WO2015010352A1 - 太阳能发电***、测量模块与定位方法 - Google Patents

太阳能发电***、测量模块与定位方法 Download PDF

Info

Publication number
WO2015010352A1
WO2015010352A1 PCT/CN2013/081907 CN2013081907W WO2015010352A1 WO 2015010352 A1 WO2015010352 A1 WO 2015010352A1 CN 2013081907 W CN2013081907 W CN 2013081907W WO 2015010352 A1 WO2015010352 A1 WO 2015010352A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
current
module
modules
measurement
Prior art date
Application number
PCT/CN2013/081907
Other languages
English (en)
French (fr)
Inventor
简源伯
黄意明
郭旻谦
Original Assignee
友达光电股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 友达光电股份有限公司 filed Critical 友达光电股份有限公司
Priority to DE112013007265.3T priority Critical patent/DE112013007265T5/de
Publication of WO2015010352A1 publication Critical patent/WO2015010352A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • H02S50/10Testing of PV devices, e.g. of PV modules or single PV cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/10The dispersed energy generation being of fossil origin, e.g. diesel generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the present invention relates to a solar power generation system, and more particularly to a measurement module and a positioning method thereof in a solar power generation system. Background technique
  • the so-called online solar AC module system refers to a solar power generation system having a plurality of AC power generation modules connected to each other, and each AC power generation module has a solar panel and a micro inverter ( ⁇
  • the solar power system converts solar energy into DC power through a solar panel, and converts the direct current into alternating current through the aforementioned micro-inverter and then feeds the mains.
  • each AC power generation module In actual use, we need to monitor each AC power generation module to ensure that each AC power generation module can operate normally and maintain a certain conversion efficiency. However, in the current solar power generation system, most of them can only know the total power generation situation of the solar power generation system in real time. If a single AC power generation module operation situation is required, a data collector capable of communicating with the micro inverter is required. The power generation data returned by the micro-inverter monitors each AC module. However, because the communication protocols used by the micro-inverters are different, it is difficult and costly to develop a general-purpose data collector.
  • the solar power generation system includes a monitoring module, a plurality of alternating current power generation modules, and a plurality of measurement modules.
  • a plurality of AC power generation modules convert solar energy into electrical energy and each output current.
  • a plurality of AC power generation modules are electrically connected to each other on the power circuit, and each output current is integrated and transmitted to the commercial power through the power circuit.
  • a plurality of measurement modules are electrically connected to the plurality of AC power generation modules, and each of the measurement modules includes a current and voltage sensor, a circuit breaker and a communication unit.
  • the current sensor is configured to sense an alternating current passed by the measuring module at the position of the power circuit and generate a current parameter.
  • the voltage sensor is configured to sense an alternating voltage of the measuring module at the power circuit connection point and generate a voltage parameter.
  • Circuit breakers are used to replace manual disconnection of electrical connections.
  • the communication unit is configured to transmit current and voltage parameters to the aforementioned monitoring module, and also receives control commands from the monitoring module to the circuit breaker.
  • the foregoing monitoring module is configured to calculate a relative position order of the plurality of AC power generation modules by using a plurality of current and/or voltage parameters returned by the measurement modules.
  • the aforementioned measurement module comprises a first circuit breaker.
  • the first circuit breaker is coupled between the input of the measurement module and the first current sensor.
  • the aforementioned measurement module comprises a second circuit breaker.
  • the second circuit breaker is coupled between the output of the measurement module and the first current sensor.
  • the aforementioned measurement module further includes a voltage sensor and a control unit.
  • the voltage sensor is configured to sense a voltage of the measurement module at a position of the power circuit and generate a corresponding voltage parameter.
  • the control unit is configured to disconnect the first circuit breaker or the second circuit breaker according to the configuration of the monitoring module, and the monitoring module sequentially disconnects the first circuit breaker or the second circuit breaker or the first circuit breaker of each of the plurality of measurement modules by the control unit.
  • the three circuit breakers calculate the relative position order of the plurality of AC power generation modules by a plurality of voltage and/or current parameters returned by the plurality of measurement modules.
  • each measurement module is disposed between adjacent two-stage AC power generation modules, and each measurement module includes an input end and an output end coupled to a pre-stage AC power generation module. The output is coupled to an after-current AC power generation module or coupled to the mains.
  • the first current sensor is coupled between the input end and the output end for sensing a total output current of the previous stages of the AC power generation module of the stage to generate the current The first current parameter.
  • each measurement module is correspondingly disposed on a current level AC power generation mode
  • the power circuit is coupled between the adjacent two AC power generation modules, or between the AC power generation module and the commercial power
  • each measurement module includes a first input end, a second input end, and a The output terminal is coupled to an AC power generation module of the preceding stage, and the second input end is coupled to the AC power generation module of the current stage, and the output end is coupled to an AC power generation module of a subsequent stage.
  • each of the measurement modules further includes a second current sensor coupled between the second input terminal and the output terminal for sensing an output current of the current level AC power generation module, The second current parameter is generated, and the communication unit further transmits the second current parameter to the monitoring module, and the monitoring module is configured to determine an operating state of the alternating current power generating module by using the second current parameters returned by the measuring modules.
  • the first current sensor is coupled between the first input end and the output end for sensing a total output current of the previous stage of the AC power generation module of the front stage, To generate the first current parameter.
  • each of the measurement modules includes a circuit breaker coupled between the second input terminal and the output terminal.
  • each of the measurement modules further includes: a control unit for disconnecting the circuit breaker according to the configuration of the monitoring module; wherein the monitoring module sequentially disconnects each of the measurement modules by the control unit
  • the circuit breaker calculates the relative positional order of the alternating current power generation modules by the first current parameters returned by the measurement modules.
  • the measuring module has a first input end, a second input end and an output end, and the measuring module comprises a first electric influenza detector, a second current sensor, a voltage sensor, a control unit, a communication unit and a storage unit.
  • the first current sensor is coupled between the first input end and the output end, and generates a first current parameter.
  • the second current sensor is coupled between the second input end and the output end, and generates a second current parameter.
  • a voltage sensor is used to detect the voltage at the output to generate a voltage parameter.
  • the control unit is configured to receive the first current parameter, the second current parameter, and the voltage parameter.
  • the communication unit is configured to transmit the first current parameter, the second current parameter, and the voltage parameter to the external monitoring system according to the configuration of the control unit.
  • the storage unit is configured to store the first current parameter, the second current parameter, the voltage parameter, and a structural information of the measurement module.
  • the foregoing structural information includes a first input end of the measurement module, a connection state of the second input end and the output end, and an internal structure of the measurement module.
  • the aforementioned measuring module further comprises a first circuit breaker or a second circuit breaker Or a third circuit breaker.
  • the first circuit breaker is configured to cut off a current path between the first input end of the measurement module and the first current sensor according to a configuration of the control unit when the measurement module performs the positioning operation.
  • the second circuit breaker is configured to cut a current path between the output end and the first current sensor according to a configuration of the control unit when the measuring module performs the positioning operation.
  • the third circuit breaker is configured to cut off a current path between the second input end of the measurement module and the second current sensor according to the configuration of the control unit when the measurement module performs the positioning operation.
  • the positioning method is applicable to a power generation system including a plurality of AC power generation modules, and the positioning method includes the following steps: measuring alternating current or connection point voltages formed by a plurality of AC power generation modules at different positions of the power circuit, respectively Obtaining a plurality of corresponding current or voltage parameters; and calculating a relative position order of the respective AC power generation modules according to the plurality of current or voltage parameters.
  • the positioning method further includes sequentially disconnecting a connection path between one of the plurality of AC power generation modules and one of the adjacent two AC power generation modules, and measuring the plurality of AC power generation.
  • Each of the modules is at a voltage value at a position of the power circuit to obtain a plurality of corresponding voltage parameters, respectively; and calculating a relative position order of the plurality of AC power generation modules by the plurality of voltage parameters.
  • the positioning method described above further comprising: sequentially cutting off the output current provided by one of the alternating current power generation modules, and measuring alternating currents formed by the alternating current power generation modules at the different positions of the power circuit, respectively Get these current parameters.
  • the technical solution of the present invention has obvious advantages and beneficial effects compared with the prior art. Through the above technical solutions, considerable technological advances can be achieved, and industrial use is widely used.
  • the present disclosure can quickly locate multiple AC power generation modules in a solar power generation system and monitor the working conditions of each AC power generation module in real time. . National day against the sun
  • FIG. 1 is a schematic diagram of a measurement module according to an embodiment of the invention.
  • FIG. 2A is a schematic diagram showing a solar power generation system according to an embodiment of the invention.
  • FIG. 2B is a schematic view of another embodiment of the solar power generation system according to FIG. 2A;
  • FIG. 3A is a schematic diagram showing a solar power generation system according to another embodiment of the invention
  • 3B is a schematic diagram showing a measurement module according to another embodiment of the present invention
  • FIG. 3C is a schematic diagram showing a measurement module according to another embodiment of the present invention
  • FIG. 4 is a flow chart showing a positioning method according to the present invention. .
  • Measurement module 100, 100a current sensor: 110,
  • Circuit breaker 160, 162, 164
  • Monitoring module 220 AC power generation module: 240, 320, 322, 324 sub power generation system: 210, 212 DC module: 320a
  • Micro-inverter main circuit 320d Positioning method: 400
  • Coupled or “connected” as used herein may mean that two or more elements are in direct physical or electrical contact with each other, or indirectly in physical or electrical contact with each other, or Multiple components operate or act upon each other.
  • FIG. 1 illustrates a measurement module 100 according to an embodiment of the invention.
  • Schematic. 2A is a schematic diagram of a solar power generation system 200 in accordance with an embodiment of the present invention. As shown in FIG. 2A, the solar power generation system 200 includes a monitoring module 220, a plurality of alternating current power generation modules 240, and a plurality of measurement modules 100.
  • the plurality of measurement modules 100 are configured to correspond to the plurality of AC power generation modules 240.
  • each of the measurement modules 100 is coupled between two of the AC power generation modules 240, or is in an AC power generation system.
  • Module 240 is between the mains.
  • the measurement module 100 includes a first current sensor 110 and a communication unit 140.
  • the measurement module 100 has a second input terminal and an output terminal, wherein the first current sensor 110 is coupled between the input end and the output end of the measurement module 100, and the first current sensor 110 is configured to generate a first current parameter ( S port IN, uti ).
  • the first current sensor 110 detects the total current i N , mputl received by the input end of the measurement module 100, and the total current can be the alternating current output by each AC power generation module before the position of the measurement module 100 is set. sum.
  • the total current i 2 , mputl received by the input terminal of the measurement module 100 of the second stage is the sum of the alternating currents outputted by the first-stage AC power generation module and the second-stage AC power generation module (ie, i putf l ⁇ +I ⁇ ) , and according to the total current ⁇ , ⁇ , the corresponding first current parameter is generated.
  • the communication unit 140 is configured to transmit the first current parameter and the voltage parameter to an external monitoring system.
  • the communication unit 140 can transmit the first current parameter and the voltage parameter to the external monitoring system by wireless transmission or by wire, such as power line communication (PLC) transmission.
  • PLC power line communication
  • a plurality of AC power generation modules 240 convert solar energy into electrical energy and output currents I ac , N , respectively.
  • the plurality of AC power generation modules 240 are electrically connected to each other on the power circuit, and the output currents i ac , N are integrated and transmitted to the power plant or the commercial power through the power circuit.
  • the plurality of measurement modules 100 are electrically connected to the plurality of AC power generation modules, and the first current sensor 110 of the measurement module 100 in this embodiment is used to sense the position of the measurement module 100 disposed in the power circuit. The alternating current passed above and the corresponding first current parameter is generated.
  • each measurement module 100 from 1 to N-1 is disposed between adjacent two-stage AC power generation modules 240, wherein each measurement module 100 includes an input end and an output end. Measuring mode The input end of the block 100 is coupled to the AC power generation module 240 of the preceding stage, and the output end of the measurement module 100 is coupled to the AC power generation module 240 of the subsequent stage.
  • the measurement module 100 of the Nth stage is disposed between the AC power generation module 240 and the mains. The input end is coupled to the AC power generation module 240 of the front stage, and the output end is coupled to the mains.
  • the first current sensor 110 within each stage of the measurement module 100 senses the summed output current of the previous stages of the AC power generation module 240 of the preceding stage to generate a first current parameter.
  • the current sensor 110 in the first level measurement module 100 can measure the output current generated by the alternating current power generation module 240 of the first stage, and the current sensor 110 in the second level measurement module 100 can be measured from the first The sum of the output current generated by the first-stage AC power generation module 240 and the output current I ac , 2 generated by the second-stage AC power generation module 240.
  • the communication unit 140 in the measurement module 100 transmits the aforementioned first current parameter to the monitoring module.
  • the monitoring module 220 calculates the relative positional order of the plurality of AC power generation modules 240 on the power circuit by transmitting a plurality of first current parameters through the plurality of measurement modules 100.
  • each AC power generation module 240 can generate 1 amp (A) under normal operation, and the corresponding first current parameter generated by the first level measurement module 100 should be 1A (ie, level 1 AC power generation)
  • the current output by the module 240 is corresponding to the first current parameter generated by the second-stage measurement module 100, which is 2A (that is, the current Iac,1 outputted by the first-stage AC power generation module 240 and the output of the second-stage AC power generation module 240.
  • the current ⁇ , 2 ), and so on, the first current parameter generated by the second stage measurement module 100 should be 1 ⁇ .
  • the relative positions of the plurality of AC power generation modules 240 can be arranged by the arrangement of the plurality of first current parameters.
  • the solar power generation system 200 in this embodiment can quickly locate a plurality of AC power generation modules 240 by calculating a plurality of first current parameters by the monitoring module 220, as compared with the well-known manual recording mode.
  • the plurality of measurement modules 100 in the solar power generation system 200 may further include a voltage sensor 120, a control unit 130, and a first circuit breaker 160 or a second circuit breaker 162.
  • the first circuit breaker 160 is configured to switch off the current path between the input of the measurement module 100 and the first current sensor 110 in accordance with the configuration of the control unit 130.
  • the second circuit breaker 162 is configured to cut off the current path between the output of the measurement module 100 and the first current sensor 110 in accordance with the configuration of the control unit 130.
  • the first circuit breaker 160 is coupled between the input end of the measurement module 100 and the first current sensor 110
  • the second circuit breaker 162 is coupled to the output end of the measurement module 100 .
  • the first current sensor 110 and the second current sensor 112 are coupled between the nodes nodel.
  • the voltage sensor 120 is configured to detect the voltage at the output of the measurement module 100 and generate corresponding voltage parameters.
  • the voltage sensor 120 in the second-stage measurement module 100 in FIG. 2A can sense the voltage of the position of the second-stage measurement module 100 on the power circuit (that is, the voltage on the node nodel inside the measurement module 100) and Generate corresponding voltage parameters.
  • the control unit 130 is configured to receive the first current parameter, the second current parameter, and the voltage parameter, and transmit the same to the communication unit 140 and the storage unit 150. And the control unit 130 further turns off the first circuit breaker 160 or the second circuit breaker 162 according to the configuration of the monitoring module 220.
  • the monitoring module 220 sequentially disconnects the first circuit breaker 160 or the second circuit breaker 162 of each of the plurality of measurement modules 100 by the control unit 130, and is returned by the plurality of measurement modules 100.
  • a plurality of voltage parameters are used to calculate the relative order of the plurality of AC power generation modules.
  • the first stage to the Nth The voltage sensor 120 in the level 1 measurement module 100 senses a voltage change on the power loop.
  • the second circuit breaker 162 of the second-stage measurement module 100 is disconnected, that is, the connection of the first-stage to second-order AC power generation module 240 to the power circuit is cut off, the measurement modules of the first to second stages are The voltage sensor 120 within 100 senses a voltage change across the power loop.
  • the measurement module 100 when the measurement module 100 is cut off, the more the number of voltage sensors that sense the voltage change in front, the more the order of the corresponding measurement module 100 should be in the back end of the power circuit, that is, the closer.
  • the responsibility demarcation point (such as the Nth measurement module 100), on the other hand, the less the number of voltage sensors that are perceived to change, the more the front end of the power circuit (such as the first level measurement module 100).
  • the monitoring module 220 can sequentially disconnect the first circuit breaker 160 or the second circuit breaker 162 of each level of the measurement module 100, and observe the number of voltage parameters that are affected after each measurement module 100 is disconnected.
  • the electric operator can remotely control the first circuit breaker 160 and the second circuit breaker 162 described above through an external monitoring system. By sequentially cutting off the first circuit breaker 160 or the second circuit breaker 162, each end point in the power circuit can be performed. Different tests eliminate the complicated process of requiring the operator to go to the site one by one.
  • the measurement module 100 is not limited to including the first circuit breaker 160 and the second circuit breaker 162 at the same time. In the actual application, one of the circuit breakers (the first circuit breaker 160 or the second circuit breaker 162) is provided in the measurement module 100 to perform the above functions.
  • FIG. 2B a schematic diagram of another embodiment of the solar power generation system according to FIG. 2A is illustrated.
  • the solar power generation system 200a has two sub-generation systems 210, 212, and the sub-generation systems 210, 212 also have a plurality of AC power generation modules 240 and a plurality of measurement modules 100.
  • the sub power generation systems 210, 212 have the same number of AC power generation modules 240, respectively, and assume that each measurement module 100 does not have the aforementioned first circuit breaker 160 or second circuit breaker 162.
  • the monitoring module 220 cannot distinguish the position of the sub power generation system 210 and the sub power generation system 212, and can stop the operation of any AC power generation module 240 by shading on the sub power generation system 210 and the sub power generation system 212, thereby enabling the two sub power generation systems.
  • the total current varies to allow the monitoring module 220 to distinguish between the sub-generation system 210 and the sub-generation system 212.
  • the sub-generation system 210 and the sub-generation system 212 are respectively subjected to the foregoing positioning operations, so that the monitoring module sorts the sub-generation system 210 and the sub-generation system 212.
  • each sub-generator system has an N-level AC power generation module 240, and each AC power generation module 240 can generate 1A under normal operation.
  • the first current parameter produced by the total measurement module 100a in Figure 2B should be (2N) X 1A.
  • the first current parameter generated by the Bay ij total measurement module 100a should be ( 2N-1) X 1A
  • the first current parameter generated by the Nth stage measurement module in the sub power generation system 212 should be (N-1) X 1A
  • the first generated by the Nth stage measurement module 100 in the sub power generation system 210 The current parameter should be (N) X 1A.
  • the monitoring module 220 can sort the sub-power generation system 210 and the sub-power generation system 212 according to the current magnitude of the first current parameter, and sequentially locate the relative position order between the respective AC power generation modules 240 in each sub-power generation system. .
  • FIG. 3A illustrates a schematic diagram of a solar power generation system in another embodiment of the present disclosure.
  • each of the measurement modules 100 is disposed in the current level alternating current power generation module 320, and is coupled between the adjacent two alternating current power generation modules 320 through a power circuit.
  • each measurement module 100 can directly measure the AC current I ac , N generated by the single-stage AC power generation module 320 and simultaneously measure the total AC current sum generated by the front-stage AC power generation module 320.
  • the measurement module 100 can further include another second current sensor 112 coupled between the other input end and the output end of the measurement module 100.
  • the sensor 112 is configured to generate a second current parameter (ie, i N , mput2 ).
  • the second current sensor 112 can be used to detect the alternating current output by the single alternating current power generation module (the level alternating current power generation module 320) and generate corresponding second current parameters i N , mput2 .
  • the total current value of the parallel sub-power generation systems may also be measured by the second current sensor 112.
  • the measurement module 100 is correspondingly disposed in the current level AC power generation module 320 and has various implementation manners. Several implementations are presented below, but the invention is not limited to the implementations listed below.
  • the AC power generation module 320 has a DC module 320a, a micro-inverter 320b, and a connection interface 320c.
  • the DC module 320a converts solar energy into electrical energy.
  • the micro-inverter 320b converts this electric energy (direct current:) into alternating current to output the current I ac , N .
  • the connection interface 320c connects the various levels of the AC power generation module 320 through a modular power line socket.
  • the measurement module 100 can be integrated in the aforementioned connection interface 320c (such as the AC power generation module 322) to reduce the volume and cost of the AC power generation module, so that the wiring of the power circuit can be more flexible.
  • the connection interface 320c can be an intermediate interface device that integrates or houses the aforementioned measurement module 100 therein, such as a connector.
  • FIG. 3C a schematic diagram of a measurement module in still another embodiment of the present disclosure is shown.
  • measurement module 100 when the micro-inverter 320b itself has a current sensor to monitor the alternating current ⁇ micro converted inverter 320b, when ⁇ -, measurement module 100 may be a micro-inverter 320b integrated into a ho .
  • the measurement module 100 can share the current sensor of the micro-inverter 320b itself (such as the AC power generation module 324), that is, share the second current sensor 112 to achieve higher system integration and save hardware costs. Additional expenses, but the invention is not limited thereto.
  • the micro-inverter main circuit 320d in the figure The DC current generated by the DC module 320a is used to convert the AC current into an AC current i ac , N .
  • each measurement module 100 in the solar power generation system 300 has a first input terminal, a second input terminal, and an output terminal.
  • the first input end of the measurement module 100 is coupled to the front-end AC power generation module 320
  • the second input end of the measurement module 100 is coupled to the AC power generation module 320 of the current stage
  • the output end of the measurement module 100 is coupled to the first Level AC power generation module.
  • the first input end of the measurement module 100 in the N-1 stage AC power generation module 320 in FIG. 3A is coupled to the N-2 level AC power generation module.
  • the second input of the measurement module 100 in the N-1 stage AC power generation module 320 is used to receive the AC output of the N-1th AC power generation module 320.
  • the output end of the measurement module 100 in the N-1 stage AC power generation module 320 is coupled to the Nth stage AC power generation module 320 to transmit an AC current i N- i , ouput, where i N-houput — 1 N-1, Input + IacN-, that is, the AC current i ⁇ put is level 1 to
  • the sum of the AC currents output by the N-1 level AC power generation module 320 is the sum of the AC currents output by the N-1 level AC power generation module 320.
  • the second current sensor 112 of the measurement module 100 in this embodiment is coupled between the second input end and the output end of the measurement module 100.
  • the communication unit 140 within the measurement module 100 transmits the aforementioned second current parameter to the monitoring module 220.
  • the monitoring module 220 determines the working state of the AC power generating module 320 by measuring the second current parameter returned by the module 100.
  • each AC power generation module 320 can output current under normal operation.
  • the output current Iac,1 of the first-stage AC power generation module 320 is reduced to 30 mA, at which time the monitoring module 220 is returned by the measurement module 100 in the first-stage AC power generation module 320.
  • the second current parameter transmitted can be used to know that the working state of the first-stage AC power generation module 320 is abnormal.
  • the monitoring module 220 in the solar energy system 300 can also sort the relative order of the AC power generation modules by the first current parameters returned by the respective measurement modules 100.
  • each of the measurement modules 100 in the solar power generation system 300 further includes a third circuit breaker 164.
  • the third circuit breaker 164 is configured to cut off a current path between the second input terminal of the measurement module 100 and the second current sensor 112 according to the configuration of the control unit 130.
  • the control unit 130 turns off the third circuit breaker 164 according to the configuration of the monitoring module 220.
  • the monitoring module 220 can sequentially disconnect each third circuit breaker 164 in the measurement module through the control unit 130, and calculate the relative position order of each AC power generation module 320 by using the first current parameter returned by each measurement module 100.
  • the first current parameter measured by the AC power generation module 320 of the second to Nth stages (ie, i 2 , mput) ⁇ i N , mput :> will produce corresponding changes.
  • the third circuit breaker 164 in the N-2th AC power generation module 320 is cut off, at this time, the N-1th to Nth stages are rear.
  • the first current parameter measured by the AC power generation module 320 ie, Corresponding changes are generated, but the first current parameter (ie, i pu i ⁇ ut) measured by the first current sensor 110 in the first-stage to N-2th alternating current power generation module 320 does not change. .
  • the monitoring module 220 can sequentially disconnect one AC power generation module 320 at a time, and simultaneously record a plurality of first current parameters returned by each measurement module, by observing changes of the respective first current parameters, The relative positional order of the AC power generation module 320 on the power circuit can be sequentially located.
  • each measurement module 100 in the solar power generation system 300 may have the first circuit breaker 160 or the second circuit breaker 162 and the voltage sensor 120 described above, and the monitoring module 220 may also pass the measurement.
  • a plurality of voltage parameters are used to locate the AC power generation module 320.
  • the measurement module 100 further includes a storage unit 150.
  • the storage unit 150 is configured to store the foregoing first current parameter, second current parameter, voltage parameter, and structural information of the measurement module 100.
  • the structural information of the measurement module 100 may include the connection state of each input terminal, the output terminal of the measurement module 100, and the internal structure of the measurement module 100.
  • the power operator can read the data stored in the storage unit 150 through the communication unit 140 through the external monitoring system (ie, the monitoring module 220), and can know the structure of the measurement module 100 of the current power system application, so as to be different for each The situation corresponds to the operation.
  • the monitoring module 220 can also be integrated into the measurement module 100 to achieve higher integration.
  • FIG. 4 illustrates a flow chart of a positioning method according to the present invention.
  • Another aspect of the present invention provides a positioning method 400 that is applicable to a power generation system having a plurality of AC modules, wherein each of the AC power generation modules generates an output current and is electrically connected to each other on the power circuit. .
  • step 410 the coupling point voltages of the AC power generation modules at a plurality of locations on the power circuit and the formed AC current are measured and recorded as a plurality of corresponding current and voltage parameters.
  • the structural information of the measurement module it is decided whether to perform the measurement after controlling the circuit breaker, or whether it is directly measured, or temporarily unable to judge, and must be completed in stages by manual shading assistance.
  • step 420 the relative position order of the plurality of alternating current power generation modules is calculated based on the aforementioned current.
  • the positioning method 400 may be interspersed by steps 410 and 420 when it is temporarily impossible to judge that the condition must be completed by manual shading.
  • the currents at a plurality of locations on the power circuit are measured by the measurement module 100, and corresponding current parameters (such as the first current parameter described above) are generated, according to the size of each current parameter.
  • the relative position order of each AC power generation module 240 is sorted.
  • the output current provided by one of the alternating current power generation modules may be cut off one by one, and the alternating current formed by each alternating current power generation module at each position of the power circuit may be simultaneously measured and recorded as a plurality of corresponding ones. Current parameters.
  • the relative positional order of each AC power generation module can be arranged by the above relationship.
  • the connection path between each of the AC power generation modules and one of the adjacent two AC power generation modules may be disconnected one by one, and each of the AC power generation modules may be measured in the power circuit.
  • the relative positional order of a plurality of AC power generation modules can also be calculated by a plurality of voltage parameters.
  • the connection between the Nth-level AC power generation module and the N-1th-level AC power generation module is cut off, and the measurement modules of the first stage to the N-1th stage in front are all subjected to voltage changes, so that The order of the positions of the respective AC power generation modules is sorted according to the number of changes in the voltage parameters.
  • the solar power generation system in the above embodiments is exemplified by a single-phase power generation method.
  • the present invention is not limited thereto, and those skilled in the art may be provided in various power generation systems, such as a three-phase power generation system, according to the above embodiments. Wait.
  • the measurement module shown in the present disclosure has various applications. With different requirements, the measurement module can contain all current sensors, voltage sensors and circuit breakers at the same time. Alternatively, depending on cost considerations, the measurement module may include only a single current sensor and circuit breaker or various combinations of the various components described above. The user can know the measurement mode applied in the current power circuit through the storage unit of the measurement module.
  • the block is the structural information of what combination, for a variety of different positioning and monitoring operations.
  • the present invention has been disclosed in the above embodiments, but it is not intended to limit the present invention, and the present invention can be variously modified and retouched without departing from the spirit and scope of the present invention. The scope of protection is subject to the claims. Industrial applicability
  • the technical solution of the present invention has obvious advantages and beneficial effects compared with the prior art. Through the above technical solutions, considerable technological advances can be achieved, and industrial use is widely used.
  • the present disclosure can quickly locate multiple AC power generation modules in a solar power generation system and monitor the operation of each AC power generation module in real time. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)

Abstract

一种太阳能发电***、测量模块与定位方法。定位方法适用于包含多个交流发电模块的太阳能发电***,定位方法包含了下列歩骤:(a)测量多个交流发电模块在电力回路的多个相异位置上的接点电压及所形成的交流电流,以分别取得多个对应的电流参数和电压参数;以及(b)根据多个电流参数或电压参数计算出各交流发电模块的相对位置次序。

Description

太阳能发电***、 测量模块与定位方法
技术领域
本发明是关于一种太阳能发电***,特别是关于一种太阳能发电***内的 测量模块与其定位方法。 背景技术
因石油资源的快速减少, 发展再生能源的议题逐渐被人类重视。而目前可 行的替代能源之一便是太阳能, 利用太阳能板将太阳能转换成电能, 已经是许 多国家正积极使用的发电***。
所谓在线式太阳能交流模块***,指的是太阳能发电***中具有多个交流 发电模块互相连接, 而每一交流发电模块具有太阳能板与微逆变器(μ
-inverter), 太阳能发电***系通过太阳能板将太阳能转换成直流电能, 并通过 前述的微逆变器将直流电转换成交流电后再馈入市电。
在实际使用上, 我们需要对各交流发电模块进行监控, 来确保各交流发电 模块能够正常运作并维持一定的转换效率。然而,在目前的太阳能发电***中, 大多数只能实时得知太阳能发电***的总发电情形,若需要单一交流发电模块 的操作情形, 则需要安装能与微逆变器通讯的数据搜集器,通过微逆变器传回 的发电数据对各交流模块进行监测, 然因为各微逆变器所采用的通讯协议不 同,要开发通用型数据搜集器有一定的难度与较高的成本, 此方式会导致*** 安装商尽量采用单一厂商的微逆变器, 且由于微逆变器仅检测自身输出电流, 故需通过人工记录的方式才能对各交流发电模块进行定位,当交流发电模块的 数量过于庞大时, 使用人工进行监测的方式将显得不够具有效率; 此外, 微逆 变器内部的感测器其精密度也不如电表。
由此可见, 上述现有的方式, 显然仍存在不便与缺陷, 而有待加以进一歩 改进。为了解决上述问题, 相关领域莫不费尽心思来谋求解决之道, 但长久以 来一直未见适用的方式被发展完成。因此, 如何达到实时监控太阳能发电*** 中各交流发电模块的操作情形,同时以自动化的方式来取代人工对各交流发电 模块进行定位, 实属当前重要研发课题之一,亦成为当前相关领域需改进的目 标。 发明公开
为了解决上述的问题, 本揭露内容的一态样提供了一种太阳能发电***。 太阳能发电***包含监控模块、多个交流发电模块以及多个测量模块。多个交 流发电模块将太阳能转换为电能, 并各自输出电流。多个交流发电模块彼此电 性连接在电力回路上, 并通过电力回路将各输出电流汇整并传送至市电。多个 测量模块分别电性连接多个交流发电模块,每一测量模块包含电流和电压感测 器、断路器与通讯单元。 电流感测器用以感测于测量模块在电力回路的位置上 所通过的交流电流并产生电流参数。电压感测器用以感测于测量模块在电力回 路连接点上的交流电压并产生电压参数。 断路器用以取代人工断开电性的连 接。通讯单元用以传输电流和电压参数至前述的监控模块,亦可接收来自监控 模块对断路器的控制命令。且前述的监控模块用以通过各测量模块所回传的多 个电流和 /或电压参数计算多个交流发电模块的相对位置次序。
根据本发明一实施例, 前述的测量模块包含第一断路器。第一断路器耦接 于测量模块的输入端与第一电流感测器之间。
根据本发明一实施例, 前述的测量模块包含第二断路器。第二断路器耦接 于测量模块的输出端与第一电流感测器之间。
根据本发明又一实施例, 前述的测量模块更包含电压感测器以及控制单 元。电压感测器用以感测于测量模块在电力回路的位置的电压并产生对应的电 压参数。控制单元用以依据监控模块的配置断开第一断路器或第二断路器, 且 监控模块通过控制单元逐次断开多个测量模块中每一者的第一断路器或第二 断路器或第三断路器, 并通过多个测量模块所回传的多个电压和 /或电流参数 计算多个交流发电模块的相对位置次序。
上述的太阳能发电***,其中每一测量模块设置于相邻的两级交流发电模 块之间, 每一测量模块包含一输入端以及一输出端, 该输入端耦接至一前级的 交流发电模块, 该输出端耦接至一后级的交流发电模块或耦接至市电。
上述的太阳能发电***,其中该第一电流感测器耦接于该输入端以及该输 出端之间,用以感测该级的交流发电模块以前各级的一加总输出电流, 以产生 该第一电流参数。
上述的太阳能发电***,其中每一测量模块对应设置于一当级交流发电模 块中, 并通过该电力回路耦接于相邻的两交流发电模块之间, 或是交流发电模 块与市电之间,每一测量模块包含一第一输入端、一第二输入端以及一输出端, 该第一输入端耦接至一前级的交流发电模块,该第二输入端耦接至该当级的交 流发电模块, 该输出端耦接至一后级的交流发电模块。
上述的太阳能发电***,其中每一测量模块更包含一第二电流感测器耦接 于该第二输入端以及该输出端之间,用以感测该当级的交流发电模块的输出电 流,以产生该第二电流参数,该通讯单元更传输该第二电流参数至该监控模块, 该监控模块用以通过这些测量模块所回传的这些第二电流参数判断这些交流 发电模块的工作状态。
上述的太阳能发电***,其中该第一电流感测器耦接于该第一输入端以及 该输出端之间, 用以感测该前级的交流发电模块以前各级的一加总输出电流, 以产生该第一电流参数。
上述的太阳能发电***, 其中每一测量模块包含一断路器, 耦接于该第二 输入端与该输出端之间。
上述的太阳能发电***, 其中每一测量模块更包含: 一控制单元, 用以依 据该监控模块的配置断开该断路器;其中该监控模块通过该控制单元逐次断开 这些测量模块中每一者的该断路器,并通过这些测量模块所回传的这些第一电 流参数计算这些交流发电模块的相对位置次序。
本揭露内容的另一态样提供了一种测量模块,可应用于前述的太阳能发电 ***。测量模块具有第一输入端、第二输入端与输出端, 测量模块包含第一电 流感测器、 第二电流感测器、 电压感测器、 控制单元、 通讯单元与储存单元。 第一电流感测器耦接于第一输入端与输出端之间, 并产生第一电流参数。第二 电流感测器耦接于第二输入端与输出端之间, 并产生第二电流参数。 电压感测 器用以检测输出端的电压, 以产生一电压参数。控制单元用以接收第一电流参 数、第二电流参数以及电压参数。通讯单元用以依据控制单元的配置以传输第 一电流参数、第二电流参数以及电压参数至外部监控***。储存单元用以储存 第一电流参数、第二电流参数、 电压参数以及测量模块的一结构资讯。前述的 结构资讯包含测量模块的第一输入端、第二输入端与输出端的连接状态以及测 量模块的内部结构。
根据本发明的一实施例,前述的测量模块更包含第一断路器或第二断路器 或第三断路器。第一断路器用以在测量模块执行定位操作时依据控制单元的配 置以切断测量模块的第一输入端与第一电流感测器之间的电流路径。第二断路 器用以在测量模块执行定位操作时依据控制单元的配置以以切断输出端与第 一电流感测器之间的一电流路径。第三断路器用以在测量模块执行定位操作时 依据控制单元的配置以切断于测量模块的第二输入端与第二电流感测器之间 的电流路径。
本揭露内容的又一态样系提供了一种定位方法。定位方法适用于包含多个 交流发电模块的发电***, 定位方法包含了下列歩骤:测量多个交流发电模块 在电力回路的多个相异位置上所形成的交流电流或连接点电压,以分别取得多 个对应的电流或电压参数; 以及, 根据多个电流或电压参数计算出对应的各交 流发电模块的相对位置次序。
根据本发明的一实施例,前述的定位方法更包含逐次断开多个交流发电模 块中的一者与相邻的两交流发电模块中的一者之间的连接路径,并测量多个交 流发电模块中每一者在电力回路的位置上的一电压值,以分别取得多个对应的 电压参数;以及,通过多个电压参数计算出多个交流发电模块的相对位置次序。
上述的定位方法, 其中还包含: 逐次切断这些交流发电模块中的一者所提 供的该输出电流,并测量这些交流发电模块在该电力回路的这些相异位置上所 形成的交流电流, 以分别取得这些电流参数。
综上所述, 本发明的技术方案与现有技术相比具有明显的优点和有益效 果。通过上述技术方案, 可达到相当的技术进歩, 并具有产业上的广泛利用价 值,本揭示内容能够对太阳能发电***中多个交流发电模块进行快速的定位以 及实时监控各个交流发电模块的工作情形。 國麵兑日月
为让本发明的上述和其他目的、特征、优点与实施例能更明显易懂, 所附 附图的说明如下:
图 1依照本发明一实施例绘示一种测量模块的示意图;
图 2A依照本发明一实施例绘示太阳能发电***的示意图;
图 2B依照图 2A太阳能发电***于另一实施例的示意图;
图 3A依照本发明另一实施例绘示太阳能发电***的示意图; 图 3B依照本发明内容的另一实施例绘示测量模块的示意图; 图 3C依照本发明内容的又一实施例绘示测量模块的示意图; 以及 图 4依照本发明绘示一定位方法的流程图。 其中, 附图标记:
测量模块: 100、 100a 电流感测器: 110、
电压感测器: 120 控制单元: 130
通讯单元: 140 储存单元 150
断路器: 160、 162、 164
太阳能发电***: 200、 200a、 300
监控模块: 220 交流发电模块: 240、 320、 322、 324 子发电***: 210、 212 直流模块: 320a
微逆变器: 320b 连接接口: 320c
微逆变器主电路: 320d 定位方法: 400
歩骤: 410、 420
电流: lN,input 1、 lN,input2、 IN? input、 IN? output、
下文举实施例配合所附附图作详细说明,但所提供的实施例并非用以限制 本发明所涵盖的范围, 而结构操作的描述非用以限制其执行的顺序,任何由元 件重新组合的结构, 所产生具有均等功效的装置, 皆为本发明所涵盖的范围。 此外, 附图仅以说明为目的, 并未依照原尺寸作图。 为使便于理解, 下述说明 中相同元件将以相同的符号标示来说明。
关于本文中所使用的 "第一"、 "第二"、 …等, 并非特别指称次序或顺位 的意思,亦非用以限定本发明, 其仅仅是为了区别以相同技术用语描述的元件 或操作而已。
另外, 关于本文中所使用的 "耦接 "或 "连接", 均可指二或多个元件相 互直接作实体或电性接触, 或是相互间接作实体或电性接触,亦可指二或多个 元件相互操作或动作。
请同时参照图 1与图 2A, 图 1依照本发明一实施例绘示一种测量模块 100的 示意图。 图 2A其绘示根据本发明的一实施例中太阳能发电*** 200的示意图。 如图 2A所示, 太阳能发电*** 200包含监控模块 220、 多个交流发电模块 240以 及多个测量模块 100。
多个测量模块 100用以对应多个交流发电模块 240设置, 于图 2A的实施例 中, 每一测量模块 100分别耦接于其中两个交流发电模块 240之间,亦或是在一 个交流发电模块 240与市电之间。
如图 1所示, 测量模块 100包含第一电流感测器 110以及通讯单元 140。
测量模块 100具有二输入端与一输出端,其中第一电流感测器 110耦接于测 量模块 100的输入端与输出端之间,第一电流感测器 110用以产生第一电流参数 ( S口 IN, uti )。
举例来说, 第一电流感测器 110检测测量模块 100的输入端接收的总电流 iN,mputl, 此总电流 ^可为设置于此测量模块 100的位置以前各交流发电模块 输出的交流电流总和。 例如于图 2A中, 第 2级的测量模块 100其输入端接收的 总电流 i2,mputl为第 1级交流发电模块与第 2级交流发电模块输出的交流电流总和 (亦即 i putf l^+I^) , 并依据此总电流^, ^产生对应的第一电流参数。
通讯单元 140用以将第一电流参数与电压参数传送至外部监控***。 举例 而言, 通讯单元 140可以通过无线传输或有线如电力线通讯 (power line communication, PLC ) 的传输方式, 将第一电流参数与电压参数传送至外部监 控***。通过此种方式, 使用者可以通过外部监控达到中央控管并实时得知各 个交流发电模块的操作情形。
以下段落将提出数个应用测量模块 100的实施例,来说明上述测量模块 100 的功能与应用, 但本发明并不仅以下所列的实施例为限。
如图 2A所示, 多个交流发电模块 240将太阳能转换为电能, 并各自输出电 流 Iac,N。 多个交流发电模块 240彼此电性连接在电力回路上, 通过电力回路将 各输出电流 iac,N汇整并传送至电厂或市电。
在此实施例中, 多个测量模块 100分别电性连接多个交流发电模块, 且此 实施例中测量模块 100的第一电流感测器 110用以感测测量模块 100配置在电力 回路的位置上所通过的交流电流, 并产生对应的第一电流参数。
举例而言, 如图 2A所示, 从 1到 N-1级的每一测量模块 100设置于相邻的两 级交流发电模块 240之间, 其中每一测量模块 100包含输入端与输出端,测量模 块 100的输入端耦接至前级的交流发电模块 240, 而测量模块 100的输出端则耦 接至后级的交流发电模块 240。 第 N级的测量模块 100设置于交流发电模块 240 与市电之间, 其输入端耦接至前级的交流发电模块 240, 而输出端则耦接至市 电。
如此,每一级测量模块 100内的第一电流感测器 110可感测前级的交流发电 模块 240以前各级的加总输出电流, 以产生第一电流参数。
例如,第 1级测量模块 100中的电流感测器 110可测量自第 1级的交流发电模 块 240所产生的输出电流 而第 2级测量模块 100中的电流感测器 110则可测 量自第 1级交流发电模块 240所产生的输出电流 与第 2级交流发电模块 240所 产生的输出电流 Iac,2的总和。
测量模块 100内的通讯单元 140则将前述的第一电流参数传输至监控模块
220。
而监控模块 220通过多个测量模块 100所回传多个第一电流参数来计算出 多个交流发电模块 240在电力回路上的相对位置次序。
举例来说, 假设每一交流发电模块 240在正常操作下能够产生 1安培 (A) , 而在第 1级测量模块 100所产生的对应的第一电流参数应为 1A (即第 1级交流发 电模块 240所输出的电流 第 2级测量模块 100所产生的对应的第一电流参 数应为 2A (即为第 1级交流发电模块 240输出的电流 Iac,l与第 2级交流发电模块 240输出的电流 Ι ,2), 依此类推, 在第 Ν级测量模块 100所产生的第一电流参数 应为 Ν倍的 1Α。
如此, 通过前述多个第一电流参数的大小排列, 便能排列出多个交流发电 模块 240的相对位置。 相对于公知的人工记录方式, 本实施例中的太阳能发电 *** 200通过监控模块 220对多个第一电流参数进行计算,便能快速地定位多个 交流发电模块 240。
再者, 假设第 2级交流发电模块出现故障, 使得第 2级交流发电模块的转换 效率降低, 此时第 2级交流发电模块的输出电流 Iae,2为 0.3Α, 且其余的交流发电 模块皆正常输出 1A的电流。 此时对应的第 2级测量模块产生的第一电流参数为 1.3A, 而第 3级测量模块产生的第一电流参数为 2.3A, 使用者通过监控模块 220 得知以上资讯时, 便能得知第 2级的交流模块出现故障, 以利使用者进行后续 的维修。 根据本发明另一实施例,太阳能发电*** 200中的多个测量模块 100可进一 歩地包含电压感测器 120、 控制单元 130以及第一断路器 160或第二断路器 162。
第一断路器 160用以根据控制单元 130的配置以切断测量模块 100的输入端 与第一电流感测器 110之间的电流路径。 第二断路器 162用以根据控制单元 130 的配置以切断测量模块 100的输出端与第一电流感测器 110之间的电流路径。
请同时参照图 1与图 2A, 第一断路器 160耦接在测量模块 100的输入端与第 一电流感测器 110之间, 而第二断路器 162耦接在测量模块 100的输出端与第一 电流感测器 110和第二电流感测器 112耦接节点 nodel之间。
电压感测器 120用以检测测量模块 100的输出端的电压,并产生对应的电压 参数。 例如图 2A中的第 2级测量模块 100内的电压感测器 120可感测第 2级测量 模块 100在电力回路上的位置的电压 (亦即测量模块 100内部的节点 nodel上的 电压) 并产生对应的电压参数。
控制单元 130用以接收前述的第一电流参数、 第二电流参数与电压参数, 并传送至通讯单元 140与储存单元 150。且控制单元 130更根据监控模块 220的配 置以断开第一断路器 160或第二断路器 162。
在此实施例中, 监控模块 220通过控制单元 130逐次地断开多个测量模块 100中每一者的第一断路器 160或第二断路器 162,并通过多个测量模块 100所回 传的多个电压参数来计算出多个交流发电模块的相对次序。
举例而言,若是断开第 N-1级测量模块 100的第二断路器 162,亦即切断第 1 至 N-1级交流发电模块 240与电力回路的连接, 则第 1级至第 N-1级的测量模块 100内的电压感测器 120皆会感测到电力回路上出现电压变化。 同理, 若断开第 2级测量模块 100的第二断路器 162, 亦即切断第 1级至第 2级交流发电模块 240 与电力回路的连接,则第 1级至第 2级的测量模块 100内的电压感测器 120皆会感 测到电力回路上出现电压变化。 同理可知, 当切断一测量模块 100后, 前方感 受到电压变化的电压感测器个数越多者, 其对应的测量模块 100的排序应在电 力回路中的越后端, 亦即越接近责任分界点 (如第 N级测量模块 100), 反之, 感受到变化的电压感测器个数越少者, 则应在电力回路中的在越前端 (如第 1 级测量模块 100)。
因此, 监控模块 220可逐次断开每一级测量模块 100的第一断路器 160或第 二断路器 162,并观察每次断开一个测量模块 100后受到影响的电压参数的个数 以定位出各交流发电模块 240。 电力操作者可以通过外部监控***来远端控制 上述的第一断路器 160、 第二断路器 162, 通过依序切断第一断路器 160或第二 断路器 162, 可以对电力回路中各个端点进行不同的测试, 免去了以往需要操 作者到现场一一测试的繁复过程。
测量模块 100并不限于同时包含第一断路器 160与第二断路器 162。 实际应 用中,于测量模块 100中设置其中一个断路器 (第一断路器 160或第二断路器 162) 即可完成上述功能。
请参阅图 2B,其绘示根据图 2A的太阳能发电***的另一实施例的示意图。 如图 2B所示, 太阳能发电*** 200a具有两个子发电*** 210、 212, 且子发 电*** 210、 212中亦具有多个交流发电模块 240与多个测量模块 100。
在此实施例中, 子发电*** 210、 212分别具有相同数目的交流发电模块 240, 且假设各个测量模块 100不具有前述的第一断路器 160或第二断路器 162 时。 此时监控模块 220无法辨别子发电*** 210与子发电*** 212的位置, 可在 子发电*** 210与子发电*** 212上通过遮荫停止任一交流发电模块 240的操 作, 进而使两个子发电***的总电流产生差异, 以让监控模块 220进行辨别子 发电*** 210与子发电*** 212。在监控模块 220辨别出子发电*** 210与子发电 *** 212之后,再分别对子发电*** 210与子发电*** 212进行前述的定位操作, 以让监控模块排序出子发电*** 210与子发电*** 212内多个交流发电模块 240 的相对位置。
举例而言, 假设每一子发电***中皆具有 N级的交流发电模块 240, 且每 一交流发电模块 240在正常操作下能够产生 1A。理论上, 在图 2B中的总测量模 块 100a产生的第一电流参数应为 (2N) X 1A。若让子发电*** 212中的第 1级交流 发电模块 240停止运作, 例如通过人工方式遮蔽交流发电模块 240, 使其无法正 常接收太阳能, 贝 ij总测量模块 100a产生的第一电流参数应为 (2N-1) X 1A, 子发 电*** 212中的第 N级测量模块产生的第一电流参数应为 (N-1) X 1A, 子发电系 统 210中的第 N级测量模块 100产生的第一电流参数应为 (N) X 1A。监控模块 220 根据上述的第一电流参数的电流大小排序, 便可定位出子发电*** 210与子发 电*** 212,进而依序定位各子发电***中的各个交流发电模块 240之间的相对 位置次序。
请参阅图 3A, 其绘示本发明内容的另一实施例中太阳能发电***的示意 图。
如图 3A所示, 在太阳能发电*** 300中, 每一个测量模块 100对应设置于 当级交流发电模块 320中, 并通过电力回路耦接于相邻的两交流发电模块 320 之间。 在此实施例中, 每一测量模块 100可直接测量单一级交流发电模块 320 产生的交流电流 Iac,N, 并同时测量前级交流发电模块 320所产生的总交流电流 和。
请一并参照图 1与图 3A, 于此实施例中测量模块 100可更进一歩包含另一 第二电流感测器 112耦接于测量模块 100的另一输入端与输出端之间,电流感测 器 112用以产生第二电流参数(即 iN,mput2)。第二电流感测器 112可用来检测单一 交流发电模块 (当级交流发电模块 320) 输出的交流电流, 并产生对应的第二 电流参数 iN,mput2。 或者, 当电力回路有多个并联的子发电***时, 亦可通过第 二电流感测器 112测量并联的子发电***的总电流值。
在本实施例中,测量模块 100对应设置于当级交流发电模块 320内具有多种 实现方式。下列将提出数个实现方式,但本发明并不仅以下所列的实现方式为 限。
如图 3B所示, 其绘示本发明内容的另一实施例中测量模块的示意图。 一般而言, 交流发电模块 320具有直流模块 320a、 微逆变器 320b以及连接 接口 320c。 直流模块 320a将太阳能转换成电能。 微逆变器 320b则将此电能 (直 流电:)转换成交流电, 以输出电流 Iac,N。连接接口 320c则通过模块化的电力线插 座来连接各级交流发电模块 320。
在此一实施例中, 测量模块 100可整合在前述的连接接口 320c中 (如交流 发电模块 322), 以降低交流发电模块的体积及成本,使得电力回路的布线可以 更有弹性的应用。 连接接口 320c可为将前述测量模块 100整合或安置于其内部 的中间接口装置, 譬如为一连接器。
如图 3C所示, 其绘示本发明内容的又一实施例中测量模块的示意图。 在此实施例中,当微逆变器 320b本身具有电流感测器以监控微逆变器 320b 所转换的交流电流 Ι ,Ν时-, 测量模块 100可与微逆变器 320b进一歩地整合。 举 例来说, 测量模块 100可共用微逆变器 320b本身的电流感测器 (如交流发电模 块 324), 即共用第二电流感测器 112, 来达到更高度的***整合并节省了硬件 成本上额外的支出,但本发明并不以此为限。此外,图中的微逆变器主电路 320d 用以将直流模块 320a产生的直流电流转换成交流电流 iac,N
另一方面, 请参照图 3A, 太阳能发电*** 300中的每一测量模块 100具有 一第一输入端、 一第二输入端与一输出端。 测量模块 100的第一输入端耦接至 前级交流发电模块 320,测量模块 100的第二输入端耦接至当级的交流发电模块 320, 而测量模块 100的输出端则耦接至一后级的交流发电模块。
举例来说, 图 3A中的第 N-1级的交流发电模块 320内的测量模块 100的第一 输入端耦接至第 N-2级的交流发电模块,
Figure imgf000013_0001
级至第 N-2级交流发电模块 320所输出的交流电流总和, 即
Figure imgf000013_0002
z Iac,2 十… +Iac,N-2) o 第 N-1级的交流发电模块 320内的测量模块 100的第二输入端用以接收 第 N-1级交流发电模块 320自行输出的交流电流 Iac,N-l。 第 N-1级的交流发电模 块 320内的测量模块 100的输出端耦接第 N级的交流发电模块 320以传送交流电 流 iN-i ,ouput, 其中 i N-houput― 1 N-1, input + IacN- 亦即交流电流 i ^put为第 1级至第
N-1级交流发电模块 320所输出的交流电流总和。
请同时参照图 1, 在此实施例中的测量模块 100的第二电流感测器 112耦接 于测量模块 100的第二输入端以及输出端之间。
在此实施例中,测量模块 100内通讯单元 140将前述的第二电流参数传输至 监控模块 220。
监控模块 220通过测量模块 100所回传的第二电流参数来判断交流发电模 块 320的工作状态。
举例来说, 假设每一交流发电模块 320在正常操作下能够输出电流 ^为
100mA, 若第 1级交流发电模块 320发生故障,第 1级交流发电模块 320的输出电 流 Iac,l降低至 30mA,此时监控模块 220通过第 1级交流发电模块 320中的测量模 块 100所回传的第二电流参数, 便能得知第 1级交流发电模块 320的工作状态出 现异常。
再者, 在太阳能*** 300中的监控模块 220亦可通过各个测量模块 100回传 的第一电流参数来排序各交流发电模块的相对次序。
请同时参照图 1与图 3A, 在又另一实施例中, 太阳能发电*** 300中的每 一测量模块 100更可进一歩地包含第三断路器 164。
第三断路器 164用以根据控制单元 130的配置以切断测量模块 100的第二输 入端与第二电流感测器 112之间的电流路径。 在此实施例中, 控制单元 130根据监控模块 220的配置来断开第三断路器 164。 监控模块 220可通过控制单元 130逐次断开测量模块中的各第三断路器 164, 并通过各测量模块 100所回传的第一电流参数来计算各个交流发电模块 320的相对位置次序。
举例而言, 当切断第 1级交流发电模块 320中的第三断路器 164, 此时后方 第 2级至第 N级的交流发电模块 320所测得的第一电流参数 (即 i2,mput〜iN,mput:>皆 会产生对应的变化。同理,而当切断第 N-2级交流发电模块 320中的第三断路器 164, 此时后方第 N-1级至第 N级的交流发电模块 320所测得的第一电流参数 (即
Figure imgf000014_0001
皆会产生对应的变化, 但第 1级至第 N-2级交流发电模块 320中 的第一电流感测器 110所测得的第一电流参数 (即 i pu i^^ut)不会改变。
因此,在此实施例中,监控模块 220可依序一次断开一个交流发电模块 320, 并同时纪录各测量模块回传的多个第一电流参数,通过观测各个第一电流参数 的变化, 便可依序定位出交流发电模块 320在电力回路上的相对位置次序。 或 者,在此实施例中,太阳能发电*** 300中的每一测量模块 100可具有前述的第 一断路器 160或第二断路器 162与电压感测器 120,此时监控模块 220亦可通过测 量多个电压参数来定位交流发电模块 320。
另一方面, 在上述各实施例中, 测量模块 100更可包含储存单元 150。请参 照图 1, 储存单元 150用以储存前述的第一电流参数、第二电流参数、 电压参数 以及测量模块 100的结构资讯。 测量模块 100的结构资讯可包含测量模块 100的 每一输入端、 输出端的连接状态以及测量模块 100的内部结构。
因此, 电力操作者能通过外部监控*** (即监控模块 220) 通过通讯单元 140读取储存单元 150内部储存的数据,便可得知目前电力***应用的测量模块 100的结构, 以针对各种不同情形进行对应的操作。 再者, 在前述的各实施例 中, 监控模块 220亦可整合至测量模块 100内部, 来达成更高的整合度。
请参阅图 4, 其绘示根据本发明内容的一定位方法的流程图。
本发明的另一态样提供了一种定位方法 400,定位方法 400可适用于具有多 个交流模块的发电***, 其中多个交流发电模块各自产生输出电流, 且彼此电 性连接于电力回路上。
在歩骤 410中, 测量各交流发电模块在电力回路上多个位置的耦接点电压 和所形成的交流电流, 并纪录为多个对应的电流及电压参数。此歩骤中, 亦可 针对测量模块的架构信息, 决定是否于控制断路器后再做测量, 抑或是直接测 量, 或者暂时无法判断, 须以人工遮荫辅助以阶段性完成。
在歩骤 420中, 根据前述的电流来计算出多个交流发电模块的相对位置次 序。在暂时无法判断,须以人工遮荫辅助以阶段性完成的状况时,定位方法 400 可能是由歩骤 410与 420穿插而成。
举例而言, 如图 2A所示, 通过测量模块 100测量在电力回路上多个位置上 的电流, 并产生对应的电流参数 (如前述的第一电流参数), 便可依据各个电 流参数的大小来排序出各交流发电模块 240的相对位置次序。
或者, 在歩骤 410中, 可通过逐次切断交流发电模块中的一者提供的输出 电流, 并同时测量各交流发电模块在电力回路各个位置上所形成的交流电流, 并纪录为多个对应的电流参数。
举例而言, 如图 3A所示, 当切断第 N-1级交流发电模块 320电流 1^^, 此 时后方第 Ν级的交流发电模块 320所测得的第一电流参数 (即 iN,mput:>会产生对应 的变化, 但第 1级至第 N-1级交流发电模块 320所测得的第一电流参数(即
Figure imgf000015_0001
因此, 通过上述的关系可排列出各交流发电模块的相 对位置次序。
另一方面, 在定位方法 400中, 可通过逐次断开各交流发电模块与相邻的 两交流发电模块中的一者之间的连接路径,并测量交流发电模块中每一者在电 力回路的位置上的电压值, 并分别取得多个对应的电压参数。通过多个电压参 数亦可计算出多个交流发电模块的相对位置次序。
例如, 如图 2A所示, 切断第 N级交流发电模块与第 N-1级交流发电模块的 连接,而前方第 1级至第 N-1级的测量模块皆会感受到电压变化, 故可依据电压 参数发生变化的个数来排序各个交流发电模块的位置次序。
上述各个实施例中的太阳能发电***以单相发电的方式为例,但本发明并 不以此为限, 本领域技术人员可根据上述实施例设置于各式发电***, 例如三 相发电***等等。
综上所述, 本揭露内容所示的测量模块具有多种应用。 随着不同的需求, 测量模块可同时包含全部的电流感测器、 电压感测器以及断路器。或者, 依据 成本考量,测量模块可仅包含单一的电流感测器与断路器或上述各元件的各种 组合。使用者可通过测量模块的储存单元得知目前电力回路中所应用的测量模 块中是具有何种组合的结构资讯, 以进行各种不同的定位与监控的操作。 虽然本发明已以实施方式揭露如上, 然其并非用以限定本发明, 任何本领 域技术人员, 在不脱离本发明的精神和范围内, 当可作各种的更动与润饰, 因 此本发明的保护范围当以权利要求书为准。 工业应用性
本发明的技术方案与现有技术相比具有明显的优点和有益效果。通过上述 技术方案, 可达到相当的技术进歩, 并具有产业上的广泛利用价值, 本揭示内 容能够对太阳能发电***中多个交流发电模块进行快速的定位以及实时监控 各个交流发电模块的工作情形。

Claims

权 利 要 求 书
1. 一种太阳能发电***, 其特征在于, 包含:
一监控模块;
多级交流发电模块, 各自产生一输出电流, 彼此电性连接于一电力回路; 以及
多个测量模块,分别电性连接这些交流发电模块,每一测量模块各自包含: 一第一电流感测器,用以感测于该测量模块在该电力回路的位置上所通过 的交流电流, 以产生一第一电流参数; 以及
一通讯单元, 用以传输该第一电流参数至该监控模块,
其中,该监控模块用以通过这些测量模块所回传的这些第一电流参数计算 这些交流发电模块的相对位置次序。
2. 如权利要求 1所述的太阳能发电***, 其特征在于, 每一测量模块设置 于相邻的两级交流发电模块之间, 每一测量模块包含一输入端以及一输出端, 该输入端耦接至一前级的交流发电模块,该输出端耦接至一后级的交流发电模 块或耦接至市电。
3. 如权利要求 2所述的太阳能发电***, 其特征在于, 该第一电流感测器 耦接于该输入端以及该输出端之间,用以感测该级的交流发电模块以前各级的 一加总输出电流, 以产生该第一电流参数。
4. 如权利要求 1所述的太阳能发电***, 其特征在于, 每一测量模块包含 一第一断路器, 该第一断路器耦接于该输入端与该第一电流感测器之间。
5. 如权利要求 1所述的太阳能发电***, 其特征在于, 每一测量模块包含 一第二断路器, 该第二断路器耦接于该输出端与该第一电流感测器之间。
6. 如权利要求 4或 5所述的太阳能发电***, 其特征在于, 每一测量模块 还包含:
一电压感测器, 用以感测于该测量模块在该电力回路位置的一电压, 以产 生一电压参数; 以及
一控制单元,用以依据该监控模块的配置断开该第一断路器与该第二断路 器;
其中该监控模块通过该控制单元逐次断开这些测量模块中每一者的该第 一断路器或该第二断路器,并通过这些测量模块所回传的这些电压参数计算这 些交流发电模块的相对位置次序。
7. 如权利要求 1所述的太阳能发电***, 其特征在于, 每一测量模块对应 设置于一当级交流发电模块中,并通过该电力回路耦接于相邻的两交流发电模 块之间, 或是交流发电模块与市电之间, 每一测量模块包含一第一输入端、一 第二输入端以及一输出端, 该第一输入端耦接至一前级的交流发电模块, 该第 二输入端耦接至该当级的交流发电模块,该输出端耦接至一后级的交流发电模 块。
8. 如权利要求 7所述的太阳能发电***, 其特征在于, 每一测量模块更包 含一第二电流感测器耦接于该第二输入端以及该输出端之间,用以感测该当级 的交流发电模块的输出电流, 以产生该第二电流参数, 该通讯单元更传输该第 二电流参数至该监控模块,该监控模块用以通过这些测量模块所回传的这些第 二电流参数判断这些交流发电模块的工作状态。
9. 如权利要求 7所述的太阳能发电***, 其特征在于, 该第一电流感测器 耦接于该第一输入端以及该输出端之间,用以感测该前级的交流发电模块以前 各级的一加总输出电流, 以产生该第一电流参数。
10. 如权利要求 7所述的太阳能发电***, 其特征在于, 每一测量模块包 含一断路器, 耦接于该第二输入端与该输出端之间。
11. 如权利要求 10所述的太阳能发电***, 其特征在于, 每一测量模块更 包含:
一控制单元, 用以依据该监控模块的配置断开该断路器;
其中该监控模块通过该控制单元逐次断开这些测量模块中每一者的该断 路器,并通过这些测量模块所回传的这些第一电流参数计算这些交流发电模块 的相对位置次序。
12. 一种定位方法, 适用于包含多个交流发电模块的一发电***, 其特征 在于, 这些交流发电模块各自产生一输出电流, 这些交流发电模块彼此电性连 接于一电力回路, 该定位方法包含:
测量这些交流发电模块在该电力回路的多个相异位置上所形成的交流电 流, 以分别取得多个对应的电流参数; 以及
根据这些电流参数计算出对应的这些交流发电模块的相对位置次序。
13. 如权利要求 12所述的定位方法, 其特征在于, 还包含:
逐次切断这些交流发电模块中的一者所提供的该输出电流,并测量这些交 流发电模块在该电力回路的这些相异位置上所形成的交流电流,以分别取得这 些电流参数。
14. 如权利要求 12所述的定位方法, 其特征在于, 还包含:
逐次断开这些交流发电模块中的一者与相邻的两交流发电模块中的一者 之间的连接路径,并测量这些交流发电模块中每一者在该电力回路的位置上的 电压值, 以分别取得多个对应的电压参数; 以及
通过这些电压参数计算出这些交流发电模块的相对位置次序。
15. 一种测量模块, 其特征在于, 具有一第一输入端、 一第二输入端与一 输出端, 该测量模块包含:
一第一电流感测器, 耦接于该第一输入端与该输出端之间, 用以产生一第 一电流参数;
一第二电流感测器, 耦接于该第二输入端与该输出端之间, 用以产生一第 二电流参数;
一电压感测器, 用以检测该输出端的电压, 以产生一电压参数;
一控制单元,用以接收该第一电流参数、该第二电流参数以及该电压参数 ·' 一通讯单元, 用以依据该控制单元的配置以传输该第一电流参数、该第二 电流参数以及该电压参数至一外部监控***; 以及
一储存单元, 用以储存该第一电流参数、 该第二电流参数、 该电压参数以 及该测量模块的一结构资讯, 其中该结构资讯包含该测量模块的该第一输入 端、 该第二输入端与该输出端的连接状态以及该测量模块的内部结构。
16. 如权利要求 15所述的测量模块, 其特征在于, 还包含:
一第一断路器,用以该测量模块执行一定位操作时依据该控制单元的配置 以切断该第一输入端与该第一电流感测器之间的一电流路径;
一第二断路器,用以该测量模块执行该定位操作时依据该控制单元的配置 以切断该输出端与该第一电流感测器之间的一电流路径; 以及
一第三断路器,用以该测量模块执行该定位操作时依据该控制单元的配置 以切断该第二输入端与该第二电流感测器之间的一电流路径。
PCT/CN2013/081907 2013-07-24 2013-08-20 太阳能发电***、测量模块与定位方法 WO2015010352A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112013007265.3T DE112013007265T5 (de) 2013-07-24 2013-08-20 System zur Solarenergiegewinnung, Messeinheit und Positionierungsverfahren

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310314080.3 2013-07-24
CN201310314080.3A CN103475019B (zh) 2013-07-24 2013-07-24 太阳能发电***、测量模块与定位方法

Publications (1)

Publication Number Publication Date
WO2015010352A1 true WO2015010352A1 (zh) 2015-01-29

Family

ID=49799763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/081907 WO2015010352A1 (zh) 2013-07-24 2013-08-20 太阳能发电***、测量模块与定位方法

Country Status (5)

Country Link
US (1) US9780561B2 (zh)
CN (1) CN103475019B (zh)
DE (1) DE112013007265T5 (zh)
TW (1) TWI497901B (zh)
WO (1) WO2015010352A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111142420A (zh) * 2018-11-05 2020-05-12 黑龙江鑫源昊能源科技有限公司沈阳分公司 一种太阳能和沼气能热源采集及供热发电***

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9105765B2 (en) 2012-12-18 2015-08-11 Enphase Energy, Inc. Smart junction box for a photovoltaic system
CN104767482B (zh) * 2014-01-02 2017-05-31 上海岩芯电子科技有限公司 一种光伏组件老化和短路故障在线诊断方法
EP3149827B1 (en) * 2014-05-25 2018-07-11 SunPower Corporation Alternative energy source module array characterization
TWI655841B (zh) * 2017-09-15 2019-04-01 中華電信股份有限公司 太陽能發電效率之分析系統及分析方法
US10417413B2 (en) * 2017-10-10 2019-09-17 The Florida International University Board Of Trustees Context-aware intrusion detection method for smart devices with sensors
CN113169710B (zh) * 2018-12-13 2024-03-08 学校法人帝京大学 太阳能电池模块内的太阳能电池单元的工作电压的推测方法及太阳能电池单元工作电压推测***

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201413353Y (zh) * 2009-04-23 2010-02-24 青海新能源(集团)有限公司 小型光伏***数据采集测试仪
CN201583579U (zh) * 2009-12-04 2010-09-15 深圳市拓邦自动化技术有限公司 用于监测太阳能光伏电池板电流的监测装置
KR20110105258A (ko) * 2010-03-18 2011-09-26 현대중공업 주식회사 태양광 발전용 접속반의 스트링 오류 검출방법
CN102437793A (zh) * 2011-10-21 2012-05-02 浙江昱能光伏科技集成有限公司 分布式并网太阳能光伏***
CN102630348A (zh) * 2009-12-07 2012-08-08 株式会社东芝 太阳能发电***
WO2013010083A2 (en) * 2011-07-13 2013-01-17 United Solar Ovonic Llc Failure detection system for photovoltaic array
KR20130079015A (ko) * 2012-01-02 2013-07-10 (주)지준시스템 개별단위 태양전지모듈 모니터링 시스템

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6111767A (en) * 1998-06-22 2000-08-29 Heliotronics, Inc. Inverter integrated instrumentation having a current-voltage curve tracer
JP2000269531A (ja) * 1999-01-14 2000-09-29 Canon Inc 太陽電池モジュール、太陽電池モジュール付き建材、太陽電池モジュール外囲体及び太陽光発電装置
JP2000217259A (ja) * 1999-01-25 2000-08-04 Kawamura Electric Inc 太陽光発電システム
US8013472B2 (en) * 2006-12-06 2011-09-06 Solaredge, Ltd. Method for distributed power harvesting using DC power sources
EP2062140A4 (en) 2007-04-09 2014-11-19 Live Data Systems Inc SYSTEM AND METHOD FOR MONITORING AND MANAGING AN ENERGY EFFICIENCY
CN101251561A (zh) * 2008-04-01 2008-08-27 济南新吉纳远程测控有限公司 太阳能发电***监测***及监测方法
US8264195B2 (en) 2008-10-01 2012-09-11 Paceco Corp. Network topology for monitoring and controlling a solar panel array
EP2278346B1 (en) * 2009-07-08 2013-05-01 Nxp B.V. Electricity meter tampering detection
EP2325970A3 (en) * 2009-11-19 2015-01-21 Samsung SDI Co., Ltd. Energy management system and grid-connected energy storage system including the energy management system
US9331499B2 (en) * 2010-08-18 2016-05-03 Volterra Semiconductor LLC System, method, module, and energy exchanger for optimizing output of series-connected photovoltaic and electrochemical devices
CN102608493B (zh) * 2011-01-25 2014-02-26 华北电力科学研究院有限责任公司 一种电压暂降源的定位方法及装置
CN102158129B (zh) * 2011-01-30 2013-04-17 浙江昱能光伏科技集成有限公司 太阳能光伏***及其故障探测方法
TW201306435A (zh) * 2011-07-21 2013-02-01 Univ Nat Cheng Kung 太陽能發電裝置及太陽能發電系統
CN102623973A (zh) * 2012-03-31 2012-08-01 上海电力学院 新能源电场场内电缆故障在线定位与隔离方法
US9267973B2 (en) * 2012-10-26 2016-02-23 Solantro Semiconductor Corp. Power generating component connectivity resistance
CN202870234U (zh) * 2012-11-12 2013-04-10 河南开启电力实业有限公司 10kv线路故障在线监测***

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201413353Y (zh) * 2009-04-23 2010-02-24 青海新能源(集团)有限公司 小型光伏***数据采集测试仪
CN201583579U (zh) * 2009-12-04 2010-09-15 深圳市拓邦自动化技术有限公司 用于监测太阳能光伏电池板电流的监测装置
CN102630348A (zh) * 2009-12-07 2012-08-08 株式会社东芝 太阳能发电***
KR20110105258A (ko) * 2010-03-18 2011-09-26 현대중공업 주식회사 태양광 발전용 접속반의 스트링 오류 검출방법
WO2013010083A2 (en) * 2011-07-13 2013-01-17 United Solar Ovonic Llc Failure detection system for photovoltaic array
CN102437793A (zh) * 2011-10-21 2012-05-02 浙江昱能光伏科技集成有限公司 分布式并网太阳能光伏***
KR20130079015A (ko) * 2012-01-02 2013-07-10 (주)지준시스템 개별단위 태양전지모듈 모니터링 시스템

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111142420A (zh) * 2018-11-05 2020-05-12 黑龙江鑫源昊能源科技有限公司沈阳分公司 一种太阳能和沼气能热源采集及供热发电***

Also Published As

Publication number Publication date
US9780561B2 (en) 2017-10-03
TWI497901B (zh) 2015-08-21
US20150028682A1 (en) 2015-01-29
CN103475019B (zh) 2016-07-27
CN103475019A (zh) 2013-12-25
TW201505356A (zh) 2015-02-01
DE112013007265T5 (de) 2016-04-07

Similar Documents

Publication Publication Date Title
WO2015010352A1 (zh) 太阳能发电***、测量模块与定位方法
CN103140765B (zh) 连接装置
CN103715983B (zh) 太阳能发电***的故障检测装置和方法
JP4673921B2 (ja) 太陽電池発電システムの異常検出装置及び方法
CN102901936B (zh) 交流电源断电检测方法及直流变频压缩机的断电保护方法
EP3361631A1 (en) Current-voltage curve scan method for photovoltaic module, and optimizer
US20180233902A1 (en) Ground fault detection device, communication device, method for controlling same, load device, switch and non-transitory computer-readable recording medium
CN202837520U (zh) 交流电源断电检测电路及直流变频空调器
CN214045571U (zh) 一种光伏组件的检测设备
WO2022206576A1 (zh) 光伏***
CN102742022A (zh) 太阳能光伏发电***
JP5742357B2 (ja) 太陽光発電用監視システム
JPH1063358A (ja) 連系形太陽光発電装置
CN112018806A (zh) 一种逆变器效率测试方法
WO2022165691A1 (zh) 阻抗检测方法和光伏***
CN115021324A (zh) 一种汇流设备、光伏***及故障检测方法
EP2963762B1 (en) Floating voltage suppression in a pv-inverter
CN203772971U (zh) 一种光伏电站运行状况监测器
CN202406055U (zh) 光伏并网逆变器pwm控制器
CN201335856Y (zh) 电压-电流变换电路
CN217639357U (zh) 一种三相电路局部放电监测装置
CN203606669U (zh) 一种电池板监控***
CN103105527A (zh) 一种室内用电功率检测装置及方法
CN218995426U (zh) 一种电网潮流和站内负载检测***
CN203084070U (zh) 一种室内用电功率检测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13890186

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112013007265

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13890186

Country of ref document: EP

Kind code of ref document: A1