WO2015010435A1 - 一种手持式光辐射度计及其校正方法 - Google Patents

一种手持式光辐射度计及其校正方法 Download PDF

Info

Publication number
WO2015010435A1
WO2015010435A1 PCT/CN2013/090307 CN2013090307W WO2015010435A1 WO 2015010435 A1 WO2015010435 A1 WO 2015010435A1 CN 2013090307 W CN2013090307 W CN 2013090307W WO 2015010435 A1 WO2015010435 A1 WO 2015010435A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
spectral
measurement
photometric
sampling device
Prior art date
Application number
PCT/CN2013/090307
Other languages
English (en)
French (fr)
Inventor
潘建根
Original Assignee
杭州远方光电信息股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州远方光电信息股份有限公司 filed Critical 杭州远方光电信息股份有限公司
Priority to DE112013006616.5T priority Critical patent/DE112013006616T5/de
Priority to US14/772,970 priority patent/US10215629B2/en
Publication of WO2015010435A1 publication Critical patent/WO2015010435A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/0233Handheld
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0272Handheld
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0286Constructional arrangements for compensating for fluctuations caused by temperature, humidity or pressure, or using cooling or temperature stabilization of parts of the device; Controlling the atmosphere inside a spectrometer, e.g. vacuum
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0291Housings; Spectrometer accessories; Spatial arrangement of elements, e.g. folded path arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/30Measuring the intensity of spectral lines directly on the spectrum itself
    • G01J3/36Investigating two or more bands of a spectrum by separate detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • G01J2001/444Compensating; Calibrating, e.g. dark current, temperature drift, noise reduction or baseline correction; Adjusting

Definitions

  • the present invention relates to the field of light and radiation measurement, and in particular to a hand-held optical radiometer.
  • Optical radiation measuring devices are widely used in field lighting, lighting industry and laboratory testing applications.
  • the existing optical radiation measuring apparatus may have insufficient measurement accuracy, or a narrow linear dynamic range, or a large volume, or inconvenient use.
  • the spectral radiation measuring device used in the laboratory can guarantee the accuracy, the equipment is often bulky, and the field measurement is very inconvenient. Even if it is moved to the site, it is difficult to achieve high measurement accuracy because its measurement conditions are different from those in the laboratory.
  • Small hand-held optical radiation measuring devices although convenient to use, often cannot effectively measure spectral irradiance information and accurate illuminance values.
  • the existing hand-held optical radiometer such as a handheld illuminometer
  • a photometric probe is provided, and spectral information cannot be measured, and the photometric probe has a large ⁇ ( ⁇ ) spectral mismatch error
  • the existing handheld spectrometer Class devices can only measure spectral information with low sensitivity and a small range of measured luminosity. Especially below 10 lux, both spectral measurement accuracy and illuminance measurement accuracy are very low. So far, it has not been seen that it can be used both in the laboratory and in the field. It can measure both spectral illuminance and illuminance. It can achieve a large measurement dynamic range and a small measurement accuracy.
  • Handheld optical radiometers or related technical reports are provided, and spectral information cannot be measured, and the photometric probe has a large ⁇ ( ⁇ ) spectral mismatch error
  • Class devices can only measure spectral information with low sensitivity and a small range of measured luminosity. Especially below 10 lux, both spectral measurement accuracy and
  • the present invention aims to provide a hand-held optical irradiance meter capable of effectively correcting spectral mismatch errors and a calibration method thereof, which can realize various parameters such as spectral irradiance, illuminance and chromaticity. At the same time, it has the characteristics of wide linear dynamic range, high measurement accuracy, convenient operation and low cost.
  • a hand-held optical radiometer comprising: a handheld main unit and a sampling device, wherein the handheld host is provided with a display screen; the sampling device comprises a photometric module and a spectral measurement arranged side by side with a photosensitive surface
  • the module, the photometric module comprises a cosine modifier, a spectral response correction unit and a photoelectric sensor, the spectral measurement module comprises a dispersion unit and an array detector, and the photometric module and the spectrometry module receive the measured light.
  • the invention integrates the photometric module and the spectrometry module into the same sampling device, and the measured light is directly or indirectly (such as reflected) incident on the sampling device, and the photometric surface of the photometric module and the spectral measuring module on the sampling device Parallel setting, can simultaneously receive the light information of the measured light, and measure the luminosity and spectral information of the measured light. Since the photometric module (such as a photocell uses a silicon photocell) has excellent linearity over a large span dynamic range, and the measurement band of the spectrometry module covers or approaches the measurement band covering the photometric probe, the spectrum measured by the spectrometry module can be utilized. Information, according to formula (1), the ⁇ ( ⁇ ) mismatch error of the photometric probe is effectively corrected, and the measurement accuracy of the photometric value is greatly improved.
  • the handheld optical irradiance correction method used in the above technical solution is characterized in that the photometric measurement module and the spectral measurement module on the sampling device respectively measure the luminosity and spectral information of the measured light, and the photometric measurement is corrected by the measurement value of the spectral measurement module.
  • the measured values of the module are used to correct the ⁇ ( ⁇ ) mismatch error of the photometric module to obtain an accurate light metric.
  • the correction formula is:
  • E T e is the corrected illuminance value
  • ⁇ ⁇ is the illuminance value of the measured light directly measured by the photometric measurement module
  • ⁇ ) is the relative spectral power distribution of the measured light measured by the spectral measurement module
  • ⁇ ⁇ ) ⁇ is the relative spectral sensitivity of the photometric module
  • ⁇ ) is the relative spectral power distribution of the standard source that scales the photometric module
  • ⁇ ) is the CIE standard spectral efficacy function.
  • ⁇ 2 is the integral termination wavelength
  • the unit is nm. They are 380 nm and 780 nm, respectively.
  • the absolute spectral irradiance of the spectrometric module can be obtained as follows. ( ⁇ ;), as shown in the following equation:
  • K m is the maximum spectral luminous efficacy, for photopic, K m of 683 lm / W; for scotopic vision, K m is 1725 lm / W.
  • E T e is a bright visual illumination
  • K m is 683 lm/W.
  • the absolute spectral irradiance according to the spectral measurement module is £. (; ⁇ ), you can calculate the exact amount of radiation.
  • the photometric surface of the photometric measurement module and the spectral measurement module are in the same plane, or the optical axes of the measurement modules are set at a certain angle.
  • the relative positions of the photosensitive surfaces of the photometric module and the spectral measurement module can be flexibly set. It is sufficient to receive incident light that is close to the same direction.
  • the absolute measurement value of the spectrum measurement module can be corrected according to the measurement value of the photometric module according to (2). The above correction can be realized by software.
  • a positioning mechanism for positioning a photosensitive surface of the photometric module is fixed, and the relative position of the positioning mechanism to the photosensitive surface of the photometric module is fixed.
  • the positioning mechanism is used to conveniently realize the precise positioning of the photosensitive surface of the photometric measuring module, such as the relative position of the positioning mechanism and the photosensitive surface of the photometric measuring module, and the plane of the photosensitive surface of the photometric measuring module can be determined by the relative position of the positioning mechanism and the measured light source. Obtain illuminance measurements on a specified plane.
  • the positioning mechanism is disposed coaxially with the photosensitive surface of the photometric module, for example, the positioning mechanism is a circular threaded hole, and the circular threaded hole is coaxially disposed with the photosensitive surface of the photometric module to accurately position the photosensitive surface;
  • Mechanical components can also function as a fixed sampling device.
  • the position of the positioning mechanism can be flexibly set, can be built into the sampling device, can be exposed to the sampling device, or can be placed on a certain plane of the sampling device.
  • a plurality of sampling devices may be included, each of which is connected to the handheld host by wires (electrical connection) or by radio wave connection (wireless connection), and the measurement results of the respective sampling devices are transmitted to the handheld host.
  • Each of the different sampling devices is configured to receive the measured light at different locations, and simultaneously obtain the luminosity, spectral, and chromaticity information of the optical signals received by each sampling device.
  • a plurality of sampling devices are respectively disposed at different positions of the space, and the illuminance and chromaticity information of the incident light at each position can be obtained by one measurement, that is, the light chromaticity distribution information in the space.
  • the invention may further comprise a microprocessor disposed in the handheld host and/or the sampling device, the measurement data of the photometric module and the spectral measurement module being transmitted to the microprocessor for analysis and processing. If the microprocessor is disposed in the handheld host, the display is electrically connected to the microprocessor, and the test data of the sampling device is sent to the microprocessor in the handheld host, and the microprocessor displays the data through the display.
  • the microprocessor directly processes the test data inside the sampling device, and then transmits the processing result to the display screen of the handheld host; or the test data can also pass through the USB interface and the upper position
  • the machine performs high-speed communication, and the data is transmitted to the upper computer for processing, and the data transmission has high reliability and high speed.
  • a microprocessor can also be provided in both the handheld host and the sampling device. The microprocessor in the sampling device collects the measurement data and transmits the measurement data to the microprocessor in the handheld host for analysis and processing.
  • the invention can simultaneously realize the spectral and photometric measurement of the measured light, and the spectral information of the coverage photometric band is used to correct the photometric measurement in the case where the accuracy of the photometric measurement module and the spectral measurement module are not high.
  • the photometric measurement result of the module effectively corrects the spectral mismatch error of the handheld photometer, and the measurement accuracy is high.
  • the measurement of the chromaticity and luminosity distribution information can be realized, and the linear dynamic range is wide, the measurement accuracy is high, and the measurement efficiency is high. High, easy to operate, low cost and so on.
  • the handheld main body and the sampling device are integrally disposed and connected to each other, and the photosensitive surface of the sampling device can be rotated and/or slid relative to the handheld main body.
  • the handheld host and the sampling device are mechanically and electronically connected, and the photosensitive surface of the display screen and the sampling device can be rotated or slid at any angle to facilitate the collection of optical signals in all directions and at various positions to meet different testing requirements. .
  • the hand-held host and one or more sampling devices are separately provided, and the handheld host and each sampling device are electrically connected by wires or exchange data wirelessly.
  • the handheld host can be separated from the sampling device.
  • each sampling device is set at different positions, and the sampling device and the handheld host are electrically connected by wires or wirelessly. Connection, the test data is input to the handheld host by wire or wireless transmission.
  • the display screen is a color touch display screen
  • the measurement results displayed on the display screen include illumination, color temperature, color rendering index and spectral curve.
  • the luminosity and spectral information measured by the photometric and spectral measurement module in the sampling device are displayed on the color touch display screen after being processed by the microprocessor; the display contents include but are not limited to: illuminance, relative spectral power distribution, absolute spectral irradiance Luminosity and chromaticity measurements such as distribution, color temperature, color rendering index, chromaticity diagram, blackbody locus, and color tolerance range.
  • the measurement result is displayed on the whole screen on the display screen, or displayed by touch sliding, or separately by touch click.
  • the manner of the display screen can be flexibly selected, and the measurement result can be displayed on the same display interface in full screen; or different measurement results are displayed on different interfaces, and the display screen is slid (pulled or dragged) by up and down or left and right.
  • the mode is displayed in separate screens; or only the measurement result name or icon is displayed on the display, and different measurement results are displayed by touch click.
  • the content displayed on the display screen can also display the measurement results on multiple interfaces according to the category of the measurement result, for example, the illuminance-related, such as illuminance, spectral irradiance, etc.
  • color parameters such as display index, color temperature, chromaticity diagram, blackbody trajectory, color tolerance range, etc. are displayed on the same interface of the display;
  • photobiosafety such as UVI, photochemical UV hazard, near eyes UV hazard, retinal blue light hazard, retinal heat hazard, (eye) near-infrared hazard, (skin) visible and infrared hazard are displayed on the same interface of the display screen, and the same parameters are displayed on the same interface of the touch screen for analysis.
  • the sampling device is internally provided with a temperature sensing module for correcting the temperature drift error of the sampling device.
  • the temperature sensing module can monitor and control the temperature of the sampling device in real time to achieve a constant temperature for the sampling device.
  • the temperature sensing module can also monitor the temperature of the sampling device in real time to dynamically correct the measurement results of the sampling device, improve the measurement accuracy, and at the same time, the device can measure and display the temperature.
  • the number of spectral measuring modules may be one, and the measuring wavelength range of the spectral measuring module is 380 nm-780 nm in the visible light band, covering at least the wavelength range of 400 nm to 700 nm; and when needed, in the ultraviolet to near infrared range 200 nm— 3000nm, set two or more spectral measurement modules.
  • the spectral measurement module comprises a spectral measurement module in which one or more measurement bands overlap end to end, and the superimposed measurement band covers the measurement band of the photometric measurement module.
  • the spectral measurement module comprises a spectral measurement module in which one or more measurement bands overlap end to end, and the superimposed measurement band covers the measurement band of the photometric measurement module.
  • two or more measuring modules with narrow measuring bands can be used to superimpose the measuring band covering the photometric module, which can achieve higher spectral measurement accuracy.
  • the two spectral measurement modules including the measurement bands are overlapped, and the first spectrum measurement module with the measurement band is ultraviolet-visible and the second spectrum measurement module with the measurement band of visible-infrared.
  • the measurement bands of the first spectrum measurement module and the second spectrum measurement module can be flexibly selected.
  • the measurement band of the photometric module is 380 nm-780 nm
  • the measurement band of the first spectrum measurement module is 200 nm- 650nm
  • measuring the band of a second spectrum measurement module is 600 n m-1100nm
  • using the first spectrum and a second spectrum measurement module measuring overlay module 380 n m-780nm band spectrum information corrects the loss spectrum photometric module Matching the error, the high-precision measurement of the photometric value can be realized.
  • the first spectral measurement module can obtain the spectral information including the ultraviolet band
  • the ultraviolet spectral information can be used to evaluate the photochemical ultraviolet hazard of the skin and the eye, and the near ultraviolet of the eye.
  • the second spectrum measurement module can obtain spectral information including the near-infrared band, the near-infrared spectrum information can be used to evaluate (eye) near-infrared hazard, (skin) visible and infrared hazard.
  • the photometric module and the spectral measurement module are both electrically connected to the handheld host.
  • the handheld host and the sampling device realize the control and data transmission by means of the data line electrical connection, and the measurement results of the photometric measurement module and the spectral measurement module in the sampling device are respectively transmitted to the handheld host through the data line;
  • the handheld host can also send a test signal to the sampling device through the data line, and the photometric measurement module and the spectral measurement module in the sampling device receive the test signal from the handheld host and start the test.
  • the photometric module, the spectral measurement module and the handheld host wired communication in the sampling device can select one of a plurality of ways, for example, communication can be realized by means of a mother (or a pin) and a bayonet (or a bayonet).
  • Setting a host communication interface on the handheld host, setting a sampling communication interface on the sampling device, the host communication interface and the sampling communication interface are coupled;
  • the host communication interface is a mother (or pin) and a bayonet (or bayonet),
  • the sampling communication interface is a pin header (or a female socket) and a bayonet (or a bayonet pin), and the pin header and the row pin are controlled by the buckle and the bayonet; or the host communication interface and the sampling communication interface are connected through the USB communication interface.
  • the sampling device and the handheld host are internally provided with a wireless module, and the measurement results of the photometric measurement module and the spectral measurement module in the sampling device are passed.
  • the wireless transmission method is delivered to the handheld host.
  • the handheld host here is a mobile intelligent terminal, such as a tablet computer, a smart phone or a dedicated intelligent terminal.
  • the wireless module is respectively arranged in the sampling device and the handheld host, and the two wireless modules form a wireless communication network, such as Bluetooth, GPRS, Wi. -Fi WLAN, 3G, Zigbee, CDMA, etc.
  • the specific form of the wireless communication network can be selected according to the specific application occasion and measurement mode, and the upper control and data transmission are performed by the wireless transmission between the sampling device and the handheld host.
  • the wireless module in the handheld host sends a test signal
  • the wireless module in the sampling device receives the test signal and triggers its internal spectral and photometric measurement module to receive the measured optical signal.
  • the test result passes through the wireless communication network. Transfer to the handheld host for analysis and processing.
  • an arithmetic unit for correcting the spectral mismatch error of the photometric module, the arithmetic unit being disposed in the sampling device or the handheld host.
  • the arithmetic unit can be a stand-alone digital processing chip or a calibration algorithm program that can be written and transferred by a microprocessor in the handheld host. If the digital processing chip further includes a register, the digital processing chip obtains the spectral mismatch correction coefficient of the photometric module by using the test result of the spectral measurement module, and stores the coefficient in the register to correct the photometric measured by the photometric module. the amount.
  • the microprocessor obtains the test result of the spectrum measurement module, and the adjustment algorithm calculates the spectral mismatch correction coefficient of the photometric module, and stores the correction coefficient in the microprocessor, and the calibration photometric module measures The resulting light metric gives a more accurate light metric.
  • an identification code memory is provided inside the sampling device for identifying the sampling device.
  • the information in the identification code memory can be read and written, and is electrically connected to the photometric measurement module and the spectral measurement module, the measurement module tests the data, reads the identification code, and transmits the test data and the identification code to the handheld host;
  • a digital processing chip is provided, the identification code memory is a chip memory, and the chip is electrically connected with the photometric measurement module and the spectral measurement module, the measurement module tests the data, the digital processing chip processes the data, and calls the identification code to test the data and identify The code is transmitted to the handheld host so that the handheld host recognizes the transmitted data from the different sampling devices.
  • the handheld host is a mobile intelligent terminal
  • the mobile intelligent terminal such as a tablet computer or a smart phone can realize various communication between the terminal control and the sampling device because of its characteristics of being portable, convenient to operate, and good in expandability.
  • the method, the measurement and control is convenient and flexible, not only effectively improves the work efficiency, but also can meet the application requirements of various test occasions.
  • said microprocessor internally stores calibration data.
  • the microprocessor automatically calls the calibration data to simplify the measurement operation, which is convenient and practical.
  • the device comprises a battery, and a battery is provided in the sampling device, wherein the battery is a rechargeable battery, typically a rechargeable lithium battery.
  • the present invention achieves by providing an integrated sampling device including a photometric module and a spectral measurement module. Simultaneous measurement of the measured light spectrum and luminosity. Under the condition that the accuracy of the photometric module and the spectral measurement module are not high, the spectral mismatch of the existing handheld photometer can be effectively corrected by using the spectral information covering the photometric band. Error; At the same time, by flexibly selecting the measurement band of the spectrum measurement module, the optical biosafety of the measured light source can be achieved, and the measurement function is complete, the linear dynamic range is wide, the measurement accuracy is high, the operation is convenient, and the cost is low.
  • FIG. 1 is a schematic view of Embodiment 1;
  • FIG. 2 is a connection diagram of Embodiment 1;
  • Figure 3 is a schematic view of Embodiment 2;
  • FIG. 4 is a connection diagram of Embodiment 3.
  • Figure 5 is a schematic view of Embodiment 4.
  • Figure 6 is a schematic view of Embodiment 5.
  • 1-handheld host 2-sampling device; 21-photometric measuring module; 22-spectral measuring module; 221-first spectral measuring module; 222-second spectral measuring module; 23-identification code memory; 4-microprocessor; 5-temperature sensing module; 6-wireless module; 7-battery; 8-positioning mechanism.
  • the embodiment includes a handheld host 1, a sampling device 2, a display screen 3, a microprocessor 4, and a power supply battery 7.
  • the display screen 3 is disposed on the handheld host 1, and the microprocessor 4
  • the sampling device 2 is provided with an identification code memory 23 and a photometric module 21 and a spectrum measuring module 22 arranged side by side on the photosensitive surface, and a battery 7 is disposed in both the handheld host 1 and the sampling device 2, wherein sampling is performed.
  • the battery 7 in the device 2 is a rechargeable battery, and the battery 7 in the hand-held main unit 1 can charge the battery 7 in the sampling device 2.
  • the photometric module 21, the spectral measurement module 22 and the identification code memory 23 are both electrically connected to the battery 7 in the sampling device 2, and both the display screen 3 and the microprocessor 4 are connected to the battery 7 in the handheld main unit 1.
  • the optical connection module 21 and the spectral measurement module 22 are electrically connected to the identification code memory 23, respectively, and are electrically connected to the microprocessor 4 in the handheld main unit 1 via a data line, and the display screen 3 is electrically connected to the microprocessor 4.
  • the photometric surface of the photometric module 21 and the spectral measuring module 22 are arranged side by side, the measuring band of the photometric measuring module 21 is 380 nm-780 nm, and the measuring band of the spectral measuring module 22 is 350 nm-800 nm, that is, the spectral measuring module.
  • the measurement band of 22 covers the measurement band of the photometric module 21, and the photometric measurement module 21 and the spectrum measurement module 22 simultaneously receive the measured light.
  • the measurement result and the identification code are respectively input into the microprocessor 4 of the handheld host 1 through the data line, the microprocessor 4 analyzes and processes the test data, and uses the spectral information measured by the spectral measurement module 22 to correct the photometric measurement module 21 Spectral mismatch error, the correction formula is as follows:
  • ⁇ ( ⁇ ) is the relative spectral power distribution of the measured light measured by the spectral measuring module 22, 8 (relative spectral sensitivity of the photometric module 21, ⁇ ( ⁇ is the relative source of the standard source for scaling the photometric module 21)
  • the spectral power distribution, ⁇ ( ⁇ ) is the CIE standard spectral light effect function.
  • the measured value of the photometric module 21 can be corrected to obtain an accurate photometric value.
  • the test data and its analysis result are all displayed on the display of the handheld host 1.
  • the display screen 3 in this embodiment is a color touch display screen, and the display content on the display screen 3 includes illumination, relative spectral power distribution, absolute spectral irradiance distribution, color temperature, color rendering index, and chromaticity diagram. , black body trajectory, color tolerance, etc.
  • the photometric measuring module 21, the first spectral measuring module 221, the second spectral measuring module 222, and the identification code memory 23 are provided in the sampling device 2 of the present embodiment.
  • the photometric measurement module 21, the first spectral measurement module 221 and the second spectral measurement module 222 are respectively electrically connected to the identification code memory 23, and are electrically connected to the microprocessor 4 in the handheld host 1 through a data line, and the display screen 3 and the micro The processor 4 is electrically connected.
  • the photosensitive surfaces of the photometric measurement module 21, the first spectral measurement module 221, and the second spectral measurement module 222 are arranged side by side.
  • the measurement band of the photometric measurement module 21 is 380 n -780 nm, and the first spectral measurement module 221 and the second spectral measurement module.
  • the measurement bands of 222 are 200 nm to 650 nm and 600 nm to 1100 nm, respectively.
  • the photometric measurement module 21, the first spectral measurement module 221, and the second spectral measurement module 222 simultaneously receive the measured light.
  • the identification code of the identification code memory 23 is read, and the measurement data and the identification code are passed through the data.
  • the line is input to the microprocessor 4 of the handheld host 1, and the microprocessor 4 analyzes and processes the test data, and is measured by the first spectrum measuring module 221 and the second spectrum measuring module 222.
  • the spectral information of the 380 n m-780 nm band corrects the spectral mismatch error of the photometric module 21 to obtain an accurate photometric value.
  • the microprocessor 4 can also analyze the ultraviolet spectrum of the first spectrum measuring module 221 and the infrared spectrum of the second spectrum measuring module 222 to evaluate the photobiosafety information of the measured light source.
  • the above test data and its analysis results are visually displayed in the display screen 3 of the handheld host 1.
  • the embodiment further includes a wireless module 6 and five sampling devices 2, and a wireless module 6 is disposed in each of the handheld host 1 and the sampling device 2, and each sampling device 2 is provided.
  • a photometric measurement module 21, a first spectral measurement module 221, a second spectral measurement module 222, and an identification code memory 23 are provided.
  • the photometric measurement module 21, the first spectral measurement module 221 and the second spectral measurement module 222 are respectively electrically connected to the identification code memory 23 and electrically connected to the wireless module 6, and the wireless module 6 is electrically connected to the power supply battery 7;
  • the host 1 is a mobile intelligent terminal, and the wireless module 6 in the handheld host 1 is electrically connected to the microprocessor 4 and the power supply battery 7, and the display screen 3 is electrically connected to the microprocessor 4.
  • the five sampling devices 2 are distributed in different spatial positions, and the wireless module 6 in the handheld host 1 issues a test signal, and the wireless module 6 in each sampling device 2 simultaneously receives the test signal and triggers respective internal spectral measurements.
  • the module 22 and the photometric module 21 receive and measure the measured optical signal.
  • the test data and the identification code of the sampling device are used for data communication through the wireless communication network composed of the sampling device 2 and the wireless module 6 in the handheld host 1.
  • the wireless module 6 in the handheld host 1 receives the test data, and inputs the test result to the microprocessor 4 for analysis and processing.
  • the temperature sensing module 5 is disposed, the temperature sensing module 5 is disposed inside the sampling device 2, the temperature sensing module 5 is electrically connected to the handheld host 1, and the temperature sensing module 5 can be
  • the temperature of the sampling device 2 is monitored and controlled in real time, and the measured real-time temperature of the sampling device 2 is transmitted to the handheld host 1 , and the handheld host 1 analyzes and processes the temperature data to dynamically correct the measurement result of the sampling device 2 . , improve measurement accuracy.
  • the embodiment includes a positioning mechanism 8 for positioning the photosensitive surface of the photometric module 21 , and the relative position of the positioning mechanism 8 and the photometric module 21 is fixed, and the positioning mechanism is fixed. 8 is disposed on the sampling device 2 on a plane opposite to the photosurface of the photometric module 21.
  • the positioning mechanism 8 in this embodiment is a circular threaded hole, which is disposed coaxially with the photosensitive surface of the photometric module 21, and the circular threaded hole can cooperate with mechanical components such as a tripod to fix the sampling device 2, thereby accurately positioning the photometric module. 21 of 21 Photosensitive surface.
  • the plane of the photosurface of the photometric unit 21 can be determined by the positioning mechanism 8, to obtain the illuminance measurement value on the specified plane.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

一种手持式光辐射度计及其校正方法,集光度测量模块(21)、光谱测量模块(22)和触摸屏(3)于一体,并利用光谱测量模块(22)的光谱测量信息校正光度测量模块(21)的光谱失匹配误差,在简单配置下即可实现大跨度动态范围内的高精度光色度测量,具有测量功能齐全、测量准确度高、操作方便、成本低等特点。

Description

一种手持式光辐射度计及其校正方法
技术领域 本发明属于光和辐射测量领域, 具体涉及一种手持式光辐射度计。
背景技术
光辐射测量装置广泛应用于现场照明、照明工业和实验室等测试场合。但现有的光辐射 测量装置或存在测量准确度不高、 或线性动态范围窄、 或体积大、 或使用不便等不足。 实验 室用的光谱辐射测量装置虽然精度能够保证, 但设备体积往往很大, 现场测量十分不便, 且 即使搬到现场, 由于其测量条件与实验室迥异, 也难以实现较高的测量准确度; 小型的手持 式光辐射测量装置虽然使用方便, 但往往不能有效地测量光谱辐射照度信息和准确的照度 值。
现有的手持式光辐射度计中, 如手持式光照度计, 仅设置有光度探头, 无法测量光谱信 息, 光度探头存在较大的 ν(λ)光谱失匹配误差; 现有手持式光谱仪, 该类装置只能测量光谱 信息, 灵敏度低, 测量的光度范围很小。 特别是到 10 lux以下, 无论是光谱测量精度, 还是 光照度测量精度, 都十分低。 到目前为止, 还未见既能够在实验室使用又能够在现场使用, 既能够测量光谱辐射照度又能够测量光照度, 既能够实现较大的测量动态范围, 又能够实现 较高测量精度的小巧的手持式光辐射度计或者相关的技术报导。
发明内容
针对上述现有技术的不足,本发明旨在提供一种可有效校正光谱失匹配误差的手持式光 辐射度计及其校正方法, 可实现光谱辐照度、光照度和色度等各项参数的同时测量, 具有线 性动态范围宽、 测量准确度高、 操作方便、 成本低等特点。
本发明所述的一种手持式光辐射度计是通过以下技术方案实现的。一种手持式光辐射度 计, 其特征在于, 包括手持式主机和取样装置, 所述的手持式主机上设置显示屏; 所述的取 样装置内包括光敏面并列设置的光度测量模块和光谱测量模块,光度测量模块包括余弦修正 器、 光谱响应修正单元和光电传感器, 光谱测量模块包括色散单元和阵列探测器, 光度测量 模块和光谱测量模块接收被测光线。
本发明将光度测量模块和光谱测量模块集成在同一个取样装置内,被测光线直接或者间 接(如经反射后)入射到取样装置上, 取样装置上的光度测量模块和光谱测量模块的光敏面 并列设置, 可同时接收被测光的光信息, 分别测量被测光的光度和光谱信息。 由于光度测量 模块(如光电传感器使用硅光电池)在大跨度动态范围内具有极好的线性, 而且光谱测量模 块的测量波段覆盖或者接近覆盖光度探头的测量波段, 可利用光谱测量模块测得的光谱信 息, 按照公式 (1)有效校正光度探头的 ν(λ)失配误差, 光度值的测量精度大大提高。
上述技术方案中用的手持式光辐射度校正方法, 其特征在于, 取样装置上的光度测量模 块和光谱测量模块分别测量被测光的光度和光谱信息,利用光谱测量模块的测量值校正光度 测量模块的测量值,以校正光度测量模块的 ν(λ)失配误差,得到精确的光度量。校正公式为:
Figure imgf000004_0001
其中, ET e为校正后的光照度值, Ετ为光度测量模块直接测得的被测光的光照度值, ρ{λ)为光谱测量模块测得的被测光的相对光谱功率分布, ^μ)^为光度测量模块的相对光 谱灵敏度, ρμ) 为对光度测量模块进行定标的标准源的相对光谱功率分布, νμ)为 CIE 标准光谱光效函数。 为积分起始波长, λ2为积分终止波长, 单位均为 nm, 一般
Figure imgf000004_0002
分别为 380nm和 780nm。
光度测量模块测得的光度值经上述校正后, 不仅具有较好的线性, 而且测量准确度也大 大提高。利用光度测量模块校正后的测量值 ET e可以按照下式获得光谱测量模块的绝对光谱 辐照度 £。(λ;), 如下式所示:
Figure imgf000004_0003
Km为最大光谱光视效能,对于明视觉, Km为 683 lm/W;对于暗视觉, Km为 1725 lm/W。 ET e 为明视觉照度时, Km为 683 lm/W。 根据光谱测量模块的绝对光谱辐照度£。(; λ), 可以计算获得准确的辐射量值。 本发明中, 所述的光度测量模块和光谱测量模块的光敏面处于同一平面, 或者各测量模 块的光轴成一定的夹角设置。光度测量模块和光谱测量模块的光敏面的相对位置可以灵活设 置, 能够接收接近于同一方向的入射光即可。光谱测量模块的绝对测量值可以根据光度测量 模块的测量值按照 (2) 式进行校正, 以上校正可以通过软件实现。
作为一种技术方案, 包括用于定位光度测量模块的光敏面的定位机构, 所述的定位机构 与光度测量模块光敏面的相对位置固定。定位机构用于方便实现对光度测量模块光敏面的精 确定位, 如定位机构与光度测量模块光敏面的相对位置确定, 通过定位机构与被测光源的相 对位置可确定光度测量模块光敏面所在平面, 以获得指定平面上的照度测量值。 优选地, 定 位机构与光度测量模块的光敏面同轴设置, 例如定位机构为圆形螺纹孔, 圆形螺纹孔与光度 测量模块的光敏面同轴设置, 以精确定位光敏面; 同时匹配合适的机械部件, 还可以起到固 定取样装置的作用。 此外, 定位机构的位置可灵活设置, 可内置于取样装置中, 也可以外露 于取样装置, 或者是设置在取样装置的某一平面上。
本发明中,可包括多个取样装置,各个取样装置均与手持式主机通过电线连接(电连接) 或者通过无线电波连接 (无线连接), 各个取样装置的测量结果均被输送至手持式主机中。 各个不同的取样装置用以接收不同位置的被测光线,可同时获得各取样装置接收光信号的光 度、 光谱和色度信息。 例如, 多个取样装置分别设置在空间的不同位置, 各位置处的入射光 的光度和色度信息可通过一次测量得到, 即该空间内的光色度分布信息。本发明还可以包括 微处理器, 微处理器设置在手持式主机和 /或者取样装置中, 光度测量模块和光谱测量模块 的测量数据传输至微处理器中分析、 处理。若微处理器设置在手持式主机中, 显示屏与微处 理器电连接, 取样装置的测试数据被输送至手持式主机中的微处理器, 微处理器将数据处理 结束后, 通过显示屏显示分析结果; 或者微处理器设置在取样装置中, 微处理器直接在取样 装置内部处理测试数据, 再将处理结果传输到手持式主机的显示屏上显示; 或者测试数据也 可以通过 USB接口和上位机进行高速通讯, 将数据传输到上位机上进行处理, 数据传输可 靠性高, 速度快。 此外, 也可以在手持式主机和取样装置中均设置微处理器, 取样装置中的 微处理器收集测量数据, 并将测量数据传输至手持式主机中的微处理器中分析、 处理。
与现有技术相比, 本发明可同时实现被测光的光谱和光度测量, 在光度测量模块和光谱 测量模块的精度均不高的情况下, 利用覆盖光度测量波段的光谱信息, 校正光度测量模块的 光度测量结果, 有效地校正了手持式光度计的光谱失匹配误差, 测量精度高; 同时还可实现 色度和光度分布信息的测量, 具有线性动态范围宽、测量准确度高、测量效率高、操作方便、 成本低等特点。
本发明还可以通过以下技术方案进一步完善和优化: 作为优选, 所述的手持式主机和取样装置一体式设置且相互连接, 取样装置的光敏面可 与手持式主机相对转动和 /或滑动。 手持式主机和取样装置通过机械和电子连接, 且显示屏 和取样装置的光敏面可发生任意角度的相对转动或滑动,方便收集各方向上以及各位置处的 光信号, 以满足不同的测试需求。
作为优选, 所述手持式主机和一个或者两个以上的取样装置分离式设置, 手持式主机和 各个取样装置均通过导线电连接或者通过无线方式交换数据。手持式主机可以与取样装置分 离设置, 如在野外或者现场测试时, 手持式主机在同一个位置, 各个取样装置设置在各个不 同的位置, 取样装置与手持式主机之间通过导线电连接或者无线连接, 其测试数据分别通过 导线或者无线传输的方式输入至手持式主机中。
作为优选,所述的显示屏为彩色触摸显示屏,显示屏上显示的测量结果包括照度、色温、 显色指数和光谱曲线。取样装置中光度和光谱测量模块测得的光度和光谱信息, 经过微处理 器处理后, 在彩色触摸显示屏上显示; 显示内容包括但不限于: 照度、 相对光谱功率分布、 绝对光谱辐照度分布、 色温、 显色性指数、 色品图、 黑体轨迹、 颜色容差范围等光度和色度 测量结果。
作为一种技术方案, 所述的测量结果在显示屏上整屏显示, 或者采用触摸滑动的方式分 屏显示, 或者通过触摸点击的方式分别显示。 本发明中, 显示屏的方式可以灵活选择, 测量 结果可以在同一个显示界面上全屏显示; 或者不同的测量结果显示在不同的界面上, 通过上 下或者左右滑动(拉动或者拖动)显示屏的方式分屏显示; 或者显示屏上仅显示测量结果名 称或者图标, 通过触摸点击的方式分别显示不同的测量结果。此外, 显示屏上显示的内容还 可根据测量结果的类别,在多个界面上分类显示测量结果,例如, 与照度相关的, 如光照度、 光谱辐照度等显示在显示屏的同一界面上; 与颜色参数相关的, 如显示指数、色温、色品图、 黑体轨迹、 颜色容差范围等显示在显示屏的同一界面上; 与光生物安全相关的, 如 UVI、 光 化学紫外危害、 眼睛的近紫外危害、 视网膜蓝光危害、 视网膜热危害、 (眼睛)近红外危害、 (皮肤)可见和红外危害等显示在显示屏的同一界面上, 在触摸屏的同一界面上显示同类参 数, 便于分析。
作为一种技术方案,所述的取样装置内部设置用于修正取样装置温漂误差的温度传感模 块。温度传感模块可以实时监测和控制取样装置的温度, 实现对于取样装置的恒温。温度传 感模块也可以实时监测取样装置的温度, 以实现对取样装置的的测量结果进行动态修正, 提 高测量准确度, 同时, 装置也可以测量和显示温度。 本发明中, 光谱测量模块的数量可以是一个, 该光谱测量模块的测量波长范围为可见光 波段的 380nm-780nm,至少覆盖 400nm-700nm的波长范围; 在需要时, 在紫外到近红外范围 200nm— 3000nm, 设置两个或者多个光谱测量模块。
作为优选, 所述的光谱测量模块包括一个以上测量波段首尾交叠的光谱测量模块, 叠加 测量波段覆盖光度测量模块的测量波段。相比于一个测量波段较宽的光谱测量模块, 选用两 个或者两个以上测量波段较窄的测量模块共同叠加覆盖光度测量模块的测量波段,可以实现 更高的光谱测量精度。
作为一种技术方案, 包括两个测量波段首尾交叠的光谱测量模块, 分别为测量波段为紫 外-可见的第一光谱测量模块以及测量波段为可见-红外的第二光谱测量模块。 根据光度测量 模块的测量波段, 可灵活选择第一光谱测量模块和第二光谱测量模块的测量波段, 例如, 光 度测量模块的测量波段为 380nm-780nm, 第一光谱测量模块的测量波段为 200nm-650nm, 第二光谱测量模块的测量波段为 600nm-1100nm, 利用第一光谱测量模块和第二光谱测量模 块叠加波段中的 380nm-780nm的光谱信息, 来校正光度测量模块的光谱失匹配误差, 即可 实现光度值的高精度测量; 此外, 由于第一光谱测量模块可得到包括紫外波段在内的光谱信 息, 可利用紫外光谱信息评价皮肤和眼睛的光化学紫外危害、 眼睛的近紫外危害等; 同时由 于第二光谱测量模块可得到包括近红外波段的光谱信息,利用近红外光谱信息可评价(眼睛) 近红外危害、 (皮肤) 可见和红外危害等。
作为一种技术方案, 所述的光度测量模块和光谱测量模块均与手持式主机电连接。该技 术方案中, 手持式主机和取样装置采用数据线电连接的方式实现控制和数据传输, 取样装置 中的光度测量模块和光谱测量模块的测量结果, 分别通过数据线传输到手持式主机上; 同时 手持式主机也可以通过数据线向取样装置发送测试信号,取样装置内的光度测量模块和光谱 测量模块接收到来自手持式主机的测试信号后开始测试。取样装置中的光度测量模块、光谱 测量模块与手持式主机有线通讯可以选择多种方式中的一种, 例如可通过排母 (;或排针)和卡 销 (或卡口)等方式实现通讯, 在手持式主机上设置主机通讯接口, 取样装置上设置取样通讯 接口, 主机通讯接口和取样通讯接口相耦合; 主机通讯接口为排母 (;或排针)和卡销 (或卡口), 取样通讯接口为排针 (或排母)和卡口 (或卡销), 排针和排母通过卡扣和卡销控制其连接状 态; 或者主机通讯接口和取样通讯接口通过 USB通讯接口连接。
作为另一种技术方案, 包括用于接收和 /或发送信号的无线模块, 所述的取样装置和手 持式主机内部均设置无线模块,取样装置内的光度测量模块和光谱测量模块的测量结果通过 无线传输的方式输送至手持式主机中。 这里的手持式主机为移动智能终端, 如平板电脑、 智 能手机或者专用智能终端等, 在取样装置和手持式主机内部分别设置无线模块, 两个无线模 块组成无线通信网络, 例如蓝牙、 GPRS、 Wi-Fi WLAN、 3G、 Zigbee、 CDMA等, 无线通 信网络的具体形式可以根据具体应用的场合和测量方式来选择,取样装置和手持式主机之间 通过无线传输的方式进行上位控制和数据传输。例如, 手持式主机中的无线模块发出测试信 号, 取样装置中的无线模块接收该测试信号、并触发其内部的光谱和光度测量模块接收被测 光信号, 测试结束后, 测试结果通过无线通信网络传输至手持式主机中分析、 处理。
作为优选, 包括用以校正光度测量模块的光谱失匹配误差的运算单元, 所述的运算单元 设置在取样装置或者手持式主机中。运算单元可以是独立的数字处理芯片, 也可以是手持式 主机中的微处理器可编写和可调运的校正算法程序。 若为数字处理芯片, 还包括寄存器, 数 字处理芯片利用光谱测量模块的测试结果得到光度测量模块的光谱失匹配校正系数,将该系 数存储至寄存器中, 用来校正光度测量模块所测得的光度量。若运算单元为算法程序, 微处 理器获得光谱测量模块的测试结果,再调运算法程序计算光度测量模块的光谱失匹配校正系 数, 并将校正系数存储至微处理器中, 校正光度测量模块所测得的光度量, 得到更为准确的 光度量。
作为优选, 包括设置在取样装置内部、用于识别取样装置的识别码存储器。 识别码存储 器内的信息可读写, 并与光度测量模块和光谱测量模块电连接, 测量模块测试完数据, 读取 识别码, 并将测试数据和识别码传输至手持式主机中; 若取样装置中设置有数字处理芯片, 识别码存储器即为芯片存储器, 且芯片与光度测量模块和光谱测量模块电连接, 测量模块测 试完数据, 数字处理芯片处理数据, 并调用识别码, 将测试数据和识别码传输至手持式主机 中, 以便手持式主机识别来自不同取样装置的传输数据。
作为优选, 所述的手持式主机为移动智能终端, 如平板电脑、 智能手机等移动智能终端 以其便携、操作方便、拓展性好等特点,使得终端控制和取样装置之间可实现多种通讯方式, 测控方便、 灵活, 不仅有效地提高了工作效率, 且可满足各种测试场合的应用需求。
作为优选,所述的微处理器内部存储定标数据。在定标时,微处理器自动调用定标数据, 简化测量操作, 方便实用。
作为优选, 装置包括电池, 在取样装置中设置电池, 这里的电池为可充电的电池, 一般 为可充电锂电池。
综上所述, 本发明通过设置包括光度测量模块和光谱测量模块的一体化取样装置, 实现 被测光光谱和光度的同时测量, 在光度测量模块和光谱测量模块的精度均不高的情况下, 利 用覆盖光度测量波段的光谱信息, 可有效地校正现有手持式光度计的光谱失匹配误差; 同时 通过灵活选择光谱测量模块的测量波段, 还可实现被测光源光生物安全的准确度, 具有测量 功能齐全、 线性动态范围宽、 测量准确度高、 操作方便、 成本低等特点。
附图说明 附图 1是实施例 1的示意图;
附图 2是实施例 1的连接关系图;
附图 3是实施例 2的示意图;
附图 4是实施例 3的连接关系图;
附图 5是实施例 4的示意图;
附图 6是实施例 5的示意图。
1-手持式主机; 2-取样装置; 21-光度测量模块; 22-光谱测量模块; 221-第一光谱测量模 块; 222-第二光谱测量模块; 23-识别码存储器; 3-显示屏; 4-微处理器; 5-温度传感模块; 6-无线模块; 7-电池; 8-定位机构。
具体实施方式 实施例 1
如图 1及图 2所示, 本实施例包括手持式主机 1、 取样装置 2、 显示屏 3、 微处理器 4 和供电电池 7, 显示屏 3设置在手持式主机 1上, 微处理器 4设置在手持式主机 1内, 取样 装置 2内设置识别码存储器 23以及光敏面并列设置的光度测量模块 21和光谱测量模块 22, 在手持式主机 1和取样装置 2内均设置电池 7, 其中取样装置 2中的电池 7为充电电池, 手 持式主机 1中的电池 7可给取样装置 2中的电池 7充电。
如图 2所示, 光度测量模块 21、 光谱测量模块 22和识别码存储器 23均与取样装置 2 中的电池 7电连接, 显示屏 3和微处理器 4均与手持式主机 1中的电池 7电连接; 光度测量 模块 21和光谱测量模块 22分别与识别码存储器 23电连接, 且与手持式主机 1中的微处理 器 4通过数据线电连接, 显示屏 3与微处理器 4电连接。
测量时, 光度测量模块 21和光谱测量模块 22的光敏面并列设置, 光度测量模块 21的 测量波段为 380nm-780nm, 光谱测量模块 22的测量波段为 350nm-800nm, 即光谱测量模块 22的测量波段覆盖光度测量模块 21的测量波段, 光度测量模块 21和光谱测量模块 22同时 接收被测光线, 测试完成后, 读取识别码存储器 23中的识别码, 并将光度和光谱测量模块 的测量结果以及识别码通过数据线分别输入到手持式主机 1的微处理器 4中,微处理器 4分 析、 处理测试数据, 利用光谱测量模块 22测得的光谱信息, 校正光度测量模块 21的光谱失 匹配误差, 校正公式如下:
7|Ρ(λ)-ν(λ) -άλ 7|Ρ( )3 · 8(λ)κ1 - άλ
Ε —
― _t
|Ρ(λ) · S( )rel · άλ |Ρ(λ)3 · ν(λ) · άλ 其中, ET e为校正后的光照度值, 1为光度测量模块 21直接测得的被测光的光照度值,
Ρ(λ)为光谱测量模块 22测得的被测光的相对光谱功率分布, 8( 为光度测量模块 21 的 相对光谱灵敏度, Ρ(λ 为对光度测量模块 21进行定标的标准源的相对光谱功率分布, ν(λ) 为 CIE标准光谱光效函数。 光度测量模块 21 的测量值经上述校正后, 可以得到准确的光度值, 测试数据及其分析 结果均通过手持式主机 1的显示屏 3直观显示。 本实施例中的显示屏 3为彩色触摸显示屏, 显示屏 3上的显示内容包括照度、相对光谱 功率分布、 绝对光谱辐照度分布、 色温、 显色性指数、 色品图、 黑体轨迹、 色容差等光色度
实施例 2
如图 3所示, 与实施例 1不同的是, 本实施例的取样装置 2内设置光度测量模块 21、 第一 光谱测量模块 221、 第二光谱测量模块 222和识别码存储器 23。 光度测量模块 21、 第一光 谱测量模块 221和第二光谱测量模块 222分别与识别码存储器 23电连接, 并与手持式主机 1中的微处理器 4通过数据线电连接, 显示屏 3与微处理器 4电连接。
光度测量模块 21、 第一光谱测量模块 221、 第二光谱测量模块 222的光敏面并列设置, 光度测量模块 21的测量波段为 380nm-780nm, 第一光谱测量模块 221和第二光谱测量模块 222的测量波段分别为 200nm-650nm和 600nm-1100nm。 测量时, 光度测量模块 21、 第一光 谱测量模块 221和第二光谱测量模块 222同时接收被测光线, 测试完成后, 读取识别码存储 器 23的识别码, 并将测量数据和识别码通过数据线输入到手持式主机 1的微处理器 4中, 微处理器 4分析、处理测试数据, 利用第一光谱测量模块 221和第二光谱测量模块 222测得 的 380nm-780nm波段的光谱信息, 校正光度测量模块 21的光谱失匹配误差, 得到准确的光 度值。 此外, 微处理器 4还可以分析第一光谱测量模块 221的紫外光谱、 以及第二光谱测量 模块 222红外光谱, 从而评价该被测光源的光生物安全信息。上述的测试数据及其分析结果 均在手持式主机 1的显示屏 3中直观显示。
实施例 3
如图 4所示, 与实施例 1不同, 本实施例还包括无线模块 6和 5个取样装置 2, 在手持 式主机 1和取样装置 2中均设置无线模块 6, 每个取样装置 2中均设置光度测量模块 21、第 一光谱测量模块 221、 第二光谱测量模块 222和识别码存储器 23。
光度测量模块 21、 第一光谱测量模块 221和第二光谱测量模块 222分别与识别码存储 器 23电连接, 并与无线模块 6电连接, 且无线模块 6与供电电池 7电连接; 这里的手持式 主机 1为移动智能终端,手持式主机 1中的无线模块 6与微处理器 4和供电电池 7均电连接, 显示屏 3与微处理器 4电连接。
测量时, 5个取样装置 2分布在不同的空间位置, 手持式主机 1中的无线模块 6发出测 试信号, 各个取样装置 2中的无线模块 6同时接收该测试信号、并触发各自内部的光谱测量 模块 22和光度测量模块 21接收、 测量被测光信号, 测试结束后, 测试数据和取样装置的识 别码通过各取样装置 2和手持式主机 1中的无线模块 6组成的无线通信网络进行数据通信, 手持式主机 1中的无线模块 6接收测试数据,并将测试结果输入到微处理器 4中分析、处理。
实施例 4
如图 5所示, 与实施例 1不同, 包括温度传感模块 5, 温度传感模块 5设置在取样装置 2内部, 温度传感模块 5与手持式主机 1电连接, 温度传感模块 5可以实时监测和控制取样 装置 2的温度,并将测得的取样装置 2的实时温度传送给手持式主机 1,手持式主机 1分析、 处理温度数据, 以实现对取样装置 2的测量结果进行动态修正, 提高测量准确度。
实施例 5
如图 6所示, 与实施例 1不同, 本实施例包括用于定位光度测量模块 21光敏面的定位 机构 8, 所述的定位机构 8与光度测量模块 21光敏面的相对位置固定, 定位机构 8设置在 取样装置 2上、 与光度测量模块 21光敏面相对的平面上。
本实施例中的定位机构 8为圆形螺纹孔, 其与光度测量模块 21光敏面同轴设置, 圆形 螺纹孔可与三脚架等机械部件相配合, 固定取样装置 2, 从而精确定位光度测量模块 21 的 光敏面。 测量时, 通过定位机构 8, 即可确定光度 $ t模块 21光敏面所在平面, 以获得指 定平面上的照度测量值。

Claims

权利要求
1. 一种手持式光辐射度计, 其特征在于, 包括手持式主机 (1)和取样装置 (2), 所述的手 持式主机 (1)上设置显示屏 (3);所述的取样装置 (2)内包括光敏面并列设置的光度测量模块 (21) 和光谱测量模块 (22), 光度测量模块 (21)包括余弦修正器、 光谱响应修正单元和光电传感器, 光谱测量模块 (22)包括色散单元和阵列探测器,光度测量模块 (21)和光谱测量模块 (22)接收被 测光线。
2. 如权利要求 1所述的一种手持式光辐射度计, 其特征在于, 所述的手持式主机 (1)和 取样装置 (2)—体式设置且相互连接。
3. 如权利要求 2所述的一种手持式光辐射度计, 其特征在于, 所述的取样装置 (2)的光 敏面可与手持式主机 (1)相对转动和 /或滑动。
4. 如权利要求 1所述的一种手持式光辐射度计, 其特征在于, 所述手持式主机 (1)和一 个以上的取样装置 (2)分离式设置, 手持式主机 (1)和各取样装置 (2)均通过导线电连接或者通 过无线方式交换数据。
5. 如权利要求 1所述的一种手持式光辐射度计, 其特征在于, 所述的显示屏 (3)为触摸 显示屏, 显示屏 (3)上显示的测量结果包括照度、色温、 显色指数和光谱分布曲线, 所述的测 量结果在显示屏 (3)上整屏显示,或者采用触摸滑动的方式分屏显示,或者通过触摸点击的方 式分别显示。
6. 如权利要求 1所述的一种手持式光辐射度计, 其特征在于, 所述的取样装置 (2)内部 设置温度传感模块 (5)。
7. 如权利要求 1所述的一种手持式光辐射度计,其特征在于,所述的光谱测量模块 (22) 包括一个以上测量波段首尾交叠的光谱测量模块。
8. 如权利要求 1所述的一种手持式光辐射度计, 其特征在于, 在取样装置 (2)中设置电 池 (7)和 /或用于识别取样装置 (2)的识别码存储器 (23)
9. 如权利要求 1所述的一种手持式光辐射度计, 其特征在于, 包括用于定位光度测量 模块 (21)光敏面的定位机构 (8), 所述的定位机构 (8)与光度测量模块 (21)光敏面的相对位置固 定。
10. 权利要求 1中用的手持式光辐射度校正方法, 其特征在于, 取样装置 (2)上的光度测 量模块 (21)和光谱测量模块 (22)分别测量被测光的光度和光谱信息, 利用光谱测量模块 (22)
12
PCT/CN2013/090307 2013-07-26 2013-12-24 一种手持式光辐射度计及其校正方法 WO2015010435A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112013006616.5T DE112013006616T5 (de) 2013-07-26 2013-12-24 Tragbares Lichtstrahlungsmessgerät sowie Korrekturverfahren dafür
US14/772,970 US10215629B2 (en) 2013-07-26 2013-12-24 Handheld optical radiation meter and correction method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310321501.5 2013-07-26
CN201310321501.5A CN103344329B (zh) 2013-07-26 2013-07-26 一种手持式光辐射度计及其校正方法

Publications (1)

Publication Number Publication Date
WO2015010435A1 true WO2015010435A1 (zh) 2015-01-29

Family

ID=49279145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/090307 WO2015010435A1 (zh) 2013-07-26 2013-12-24 一种手持式光辐射度计及其校正方法

Country Status (4)

Country Link
US (1) US10215629B2 (zh)
CN (1) CN103344329B (zh)
DE (1) DE112013006616T5 (zh)
WO (1) WO2015010435A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106933256A (zh) * 2017-03-08 2017-07-07 华电电力科学研究院 一种光伏检测用辐照组件背板温度采集传输***及其使用方法
FR3093564A1 (fr) 2019-03-06 2020-09-11 Bonnet Caroline Procédé et appareillage mesurant et transmettant la quantité de lumière émise, la quantité d’électricité consommée et le facteur de vieillissement d’un luminaire

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103344329B (zh) * 2013-07-26 2015-05-13 杭州远方光电信息股份有限公司 一种手持式光辐射度计及其校正方法
KR101438194B1 (ko) * 2014-03-17 2014-11-04 (주)에이앤아이 실시간 영점조절이 가능한 색차계모듈 및 이를 이용한 색상계측기
CN104101428A (zh) * 2014-06-25 2014-10-15 杭州中为光电技术股份有限公司 光度模块、手持光度计及其测量方法
CN104062011B (zh) * 2014-06-27 2015-07-29 杭州彩谱科技有限公司 优化余弦响应设计的手持式光源颜色照度分光测量仪器
CN104062010B (zh) * 2014-06-27 2015-08-19 杭州彩谱科技有限公司 一种优化定标算法的分光光源颜色照度测量仪器
CN106546325A (zh) * 2016-10-25 2017-03-29 复旦大学 一种光度学测试的光谱校正方法
CN107747968A (zh) * 2017-09-30 2018-03-02 温州华侨电器有限公司 一种多功能传感器
CN112484969A (zh) * 2019-09-12 2021-03-12 群燿光学股份有限公司 显色指数显示***及其显示方法
CN111174913A (zh) * 2020-02-25 2020-05-19 南通智能感知研究院 一种手持微型智能高光谱成像仪及其定标和成像方法
CN111735538B (zh) * 2020-06-04 2021-05-18 中国科学院西安光学精密机械研究所 一种机载面阵凝视型高光谱影像光照校正方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006284315A (ja) * 2005-03-31 2006-10-19 Advantest Corp 波長導出装置および該装置を備えた波長計、波長導出方法、プログラムおよび記録媒体
US20060290929A1 (en) * 2005-06-28 2006-12-28 Kenji Imura Method for calibrating spectral characteristics of a spectral analyzer and a spectral analyzer applying said method
CN101034006A (zh) * 2007-03-13 2007-09-12 郑晓明 一种提高光度量测量仪器测量精度的方法
CN101290246A (zh) * 2007-04-17 2008-10-22 杭州远方光电信息有限公司 一种快速光谱仪及其测量方法
CN101782428A (zh) * 2009-01-16 2010-07-21 杭州远方光电信息有限公司 光谱自校正光度计及其测量方法
CN101813518A (zh) * 2009-09-03 2010-08-25 杭州远方光电信息有限公司 一种中间视觉光度值的测量方法及其装置
CN102012266A (zh) * 2009-09-07 2011-04-13 杭州远方光电信息股份有限公司 一种光合辐射照度计及其测量方法
CN202188903U (zh) * 2011-07-25 2012-04-11 四川中测科技投资有限公司 基于分光光谱光度、夜视辐射强度测试仪
CN202676283U (zh) * 2012-07-13 2013-01-16 杭州远方光电信息股份有限公司 一种分布光度计
CN103344329A (zh) * 2013-07-26 2013-10-09 杭州远方光电信息股份有限公司 一种手持式光辐射度计及其校正方法
CN203337259U (zh) * 2013-07-26 2013-12-11 杭州远方光电信息股份有限公司 一种手持式光辐射度计

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4090071A (en) * 1976-06-10 1978-05-16 Hoffman Engineering Corporation Photometric instrument with thermoelectric control of a photovoltaic semiconductor detector
US5424826A (en) * 1993-07-30 1995-06-13 Control Development, Inc. Wideband optical micro-spectrometer system
US6539176B2 (en) * 2000-11-16 2003-03-25 Fuji Photo Film Co., Ltd. Photometry device for camera
US7236243B2 (en) * 2004-04-12 2007-06-26 Michael Thomas Beecroft Hand-held spectrometer
US7978324B2 (en) * 2007-04-17 2011-07-12 Everfine Photo-E-Info Co., Ltd. Multi-channel array spectrometer and method for using the same
CN101118178B (zh) * 2007-09-06 2010-09-29 复旦大学 一种led光通量测试方法
US10119857B2 (en) * 2012-08-17 2018-11-06 Oracle International Corporation Reflection-enhanced photo-detector
US20140354868A1 (en) * 2013-06-04 2014-12-04 Corning Incorporated Portable hyperspectral imager
US9599533B2 (en) * 2014-05-22 2017-03-21 Abl Ip Holding Llc Accessory to configure portable device with camera (E.G. smartphone) as lighting meter

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006284315A (ja) * 2005-03-31 2006-10-19 Advantest Corp 波長導出装置および該装置を備えた波長計、波長導出方法、プログラムおよび記録媒体
US20060290929A1 (en) * 2005-06-28 2006-12-28 Kenji Imura Method for calibrating spectral characteristics of a spectral analyzer and a spectral analyzer applying said method
CN101034006A (zh) * 2007-03-13 2007-09-12 郑晓明 一种提高光度量测量仪器测量精度的方法
CN101290246A (zh) * 2007-04-17 2008-10-22 杭州远方光电信息有限公司 一种快速光谱仪及其测量方法
CN101782428A (zh) * 2009-01-16 2010-07-21 杭州远方光电信息有限公司 光谱自校正光度计及其测量方法
CN101813518A (zh) * 2009-09-03 2010-08-25 杭州远方光电信息有限公司 一种中间视觉光度值的测量方法及其装置
CN102012266A (zh) * 2009-09-07 2011-04-13 杭州远方光电信息股份有限公司 一种光合辐射照度计及其测量方法
CN202188903U (zh) * 2011-07-25 2012-04-11 四川中测科技投资有限公司 基于分光光谱光度、夜视辐射强度测试仪
CN202676283U (zh) * 2012-07-13 2013-01-16 杭州远方光电信息股份有限公司 一种分布光度计
CN103344329A (zh) * 2013-07-26 2013-10-09 杭州远方光电信息股份有限公司 一种手持式光辐射度计及其校正方法
CN203337259U (zh) * 2013-07-26 2013-12-11 杭州远方光电信息股份有限公司 一种手持式光辐射度计

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106933256A (zh) * 2017-03-08 2017-07-07 华电电力科学研究院 一种光伏检测用辐照组件背板温度采集传输***及其使用方法
FR3093564A1 (fr) 2019-03-06 2020-09-11 Bonnet Caroline Procédé et appareillage mesurant et transmettant la quantité de lumière émise, la quantité d’électricité consommée et le facteur de vieillissement d’un luminaire

Also Published As

Publication number Publication date
US20160011045A1 (en) 2016-01-14
CN103344329B (zh) 2015-05-13
DE112013006616T5 (de) 2015-10-22
CN103344329A (zh) 2013-10-09
US10215629B2 (en) 2019-02-26

Similar Documents

Publication Publication Date Title
WO2015010435A1 (zh) 一种手持式光辐射度计及其校正方法
US9364071B2 (en) Systems and methods for measuring spectra of skin and other objects and materials and making predictions based thereon
US20160080666A1 (en) Test and measurement system with removable imaging tool
US9983120B2 (en) Colorimetry method and colorimetry apparatus
US20080059218A1 (en) Methods and systems for recommending a personal care product
CN107084790A (zh) 基于智能手机的便携式光谱仪及其光谱检测方法
US20160076937A1 (en) Display of images from an imaging tool embedded or attached to a test and measurement tool
EP2929318B1 (en) Device and method for detection of counterfeit pharmaceuticals and/or drug packaging
US9568368B2 (en) Mobile device used with isolated test and measurement input block
CN203337259U (zh) 一种手持式光辐射度计
CN104062010B (zh) 一种优化定标算法的分光光源颜色照度测量仪器
Botero-Valencia et al. A low-cost IoT multi-spectral acquisition device
CN202854290U (zh) 一种热电性能测量装置
CN115597726B (zh) 色温检测的方法、装置和电子设备
WO2016065856A1 (zh) 一种基于滤光单元的光辐射测量方法及其装置
CN105300519A (zh) 一种用于地物波谱特性的测量装置和方法
CN108827889B (zh) 一种基于光学特性的胶类材料鉴别方法
CN204313959U (zh) 基于智能移动终端的色度照度测量装置
US10444074B1 (en) Spectrum recovery in a sample
CN104568144B (zh) 一种混合光源显示的光色性能测量方法及其测量***
US20220065781A1 (en) Method to Estimate Surface Gloss
CN108344511A (zh) 辐射率控制装置和辐射率控制方法
CN206930365U (zh) 影像及温度同轴量测及显示设备
CN110388876B (zh) 高温耦合场测量***
TW202232098A (zh) 成分分析儀及成分分析系統

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13890061

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1120130066165

Country of ref document: DE

Ref document number: 112013006616

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 14772970

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 13890061

Country of ref document: EP

Kind code of ref document: A1