WO2015008638A1 - Injector and manufacturing method thereof - Google Patents

Injector and manufacturing method thereof Download PDF

Info

Publication number
WO2015008638A1
WO2015008638A1 PCT/JP2014/067914 JP2014067914W WO2015008638A1 WO 2015008638 A1 WO2015008638 A1 WO 2015008638A1 JP 2014067914 W JP2014067914 W JP 2014067914W WO 2015008638 A1 WO2015008638 A1 WO 2015008638A1
Authority
WO
WIPO (PCT)
Prior art keywords
injector
nozzle plate
fuel
manufacturing
electroforming
Prior art date
Application number
PCT/JP2014/067914
Other languages
French (fr)
Japanese (ja)
Inventor
天明 浩之
靖 佐野
山崎 哲也
正志 西亀
岡本 良雄
小林 信章
康広 茂木
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to JP2015502004A priority Critical patent/JP5997358B2/en
Priority to CN201480002289.9A priority patent/CN104603447B/en
Publication of WO2015008638A1 publication Critical patent/WO2015008638A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/168Assembling; Disassembling; Manufacturing; Adjusting
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/08Perforated or foraminous objects, e.g. sieves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/162Means to impart a whirling motion to fuel upstream or near discharging orifices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1853Orifice plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1853Orifice plates
    • F02M61/186Multi-layered orifice plates

Definitions

  • the present invention relates to an injector and a manufacturing method thereof, and more particularly to a structure of a nozzle plate of the injector and a manufacturing method thereof.
  • Patent Document 1 Japanese Patent No. 4646256.
  • a fuel injection valve according to the present invention is characterized in that a disk with a hole having a large number of injection openings is arranged downstream of a valve seat body having a stationary valve seat.
  • An inflow opening provided with an annular inflow hollow chamber is provided immediately downstream of the injection opening so that the valve seat body covers the inflow hollow chamber and the injection opening on the downstream side of the holed disk.
  • the injection openings each have one inflow region whose diameter D1 is significantly larger than the diameter D2 of the region immediately downstream and with a sharp edge that follows the inflow region.
  • the region forms the narrowest cross section of the injection opening, and the injection opening widens in a trumpet shape from the region to the diameter D3 in the flow direction.
  • the injection valve is especially a mixture compression type Has been described as to have. "Suitable for use in a fuel injection apparatus for a spark ignition type internal combustion engine.
  • Patent Document 2 Japanese Patent Publication No. 2010-511833.
  • the present invention relates to a fuel injection valve, and this fuel injection valve has a valve seat body having an immovable valve seat surface.
  • the valve seat is housed in the longitudinal opening of the valve seat support and is tightly coupled to the valve seat support, with the atomizing attachment directly on the lower end surface of the valve seat
  • the atomizing attachment is provided with at least one injection opening, which is preferably enlarged in a funnel shape when viewed in the downstream direction.
  • it is suitable for attachment to a fuel injection device of a fuel-air-compression type spark ignition type internal combustion engine.
  • Patent Document 3 Japanese Patent Laid-Open No. 2002-98028.
  • This publication provides “a nozzle for a fuel injector that can improve the atomization degree of the injected fuel without substantially increasing the cost of the fuel injector.
  • the nozzle includes a plurality of flow paths and a plurality of vortex chambers.
  • the swirl chamber receives the fuel from the flow path, and jets the received fuel from the nozzle hole as a swirl flow or a swirl flow, thereby finely and rapidly atomizing the fuel. Yes.
  • Patent Document 2 discloses a fuel injection valve for a fuel injection device of an internal combustion engine, in which a valve longitudinal axis, a valve seat body provided with a stationary valve seat, and the valve seat of the valve seat body cooperate with each other.
  • the structure of the fuel injection valve and the manufacturing method thereof are characterized in that, in the type having a valve closing body, the atomizing attachment is directly formed on the valve seat body by electroforming with a fixing strength. Has been.
  • it is necessary to individually produce the atomization attachment it is necessary to improve the throughput.
  • the swirl chamber has a convex shape when viewed from the side from which fuel is ejected, thereby providing a nozzle plate with good fuel cut-out.
  • a reverse pattern of the lateral passage and swirl chamber is prepared on the substrate in advance by electroplating (hereinafter referred to as an “electroforming mold” in order to distinguish it from the nozzle plate manufactured by electroforming), and fuel injection
  • the outer shape of the outlet and the nozzle plate is made of a disposable resist.
  • a method is also provided for producing a nozzle plate by electroforming by improving the throughput by producing a plurality by batch electroforming and controlling the shape of the fuel injection port.
  • the present application includes a plurality of means for solving the above-described problems.
  • an injector for injecting fuel into an internal combustion engine an openable / closable valve body for injecting and stopping the fuel, and the valve body
  • a valve seat that stops fuel injection in contact with the valve body, and a nozzle plate that injects fuel downstream of the valve body and the valve seat, the nozzle plate injecting fuel and a lateral passage through which fuel flows
  • a swirl chamber that swirls the fuel, and the lateral passage, the spout, and the swirl chamber are formed in a convex shape when viewed from the fuel injection side.
  • the structure of the nozzle plate of the injector that can be easily welded to the valve member can be provided at low cost. Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.
  • Sectional drawing of the structure of the injector of this invention is shown.
  • positioned at the injector of FIG. 1 is shown.
  • the top view of the nozzle plate of an injector, the elements on larger scale, and a perspective view are shown.
  • the manufacturing process (1) of the basic nozzle plate of an injector is shown.
  • the manufacturing process (2) of the basic nozzle plate of an injector is shown.
  • the pattern figure in the case of producing a nozzle plate industrially is shown.
  • 4A and 4B are a sectional view and a plan view of the nozzle plate when manufactured in the manufacturing process of FIGS. 4A and 4B.
  • the manufacturing process (1) which manufactures a nozzle plate with thickness is shown.
  • the manufacturing process (2) which manufactures a nozzle plate with thickness is shown.
  • Sectional drawing and a top view of a nozzle plate when it manufactures with the manufacturing process of FIG. 7A and FIG. 7B are shown. It is a figure explaining the shape of the horizontal direction passage and swirl chamber of the nozzle plate produced by electroforming. It is a figure explaining that the shape of a nozzle plate is controllable by changing the shape of the electroforming metal mold
  • step difference in a peripheral part is shown.
  • step difference in a peripheral part is shown.
  • step difference in a peripheral part is shown.
  • FIG. 1 is a sectional structural view of an injector according to Embodiment 1 of the present invention.
  • 10 is an injector
  • 100 is a valve seat support
  • 101 is a coil
  • 102 is a valve body
  • 104 is a fuel inlet
  • 105 is a valve body guide
  • 106 is a jet outlet
  • 107 is a side plate formed on a nozzle plate.
  • the direction passage, 108 is a nozzle plate
  • 113 is a conductor
  • 114 is a connector.
  • the injector 10 shown in FIG. 1 is a normally closed electromagnetic injector.
  • a plug 114 that is supplied with electric power from a battery power source is connected to the connector 114 formed at the tip of the conductor 113, and on / off control of energization and non-energization is performed by a controller not shown.
  • the valve seat 103 connected to the valve seat support 100 and the valve body 102 held by the valve body guide 115 are in close contact with each other, and fuel is not injected.
  • the fuel is supplied from the fuel supply port in a state where pressure is applied by a fuel pump (not shown), and the fuel is filled from the fuel inlet 104 to the contact position between the valve body 102 and the valve seat 103.
  • valve body 102 When the valve body 102 is separated from the valve seat 103 by the energization of the coil 101 and the valve body 102 supported by the valve body guide 105 being displaced upward in FIG. 1, the fuel passes through the gap between the valve seat 103 and the valve body 102. Then, it flows into the lateral passage 107 formed in the nozzle plate 108 on the downstream side thereof, and is ejected from the ejection port 106.
  • FIG. 2 is a partially enlarged sectional view of the vicinity of the nozzle plate of the injector of the present invention.
  • an elongated cylindrical valve body 102 is disposed in a central hole of a cylindrical valve seat support body 100, and a distal end portion of the valve body support body 100 forms a cylindrical hole.
  • a valve body guide 105 that supports the valve body 102, a valve seat 103, and a nozzle plate 108 are sequentially arranged downstream.
  • the valve seat 103 is a conical recess having a hole through which fuel can pass in the center.
  • the valve body 102 has a sharp tip as a conical protrusion, and when the valve seat 103 and the valve body 102 overlap, there is no gap. Forming.
  • the nozzle plate 108 is welded to the welded portion 112 at the tip of the valve seat support 100.
  • the welding used here is desirably laser welding.
  • FIG. 3A is a plan view of the nozzle plate
  • FIG. 3B is a cross-sectional view taken along the line AA shown in FIG. 3A
  • FIG. 3C is a perspective view.
  • the nozzle plate 108 is a thin circular metal plate, and the material is a metal mainly composed of nickel, a metal mainly composed of chrome, etc., and has a diameter of about 4 to 6 mm and a thickness of 0.2. About 1 mm.
  • a concave portion is formed in a cross shape on the surface of the nozzle plate 108, a lateral passage 107 of a passage through which fuel flows laterally is formed, and a circular shape having a diameter larger than the width of the cross shape is formed at each tip of the cross shape
  • the swirl chamber 109 in which the fuel can swirl is disposed.
  • the swirl chamber 109 swirls as necessary for effective fuel injection.
  • a jet port 106 for injecting fuel is formed near the approximate center of the swirl chamber 109.
  • FIG. 3B is a cross-sectional view taken along the line AA shown in FIG. 3A, and is a portion taken along a line passing through the spout 106 from the left swirl chamber 109 through the lateral passage 107 to the right swirl chamber 109.
  • a sectional view is shown, and the lower side of the sectional view is a side from which fuel is ejected.
  • the swirl chamber 109 is circular and has a space due to the concave shape, and fuel from the lateral passage swirls in the swirl chamber 109, and the fuel is given swirl force and is ejected from each of the ejection ports 106 to form a mist shape.
  • the nozzle plate 108 has a lateral passage 107 and the swirl chamber 109 has a convex shape in the direction in which fuel is injected.
  • FIG. 3C is a perspective view of the nozzle plate 108, in which a cross-shaped concave portion having a lateral passage 107 through which fuel flows and a swirl chamber 109 in which the fuel swirls formed at the tip thereof are arranged. Is shown.
  • FIG. 4A and 4B are process diagrams showing a method for manufacturing the nozzle plate 108.
  • FIG. 5 shows a pattern diagram when the nozzle plate 108 is arranged in a matrix on a large substrate 110 and mass-produced industrially.
  • 4A and 4A show one nozzle plate 108, a plurality of nozzle plates 108 are manufactured at a time as shown in FIG.
  • a pattern of the lateral passage 107 and the swirl chamber 109 is formed with a resist 202 on a substrate 201 such as a substrate made of a spring material that can facilitate the process.
  • a reverse pattern is fabricated with the metal 203 using electroplating. If the oxide film is removed by dry etching or wet etching before electroplating, non-deposition of electroplating can be prevented. In particular, a substrate having a strong oxide film such as stainless steel or nickel covering the surface has a great effect of removing the oxide film.
  • the metal 203 to be filled is preferably a metal that can be produced by electroplating and can be easily peeled off in the step (8) in FIG. 4B.
  • a metal containing copper as a main component, a metal containing nickel as a main component, a metal containing chromium as a main component, or a reverse pattern shape or a nozzle plate 108 in step (5) of FIG. 4A is used. It is desirable to combine them according to the ease of peeling from the metal.
  • a nozzle pattern resist 204 and a nozzle plate outer pattern resist 205 to be the nozzle 106 are prepared.
  • the nozzle plate 108 is manufactured using an electroforming technique. Prior to electroforming, the nozzle plate 108, the metal 203, and the substrate 201 are brought into a state where they can be peeled off.
  • Specific surface treatment methods for exfoliation before electroforming include coating the surface with inorganic substances such as chromate, sulfide, iodide, and oxide, coating with a hydrophilic colloid of protein, and organic systems. Or covering with material. Also, apply wax, grease, paint, and finely pulverized graphite. These surface treatments for peeling can be performed in the above-described step (3), in particular, covering with inorganic substances such as chromate, sulfide, iodide, oxide and the like.
  • the metal used here needs to be a metal that can withstand the use conditions of the nozzle plate 108. Specifically, it is necessary to consider corrosion, pressure at the time of fuel injection, repetitive stress at the time of fuel injection, and ease of welding when assembling at the tip of the injector of FIG. Specifically, it is desirable to laminate a metal having nickel as a main component, a metal having chromium as a main component, or a multilayer thereof depending on the application.
  • the surface is cut using a mechanical processing technique. Specifically, it is desirable to polish, grind and combine them.
  • the reason is that not all of the “electroforming mold” is used and the ejection port pattern 204 is formed using a resist because it is necessary to perform machining in this process. If a uniform thickness can be realized with advanced electroplating technology, this step can be omitted if not necessary. However, even in this case, it is difficult to produce the ejection port with an “electroforming mold” from the viewpoint of peelability.
  • the nozzle plate 108 is peeled from the substrate 201 and the metal 203 which is an “electroforming mold”.
  • the “electroforming mold” peeled off here is the same as in step (3) of FIG. 4A and can be used repeatedly.
  • the peeled surface of the peeled nozzle plate 108 is the same as the arithmetic average roughness Ra of the substrate 201, and the size thereof is extremely smooth at 1 micrometer or less although it depends on the surface treatment conditions of the substrate 201. Moreover, the generation
  • FIG. 6 (a) shows a cross-sectional view of the nozzle plate manufactured according to Example 1
  • FIG. 6 (b) shows a plan view thereof. Since the lateral passage 107, the jet outlet 106, and the swirl chamber 109 are convex when viewed from the side where fuel is injected, the fuel does not cling to the nozzle plate surface when fuel is injected. Good cut. Further, since the thickness of the nozzle plate 108 can be reduced except for necessary portions, welding with the valve seat support 100 and the valve seat 103 shown in FIG. 1 is facilitated.
  • Example 2 Next, the structure of the nozzle plate of the injector that requires the nozzle plate thickness and the manufacturing method thereof will be described.
  • 7A and 7B show a manufacturing process of the thick nozzle plate 108 and will be described in the order of the processes.
  • a pattern of the lateral passage 107 and the swirl chamber 109 is formed with a resist 202 on a substrate 201 such as a substrate made of a spring material that can be easily formed.
  • a reverse pattern is fabricated with the metal 203 using electroplating. If the oxide film is removed by dry etching or wet etching before electroplating, non-deposition of electroplating can be prevented.
  • a substrate having a strong oxide film such as stainless steel or nickel covering the surface has a great effect of removing the oxide film.
  • the metal 203 to be filled is preferably a metal that can be produced by electroplating and can be easily peeled off in the step (8) in FIG. 7B.
  • a metal containing copper as a main component, a metal containing nickel as a main component, a metal containing chromium as a main component, or a reverse pattern shape or a nozzle plate 108 in step (5) of FIG. 7A is used. It is desirable to combine them according to the ease of peeling from the metal.
  • a nozzle pattern resist 204 and a nozzle plate outer pattern resist 205 to be the nozzle 106 are prepared.
  • the resist is made thick so as not to come into contact with the adjacent nozzle plate 111 when the plating is performed thickly using the electroforming technique in the step (5).
  • the nozzle plate 108 is produced using an electroforming technique.
  • the nozzle plate 108, the metal 203, and the substrate 201 are brought into a peelable state.
  • Specific surface treatment methods for exfoliation before electroforming include coating the surface with inorganic substances such as chromate, sulfide, iodide, and oxide, coating with a hydrophilic colloid of protein, and organic systems. Or covering with material. Also, apply wax, grease, paint, and finely pulverized graphite. These surface treatments for peeling can be performed in the above-described step (3), in particular, coating with an inorganic substance such as chromate, sulfide, iodide, or oxide.
  • the metal used here needs to be a metal that can withstand the use conditions of the nozzle plate 108. Specifically, it is necessary to consider corrosion, pressure at the time of fuel injection, repetitive stress at the time of fuel injection, and ease of welding when assembling at the tip of the injector of FIG. Specifically, it is desirable to laminate a metal having nickel as a main component, a metal having chromium as a main component, or a multilayer thereof depending on the application.
  • the surface is cut using a mechanical processing technique. Specifically, it is desirable to polish, grind and combine them.
  • the reason is that not all of the “electroforming mold” is used and the ejection port pattern 204 is formed using a resist because it is necessary to perform machining in this process. If a uniform thickness can be realized with advanced electroplating technology, this step can be omitted if not necessary. However, even in this case, it is difficult to produce the ejection port with an “electroforming mold” from the viewpoint of peelability.
  • the nozzle plate 108 is peeled from the substrate 201 and the metal 203 which is an “electroforming mold”.
  • the “electroforming mold” peeled off here is the same as that in the step (3) of FIG. 7A and can be used repeatedly.
  • the peeled surface of the peeled nozzle plate 108 is the same as the arithmetic average roughness Ra of the substrate 201, and the size thereof is extremely smooth at 1 micrometer or less although it depends on the surface treatment conditions of the substrate 201. Moreover, the generation
  • FIG. 8 shows a cross-sectional view and a plan view of a nozzle plate manufactured according to Example 2 and having a thickness greater than that of Example 1.
  • the fuel outage is inferior to the shape of the nozzle plate shown in FIG. 6, there is an effect that it is possible to cope with high-pressure fuel injection by the thicker nozzle plate 108.
  • FIG. 9A is a plan view of the nozzle plate and a partially enlarged view of the swirl chamber 109
  • FIG. 9B is a cross-sectional view taken along the line AA ′ of FIG. 9A
  • FIG. 9C shows the case of machining by electroforming.
  • FIG. 9B shows a case where it is manufactured by machining such as a general end mill, and it is difficult to make the corner portion of the bottom portion of the concave shape close to a right angle.
  • FIG. 9C when the transverse passage 107 of the nozzle plate 108 is manufactured using the electroforming technique, the corner portion at the bottom of the concave shape can be formed in a shape close to a right angle.
  • the metal 202 can have various shapes ranging from a shape close to a right angle to a shape with a rounded corner.
  • the “electroforming mold” By using the “electroforming mold”, the lateral passage 107 and the swirl chamber 109 of the nozzle plate 108 are used. It becomes possible to control the corner shape of the bottom of the concave shape.
  • FIG. 10 (a) shows a standard electroforming mold in which a metal 203 is formed on a substrate 201, and an upper corner portion of the metal 203 is formed at a right angle.
  • FIG. 10B shows an electroforming mold in which the metal 203 is formed on the substrate 201 and the upper corner portion of the metal 203 is chamfered.
  • the molded product manufactured with the chamfered electroformed mold has a shape in which the corner portion at the bottom of the recess has a radius of curvature R, and the radius of curvature R can be arbitrarily set. Therefore, it is a convenient manufacturing technique.
  • Example 4 Next, as Example 4, a method for producing an “electroformed mold” used for production by the production method of Example 1 or Example 2 will be described.
  • FIG. 11 shows a process of manufacturing a structure that increases the bonding strength between the metal 203 for forming a reverse pattern and the substrate 201 using electroplating. The manufacturing process will be described with reference to FIG.
  • the substance to be removed is an oxide film or an organic substance.
  • a connection film / Cu301 is formed from the substrate side by sputtering.
  • the connection film may be a metal having adhesive strength with both Cu and the substrate, and specifically, Ti and Cr are preferably used.
  • the reverse pattern is filled with metal 203 using electroplating.
  • the metal 203 to be filled is preferably a metal that can be produced by electroplating and can be easily peeled off in the step (8) in FIG. 4B or the step (8) in FIG. 7B.
  • a metal containing copper as a main component, a metal containing nickel as a main component, a metal containing chromium as a main component, or a reverse pattern shape or a step (5) in FIG. 4A or a step in FIG. 7A It is desirable to combine them according to the electroformed metal composition described in 5).
  • the resist 202 produced in (2) is peeled off.
  • the nozzle plate 108 is manufactured using the process (4) of FIG. 4A or the process after the process (4) of FIG. 7A.
  • Example 5 a method for producing an “electroforming mold” manufactured by the manufacturing method of Example 1 or Example 2 will be described.
  • FIG. 12 shows a process of manufacturing this structure by using electroplating to increase the bonding strength between the metal 203 for forming the reverse pattern and the substrate 201. Further, the difference from the fourth embodiment is that a protective film is used rather than the connection film / Cu301.
  • Plasma etching is performed on the surface of the substrate 201 such as a substrate made of a spring material capable of facilitating releasability by deforming and removing substances that hinder electroplating deposition.
  • the substance to be removed is an oxide film or an organic substance.
  • a protective metal film is formed by sputtering in a vacuum.
  • the protective metal 302 only needs to be removed by etching in the next step (2).
  • Ti, Cr, or Al is preferably used.
  • the reverse pattern is filled with metal 203 using electroplating.
  • the metal 203 to be filled is preferably a metal that can be produced by electroplating and can be easily peeled off in the step (8) in FIG. 4B or the step (8) in FIG. 7B.
  • a metal containing copper as a main component, a metal containing nickel as a main component, a metal containing chromium as a main component, or a reverse pattern shape or a step (5) in FIG. 4A or a step in FIG. 7A It is desirable to combine them according to the electroformed metal composition described in 5).
  • a nozzle plate is produced using the process (4) of FIG. 4A or the process after the process (4) of FIG. 7A.
  • Example 6 Next, in the manufacturing method of the nozzle plate of Example 1 or Example 2, it is easy to peel off the nozzle plate 108 from the substrate 201 and the metal 203 in the step (7) of FIG. 4B or the step (7) of FIG. 7B. It was difficult to peel off.
  • a shape having a step around the nozzle plate 108 is produced, and a nozzle plate having a configuration that can be easily peeled off by pins or the like from the substrate 201 and the metal 203 is produced.
  • the manufacturing process is shown in FIGS. 13A, 13B, and 13C, and will be described along this process.
  • a pattern of the lateral passage 107 and the swirl chamber 109 is formed on the substrate 201 such as a substrate made of a spring material capable of facilitating the process using the resist 202-1.
  • a reverse pattern is fabricated with the metal 203 using electroplating. If the oxide film is removed by dry etching or wet etching before electroplating, non-deposition of electroplating can be prevented. In particular, a substrate having a strong oxide film such as stainless steel or nickel covering the surface has a great effect of removing the oxide film.
  • the metal 203 to be filled is preferably a metal that can be produced by electroplating and can be easily peeled off in the step (8) in FIG. 4B.
  • a metal containing copper as a main component a metal containing nickel as a main component, a metal containing chromium as a main component, or a reverse pattern shape or nozzle plate 108 described in step (5) of FIG. 4A. It is desirable to combine them according to the ease of peeling from the metal used.
  • the ultraviolet light 402 is shielded and exposed by a photomask 401 smaller than the outermost size of the nozzle plate by 20 micrometers or more on one side. Then, the resist 205 irradiated with the ultraviolet light 402 is solidified.
  • the exposure area here may be the entire peripheral part of the nozzle plate or only a part of the peripheral part.
  • a resist 202-3 is pasted to a thickness that is optimal for manufacturing a nozzle plate.
  • the nozzle pattern outer pattern resist 206 and the nozzle pattern resist pattern 206 are produced by shielding the ultraviolet light 402 with the photomask 401 that has the outermost size of the nozzle plate and forming the nozzle 106.
  • the resist 206 is a portion solidified by irradiation with the ultraviolet light 402, and has a step of length t inside the resist 205 in the step (5).
  • the resists 202-2 and 202-3 are developed.
  • resists 205 and 206 having a nozzle plate outer shape pattern and an ejection port pattern resist 204 are formed.
  • the nozzle plate 108 is manufactured using an electroforming technique. Prior to electroforming, the nozzle plate 108, the metal 203, and the substrate 201 are brought into a state where they can be peeled off.
  • Specific surface treatment methods for exfoliation before electroforming include coating the surface with inorganic substances such as chromate, sulfide, iodide, and oxide, coating with a hydrophilic colloid of protein, and organic systems. Or covering with material. Also, apply wax, grease, paint, and finely pulverized graphite. These surface treatments for peeling can be performed in step (3), in particular, covering with inorganic substances such as chromate, sulfide, iodide, oxide and the like.
  • the metal used here needs to be a metal that can withstand the use conditions of the nozzle plate 108. Specifically, it is necessary to consider corrosion, pressure at the time of fuel injection, repetitive stress at the time of fuel injection, and ease of welding when assembling at the tip of the injector of FIG. Specifically, it is desirable to laminate a metal having nickel as a main component, a metal having chromium as a main component, or a multilayer thereof depending on the application.
  • the surface is shaved using a mechanical processing technique. Specifically, it is desirable to polish, grind and combine them.
  • a mechanical processing technique it is desirable to polish, grind and combine them.
  • not all of the “electroforming mold” is used, and the jet pattern 204 is manufactured using a resist because it is necessary to perform machining in this process. If a uniform thickness can be realized with advanced electroplating technology, this step can be omitted if not necessary. However, even in this case, it is difficult to produce the ejection port with an “electroforming mold” from the viewpoint of peelability.
  • the nozzle plate 108 is peeled from the substrate 201 and the metal 203 which is an “electroforming mold”. Further, when peeling, the step 207 produced by the resists 205 and 206 in the step (7) is peeled off by pushing up with a pin or the like.
  • the “electroforming mold” peeled off here is the same as in step (3) of FIG. 4A and can be used repeatedly.
  • the peeled surface of the peeled nozzle plate 108 is the same as the arithmetic average roughness Ra of the substrate 201, and the size thereof is extremely smooth at 1 micrometer or less although it depends on the surface treatment conditions of the substrate 201. Moreover, the generation
  • the nozzle plate 108 formed in this embodiment can be easily peeled off from the substrate 201 by inserting a wedge-shaped jig into the step formed in the peripheral portion.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Nozzles (AREA)

Abstract

The present invention relates to the nozzle plate of an injector, and provides a nozzle plate which improves throughput and can control the shape of the ejection port and which, in the process by which the nozzle plate is manufactured, involves preparing a horizontal passage where fuel flows and a swirl chamber on the substrate in advance with an electric plating pattern and preparing the ejection port for injecting fuel and the outside shape of the nozzle plate with a disposable resist; also provided is a manufacturing method of said nozzle plate. This injector for injecting fuel in an internal combustion engine is characterized by being provided with a valve body which can open and close to inject and stop fuel, a valve seat which comes into contact with the valve body to stop fuel injection, and a nozzle plate which injects fuel downstream of the valve body and the valve plate, wherein the nozzle plate is formed from the horizontal passage where fuel flows, the ejection port from which the fuel is injected, and the swirl chamber where the fuel is swirled, and, seen from the side where the fuel is injected, the horizontal passage, the ejection port and the swirl chamber portion have a protruding shape.

Description

インジェクタ及びその製造方法Injector and manufacturing method thereof
 本発明は、インジェクタ及びその製造方法に関し、特にインジェクタのノズルプレートの構造及びその製造方法に関する。 The present invention relates to an injector and a manufacturing method thereof, and more particularly to a structure of a nozzle plate of the injector and a manufacturing method thereof.
 本技術分野の背景技術として、特許文献1(特許第4646256号公報)がある。この公報には、「本発明による燃料噴射弁は、不動の弁座を有する弁座体の下流側に、多数の噴射開口を有する孔付きディスクが配置されていることによって特徴付けられている。噴射開口のすぐ下流側には、環状の流入中空室を備えた流入開口が設けられている。弁座体は流入中空室を、孔付きディスクの下流側の噴射開口がカバーされているように覆っている。噴射開口は、それぞれ1つの流入領域を有している。この流入領域の直径D1は、鋭い縁部を備えてすぐ下流側で流入領域に続く領域の直径D2よりも著しく大きく寸法設定されている。前記領域は、噴射開口の最も狭幅の横断面を形成している。また、前記領域から、噴射開口が、流れ方向で直径D3にまでトランペット状に拡幅している。燃料噴射弁は、特に混合気圧縮型の火花点火式の内燃機関の燃料噴射装置に使用するために適している。」と記載されている。 As a background art in this technical field, there is Patent Document 1 (Japanese Patent No. 4646256). According to this publication, “a fuel injection valve according to the present invention is characterized in that a disk with a hole having a large number of injection openings is arranged downstream of a valve seat body having a stationary valve seat. An inflow opening provided with an annular inflow hollow chamber is provided immediately downstream of the injection opening so that the valve seat body covers the inflow hollow chamber and the injection opening on the downstream side of the holed disk. The injection openings each have one inflow region whose diameter D1 is significantly larger than the diameter D2 of the region immediately downstream and with a sharp edge that follows the inflow region. The region forms the narrowest cross section of the injection opening, and the injection opening widens in a trumpet shape from the region to the diameter D3 in the flow direction. The injection valve is especially a mixture compression type Has been described as to have. "Suitable for use in a fuel injection apparatus for a spark ignition type internal combustion engine.
 また、特許文献2(特表2010-511833号公報)がある。この公報には、「本発明は、燃料噴射弁に関するものであり、この燃料噴射弁は不動の弁座面を備えた弁座体を有しており、この弁座と弁閉鎖体が弁の開閉のために協働する。弁座体は弁座支持体の長手方向開口内に収容され、この弁座支持体と堅く結合されている。弁座体の下端面に霧化アタッチメントが直に固着強度をもって電鋳されている。霧化アタッチメントには少なくとも1つの噴射開口が設けられており、この噴射開口は有利には下流方向で見て漏斗状に拡大している。当該燃料噴射弁は、特に混合気圧縮型火花点火式の内燃機関の燃料噴射装置への取付けに適している。」と記載されている。 There is also Patent Document 2 (Japanese Patent Publication No. 2010-511833). In this publication, “the present invention relates to a fuel injection valve, and this fuel injection valve has a valve seat body having an immovable valve seat surface. The valve seat is housed in the longitudinal opening of the valve seat support and is tightly coupled to the valve seat support, with the atomizing attachment directly on the lower end surface of the valve seat The atomizing attachment is provided with at least one injection opening, which is preferably enlarged in a funnel shape when viewed in the downstream direction. In particular, it is suitable for attachment to a fuel injection device of a fuel-air-compression type spark ignition type internal combustion engine.
 また、特許文献3(特開2002-98028号公報)がある。この公報には、「燃料噴射器のコストをほとんど上昇させることなく、噴出燃料の微粒化度を向上させることができる燃料噴射器用ノズルを提供する。ノズルに、複数の流路と複数の渦流室が一体形成されている。渦流室は流路からの燃料を受け入れ、受け入れた燃料を噴孔からスワール流または渦巻き流として噴出させることにより燃料を高度かつ急速に微粒化させる。」と記載されている。 There is also Patent Document 3 (Japanese Patent Laid-Open No. 2002-98028). This publication provides “a nozzle for a fuel injector that can improve the atomization degree of the injected fuel without substantially increasing the cost of the fuel injector. The nozzle includes a plurality of flow paths and a plurality of vortex chambers. The swirl chamber receives the fuel from the flow path, and jets the received fuel from the nozzle hole as a swirl flow or a swirl flow, thereby finely and rapidly atomizing the fuel. Yes.
特許第4646256号公報Japanese Patent No. 4646256 特表2010-511833号公報Special table 2010-511833 gazette 特開2002-98028号公報JP 2002-98028 A
 上記特許文献1には、電気めっきによる金属析出によって、有利には、孔付きディスクを再現可能に極端に精密にかつ廉価に極めて大きな個数で同時に製作することができる。さらに、この製作形式によって、極めて大きな構成自由度が可能となる。なぜならば、孔付きディスクに設けられた開口の輪郭が自由に選択可能であるからであると記載されている。しかし、電気めっきの厚さ制御に関する記載が無く、極めて大きな個数で同時に製作した際の厚さ分布を制御することは、高度な技術を必要とする。また、孔付きディスクの孔形状は燃料が入る側の寸法はレジストで制御されているが、噴出口側の寸法はトランペット状の形状になるとしているが、この形状はレジスト等で制御しているものではなく、均一に作製するためには高度な技術を要する。 According to the above-mentioned patent document 1, by virtue of metal deposition by electroplating, it is possible to manufacture a disk with a hole in an extremely large number at the same time, extremely precisely and inexpensively so as to be reproducible. Furthermore, this manufacturing format allows a great degree of configuration freedom. This is because the outline of the opening provided in the disc with holes can be freely selected. However, there is no description regarding the thickness control of electroplating, and controlling the thickness distribution when simultaneously manufacturing a very large number of pieces requires advanced techniques. In addition, the hole shape of the disk with holes is controlled by the resist on the side where the fuel enters, but the dimension on the jet outlet side is a trumpet shape, but this shape is controlled by the resist or the like. It is not a thing, but advanced technology is required to produce it uniformly.
 上記特許文献2には、内燃機関の燃料噴射装置用の燃料噴射弁であって、弁長手軸線と、不動の弁座を備えた弁座体と、該弁座体の前記弁座と協働する弁閉鎖体とを有する形式のものにおいて、前記弁座体に、霧化アタッチメントが直に固着強度をもって電鋳によって一体成形されていることを特徴とする燃料噴射弁の構造及び製造方法が記載されている。しかし、弁座体に、霧化アタッチメントを直接作製するためには、個々に製作する必要があり、スループットを向上させる必要がある。 Patent Document 2 discloses a fuel injection valve for a fuel injection device of an internal combustion engine, in which a valve longitudinal axis, a valve seat body provided with a stationary valve seat, and the valve seat of the valve seat body cooperate with each other. The structure of the fuel injection valve and the manufacturing method thereof are characterized in that, in the type having a valve closing body, the atomizing attachment is directly formed on the valve seat body by electroforming with a fixing strength. Has been. However, in order to directly produce the atomization attachment on the valve seat body, it is necessary to individually produce the atomization attachment, and it is necessary to improve the throughput.
 上記特許文献3には、ノズルに、複数の流路と複数の渦流室が一体作製されている。渦流室は流路からの燃料を受け入れ、受け入れた燃料を噴孔からスワール流または渦巻き流として噴出させることにより燃料を高度かつ急速に微粒化させる構造が記載されている。しかし、具体的な製造方法の記載はなく、また、図によると本構造体は、硬貨状の形状に流路等の溝が作製されており、全体が均一に厚い形状のため、弁座への溶接には高度な技術を要する。 In the above-mentioned Patent Document 3, a plurality of flow paths and a plurality of vortex chambers are integrally formed in the nozzle. A structure in which the vortex chamber receives fuel from the flow path and ejects the received fuel from the nozzle hole as a swirl flow or a swirl flow to make the fuel highly atomized rapidly is described. However, there is no description of a specific manufacturing method, and according to the figure, this structure has a coin-shaped groove such as a flow path, and the entire structure is uniformly thick. Advanced technology is required for welding.
 本発明の目的は、インジェクタを組み立てる際に必要なノズルプレートを弁部材への溶接工程が容易になるように、溶接部分の厚さを薄くし、かつノズルプレートの配置された燃料の横方向通路と旋回室の構成が燃料が噴出する側から見て凸形状とすることで、燃料の切れが良好となるノズルプレートを提供する。併せて、基板の上に横方向通路と旋回室の逆パターンを予め電気めっきで作製(以下、電鋳で作製したノズルプレートと区別するため、「電鋳金型」と呼ぶ)し、燃料の噴出口及びノズルプレートの外形を使い捨てのレジストで作製する。そして一括して複数個を電鋳で作製することでスループットを向上させ、かつ、燃料の噴出口の形状を制御できるノズルプレートを電鋳で作製する方法を提供する。 It is an object of the present invention to reduce the thickness of the welded portion so that the nozzle plate required for assembling the injector can be easily welded to the valve member, and to form a lateral passage of fuel in which the nozzle plate is disposed. The swirl chamber has a convex shape when viewed from the side from which fuel is ejected, thereby providing a nozzle plate with good fuel cut-out. At the same time, a reverse pattern of the lateral passage and swirl chamber is prepared on the substrate in advance by electroplating (hereinafter referred to as an “electroforming mold” in order to distinguish it from the nozzle plate manufactured by electroforming), and fuel injection The outer shape of the outlet and the nozzle plate is made of a disposable resist. A method is also provided for producing a nozzle plate by electroforming by improving the throughput by producing a plurality by batch electroforming and controlling the shape of the fuel injection port.
 上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。
本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、内燃機関内に燃料を噴射するインジェクタにおいて、燃料の噴射と停止を行う開閉可能な弁体と、該弁体と接触して燃料の噴射の停止を行う弁座と、前記弁体と前記弁座の下流に燃料を噴射するノズルプレートとを備え、該ノズルプレートは、燃料を流す横方向通路と燃料を噴射する噴出口と燃料を旋回する旋回室とより形成され、燃料が噴射される側から見て横方向通路、噴出口、及び旋回室部を凸部形状としたことを特徴とする。
In order to solve the above problems, for example, the configuration described in the claims is adopted.
The present application includes a plurality of means for solving the above-described problems. For example, in an injector for injecting fuel into an internal combustion engine, an openable / closable valve body for injecting and stopping the fuel, and the valve body A valve seat that stops fuel injection in contact with the valve body, and a nozzle plate that injects fuel downstream of the valve body and the valve seat, the nozzle plate injecting fuel and a lateral passage through which fuel flows And a swirl chamber that swirls the fuel, and the lateral passage, the spout, and the swirl chamber are formed in a convex shape when viewed from the fuel injection side.
 本発明によれば、弁部材への溶接が容易なインジェクタのノズルプレートの構造を低コストで提供することができる。上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。 According to the present invention, the structure of the nozzle plate of the injector that can be easily welded to the valve member can be provided at low cost. Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.
本発明のインジェクタの構成の断面図を示す。Sectional drawing of the structure of the injector of this invention is shown. 図1のインジェクタに配置されたノズルプレートの拡大断面図を示す。The expanded sectional view of the nozzle plate arrange | positioned at the injector of FIG. 1 is shown. インジェクタのノズルプレートの平面図、部分拡大図及び斜視図を示す。The top view of the nozzle plate of an injector, the elements on larger scale, and a perspective view are shown. インジェクタの基本的なノズルプレートの製造工程(1)を示す。The manufacturing process (1) of the basic nozzle plate of an injector is shown. インジェクタの基本的なノズルプレートの製造工程(2)を示す。The manufacturing process (2) of the basic nozzle plate of an injector is shown. ノズルプレートを工業的に生産する場合のパターン図を示す。The pattern figure in the case of producing a nozzle plate industrially is shown. 図4A、図4Bの製造工程で製造したときのノズルプレートの断面図及び平面図を示す。4A and 4B are a sectional view and a plan view of the nozzle plate when manufactured in the manufacturing process of FIGS. 4A and 4B. 厚みのあるノズルプレートを製造する製造工程(1)を示す。The manufacturing process (1) which manufactures a nozzle plate with thickness is shown. 厚みのあるノズルプレートを製造する製造工程(2)を示す。The manufacturing process (2) which manufactures a nozzle plate with thickness is shown. 図7A、図7Bの製造工程で製造したときのノズルプレートの断面図及び平面図を示す。Sectional drawing and a top view of a nozzle plate when it manufactures with the manufacturing process of FIG. 7A and FIG. 7B are shown. 電鋳で作製したノズルプレートの横方向通路及び旋回室の形状を説明する図である。It is a figure explaining the shape of the horizontal direction passage and swirl chamber of the nozzle plate produced by electroforming. ノズルプレートの電鋳金型の形状を変更することで、ノズルプレートの形状を制御できることを説明する図である。It is a figure explaining that the shape of a nozzle plate is controllable by changing the shape of the electroforming metal mold | die of a nozzle plate. 「電鋳金型」の製造方法の工程を示す図である。It is a figure which shows the process of the manufacturing method of an "electroforming mold". 「電鋳金型」の製造方法の別の工程を示す図である。It is a figure which shows another process of the manufacturing method of an "electroforming mold". 周辺部に段差の有するノズルプレートの製造工程(1)を示す。The manufacturing process (1) of the nozzle plate which has a level | step difference in a peripheral part is shown. 周辺部に段差の有するノズルプレートの製造工程(2)を示す。The manufacturing process (2) of the nozzle plate which has a level | step difference in a peripheral part is shown. 周辺部に段差の有するノズルプレートの製造工程(3)を示す。The manufacturing process (3) of the nozzle plate which has a level | step difference in a peripheral part is shown.
 以下、本発明の実施の形態を、図面を用いて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 (実施例1)
 本発明の実施例1では、インジェクタのノズルプレートの構造及び製造方法について説明する。図1は、本発明の実施例1に係るインジェクタの断面構造図を示す。図1において、10はインジェクタ、100は弁座支持体、101はコイル、102は弁体、104は燃料流入口、105は弁体ガイド、106は噴出口、107はノズルプレートに形成された横方向通路、108はノズルプレート、113は導体、114はコネクタである。
Example 1
In the first embodiment of the present invention, a structure and a manufacturing method of a nozzle plate of an injector will be described. FIG. 1 is a sectional structural view of an injector according to Embodiment 1 of the present invention. In FIG. 1, 10 is an injector, 100 is a valve seat support, 101 is a coil, 102 is a valve body, 104 is a fuel inlet, 105 is a valve body guide, 106 is a jet outlet, and 107 is a side plate formed on a nozzle plate. The direction passage, 108 is a nozzle plate, 113 is a conductor, and 114 is a connector.
 図1に示されたインジェクタ10は、通常時閉型の電磁式インジェクタである。導体113の先端部に作製されたコネクタ114には、バッテリ電源より電力を供給されるプラグが接続され、図示しないコントローラによって通電と非通電のオンオフ制御がなされる。コイル101に通電されていない状態においては、弁座支持体100に接続された弁座103と弁体ガイド115によって保持された弁体102とが密着しており、燃料は噴射されない。燃料は図示しない燃料ポンプによって圧力を付与された状態で燃料供給口より供給され、燃料流入口104から弁体102と弁座103との密着位置まで燃料で満たされている。コイル101に通電され、弁体ガイド105に支持された弁体102が図1の上方に変位することによって弁体102は弁座103から離れると、燃料は弁座103と弁体102の隙間を通ってその下流にあるノズルプレート108に作製された横方向通路107に流入し、噴出口106から噴射される。 The injector 10 shown in FIG. 1 is a normally closed electromagnetic injector. A plug 114 that is supplied with electric power from a battery power source is connected to the connector 114 formed at the tip of the conductor 113, and on / off control of energization and non-energization is performed by a controller not shown. When the coil 101 is not energized, the valve seat 103 connected to the valve seat support 100 and the valve body 102 held by the valve body guide 115 are in close contact with each other, and fuel is not injected. The fuel is supplied from the fuel supply port in a state where pressure is applied by a fuel pump (not shown), and the fuel is filled from the fuel inlet 104 to the contact position between the valve body 102 and the valve seat 103. When the valve body 102 is separated from the valve seat 103 by the energization of the coil 101 and the valve body 102 supported by the valve body guide 105 being displaced upward in FIG. 1, the fuel passes through the gap between the valve seat 103 and the valve body 102. Then, it flows into the lateral passage 107 formed in the nozzle plate 108 on the downstream side thereof, and is ejected from the ejection port 106.
 図2は、本発明のインジェクタのノズルプレート近傍の部分拡大断面図である。
図2において、円筒形の弁座支持体100の中央の孔には、細長い円柱形の弁体102が配置され、弁体支持体100の先端部は円柱形の孔を形成し、この孔に弁体102を支持する弁体ガイド105、弁座103及びノズルプレート108を順に下流に向かって配置している。弁座103は、円錐形状の凹部で中央に燃料を通過させる孔を有し、弁体102は先端を円錐形状の凸部として尖らし、弁座103と弁体102は重なると隙間がないように形成している。弁体102が中心軸方向に可動し、弁座103と重なると隙間がなくなり塞がった状態となるので、弁座103の孔からは燃料は流れない構成となっている。また、弁座支持体100の先端は、ノズルプレート108が溶接部分112を溶接して配置されている。ここで用いる溶接は、具体的には、レーザー溶接を用いることが望ましい。
FIG. 2 is a partially enlarged sectional view of the vicinity of the nozzle plate of the injector of the present invention.
In FIG. 2, an elongated cylindrical valve body 102 is disposed in a central hole of a cylindrical valve seat support body 100, and a distal end portion of the valve body support body 100 forms a cylindrical hole. A valve body guide 105 that supports the valve body 102, a valve seat 103, and a nozzle plate 108 are sequentially arranged downstream. The valve seat 103 is a conical recess having a hole through which fuel can pass in the center. The valve body 102 has a sharp tip as a conical protrusion, and when the valve seat 103 and the valve body 102 overlap, there is no gap. Forming. When the valve body 102 moves in the central axis direction and overlaps with the valve seat 103, the gap disappears and the valve body 103 is closed, so that fuel does not flow from the hole of the valve seat 103. Further, the nozzle plate 108 is welded to the welded portion 112 at the tip of the valve seat support 100. Specifically, the welding used here is desirably laser welding.
 次に、ノズルプレート108について図3を用いて説明する。図3において、図3(a)はノズルプレートの平面図、図3(b)は図3(a)に示したA-A断面図を示し、図3(c)は斜視図を示している。図3(a)において、ノズルプレート108は薄い円形状の金属板で材質はニッケルを主成分とする金属、クロムを主成分とする金属などで、直径は4~6mm程度、厚みは0.2~1mm程度である。ノズルプレート108の表面には十字形状で凹部を形成し、燃料が横方向に流れる通路の横方向通路107を形成し、十字形状のそれぞれの先端には十字形状の幅寸法より大きい直径の円形状の凹部を形成し、燃料が旋回できる旋回室109を配置する。旋回室109は、燃料の効果的噴射のため必要に応じて旋回するものである。さらに、旋回室109の概略中心付近には燃料を噴射する噴出口106を形成する。 Next, the nozzle plate 108 will be described with reference to FIG. 3A is a plan view of the nozzle plate, FIG. 3B is a cross-sectional view taken along the line AA shown in FIG. 3A, and FIG. 3C is a perspective view. . In FIG. 3A, the nozzle plate 108 is a thin circular metal plate, and the material is a metal mainly composed of nickel, a metal mainly composed of chrome, etc., and has a diameter of about 4 to 6 mm and a thickness of 0.2. About 1 mm. A concave portion is formed in a cross shape on the surface of the nozzle plate 108, a lateral passage 107 of a passage through which fuel flows laterally is formed, and a circular shape having a diameter larger than the width of the cross shape is formed at each tip of the cross shape The swirl chamber 109 in which the fuel can swirl is disposed. The swirl chamber 109 swirls as necessary for effective fuel injection. Further, a jet port 106 for injecting fuel is formed near the approximate center of the swirl chamber 109.
 図3(b)は、図3(a)に示すA-A断面図で、左側の旋回室109より横方向通路107を通り右側の旋回室109まで、噴出口106を通過する線での部分断面図を示し、断面図の下側が燃料が噴き出される側である。旋回室109は、円形で凹部形状のため空間を有し、横方向通路からの燃料が旋回室109で旋回して、燃料は旋回力を付与され、各噴出口106より噴き出され、ミスト状の燃料がエンジンのインテークマニホールドヘ送られる。すなわち、ノズルプレート108は、横方向通路107、旋回室109は燃料を噴射する方向に凸部形状をなっている。 FIG. 3B is a cross-sectional view taken along the line AA shown in FIG. 3A, and is a portion taken along a line passing through the spout 106 from the left swirl chamber 109 through the lateral passage 107 to the right swirl chamber 109. A sectional view is shown, and the lower side of the sectional view is a side from which fuel is ejected. The swirl chamber 109 is circular and has a space due to the concave shape, and fuel from the lateral passage swirls in the swirl chamber 109, and the fuel is given swirl force and is ejected from each of the ejection ports 106 to form a mist shape. Of fuel is sent to the intake manifold of the engine. That is, the nozzle plate 108 has a lateral passage 107 and the swirl chamber 109 has a convex shape in the direction in which fuel is injected.
 図3(c)は、ノズルプレート108の斜視図を示し、十字形で凹部形状を有し燃料を流す横方向通路107及びその先端に形成した燃料が旋回する旋回室109を配置している構成を示している。 FIG. 3C is a perspective view of the nozzle plate 108, in which a cross-shaped concave portion having a lateral passage 107 through which fuel flows and a swirl chamber 109 in which the fuel swirls formed at the tip thereof are arranged. Is shown.
 次に、本発明のノズルプレート108の製造方法について、図4A、図4Bを用いて説明する。図4A及び図4Bは、ノズルプレート108の製造方法を示す工程図である。また、図5は、大きな基板110上にノズルプレート108をマトリクス的にパターンを配置し、工業的に大量生産する場合のパターン図を示している。
図4A及び図4Aでは、ノズルプレート108が1つ記載しているが、製造する際には、図5に示すように複数個を一括して製造する。
Next, the manufacturing method of the nozzle plate 108 of this invention is demonstrated using FIG. 4A and 4B. 4A and 4B are process diagrams showing a method for manufacturing the nozzle plate 108. FIG. 5 shows a pattern diagram when the nozzle plate 108 is arranged in a matrix on a large substrate 110 and mass-produced industrially.
4A and 4A show one nozzle plate 108, a plurality of nozzle plates 108 are manufactured at a time as shown in FIG.
 以下、ノズルプレート108の各製造工程を図4A、図4Bについて説明する。ここで、括弧内の数字は工程順の番号を表しており、外の場合も同じである。 Hereinafter, each manufacturing process of the nozzle plate 108 will be described with reference to FIGS. 4A and 4B. Here, the numbers in parentheses represent the numbers in the order of steps, and the same applies to the other cases.
 (1)銅、ステンレス、ニッケルなどの金属板や樹脂の上に銅、ステンレス、ニッケルなどの金属箔が作製された基板、または図4Bの工程(8)において、基板を変形させることで剥離性を容易にすることが可能なバネ材からなる基板、などの基板201の上にレジスト202で横方向通路107と旋回室109のパターンを作製する。 (1) A substrate on which a metal foil such as copper, stainless steel, or nickel is formed on a metal plate or resin such as copper, stainless steel, or nickel, or in step (8) of FIG. A pattern of the lateral passage 107 and the swirl chamber 109 is formed with a resist 202 on a substrate 201 such as a substrate made of a spring material that can facilitate the process.
 (2)「電鋳金型」を作製するため、電気めっきを用いて、逆パターンを金属203で作製する。電気めっきを行う前に、ドライエッチングやウェットエッチングで酸化膜を除去すると電気めっきの不析出を防ぐことができる。特に、ステンレスやニッケルなど強固な酸化膜が表面を覆っている基板では、酸化膜除去の効果が大きい。また、充填する金属203は、電気めっきで作製でき、かつ図4Bの工程(8)の工程で引き剥がすことが容易である金属が望ましい。具体的には、銅を主成分とする金属、ニッケルを主成分とする金属、クロムを主成分とする金属、または、それらを逆パターン形状や図4Aの工程(5)のノズルプレート108に用いる金属との引き剥がし易さによって組み合わせることが望ましい。 (2) In order to fabricate an “electroformed mold”, a reverse pattern is fabricated with the metal 203 using electroplating. If the oxide film is removed by dry etching or wet etching before electroplating, non-deposition of electroplating can be prevented. In particular, a substrate having a strong oxide film such as stainless steel or nickel covering the surface has a great effect of removing the oxide film. The metal 203 to be filled is preferably a metal that can be produced by electroplating and can be easily peeled off in the step (8) in FIG. 4B. Specifically, a metal containing copper as a main component, a metal containing nickel as a main component, a metal containing chromium as a main component, or a reverse pattern shape or a nozzle plate 108 in step (5) of FIG. 4A is used. It is desirable to combine them according to the ease of peeling from the metal.
 (3)上記の工程(1)で作製したレジスト202を剥離する。 (3) The resist 202 produced in the above step (1) is peeled off.
 (4)噴出口106になる噴出口パターンレジスト204とノズルプレート外形パターンレジスト205を作製する。 (4) A nozzle pattern resist 204 and a nozzle plate outer pattern resist 205 to be the nozzle 106 are prepared.
 (5)電鋳技術を用いてノズルプレート108を作製する。電鋳の前にノズルプレート108と金属203、基板201とが剥離が可能な状態にする。具体的な電鋳前の剥離のための表面処理方法として、表面をクロム酸塩、硫化物、ヨウ化物、酸化物などの無機物で被覆したり、タンパク質の親水性コロイドで被覆したり、有機系材料で被覆したりする。また、ワックス、グリース、ペイント、微粉砕グラファイトを塗布する。これらの剥離のための表面処理は、特に、クロム酸塩、硫化物、ヨウ化物、酸化物などの無機物で被覆することは、上記の工程(3)で行うことも可能である。または、ここで用いる金属は、ノズルプレート108の使用条件に耐える金属である必要がある。具体的には、腐食、燃料噴射時の圧力、燃料噴射時の繰り返し応力また、図1のインジェクタの先端に組み付ける際の溶接の容易さを考慮する必要がある。具体的には、ニッケルを主成分とする金属、クロムを主成分とする金属、または、用途に応じてそれらを多層に積層することが望ましい。 (5) The nozzle plate 108 is manufactured using an electroforming technique. Prior to electroforming, the nozzle plate 108, the metal 203, and the substrate 201 are brought into a state where they can be peeled off. Specific surface treatment methods for exfoliation before electroforming include coating the surface with inorganic substances such as chromate, sulfide, iodide, and oxide, coating with a hydrophilic colloid of protein, and organic systems. Or covering with material. Also, apply wax, grease, paint, and finely pulverized graphite. These surface treatments for peeling can be performed in the above-described step (3), in particular, covering with inorganic substances such as chromate, sulfide, iodide, oxide and the like. Alternatively, the metal used here needs to be a metal that can withstand the use conditions of the nozzle plate 108. Specifically, it is necessary to consider corrosion, pressure at the time of fuel injection, repetitive stress at the time of fuel injection, and ease of welding when assembling at the tip of the injector of FIG. Specifically, it is desirable to laminate a metal having nickel as a main component, a metal having chromium as a main component, or a multilayer thereof depending on the application.
 (6)ノズルプレート108の厚さを規定するため、機械的加工技術を用いて表面を削る。具体的には、研磨、研削やそれらを組み合わせることが望ましい。本実施例による製造工程では、全てを「電鋳金型」とはせず噴出口パターン204をレジストを用いて作製している理由は、本工程で機械加工を行う必要性からである。なお、高度な電気めっき技術をもって、均一な厚さが実現できれば本工程が必要なければ省略することも可能である。ただ、この場合においても、剥離性の観点から噴出口を「電鋳金型」で作製することは困難である。 (6) In order to define the thickness of the nozzle plate 108, the surface is cut using a mechanical processing technique. Specifically, it is desirable to polish, grind and combine them. In the manufacturing process according to the present embodiment, the reason is that not all of the “electroforming mold” is used and the ejection port pattern 204 is formed using a resist because it is necessary to perform machining in this process. If a uniform thickness can be realized with advanced electroplating technology, this step can be omitted if not necessary. However, even in this case, it is difficult to produce the ejection port with an “electroforming mold” from the viewpoint of peelability.
 (7)上記の工程(4)で作製した噴出口パターンレジスト204、ノズルプレート外形パターンレジスト205を剥離する。 (7) The jet pattern resist 204 and the nozzle plate outer pattern resist 205 produced in the above step (4) are peeled off.
 (8)ノズルプレート108を基板201、「電鋳金型」である金属203から剥離する。ここで剥離した「電鋳金型」は図4Aの工程(3)と同じ物であり、繰り返し使用することが可能である。剥離したノズルプレート108の剥離面は基板201の算術平均粗さRaと同じであり、その大きさは基板201の表面処理条件にもよるが、1マイクロメータ以下と極めて平滑である。また、機械加工で生じるバリの発生は見られない。 (8) The nozzle plate 108 is peeled from the substrate 201 and the metal 203 which is an “electroforming mold”. The “electroforming mold” peeled off here is the same as in step (3) of FIG. 4A and can be used repeatedly. The peeled surface of the peeled nozzle plate 108 is the same as the arithmetic average roughness Ra of the substrate 201, and the size thereof is extremely smooth at 1 micrometer or less although it depends on the surface treatment conditions of the substrate 201. Moreover, the generation | occurrence | production of the burr | flash produced by machining is not seen.
 また、図6において、図6(a)は実施例1により製造されたノズルプレートの断面図を示し、図6(b)はその平面図を示す。燃料が噴射される側から見て横方向通路107、噴出口106、旋回室109部分が凸部形状となっているため、燃料を噴射したとき、燃料がノズルプレート表面にまとわりつくことがなく、燃料切れがよい。また、ノズルプレート108の厚さを必要な部分以外、薄く製造できるため、図1に示す弁座支持体100や弁座103との溶接が容易となる。 Further, in FIG. 6, FIG. 6 (a) shows a cross-sectional view of the nozzle plate manufactured according to Example 1, and FIG. 6 (b) shows a plan view thereof. Since the lateral passage 107, the jet outlet 106, and the swirl chamber 109 are convex when viewed from the side where fuel is injected, the fuel does not cling to the nozzle plate surface when fuel is injected. Good cut. Further, since the thickness of the nozzle plate 108 can be reduced except for necessary portions, welding with the valve seat support 100 and the valve seat 103 shown in FIG. 1 is facilitated.
 (実施例2)
 次に、ノズルプレートの厚みが必要なインジェクタのノズルプレートの構造及びその製造方法について説明する。図7A及び図7Bは、厚みのあるノズルプレート108の製造工程を示し、工程順に沿って説明する。
(Example 2)
Next, the structure of the nozzle plate of the injector that requires the nozzle plate thickness and the manufacturing method thereof will be described. 7A and 7B show a manufacturing process of the thick nozzle plate 108 and will be described in the order of the processes.
 (1)銅、ステンレス、ニッケルなどの金属板や樹脂の上に銅、ステンレス、ニッケルなどの金属箔が作製された基板、図7Bの工程(8)において、基板を変形させることで剥離性を容易にすることが可能なバネ材からなる基板、などの基板201の上にレジスト202で横方向通路107と旋回室109のパターンを作製する。 (1) A substrate in which a metal foil such as copper, stainless steel or nickel is formed on a metal plate or resin such as copper, stainless steel or nickel, and in step (8) of FIG. A pattern of the lateral passage 107 and the swirl chamber 109 is formed with a resist 202 on a substrate 201 such as a substrate made of a spring material that can be easily formed.
 (2)「電鋳金型」を作製するため、電気めっきを用いて、逆パターンを金属203で作製する。電気めっきを行う前に、ドライエッチングやウェットエッチングで酸化膜を除去すると電気めっきの不析出を防ぐことができる。特に、ステンレスやニッケルなど強固な酸化膜が表面を覆っている基板では、酸化膜除去の効果が大きい。また、充填する金属203は、電気めっきで作製でき、かつ図7Bの工程(8)の工程で引き剥がすことが容易である金属が望ましい。具体的には、銅を主成分とする金属、ニッケルを主成分とする金属、クロムを主成分とする金属、または、それらを逆パターン形状や図7Aの工程(5)のノズルプレート108に用いる金属との引き剥がし易さによって組み合わせることが望ましい。 (2) In order to fabricate an “electroformed mold”, a reverse pattern is fabricated with the metal 203 using electroplating. If the oxide film is removed by dry etching or wet etching before electroplating, non-deposition of electroplating can be prevented. In particular, a substrate having a strong oxide film such as stainless steel or nickel covering the surface has a great effect of removing the oxide film. The metal 203 to be filled is preferably a metal that can be produced by electroplating and can be easily peeled off in the step (8) in FIG. 7B. Specifically, a metal containing copper as a main component, a metal containing nickel as a main component, a metal containing chromium as a main component, or a reverse pattern shape or a nozzle plate 108 in step (5) of FIG. 7A is used. It is desirable to combine them according to the ease of peeling from the metal.
 (3)上記工程(1)で作製したレジスト202を剥離する。 (3) The resist 202 produced in the above step (1) is peeled off.
 (4)噴出口106になる噴出口パターンレジスト204とノズルプレート外形パターンレジスト205を作製する。ここでは、上記工程(5)で電鋳技術を用いて厚くめっきを行った時に隣接するノズルプレート111と接触しないようにレジストを厚く作製する。 (4) A nozzle pattern resist 204 and a nozzle plate outer pattern resist 205 to be the nozzle 106 are prepared. Here, the resist is made thick so as not to come into contact with the adjacent nozzle plate 111 when the plating is performed thickly using the electroforming technique in the step (5).
 (5)電鋳技術を用いてノズルプレート108を作製する。ノズルプレート108と金属203、基板201とが剥離が可能な状態にする。具体的な電鋳前の剥離のための表面処理方法として、表面をクロム酸塩、硫化物、ヨウ化物、酸化物などの無機物で被覆したり、タンパク質の親水性コロイドで被覆したり、有機系材料で被覆したりする。また、ワックス、グリース、ペイント、微粉砕グラファイトを塗布する。これらの剥離のための表面処理は、特に、クロム酸塩、硫化物、ヨウ化物、酸化物などの無機物で被覆することは、上記工程(3)で行うことも可能である。
または、ここで用いる金属は、ノズルプレート108の使用条件に耐える金属である必要がある。具体的には、腐食、燃料噴射時の圧力、燃料噴射時の繰り返し応力また、図1のインジェクタの先端に組み付ける際の溶接の容易さを考慮する必要がある。具体的には、ニッケルを主成分とする金属、クロムを主成分とする金属、または、用途に応じてそれらを多層に積層することが望ましい。
(5) The nozzle plate 108 is produced using an electroforming technique. The nozzle plate 108, the metal 203, and the substrate 201 are brought into a peelable state. Specific surface treatment methods for exfoliation before electroforming include coating the surface with inorganic substances such as chromate, sulfide, iodide, and oxide, coating with a hydrophilic colloid of protein, and organic systems. Or covering with material. Also, apply wax, grease, paint, and finely pulverized graphite. These surface treatments for peeling can be performed in the above-described step (3), in particular, coating with an inorganic substance such as chromate, sulfide, iodide, or oxide.
Alternatively, the metal used here needs to be a metal that can withstand the use conditions of the nozzle plate 108. Specifically, it is necessary to consider corrosion, pressure at the time of fuel injection, repetitive stress at the time of fuel injection, and ease of welding when assembling at the tip of the injector of FIG. Specifically, it is desirable to laminate a metal having nickel as a main component, a metal having chromium as a main component, or a multilayer thereof depending on the application.
 (6)ノズルプレート108の厚さを規定するため、機械的加工技術を用いて表面を削る。具体的には、研磨、研削やそれらを組み合わせることが望ましい。本実施例による製造工程では、全てを「電鋳金型」とはせず噴出口パターン204をレジストを用いて作製している理由は、本工程で機械加工を行う必要性からである。なお、高度な電気めっき技術をもって、均一な厚さが実現できれば本工程が必要なければ省略することも可能である。ただ、この場合においても、剥離性の観点から噴出口を「電鋳金型」で作製することは困難である。 (6) In order to define the thickness of the nozzle plate 108, the surface is cut using a mechanical processing technique. Specifically, it is desirable to polish, grind and combine them. In the manufacturing process according to the present embodiment, the reason is that not all of the “electroforming mold” is used and the ejection port pattern 204 is formed using a resist because it is necessary to perform machining in this process. If a uniform thickness can be realized with advanced electroplating technology, this step can be omitted if not necessary. However, even in this case, it is difficult to produce the ejection port with an “electroforming mold” from the viewpoint of peelability.
 (7)上記工程(4)で作製した噴出口パターンレジスト204、ノズルプレート外形パターンレジスト205を剥離する。 (7) The spout pattern resist 204 and the nozzle plate outer shape pattern resist 205 produced in the step (4) are peeled off.
 (8)ノズルプレート108を基板201、「電鋳金型」である金属203から剥離する。ここで剥離した「電鋳金型」は図7Aの工程(3)と同じ物であり、繰り返し使用することが可能である。剥離したノズルプレート108の剥離面は基板201の算術平均粗さRaと同じであり、その大きさは基板201の表面処理条件にもよるが、1マイクロメータ以下と極めて平滑である。また、機械加工で生じるバリの発生は見られない。 (8) The nozzle plate 108 is peeled from the substrate 201 and the metal 203 which is an “electroforming mold”. The “electroforming mold” peeled off here is the same as that in the step (3) of FIG. 7A and can be used repeatedly. The peeled surface of the peeled nozzle plate 108 is the same as the arithmetic average roughness Ra of the substrate 201, and the size thereof is extremely smooth at 1 micrometer or less although it depends on the surface treatment conditions of the substrate 201. Moreover, the generation | occurrence | production of the burr | flash produced by machining is not seen.
 図8は、実施例2により製造された、実施例1より厚みのあるノズルプレートの断面図及び平面図を示す。燃料切れに関しては、図6に示すノズルプレートの形状より劣るが、ノズルプレート108の厚さが厚い分だけ燃料の高圧噴射に対応することができる効果を有する。 FIG. 8 shows a cross-sectional view and a plan view of a nozzle plate manufactured according to Example 2 and having a thickness greater than that of Example 1. Although the fuel outage is inferior to the shape of the nozzle plate shown in FIG. 6, there is an effect that it is possible to cope with high-pressure fuel injection by the thicker nozzle plate 108.
 (実施例3)
 次に、実施例1または実施例2の製造方法によって製造したノズルプレートの形状について、図9を用いて説明する。図9において、図9(a)はノズルプレートの平面図及び旋回室109の部分拡大図を示し、図9(b)は図9(a)のA-A‘断面図で、機械加工の場合を示し、図9(c)は電鋳による加工の場合を示している。図9(b)は、一般的なエンドミル等の機械加工で製造した場合を示し、凹部形状の底部のコーナ部を直角に近い形状にすることは困難である。これに対し、図9(c)は、電鋳技術を用いてノズルプレート108の横方向通路107を製造した場合、凹部形状の底部のコーナ部を直角に近い形状にすることができる。
Example 3
Next, the shape of the nozzle plate manufactured by the manufacturing method of Example 1 or Example 2 will be described with reference to FIG. 9A is a plan view of the nozzle plate and a partially enlarged view of the swirl chamber 109, and FIG. 9B is a cross-sectional view taken along the line AA ′ of FIG. 9A. FIG. 9C shows the case of machining by electroforming. FIG. 9B shows a case where it is manufactured by machining such as a general end mill, and it is difficult to make the corner portion of the bottom portion of the concave shape close to a right angle. On the other hand, in FIG. 9C, when the transverse passage 107 of the nozzle plate 108 is manufactured using the electroforming technique, the corner portion at the bottom of the concave shape can be formed in a shape close to a right angle.
 なお、直角に近い形状では燃料の流れが不安定になる等の不具合がある場合は、図4Aの工程(3)または図7Aの工程(3)の後にエッチング液に浸すことで、図10に示すように金属202を直角に近い形状から角が取れた形状まで様々な形状とすることが可能であり、その「電鋳金型」を用いることでノズルプレート108の横方向通路107や旋回室109の凹部形状の底部のコーナ部形状を制御することが可能となる。ここで、図10において、図10(a)は標準的な電鋳金型で、基板201上に金属203を形成し、金属203の上部コーナ部を直角にした金型を示し、この標準的金型で製造した成形品は、凹部の底部のコーナ部が直角形状を有している。また、図10(b)は基板201の上に金属203を形成し、金属203の上部コーナ部を面取り加工した電鋳金型を示す。この面取り加工した電鋳金型で製造した成形品は、凹部の底部のコーナ部が曲率半径Rを有した形状となっており、またこの曲率半径Rを任意に設定することができる。従って、使い勝手の良い製造技術である。 If there is a problem such as the fuel flow becoming unstable in a shape close to a right angle, it can be immersed in an etching solution after step (3) in FIG. 4A or step (3) in FIG. As shown, the metal 202 can have various shapes ranging from a shape close to a right angle to a shape with a rounded corner. By using the “electroforming mold”, the lateral passage 107 and the swirl chamber 109 of the nozzle plate 108 are used. It becomes possible to control the corner shape of the bottom of the concave shape. Here, in FIG. 10, FIG. 10 (a) shows a standard electroforming mold in which a metal 203 is formed on a substrate 201, and an upper corner portion of the metal 203 is formed at a right angle. In the molded product manufactured by the mold, the corner portion at the bottom of the concave portion has a right-angle shape. FIG. 10B shows an electroforming mold in which the metal 203 is formed on the substrate 201 and the upper corner portion of the metal 203 is chamfered. The molded product manufactured with the chamfered electroformed mold has a shape in which the corner portion at the bottom of the recess has a radius of curvature R, and the radius of curvature R can be arbitrarily set. Therefore, it is a convenient manufacturing technique.
 (実施例4)
 次に、実施例4として、実施例1または実施例2の製造方法によって製造するために用いる「電鋳金型」の作製方法を説明する。図11は、電気めっきを用いて、逆パターンを作製する金属203と基板201の接合強度を高める構造体を製造する工程を示す。その製造工程を図11に沿って説明する。
Example 4
Next, as Example 4, a method for producing an “electroformed mold” used for production by the production method of Example 1 or Example 2 will be described. FIG. 11 shows a process of manufacturing a structure that increases the bonding strength between the metal 203 for forming a reverse pattern and the substrate 201 using electroplating. The manufacturing process will be described with reference to FIG.
 (1)銅、ステンレス、ニッケルなどの金属板や樹脂の上に銅、ステンレス、ニッケルなどの金属箔が作製された基板、または図4Bの工程(8)または図7Bの工程(8)において、基板を変形させることで剥離性を容易にすることが可能なバネ材からなる基板、などの基板201表面にプラズマエッチング処理を行い、電気めっきの析出を阻害する物質を除去する。具体的に除去する物質は、酸化膜や有機物である。つづいて、真空中で、基板側から接続膜/Cu301をスパッタを用いて成膜する。接続膜は、Cuと基板の両方と接着強度を有する金属であれば良く、具体的には、Ti、Crを用いると良い。 (1) In a substrate in which a metal foil such as copper, stainless steel or nickel is formed on a metal plate or resin such as copper, stainless steel or nickel, or in step (8) in FIG. 4B or step (8) in FIG. 7B, Plasma etching treatment is performed on the surface of the substrate 201 such as a substrate made of a spring material capable of facilitating releasability by deforming the substrate to remove substances that inhibit the deposition of electroplating. Specifically, the substance to be removed is an oxide film or an organic substance. Subsequently, in vacuum, a connection film / Cu301 is formed from the substrate side by sputtering. The connection film may be a metal having adhesive strength with both Cu and the substrate, and specifically, Ti and Cr are preferably used.
 (2)レジスト202で横方向通路107と旋回室109の逆パターンを作製する。 (2) Create a reverse pattern of the lateral passage 107 and the swirl chamber 109 with the resist 202.
 (3)「電鋳金型」を作製するため、電気めっきを用いて、逆パターンを金属203で充填する。充填する金属203は、電気めっきで作製でき、かつ図4Bの工程(8)または、図7Bの工程(8)の工程で引き剥がすことが容易である金属が望ましい。具体的には、銅を主成分とする金属、ニッケルを主成分とする金属、クロムを主成分とする金属、または、それらを逆パターン形状や図4Aの工程(5)または図7Aの工程(5)記載の電鋳金属組成によって組み合わせることが望ましい。 (3) In order to produce an “electroformed mold”, the reverse pattern is filled with metal 203 using electroplating. The metal 203 to be filled is preferably a metal that can be produced by electroplating and can be easily peeled off in the step (8) in FIG. 4B or the step (8) in FIG. 7B. Specifically, a metal containing copper as a main component, a metal containing nickel as a main component, a metal containing chromium as a main component, or a reverse pattern shape or a step (5) in FIG. 4A or a step in FIG. 7A ( It is desirable to combine them according to the electroformed metal composition described in 5).
 (4)(2)で作製したレジスト202を剥離する。
以下、図4Aの工程(4)または図7Aの工程(4)以降の工程を用いてノズルプレート108を作製する。
(4) The resist 202 produced in (2) is peeled off.
Hereinafter, the nozzle plate 108 is manufactured using the process (4) of FIG. 4A or the process after the process (4) of FIG. 7A.
 (実施例5)
 次に、実施例5として、実施例1または実施例2の製造方法によって製造する「電鋳金型」の作製方法について説明する。図12は、電気めっきを用いて、逆パターンを作製する金属203と基板201の接合強度を高める構造体で、この構造体を作製する工程を示す。また、実施例4との違いは、接続膜/Cu301より保護膜を用いることである。
(Example 5)
Next, as Example 5, a method for producing an “electroforming mold” manufactured by the manufacturing method of Example 1 or Example 2 will be described. FIG. 12 shows a process of manufacturing this structure by using electroplating to increase the bonding strength between the metal 203 for forming the reverse pattern and the substrate 201. Further, the difference from the fourth embodiment is that a protective film is used rather than the connection film / Cu301.
 (1)銅、ステンレス、ニッケルなどの金属板や樹脂の上に銅、ステンレス、ニッケルなどの金属箔が作製された基板、図4Bの工程(8)または図7Bの工程(8)において、基板を変形させることで剥離性を容易にすることが可能なバネ材からなる基板、などの基板201表面にプラズマエッチング処理を行い、電気めっきの析出を阻害する物質を除去する。具体的に除去する物質は、酸化膜や有機物である。つづいて、真空中で、保護金属をスパッタを用いて成膜する。保護金属302は、次工程(2)でエッチング除去できれば良く、具体的には、Ti、Cr、Alを用いると良い。 (1) A substrate in which a metal foil such as copper, stainless steel, or nickel is formed on a metal plate or resin such as copper, stainless steel, or nickel; in step (8) of FIG. 4B or step (8) of FIG. Plasma etching is performed on the surface of the substrate 201 such as a substrate made of a spring material capable of facilitating releasability by deforming and removing substances that hinder electroplating deposition. Specifically, the substance to be removed is an oxide film or an organic substance. Subsequently, a protective metal film is formed by sputtering in a vacuum. The protective metal 302 only needs to be removed by etching in the next step (2). Specifically, Ti, Cr, or Al is preferably used.
 (2)レジスト202で横方向通路107と旋回室109の逆パターンを作製する。続いて、保護金属302をウェットエッチングで除去する。このウェットエッチングから次の「電鋳金型」を作製するための電気めっきまでは、大気に晒さないように水中で搬送することが望ましい。 (2) Create a reverse pattern of the lateral passage 107 and the swirl chamber 109 with the resist 202. Subsequently, the protective metal 302 is removed by wet etching. From this wet etching to the next electroplating for producing an “electroforming mold”, it is desirable to carry in water so as not to be exposed to the atmosphere.
 (3)「電鋳金型」を作製するため、電気めっきを用いて、逆パターンを金属203で充填する。充填する金属203は、電気めっきで作製でき、かつ図4Bの工程(8)または、図7Bの工程(8)の工程で引き剥がすことが容易である金属が望ましい。具体的には、銅を主成分とする金属、ニッケルを主成分とする金属、クロムを主成分とする金属、または、それらを逆パターン形状や図4Aの工程(5)または図7Aの工程(5)記載の電鋳金属組成によって組み合わせることが望ましい。 (3) In order to produce an “electroformed mold”, the reverse pattern is filled with metal 203 using electroplating. The metal 203 to be filled is preferably a metal that can be produced by electroplating and can be easily peeled off in the step (8) in FIG. 4B or the step (8) in FIG. 7B. Specifically, a metal containing copper as a main component, a metal containing nickel as a main component, a metal containing chromium as a main component, or a reverse pattern shape or a step (5) in FIG. 4A or a step in FIG. 7A ( It is desirable to combine them according to the electroformed metal composition described in 5).
 (4)(2)で作製したレジスト202を剥離する。 (4) The resist 202 produced in (2) is peeled off.
 (5)基板上の保護金属302をエッチングで除去する。
以下、図4Aの工程(4)または、図7Aの工程(4)以降の工程を用いてノズルプレートを作製する。
(5) The protective metal 302 on the substrate is removed by etching.
Hereinafter, a nozzle plate is produced using the process (4) of FIG. 4A or the process after the process (4) of FIG. 7A.
 (実施例6)
 次に、実施例1または実施例2のノズルプレートの製造方法において、図4Bの工程(7)または図7Bの工程(7)で、ノズルプレート108を基板201及び金属203より剥離する場合、容易に剥離し難いことがあった。本発明の実施例6は、ノズルプレート108の周辺に段差を有する形状を作製し、基板201及び金属203よりピン等により剥がし易い構成のノズルプレートを製造する。その製造工程を図13A、図13B及び図13Cに示し、この工程に沿って説明する。
(Example 6)
Next, in the manufacturing method of the nozzle plate of Example 1 or Example 2, it is easy to peel off the nozzle plate 108 from the substrate 201 and the metal 203 in the step (7) of FIG. 4B or the step (7) of FIG. 7B. It was difficult to peel off. In the sixth embodiment of the present invention, a shape having a step around the nozzle plate 108 is produced, and a nozzle plate having a configuration that can be easily peeled off by pins or the like from the substrate 201 and the metal 203 is produced. The manufacturing process is shown in FIGS. 13A, 13B, and 13C, and will be described along this process.
 (1)銅、ステンレス、ニッケルなどの金属板や樹脂の上に銅、ステンレス、ニッケルなどの金属箔が作製された基板、または図4Bの工程(8)において、基板を変形させることで剥離性を容易にすることが可能なバネ材からなる基板、などの基板201の上にレジスト202-1で横方向通路107と旋回室109のパターンを作製する。 (1) A substrate on which a metal foil such as copper, stainless steel, or nickel is formed on a metal plate or resin such as copper, stainless steel, or nickel, or in step (8) of FIG. A pattern of the lateral passage 107 and the swirl chamber 109 is formed on the substrate 201 such as a substrate made of a spring material capable of facilitating the process using the resist 202-1.
 (2)「電鋳金型」を作製するため、電気めっきを用いて、逆パターンを金属203で作製する。電気めっきを行う前に、ドライエッチングやウェットエッチングで酸化膜を除去すると電気めっきの不析出を防ぐことができる。特に、ステンレスやニッケルなど強固な酸化膜が表面を覆っている基板では、酸化膜除去の効果が大きい。また、充填する金属203は、電気めっきで作製でき、かつ図4Bの工程(8)の工程で引き剥がすことが容易である金属が望ましい。具体的には、銅を主成分とする金属、ニッケルを主成分とする金属、クロムを主成分とする金属、または、それらを逆パターン形状や図4Aの工程(5)記載のノズルプレート108に用いる金属との引き剥がし易さによって組み合わせることが望ましい。 (2) In order to fabricate an “electroformed mold”, a reverse pattern is fabricated with the metal 203 using electroplating. If the oxide film is removed by dry etching or wet etching before electroplating, non-deposition of electroplating can be prevented. In particular, a substrate having a strong oxide film such as stainless steel or nickel covering the surface has a great effect of removing the oxide film. The metal 203 to be filled is preferably a metal that can be produced by electroplating and can be easily peeled off in the step (8) in FIG. 4B. Specifically, a metal containing copper as a main component, a metal containing nickel as a main component, a metal containing chromium as a main component, or a reverse pattern shape or nozzle plate 108 described in step (5) of FIG. 4A. It is desirable to combine them according to the ease of peeling from the metal used.
 (3)上記工程(1)で作製したレジスト202-1を剥離する。 (3) The resist 202-1 produced in the above step (1) is removed.
 (4)ノズルプレートの厚さより薄くしたレジスト202-2を貼り付ける。 (4) A resist 202-2 thinner than the nozzle plate is pasted.
 (5)ノズルプレートの最外形の大きさより片側20マイクロメートル以上小さいフォトマスク401で紫外光402を遮光し露光する。そして、紫外光402が照射されたレジスト205は固化する。ここでの露光エリアは、ノズルプレート周辺部全体でも良いし、周辺部の一部のみでも良い。 (5) The ultraviolet light 402 is shielded and exposed by a photomask 401 smaller than the outermost size of the nozzle plate by 20 micrometers or more on one side. Then, the resist 205 irradiated with the ultraviolet light 402 is solidified. The exposure area here may be the entire peripheral part of the nozzle plate or only a part of the peripheral part.
 (6)ノズルプレートを製作するのに最適になるような厚さでレジスト202-3を貼り付ける。 (6) A resist 202-3 is pasted to a thickness that is optimal for manufacturing a nozzle plate.
 (7)ノズルプレートの最外形の大きさになるようなフォトマスク401で紫外光402を遮光し噴出口106になる噴出口パターンレジスト204とノズルプレート外形パターンレジスト206を作製する。ここでレジスト206は、紫外光402が照射され、固化した部分で、工程(5)のレジスト205と内側において、長さtの段差を有している。 (7) The nozzle pattern outer pattern resist 206 and the nozzle pattern resist pattern 206 are produced by shielding the ultraviolet light 402 with the photomask 401 that has the outermost size of the nozzle plate and forming the nozzle 106. Here, the resist 206 is a portion solidified by irradiation with the ultraviolet light 402, and has a step of length t inside the resist 205 in the step (5).
 (8)レジスト202-2、202-3を現像する。
基板201と金属203の上にはノズルプレート外形パターンのレジスト205、206と、噴出口パターンレジスト204が形成される。
(8) The resists 202-2 and 202-3 are developed.
On the substrate 201 and the metal 203, resists 205 and 206 having a nozzle plate outer shape pattern and an ejection port pattern resist 204 are formed.
 (9)電鋳技術を用いてノズルプレート108を作製する。電鋳の前にノズルプレート108と金属203、基板201とが剥離が可能な状態にする。具体的な電鋳前の剥離のための表面処理方法として、表面をクロム酸塩、硫化物、ヨウ化物、酸化物などの無機物で被覆したり、タンパク質の親水性コロイドで被覆したり、有機系材料で被覆したりする。また、ワックス、グリース、ペイント、微粉砕グラファイトを塗布する。これらの剥離のための表面処理は、特に、クロム酸塩、硫化物、ヨウ化物、酸化物などの無機物で被覆することは、工程(3)で行うことも可能である。または、ここで用いる金属は、ノズルプレート108の使用条件に耐える金属である必要がある。具体的には、腐食、燃料噴射時の圧力、燃料噴射時の繰り返し応力また、図1のインジェクタの先端に組み付ける際の溶接の容易さを考慮する必要がある。具体的には、ニッケルを主成分とする金属、クロムを主成分とする金属、または、用途に応じてそれらを多層に積層することが望ましい。 (9) The nozzle plate 108 is manufactured using an electroforming technique. Prior to electroforming, the nozzle plate 108, the metal 203, and the substrate 201 are brought into a state where they can be peeled off. Specific surface treatment methods for exfoliation before electroforming include coating the surface with inorganic substances such as chromate, sulfide, iodide, and oxide, coating with a hydrophilic colloid of protein, and organic systems. Or covering with material. Also, apply wax, grease, paint, and finely pulverized graphite. These surface treatments for peeling can be performed in step (3), in particular, covering with inorganic substances such as chromate, sulfide, iodide, oxide and the like. Alternatively, the metal used here needs to be a metal that can withstand the use conditions of the nozzle plate 108. Specifically, it is necessary to consider corrosion, pressure at the time of fuel injection, repetitive stress at the time of fuel injection, and ease of welding when assembling at the tip of the injector of FIG. Specifically, it is desirable to laminate a metal having nickel as a main component, a metal having chromium as a main component, or a multilayer thereof depending on the application.
 (10)ノズルプレート108の厚さを規定するため、機械的加工技術を用いて表面を削る。具体的には、研磨、研削やそれらを組み合わせることが望ましい。本実施例による製造工程では、全てを「電鋳金型」とはせず噴出口パターン204を、レジストを用いて作製している理由は、本工程で機械加工を行う必要性からである。なお、高度な電気めっき技術をもって、均一な厚さが実現できれば本工程が必要なければ省略することも可能である。ただ、この場合においても、剥離性の観点から噴出口を「電鋳金型」で作製することは困難である。 (10) In order to define the thickness of the nozzle plate 108, the surface is shaved using a mechanical processing technique. Specifically, it is desirable to polish, grind and combine them. In the manufacturing process according to the present embodiment, not all of the “electroforming mold” is used, and the jet pattern 204 is manufactured using a resist because it is necessary to perform machining in this process. If a uniform thickness can be realized with advanced electroplating technology, this step can be omitted if not necessary. However, even in this case, it is difficult to produce the ejection port with an “electroforming mold” from the viewpoint of peelability.
 (11)上記工程(8)で作製した噴出口パターンレジスト204、ノズルプレート外形パターンレジスト205、206を剥離する。 (11) The ejection port pattern resist 204 and the nozzle plate outer shape pattern resists 205 and 206 produced in the step (8) are peeled off.
 (12)ノズルプレート108を基板201、「電鋳金型」である金属203から剥離する。また、剥離するときは工程(7)のレジスト205、206で作製した段差207をピン等で押し上げることにより剥離する。ここで剥離した「電鋳金型」は図4Aの工程(3)と同じ物であり、繰り返し使用することが可能である。剥離したノズルプレート108の剥離面は基板201の算術平均粗さRaと同じであり、その大きさは基板201の表面処理条件にもよるが、1マイクロメータ以下と極めて平滑である。また、機械加工で生じるバリの発生は見られない。
本実施例で形成したノズルプレート108は、周辺部に形成された段差に楔状冶具を差し込むことで基板201から容易に引き剥がすことが可能となる。
(12) The nozzle plate 108 is peeled from the substrate 201 and the metal 203 which is an “electroforming mold”. Further, when peeling, the step 207 produced by the resists 205 and 206 in the step (7) is peeled off by pushing up with a pin or the like. The “electroforming mold” peeled off here is the same as in step (3) of FIG. 4A and can be used repeatedly. The peeled surface of the peeled nozzle plate 108 is the same as the arithmetic average roughness Ra of the substrate 201, and the size thereof is extremely smooth at 1 micrometer or less although it depends on the surface treatment conditions of the substrate 201. Moreover, the generation | occurrence | production of the burr | flash produced by machining is not seen.
The nozzle plate 108 formed in this embodiment can be easily peeled off from the substrate 201 by inserting a wedge-shaped jig into the step formed in the peripheral portion.
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 In addition, this invention is not limited to the above-mentioned Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
10‥インジェクタ
100‥弁座支持体
101‥コイル
102‥弁体
103‥弁座
104‥燃料流入口
105‥弁体ガイド
106‥噴出口
107‥横方向通路
108‥ノズルプレート
109‥旋回室
110‥大きな基板
111‥隣接するノズルプレート
112‥溶接部分
113‥導体
114‥コネクタ
201  基板
202、202-1、202-2、202-3‥レジスト
203‥金属
204‥噴出口パターンレジスト
205‥ノズルプレート外形パターンレジスト
301‥接続膜/Cu
302‥保護金属
401‥フォトマスク
402‥紫外光
DESCRIPTION OF SYMBOLS 10 ... Injector 100 ... Valve seat support 101 ... Coil 102 ... Valve body 103 ... Valve seat 104 ... Fuel inlet 105 ... Valve body guide 106 ... Outlet 107 ... Transverse passage 108 ... Nozzle plate 109 ... Swirling chamber 110 ... Large Substrate 111 ... Adjacent nozzle plate 112 ... Welded portion 113 ... Conductor 114 ... Connector 201 Substrate 202, 202-1, 202-2, 202-3 ... Resist 203 ... Metal 204 ... Spout pattern resist 205 ... Nozzle plate outline pattern resist 301 ... Connection film / Cu
302 Protective metal 401 Photomask 402 Ultraviolet light

Claims (15)

  1.  内燃機関内に燃料を噴射するインジェクタにおいて、
     燃料の噴射と停止を行う開閉可能な弁体と、
     該弁体と接触して燃料の噴射の停止を行う弁座と、
     前記弁体と前記弁座の下流に燃料を噴射するノズルプレートとを備え、
     該ノズルプレートは、燃料を流す横方向通路と燃料を噴射する噴出口と燃料を旋回する旋回室とより形成され、燃料が噴射される側から見て横方向通路、噴出口、及び旋回室部を凸部形状としたことを特徴とするインジェクタ。
    In an injector for injecting fuel into an internal combustion engine,
    A valve body that can be opened and closed to inject and stop fuel;
    A valve seat in contact with the valve body to stop fuel injection;
    A nozzle plate for injecting fuel downstream of the valve body and the valve seat;
    The nozzle plate is formed by a lateral passage through which fuel flows, a jet outlet for injecting fuel, and a swirling chamber for swirling the fuel, and viewed from the fuel injection side, the lateral passage, the spout, and the swirling chamber section An injector characterized by having a convex shape.
  2.  請求項1記載のインジェクタにおいて、
     前記ノズルプレートに形成された前記横方向通路と前記旋回室が作製されている層と前記噴出口が作製されている層が一括掲載されていることを特徴とするインジェクタ。
    The injector according to claim 1, wherein
    An injector characterized in that the lateral passage formed in the nozzle plate, the layer in which the swirl chamber is formed, and the layer in which the ejection port is manufactured are listed together.
  3.  請求項1記載のインジェクタにおいて、
     前記弁体及び前記弁座と溶接する前記ノズルプレートの面の算術平均粗さRaは1マイクロメータ以下であることを特徴とするインジェクタ。
    The injector according to claim 1, wherein
    An injector having an arithmetic mean roughness Ra of a surface of the nozzle plate welded to the valve body and the valve seat is 1 micrometer or less.
  4.  請求項1記載のインジェクタにおいて、
     前記ノズルプレートの溶接面側の横方向通路及び前記旋回室のエッジには、バリ取り痕が無いことを特徴とするインジェクタ。
    The injector according to claim 1, wherein
    An injector characterized in that there is no deburring mark in a lateral passage on the welding surface side of the nozzle plate and an edge of the swirl chamber.
  5.  請求項1記載のインジェクタにおいて、
     前記ノズルプレートに形成した横方向通路と旋回室の側壁の算術平均粗さRaは500ナノメータ以下であることを特徴とするインジェクタ。
    The injector according to claim 1, wherein
    An injector having an arithmetic average roughness Ra of 500 nanometers or less between a lateral passage formed in the nozzle plate and a side wall of a swirl chamber.
  6.  請求項1記載のインジェクタにおいて、
     前記ノズルプレートは、前記横方向通路と前記旋回室の側壁と底面の角度が85度以上90度以下であり、かつ、側壁と底面の境界部が角形状となっていることを特徴とするインジェクタ。
    The injector according to claim 1, wherein
    In the injector, the nozzle plate has an angle between a side wall and a bottom surface of the lateral passage and the swirl chamber of 85 degrees or more and 90 degrees or less, and a boundary portion between the side wall and the bottom surface has an angular shape. .
  7.  請求項1記載のインジェクタにおいて、
     前記ノズルプレートは、前記横方向通路と燃料を噴射する噴出口と燃料を旋回する旋回室で形成され、該噴出口と該旋回室の相対位置が同じであることを特徴とするインジェクタ。
    The injector according to claim 1, wherein
    The injector is characterized in that the nozzle plate is formed by the lateral passage, a jet port for injecting fuel, and a swirl chamber for swirling fuel, and the relative positions of the jet port and the swirl chamber are the same.
  8.  請求項1記載のインジェクタにおいて、
     前記ノズルプレートは、その周辺部の少なくとも一部分に段差形状を有していることを特徴とするインジェクタ。
    The injector according to claim 1, wherein
    The nozzle plate has a stepped shape at least at a part of its peripheral portion.
  9.  内燃機関内に燃料を噴射するインジェクタの製造方法において、
     前記インジェクタのノズルプレートは、燃料を流す横方向通路と燃料を噴射する噴出口と燃料を旋回する旋回室とより形成され、
     該横方向通路及び該旋回室の逆のパターン形状を複数回利用できる電鋳金型として作製し、
     前記噴出口及び前記ノズルプレートの外形を使い捨てのレジストで作製し、
     ノズルプレートを電鋳法で作製することを特徴とするインジェクタの製造方法。
    In a method of manufacturing an injector for injecting fuel into an internal combustion engine,
    The nozzle plate of the injector is formed by a lateral passage through which fuel flows, a jet port for injecting fuel, and a swirl chamber for swirling fuel,
    Produced as an electroformed mold that can use the transverse pattern and the reverse pattern shape of the swirl chamber multiple times,
    The outer shape of the jet nozzle and the nozzle plate is made of a disposable resist,
    A method of manufacturing an injector, comprising producing a nozzle plate by electroforming.
  10.  請求項9記載のインジェクタの製造方法において、
     前記インジェクタのノズルプレートの噴出口の形状をレジストの形状により変更することができることを特徴とするインジェクタの製造方法。
    In the method of manufacturing an injector according to claim 9,
    A method of manufacturing an injector, characterized in that the shape of the nozzle outlet of the nozzle plate of the injector can be changed according to the shape of the resist.
  11.  請求項9記載のインジェクタの製造方法において、
     前記インジェクタのノズルプレートを電鋳法で製造するために用いる基板と電鋳金型の密着強度を高めるため、電鋳の前にドライエッチングまたはウェットエッチングを用いて前記基板をエッチングすることを特徴とするインジェクタの製造方法。
    In the method of manufacturing an injector according to claim 9,
    In order to increase the adhesion strength between a substrate used for manufacturing the nozzle plate of the injector by electroforming and an electroforming mold, the substrate is etched using dry etching or wet etching before electroforming. Injector manufacturing method.
  12.  請求項9記載のインジェクタの製造方法において、
     前記インジェクタのノズルプレートを電鋳法で製造するために用いる基板と電鋳で作製する「電鋳金型」の密着強度を高めるため、ドライエッチングで酸化膜や不純物をエッチングし、連続して保護膜を成膜し、レジスト作製、電鋳、レジスト剥離の一連の操作を行なうことを特徴とするインジェクタの製造方法。
    In the method of manufacturing an injector according to claim 9,
    In order to increase the adhesion strength between the substrate used for producing the nozzle plate of the injector by electroforming and the “electroforming mold” produced by electroforming, the oxide film and impurities are etched by dry etching, and the protective film is continuously formed. A method of manufacturing an injector characterized by performing a series of operations of resist preparation, electroforming, and resist stripping.
  13.  請求項9記載のインジェクタの製造方法において、
     前記インジェクタのノズルプレートを電鋳法で製造するために用いる基板と「電鋳金型」の密着強度を高めるため、ドライエッチングで酸化膜や不純物をエッチングし、連続して保護膜を成膜し、レジスト作製を行い、連続して保護膜除去、電鋳を行い、レジスト剥離の一連の操作を行なうことを特徴とするインジェクタの製造方法。
    In the method of manufacturing an injector according to claim 9,
    In order to increase the adhesion strength between the substrate used for producing the nozzle plate of the injector by electroforming and "electroforming mold", an oxide film and impurities are etched by dry etching, and a protective film is continuously formed. A method of manufacturing an injector, comprising: producing a resist; successively removing a protective film; performing electroforming; and performing a series of operations for removing the resist.
  14.  請求項9記載のインジェクタの製造方法において、
     前記インジェクタのノズルプレートを電鋳法で製造するために用いる基板として、バネ材を用いることを特徴とするインジェクタの製造方法。
    In the method of manufacturing an injector according to claim 9,
    A method of manufacturing an injector, comprising using a spring material as a substrate used for manufacturing the nozzle plate of the injector by electroforming.
  15.  請求項9記載のインジェクタの製造方法において、
     前記インジェクタのノズルプレートを電鋳法で製造するために用いる基板として、樹脂の上に金属箔が作製された基板を用いることを特徴とするインジェクタの製造方法。
    In the method of manufacturing an injector according to claim 9,
    A method for manufacturing an injector, wherein a substrate in which a metal foil is formed on a resin is used as a substrate used for manufacturing the nozzle plate of the injector by electroforming.
PCT/JP2014/067914 2013-07-17 2014-07-04 Injector and manufacturing method thereof WO2015008638A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015502004A JP5997358B2 (en) 2013-07-17 2014-07-04 Injector and manufacturing method thereof
CN201480002289.9A CN104603447B (en) 2013-07-17 2014-07-04 Injector and its manufacture method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013148246 2013-07-17
JP2013-148246 2013-07-17

Publications (1)

Publication Number Publication Date
WO2015008638A1 true WO2015008638A1 (en) 2015-01-22

Family

ID=52346107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/067914 WO2015008638A1 (en) 2013-07-17 2014-07-04 Injector and manufacturing method thereof

Country Status (3)

Country Link
JP (1) JP5997358B2 (en)
CN (1) CN104603447B (en)
WO (1) WO2015008638A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111356835A (en) * 2017-11-01 2020-06-30 三菱电机株式会社 Fuel injection valve
US11898526B2 (en) 2018-04-25 2024-02-13 Robert Bosch Gmbh Fuel injector valve seat assembly including insert locating and retention features

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10513398A (en) * 1995-01-11 1998-12-22 アムテクス、インコーポレイテッド Electroformed multilayer spray director and method of manufacturing the same
JP2000199469A (en) * 1998-12-28 2000-07-18 Optonix Seimitsu:Kk Injecting nozzle and manufacture thereof
JP2001027169A (en) * 1999-07-15 2001-01-30 Unisia Jecs Corp Fuel injection valve
JP2004060474A (en) * 2002-07-25 2004-02-26 Hitachi Ltd Combustion control device for internal combustion engine
JP2004278464A (en) * 2003-03-18 2004-10-07 Keihin Corp Fuel injection valve
JP2006336577A (en) * 2005-06-03 2006-12-14 Hitachi Ltd Fuel injection valve and internal combustion engine using it
JP2008184977A (en) * 2007-01-30 2008-08-14 Hitachi Ltd Injection vale, orifice plate of injection valve and its manufacturing method
JP2012077666A (en) * 2010-09-30 2012-04-19 Hitachi Automotive Systems Ltd Fuel injection valve
JP2012255386A (en) * 2011-06-09 2012-12-27 Mitsubishi Electric Corp Fuel injection valve

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4404021A1 (en) * 1994-02-09 1995-08-10 Bosch Gmbh Robert Nozzle plate, in particular for injection valves and methods for producing a nozzle plate
US5622611A (en) * 1996-05-22 1997-04-22 Amtx, Inc. Electroformed multilayer flow regulator incorporating force-generating means for selectively constricting the fluid flow path, and a process for the preparation thereof
DE102012211665A1 (en) * 2011-08-18 2013-02-21 Robert Bosch Gmbh Valve for a flowing fluid

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10513398A (en) * 1995-01-11 1998-12-22 アムテクス、インコーポレイテッド Electroformed multilayer spray director and method of manufacturing the same
JP2000199469A (en) * 1998-12-28 2000-07-18 Optonix Seimitsu:Kk Injecting nozzle and manufacture thereof
JP2001027169A (en) * 1999-07-15 2001-01-30 Unisia Jecs Corp Fuel injection valve
JP2004060474A (en) * 2002-07-25 2004-02-26 Hitachi Ltd Combustion control device for internal combustion engine
JP2004278464A (en) * 2003-03-18 2004-10-07 Keihin Corp Fuel injection valve
JP2006336577A (en) * 2005-06-03 2006-12-14 Hitachi Ltd Fuel injection valve and internal combustion engine using it
JP2008184977A (en) * 2007-01-30 2008-08-14 Hitachi Ltd Injection vale, orifice plate of injection valve and its manufacturing method
JP2012077666A (en) * 2010-09-30 2012-04-19 Hitachi Automotive Systems Ltd Fuel injection valve
JP2012255386A (en) * 2011-06-09 2012-12-27 Mitsubishi Electric Corp Fuel injection valve

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111356835A (en) * 2017-11-01 2020-06-30 三菱电机株式会社 Fuel injection valve
CN111356835B (en) * 2017-11-01 2022-07-15 三菱电机株式会社 Fuel injection valve
US11898526B2 (en) 2018-04-25 2024-02-13 Robert Bosch Gmbh Fuel injector valve seat assembly including insert locating and retention features

Also Published As

Publication number Publication date
CN104603447B (en) 2017-10-13
JPWO2015008638A1 (en) 2017-03-02
CN104603447A (en) 2015-05-06
JP5997358B2 (en) 2016-09-28

Similar Documents

Publication Publication Date Title
RU2149226C1 (en) Method of manufacturing disc with holes
CN1144944C (en) Perforated disc especially for injection valves
US5976342A (en) Method for manufacturing an orifice plate
US6796516B2 (en) Fuel injection valve
US6161782A (en) Atomizing disc and fuel injection valve having an atomizing disc
US6273349B1 (en) Fuel injection valve
EP3795361A1 (en) Photodefined aperture plate and method for producing the same
US6168094B1 (en) Fuel injection valve
KR20010012982A (en) Swirl Disk And Fuel Injection Valve With Swirl Disk
JPH10506695A (en) Fuel injection valve
JP5997358B2 (en) Injector and manufacturing method thereof
JP6288116B2 (en) Cylinder head manufacturing method
JP2004510915A (en) Fuel injection valve
JP6384493B2 (en) Cylinder head manufacturing method
KR20150032914A (en) Fuel injector nozzles with at least one multiple inlet port and/or multiple outlet port
US6764033B2 (en) Swirl plate and fuel injection valve comprising such a swirl plate
JPH10507243A (en) Valves, especially fuel injection valves
EP0939858B1 (en) Perforated disk or atomizing disk and an injection valve with a perforated disk or atomizing disk
US20200086434A1 (en) Making nozzle structures on a structured surface
JP6745986B2 (en) Fuel injection valve
US6280832B1 (en) Component produced by micro-electrodeposition
EP1381824B1 (en) Measurement of components that have been micro-galvanically produced, using a sample component by means of photoresist webs
US10961967B1 (en) Fuel injector systems, fuel injectors, fuel injector nozzles, and methods for making fuel injector nozzles
US20190271287A1 (en) Method for producing an injector
DE10048936A1 (en) Swirl plate esp. for injection valves with complete passage for fluid with at least 1 inlet and 1 outlet opening with latter in lower base layer and with at least 1 swirl duct opening out

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015502004

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201501268

Country of ref document: ID

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14826752

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14826752

Country of ref document: EP

Kind code of ref document: A1