances, so the correction coefficient is changed according to the distance from the viewer to the image display unit 10. Also good.
 図8は、本実施形態にかかる輝度補正部512による輝度補正量の例を示した図である。図8に示される例では、複数の映像表示装置100の境界を、位置x1と示している。そして、当該境界(映像表示装置100の外縁部)から画面中心になるにつれて、輝度補正部512による輝度補正量が小さくなるように設定される。 FIG. 8 is a diagram showing an example of the luminance correction amount by the luminance correction unit 512 according to the present embodiment. In the example shown in FIG. 8, the boundary of the plurality of video display devices 100 is indicated as a position x1. Then, the luminance correction amount by the luminance correction unit 512 is set to be smaller as the screen becomes closer to the screen center from the boundary (the outer edge portion of the video display device 100).
 しかしながら、領域801において輝度補正量が大きく変化する。図9は、領域801の輝度補正量の詳細を示した図である。この図9に示すような輝度補正量は、図10に示されるような輝度変化に基づくものである。つまり、領域1001で光学素子30が不透明部のため、輝度が低下する。そして、領域1002はレンズ端のため輝度が低下する。そして、領域1003は、光学素子30の光軸上のため、輝度はあまり劣化しない。 However, in the region 801, the amount of luminance correction changes significantly. FIG. 9 is a diagram showing details of the luminance correction amount of the region 801. As shown in FIG. The brightness correction amount as shown in FIG. 9 is based on the brightness change as shown in FIG. That is, since the optical element 30 is an opaque portion in the region 1001, the luminance is reduced. And since the area 1002 is a lens end, the luminance is lowered. And since the area 1003 is on the optical axis of the optical element 30, the luminance does not deteriorate much.
 そして、輝度補正部512は、当該輝度の低下に合わせて、輝度補正量を異ならせる。つまり、領域901、領域902で輝度補正量を高くし、領域903に近づくにつれて輝度補正量を小さくする。 Then, the brightness correction unit 512 makes the brightness correction amount different according to the decrease in the brightness. That is, the amount of luminance correction is increased in the regions 901 and 902, and the amount of luminance correction is decreased as the region 903 is approached.
 なお、光学素子30の特性に合わせて、輝度補正の手法が異なってくる。例えば、輝度補正の他の態様として、光学素子30の近傍付近の輝度補正量を下げる手法を用いても良い。 Note that the method of luminance correction differs in accordance with the characteristics of the optical element 30. For example, as another aspect of the luminance correction, a method of reducing the luminance correction amount in the vicinity of the optical element 30 may be used.
(第2の実施形態)
 第1の実施形態では、視聴者の位置を予め想定して、予め縮小領域の幅等を設定する例について説明した。しかしながら、視聴者の位置を予め想定しておくのではなく、変化する視聴者の位置に応じて、縮小領域の幅等を設定しても良い。そこで、本実施形態では、撮像部で撮像された視聴者の位置に応じて、縮小領域を設定する例について説明する。
Second Embodiment
In the first embodiment, an example has been described in which the width or the like of the reduction area is set in advance, assuming the position of the viewer in advance. However, the width or the like of the reduction area may be set in accordance with the changing position of the viewer instead of assuming the position of the viewer beforehand. Thus, in the present embodiment, an example in which a reduction area is set according to the position of the viewer captured by the imaging unit will be described.
 図11は、本実施形態にかかる6個の映像表示装置で構成される、映像表示システムの一形態である6面タイリングディスプレイの例を示した図である。図11に示されるように、本実施形態による6面タイリングディスプレイ1100は、第1の実施形態と同様に、6個の映像表示装置1101が水平方向(X方向)に3個、上下方向(Y方向)に2個タイル状に並べて配置している他、さらに撮像部1102が追加されている。 FIG. 11 is a view showing an example of a six-sided tiling display which is an example of the video display system, which is configured by six video display devices according to the present embodiment. As shown in FIG. 11, in the six-sided tiled display 1100 according to the present embodiment, three six image display apparatuses 1101 are arranged in the horizontal direction (X direction), as in the first embodiment. In addition to arranging two tiles in the Y direction, an imaging unit 1102 is further added.
 そして、撮像部1102が撮像した視聴者の位置(例えば位置P11_1、位置P11_2)に応じて、当該視聴者の違和感が生じないように、映像表示部10の縮小領域を設定する。つまり、位置P11_1においては、視線1111で縮小画像が見えず、視線1112でも通常の画素サイズで映像が見えるとともに、位置P11_2においては、視線1113で通常の画素サイズで映像が見えると共に、視線1114でも縮小映像が見えないように、縮小領域の幅を調整する。 Then, according to the position (for example, the position P11_1, the position P11_2) of the viewer captured by the imaging unit 1102, the reduction area of the video display unit 10 is set so that the viewer does not feel discomfort. That is, at the position P11_1, the reduced image can not be seen with the line of sight 1111, and the image can be seen with the normal pixel size even with the line of sight 1112. Adjust the width of the reduced area so that the reduced image can not be seen.
 図12は、本実施形態にかかる映像表示装置1101のハードウェア構成を示すブロック図である。図12に示される映像表示装置1101は、第1の実施形態の映像表示装置100と同様の構成を備えているが、映像制御プログラム1201が変更されている。 FIG. 12 is a block diagram showing the hardware configuration of the video display apparatus 1101 according to the present embodiment. The video display device 1101 shown in FIG. 12 has the same configuration as the video display device 100 of the first embodiment, but the video control program 1201 is changed.
 映像制御プログラム1201は、検出部1211と、設定部1212と、輝度補正部512と、を備える。なお、第1の実施形態と同様の構成については、同一の符号を割り当て、説明を省略する。 The video control program 1201 includes a detection unit 1211, a setting unit 1212, and a luminance correction unit 512. In addition, about the structure similar to 1st Embodiment, the same code | symbol is assigned and description is abbreviate | omitted.
 検出部1211は、撮像部1102で撮像された撮像画像データから、視聴者の位置を検出する。なお、検出手法については、周知の手法を用いれば良いものとして説明を省略する。 The detection unit 1211 detects the position of the viewer from the captured image data captured by the imaging unit 1102. In addition, about a detection method, description is abbreviate | omitted as what should just use a well-known method.
 設定部1212は、視聴者の位置に応じて、縮小領域の幅を調整する。図13は、映像表示装置1101において、視聴者の位置に応じた縮小領域の幅の設定例を示した概念図である。図13に示されるように、位置P11_1から見た場合に、角度θ11で光学素子30と映像表示部10との間を覗き込むとともに、角度θ12まで光学素子30を介した映像を見ることになる。このため、設定部1212は、通常の映像の幅R11と縮小領域の幅R12とを設定すると共に、縮小領域の幅R13を設定する。なお、幅R11、R12、R13は、概念を説明するために示したものであり、実際の幅とは異なるものとする。 The setting unit 1212 adjusts the width of the reduction area according to the position of the viewer. FIG. 13 is a conceptual diagram showing an example of setting the width of the reduction area according to the position of the viewer in the video display device 1101. As shown in FIG. 13, when viewed from the position P11_1, while looking into the space between the optical element 30 and the image display unit 10 at an angle θ11, an image through the optical element 30 is viewed up to an angle θ12. . Therefore, the setting unit 1212 sets the width R11 of the normal video and the width R12 of the reduction area, and sets the width R13 of the reduction area. The widths R11, R12, and R13 are shown to explain the concept, and are different from the actual widths.
 位置P11_2から見た場合に、角度θ22で光学素子30と映像表示部10との間を覗き込むとともに、角度θ21まで光学素子30を介した映像を見ることになる。このため、設定部1212は、通常の映像の幅R23と縮小領域の幅R22とを設定すると共に、縮小領域の幅R21を設定する。なお、幅R21、R22、R23は、概念を説明するために示したものであり、実際の幅とは異なるものとする。さらに、具体的な設定手法は、第1の実施形態と同様として説明を省略する。 When viewed from the position P11_2, while looking into the space between the optical element 30 and the image display unit 10 at an angle θ22, an image through the optical element 30 up to an angle θ21 is viewed. Thus, the setting unit 1212 sets the width R23 of the normal video and the width R22 of the reduction area, and sets the width R21 of the reduction area. The widths R21, R22, and R23 are shown to explain the concept, and are different from the actual widths. Furthermore, the specific setting method is the same as that of the first embodiment, and the description will be omitted.
 なお、縮小領域から出力される縮小映像の縮小方向は、第1の実施形態と同様に光軸l1を基準としている。さらに、図13に示す例では、光学素子30を介して見るため、視聴者からは当然に枠部20は見えない。さらには、第1の実施形態と同様に重複領域が設定されているものとする。これにより映像の連続性を確保できる。 The reduction direction of the reduced image output from the reduction area is based on the optical axis l1 as in the first embodiment. Further, in the example shown in FIG. 13, since the viewer sees through the optical element 30, the frame portion 20 is naturally not visible to the viewer. Furthermore, it is assumed that overlapping regions are set as in the first embodiment. This ensures the continuity of the video.
 また、視聴者の検出結果に応じて異ならせるのは、縮小領域の幅のみに制限するものではなく、設定部1212は、輝度補正、ずらし量、及び拡大率等を設定しても良い。これらの設定手法も、第1の実施形態と同様のため、説明を省略する。 Moreover, what is different according to the detection result of the viewer is not limited to only the width of the reduction area, and the setting unit 1212 may set the brightness correction, the shift amount, the enlargement ratio, and the like. Since these setting methods are also the same as in the first embodiment, the description will be omitted.
(第3の実施形態)
 第1~2の実施形態においては、光軸l1を基準に枠部20側に縮小映像を拡大するほか、枠部20と反対側にも縮小映像を拡大させていた。しかしながら、必ずしも、枠部20と反対側にも縮小映像を拡大させる必要は無い。そこで、第3の実施形態では、光学素子が、光軸を基準に枠部20側にのみ映像を拡大し、光軸を基準に枠部20と反対側に縮小映像を拡大させない場合とする。なお、光学素子以外の構成は、第1の実施形態と同様として説明を省略する。
Third Embodiment
In the first and second embodiments, the reduced image is enlarged on the side of the frame portion 20 with reference to the optical axis l1, and the reduced image is also enlarged on the opposite side of the frame portion 20. However, the reduced image does not necessarily have to be enlarged on the side opposite to the frame portion 20. Therefore, in the third embodiment, the optical element enlarges the image only on the side of the frame 20 with reference to the optical axis, and does not enlarge the reduced image on the side opposite to the frame 20 with respect to the optical axis. The configuration other than the optical element is the same as that of the first embodiment, and the description is omitted.
 図14は、第3の実施形態の映像表示装置1400の光学素子1401の構成と、当該映像表示装置1400による縮小領域の設定例を示した模式図である。図14に示されるように、光学素子1401は光軸l2から枠部20と反対側に延びていない。このような光学系を用いた場合に、設定部511は、透視投影による画角による影響を考慮して、縮小領域を設定する。 FIG. 14 is a schematic view showing the configuration of the optical element 1401 of the image display apparatus 1400 of the third embodiment and an example of setting the reduction area by the image display apparatus 1400. As shown in FIG. 14, the optical element 1401 does not extend from the optical axis 12 to the side opposite to the frame 20. When such an optical system is used, the setting unit 511 sets a reduction area in consideration of the influence of the angle of view by perspective projection.
 設定部511は、視聴者が存在すると想定される視聴位置からの視線P31が角度θ31となる場合(映像表示装置1400の中央近傍から見ている場合)、設定部511は、縮小領域の幅R32を、光軸l2から距離A×tan(θ31)だけ位置から枠部20側に設定する。この場合に、設定部511は、A×tan(θ31)だけずれた位置を基準に、光学素子30の拡大率に対応する縮小率で縮小させてサンプリングを行うよう設定する。なお、通常の映像は、領域R31から表示されるように設定される。 When the line of sight P31 from the viewing position where the viewer is assumed to be present is the angle θ31 (when viewed from near the center of the video display device 1400), the setting unit 511 sets the width R32 of the reduction area. Is set from the position by a distance A × tan (θ31) from the optical axis 12 to the frame 20 side. In this case, the setting unit 511 performs setting so as to reduce sampling at a reduction ratio corresponding to the enlargement ratio of the optical element 30 based on the position shifted by A × tan (θ31). The normal video is set to be displayed from the region R31.
 設定部511は、視聴者が存在すると想定される視聴位置からの視線P32が角度θ32となる場合(映像表示装置1400を斜めから見ている場合)、設定部511は、縮小領域の幅R33を、光軸l2から距離A×tan(θ32)だけ位置から枠部20側に設定する。この場合に、設定部511は、A×tan(θ32)だけずれた位置を基準に、光学素子30の拡大率に対応する縮小率で縮小させてサンプリングを行うよう設定する。なお、重複領域R34は、視線による角度が角度θ32でも角度θ31でも同じ領域となる。そして、重複領域R34の幅は、隣接する映像表示装置1400の映像を縮小した状態で出力されるように、設定部511が設定する。 When the line of sight P32 from the viewing position where the viewer is assumed to be present is the angle θ32 (when the video display apparatus 1400 is viewed from an oblique direction), the setting unit 511 sets the width R33 of the reduction area. From the position by the distance A × tan (θ32) from the optical axis l2, the frame 20 is set. In this case, the setting unit 511 performs setting so as to perform sampling while reducing at a reduction ratio corresponding to the enlargement ratio of the optical element 30 based on the position shifted by A × tan (θ32). Note that the overlapping region R34 is the same region whether the angle by the sight line is the angle θ32 or the angle θ31. Then, the setting unit 511 sets the width of the overlapping area R34 so as to be output in a state in which the video of the adjacent video display device 1400 is reduced.
 本実施形態では、上述した構成を備えることで、映像の連続性が確保するとともに、映像のずれを低減させることができる。 In the present embodiment, by providing the above-described configuration, it is possible to ensure the continuity of the video and reduce the displacement of the video.
 上述した実施形態においては、光学素子30で映像を枠部20方向に拡大することで、視聴者から枠部20が見えることを抑止し、複数の映像表示装置を並べた場合に連続した映像を表示できる。さらに、視聴者の位置に応じて、縮小画像を出力する縮小領域を変更することで、連続性が確保された映像を見る際に、視聴者に対して違和感が生じるのを抑止できる。 In the embodiment described above, the video is enlarged in the direction of the frame portion 20 by the optical element 30 to prevent the viewer from seeing the frame portion 20, and a plurality of video display devices are arranged in sequence. It can be displayed. Furthermore, by changing the reduction area for outputting the reduced image according to the position of the viewer, it is possible to suppress the viewer from feeling uncomfortable when viewing the video with the continuity ensured.
 たとえば、上記実施形態では、4個又は6個の映像表示装置により構成されたタイリングディスプレイに本発明を適用する例を示したが、単体で使用する映像表示装置にも適用可能である。さらに、2個以上3個以下の映像表示装置により構成されたタイリングディスプレイにも適用可能であるし、5個以上の映像表示装置により構成されたタイリングディスプレイにも適用可能である。 For example, although the example which applies this invention to the tiling display comprised with four or six image display apparatuses was shown in the said embodiment, it is applicable also to the image display apparatus used independently. Furthermore, it is applicable also to the tiling display comprised by 2 or more and 3 or less video display apparatuses, and is applicable also to the tiling display comprised by 5 or more video display apparatuses.
 また、上記実施形態では、映像表示装置の各々の4辺全てに対応するように光学素子を設ける例を示したが、隣接する2個の映像表示装置の境界部分にのみ光学素子を設けてもよい。境界部分に光学素子をもうけた場合に、タイリングディスプレイの内側の十字形状の部分に位置する枠部は視認されにくくなる一方、タイリングディスプレイの外側の矩形形状の部分に位置する枠部20は視認されやすくなることができる。 In the above embodiment, the optical elements are provided so as to correspond to all four sides of each of the image display devices. However, even if the optical elements are provided only at the boundary between two adjacent image display devices. Good. When an optical element is provided at the boundary, the frame located in the cross-shaped portion inside the tiling display becomes less visible, while the frame 20 located in the rectangular shaped portion outside the tiling display is It can be easily viewed.
 また、上記実施形態では、リニアレンズとサーキュラレンズとの組み合わせにより光学素子を構成する例を示したが、本発明では、これら以外の光学系を用いてもよい。 Moreover, although the example which comprises an optical element by the combination of a linear lens and a circular lens was shown in the said embodiment, you may use optical systems other than these in this invention.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、請求の範囲に記載された発明とその均等の範囲に含まれる。 While certain embodiments of the present invention have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, substitutions, and modifications can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and the gist of the invention, and are included in the invention described in the claims and the equivalent scope thereof.

Claims (11)

  1.  映像が表示される映像表示部と、当該映像表示部の外縁部から外側に設けられた枠部と、を備える表示部と、
     前記映像表示部内で前記外縁部から内側に設けられた外縁領域と前記枠部とを覆うように設けられ、前記映像表示部から表示される映像を前記枠部側に拡大させる光学素子と、
     ある視聴位置から前記映像表示部を見た場合に、前記光学素子により拡大された映像が、光学素子を介さない映像と画素サイズが一致するように、拡大率に対応する縮小率で縮小された縮小映像を出力する縮小領域を、前記映像表示部内に設定する設定部と、
     を備える表示装置。
    A display unit including a video display unit on which a video is displayed, and a frame provided outside the outer edge of the video display unit;
    An optical element provided in the image display unit so as to cover the outer edge area provided inside from the outer edge portion and the frame, and enlarging an image displayed from the image display section toward the frame portion;
    When the image display unit is viewed from a certain viewing position, the image enlarged by the optical element is reduced at a reduction ratio corresponding to the enlargement ratio so that the image and the pixel size match the image not passing through the optical element. A setting unit configured to set, in the video display unit, a reduced area for outputting the reduced video;
    A display device comprising:
  2.  前記設定部は、前記視聴位置と反対側に外縁部を有する第1の枠部を少なくとも覆う第1の光学素子で拡大される第1の縮小映像を出力する第1の縮小領域を、前記視聴位置側に外縁部を有する第2の枠部を少なくとも覆う第2の光学素子で拡大される第2の縮小映像を出力する第2の縮小領域と比べて、小さくなるよう設定する、
     請求項1に記載の表示装置。
    The setting unit is configured to view a first reduced area for outputting a first reduced image enlarged by a first optical element covering at least a first frame portion having an outer edge portion on the side opposite to the viewing position. Set so as to be smaller than a second reduced area for outputting a second reduced image enlarged by a second optical element covering at least a second frame having an outer edge on the position side
    The display device according to claim 1.
  3.  前記設定部は、さらに、他の複数の表示装置と組み合わせて映像を表示する場合に、該他の複数の表示装置と組み合わせた表示システムの中央位置を基準とし、同じ光学素子で覆われている枠部より当該中央側にある縮小領域を、当該中央と距離が近い他の表示装置と比べて小さく設定する、又は同じ光学素子で覆われている枠部より当該中央と反対側にある縮小領域を、当該中央と距離が近い他の表示装置と比べて大きく設定する、
     請求項1に記載の表示装置。
    The setting unit is further covered by the same optical element based on the central position of the display system combined with the plurality of other display devices when displaying an image in combination with the plurality of other display devices. The reduction area located closer to the center than the frame is set smaller than that of the other display device closer to the center, or the reduction area located opposite to the center from the frame covered with the same optical element Set larger than the other display devices whose distances from the center are short,
    The display device according to claim 1.
  4.  前記光学素子は、さらに、前記映像表示部内で前記外縁領域より内側に設けられた内縁領域を覆うように設けられ、前記内縁領域から出力される映像を、前記枠部から前記表示部側に拡大させる、
     請求項1に記載の表示装置。
    The optical element is further provided to cover an inner edge area provided inside the outer edge area in the image display unit, and an image output from the inner edge area is enlarged from the frame to the display area. Let
    The display device according to claim 1.
  5.  前記光学素子の光軸から離れるに従って、前記表示部から出力される映像の輝度値を高く補正する輝度補正部を、
     さらに備える請求項1に記載の表示装置。
    A luminance correction unit that corrects the luminance value of the image output from the display unit as the distance from the optical axis of the optical element increases;
    The display device according to claim 1, further comprising:
  6.  前記設定部は、前記視聴位置から前記映像表示部を見た場合に、前記光学素子により拡大された映像が、当該光学素子を介さない映像との境で像がずれないように、視聴位置と前記光学素子の光軸を結ぶ光路を基準として、前記縮小領域から出力される縮小映像をシフトさせる、
     請求項1に記載の表示装置。
    The setting unit is configured such that, when the image display unit is viewed from the viewing position, the image enlarged by the optical element does not shift the image at the boundary with the image not via the optical element. The reduced image output from the reduction area is shifted with reference to an optical path connecting the optical axes of the optical elements.
    The display device according to claim 1.
  7.  前記設定部は、前記表示部の前記縮小領域から表示される縮小映像において、前記光学素子の光軸から離れるに従って縮小率を上げる、
     請求項1に記載の表示装置。
    The setting unit increases the reduction ratio as it gets away from the optical axis of the optical element in the reduced image displayed from the reduction area of the display unit.
    The display device according to claim 1.
  8.  人が存在する位置を検出する検出部を、さらに備え、
     前記設定部は、前記検出部が検出した人が存在する位置を視聴位置として、前記表示部の縮小領域を設定する、
     請求項1に記載の表示装置。
    It further comprises a detection unit for detecting the position where a person is present,
    The setting unit sets a reduced area of the display unit, with a position where a person detected by the detection unit is present as a viewing position.
    The display device according to claim 1.
  9.  複数の表示装置を組み合わせて連動した映像を表示する表示システムにおいて、
     前記複数の表示装置の各々が、
     映像が表示される映像表示部と、当該映像表示部の外縁部から外側に設けられた枠部と、を備える表示部と、
     前記映像表示部内で前記外縁部から内側に設けられた外縁領域と前記枠部とを覆うように設けられ、前記映像表示部から表示される映像を前記枠部側に拡大させる光学素子と、
     ある視聴位置から前記映像表示部を見た場合に、前記光学素子により拡大された映像が、光学素子を介さない映像と画素サイズが一致するように、拡大率に対応する縮小率で縮小された縮小映像を出力する縮小領域を、前記映像表示部内に設定する設定部と、
     を備える表示システム。
    In a display system that displays an interlocked image by combining a plurality of display devices,
    Each of the plurality of display devices is
    A display unit including a video display unit on which a video is displayed, and a frame provided outside the outer edge of the video display unit;
    An optical element provided in the image display unit so as to cover the outer edge area provided inside from the outer edge portion and the frame, and enlarging an image displayed from the image display section toward the frame portion;
    When the image display unit is viewed from a certain viewing position, the image enlarged by the optical element is reduced at a reduction ratio corresponding to the enlargement ratio so that the image and the pixel size match the image not passing through the optical element. A setting unit configured to set, in the video display unit, a reduced area for outputting the reduced video;
    A display system comprising:
  10.  前記複数の表示装置の各々が備える設定部は、前記複数の表示装置の組み合わせた中心位置側と反対側に外縁部を有する第1の枠部に覆われた第1の縮小領域を、当該中心位置側に外縁部を有する第2の枠部に覆われている第2の縮小領域より小さくなるように設定する、
     請求項9に記載の表示システム。
    The setting unit included in each of the plurality of display devices is a center of a first reduction area covered by a first frame portion having an outer edge portion on the opposite side to the combined central position side of the plurality of display devices. Set so as to be smaller than the second reduced area covered by the second frame having the outer edge on the position side
    The display system according to claim 9.
  11.  ある表示装置の前記設定部は、前記表示システムの中央の位置を基準とし、同じ光学素子で覆われている枠部より当該中央側にある縮小領域を、当該中央と距離が近い他の表示装置と比べて小さく設定する、又は同じ光学素子で覆われている枠部より当該中央と反対側にある縮小領域を、当該中央と距離が近い他の表示装置と比べて大きく設定する、
     請求項9に記載の表示システム。
    The setting unit of a display device is based on the position of the center of the display system, and another display device in which the reduced area located closer to the center than the frame covered by the same optical element is closer to the center Set smaller than the above, or set a reduced area on the opposite side of the center part from the frame part covered with the same optical element as compared with other display devices whose distance from the center part is smaller.
    The display system according to claim 9.
PCT/JP2013/070824 2013-07-31 2013-07-31 Display device and display system WO2015015612A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014552411A JPWO2015015612A1 (en) 2013-07-31 2013-07-31 Display device and display system
PCT/JP2013/070824 WO2015015612A1 (en) 2013-07-31 2013-07-31 Display device and display system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/070824 WO2015015612A1 (en) 2013-07-31 2013-07-31 Display device and display system

Publications (1)

Publication Number Publication Date
WO2015015612A1 true WO2015015612A1 (en) 2015-02-05

Family

ID=52431184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/070824 WO2015015612A1 (en) 2013-07-31 2013-07-31 Display device and display system

Country Status (2)

Country Link
JP (1) JPWO2015015612A1 (en)
WO (1) WO2015015612A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004524551A (en) * 2000-11-27 2004-08-12 シームレス ディスプレイ リミテッド Visual display screen device
WO2008149449A1 (en) * 2007-06-07 2008-12-11 Telesystems Co., Ltd. Multi-display device
WO2012102349A1 (en) * 2011-01-27 2012-08-02 シャープ株式会社 Multi-display system and translucent cover used thereby
JP2012226203A (en) * 2011-04-21 2012-11-15 Sharp Corp Multi-display device
JP2013097053A (en) * 2011-10-28 2013-05-20 Toshiba Corp Display device, image processing device, and image processing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004524551A (en) * 2000-11-27 2004-08-12 シームレス ディスプレイ リミテッド Visual display screen device
WO2008149449A1 (en) * 2007-06-07 2008-12-11 Telesystems Co., Ltd. Multi-display device
WO2012102349A1 (en) * 2011-01-27 2012-08-02 シャープ株式会社 Multi-display system and translucent cover used thereby
JP2012226203A (en) * 2011-04-21 2012-11-15 Sharp Corp Multi-display device
JP2013097053A (en) * 2011-10-28 2013-05-20 Toshiba Corp Display device, image processing device, and image processing method

Also Published As

Publication number Publication date
JPWO2015015612A1 (en) 2017-03-02

Similar Documents

Publication Publication Date Title
JP3944188B2 (en) Stereo image display method, stereo image imaging method, and stereo image display apparatus
EP2230858A2 (en) OSMU (one source multi use)-type stereoscopic camera and method of making stereoscopic video content thereof
US9177411B2 (en) Display apparatus and display method thereof
US8723929B2 (en) Miniaturized imaging module, 3D display system using the same and image arrangement method thereof
WO2016197499A1 (en) Display panel and display device
US8573780B2 (en) Projection-type display apparatus and geometric distortion correcting method for correcting geometric distortion
KR20090023497A (en) Three-dimensional image display device and three-dimensional image display method
JP5286436B1 (en) Video display device
US20160127711A1 (en) Method and appapatus for normalizing size of cotent in multi-projection theater and computer-readable recording medium
US20120218258A1 (en) Display apparatus
JP2007206356A (en) Video display system
JP6478940B2 (en) Image display device
US20130050283A1 (en) Display device and electronic unit
JP5653538B1 (en) Video display device
WO2015015612A1 (en) Display device and display system
JP2014176053A (en) Image signal processor
WO2015033408A1 (en) Display device, display system, and display method
US20140125875A1 (en) Video display device and video display system
JP2013105000A (en) Video display device and video display method
WO2014103368A1 (en) Display device, and display device control method
US20140184651A1 (en) Display device and control method of display device
JP2012235281A (en) Three-dimensional image photographing device and program
US20140028812A1 (en) Three-dimensional video display apparatus
WO2015033452A1 (en) Image display system and image display method
EP3422707A1 (en) Display system and method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014552411

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13890510

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13890510

Country of ref document: EP

Kind code of ref document: A1