WO2015004724A1 - Display device - Google Patents

Display device Download PDF

Info

Publication number
WO2015004724A1
WO2015004724A1 PCT/JP2013/068705 JP2013068705W WO2015004724A1 WO 2015004724 A1 WO2015004724 A1 WO 2015004724A1 JP 2013068705 W JP2013068705 W JP 2013068705W WO 2015004724 A1 WO2015004724 A1 WO 2015004724A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
projection
screen
scattered
intensity
Prior art date
Application number
PCT/JP2013/068705
Other languages
French (fr)
Japanese (ja)
Inventor
樋口 隆信
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2013/068705 priority Critical patent/WO2015004724A1/en
Publication of WO2015004724A1 publication Critical patent/WO2015004724A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3191Testing thereof
    • H04N9/3194Testing thereof including sensor feedback
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2053Intensity control of illuminating light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2086Security or safety means in lamp houses
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • G03B21/62Translucent screens
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B33/00Colour photography, other than mere exposure or projection of a colour film
    • G03B33/04Colour photography, other than mere exposure or projection of a colour film by four or more separation records
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B33/00Colour photography, other than mere exposure or projection of a colour film
    • G03B33/06Colour photography, other than mere exposure or projection of a colour film by additive-colour projection apparatus
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3129Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] scanning a light beam on the display screen
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3155Modulator illumination systems for controlling the light source

Definitions

  • the present invention relates to a display device that displays video.
  • a display device that displays an image by projecting a projection image from a light source such as a projector onto a screen is known.
  • Patent Document 1 uses a light control element that can change a transparent state (transmission state) and an opaque state (scattering state) alternately by controlling the transmittance as a screen.
  • a viewer is photographed with a camera installed behind the screen in a transparent state, and an image is displayed as a display in an opaque state.
  • the light from the light source may enter the viewer's eyes when it is in a transparent state. If the screen is in a transparent state when no voltage is applied, the light from the light source may enter the viewer's eyes when the screen is powered off due to a failure or the like.
  • These are highly dangerous when a laser beam is used as a light source, and more dangerous when a large-screen system is configured using a raster scan type laser projector because the energy density of the laser beam is high. . Therefore, measures for avoiding such danger are indispensable.
  • Patent Document 2 describes that a conductive film is formed on a screen, a screen breakage is detected by a change in the resistance value of the conductive film, and the amount of light projected is controlled.
  • Patent Document 3 a photodetector is installed at the diagonally outer edge of the screen to detect whether the laser beam is scanned on the screen, and when the photodetector does not detect the laser beam within a predetermined time, a laser is detected. It is described that the generation of light is stopped.
  • Patent Document 3 has a problem that the difference between the transparent state and the opaque state of the screen cannot be detected because the light amount irradiated on the screen is measured by the photodetector. That is, Patent Documents 2 and 3 cannot be applied to the configuration described in Patent Document 1 because the configuration described in Patent Document 1 is not assumed.
  • the present invention allows strong light from a light source to pass through the screen and enter the viewer's eyes when, for example, a screen in which a transmission state and a scattering state change alternately is used. It is an object of the present invention to provide a display device that can prevent the above-described problem.
  • the invention according to claim 1 is a screen that can switch between a transmission state and a scattering state with respect to light, and projection light detection that detects the intensity of projection light projected toward the screen.
  • a screen capable of switching between a transmission state and a scattering state with respect to light, invisible light projection means for projecting invisible light in a predetermined wavelength range toward the screen, and the screen is scattered. Further, the invisible light detecting means for detecting the intensity of the invisible light in the predetermined wavelength range, and the projection of the projection light projected on the screen is limited based on the intensity of the invisible light detected by the invisible light detecting means. And limiting means.
  • the invention described in claim 7 is a screen that can be switched between a transmission state and a scattering state with respect to light, a projection light detection unit that detects the intensity of projection light projected toward the screen, and is scattered by the screen.
  • the scattered light detection means for detecting the intensity of a predetermined wavelength range included in the projection light, the intensity of the projection light detected by the projection light detection means, and the scattered light detection means detected
  • attenuating means for attenuating the projection light based on the intensity of the scattered light in a predetermined wavelength range.
  • a screen capable of switching between a transmission state and a scattering state with respect to light, invisible light projection means for projecting invisible light in a predetermined wavelength range toward the screen, and the screen is scattered.
  • Invisible light detection means for detecting the intensity of invisible light in the predetermined wavelength range
  • attenuation means for attenuating the projection light projected on the screen based on the intensity of the invisible light detected by the invisible light detection means It is characterized by having.
  • the detection result of the projection light detecting means for detecting the intensity of the projection light projected toward the screen capable of switching between the transmission state and the scattering state with respect to the light and the light scattered by the screen.
  • the invention according to claim 13 detects the intensity of invisible light in a predetermined wavelength range projected from the invisible light projection means toward the screen capable of switching between a transmission state and a scattering state with respect to light and scattered by the screen.
  • a determination step for determining whether or not to limit the projection of the projection light projected on the screen based on the detection result of the invisible light detection means, and the determination step determines that the projection of the projection light is limited In the case, a limiting step of limiting the projection of the projection light projected onto the screen by the limiting means is included.
  • the detection result of the projection light detecting means for detecting the intensity of the projection light projected toward the screen capable of switching between the transmission state and the scattering state with respect to the light and the light scattered by the screen.
  • the invention according to claim 15 detects the intensity of invisible light in a predetermined wavelength range projected from the invisible light projection means toward the screen capable of switching between a transmission state and a scattering state with respect to light and scattered by the screen. Determining whether to attenuate the projection light projected on the screen based on the detection result of the invisible light detection means, and if it is determined in the determination step that the projection light is attenuated, attenuation And attenuating step for attenuating the projection light projected on the screen.
  • FIG. 1 is a configuration diagram of a display device according to a first embodiment of the present invention.
  • FIG. 2 is a configuration diagram illustrating an example of a light source and an optical system of the projector illustrated in FIG. 1. It is sectional drawing of the screen shown by FIG. It is the schematic block diagram which showed the example of a division
  • movement of the calculator shown by FIG. 4 is another configuration example of the display device shown in FIG. 1. It is a block diagram of the display apparatus concerning the 2nd Example of this invention.
  • FIG. 9 is a configuration diagram illustrating an example of a light source and an optical system of the projector illustrated in FIG. 8.
  • FIG.1 It is a block diagram of the display apparatus concerning the 3rd Example of this invention. It is another example of a structure of the scattered light detector shown by FIG.1, FIG8 and FIG.10. 11 is another configuration example of the projection photodetector shown in FIGS. 1, 8, and 10.
  • a display device includes a screen capable of switching between a transmission state and a scattering state with respect to light, a projection light detection unit that detects the intensity of projection light projected toward the screen, and is scattered by the screen.
  • a scattered light detecting means for detecting the intensity of a predetermined wavelength range included in the projected light out of the scattered light. Then, the limiting unit limits the projection of the projection light based on the intensity of the projection light detected by the projection light detection unit and the intensity of the scattered light in the predetermined wavelength range detected by the scattered light detection unit.
  • the scattered light detection means detects the intensity in the predetermined wavelength range, the influence of the environmental light contained in the scattered light can be removed. Since the spectrum of the ambient light is known to be broad, the influence of the ambient light can be ignored by detecting a predetermined wavelength range included in the projection light. Therefore, it is possible to detect whether or not the projection light is projected onto the screen in the scattering state with higher accuracy.
  • the predetermined wavelength range detected by the scattered light detection means may be a wavelength range corresponding to one or a plurality of light sources among a plurality of light sources that emit light constituting the projection light. By doing in this way, it is possible to detect whether or not the projection light is projected on the screen from the wavelength of light (for example, red blue green) constituting the projection light. Moreover, since the wavelength range of a specific light source is detected, the influence of ambient light can be removed.
  • the projection light detection means may detect the intensity of light in the same wavelength range as that of the scattered light detection means. By doing so, the intensity changes of the scattered light can be matched, so that it can be detected with higher accuracy whether or not the projection light is projected on the screen.
  • a display device includes a screen capable of switching between a transmission state and a scattering state for light, invisible light projection means for projecting invisible light in a predetermined wavelength range toward the screen, Invisible light detecting means for detecting the intensity of invisible light in the predetermined wavelength range scattered by the screen. Then, the limiting unit limits the projection of the projection light projected on the screen based on the intensity of the invisible light detected by the invisible light detection unit. By doing in this way, it can be detected whether projection light is projected on the screen of a scattering state by the presence or absence of scattering of invisible light. And when invisible light is not projected on the screen of a scattering state, projection of projection light can be restrict
  • the invisible light detecting means detects the intensity of invisible light in a predetermined wavelength range projected from the invisible light projecting means, the influence of environmental light can be eliminated. Since the spectrum of ambient light is known to be broad, the influence of ambient light can be ignored by detecting a predetermined wavelength range of invisible light emitted from a predetermined light source. Therefore, it is possible to detect whether or not the projection light is projected onto the screen in the scattering state with higher accuracy.
  • the limiting means may stop the projection of the projection light. By doing so, it is possible to prevent the projection light from hitting the screen, so that strong light from the light source does not hit the screen and can be prevented from entering the viewer's eyes.
  • the limiting means may block the projection light.
  • the projection light can be blocked by providing a shutter mechanism or the like in a projector or the like that projects the projection light. Therefore, strong light from the light source does not strike the screen and can be prevented from entering the viewer's eyes.
  • a display device includes a screen that can switch between a transmission state and a scattering state with respect to light, a projection light detection unit that detects the intensity of projection light projected toward the screen, Scattered light detecting means for detecting the intensity of a predetermined wavelength range included in the projected light out of the scattered light scattered by the screen.
  • the attenuation unit attenuates the projection light based on the intensity of the projection light detected by the projection light detection unit and the intensity of the scattered light in the predetermined wavelength range detected by the scattered light detection unit. By doing in this way, it can be detected whether projection light is projected on the screen of a scattering state by comparison with the predetermined wavelength contained in projection light and projection light. And when it is not projected on the screen of a scattering state, projection light can be attenuated to the extent which is not dangerous. Therefore, it is possible to prevent strong light from the light source from passing through the screen and entering the viewer's eyes.
  • the scattered light detection means detects the intensity in the predetermined wavelength range, the influence of the environmental light contained in the scattered light can be removed. Since the spectrum of the ambient light is known to be broad, the influence of the ambient light can be ignored by detecting a predetermined wavelength range included in the projection light. Therefore, it is possible to detect whether or not the projection light is projected onto the screen in the scattering state with higher accuracy.
  • the predetermined wavelength range detected by the scattered light detection means may be a wavelength range corresponding to one or a plurality of light sources among a plurality of light sources that emit light constituting the projection light. By doing in this way, it is possible to detect whether or not the projection light is projected on the screen from the wavelength of light (for example, red blue green) constituting the projection light. Moreover, since the wavelength range of a specific light source is detected, the influence of ambient light can be removed.
  • the projection light detection means may detect the intensity of light in the same wavelength range as that of the scattered light detection means. By doing so, the intensity changes of the scattered light can be matched, so that it can be detected with higher accuracy whether or not the projection light is projected on the screen.
  • a display device includes a screen capable of switching between a transmission state and a scattering state for light, invisible light projection means for projecting invisible light in a predetermined wavelength range toward the screen, Invisible light detecting means for detecting the intensity of invisible light in the predetermined wavelength range scattered by the screen.
  • the attenuation means attenuates the projection light projected on the screen based on the intensity of the invisible light detected by the invisible light detection means. By doing in this way, it can be detected whether projection light is projected on the screen of a scattering state by the presence or absence of scattering of invisible light. And when invisible light is not projected on the screen of a scattering state, projection light can be attenuate
  • the invisible light detecting means detects the intensity of invisible light in a predetermined wavelength range projected from the invisible light projecting means, the influence of environmental light can be eliminated. Since the spectrum of ambient light is known to be broad, the influence of ambient light can be ignored by detecting a predetermined wavelength range of invisible light emitted from a predetermined light source. Therefore, it is possible to detect whether or not the projection light is projected onto the screen in the scattering state with higher accuracy.
  • the attenuation means may be arranged so as to overlap the screen on at least one of the one surface or the other surface of the screen. By doing so, the projection light can be attenuated before or after the screen. Further, the screen and the attenuation means can be configured integrally.
  • the detection result of the projection light detection unit that detects the intensity of the projection light projected toward the screen capable of switching between the transmission state and the scattering state with respect to the light. And determining whether or not to limit the projection of the projection light based on the detection result of the scattered light detection means for detecting the intensity of the predetermined wavelength range included in the projection light among the scattered light scattered by the screen.
  • the determination step includes a limiting step of limiting the projection of the projection light by the limiting unit when it is determined that the projection of the projection light is limited in the determination step.
  • the scattered light detection means detects the intensity in a predetermined wavelength range, the influence of the environmental light contained in the scattered light can be removed. Since the spectrum of the ambient light is known to be broad, the influence of the ambient light can be ignored by detecting a predetermined wavelength range included in the projection light. Therefore, it is possible to detect whether or not the projection light is projected onto the screen in the scattering state with higher accuracy.
  • a method for controlling a display device includes a predetermined wavelength that is projected from an invisible light projection unit toward a screen capable of switching between a transmission state and a scattering state with respect to light and is scattered by the screen. Based on the detection result of the invisible light detecting means for detecting the intensity of the invisible light in the range, a determination step for determining whether or not to limit the projection of the projection light projected on the screen, and the projection light projection in the determination step If it is determined to be limited, a limiting step of limiting the projection of the projection light projected onto the screen by the limiting means is included. By doing in this way, it can be detected whether projection light is projected on the screen of a scattering state by the presence or absence of scattering of invisible light.
  • projection of projection light can be restrict
  • the spectrum of ambient light is known to be broad, the influence of ambient light can be ignored by detecting a predetermined wavelength range of invisible light emitted from a predetermined light source. Therefore, it is possible to detect whether or not the projection light is projected onto the screen in the scattering state with higher accuracy.
  • the display device control method includes a projection light detection unit that detects the intensity of projection light projected toward a screen that can switch between a transmission state and a scattering state with respect to light. Judgment to determine whether or not to attenuate the projection light based on the result and the detection result of the scattered light detection means for detecting the intensity of the predetermined wavelength range included in the projection light among the scattered light scattered by the screen And a step of attenuating the projection light by the attenuating means when it is determined that the projection light is attenuated in the determination step.
  • the projection light detection means detects the intensity in a predetermined wavelength range, the influence of the environmental light contained in the scattered light can be removed. Since the spectrum of the ambient light is known to be broad, the influence of the ambient light can be ignored by detecting a predetermined wavelength range included in the projection light. Therefore, it is possible to detect whether or not the projection light is projected onto the screen in the scattering state with higher accuracy.
  • a method for controlling a display device includes a predetermined wavelength that is projected from an invisible light projection unit toward a screen capable of switching between a transmission state and a scattering state with respect to light and is scattered by the screen. Based on the detection result of the invisible light detecting means for detecting the intensity of the invisible light in the range, it is determined whether to attenuate the projection light projected on the screen, and it is determined that the projection light is attenuated in the determination step. In such a case, an attenuation step of attenuating the projection light projected onto the screen by the attenuation means is included.
  • the invisible light detecting means detects the intensity of invisible light in a predetermined wavelength range projected from the invisible light projecting means, it is possible to remove the influence of environmental light. Since the spectrum of ambient light is known to be broad, the influence of ambient light can be ignored by detecting a predetermined wavelength range of invisible light emitted from a predetermined light source. Therefore, it is possible to detect whether or not the projection light is projected onto the screen in the scattering state with higher accuracy.
  • the display system includes a projector 2, a screen 3, a driver 4, a calculator 5, a scattered light detector 6, and an ambient light removal filter 7.
  • the projector 2 as a light source projects image light for full display once within a part of the frame period of the image.
  • the projector 2 has laser diodes for each of the three primary colors of RGB (red, green, and blue), and laser light having an intensity modulated in accordance with a video signal input from the outside is emitted as projection light.
  • the projector 2 also has an optical system such as a collimating optical system and a beam shaping optical system, and a scanner (scanning element) that scans the laser light in the two-dimensional direction of the screen 3.
  • the laser beams of the three primary colors emitted from are output toward the screen 3 and displayed on the screen 3 as images.
  • the projector 2 is installed in the back of the screen 3 when viewed from the viewer.
  • FIG. 2 shows an example of the configuration of the light source and the optical system of the projector 2.
  • the projector 2 includes a laser control circuit 2a, a red laser light source 2b, a blue laser light source 2c, a green laser light source 2d, collimating lenses 2e, 2f and 2g, a lens 2k, a mirror 2j, and dichroic mirrors 2h and 2i.
  • the laser control circuit 2a outputs the video signals converted into the gradation data of the three colors red, blue, and green to the red laser light source 2b, the blue laser light source 2c, and the green laser light source 2d, respectively.
  • the red laser light source 2b, the blue laser light source 2c, and the green laser light source 2d output laser light of each color according to the gradation data input from the laser control circuit 2a.
  • the laser light output from the red laser light source 2b is collimated by the collimator lens 2e, and then passes through the dichroic mirror 2h and the lens 2k and enters the MEMS mirror 2l.
  • the laser light output from the blue laser light source 2c is collimated by the collimator lens 2f, reflected by the dichroic mirror 2i toward the dichroic mirror 2h, reflected by the dichroic mirror 2h toward the lens 2k, and the lens 2k. And enters the MEMS mirror 2l.
  • the laser light output from the green laser light source 2d is collimated by the collimator lens 2g, reflected by the mirror 2j toward the dichroic mirror 2i, then transmitted through the dichroic mirror 2i, and directed by the dichroic mirror 2h toward the lens 2k. And is transmitted through the lens 2k and enters the MEMS mirror 21.
  • the MEMS mirror 21 is a mirror (scanning element, spatial modulator) configured by MEMS (Micro Electro Mechanical Systems) that scans incident laser light in the horizontal and vertical directions of the screen 3, and is formed integrally with the mirror. It is driven by an actuator (not shown). The operation of the MEMS mirror 21 is controlled by the MEMS mirror control circuit 2m. The laser light incident on the MEMS mirror 21 is reflected toward the beam splitter 2n.
  • MEMS Micro Electro Mechanical Systems
  • the beam splitter 2n as the projection light detection means reflects a predetermined amount of the incident laser light toward the projection light selection filter 2p, and outputs the rest toward the screen 3, that is, projects as projection light.
  • the amount reflected by the beam splitter 2n toward the projection light selection filter 2p may be an amount that does not affect the display on the screen 3.
  • the projection light selection filter 2p as the projection light detection means is constituted by a narrow band-pass filter that selectively transmits green laser light among RGB three-wavelength laser light (projection light).
  • the green laser light has the same color (wavelength range) as the color (wavelength range) transmitted by the ambient light removal filter 7 described later. That is, the projection light detector 2o detects the intensity of light in the same wavelength range as the scattered light detection means by the projection light selection filter 2p.
  • Projection light detector 2o as projection light detection means is composed of a photodetector such as a photodiode, for example.
  • the projection light detector 2o outputs an electric signal corresponding to the intensity of the input projection light to the computing unit 5.
  • the projection light detector 2o, the beam splitter 2n, and the projection light selection filter 2p are not limited to being built in the projector 2, but may be any position where projection light can be detected, such as the vicinity of the exit of the projector 2 or the vicinity of the screen 3. Good.
  • the projection light may be directly received without providing the beam splitter 2n.
  • the screen 3 can switch the optical state between a transmission state and a scattering state (opaque state).
  • the screen 3a includes a transparent electrode 3a1 and a scattering layer 3a2 sandwiched between the transparent electrodes 3a1.
  • the outside of the transparent electrode 3a1 is a transparent substrate such as glass or resin.
  • the scattering layer 3a2 shown in FIG. 3 is composed of polymer dispersed liquid crystal (Polymer Dispersed Liquid Crystal, PDLC), polymer network liquid crystal (Polymer Network Liquid Crystal, PNLC), or the like.
  • a reverse mode light control panel that is in a scattering state when a voltage is applied to the transparent electrode 3a1 and is in a transmission state when no voltage is applied is used as the screen 3.
  • the screen 3 projects an image from the projector 2 in the scattering state, so that the projection light is scattered and the image is displayed on the screen 3.
  • FIG. 4 shows a schematic configuration diagram of the screen 3 shown in FIG. 1 viewed from the front. As shown in FIG. 4, the screen 3 is divided into a plurality of divided regions 31 in a band shape, and the transmission state and the scattering state can be switched for each divided region 31.
  • the region where the image is displayed is in a scattering state, and the region where the image is not displayed is in a transmissive state, so that these are averaged (integrated) to the human eye as a viewer.
  • the see-through characteristic that the screen 3 is transparent even when it is visually recognized and in a bright display state is obtained.
  • switching between the scattering state and the transmission state may be performed by, for example, outputting a control signal from the projector 2 or the calculator 5 to the screen 3 wirelessly or by wire.
  • the driver 4 is a circuit that outputs a power ON / OFF switching signal to the projector 2 in response to an instruction from the computing unit 5.
  • the computing unit 5 as a limiting means supplies a video signal to be projected to the projector 2 input from the outside. Note that the video signal may be directly input to the projector 2.
  • the computing unit 5 switches each divided region 31 of the screen 3 to the scattering state or the transmission state based on the synchronization signal of the input video signal.
  • the synchronization signal is received from the projector and each divided area 31 of the screen 3 is switched to the scattering state or the transmission state.
  • the arithmetic unit 5 projects the projection of the projection from the projector 2 and the scattering state of the screen 3 or the screen 3 remains in a transmissive state. It is determined whether or not light is transmitted through the screen 3 without being scattered. If the projection light is transmitted through the screen 3 without being scattered, the power of the projector 2 is turned off. Note that the screen 3 actually scatters light slightly even in the transmissive state, but cannot scatter so that an image can be displayed and the amount of attenuation of transmitted light is so small that it will not be scattered. .
  • the scattered light detector 6 as the scattered light detecting means is composed of a photodetector such as a photodiode.
  • the scattered light detector 6 outputs an electric signal corresponding to the intensity of the wavelength (for example, the green laser light source 2 d) transmitted from the scattered light scattered by the screen 3 through the ambient light removal filter 7 to the calculator 5. Therefore, the scattered light detector 6 is installed at a position where the scattered light scattered by the screen 3 is incident.
  • the installation position of the scattered light detector 6 and the ambient light removal filter 7 described later may be on the projector 2 side or on the viewer side.
  • the ambient light removal filter 7 is constituted by, for example, a narrow band-pass filter that selectively transmits green laser light among RGB three-wavelength laser light (projection light) projected by the projector 2. That is, only the wavelength range of the laser light emitted from the green laser light source 2d is transmitted. That is, the ambient light removal filter 7 also functions as part of the scattered light detection means.
  • the solid line is shown as green laser light
  • the one-dot chain line is shown as red laser light
  • the two-dot chain line is shown as blue laser light.
  • the spectrum of laser light (projection light) projected from the projector 2 is sharp (narrow band), whereas the spectrum of ambient light is broad (broadband). Therefore, by extracting only the peak portion of the spectrum of the laser beam by the ambient light removal filter 7, the intensity of the projection light from which the influence of the ambient light is removed can be obtained.
  • the screen 3, the beam splitter 2n, the projection light detector 2o, the projection light selection filter 2p, the scattered light detector 6, the computing unit 5, and the ambient light removal filter 7 are included.
  • the display apparatus 1 concerning one Example of this invention is comprised.
  • FIG. 5 is a schematic functional configuration diagram of the computing unit 5.
  • the intensity of the scattered light (the intensity of the green laser light transmitted through the projection light selection filter 2p) that is the output of the scattered light detector 6 and the projection light that is the output of the projection light detector 2o.
  • the intensity (the intensity of the green laser light transmitted through the ambient light removal filter 7) is compared by the comparison unit 5b.
  • the fact that the scattered light intensity from the screen 3 in the scattering state and the transmission state is different is used.
  • the display image generally changes with time except when the same image is continuously displayed with a constant luminance (still image display), and thus the projection light intensity and the scattered light intensity change with time. Therefore, by continuously monitoring the scattered light intensity and the projected light intensity and sequentially comparing the two, it is possible to detect unintended transmission of the laser light through the screen 3. For example, when the synchronization is lost due to a malfunction of the screen 3 or the like, the laser light is transmitted without being scattered because the place irradiated with the laser light is in a transmission state. At this time, a change occurs such that the intensity of the scattered light becomes small, and an offset occurs in the ratio between the intensity of the scattered light and the projected light. Therefore, by detecting this offset, it can be detected that the laser light is transmitted through the screen 3.
  • Examples of specific comparison methods in the comparison unit 5b include subtracting the intensity of the scattered light from the intensity of the projected light, and dividing the intensity of the projected light by the intensity of the scattered light. As described above, if a change occurs such that the laser beam is transmitted without being scattered due to malfunction of the screen 3 and the intensity of the scattered light is reduced, for example, in the case of subtraction, the subtraction value is increased. Change. Therefore, loss of synchronization can be detected. If the subtraction value changes more than a certain value, the projector 2 is turned off to stop projection of the projection light as an abnormal state in which the projection light is projected in the transmission state such as out of synchronization.
  • step S1 the display device 1 is activated and initialized, and the process proceeds to step S2. That is, power is supplied to the display device 1 and each unit is set to an initial state.
  • step S2 projection is started and the process proceeds to step S3. That is, the projection light is projected from the projector 2 and displayed on the screen 3.
  • the screen 3 sequentially switches the divided areas 31 shown in FIG. 4 to the scattering state in synchronization with the projection light.
  • step S3 as the determination step, it is determined whether or not a failure has occurred. If it has occurred (in the case of yes), the process proceeds to step S4, and if it does not occur (in the case of no), this step is repeated. That is, it is determined whether or not to limit the projection of the projection light.
  • the problem is that an abnormal state in which projection light is projected in the transmission state occurs due to the above-described loss of synchronization or the supply of the electrode of the screen 3 being stopped. That is, it is a case where it is detected that the subtraction value has changed more than a certain value as a result of the comparison by the comparison unit 5b.
  • step S4 as the limiting step, the projection light is blocked and the process proceeds to step S5.
  • the projection light is blocked by turning off the power of the projector 2. That is, projection of projection light is limited by outputting a control signal for turning off the power of the projector 2.
  • a control signal that stops power supply to the projector 2 may be output to a power supply device that supplies power to the projector 2.
  • step S5 the projection is stopped. That is, the input of the video signal to the projector 2 is stopped.
  • FIG. 4 since it is divided into a plurality of divided regions 31, a scattered light detector 6 and an ambient light removal filter 7 are provided for each divided region, and the projector 2
  • the flowchart of FIG. 6 may be executed using the result of the scattered light detector 6 that is in a scattering state in accordance with the scanning of the projection light.
  • the number of scattered light detectors 6 and the ambient light removal filter 7 may be one.
  • the divided region 31 closest to the position where the one scattered light detector 6 and the ambient light removal filter 7 are provided is scattered. What is necessary is just to compare the intensity
  • the scattered light detector 6 and the ambient light removal filter 7 are provided at the lower end of the screen, the output of the scattered light detector 6 when the divided region 31 at the lower end is in a scattering state, and the region is scanned.
  • the outputs of the projection light detector 2o when compared are compared. In this case, the comparison is performed once in a scanning cycle (video cycle) (a period during which the image is projected onto the divided area 31).
  • the display device 1 includes a screen 3 that can switch between a transmission state and a scattering state with respect to light, a projection light detector 2o that detects the intensity of projection light projected toward the screen 3, and A scattered light detector 6 for detecting the intensity of light in the wavelength range that has passed through the ambient light removal filter 7 out of the scattered light scattered by the screen 3; Based on the intensity of the projection light detected by the projection light detector 2o and the intensity of light in the wavelength range transmitted through the ambient light removal filter 7 detected by the scattered light detector 6, the computing unit 5 The projection of the projection light is stopped by turning OFF. By doing so, it is possible to detect whether or not the projection light is projected onto the screen 3 in the scattering state.
  • the projector 2 When the projection light is not projected onto the screen 3 in the scattering state, the projector 2 is turned off. For example, it is possible to prevent the projection light from hitting the screen 3. Therefore, strong light from the light source can be prevented from passing through the screen 3 and entering the viewer's eyes.
  • the scattered light detector 6 detects the intensity in a predetermined wavelength range that has passed through the ambient light removal filter 7, the influence of the ambient light contained in the scattered light can be removed. Therefore, it is possible to detect whether or not the projection light is projected onto the screen in the scattering state with higher accuracy.
  • the projection light selection filter 2p detects the intensity of light in the same wavelength range as that of the ambient light removal filter 7, the intensity change of the scattered light can be matched, and the projection light is projected onto the screen 3. It can be detected with higher accuracy.
  • stopping the projection of the projection light is not limited to turning off the power of the projector 2.
  • the emission of the red laser light source 2b, the blue laser light source 2c, and the green laser light source 2d may be stopped, or the input of the video signal to the projector 2 is stopped (step S4 is omitted and step S5 is omitted). May be performed).
  • a shutter mechanism 9 may be provided on the front surface of the projector 2 as shown in FIG.
  • the shutter mechanism 9 is controlled from the calculator 5 via the driver 8. That is, the shutter mechanism 9 is controlled to be closed instead of turning off the power of the projector 2 in step S4 of FIG. That is, the projection of the projection light is blocked.
  • the shutter mechanism 9 is not limited to the front surface of the projector 2 and may be provided inside the projector 2. As shown in FIG. 7, the provision of the shutter mechanism 9 eliminates the need to turn off (turn off) the projector 2. Therefore, when returning, it is only necessary to open the shutter mechanism 9 and it is possible to return quickly.
  • the wavelength range of the laser light to be compared by the computing unit is not limited to green, but may be red or blue, or two or all three of these three colors.
  • a beam splitter may be used to divide the light into two or three and provide a filter that transmits the wavelength range of each color.
  • the predetermined wavelength range detected by the scattered light detection means may be a wavelength range corresponding to one or a plurality of light sources among a plurality of light sources that emit light constituting the projection light.
  • the light source constituting the projection light is not limited to the laser light, but may be an LED (light emitting diode) light source.
  • the spectrum peak is not as sharp as the laser light, so the influence of ambient light cannot be completely removed. There is a possibility that the detection accuracy of the state is lowered. Therefore, a light source having a sharp spectrum such as laser light is preferable.
  • the projection light selection filter 2p in the projector 2 may not be provided.
  • three color laser beams are directly incident on the projection light detector 2o from the beam splitter 2n.
  • the temporal change in the intensity of the projected light is often substantially the same regardless of whether it is red, blue, or green.
  • the projection light selection filter 2p may not be provided in the previous stage of the projection light detector 2o.
  • infrared (invisible light) laser light in a predetermined wavelength range is projected onto the screen 3 as invisible light projection means.
  • the solid line indicates RGB laser light
  • the alternate long and short dash line indicates infrared laser light.
  • infrared light infrared light
  • Invisible light may not be laser light.
  • laser light is generally preferable because it has a sharp peak in the spectrum and can easily eliminate the influence of ambient light.
  • FIG. 9 shows a configuration diagram of the projector 2 according to the present embodiment.
  • an infrared laser light source 2q a collimating lens 2r, and a mirror 2s are added, and the mirror 2j is changed to a dichroic mirror 2t.
  • the beam splitter 2n, the projection light detector 2o, and the projection light selection filter 2p are deleted from the configuration of FIG.
  • an eye-safe laser (wavelength 1.4 to 2.6 ⁇ m) is preferably used as the laser light emitted from the infrared laser light source 2q.
  • the laser light output from the infrared laser light source 2q under the control of the laser control circuit 2a is collimated by the collimator lens 2r, reflected by the mirror 2s toward the dichroic mirror 2t, and then transmitted through the dichroic mirrors 2t and 2i. Then, the light is reflected by the dichroic mirror 2h toward the lens 2k, passes through the lens 2k, and enters the MEMS mirror 2l.
  • the laser light output from the green laser light source 2d is collimated by the collimating lens 2g, then reflected by the dichroic mirror 2t toward the dichroic mirror 2i, dropped by the dichroic mirror 2i, and applied to the lens 2k by the dichroic mirror 2h. The light is then reflected and transmitted through the lens 2k to enter the MEMS mirror 21.
  • the ambient light removal filter 7 of the present embodiment is a narrow band pass filter that transmits the same wavelength range as the infrared light emitted from the infrared laser light source 2q.
  • the scattered light detector 6 outputs an electric signal corresponding to the intensity of the wavelength of the infrared light transmitted from the scattered light scattered by the screen 3 through the ambient light removal filter 7 to the calculator 5. That is, it functions as invisible light detection means. Then, in the computing unit 5, when the detected infrared light intensity is below a certain level, an abnormal state in which the projection light is projected in the transmission state occurs due to loss of synchronization or the supply of the electrode of the screen 3 being stopped. Judge that Then, for example, the power supply of the projector 2 is turned off, or projection of an image or the like is stopped.
  • the infrared light projected from the projector 2 is emitted with a predetermined constant output.
  • the scattered light detector 6 has an infrared ray with an intensity corresponding to the output of the infrared laser light source 2q. Light should be detected. Therefore, the presence / absence of a failure in step S3 in FIG. 6 can be determined by determining whether the output of the scattered light detector 6 is equal to or less than a certain intensity.
  • the display device 1 removes ambient light from the screen 3 that can switch between a transmission state and a scattering state with respect to light, and the scattered light that is projected from the infrared laser light source 2q and scattered by the screen 3. And a scattered light detector 6 for detecting the intensity of infrared light transmitted through the filter 7. Then, the computing unit 5 stops the projection of the projection light by turning off the power of the projector 2 based on the intensity of the infrared light detected by the scattered light detector 6.
  • the projected light is scattered even when an image that is biased to a predetermined wavelength range such as a blue-colored image is displayed (when the projected light is projected). Whether or not the image is projected on the screen in the state can be detected. Further, since the intensity of infrared light in the wavelength range emitted from the infrared laser light source 2q is detected, the influence of ambient light can be removed.
  • the infrared light is projected with a constant output.
  • the infrared light is output with a pulsed light having a predetermined frequency
  • the scattered light detector 6 is provided with a lock-in amplifier. You may make it detect. In this case, since the frequency coincidence is also seen on the detection side, the output on the light source side can be lowered.
  • the infrared light emitted from the infrared laser light source 2q is scanned together with the projection light and projected toward the screen 3 (although it is projected together), it is provided alone. Then, it may be projected toward the screen 3.
  • a control signal for switching the screen 3 to the scattering state or the transmission state is input from the computing unit 5 or the like so as to project it to a specific position on the screen 3, and a period in which an image should be projected on the specific position on the screen 3 It is only necessary to control so as to emit infrared light.
  • the emission of the red laser light source 2b, the blue laser light source 2c, the green laser light source 2d, and the infrared laser light source 2q may be stopped, or the input of the video signal to the projector 2 may be performed. You may make it stop.
  • a shutter mechanism 9 may be provided on the front surface of the projector 2 as shown in FIG.
  • the light source for forming the projection light is a laser light source, but may be an LED (light emitting diode) light source.
  • the spatial modulator is not a MEMS mirror 21 but a two-dimensional spatial modulation element such as a liquid crystal element or DMD (Digital Micromirror Device).
  • the display device 1 includes a projector 2, a screen 3, a calculator 5, a scattered light detector 6, an ambient light removal filter 7, a driver 10, and a normal device.
  • a mode light control panel 11 The mode light control panel 11.
  • the normal mode light control panel 11 attenuates the laser light to prevent the light from being transmitted to the viewer. That is, it has attenuation means for attenuating the projection light.
  • the normal mode light control panel 11 is composed of a liquid crystal element in a normal mode in which a scattering layer sandwiched between transparent electrodes is composed of liquid crystal, and is in a transmission state when a voltage is applied to the transparent electrode and is in a scattering state when no voltage is applied. It is a thing.
  • the normal mode dimming panel 11 is controlled from the computing unit 5 via the driver 10.
  • the normal mode light control panel 11 is normally controlled by applying a voltage so as to be in a transmissive state. If a problem occurs in step S3 in the flowchart of FIG. 6, the steps S4 and S5 described in the first embodiment are replaced. A step of stopping the application of the voltage to enter a scattering state is performed (attenuation step). By doing so, the laser light transmitted through the screen 3 in an abnormal state can be scattered by the normal mode light control panel 11 to attenuate the output of the laser light.
  • the normal mode dimming panel 11 is arranged so as to overlap the viewer 3 side of the screen 3, that is, one side of the screen 3, but may be arranged on the projector 2 side (the other side). Good.
  • the normal mode light control panel 11 is used as the attenuation means, but a reverse mode light control panel may be used.
  • a voltage is not applied and a transmission state is set.
  • voltage application is started and a scattering state is set.
  • the reverse mode light control panel is in a scattering state when a voltage is applied, for example, when the power supply of the screen 3 and the normal mode light control panel 11 is stopped due to a failure or the like, the reverse mode light control panel is in a scattering state. I can't. Therefore, in the case of the configuration as in the present embodiment, the normal mode light control panel 11 is preferable as the attenuating means.
  • the configurations of the scattered light detector and the arithmetic unit 5 are the same as those shown in the first embodiment. That is, for example, the projection light intensity of the green laser light is detected by the projection light detector 2o provided in the projector, and the intensity of the green laser light scattered by the screen 3 is detected by the scattered light detector 6. Based on the result detected by the projection light detector 2 o and the result detected by the scattered light detector 6, it is determined whether or not the projection light is transmitted without being scattered by the screen 3.
  • the configuration of the scattered light detector and the arithmetic unit 5 may be the configuration shown in the second embodiment. That is, invisible light such as infrared light is projected from the projector 2, and the intensity of the infrared light scattered by the screen 3 is detected by the scattered light detector 6. Then, based on the intensity of the infrared light detected by the scattered light detector 6, it is determined whether or not the projection light is transmitted through the screen 3 without being scattered.
  • the display device 1 includes a screen 3 that can switch between a transmission state and a scattering state with respect to light, a projection light detector 2o that detects the intensity of projection light projected toward the screen 3, and A scattered light detector 6 that detects the intensity of light in a wavelength range that has passed through the ambient light removal filter 7 out of the scattered light scattered by the screen 3.
  • the normal mode light control panel 11 attenuates the projection light based on the intensity of the projection light detected by the projection light detector 2o and the intensity of the scattered light detected by the scattered light detector 6. By doing so, it is possible to detect whether or not the projection light is projected onto the screen 3 in the scattering state.
  • the projection light When the projection light is not projected onto the screen 3 in the scattering state, the projection light is reduced to a level where there is no danger. Can be attenuated. Therefore, strong light from the light source can be prevented from passing through the screen 3 and entering the viewer's eyes.
  • the scattered light detector 6 detects the intensity in a predetermined wavelength range that has passed through the ambient light removal filter 7, the influence of the ambient light contained in the scattered light can be removed. Therefore, it is possible to detect whether or not the projection light is projected onto the screen in the scattering state with higher accuracy.
  • the normal mode light control panel 11 is arranged so as to overlap the screen 3 on either the viewer side or the projector 2 side of the screen 3, the projection light is attenuated before or after the screen 3. can do. Further, the screen 3 and the attenuation means can be configured integrally.
  • the scattered light detector 6 and the ambient light removal filter 7 are positioned where the scattered light on the screen 3 can be detected as shown in FIG. 1, for example (the light from the scattered light detector 6 is incident). However, it may be configured as shown in FIG. 11.
  • the scattered light detector 6 shown in FIG. 11 is provided on the viewer side so as to overlap the screen 3 with respect to the screen 3, and detects the laser light scattered by the screen 3.
  • the scattered light detector 6 includes a light detection layer 6a formed of, for example, a transparent film-like acrylic, and a light detector 6d.
  • a waveguide layer 6b and a cladding layer 6c are formed.
  • the waveguide layer 6b guides a part of the light scattered by the screen 3 in a direction parallel to the projection surface (screen surface) of the screen 3 and guides it to the end surface of the waveguide layer 6b.
  • the clad layer 6c has a lower refractive index than the waveguide layer 6b, and makes it easier to guide light incident on the waveguide layer 6b to the end face. Note that the clad layer 6c may not be provided if only the waveguide layer 6b can guide light for detection by the photodetector 6d.
  • the photodetector 6d is provided on the end surface of the photodetector layer 6a.
  • the light detection layer 6 a is provided on one side surface (end surface) corresponding to a plurality of regions (divided regions 31) of the screen 3.
  • the photodetector 6d is configured by, for example, a photodiode, and converts the intensity of light detected by the photodetector layer 6a into an electrical signal and outputs the electrical signal to the computing unit 5.
  • the photodetection layer 6a is provided at a right angle to the photodetection layer 6a so that the light guided to the waveguide layer 6b can be taken in.
  • the photodetector 6d is provided with the ambient light removal filter described in the above-described embodiment, or is provided in the previous stage. By configuring in this way, the scattered light is detected by the photodetector 6d through the light detection layer 6a.
  • the light detection layer 6a shown in FIG. 11 is provided on the projector 2 side of the screen 3, it can function as a projection light detector (FIG. 12). In this case, the projection light projected from the projector 2 is detected by the photodetector 6d through the light detection layer 6a.
  • the screen 3 is divided into a plurality of divided areas 31.
  • the screen 3 may not be divided.
  • the projection may be performed at a predetermined time within a frame period of the video.
  • the present invention is not limited to the above embodiment. That is, those skilled in the art can implement various modifications in accordance with conventionally known knowledge without departing from the scope of the present invention. As long as the configuration of the display device and the control method of the display device of the present invention is provided even by such modification, it is of course included in the scope of the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Computer Security & Cryptography (AREA)
  • Projection Apparatus (AREA)
  • Overhead Projectors And Projection Screens (AREA)

Abstract

Provided is a display device whereby it is possible, when using as a screen a modulating element which changes alternately between a pass-through state and a scattering state, to prevent strong light from a light source passing through the screen and entering a viewer's eyes. A display device (1) comprises: a screen (3) which is capable of switching between a pass-through state and a scattering state with respect to light; a projected light detector (2o) which detects the intensity of projected light which is projected toward the screen (3); and a scattered light detector (6) which detects, among scattered light which is scattered by the screen (3), the intensity of light of a wavelength region which passes through an environmental light removal filter (7). A computer (5) interrupts the projection of the projected light by switching off a power source of a projector (2) on the basis of the intensity of the projected light which the projected light detector (2o) detects and the intensity of the light of the wavelength region which passes through the environmental light removal filter (7) which the scattered light detector (6) detects.

Description

表示装置Display device
 本発明は、映像を表示する表示装置に関する。 The present invention relates to a display device that displays video.
 従来からプロジェクタ等の光源からの投影映像をスクリーンに投影して映像を表示する表示装置が知られている。 2. Description of the Related Art Conventionally, a display device that displays an image by projecting a projection image from a light source such as a projector onto a screen is known.
 このような表示装置において、例えば特許文献1には、スクリーンとして透過率を制御して透明状態(透過状態)と不透明状態(散乱状態)とを交互に変化させることが可能な調光素子を用いて、透明状態のときにスクリーンの背後に設置されたカメラで鑑賞者の撮影を行い、不透明状態のときにはディプレイとして映像を表示させることが提案されている。 In such a display device, for example, Patent Document 1 uses a light control element that can change a transparent state (transmission state) and an opaque state (scattering state) alternately by controlling the transmittance as a screen. In addition, it has been proposed that a viewer is photographed with a camera installed behind the screen in a transparent state, and an image is displayed as a display in an opaque state.
 ここで、スクリーンに映像を表示する際に、スクリーンと光源による映像表示の同期が外れると、透明状態のときに光源の光が鑑賞者の眼に入射してしまう恐れがある。また、スクリーンが電圧非印加の場合に透明状態になる構成であった場合は、故障等によりスクリーンの電源が遮断されると、光源の光が鑑賞者の眼に入射してしまう恐れがある。これらは、光源にレーザ光を使用した場合に危険性が高く、さらにラスタースキャン型のレーザプロジェクタを用いて大画面システムを構成する場合はレーザビームのエネルギー密度が高くなるため危険性がより高くなる。よって、このような危険を回避するための対策が必須である。 Here, when displaying an image on the screen, if the image display between the screen and the light source is out of synchronization, the light from the light source may enter the viewer's eyes when it is in a transparent state. If the screen is in a transparent state when no voltage is applied, the light from the light source may enter the viewer's eyes when the screen is powered off due to a failure or the like. These are highly dangerous when a laser beam is used as a light source, and more dangerous when a large-screen system is configured using a raster scan type laser projector because the energy density of the laser beam is high. . Therefore, measures for avoiding such danger are indispensable.
 例えば、特許文献2には、スクリーンに導電膜が形成され、導電膜の抵抗値の変化でスクリーンの破壊を検出し、投影光量を制御することが記載されている。 For example, Patent Document 2 describes that a conductive film is formed on a screen, a screen breakage is detected by a change in the resistance value of the conductive film, and the amount of light projected is controlled.
 また、特許文献3には、スクリーンの対角線外端に光検出器を設置し、スクリーン上をレーザ光が走査しているか検出し、光検出器が一定時間内にレーザ光を検出しないときはレーザ光の発生を停止することが記載されている。 In Patent Document 3, a photodetector is installed at the diagonally outer edge of the screen to detect whether the laser beam is scanned on the screen, and when the photodetector does not detect the laser beam within a predetermined time, a laser is detected. It is described that the generation of light is stopped.
特許第4490357号公報Japanese Patent No. 4490357 特開2004-184802号公報JP 2004-184802 A 特許第4156644号公報Japanese Patent No. 4156644
 特許文献2に記載された構成では、スクリーンの破壊による導電膜の抵抗率の変化により光源を制御しているので、特許文献1に記載された透明状態と不透明状態との差異を検出することができない。そのため、スクリーンと光源の同期が外れたことを検出することができないという問題がある。また、スクリーンの破壊の検出であるので、スクリーンの再利用は不可能となってしまう。 In the configuration described in Patent Document 2, since the light source is controlled by the change in the resistivity of the conductive film due to the destruction of the screen, the difference between the transparent state and the opaque state described in Patent Document 1 can be detected. Can not. Therefore, there is a problem that it is impossible to detect that the screen and the light source are out of synchronization. Further, since the screen breakage is detected, the screen cannot be reused.
 また、特許文献3に記載された構成では、光検出器でスクリーン上に照射された光量を測定しているためスクリーンの透明状態と不透明状態との差異を検出することができないという問題がある。つまり、特許文献2、3は特許文献1に記載されているような構成は想定されていないため、特許文献1に記載されているような構成に適用することができない。 Further, the configuration described in Patent Document 3 has a problem that the difference between the transparent state and the opaque state of the screen cannot be detected because the light amount irradiated on the screen is measured by the photodetector. That is, Patent Documents 2 and 3 cannot be applied to the configuration described in Patent Document 1 because the configuration described in Patent Document 1 is not assumed.
 そこで、本発明は、上述した問題に鑑み、例えば、透過状態と散乱状態とが交互に変化するスクリーンを使用した場合に、光源からの強い光がスクリーンを透過し鑑賞者の眼に入射することを防止できる表示装置を提供することを課題とする。 Therefore, in view of the above-described problems, the present invention allows strong light from a light source to pass through the screen and enter the viewer's eyes when, for example, a screen in which a transmission state and a scattering state change alternately is used. It is an object of the present invention to provide a display device that can prevent the above-described problem.
 上記課題を解決するために、請求項1に記載の発明は、光に対し透過状態と散乱状態を切り替え可能なスクリーンと、前記スクリーンに向かって投影される投影光の強度を検出する投影光検出手段と、前記スクリーンによって散乱された散乱光のうち、前記投影光に含まれる所定の波長範囲の強度を検出する散乱光検出手段と、前記投影光検出手段が検出した前記投影光の強度と前記散乱光検出手段が検出した前記所定の波長範囲の散乱光の強度に基づいて、前記投影光の投影を制限する制限手段と、を有することを特徴としている。 In order to solve the above-mentioned problem, the invention according to claim 1 is a screen that can switch between a transmission state and a scattering state with respect to light, and projection light detection that detects the intensity of projection light projected toward the screen. Means for detecting the intensity of a predetermined wavelength range included in the projection light among the scattered light scattered by the screen; the intensity of the projection light detected by the projection light detection means; and And limiting means for limiting the projection of the projection light based on the intensity of the scattered light in the predetermined wavelength range detected by the scattered light detection means.
 請求項4に記載の発明は、光に対し透過状態と散乱状態を切り替え可能なスクリーンと、所定の波長範囲の不可視光を前記スクリーンに向かって投影する不可視光投影手段と、前記スクリーンによって散乱された前記所定の波長範囲の不可視光の強度を検出する不可視光検出手段と、前記不可視光検出手段が検出した前記不可視光の強度に基づいて、前記スクリーンに投影される投影光の投影を制限する制限手段と、を有することを特徴としている。 According to a fourth aspect of the present invention, a screen capable of switching between a transmission state and a scattering state with respect to light, invisible light projection means for projecting invisible light in a predetermined wavelength range toward the screen, and the screen is scattered. Further, the invisible light detecting means for detecting the intensity of the invisible light in the predetermined wavelength range, and the projection of the projection light projected on the screen is limited based on the intensity of the invisible light detected by the invisible light detecting means. And limiting means.
 請求項7に記載の発明は、光に対し透過状態と散乱状態を切り替え可能なスクリーンと、前記スクリーンに向かって投影される投影光の強度を検出する投影光検出手段と、前記スクリーンによって散乱された散乱光のうち、前記投影光に含まれる所定の波長範囲の強度を検出する散乱光検出手段と、前記投影光検出手段が検出した前記投影光の強度と前記散乱光検出手段が検出した前記所定の波長範囲の散乱光の強度に基づいて、前記投影光を減衰する減衰手段と、を有することを特徴としている。 The invention described in claim 7 is a screen that can be switched between a transmission state and a scattering state with respect to light, a projection light detection unit that detects the intensity of projection light projected toward the screen, and is scattered by the screen. Among the scattered light, the scattered light detection means for detecting the intensity of a predetermined wavelength range included in the projection light, the intensity of the projection light detected by the projection light detection means, and the scattered light detection means detected And attenuating means for attenuating the projection light based on the intensity of the scattered light in a predetermined wavelength range.
 請求項10に記載の発明は、光に対し透過状態と散乱状態を切り替え可能なスクリーンと、所定の波長範囲の不可視光を前記スクリーンに向かって投影する不可視光投影手段と、前記スクリーンによって散乱された前記所定の波長範囲の不可視光の強度を検出する不可視光検出手段と、前記不可視光検出手段が検出した前記不可視光の強度に基づいて、前記スクリーンに投影される投影光を減衰する減衰手段と、を有することを特徴としている。 According to a tenth aspect of the present invention, a screen capable of switching between a transmission state and a scattering state with respect to light, invisible light projection means for projecting invisible light in a predetermined wavelength range toward the screen, and the screen is scattered. Invisible light detection means for detecting the intensity of invisible light in the predetermined wavelength range, and attenuation means for attenuating the projection light projected on the screen based on the intensity of the invisible light detected by the invisible light detection means It is characterized by having.
 請求項12に記載の発明は、光に対し透過状態と散乱状態を切り替え可能なスクリーンに向かって投影される投影光の強度を検出する投影光検出手段の検出結果と、前記スクリーンによって散乱された散乱光のうちの前記投影光に含まれる所定の波長範囲の強度を検出する散乱光検出手段の検出結果に基づいて、前記投影光の投影を制限するか否かを判定する判定工程と、前記判定工程で前記投影光の投影を制限すると判定された場合は、制限手段に前記投影光の投影を制限させる制限工程と、を含むことを特徴としている。 According to the twelfth aspect of the invention, the detection result of the projection light detecting means for detecting the intensity of the projection light projected toward the screen capable of switching between the transmission state and the scattering state with respect to the light and the light scattered by the screen. A determination step of determining whether to limit projection of the projection light based on a detection result of a scattered light detection unit that detects an intensity of a predetermined wavelength range included in the projection light of the scattered light; and When it is determined that the projection of the projection light is limited in the determination step, a limiting step of limiting the projection of the projection light by a limiting unit is included.
 請求項13に記載の発明は、光に対し透過状態と散乱状態を切り替え可能なスクリーンに向かって不可視光投影手段から投影され、前記スクリーンによって散乱された所定の波長範囲の不可視光の強度を検出する不可視光検出手段の検出結果に基づいて、前記スクリーンに投影される投影光の投影を制限するか否かを判定する判定工程と、前記判定工程で前記投影光の投影を制限すると判定された場合は、制限手段に前記スクリーンに投影される投影光の投影を制限させる制限工程と、を含むことを特徴としている。 The invention according to claim 13 detects the intensity of invisible light in a predetermined wavelength range projected from the invisible light projection means toward the screen capable of switching between a transmission state and a scattering state with respect to light and scattered by the screen. A determination step for determining whether or not to limit the projection of the projection light projected on the screen based on the detection result of the invisible light detection means, and the determination step determines that the projection of the projection light is limited In the case, a limiting step of limiting the projection of the projection light projected onto the screen by the limiting means is included.
 請求項14に記載の発明は、光に対し透過状態と散乱状態を切り替え可能なスクリーンに向かって投影される投影光の強度を検出する投影光検出手段の検出結果と、前記スクリーンによって散乱された散乱光のうちの前記投影光に含まれる所定の波長範囲の強度を検出する散乱光検出手段の検出結果に基づいて、前記投影光を減衰するか否かを判定する判定工程と、前記判定工程で前記投影光を減衰すると判定された場合は、減衰手段に前記投影光を減衰させる減衰工程と、を含むことを特徴としている。 According to the fourteenth aspect of the present invention, the detection result of the projection light detecting means for detecting the intensity of the projection light projected toward the screen capable of switching between the transmission state and the scattering state with respect to the light and the light scattered by the screen. A determination step of determining whether or not the projection light is attenuated based on a detection result of a scattered light detection unit that detects an intensity of a predetermined wavelength range included in the projection light of the scattered light; and the determination step If it is determined that the projection light is attenuated, the attenuation means includes an attenuation step of attenuating the projection light.
 請求項15に記載の発明は、光に対し透過状態と散乱状態を切り替え可能なスクリーンに向かって不可視光投影手段から投影され、前記スクリーンによって散乱された所定の波長範囲の不可視光の強度を検出する不可視光検出手段の検出結果に基づいて、前記スクリーンに投影される投影光を減衰するか否かを判定する判定工程と、前記判定工程で前記投影光を減衰すると判定された場合は、減衰手段に前記スクリーンに投影される投影光を減衰させる減衰工程と、を含むことを特徴としている。 The invention according to claim 15 detects the intensity of invisible light in a predetermined wavelength range projected from the invisible light projection means toward the screen capable of switching between a transmission state and a scattering state with respect to light and scattered by the screen. Determining whether to attenuate the projection light projected on the screen based on the detection result of the invisible light detection means, and if it is determined in the determination step that the projection light is attenuated, attenuation And attenuating step for attenuating the projection light projected on the screen.
本発明の第1の実施例にかかる表示装置の構成図である。1 is a configuration diagram of a display device according to a first embodiment of the present invention. 図1に示されたプロジェクタの光源と光学系の一例を示した構成図である。FIG. 2 is a configuration diagram illustrating an example of a light source and an optical system of the projector illustrated in FIG. 1. 図1に示されたスクリーンの断面図である。It is sectional drawing of the screen shown by FIG. 図1に示されたスクリーンの分割例を示した概略構成図である。It is the schematic block diagram which showed the example of a division | segmentation of the screen shown by FIG. 図1に示された演算器の概略構成図である。It is a schematic block diagram of the calculator shown in FIG. 図1に示された演算器の動作のフローチャートである。It is a flowchart of operation | movement of the calculator shown by FIG. 図1に示された表示装置の他の構成例である。4 is another configuration example of the display device shown in FIG. 1. 本発明の第2の実施例にかかる表示装置の構成図である。It is a block diagram of the display apparatus concerning the 2nd Example of this invention. 図8に示されたプロジェクタの光源と光学系の一例を示した構成図である。FIG. 9 is a configuration diagram illustrating an example of a light source and an optical system of the projector illustrated in FIG. 8. 本発明の第3の実施例にかかる表示装置の構成図である。It is a block diagram of the display apparatus concerning the 3rd Example of this invention. 図1、図8および図10に示された散乱光検出器の他の構成例である。It is another example of a structure of the scattered light detector shown by FIG.1, FIG8 and FIG.10. 図1、図8および図10に示された投影光検出器の他の構成例である。11 is another configuration example of the projection photodetector shown in FIGS. 1, 8, and 10.
 以下、本発明の一実施形態にかかる表示装置を説明する。本発明の一実施形態にかかる表示装置は、光に対し透過状態と散乱状態を切り替え可能なスクリーンと、スクリーンに向かって投影される投影光の強度を検出する投影光検出手段と、スクリーンによって散乱された散乱光のうち、投影光に含まれる所定の波長範囲の強度を検出する散乱光検出手段と、を有している。そして、制限手段が、投影光検出手段が検出した投影光の強度と散乱光検出手段が検出した所定の波長範囲の散乱光の強度に基づいて、投影光の投影を制限している。このようにすることにより、投影光と散乱光に含まれる所定の波長の光の強度を比較することよって、投影光が散乱状態のスクリーンに投影されているか否かを検出することができる。そして、散乱状態のスクリーンに投影されていない場合は、投影光の投影を制限して例えばスクリーンに投影光が当らないようにすることができる。したがって、光源からの強い光がスクリーンを透過し鑑賞者の眼に入射することを防止することができる。 Hereinafter, a display device according to an embodiment of the present invention will be described. A display device according to an embodiment of the present invention includes a screen capable of switching between a transmission state and a scattering state with respect to light, a projection light detection unit that detects the intensity of projection light projected toward the screen, and is scattered by the screen. A scattered light detecting means for detecting the intensity of a predetermined wavelength range included in the projected light out of the scattered light. Then, the limiting unit limits the projection of the projection light based on the intensity of the projection light detected by the projection light detection unit and the intensity of the scattered light in the predetermined wavelength range detected by the scattered light detection unit. By doing so, it is possible to detect whether or not the projection light is projected on the screen in the scattering state by comparing the intensities of the light having a predetermined wavelength included in the projection light and the scattered light. Then, when the projection light is not projected onto the screen, it is possible to limit the projection of the projection light so that the projection light does not hit the screen, for example. Therefore, it is possible to prevent strong light from the light source from passing through the screen and entering the viewer's eyes.
 また、散乱光検出手段が所定の波長範囲の強度を検出するので、散乱光に含まれる環境光の影響を除去することができる。環境光のスペクトルはブロードであることが知られているので、投影光に含まれる所定の波長範囲を検出することで環境光の影響を無視することができる。したがって、より精度良く投影光が散乱状態のスクリーンに投影されているか否かを検出することができる。 Further, since the scattered light detection means detects the intensity in the predetermined wavelength range, the influence of the environmental light contained in the scattered light can be removed. Since the spectrum of the ambient light is known to be broad, the influence of the ambient light can be ignored by detecting a predetermined wavelength range included in the projection light. Therefore, it is possible to detect whether or not the projection light is projected onto the screen in the scattering state with higher accuracy.
 また、散乱光検出手段が検出する所定の波長範囲が、投影光を構成する光を出射する複数の光源のうち、1つまたは複数の光源に対応する波長範囲であってもよい。このようにすることにより、投影光を構成する光(例えば赤青緑)の波長から、投影光がスクリーンに投影されているか否かを検出することができる。また、特定の光源の波長範囲を検出するため環境光の影響を除去することができる。 Further, the predetermined wavelength range detected by the scattered light detection means may be a wavelength range corresponding to one or a plurality of light sources among a plurality of light sources that emit light constituting the projection light. By doing in this way, it is possible to detect whether or not the projection light is projected on the screen from the wavelength of light (for example, red blue green) constituting the projection light. Moreover, since the wavelength range of a specific light source is detected, the influence of ambient light can be removed.
 また、投影光検出手段が、散乱光検出手段と同じ波長範囲の光の強度を検出するようにしてもよい。このようにすることにより、散乱光の強度変化を一致させることができるので、投影光がスクリーンに投影されているか否かをより精度良く検出することができる。 Further, the projection light detection means may detect the intensity of light in the same wavelength range as that of the scattered light detection means. By doing so, the intensity changes of the scattered light can be matched, so that it can be detected with higher accuracy whether or not the projection light is projected on the screen.
 また、本発明の他の実施形態にかかる表示装置は、光に対し透過状態と散乱状態を切り替え可能なスクリーンと、所定の波長範囲の不可視光をスクリーンに向かって投影する不可視光投影手段と、前記スクリーンによって散乱された前記所定の波長範囲の不可視光の強度を検出する不可視光検出手段と、を有している。そして、制限手段が、不可視光検出手段が検出した不可視光の強度に基づいて、スクリーンに投影される投影光の投影を制限している。このようにすることにより、不可視光の散乱の有無によって、投影光が散乱状態のスクリーンに投影されているか否かを検出することができる。そして、不可視光が散乱状態のスクリーンに投影されていない場合は、投影光の投影を制限して例えばスクリーンに投影光が当らないようにすることができる。したがって、光源からの強い光がスクリーンを透過し鑑賞者の眼に入射することを防止することができる。さらに、不可視光を使用することで、例えば青一色の映像など波長範囲が偏っている映像が表示されている場合でも投影光が散乱状態のスクリーンに投影されているか否かを検出することができる。 A display device according to another embodiment of the present invention includes a screen capable of switching between a transmission state and a scattering state for light, invisible light projection means for projecting invisible light in a predetermined wavelength range toward the screen, Invisible light detecting means for detecting the intensity of invisible light in the predetermined wavelength range scattered by the screen. Then, the limiting unit limits the projection of the projection light projected on the screen based on the intensity of the invisible light detected by the invisible light detection unit. By doing in this way, it can be detected whether projection light is projected on the screen of a scattering state by the presence or absence of scattering of invisible light. And when invisible light is not projected on the screen of a scattering state, projection of projection light can be restrict | limited so that projection light may not hit a screen, for example. Therefore, it is possible to prevent strong light from the light source from passing through the screen and entering the viewer's eyes. Furthermore, by using invisible light, it is possible to detect whether or not the projection light is projected on the screen in a scattered state even when an image with a deviated wavelength range such as a blue-colored image is displayed. .
 また、不可視光検出手段が不可視光投影手段から投影される所定の波長範囲の不可視光の強度を検出するので、環境光の影響を除去することができる。環境光のスペクトルはブロードであることが知られているので、所定の光源から出射される不可視光という所定の波長範囲を検出することで環境光の影響を無視することができる。したがって、より精度良く投影光が散乱状態のスクリーンに投影されているか否かを検出することができる。 Further, since the invisible light detecting means detects the intensity of invisible light in a predetermined wavelength range projected from the invisible light projecting means, the influence of environmental light can be eliminated. Since the spectrum of ambient light is known to be broad, the influence of ambient light can be ignored by detecting a predetermined wavelength range of invisible light emitted from a predetermined light source. Therefore, it is possible to detect whether or not the projection light is projected onto the screen in the scattering state with higher accuracy.
 また、制限手段は、投影光の投影を停止させるようにしてもよい。このようにすることにより、投影光がスクリーンに当らないようにすることができるので、光源からの強い光がスクリーンに当ることがなく、鑑賞者の目に入射することも防止できる。 Further, the limiting means may stop the projection of the projection light. By doing so, it is possible to prevent the projection light from hitting the screen, so that strong light from the light source does not hit the screen and can be prevented from entering the viewer's eyes.
 また、制限手段は、投影光を遮断するようにしてもよい。このようにすることにより、例えば、投影光を投影するプロジェクタ等にシャッタ機構などを設けることで投影光を遮断することができる。したがって、光源からの強い光がスクリーンに当ることがなく、鑑賞者の目に入射することも防止できる。 Further, the limiting means may block the projection light. In this way, for example, the projection light can be blocked by providing a shutter mechanism or the like in a projector or the like that projects the projection light. Therefore, strong light from the light source does not strike the screen and can be prevented from entering the viewer's eyes.
 また、本発明の他の実施形態にかかる表示装置は、光に対し透過状態と散乱状態を切り替え可能なスクリーンと、スクリーンに向かって投影される投影光の強度を検出する投影光検出手段と、スクリーンによって散乱された散乱光のうち、投影光に含まれる所定の波長範囲の強度を検出する散乱光検出手段と、を有している。そして、減衰手段が、投影光検出手段が検出した投影光の強度と散乱光検出手段が検出した所定の波長範囲の散乱光の強度に基づいて、投影光を減衰している。このようにすることにより、投影光と投影光に含まれる所定の波長の比較によって、投影光が散乱状態のスクリーンに投影されているか否かを検出することができる。そして、散乱状態のスクリーンに投影されていない場合は、投影光を危険の無い程度まで減衰することができる。したがって、光源からの強い光がスクリーンを透過し鑑賞者の眼に入射することを防止することができる。 Further, a display device according to another embodiment of the present invention includes a screen that can switch between a transmission state and a scattering state with respect to light, a projection light detection unit that detects the intensity of projection light projected toward the screen, Scattered light detecting means for detecting the intensity of a predetermined wavelength range included in the projected light out of the scattered light scattered by the screen. The attenuation unit attenuates the projection light based on the intensity of the projection light detected by the projection light detection unit and the intensity of the scattered light in the predetermined wavelength range detected by the scattered light detection unit. By doing in this way, it can be detected whether projection light is projected on the screen of a scattering state by comparison with the predetermined wavelength contained in projection light and projection light. And when it is not projected on the screen of a scattering state, projection light can be attenuated to the extent which is not dangerous. Therefore, it is possible to prevent strong light from the light source from passing through the screen and entering the viewer's eyes.
 また、散乱光検出手段が所定の波長範囲の強度を検出するので、散乱光に含まれる環境光の影響を除去することができる。環境光のスペクトルはブロードであることが知られているので、投影光に含まれる所定の波長範囲を検出することで環境光の影響を無視することができる。したがって、より精度良く投影光が散乱状態のスクリーンに投影されているか否かを検出することができる。 Further, since the scattered light detection means detects the intensity in the predetermined wavelength range, the influence of the environmental light contained in the scattered light can be removed. Since the spectrum of the ambient light is known to be broad, the influence of the ambient light can be ignored by detecting a predetermined wavelength range included in the projection light. Therefore, it is possible to detect whether or not the projection light is projected onto the screen in the scattering state with higher accuracy.
 また、散乱光検出手段が検出する所定の波長範囲が、投影光を構成する光を出射する複数の光源のうち、1つまたは複数の光源に対応する波長範囲であってもよい。このようにすることにより、投影光を構成する光(例えば赤青緑)の波長から、投影光がスクリーンに投影されているか否かを検出することができる。また、特定の光源の波長範囲を検出するため環境光の影響を除去することができる。 Further, the predetermined wavelength range detected by the scattered light detection means may be a wavelength range corresponding to one or a plurality of light sources among a plurality of light sources that emit light constituting the projection light. By doing in this way, it is possible to detect whether or not the projection light is projected on the screen from the wavelength of light (for example, red blue green) constituting the projection light. Moreover, since the wavelength range of a specific light source is detected, the influence of ambient light can be removed.
 また、投影光検出手段が、散乱光検出手段と同じ波長範囲の光の強度を検出するようにしてもよい。このようにすることにより、散乱光の強度変化を一致させることができるので、投影光がスクリーンに投影されているか否かをより精度良く検出することができる。 Further, the projection light detection means may detect the intensity of light in the same wavelength range as that of the scattered light detection means. By doing so, the intensity changes of the scattered light can be matched, so that it can be detected with higher accuracy whether or not the projection light is projected on the screen.
 また、本発明の他の実施形態にかかる表示装置は、光に対し透過状態と散乱状態を切り替え可能なスクリーンと、所定の波長範囲の不可視光をスクリーンに向かって投影する不可視光投影手段と、前記スクリーンによって散乱された前記所定の波長範囲の不可視光の強度を検出する不可視光検出手段と、を有している。そして、減衰手段が、不可視光検出手段が検出した不可視光の強度に基づいて、スクリーンに投影される投影光を減衰している。このようにすることにより、不可視光の散乱の有無によって、投影光が散乱状態のスクリーンに投影されているか否かを検出することができる。そして、不可視光が散乱状態のスクリーンに投影されていない場合は、投影光を危険の無い程度まで減衰することができる。したがって、光源からの強い光がスクリーンを透過し鑑賞者の眼に入射することを防止することができる。さらに、不可視光を使用することで、例えば青一色の映像など波長範囲が偏っている映像が表示されている場合でも投影光が散乱状態のスクリーンに投影されているか否かを検出することができる。 A display device according to another embodiment of the present invention includes a screen capable of switching between a transmission state and a scattering state for light, invisible light projection means for projecting invisible light in a predetermined wavelength range toward the screen, Invisible light detecting means for detecting the intensity of invisible light in the predetermined wavelength range scattered by the screen. The attenuation means attenuates the projection light projected on the screen based on the intensity of the invisible light detected by the invisible light detection means. By doing in this way, it can be detected whether projection light is projected on the screen of a scattering state by the presence or absence of scattering of invisible light. And when invisible light is not projected on the screen of a scattering state, projection light can be attenuate | damped to a grade without a danger. Therefore, it is possible to prevent strong light from the light source from passing through the screen and entering the viewer's eyes. Furthermore, by using invisible light, it is possible to detect whether or not the projection light is projected on the screen in a scattered state even when an image with a deviated wavelength range such as a blue-colored image is displayed. .
 また、不可視光検出手段が不可視光投影手段から投影される所定の波長範囲の不可視光の強度を検出するので、環境光の影響を除去することができる。環境光のスペクトルはブロードであることが知られているので、所定の光源から出射される不可視光という所定の波長範囲を検出することで環境光の影響を無視することができる。したがって、より精度良く投影光が散乱状態のスクリーンに投影されているか否かを検出することができる。 Further, since the invisible light detecting means detects the intensity of invisible light in a predetermined wavelength range projected from the invisible light projecting means, the influence of environmental light can be eliminated. Since the spectrum of ambient light is known to be broad, the influence of ambient light can be ignored by detecting a predetermined wavelength range of invisible light emitted from a predetermined light source. Therefore, it is possible to detect whether or not the projection light is projected onto the screen in the scattering state with higher accuracy.
 また、減衰手段は、スクリーンの一方の面または他方の面の少なくともいずれか一方にスクリーンと重ねられるように配置されていてもよい。このようにすることにより、スクリーンの前または後で投影光を減衰することができる。また、スクリーンと減衰手段を一体的に構成することができる。 Further, the attenuation means may be arranged so as to overlap the screen on at least one of the one surface or the other surface of the screen. By doing so, the projection light can be attenuated before or after the screen. Further, the screen and the attenuation means can be configured integrally.
 また、本発明の一実施形態にかかる表示装置の制御方法は、光に対し透過状態と散乱状態を切り替え可能なスクリーンに向かって投影される投影光の強度を検出する投影光検出手段の検出結果と、スクリーンによって散乱された散乱光のうちの投影光に含まれる所定の波長範囲の強度を検出する散乱光検出手段の検出結果に基づいて、投影光の投影を制限するか否かを判定する判定工程と、判定工程で投影光の投影を制限すると判定された場合は、制限手段に投影光の投影を制限させる制限工程と、を含んでいる。このようにすることにより、投影光と散乱光に含まれる所定の波長の光の強度を比較することよって、投影光が散乱状態のスクリーンに投影されているか否かを検出することができる。そして、散乱状態のスクリーンに投影されていない場合は、投影光の投影を制限して例えばスクリーンに投影光が当らないようにすることができる。したがって、光源からの強い光がスクリーンを透過し鑑賞者の眼に入射することを防止することができる。また、散乱光検出手段が所定の波長範囲の強度を検出するので、散乱光に含まれる環境光の影響を除去することができる。環境光のスペクトルはブロードであることが知られているので、投影光に含まれる所定の波長範囲を検出することで環境光の影響を無視することができる。したがって、より精度良く投影光が散乱状態のスクリーンに投影されているか否かを検出することができる。 Further, according to the control method of the display device according to the embodiment of the present invention, the detection result of the projection light detection unit that detects the intensity of the projection light projected toward the screen capable of switching between the transmission state and the scattering state with respect to the light. And determining whether or not to limit the projection of the projection light based on the detection result of the scattered light detection means for detecting the intensity of the predetermined wavelength range included in the projection light among the scattered light scattered by the screen. The determination step includes a limiting step of limiting the projection of the projection light by the limiting unit when it is determined that the projection of the projection light is limited in the determination step. By doing so, it is possible to detect whether or not the projection light is projected on the screen in the scattering state by comparing the intensities of the light having a predetermined wavelength included in the projection light and the scattered light. Then, when the projection light is not projected onto the screen, it is possible to limit the projection of the projection light so that the projection light does not hit the screen, for example. Therefore, it is possible to prevent strong light from the light source from passing through the screen and entering the viewer's eyes. Moreover, since the scattered light detection means detects the intensity in a predetermined wavelength range, the influence of the environmental light contained in the scattered light can be removed. Since the spectrum of the ambient light is known to be broad, the influence of the ambient light can be ignored by detecting a predetermined wavelength range included in the projection light. Therefore, it is possible to detect whether or not the projection light is projected onto the screen in the scattering state with higher accuracy.
 また、本発明の他の実施形態にかかる表示装置の制御方法は、光に対し透過状態と散乱状態を切り替え可能なスクリーンに向かって不可視光投影手段から投影され、スクリーンによって散乱された所定の波長範囲の不可視光の強度を検出する不可視光検出手段の検出結果に基づいて、スクリーンに投影される投影光の投影を制限するか否かを判定する判定工程と、判定工程で投影光の投影を制限すると判定された場合は、制限手段にスクリーンに投影される投影光の投影を制限させる制限工程と、を含んでいる。このようにすることにより、不可視光の散乱の有無によって、投影光が散乱状態のスクリーンに投影されているか否かを検出することができる。そして、不可視光が散乱状態のスクリーンに投影されていない場合は、投影光の投影を制限して例えばスクリーンに投影光が当らないようにすることができる。したがって、光源からの強い光がスクリーンを透過し鑑賞者の眼に入射することを防止することができる。さらに、不可視光を使用することで、例えば青一色の映像など所定の波長範囲に偏っている映像が表示されている場合でも投影光が散乱状態のスクリーンに投影されているか否かを検出することができる。また、不可視光検出手段が不可視光投影手段から投影される所定の波長範囲の不可視光の強度を検出するので、環境光の影響を除去することができる。環境光のスペクトルはブロードであることが知られているので、所定の光源から出射される不可視光という所定の波長範囲を検出することで環境光の影響を無視することができる。したがって、より精度良く投影光が散乱状態のスクリーンに投影されているか否かを検出することができる。 In addition, a method for controlling a display device according to another embodiment of the present invention includes a predetermined wavelength that is projected from an invisible light projection unit toward a screen capable of switching between a transmission state and a scattering state with respect to light and is scattered by the screen. Based on the detection result of the invisible light detecting means for detecting the intensity of the invisible light in the range, a determination step for determining whether or not to limit the projection of the projection light projected on the screen, and the projection light projection in the determination step If it is determined to be limited, a limiting step of limiting the projection of the projection light projected onto the screen by the limiting means is included. By doing in this way, it can be detected whether projection light is projected on the screen of a scattering state by the presence or absence of scattering of invisible light. And when invisible light is not projected on the screen of a scattering state, projection of projection light can be restrict | limited so that projection light may not hit a screen, for example. Therefore, it is possible to prevent strong light from the light source from passing through the screen and entering the viewer's eyes. Furthermore, by using invisible light, it is possible to detect whether or not the projection light is projected on the screen in a scattered state even when an image biased to a predetermined wavelength range such as a blue color image is displayed. Can do. Further, since the invisible light detecting means detects the intensity of invisible light in a predetermined wavelength range projected from the invisible light projecting means, it is possible to remove the influence of environmental light. Since the spectrum of ambient light is known to be broad, the influence of ambient light can be ignored by detecting a predetermined wavelength range of invisible light emitted from a predetermined light source. Therefore, it is possible to detect whether or not the projection light is projected onto the screen in the scattering state with higher accuracy.
 また、本発明の他の実施形態にかかる表示装置の制御方法は、光に対し透過状態と散乱状態を切り替え可能なスクリーンに向かって投影される投影光の強度を検出する投影光検出手段の検出結果と、スクリーンによって散乱された散乱光のうちの投影光に含まれる所定の波長範囲の強度を検出する散乱光検出手段の検出結果に基づいて、投影光を減衰するか否かを判定する判定工程と、判定工程で投影光を減衰すると判定された場合は、減衰手段に投影光を減衰させる減衰工程と、を含んでいる。このようにすることにより、投影光と散乱光に含まれる所定の波長の光の強度を比較することよって、投影光が散乱状態のスクリーンに投影されているか否かを検出することができる。そして、散乱状態のスクリーンに投影されていない場合は、投影光を危険の無い程度まで減衰することができる。したがって、光源からの強い光がスクリーンを透過し鑑賞者の眼に入射することを防止することができる。また、散乱光検出手段が所定の波長範囲の強度を検出するので、散乱光に含まれる環境光の影響を除去することができる。環境光のスペクトルはブロードであることが知られているので、投影光に含まれる所定の波長範囲を検出することで環境光の影響を無視することができる。したがって、より精度良く投影光が散乱状態のスクリーンに投影されているか否かを検出することができる。 In addition, the display device control method according to another embodiment of the present invention includes a projection light detection unit that detects the intensity of projection light projected toward a screen that can switch between a transmission state and a scattering state with respect to light. Judgment to determine whether or not to attenuate the projection light based on the result and the detection result of the scattered light detection means for detecting the intensity of the predetermined wavelength range included in the projection light among the scattered light scattered by the screen And a step of attenuating the projection light by the attenuating means when it is determined that the projection light is attenuated in the determination step. By doing so, it is possible to detect whether or not the projection light is projected on the screen in the scattering state by comparing the intensities of the light having a predetermined wavelength included in the projection light and the scattered light. And when it is not projected on the screen of a scattering state, projection light can be attenuated to the extent which is not dangerous. Therefore, it is possible to prevent strong light from the light source from passing through the screen and entering the viewer's eyes. Moreover, since the scattered light detection means detects the intensity in a predetermined wavelength range, the influence of the environmental light contained in the scattered light can be removed. Since the spectrum of the ambient light is known to be broad, the influence of the ambient light can be ignored by detecting a predetermined wavelength range included in the projection light. Therefore, it is possible to detect whether or not the projection light is projected onto the screen in the scattering state with higher accuracy.
 また、本発明の他の実施形態にかかる表示装置の制御方法は、光に対し透過状態と散乱状態を切り替え可能なスクリーンに向かって不可視光投影手段から投影され、スクリーンによって散乱された所定の波長範囲の不可視光の強度を検出する不可視光検出手段の検出結果に基づいて、スクリーンに投影される投影光を減衰するか否かを判定する判定工程と、判定工程で投影光を減衰すると判定された場合は、減衰手段にスクリーンに投影される投影光を減衰させる減衰工程と、を含んでいる。このようにすることにより、不可視光の散乱の有無によって、投影光が散乱状態のスクリーンに投影されているか否かを検出することができる。そして、不可視光が散乱状態のスクリーンに投影されていない場合は、投影光を危険の無い程度まで減衰することができる。したがって、光源からの強い光がスクリーンを透過し鑑賞者の眼に入射することを防止することができる。さらに、不可視光を使用することで、例えば青一色の映像など所定の波長範囲に偏っている映像が表示されている場合でも投影光が散乱状態のスクリーンに投影されているか否かを検出することができる。また、不可視光検出手段が不可視光投影手段から投影される所定の波長範囲の不可視光の強度を検出するので、環境光の影響を除去することができる。環境光のスペクトルはブロードであることが知られているので、所定の光源から出射される不可視光という所定の波長範囲を検出することで環境光の影響を無視することができる。したがって、より精度良く投影光が散乱状態のスクリーンに投影されているか否かを検出することができる。 In addition, a method for controlling a display device according to another embodiment of the present invention includes a predetermined wavelength that is projected from an invisible light projection unit toward a screen capable of switching between a transmission state and a scattering state with respect to light and is scattered by the screen. Based on the detection result of the invisible light detecting means for detecting the intensity of the invisible light in the range, it is determined whether to attenuate the projection light projected on the screen, and it is determined that the projection light is attenuated in the determination step. In such a case, an attenuation step of attenuating the projection light projected onto the screen by the attenuation means is included. By doing in this way, it can be detected whether projection light is projected on the screen of a scattering state by the presence or absence of scattering of invisible light. And when invisible light is not projected on the screen of a scattering state, projection light can be attenuate | damped to a grade without a danger. Therefore, it is possible to prevent strong light from the light source from passing through the screen and entering the viewer's eyes. Furthermore, by using invisible light, it is possible to detect whether or not the projection light is projected on the screen in a scattered state even when an image biased to a predetermined wavelength range such as a blue color image is displayed. Can do. Further, since the invisible light detecting means detects the intensity of invisible light in a predetermined wavelength range projected from the invisible light projecting means, it is possible to remove the influence of environmental light. Since the spectrum of ambient light is known to be broad, the influence of ambient light can be ignored by detecting a predetermined wavelength range of invisible light emitted from a predetermined light source. Therefore, it is possible to detect whether or not the projection light is projected onto the screen in the scattering state with higher accuracy.
 本発明の第1の実施例にかかる表示装置を図1乃至図7を参照して説明する。表示システムは図1に示すように、プロジェクタ2と、スクリーン3と、ドライバ4と、演算器5と、散乱光検出器6と、環境光除去フィルタ7と、を備えている。 A display device according to a first embodiment of the present invention will be described with reference to FIGS. As shown in FIG. 1, the display system includes a projector 2, a screen 3, a driver 4, a calculator 5, a scattered light detector 6, and an ambient light removal filter 7.
 光源としてのプロジェクタ2は、映像のフレーム周期の一部の時間内に全面表示のための映像光を1回投射する。プロジェクタ2は、RGB(赤緑青)の3原色それぞれのレーザダイオードを有し、外部から入力された映像信号に応じて変調された強度のレーザ光が投影光として出射される。また、プロジェクタ2は、コリメート光学系やビーム整形光学系などの光学系およびレーザ光をスクリーン3の2次元方向にスキャン(走査)するスキャナ(走査素子)などを有し、これらを介してレーザダイオードから出射された3原色のレーザ光がスクリーン3に向かって出力されて、スクリーン3上で映像として表示される。また、プロジェクタ2は鑑賞者から見てスクリーン3の奥に設置されている。 The projector 2 as a light source projects image light for full display once within a part of the frame period of the image. The projector 2 has laser diodes for each of the three primary colors of RGB (red, green, and blue), and laser light having an intensity modulated in accordance with a video signal input from the outside is emitted as projection light. The projector 2 also has an optical system such as a collimating optical system and a beam shaping optical system, and a scanner (scanning element) that scans the laser light in the two-dimensional direction of the screen 3. The laser beams of the three primary colors emitted from are output toward the screen 3 and displayed on the screen 3 as images. The projector 2 is installed in the back of the screen 3 when viewed from the viewer.
 図2にプロジェクタ2の光源と光学系の構成の一例を示す。プロジェクタ2は、レーザ制御回路2aと、赤色レーザ光源2bと、青色レーザ光源2cと、緑色レーザ光源2dと、コリメートレンズ2e、2f、2gと、レンズ2kと、ミラー2jと、ダイクロイックミラー2h、2iと、MEMSミラー2lと、MEMSミラー制御回路2mと、ビームスプリッタ2nと、投影光検出器2oと、投影光選択フィルタ2pと、を備えている。 FIG. 2 shows an example of the configuration of the light source and the optical system of the projector 2. The projector 2 includes a laser control circuit 2a, a red laser light source 2b, a blue laser light source 2c, a green laser light source 2d, collimating lenses 2e, 2f and 2g, a lens 2k, a mirror 2j, and dichroic mirrors 2h and 2i. A MEMS mirror 2l, a MEMS mirror control circuit 2m, a beam splitter 2n, a projection light detector 2o, and a projection light selection filter 2p.
 レーザ制御回路2aは、赤色、青色、緑色の3色の階調データに変換された映像信号を、赤色レーザ光源2b、青色レーザ光源2c、緑色レーザ光源2dにそれぞれ出力する。赤色レーザ光源2b、青色レーザ光源2c、緑色レーザ光源2dは、レーザ制御回路2aから入力された階調データに応じて各色のレーザ光を出力する。 The laser control circuit 2a outputs the video signals converted into the gradation data of the three colors red, blue, and green to the red laser light source 2b, the blue laser light source 2c, and the green laser light source 2d, respectively. The red laser light source 2b, the blue laser light source 2c, and the green laser light source 2d output laser light of each color according to the gradation data input from the laser control circuit 2a.
 赤色レーザ光源2bから出力されたレーザ光は、コリメートレンズ2eで平行光にされた後、ダイクロイックミラー2h、レンズ2kを透過してMEMSミラー2lに入射する。青色レーザ光源2cから出力されたレーザ光は、コリメートレンズ2fで平行光にされた後、ダイクロイックミラー2iでダイクロイックミラー2hに向けて反射され、ダイクロイックミラー2hでレンズ2kに向けて反射され、レンズ2kを透過してMEMSミラー2lに入射する。緑色レーザ光源2dから出力されたレーザ光は、コリメートレンズ2gで平行光にされ、ミラー2jでダイクロイックミラー2iに向けて反射された後、ダイクロイックミラー2iを透過し、ダイクロイックミラー2hでレンズ2kに向けて反射され、レンズ2kを透過してMEMSミラー2lに入射する。 The laser light output from the red laser light source 2b is collimated by the collimator lens 2e, and then passes through the dichroic mirror 2h and the lens 2k and enters the MEMS mirror 2l. The laser light output from the blue laser light source 2c is collimated by the collimator lens 2f, reflected by the dichroic mirror 2i toward the dichroic mirror 2h, reflected by the dichroic mirror 2h toward the lens 2k, and the lens 2k. And enters the MEMS mirror 2l. The laser light output from the green laser light source 2d is collimated by the collimator lens 2g, reflected by the mirror 2j toward the dichroic mirror 2i, then transmitted through the dichroic mirror 2i, and directed by the dichroic mirror 2h toward the lens 2k. And is transmitted through the lens 2k and enters the MEMS mirror 21.
 MEMSミラー2lは、入射したレーザ光をスクリーン3の水平方向および垂直方向に走査するMEMS(Micro Electro Mechanical Systems)により構成されたミラー(走査素子、空間変調器)であり、ミラーと一体的に形成されたアクチュエータ(図示しない)によって駆動される。MEMSミラー2lの動作はMEMSミラー制御回路2mによって制御される。MEMSミラー2lに入射したレーザ光はビームスプリッタ2nに向けて反射される。 The MEMS mirror 21 is a mirror (scanning element, spatial modulator) configured by MEMS (Micro Electro Mechanical Systems) that scans incident laser light in the horizontal and vertical directions of the screen 3, and is formed integrally with the mirror. It is driven by an actuator (not shown). The operation of the MEMS mirror 21 is controlled by the MEMS mirror control circuit 2m. The laser light incident on the MEMS mirror 21 is reflected toward the beam splitter 2n.
 投影光検出手段としてのビームスプリッタ2nは、入射したレーザ光のうち所定量を投影光選択フィルタ2pに向けて反射し、残りをスクリーン3に向けて出力、つまり、投影光として投影する。なお、ビームスプリッタ2nで投影光選択フィルタ2pに向けて反射される量はスクリーン3での表示に影響が及ばない程度の量でよい。 The beam splitter 2n as the projection light detection means reflects a predetermined amount of the incident laser light toward the projection light selection filter 2p, and outputs the rest toward the screen 3, that is, projects as projection light. The amount reflected by the beam splitter 2n toward the projection light selection filter 2p may be an amount that does not affect the display on the screen 3.
 投影光検出手段としての投影光選択フィルタ2pは、RGB3波長のレーザ光(投影光)のうち緑色のレーザ光を選択的に透過する狭帯域バンドパスフィルタによって構成されている。この緑色のレーザ光は、後述する環境光除去フィルタ7が透過させる色(波長範囲)と同じ色(波長範囲)となっている。即ち、投影光検出器2oは、投影光選択フィルタ2pによって散乱光検出手段と同じ波長範囲の光の強度を検出する。 The projection light selection filter 2p as the projection light detection means is constituted by a narrow band-pass filter that selectively transmits green laser light among RGB three-wavelength laser light (projection light). The green laser light has the same color (wavelength range) as the color (wavelength range) transmitted by the ambient light removal filter 7 described later. That is, the projection light detector 2o detects the intensity of light in the same wavelength range as the scattered light detection means by the projection light selection filter 2p.
 投影光検出手段としての投影光検出器2oは、例えばフォトダイオードなどの光検出器で構成されている。投影光検出器2oは、入力された投影光の強度に応じた電気信号を演算器5に出力する。なお、投影光検出器2oやビームスプリッタ2nや投影光選択フィルタ2pは、プロジェクタ2に内蔵するに限らず、プロジェクタ2の出射口の近傍やスクリーン3の近傍など投影光が検出できる位置であればよい。勿論、ビームスプリッタ2nを設けずに直接投影光を受光するようにしてもよい。ただし、スクリーン3の近傍に配置する際は、スクリーン3で散乱された散乱光の影響が小さくなるように配置することが望ましい。 Projection light detector 2o as projection light detection means is composed of a photodetector such as a photodiode, for example. The projection light detector 2o outputs an electric signal corresponding to the intensity of the input projection light to the computing unit 5. Note that the projection light detector 2o, the beam splitter 2n, and the projection light selection filter 2p are not limited to being built in the projector 2, but may be any position where projection light can be detected, such as the vicinity of the exit of the projector 2 or the vicinity of the screen 3. Good. Of course, the projection light may be directly received without providing the beam splitter 2n. However, when it is arranged in the vicinity of the screen 3, it is desirable to arrange it so that the influence of the scattered light scattered by the screen 3 is reduced.
 スクリーン3は、光学状態を透過状態と散乱状態(不透明状態)との間で切り替えることが可能である。スクリーン3aは、図3に示したように透明電極3a1と、透明電極3a1に挟まれた散乱層3a2と、を備えている。なお、透明電極3a1の外側は例えばガラスや樹脂などの透明基板である。そして、図3に示した散乱層3a2としては、高分子分散型液晶(Polymer Dispersed Liquid Crystal,PDLC)やポリマーネットワーク型液晶(Polymer Network Liquid Crystal,PNLC)などで構成される。本実施例では、スクリーン3として、透明電極3a1に電圧を印加した時に散乱状態となり、電圧非印加時に透過状態となるリバースモードの調光パネルを用いている。 The screen 3 can switch the optical state between a transmission state and a scattering state (opaque state). As shown in FIG. 3, the screen 3a includes a transparent electrode 3a1 and a scattering layer 3a2 sandwiched between the transparent electrodes 3a1. The outside of the transparent electrode 3a1 is a transparent substrate such as glass or resin. The scattering layer 3a2 shown in FIG. 3 is composed of polymer dispersed liquid crystal (Polymer Dispersed Liquid Crystal, PDLC), polymer network liquid crystal (Polymer Network Liquid Crystal, PNLC), or the like. In the present embodiment, a reverse mode light control panel that is in a scattering state when a voltage is applied to the transparent electrode 3a1 and is in a transmission state when no voltage is applied is used as the screen 3.
 スクリーン3は、散乱状態時にプロジェクタ2から映像が投影されることで、投影光が散乱されて映像がスクリーン3に表示される。 The screen 3 projects an image from the projector 2 in the scattering state, so that the projection light is scattered and the image is displayed on the screen 3.
 図4に、図1に示したスクリーン3を正面から見た概略構成図を示す。図4に示したように、スクリーン3は、帯状に複数の分割領域31に分割されており、この分割領域31ごとに透過状態と散乱状態を切り替えることが可能となっている。 FIG. 4 shows a schematic configuration diagram of the screen 3 shown in FIG. 1 viewed from the front. As shown in FIG. 4, the screen 3 is divided into a plurality of divided regions 31 in a band shape, and the transmission state and the scattering state can be switched for each divided region 31.
 つまり、映像信号の走査に合わせて、映像を表示する領域は散乱状態とし、映像を表示しない領域は透過状態とすることで、鑑賞者である人間の目にはこれらが平均(積分)されて視認され、明るい表示状態であってもスクリーン3は透明であるというシースルー特性が得られる。なお、この散乱状態と透過状態の切り替えは、例えばプロジェクタ2または演算器5から制御信号をスクリーン3に無線または有線により出力することで行えばよい。 In other words, in accordance with the scanning of the video signal, the region where the image is displayed is in a scattering state, and the region where the image is not displayed is in a transmissive state, so that these are averaged (integrated) to the human eye as a viewer. The see-through characteristic that the screen 3 is transparent even when it is visually recognized and in a bright display state is obtained. Note that switching between the scattering state and the transmission state may be performed by, for example, outputting a control signal from the projector 2 or the calculator 5 to the screen 3 wirelessly or by wire.
 ドライバ4は、演算器5からの指示に応じてプロジェクタ2に対して電源のONまたはOFFの切替信号を出力する回路である。 The driver 4 is a circuit that outputs a power ON / OFF switching signal to the projector 2 in response to an instruction from the computing unit 5.
 制限手段としての演算器5は、外部から入力されるプロジェクタ2に投影する映像信号を供給する。なお、映像信号はプロジェクタ2に直接入力するようにしてもよい。また、演算器5は、入力された映像信号の同期信号に基づいてスクリーン3の各分割領域31を散乱状態または透過状態に切り替える。また、映像信号が直接プロジェクタ2に入力される場合はプロジェクタから同期信号を受信してスクリーン3の各分割領域31を散乱状態または透過状態に切り替える。 The computing unit 5 as a limiting means supplies a video signal to be projected to the projector 2 input from the outside. Note that the video signal may be directly input to the projector 2. The computing unit 5 switches each divided region 31 of the screen 3 to the scattering state or the transmission state based on the synchronization signal of the input video signal. When the video signal is directly input to the projector 2, the synchronization signal is received from the projector and each divided area 31 of the screen 3 is switched to the scattering state or the transmission state.
 演算器5は、散乱光検出器6と投影光検出器2oの出力に基づいて、プロジェクタ2からの投影とスクリーン3の散乱状態との同期のずれや、スクリーン3が透過状態のままなど、投影光がスクリーン3で散乱されずに透過している状態となっているか否かを判断する。そして、投影光がスクリーン3で散乱されずに透過している状態である場合は、プロジェクタ2の電源をOFFにする。なお、スクリーン3は、実際は透過状態でも僅かに光を散乱しているが、映像を表示することができるほど散乱することはできず透過する光の減衰量も僅かであるので散乱されないとして説明する。 Based on the outputs of the scattered light detector 6 and the projection light detector 2o, the arithmetic unit 5 projects the projection of the projection from the projector 2 and the scattering state of the screen 3 or the screen 3 remains in a transmissive state. It is determined whether or not light is transmitted through the screen 3 without being scattered. If the projection light is transmitted through the screen 3 without being scattered, the power of the projector 2 is turned off. Note that the screen 3 actually scatters light slightly even in the transmissive state, but cannot scatter so that an image can be displayed and the amount of attenuation of transmitted light is so small that it will not be scattered. .
 散乱光検出手段としての散乱光検出器6は、例えばフォトダイオードなどの光検出器で構成されている。散乱光検出器6は、スクリーン3で散乱された散乱光から環境光除去フィルタ7を透過した波長(例えば緑色レーザ光源2d)の強度に応じた電気信号を演算器5に出力する。したがって、散乱光検出器6は、スクリーン3で散乱された散乱光が入射する位置に設置されている。なお、散乱光検出器6と後述する環境光除去フィルタ7の設置位置は、プロジェクタ2側でもよいし、鑑賞者側でもよい。 The scattered light detector 6 as the scattered light detecting means is composed of a photodetector such as a photodiode. The scattered light detector 6 outputs an electric signal corresponding to the intensity of the wavelength (for example, the green laser light source 2 d) transmitted from the scattered light scattered by the screen 3 through the ambient light removal filter 7 to the calculator 5. Therefore, the scattered light detector 6 is installed at a position where the scattered light scattered by the screen 3 is incident. The installation position of the scattered light detector 6 and the ambient light removal filter 7 described later may be on the projector 2 side or on the viewer side.
 環境光除去フィルタ7は、例えばプロジェクタ2が投影するRGB3波長のレーザ光(投影光)のうち緑色のレーザ光を選択的に透過する狭帯域バンドパスフィルタによって構成されている。つまり、緑色レーザ光源2dから出射されたレーザ光の波長範囲のみを透過させる。即ち、環境光除去フィルタ7も散乱光検出手段の一部として機能する。なお、図1の例では、実線を緑色レーザ光、一点鎖線を赤色レーザ光、二点鎖線を青色レーザ光として示している。 The ambient light removal filter 7 is constituted by, for example, a narrow band-pass filter that selectively transmits green laser light among RGB three-wavelength laser light (projection light) projected by the projector 2. That is, only the wavelength range of the laser light emitted from the green laser light source 2d is transmitted. That is, the ambient light removal filter 7 also functions as part of the scattered light detection means. In the example of FIG. 1, the solid line is shown as green laser light, the one-dot chain line is shown as red laser light, and the two-dot chain line is shown as blue laser light.
 プロジェクタ2から投射されるレーザ光(投影光)のスペクトルはシャープ(狭帯域)であるのに対して、環境光のスペクトルはブロード(広帯域)である。したがって、環境光除去フィルタ7によって、レーザ光のスペクトルのピーク部分のみを抽出することで環境光の影響を除去した投影光の強度が得られる。 The spectrum of laser light (projection light) projected from the projector 2 is sharp (narrow band), whereas the spectrum of ambient light is broad (broadband). Therefore, by extracting only the peak portion of the spectrum of the laser beam by the ambient light removal filter 7, the intensity of the projection light from which the influence of the ambient light is removed can be obtained.
 以上説明した構成のうち、スクリーン3と、ビームスプリッタ2nと、投影光検出器2oと、投影光選択フィルタ2pと、散乱光検出器6と、演算器5と、環境光除去フィルタ7と、で本発明の一実施例にかかる表示装置1を構成する。 Among the configurations described above, the screen 3, the beam splitter 2n, the projection light detector 2o, the projection light selection filter 2p, the scattered light detector 6, the computing unit 5, and the ambient light removal filter 7 are included. The display apparatus 1 concerning one Example of this invention is comprised.
 次に、演算器5で行う処理について図5および図6を参照して説明する。図5は、演算器5の概略機能構成図である。図5に示したように、散乱光検出器6の出力である散乱光の強度(投影光選択フィルタ2pを透過した緑色レーザ光の強度)と、投影光検出器2oの出力である投影光の強度(環境光除去フィルタ7を透過した緑色レーザ光の強度)を比較部5bで比較する。 Next, processing performed by the computing unit 5 will be described with reference to FIGS. FIG. 5 is a schematic functional configuration diagram of the computing unit 5. As shown in FIG. 5, the intensity of the scattered light (the intensity of the green laser light transmitted through the projection light selection filter 2p) that is the output of the scattered light detector 6 and the projection light that is the output of the projection light detector 2o. The intensity (the intensity of the green laser light transmitted through the ambient light removal filter 7) is compared by the comparison unit 5b.
 本実施例では、散乱状態時と透過状態時のスクリーン3からの散乱光強度が異なることを利用する。表示映像は同一映像を輝度一定のまま連続表示(静止画表示)している場合を除いて一般的に経時変化するため,投影光強度と散乱光強度の経時変化が連動する。よって、散乱光強度と投影光強度を連続的にモニタし、双方を逐次比較することにより、意図しないレーザ光のスクリーン3の透過を検出することができる。例えば、スクリーン3の動作不良等によって同期が外れた場合は、レーザ光が照射される場所が透過状態になっているので、レーザ光は散乱されずに透過してしまう。このとき散乱光の強度が小さくなるような変化が生じるので、散乱光と投影光の強度の比にオフセットが生じる。したがって、このオフセットを検出することで、レーザ光がスクリーン3を透過していることを検出できる。 In this embodiment, the fact that the scattered light intensity from the screen 3 in the scattering state and the transmission state is different is used. The display image generally changes with time except when the same image is continuously displayed with a constant luminance (still image display), and thus the projection light intensity and the scattered light intensity change with time. Therefore, by continuously monitoring the scattered light intensity and the projected light intensity and sequentially comparing the two, it is possible to detect unintended transmission of the laser light through the screen 3. For example, when the synchronization is lost due to a malfunction of the screen 3 or the like, the laser light is transmitted without being scattered because the place irradiated with the laser light is in a transmission state. At this time, a change occurs such that the intensity of the scattered light becomes small, and an offset occurs in the ratio between the intensity of the scattered light and the projected light. Therefore, by detecting this offset, it can be detected that the laser light is transmitted through the screen 3.
 比較部5bにおける具体的な比較の方法の例としては、投影光の強度から散乱光の強度を減算することや、投影光の強度を散乱光の強度で除算することなどが挙げられる。上記のように、スクリーン3の動作不良等によって同期が外れてレーザ光が散乱されずに透過してしまい散乱光の強度が小さくなるような変化が生じると、例えば減算の場合、減算値が大きく変化する。したがって、同期外れを検出することができる。そして、減算値が一定以上変化した場合は、同期外れ等の透過状態時に投影光が投影されている異常状態としてプロジェクタ2の電源をOFFにして投影光の投影を停止させる。 Examples of specific comparison methods in the comparison unit 5b include subtracting the intensity of the scattered light from the intensity of the projected light, and dividing the intensity of the projected light by the intensity of the scattered light. As described above, if a change occurs such that the laser beam is transmitted without being scattered due to malfunction of the screen 3 and the intensity of the scattered light is reduced, for example, in the case of subtraction, the subtraction value is increased. Change. Therefore, loss of synchronization can be detected. If the subtraction value changes more than a certain value, the projector 2 is turned off to stop projection of the projection light as an abnormal state in which the projection light is projected in the transmission state such as out of synchronization.
 上述した構成の表示装置1の動作を図6に示したフローチャートを参照して説明する。図6のフローチャートは演算器5で実行される。 The operation of the display device 1 having the above-described configuration will be described with reference to the flowchart shown in FIG. The flowchart of FIG. 6 is executed by the calculator 5.
 まず、ステップS1において、表示装置1の起動および初期化を行ってステップS2に進む。即ち、表示装置1に電源が供給され、各部が初期状態に設定される。 First, in step S1, the display device 1 is activated and initialized, and the process proceeds to step S2. That is, power is supplied to the display device 1 and each unit is set to an initial state.
 次に、ステップS2において、投影を開始しステップS3に進む。即ち、プロジェクタ2から投影光を投影してスクリーン3に表示する。スクリーン3は、図4に示した分割領域31を投影光に同期させて順次散乱状態に切り替える。 Next, in step S2, projection is started and the process proceeds to step S3. That is, the projection light is projected from the projector 2 and displayed on the screen 3. The screen 3 sequentially switches the divided areas 31 shown in FIG. 4 to the scattering state in synchronization with the projection light.
 次に、判定工程としてのステップS3において、不具合が発生したか否かを判断し、発生した場合(yesの場合)はステップS4に進み、発生しない場合(noの場合)は本ステップを繰り返す。即ち、投影光の投影を制限するか否かを判定する。不具合とは、上述した同期外れやスクリーン3の電極供給が停止した等で透過状態時に投影光が投影されている異常状態が発生していることである。つまり、比較部5bの比較の結果減算値が一定以上変化したことを検出した場合である。 Next, in step S3 as the determination step, it is determined whether or not a failure has occurred. If it has occurred (in the case of yes), the process proceeds to step S4, and if it does not occur (in the case of no), this step is repeated. That is, it is determined whether or not to limit the projection of the projection light. The problem is that an abnormal state in which projection light is projected in the transmission state occurs due to the above-described loss of synchronization or the supply of the electrode of the screen 3 being stopped. That is, it is a case where it is detected that the subtraction value has changed more than a certain value as a result of the comparison by the comparison unit 5b.
 次に、制限工程としてのステップS4において、投影光を遮断してステップS5に進む。本実施例では、プロジェクタ2の電源をOFFにすることで投影光を遮断する。即ち、プロジェクタ2の電源をOFFにする制御信号を出力することで投影光の投影を制限している。あるいは、プロジェクタ2へ電力を供給している電源装置等へプロジェクタ2への電力供給を停止させるような制御信号を出力することでもよい。 Next, in step S4 as the limiting step, the projection light is blocked and the process proceeds to step S5. In this embodiment, the projection light is blocked by turning off the power of the projector 2. That is, projection of projection light is limited by outputting a control signal for turning off the power of the projector 2. Alternatively, a control signal that stops power supply to the projector 2 may be output to a power supply device that supplies power to the projector 2.
 次に、ステップS5において、投影を停止する。つまり、プロジェクタ2への映像信号の入力を停止させる。 Next, in step S5, the projection is stopped. That is, the input of the video signal to the projector 2 is stopped.
 本実施例の場合、図4に示したように、複数の分割領域31に分割されているので、各分割領域毎に散乱光検出器6と環境光除去フィルタ7を設けて、プロジェクタ2からの投影光の走査に合わせて散乱状態となっている散乱光検出器6の結果を用いて図6のフローチャートを実行すればよい。 In the case of the present embodiment, as shown in FIG. 4, since it is divided into a plurality of divided regions 31, a scattered light detector 6 and an ambient light removal filter 7 are provided for each divided region, and the projector 2 The flowchart of FIG. 6 may be executed using the result of the scattered light detector 6 that is in a scattering state in accordance with the scanning of the projection light.
 また、散乱光検出器6と環境光除去フィルタ7は1つでもよく、その場合は、1つの散乱光検出器6と環境光除去フィルタ7が設けられている位置に最も近い分割領域31が散乱状態にあるときの投影光の強度を比較するようにすればよい。例えば、スクリーンの下端に散乱光検出器6と環境光除去フィルタ7が設けられている場合は、下端の分割領域31が散乱状態にある場合の散乱光検出器6の出力と、当該領域を走査しているときの投影光検出器2oの出力を比較する。この場合は走査周期(映像周期)に1回(当該分割領域31に投影している期間)比較が行われる。 Further, the number of scattered light detectors 6 and the ambient light removal filter 7 may be one. In this case, the divided region 31 closest to the position where the one scattered light detector 6 and the ambient light removal filter 7 are provided is scattered. What is necessary is just to compare the intensity | strength of the projection light when it exists in a state. For example, when the scattered light detector 6 and the ambient light removal filter 7 are provided at the lower end of the screen, the output of the scattered light detector 6 when the divided region 31 at the lower end is in a scattering state, and the region is scanned. The outputs of the projection light detector 2o when compared are compared. In this case, the comparison is performed once in a scanning cycle (video cycle) (a period during which the image is projected onto the divided area 31).
 本実施例によれば、表示装置1は、光に対し透過状態と散乱状態を切り替え可能なスクリーン3と、スクリーン3に向かって投影される投影光の強度を検出する投影光検出器2oと、スクリーン3によって散乱された散乱光のうち環境光除去フィルタ7を透過した波長範囲の光の強度を検出する散乱光検出器6と、有している。そして、演算器5が、投影光検出器2oが検出した投影光の強度と散乱光検出器6が検出した環境光除去フィルタ7を透過した波長範囲の光の強度に基づいて、プロジェクタ2の電源をOFFにすることで投影光の投影を停止している。このようにすることにより、投影光が散乱状態のスクリーン3に投影されているか否かを検出することができ、散乱状態のスクリーン3に投影されていない場合は、プロジェクタ2の電源をOFFにして例えばスクリーン3に投影光が当らないようにすることができる。したがって、光源からの強い光がスクリーン3を透過し鑑賞者の眼に入射することを防止することができる。 According to the present embodiment, the display device 1 includes a screen 3 that can switch between a transmission state and a scattering state with respect to light, a projection light detector 2o that detects the intensity of projection light projected toward the screen 3, and A scattered light detector 6 for detecting the intensity of light in the wavelength range that has passed through the ambient light removal filter 7 out of the scattered light scattered by the screen 3; Based on the intensity of the projection light detected by the projection light detector 2o and the intensity of light in the wavelength range transmitted through the ambient light removal filter 7 detected by the scattered light detector 6, the computing unit 5 The projection of the projection light is stopped by turning OFF. By doing so, it is possible to detect whether or not the projection light is projected onto the screen 3 in the scattering state. When the projection light is not projected onto the screen 3 in the scattering state, the projector 2 is turned off. For example, it is possible to prevent the projection light from hitting the screen 3. Therefore, strong light from the light source can be prevented from passing through the screen 3 and entering the viewer's eyes.
 また、散乱光検出器6が環境光除去フィルタ7を透過した所定の波長範囲の強度を検出するので、散乱光に含まれる環境光の影響を除去することができる。したがって、より精度良く投影光が散乱状態のスクリーンに投影されているか否かを検出することができる。 Further, since the scattered light detector 6 detects the intensity in a predetermined wavelength range that has passed through the ambient light removal filter 7, the influence of the ambient light contained in the scattered light can be removed. Therefore, it is possible to detect whether or not the projection light is projected onto the screen in the scattering state with higher accuracy.
 また、投影光選択フィルタ2pが、環境光除去フィルタ7と同じ波長範囲の光の強度を検出しているので、散乱光の強度変化を一致させることができ、投影光がスクリーン3に投影されているか否かをより精度良く検出することができる。 Further, since the projection light selection filter 2p detects the intensity of light in the same wavelength range as that of the ambient light removal filter 7, the intensity change of the scattered light can be matched, and the projection light is projected onto the screen 3. It can be detected with higher accuracy.
 なお、投影光の投影の停止は、プロジェクタ2の電源をOFFにすることに限らない。例えば、赤色レーザ光源2bと、青色レーザ光源2cと、緑色レーザ光源2dの発光を停止させるようにしてもよいし、プロジェクタ2への映像信号の入力を停止させる(ステップS4を省略してステップS5を行う)ようにしてもよい。 Note that stopping the projection of the projection light is not limited to turning off the power of the projector 2. For example, the emission of the red laser light source 2b, the blue laser light source 2c, and the green laser light source 2d may be stopped, or the input of the video signal to the projector 2 is stopped (step S4 is omitted and step S5 is omitted). May be performed).
 また、他の投影光の投影を制限する方法として図7に示すようにプロジェクタ2の前面にシャッタ機構9を設けてもよい。シャッタ機構9は、ドライバ8を介して演算器5から制御される。つまり、図6のステップS4でプロジェクタ2の電源をOFFにすることに代えてシャッタ機構9を閉じるように制御する。即ち、投影光の投影を遮断している。 Further, as a method for limiting the projection of other projection light, a shutter mechanism 9 may be provided on the front surface of the projector 2 as shown in FIG. The shutter mechanism 9 is controlled from the calculator 5 via the driver 8. That is, the shutter mechanism 9 is controlled to be closed instead of turning off the power of the projector 2 in step S4 of FIG. That is, the projection of the projection light is blocked.
 このシャッタ機構9は、プロジェクタ2の前面に限らずプロジェクタ2の内部に設けてもよい。図7に示したように、シャッタ機構9を設けることで、プロジェクタ2の電源を切る(OFFにする)必要が無くなる。したがって、復帰する際はシャッタ機構9を開くだけでよく迅速に復帰させることができる。 The shutter mechanism 9 is not limited to the front surface of the projector 2 and may be provided inside the projector 2. As shown in FIG. 7, the provision of the shutter mechanism 9 eliminates the need to turn off (turn off) the projector 2. Therefore, when returning, it is only necessary to open the shutter mechanism 9 and it is possible to return quickly.
 また、演算器で比較するレーザ光の波長範囲は緑色に限らず、赤色や青色でもよいし、これら3色のうち2色または3色全てとしてもよい。2色や3色の場合は、例えばビームスプリッタ等で2つまたは3つに光を分割し、それぞれの色の波長範囲を透過するフィルタを設ければよい。即ち、散乱光検出手段が検出する所定の波長範囲が、投影光を構成する光を出射する複数の光源のうち、1つまたは複数の光源に対応する波長範囲でもよい。なお、投影光を構成する光源はレーザ光に限らずLED(発光ダイオード)光源としてもよいが、LED光源の場合、スペクトルのピークがレーザ光ほどシャープではないので環境光の影響を除去しきれず異常状態の検出精度が低下する虞がある。そのため、レーザ光のようなスペクトルがシャープな光源が好ましい。 Further, the wavelength range of the laser light to be compared by the computing unit is not limited to green, but may be red or blue, or two or all three of these three colors. In the case of two colors or three colors, for example, a beam splitter may be used to divide the light into two or three and provide a filter that transmits the wavelength range of each color. That is, the predetermined wavelength range detected by the scattered light detection means may be a wavelength range corresponding to one or a plurality of light sources among a plurality of light sources that emit light constituting the projection light. The light source constituting the projection light is not limited to the laser light, but may be an LED (light emitting diode) light source. However, in the case of the LED light source, the spectrum peak is not as sharp as the laser light, so the influence of ambient light cannot be completely removed. There is a possibility that the detection accuracy of the state is lowered. Therefore, a light source having a sharp spectrum such as laser light is preferable.
 さらには、プロジェクタ2内の投影光選択フィルタ2pを設けなくてもよい。この場合は、投影光検出器2oには、3色のレーザ光がビームスプリッタ2nから直接入射する。通常の映像の場合、投影光の強度の経時変化は、赤色、青色、緑色のいずれであっても略同じであることが多い。また、プロジェクタ2内では環境光が影響することは無いので、投影光検出器2oの前段には投影光選択フィルタ2pを設けなくても構わない。 Furthermore, the projection light selection filter 2p in the projector 2 may not be provided. In this case, three color laser beams are directly incident on the projection light detector 2o from the beam splitter 2n. In the case of a normal image, the temporal change in the intensity of the projected light is often substantially the same regardless of whether it is red, blue, or green. In addition, since the ambient light is not affected in the projector 2, the projection light selection filter 2p may not be provided in the previous stage of the projection light detector 2o.
 次に、本発明の第2の実施例にかかる表示装置を図8および図9を参照して説明する。なお、前述した第1の実施例と同一部分には、同一符号を付して説明を省略する。 Next, a display device according to a second embodiment of the present invention will be described with reference to FIGS. The same parts as those in the first embodiment described above are denoted by the same reference numerals and description thereof is omitted.
 本実施例においては、プロジェクタ2からRGB(可視光)のレーザ光に加えて、不可視光投影手段として所定の波長範囲の赤外線(不可視光)のレーザ光がスクリーン3へ投射されている。図8において、実線はRGBのレーザ光、一点鎖線は、赤外線のレーザ光を示している。なお、本実施例では不可視光の例として赤外線(赤外光)で説明するが、紫外線など他の波長の不可視光であってもよい。また、不可視光はレーザ光でなくてもよい。但し、レーザ光の方が一般的にスペクトルのピークがシャープであり環境光の影響を排除し易く好ましい。 In this embodiment, in addition to the RGB (visible light) laser light from the projector 2, infrared (invisible light) laser light in a predetermined wavelength range is projected onto the screen 3 as invisible light projection means. In FIG. 8, the solid line indicates RGB laser light, and the alternate long and short dash line indicates infrared laser light. In the present embodiment, infrared light (infrared light) will be described as an example of invisible light, but invisible light of other wavelengths such as ultraviolet light may be used. Invisible light may not be laser light. However, laser light is generally preferable because it has a sharp peak in the spectrum and can easily eliminate the influence of ambient light.
 図9に、本実施例にかかるプロジェクタ2の構成図を示す。図2の構成に対して、赤外レーザ光源2qと、コリメートレンズ2rと、ミラー2sが追加され、ミラー2jがダイクロイックミラー2tに変更されている。また、図2の構成に対して、ビームスプリッタ2nと投影光検出器2oと投影光選択フィルタ2pが削除されている。なお、赤外レーザ光源2qから出射されるレーザ光としては、アイセーフレーザ(波長1.4~2.6μm)を用いることが好ましい。 FIG. 9 shows a configuration diagram of the projector 2 according to the present embodiment. 2, an infrared laser light source 2q, a collimating lens 2r, and a mirror 2s are added, and the mirror 2j is changed to a dichroic mirror 2t. Further, the beam splitter 2n, the projection light detector 2o, and the projection light selection filter 2p are deleted from the configuration of FIG. As the laser light emitted from the infrared laser light source 2q, an eye-safe laser (wavelength 1.4 to 2.6 μm) is preferably used.
 レーザ制御回路2aの制御によって赤外レーザ光源2qから出力されたレーザ光は、コリメートレンズ2rで平行光にされ、ミラー2sでダイクロイックミラー2tに向けて反射された後、ダイクロイックミラー2t、2iを透過し、ダイクロイックミラー2hでレンズ2kに向けて反射され、レンズ2kを透過してMEMSミラー2lに入射する。 The laser light output from the infrared laser light source 2q under the control of the laser control circuit 2a is collimated by the collimator lens 2r, reflected by the mirror 2s toward the dichroic mirror 2t, and then transmitted through the dichroic mirrors 2t and 2i. Then, the light is reflected by the dichroic mirror 2h toward the lens 2k, passes through the lens 2k, and enters the MEMS mirror 2l.
 緑色レーザ光源2dから出力されたレーザ光は、コリメートレンズ2gで平行光にされた後、ダイクロイックミラー2tでダイクロイックミラー2iに向けて反射され、ダイクロイックミラー2iを投下し、ダイクロイックミラー2hでレンズ2kに向けて反射され、レンズ2kを透過してMEMSミラー2lに入射する。 The laser light output from the green laser light source 2d is collimated by the collimating lens 2g, then reflected by the dichroic mirror 2t toward the dichroic mirror 2i, dropped by the dichroic mirror 2i, and applied to the lens 2k by the dichroic mirror 2h. The light is then reflected and transmitted through the lens 2k to enter the MEMS mirror 21.
 本実施例の環境光除去フィルタ7は、赤外レーザ光源2qから出射される赤外光と同じ波長範囲を透過させる狭帯域バンドパスフィルタである。 The ambient light removal filter 7 of the present embodiment is a narrow band pass filter that transmits the same wavelength range as the infrared light emitted from the infrared laser light source 2q.
 また、散乱光検出器6は、スクリーン3で散乱された散乱光から環境光除去フィルタ7を透過した赤外光の波長の強度に応じた電気信号を演算器5に出力する。即ち、不可視光検出手段として機能する。そして、演算器5では、検出した赤外光の強度が一定以下である場合は、同期外れやスクリーン3の電極供給が停止した等で透過状態時に投影光が投影されている異常状態が発生していると判断する。そして、例えば、プロジェクタ2の電源をOFFにしたり、映像等の投影を停止させたりする。 Further, the scattered light detector 6 outputs an electric signal corresponding to the intensity of the wavelength of the infrared light transmitted from the scattered light scattered by the screen 3 through the ambient light removal filter 7 to the calculator 5. That is, it functions as invisible light detection means. Then, in the computing unit 5, when the detected infrared light intensity is below a certain level, an abnormal state in which the projection light is projected in the transmission state occurs due to loss of synchronization or the supply of the electrode of the screen 3 being stopped. Judge that Then, for example, the power supply of the projector 2 is turned off, or projection of an image or the like is stopped.
 プロジェクタ2から投射される赤外光は、予め定めた一定の出力で出射されている。このとき、スクリーン3によって正しく散乱されている場合(スクリーン3の当該領域に映像が投影されるべき期間)は、散乱光検出器6において、赤外レーザ光源2qの出力に応じた強度の赤外光が検出されるはずである。したがって、図6のステップS3における不具合発生の有無は、散乱光検出器6の出力が一定の強度以下か否かを判断することで、判定することができる。 The infrared light projected from the projector 2 is emitted with a predetermined constant output. At this time, when the light is correctly scattered by the screen 3 (a period during which an image is to be projected onto the region of the screen 3), the scattered light detector 6 has an infrared ray with an intensity corresponding to the output of the infrared laser light source 2q. Light should be detected. Therefore, the presence / absence of a failure in step S3 in FIG. 6 can be determined by determining whether the output of the scattered light detector 6 is equal to or less than a certain intensity.
 本実施例によれば、表示装置1は、光に対し透過状態と散乱状態を切り替え可能なスクリーン3と、赤外レーザ光源2qから投影されてスクリーン3によって散乱された散乱光のうち環境光除去フィルタ7を透過した赤外光の強度を検出する散乱光検出器6と、有している。そして、演算器5が、散乱光検出器6が検出した赤外光の強度に基づいて、プロジェクタ2の電源をOFFにすることで投影光の投影を停止している。このようにすることにより、投影光とともに投影されている赤外光が散乱状態のスクリーン3に投影されているか否かを検出することができ、散乱状態のスクリーン3に投影されていない場合は、プロジェクタ2の電源をOFFにして例えばスクリーン3に赤外光と投影光が当らないようにすることができる。したがって、光源からの強い光がスクリーン3を透過し鑑賞者の眼に入射することを防止することができる。 According to the present embodiment, the display device 1 removes ambient light from the screen 3 that can switch between a transmission state and a scattering state with respect to light, and the scattered light that is projected from the infrared laser light source 2q and scattered by the screen 3. And a scattered light detector 6 for detecting the intensity of infrared light transmitted through the filter 7. Then, the computing unit 5 stops the projection of the projection light by turning off the power of the projector 2 based on the intensity of the infrared light detected by the scattered light detector 6. By doing so, it is possible to detect whether or not the infrared light projected together with the projection light is projected on the screen 3 in the scattering state, and when not projected on the screen 3 in the scattering state, It is possible to turn off the power of the projector 2 so that, for example, the screen 3 does not receive infrared light and projection light. Therefore, strong light from the light source can be prevented from passing through the screen 3 and entering the viewer's eyes.
 また、赤外光などの不可視光を使用することで、青一色の映像など所定の波長範囲に偏っている映像が表示されている場合(投影光が投影されている場合)でも投影光が散乱状態のスクリーンに投影されているか否かを検出することができる。また、赤外レーザ光源2qから出射された波長範囲の赤外光の強度を検出するので、環境光の影響を除去することができる。 In addition, by using invisible light such as infrared light, the projected light is scattered even when an image that is biased to a predetermined wavelength range such as a blue-colored image is displayed (when the projected light is projected). Whether or not the image is projected on the screen in the state can be detected. Further, since the intensity of infrared light in the wavelength range emitted from the infrared laser light source 2q is detected, the influence of ambient light can be removed.
 なお、第2の実施例では、赤外光は一定の出力で投影されていたが、赤外光を所定の周波数のパルス光で出力し、散乱光検出器6等にロックインアンプを設けて検出するようにしてもよい。この場合は、検出側で周波数の一致も見るため、光源側の出力を低くすることが可能となる。 In the second embodiment, the infrared light is projected with a constant output. However, the infrared light is output with a pulsed light having a predetermined frequency, and the scattered light detector 6 is provided with a lock-in amplifier. You may make it detect. In this case, since the frequency coincidence is also seen on the detection side, the output on the light source side can be lowered.
 また、第2の実施例では、赤外レーザ光源2qが出射する赤外光は投影光とともに走査されてスクリーン3に向かって投影されていたが(一緒に投影されていたが)、単独で設けてスクリーン3に向かって投影するようにしてもよい。この場合、スクリーン3の特定位置に投影するようにして、演算器5等からスクリーン3を散乱状態または透過状態に切り替える制御信号を入力し、スクリーン3の前記特定位置に映像が投影されるべき期間のみ赤外光を出射するように制御すればよい。 In the second embodiment, the infrared light emitted from the infrared laser light source 2q is scanned together with the projection light and projected toward the screen 3 (although it is projected together), it is provided alone. Then, it may be projected toward the screen 3. In this case, a control signal for switching the screen 3 to the scattering state or the transmission state is input from the computing unit 5 or the like so as to project it to a specific position on the screen 3, and a period in which an image should be projected on the specific position on the screen 3 It is only necessary to control so as to emit infrared light.
 また、第2の実施例でも、赤色レーザ光源2b、青色レーザ光源2c、緑色レーザ光源2d、赤外レーザ光源2qの発光を停止させるようにしてもよいし、プロジェクタ2への映像信号の入力を停止させるようにしてもよい。また、図7に示すようなプロジェクタ2の前面にシャッタ機構9を設けるようにしてもよい。 Also in the second embodiment, the emission of the red laser light source 2b, the blue laser light source 2c, the green laser light source 2d, and the infrared laser light source 2q may be stopped, or the input of the video signal to the projector 2 may be performed. You may make it stop. Further, a shutter mechanism 9 may be provided on the front surface of the projector 2 as shown in FIG.
 また、第2の実施例では、投影光を形成する光源はレーザ光源であったが、LED(発光ダイオード)光源としてもよい。この場合、空間変調器はMEMSミラー2lではなく、液晶素子やDMD(Digital Micromirror Device)などの2次元空間変調素子を用いる。 In the second embodiment, the light source for forming the projection light is a laser light source, but may be an LED (light emitting diode) light source. In this case, the spatial modulator is not a MEMS mirror 21 but a two-dimensional spatial modulation element such as a liquid crystal element or DMD (Digital Micromirror Device).
 次に、本発明の第2の実施例にかかる表示装置を図10を参照して説明する。なお、前述した第1の実施例と同一部分には、同一符号を付して説明を省略する。 Next, a display device according to a second embodiment of the present invention will be described with reference to FIG. The same parts as those in the first embodiment described above are denoted by the same reference numerals and description thereof is omitted.
 本実施例にかかる表示装置1は、図10に示したように、プロジェクタ2と、スクリーン3と、演算器5と、散乱光検出器6と、環境光除去フィルタ7と、ドライバ10と、ノーマルモード調光パネル11と、を備えている。 As shown in FIG. 10, the display device 1 according to the present embodiment includes a projector 2, a screen 3, a calculator 5, a scattered light detector 6, an ambient light removal filter 7, a driver 10, and a normal device. A mode light control panel 11.
 本実施例では、ノーマルモード調光パネル11でレーザ光を減衰することで、鑑賞者へ光が透過することを防止している。即ち、投影光を減衰する減衰手段を有している。 In this embodiment, the normal mode light control panel 11 attenuates the laser light to prevent the light from being transmitted to the viewer. That is, it has attenuation means for attenuating the projection light.
 ノーマルモード調光パネル11は、透明電極に挟まれた散乱層が液晶で構成され、透明電極に電圧を印加した時に透過状態となり、電圧非印加時に散乱状態となるノーマルモードの液晶素子で構成されたものである。ノーマルモード調光パネル11はドライバ10を介して演算器5から制御される。 The normal mode light control panel 11 is composed of a liquid crystal element in a normal mode in which a scattering layer sandwiched between transparent electrodes is composed of liquid crystal, and is in a transmission state when a voltage is applied to the transparent electrode and is in a scattering state when no voltage is applied. It is a thing. The normal mode dimming panel 11 is controlled from the computing unit 5 via the driver 10.
 ノーマルモード調光パネル11の制御は通常は電圧を印加して透過状態にし、図6のフローチャートのステップS3で不具合が発生した場合は、第1の実施例で説明したステップS4、S5に代えて電圧の印加を停止して散乱状態にするステップを行う(減衰工程)。このようにすることで、異常状態でスクリーン3を透過したレーザ光をノーマルモード調光パネル11で散乱してレーザ光の出力を減衰することができる。 The normal mode light control panel 11 is normally controlled by applying a voltage so as to be in a transmissive state. If a problem occurs in step S3 in the flowchart of FIG. 6, the steps S4 and S5 described in the first embodiment are replaced. A step of stopping the application of the voltage to enter a scattering state is performed (attenuation step). By doing so, the laser light transmitted through the screen 3 in an abnormal state can be scattered by the normal mode light control panel 11 to attenuate the output of the laser light.
 なお、図10ではノーマルモード調光パネル11をスクリーン3の鑑賞者側、つまり、スクリーン3の一方の面に重ねられるように配置したが、プロジェクタ2側(他方の面側)に配置してもよい。 In FIG. 10, the normal mode dimming panel 11 is arranged so as to overlap the viewer 3 side of the screen 3, that is, one side of the screen 3, but may be arranged on the projector 2 side (the other side). Good.
 また、図10では減衰手段としてノーマルモード調光パネル11を用いたが、リバースモード調光パネルでもよい。この場合、通常は、電圧の印加を行わずに透過状態とし、不具合が発生した場合は、電圧の印加を開始して散乱状態にする。但し、リバースモード調光パネルは、電圧の印加がされたときに散乱状態になるので、例えば、故障等によりスクリーン3とノーマルモード調光パネル11の電力供給が停止した場合に、散乱状態とすることができない。したがって、本実施例のような構成とする場合は、減衰手段としてはノーマルモード調光パネル11の方が好ましい。 In FIG. 10, the normal mode light control panel 11 is used as the attenuation means, but a reverse mode light control panel may be used. In this case, normally, a voltage is not applied and a transmission state is set. When a problem occurs, voltage application is started and a scattering state is set. However, since the reverse mode light control panel is in a scattering state when a voltage is applied, for example, when the power supply of the screen 3 and the normal mode light control panel 11 is stopped due to a failure or the like, the reverse mode light control panel is in a scattering state. I can't. Therefore, in the case of the configuration as in the present embodiment, the normal mode light control panel 11 is preferable as the attenuating means.
 なお、散乱光検出器及び演算器5の構成は第1の実施例に示した構成と同様である。即ち、例えば緑色レーザ光の投影光強度をプロジェクタ内に設けた投影光検出器2oで検出し、スクリーン3で散乱された緑色レーザ光の強度を散乱光検出器6で検出する。そして、投影光検出器2oで検出された結果と散乱光検出器6で検出された結果に基づいて、投影光がスクリーン3で散乱されずに透過している状態か否かを判断する。 The configurations of the scattered light detector and the arithmetic unit 5 are the same as those shown in the first embodiment. That is, for example, the projection light intensity of the green laser light is detected by the projection light detector 2o provided in the projector, and the intensity of the green laser light scattered by the screen 3 is detected by the scattered light detector 6. Based on the result detected by the projection light detector 2 o and the result detected by the scattered light detector 6, it is determined whether or not the projection light is transmitted without being scattered by the screen 3.
 また、散乱光検出器及び演算器5の構成を第2の実施例に示した構成としてもよい。即ち、プロジェクタ2から赤外光などの不可視光が投射されるようにし、スクリーン3で散乱された赤外光の強度を散乱光検出器6で検出する。そして、散乱光検出器6で検出された赤外光の強度に基づいて、投影光がスクリーン3で散乱されずに透過している状態か否かを判断する。 Further, the configuration of the scattered light detector and the arithmetic unit 5 may be the configuration shown in the second embodiment. That is, invisible light such as infrared light is projected from the projector 2, and the intensity of the infrared light scattered by the screen 3 is detected by the scattered light detector 6. Then, based on the intensity of the infrared light detected by the scattered light detector 6, it is determined whether or not the projection light is transmitted through the screen 3 without being scattered.
 本実施例によれば、表示装置1は、光に対し透過状態と散乱状態を切り替え可能なスクリーン3と、スクリーン3に向かって投影される投影光の強度を検出する投影光検出器2oと、スクリーン3によって散乱された散乱光のうち環境光除去フィルタ7を透過した波長範囲の光の強度を検出する散乱光検出器6と、を有している。そして、ノーマルモード調光パネル11が、投影光検出器2oが検出した投影光の強度と散乱光検出器6が検出した散乱光の強度に基づいて、投影光を減衰している。このようにすることにより、投影光が散乱状態のスクリーン3に投影されているか否かを検出することができ、散乱状態のスクリーン3に投影されていない場合は、投影光を危険の無い程度まで減衰することができる。したがって、光源からの強い光がスクリーン3を透過し鑑賞者の眼に入射することを防止することができる。 According to the present embodiment, the display device 1 includes a screen 3 that can switch between a transmission state and a scattering state with respect to light, a projection light detector 2o that detects the intensity of projection light projected toward the screen 3, and A scattered light detector 6 that detects the intensity of light in a wavelength range that has passed through the ambient light removal filter 7 out of the scattered light scattered by the screen 3. The normal mode light control panel 11 attenuates the projection light based on the intensity of the projection light detected by the projection light detector 2o and the intensity of the scattered light detected by the scattered light detector 6. By doing so, it is possible to detect whether or not the projection light is projected onto the screen 3 in the scattering state. When the projection light is not projected onto the screen 3 in the scattering state, the projection light is reduced to a level where there is no danger. Can be attenuated. Therefore, strong light from the light source can be prevented from passing through the screen 3 and entering the viewer's eyes.
 また、散乱光検出器6が環境光除去フィルタ7を透過した所定の波長範囲の強度を検出するので、散乱光に含まれる環境光の影響を除去することができる。したがって、より精度良く投影光が散乱状態のスクリーンに投影されているか否かを検出することができる。 Further, since the scattered light detector 6 detects the intensity in a predetermined wavelength range that has passed through the ambient light removal filter 7, the influence of the ambient light contained in the scattered light can be removed. Therefore, it is possible to detect whether or not the projection light is projected onto the screen in the scattering state with higher accuracy.
 また、ノーマルモード調光パネル11は、スクリーン3の鑑賞者側またはプロジェクタ2側のいずれか一方にスクリーン3と重ねられるように配置されていているので、スクリーン3の前または後で投影光を減衰することができる。また、スクリーン3と減衰手段を一体的に構成することができる。 Further, since the normal mode light control panel 11 is arranged so as to overlap the screen 3 on either the viewer side or the projector 2 side of the screen 3, the projection light is attenuated before or after the screen 3. can do. Further, the screen 3 and the attenuation means can be configured integrally.
 なお、上述した3つの実施例では、散乱光検出器6と環境光除去フィルタ7は、例えば図1に示したようにスクリーン3の散乱光を検出できる位置(散乱光検出器6の光が入射する部分がスクリーン3に向いている)に設置されていたが、図11のような構成としてもよい。 In the above-described three embodiments, the scattered light detector 6 and the ambient light removal filter 7 are positioned where the scattered light on the screen 3 can be detected as shown in FIG. 1, for example (the light from the scattered light detector 6 is incident). However, it may be configured as shown in FIG. 11.
 図11に示した散乱光検出器6は、スクリーン3よりも鑑賞者側にスクリーン3と重ねられるように設けられ、スクリーン3で散乱したレーザ光を検出する。散乱光検出器6は、例えば透明なフィルム状のアクリル等で形成された光検出層6aと、光検出器6dと、で構成されており、図9に示したように光検出層6aは、導波層6bと、クラッド層6cと、が形成されている。導波層6bは、スクリーン3で散乱された光の一部をスクリーン3の投影面(スクリーン面)と平行な方向に導波して該導波層6bの端面に導く。クラッド層6cは、導波層6bよりも低屈折率となっており導波層6bに入射した光を端面に導光し易くする。なお、導波層6bのみでも光検出器6dで検出するための光を導光できる場合はクラッド層6cを設けなくてもよい。 The scattered light detector 6 shown in FIG. 11 is provided on the viewer side so as to overlap the screen 3 with respect to the screen 3, and detects the laser light scattered by the screen 3. The scattered light detector 6 includes a light detection layer 6a formed of, for example, a transparent film-like acrylic, and a light detector 6d. As shown in FIG. A waveguide layer 6b and a cladding layer 6c are formed. The waveguide layer 6b guides a part of the light scattered by the screen 3 in a direction parallel to the projection surface (screen surface) of the screen 3 and guides it to the end surface of the waveguide layer 6b. The clad layer 6c has a lower refractive index than the waveguide layer 6b, and makes it easier to guide light incident on the waveguide layer 6b to the end face. Note that the clad layer 6c may not be provided if only the waveguide layer 6b can guide light for detection by the photodetector 6d.
 光検出層6aには、その端面に光検出器6dが設けられている。図11では、光検出層6aの一方の側面(端面)に、スクリーン3の複数の領域(分割領域31)に対応して設けられている。光検出器6dは、例えばフォトダイオードなどで構成され、光検出層6aが検出した光の強度を電気信号に変換して演算器5に出力する。また、光検出層6aは、導波層6bに導波された光を取り込むことができるように光検出層6aに対して直角に設けられている。また、光検出器6dには上述した実施例で説明した環境光除去フィルタが内蔵又は前段に設けられている。このように構成することで、散乱光を光検出層6aを介して所定の波長範囲の光を光検出器6dで検出している。 The photodetector 6d is provided on the end surface of the photodetector layer 6a. In FIG. 11, the light detection layer 6 a is provided on one side surface (end surface) corresponding to a plurality of regions (divided regions 31) of the screen 3. The photodetector 6d is configured by, for example, a photodiode, and converts the intensity of light detected by the photodetector layer 6a into an electrical signal and outputs the electrical signal to the computing unit 5. The photodetection layer 6a is provided at a right angle to the photodetection layer 6a so that the light guided to the waveguide layer 6b can be taken in. The photodetector 6d is provided with the ambient light removal filter described in the above-described embodiment, or is provided in the previous stage. By configuring in this way, the scattered light is detected by the photodetector 6d through the light detection layer 6a.
 なお、この図11に示した光検出層6aをスクリーン3のプロジェクタ2側に設けると、投影光検出器として機能させることができる(図12)。この場合は、プロジェクタ2から投影された投影光が光検出層6aを介して光検出器6dで検出される。 In addition, if the light detection layer 6a shown in FIG. 11 is provided on the projector 2 side of the screen 3, it can function as a projection light detector (FIG. 12). In this case, the projection light projected from the projector 2 is detected by the photodetector 6d through the light detection layer 6a.
 また、上述した2つの実施例では、スクリーン3を複数の分割領域31に分割していたが、分割しなくてもよい。この場合は、例えば映像のフレーム期間内の所定時間において一括で投影すればよい。 In the above-described two embodiments, the screen 3 is divided into a plurality of divided areas 31. However, the screen 3 may not be divided. In this case, for example, the projection may be performed at a predetermined time within a frame period of the video.
 また、本発明は上記実施例に限定されるものではない。即ち、当業者は、従来公知の知見に従い、本発明の骨子を逸脱しない範囲で種々変形して実施することができる。かかる変形によってもなお本発明の表示装置および表示装置の制御方法の構成を具備する限り、勿論、本発明の範疇に含まれるものである。 Further, the present invention is not limited to the above embodiment. That is, those skilled in the art can implement various modifications in accordance with conventionally known knowledge without departing from the scope of the present invention. As long as the configuration of the display device and the control method of the display device of the present invention is provided even by such modification, it is of course included in the scope of the present invention.
  1    表示装置
  2    プロジェクタ
  2n   ビームスプリッタ(投影光検出手段)
  2o   投影光検出器(投影光検出手段)
  2p   投影光選択フィルタ(投影光検出手段)
  3    スクリーン
  5    演算器(制限手段)
  6    散乱光検出器(散乱光検出手段)
  7    環境光除去フィルタ(散乱光検出手段)
  9    シャッタ機構(制限手段)
  11   ノーマルモード調光パネル(減衰手段)
  S3   不具合発生判断(判定工程)
  S4   投影光遮断(制限工程)
DESCRIPTION OF SYMBOLS 1 Display apparatus 2 Projector 2n Beam splitter (projection light detection means)
2o Projection light detector (projection light detection means)
2p Projection light selection filter (projection light detection means)
3 screen 5 computing unit (limitation means)
6 Scattered light detector (scattered light detection means)
7 Ambient light removal filter (scattered light detection means)
9 Shutter mechanism (limitation means)
11 Normal mode light control panel (Attenuation means)
S3 Defect determination (determination process)
S4 Projection light blocking (restriction process)

Claims (15)

  1.  光に対し透過状態と散乱状態を切り替え可能なスクリーンと、
     前記スクリーンに向かって投影される投影光の強度を検出する投影光検出手段と、
     前記スクリーンによって散乱された散乱光のうち、前記投影光に含まれる所定の波長範囲の強度を検出する散乱光検出手段と、
     前記投影光検出手段が検出した前記投影光の強度と前記散乱光検出手段が検出した前記所定の波長範囲の散乱光の強度に基づいて、前記投影光の投影を制限する制限手段と、
    を有することを特徴とする表示装置。
    A screen capable of switching between a transmission state and a scattering state for light;
    Projection light detection means for detecting the intensity of projection light projected toward the screen;
    Of the scattered light scattered by the screen, scattered light detection means for detecting the intensity of a predetermined wavelength range included in the projection light,
    Limiting means for limiting the projection of the projection light based on the intensity of the projection light detected by the projection light detection means and the intensity of the scattered light in the predetermined wavelength range detected by the scattered light detection means;
    A display device comprising:
  2.  前記散乱光検出手段が検出する前記所定の波長範囲が、前記投影光を構成する光を出射する複数の光源のうち、1つまたは複数の光源に対応する波長範囲であることを特徴とする請求項1に記載の表示装置。 The predetermined wavelength range detected by the scattered light detection means is a wavelength range corresponding to one or a plurality of light sources among a plurality of light sources that emit light constituting the projection light. Item 4. The display device according to Item 1.
  3.  前記投影光検出手段が、前記散乱光検出手段と同じ波長範囲の光の強度を検出することを特徴とする請求項1または2に記載の表示装置。 The display device according to claim 1 or 2, wherein the projection light detection means detects the intensity of light in the same wavelength range as the scattered light detection means.
  4.  光に対し透過状態と散乱状態を切り替え可能なスクリーンと、
     所定の波長範囲の不可視光を前記スクリーンに向かって投影する不可視光投影手段と、
     前記スクリーンによって散乱された前記所定の波長範囲の不可視光の強度を検出する不可視光検出手段と、
     前記不可視光検出手段が検出した前記不可視光の強度に基づいて、前記スクリーンに投影される投影光の投影を制限する制限手段と、
    を有することを特徴とする表示装置。
    A screen capable of switching between a transmission state and a scattering state for light;
    Invisible light projection means for projecting invisible light in a predetermined wavelength range toward the screen;
    Invisible light detecting means for detecting the intensity of invisible light in the predetermined wavelength range scattered by the screen;
    Limiting means for limiting the projection of projection light projected on the screen based on the intensity of the invisible light detected by the invisible light detection means;
    A display device comprising:
  5.  前記制限手段は、前記投影光の投影を停止させることを特徴とする請求項1乃至4のうちいずれか一項に記載の表示装置。 5. The display device according to claim 1, wherein the limiting unit stops the projection of the projection light.
  6.  前記制限手段は、前記投影光を遮断することを特徴とする請求項1乃至5のうちいずれか一項に記載の表示装置。 The display device according to any one of claims 1 to 5, wherein the limiting unit blocks the projection light.
  7.  光に対し透過状態と散乱状態を切り替え可能なスクリーンと、
     前記スクリーンに向かって投影される投影光の強度を検出する投影光検出手段と、
     前記スクリーンによって散乱された散乱光のうち、前記投影光に含まれる所定の波長範囲の強度を検出する散乱光検出手段と、
     前記投影光検出手段が検出した前記投影光の強度と前記散乱光検出手段が検出した前記所定の波長範囲の散乱光の強度に基づいて、前記投影光を減衰する減衰手段と、
    を有することを特徴とする表示装置。
    A screen capable of switching between a transmission state and a scattering state for light;
    Projection light detection means for detecting the intensity of projection light projected toward the screen;
    Of the scattered light scattered by the screen, scattered light detection means for detecting the intensity of a predetermined wavelength range included in the projection light,
    Attenuating means for attenuating the projection light based on the intensity of the projection light detected by the projection light detection means and the intensity of the scattered light in the predetermined wavelength range detected by the scattered light detection means;
    A display device comprising:
  8.  前記散乱光検出手段が検出する前記所定の波長範囲が、前記投影光を構成する光を出射する複数の光源のうち、1つまたは複数の光源に対応する波長範囲であることを特徴とする請求項7に記載の表示装置。 The predetermined wavelength range detected by the scattered light detection means is a wavelength range corresponding to one or a plurality of light sources among a plurality of light sources that emit light constituting the projection light. Item 8. The display device according to Item 7.
  9.  前記投影光検出手段が、前記散乱光検出手段と同じ波長範囲の光の強度を検出することを特徴とする請求項7または8に記載の表示装置。 The display device according to claim 7 or 8, wherein the projection light detection means detects the intensity of light in the same wavelength range as the scattered light detection means.
  10.  光に対し透過状態と散乱状態を切り替え可能なスクリーンと、
    所定の波長範囲の不可視光を前記スクリーンに向かって投影する不可視光投影手段と、
     前記スクリーンによって散乱された前記所定の波長範囲の不可視光の強度を検出する不可視光検出手段と、
     前記不可視光検出手段が検出した前記不可視光の強度に基づいて、前記スクリーンに投影される投影光を減衰する減衰手段と、
    を有することを特徴とする表示装置。
    A screen capable of switching between a transmission state and a scattering state for light;
    Invisible light projection means for projecting invisible light in a predetermined wavelength range toward the screen;
    Invisible light detecting means for detecting the intensity of invisible light in the predetermined wavelength range scattered by the screen;
    Attenuating means for attenuating the projection light projected on the screen based on the intensity of the invisible light detected by the invisible light detecting means;
    A display device comprising:
  11.  前記減衰手段は、前記スクリーンの一方の面または他方の面の少なくともいずれか一方に前記スクリーンと重ねられるように配置されていることを特徴とする請求項7乃至10のうちいずれか一項に記載の表示装置。 The said attenuation | damping means is arrange | positioned so that it may overlap with the said screen on at least any one of the one side of the said screen, or the other side, The Claim 1 characterized by the above-mentioned. Display device.
  12.  光に対し透過状態と散乱状態を切り替え可能なスクリーンに向かって投影される投影光の強度を検出する投影光検出手段の検出結果と、前記スクリーンによって散乱された散乱光のうちの前記投影光に含まれる所定の波長範囲の強度を検出する散乱光検出手段の検出結果に基づいて、前記投影光の投影を制限するか否かを判定する判定工程と、
     前記判定工程で前記投影光の投影を制限すると判定された場合は、制限手段に前記投影光の投影を制限させる制限工程と、
    を含むことを特徴とする表示装置の制御方法。
    The detection result of the projection light detecting means for detecting the intensity of the projection light projected toward the screen capable of switching between the transmission state and the scattering state with respect to the light, and the projection light of the scattered light scattered by the screen A determination step of determining whether or not to limit the projection of the projection light based on the detection result of the scattered light detection means for detecting the intensity of the predetermined wavelength range included;
    If it is determined in the determination step that the projection of the projection light is limited, a limiting step of limiting the projection of the projection light by a limiting unit;
    A control method for a display device, comprising:
  13.  光に対し透過状態と散乱状態を切り替え可能なスクリーンに向かって不可視光投影手段から投影され、前記スクリーンによって散乱された所定の波長範囲の不可視光の強度を検出する不可視光検出手段の検出結果に基づいて、前記スクリーンに投影される投影光の投影を制限するか否かを判定する判定工程と、
     前記判定工程で前記投影光の投影を制限すると判定された場合は、制限手段に前記スクリーンに投影される投影光の投影を制限させる制限工程と、
    を含むことを特徴とする表示装置の制御方法。
    The detection result of the invisible light detecting means for detecting the intensity of the invisible light in a predetermined wavelength range projected from the invisible light projecting means toward the screen that can be switched between the transmission state and the scattering state with respect to the light. A determination step of determining whether or not to limit projection of projection light projected on the screen,
    If it is determined in the determining step that the projection of the projection light is limited, a limiting step of limiting the projection of the projection light projected on the screen by the limiting unit;
    A control method for a display device, comprising:
  14.  光に対し透過状態と散乱状態を切り替え可能なスクリーンに向かって投影される投影光の強度を検出する投影光検出手段の検出結果と、前記スクリーンによって散乱された散乱光のうちの前記投影光に含まれる所定の波長範囲の強度を検出する散乱光検出手段の検出結果に基づいて、前記投影光を減衰するか否かを判定する判定工程と、
     前記判定工程で前記投影光を減衰すると判定された場合は、減衰手段に前記投影光を減衰させる減衰工程と、
    を含むことを特徴とする表示装置の制御方法。
    The detection result of the projection light detecting means for detecting the intensity of the projection light projected toward the screen capable of switching between the transmission state and the scattering state with respect to the light, and the projection light of the scattered light scattered by the screen A determination step of determining whether to attenuate the projection light based on a detection result of the scattered light detection means for detecting the intensity of the predetermined wavelength range included;
    When it is determined that the projection light is attenuated in the determination step, an attenuation step of attenuating means to attenuate the projection light;
    A control method for a display device, comprising:
  15.  光に対し透過状態と散乱状態を切り替え可能なスクリーンに向かって不可視光投影手段から投影され、前記スクリーンによって散乱された所定の波長範囲の不可視光の強度を検出する不可視光検出手段の検出結果に基づいて、前記スクリーンに投影される投影光を減衰するか否かを判定する判定工程と、
     前記判定工程で前記投影光を減衰すると判定された場合は、減衰手段に前記スクリーンに投影される投影光を減衰させる減衰工程と、
    を含むことを特徴とする表示装置の制御方法。
    The detection result of the invisible light detecting means for detecting the intensity of the invisible light in a predetermined wavelength range projected from the invisible light projecting means toward the screen that can be switched between the transmission state and the scattering state with respect to the light. A determination step of determining whether or not to attenuate the projection light projected on the screen,
    If it is determined in the determination step that the projection light is attenuated, an attenuation step of attenuating the projection light projected onto the screen on the attenuation unit;
    A control method for a display device, comprising:
PCT/JP2013/068705 2013-07-09 2013-07-09 Display device WO2015004724A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/068705 WO2015004724A1 (en) 2013-07-09 2013-07-09 Display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/068705 WO2015004724A1 (en) 2013-07-09 2013-07-09 Display device

Publications (1)

Publication Number Publication Date
WO2015004724A1 true WO2015004724A1 (en) 2015-01-15

Family

ID=52279454

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/068705 WO2015004724A1 (en) 2013-07-09 2013-07-09 Display device

Country Status (1)

Country Link
WO (1) WO2015004724A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016158176A1 (en) * 2015-03-31 2016-10-06 浜松ホトニクス株式会社 Projection display device
WO2016158174A1 (en) * 2015-03-31 2016-10-06 浜松ホトニクス株式会社 Projection display device
EP3985433A1 (en) * 2020-10-16 2022-04-20 Barco N.V. Light source device and image projection device having a light source device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005164692A (en) * 2003-11-28 2005-06-23 Sony Corp Display device and dimmer
JP2007082107A (en) * 2005-09-16 2007-03-29 Nippon Telegr & Teleph Corp <Ntt> Video presenting/imaging apparatus
JP2011170096A (en) * 2010-02-18 2011-09-01 Mitsubishi Electric Corp Image projection device and image display apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005164692A (en) * 2003-11-28 2005-06-23 Sony Corp Display device and dimmer
JP2007082107A (en) * 2005-09-16 2007-03-29 Nippon Telegr & Teleph Corp <Ntt> Video presenting/imaging apparatus
JP2011170096A (en) * 2010-02-18 2011-09-01 Mitsubishi Electric Corp Image projection device and image display apparatus

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016158176A1 (en) * 2015-03-31 2016-10-06 浜松ホトニクス株式会社 Projection display device
WO2016158174A1 (en) * 2015-03-31 2016-10-06 浜松ホトニクス株式会社 Projection display device
JPWO2016158174A1 (en) * 2015-03-31 2017-09-28 浜松ホトニクス株式会社 Projection display device
CN107430271A (en) * 2015-03-31 2017-12-01 浜松光子学株式会社 Projection display equipment
CN107430280A (en) * 2015-03-31 2017-12-01 浜松光子学株式会社 Projection display equipment
JP2018112751A (en) * 2015-03-31 2018-07-19 浜松ホトニクス株式会社 Projection display device
JP2018159931A (en) * 2015-03-31 2018-10-11 浜松ホトニクス株式会社 Projection display device
EP3279715A4 (en) * 2015-03-31 2018-10-31 Hamamatsu Photonics K.K. Projection display device
EP3279716A4 (en) * 2015-03-31 2018-11-07 Hamamatsu Photonics K.K. Projection display device
US10197895B2 (en) 2015-03-31 2019-02-05 Hamamatsu Photonics K.K. Projection display device
TWI681208B (en) * 2015-03-31 2020-01-01 日商濱松赫德尼古斯股份有限公司 Projection display device
CN107430280B (en) * 2015-03-31 2020-01-31 浜松光子学株式会社 Projection display device
TWI689773B (en) * 2015-03-31 2020-04-01 日商濱松赫德尼古斯股份有限公司 Projection display device
US10928716B2 (en) 2015-03-31 2021-02-23 Hamamatsu Photonics K.K. Projection display device
EP3985433A1 (en) * 2020-10-16 2022-04-20 Barco N.V. Light source device and image projection device having a light source device
WO2022079232A1 (en) * 2020-10-16 2022-04-21 Barco N.V. Light source device and image projection device having a light source device

Similar Documents

Publication Publication Date Title
WO2014024298A1 (en) Display device
JP6853310B2 (en) Near-eye display device
JP6553280B2 (en) Screen for free and limited operation modes
US10732408B2 (en) Projection type display device and projection display method
US11561400B2 (en) Wearable heads-up display with optical path fault detection
US9269193B2 (en) Head-mount type display device
US8070297B2 (en) Projector that projects an image signal on a display surface
US9715116B2 (en) Color mixing device and display device
TW201710113A (en) Vehicle projection system
WO2015004724A1 (en) Display device
JP2011166396A (en) Scanning display device
WO2009122932A1 (en) Image display device
JP6108169B2 (en) Color mixing device and display device
JP5353749B2 (en) Display device
CN110832396A (en) Image display apparatus
WO2014141431A1 (en) Display device
WO2017168510A1 (en) Display device
CN110268321B (en) Projection display device, control method, and storage medium storing control program
JP2018039407A (en) Head-up display device
CN111722397A (en) Laser scanning projection device and equipment
JP2020112710A (en) Head-up display
JP4513279B2 (en) Image display device
US20240031538A1 (en) Light source device and image projection device having a light source device
JP6390171B2 (en) Laser equipment
WO2024019979A1 (en) Field of view area selection using electrochromic facets

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13888933

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13888933

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP