WO2015002523A1 - Method and system for obtaining sweet gas, synthesis gas and sulphur from natural gas - Google Patents

Method and system for obtaining sweet gas, synthesis gas and sulphur from natural gas Download PDF

Info

Publication number
WO2015002523A1
WO2015002523A1 PCT/MX2013/000080 MX2013000080W WO2015002523A1 WO 2015002523 A1 WO2015002523 A1 WO 2015002523A1 MX 2013000080 W MX2013000080 W MX 2013000080W WO 2015002523 A1 WO2015002523 A1 WO 2015002523A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
natural gas
membranes
acid gases
neutralizing agent
Prior art date
Application number
PCT/MX2013/000080
Other languages
Spanish (es)
French (fr)
Inventor
Yibran Argenis Perera Mercado
Luis Alfonso GARCÍA CERDA
Griselda CASTRUITA DE LEÓN
Luis Alberto VILLARREAL CÁRDENAS
María Guadalupe NEIRA VELAZQUEZ
Manuel de Jesús AGUILAR VEGA
María Isabel de los Dolores LORIA BASTARRACHEA
José Luis SANTIAGO GARCÍA
Alejandra Aimée GUTIERREZ MEJÍA
Joel Osvaldo Pacheco Sotelo
Mariquidia Josseline PACHECO PACHECO
Ricardo Valdivia Barrientos
José Fidel RAMOS FLORES
Miguel Ángel DURÁN GARCÍA
Miguel Ángel HIDALGO PÉREZ
Original Assignee
Centro De Investigación En Química Aplicada
Centro De Investigación Científica De Yucatán, A.C.
lNSTITUTO NACIONAL DE INVESTIGACIONES NUCLEARES
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centro De Investigación En Química Aplicada, Centro De Investigación Científica De Yucatán, A.C., lNSTITUTO NACIONAL DE INVESTIGACIONES NUCLEARES filed Critical Centro De Investigación En Química Aplicada
Publication of WO2015002523A1 publication Critical patent/WO2015002523A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/02Preparation of sulfur; Purification
    • C01B17/04Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/02Preparation of sulfur; Purification
    • C01B17/04Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides
    • C01B17/0495Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides by dissociation of hydrogen sulfide into the elements
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/16Hydrogen sulfides
    • C01B17/167Separation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00157Controlling the temperature by means of a burner
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00159Controlling the temperature controlling multiple zones along the direction of flow, e.g. pre-heating and after-cooling
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/54Specific separation steps for separating fractions, components or impurities during preparation or upgrading of a fuel
    • C10L2290/548Membrane- or permeation-treatment for separating fractions, components or impurities during preparation or upgrading of a fuel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/20Capture or disposal of greenhouse gases of methane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to techniques for obtaining gases and products derived from natural gas, more particularly it relates to a method and system for obtaining sweet gas, synthetic gas and sulfur from natural gas.
  • Sweetening is the primary process to which natural gas streams are subjected in order to remove the acidic gases it contains.
  • the removal of these gases is indispensable for multiple reasons, one of which is that they decrease the heat capacity of CH.
  • C0 2 and H 2 S are highly corrosive acid gases;
  • C0 2 is considered one of the main greenhouse gases that contribute to global warming.
  • H 2 S is extremely toxic and even fatal at low concentrations.
  • the conventionally known process for the removal of acid gases involves chemical adsorption with amines, however, this process subsequently requires desorption to release the removed gases that are then burned or taken to the Claus process for the recovery of elemental sulfur and water .
  • the technology of selective separation of acid gases with membranes is currently an attractive option to carry out the sweetening of natural gas.
  • PEO poly (ethylene oxide)
  • copolymers known as PEBAX ® which contain an aliphatic polyamide as a rigid segment (eg Nylon-6, Nylon-12, PA) and as a soft segment a polyether (eg: poly (ethylene oxide, PEO, or poly (oxide) of tetramethylene, PTMO)).
  • PA segments have been reported to provide mechanical properties, while gas transport occurs through the PEO segment [Bondar VI, Freeman BD Pinnau I. (2000) Gas transport properties of poly (ether-b-amide) segmented block copolymers, Journal of Polymer Science, Part B: Polymer Physics 38: 2051-2062].
  • the reactor After the discharge zone, the reactor has a condenser in which the sulfur is separated in the elemental state, the gaseous H 2 and the residual H 2 S. Its operation depends on the coupling to Natural gas purification process with amines and can even be linked to the Claus process.
  • H 2 S > sulfide decomposition in a pulsed corona discharge reactor, Chemical Engineering Science, 64, 4826-4834] has been used for the treatment of H 2 S.
  • This treatment basically consists of a quartz reactor to which a mixture of Argon is added -Nitrogen for the decomposition of H 2 S with moderate efficiency.
  • This method has its limitations in terms of low concentration of H 2 S ( ⁇ 2% mol), high energy consumption (> 100 eV / H 2 S) and the need to add mixtures with other gases (Helium, Nitrogen, Hydrogen and Argon) to increase its energy efficiency.
  • US Patent US5211923 focuses a plasma discharge on the production of H 2 and sulfur from acid gas containing residues of H 2 S and one or more of COS, CS 2 and S0 2 .
  • the type of plasma used in its process is RF operating in the range of microwaves and working in a pressure range of 0.5 to 2 atm.
  • the temperature range reached with this type of plasma is 150 to 450 ° C.
  • the system of this patent requires a pre-ionized Argon gas inlet system and a preheating system for the gas to be treated.
  • the system has a water-based cooling system attached, which is not recycled but instead releases steam into the environment.
  • C0 2 cutting-edge technologies for degradation are focused on those developed by cold plasma due to their excellent dissociation results.
  • C0 2 plasma discharge dielectric barrier reported by Zheng et al. [Zheng G., Jiang J., Wu Y., Zhang R., Hou H., (2003), The Mutal conversion of C0 2 and CO in Dielectric Barrier Discharge (DBD), Plasma Chemistry and Plasma Processing, 23, 59 -68], and especially the reduction of C0 2 using sliding arc plasma in its non-equilibrium state reported by Idarto A. [Indarto A., (2007), Kinetics of C0 2 Reduction by Gliding are Plasma, As ⁇ an Journal of Water Environment and Pollution, 4, 191-194].
  • the object of the invention to provide a method for obtaining sweet gas, synthetic gas and sulfur from natural gas, the method includes the steps of removing impurities from the natural gas to obtain pretreated natural gas; sweeten the pretreated natural gas by means of a separation using a plurality of membranes to obtain sweet gas and acid gases; ionize acid gases to dissociate them into sulfur and synthetic gas with remnants of acid gases; and neutralize the synthetic gas with remnants of acid gases to generate synthetic gas.
  • the sweetening of the natural gas is carried out by means of membranes following a solution-diffusion mechanism, wherein the acid gases selectively permeate through the membranes.
  • a stream of fresh gas enriched with CH 4 and a stream of acid gas which is then treated in a reactor hybrid plasma to obtain products with high added value such as sulfur and gas: as a result of this separation two effluents are obtained synthetic.
  • the latter is purified in bubble columns containing a neutralizing agent, which allows to obtain the synthetic gas in conditions of use to generate energy within the same method.
  • Figure 1 shows a method for obtaining sweet gas, synthetic gas and sulfur from natural gas according to the present invention.
  • Figure 2 shows a system for obtaining sweet gas, synthetic gas and sulfur from natural gas according to the present invention.
  • Figure 3 shows an optical microscopy photograph of an embodiment of translucent polyurethane-urea membranes according to the present invention.
  • Figure 4 shows a micrograph obtained by scanning electron microscopy (SEM) of the cross-sectional area of a polyurethane-urea type membrane according to the present invention.
  • Figure 5 shows a diagram of a power supply and its connection with the electrodes of a hybrid plasma reactor according to the present invention.
  • the natural gas streams can be carried out with a 70% to 95% molar composition of CH 4 , 1% to 20% of N 2 , 1% to 20% of C0 2 , of 1% to 10% H 2 S, in addition to other minority hydrocarbons.
  • the system described when applied industrially and under the conditions tested so far is capable of processing, but not limited to, from 1 to 40 million cubic feet per day (MMPCSD) of natural gas, preferably 20 M PCSD.
  • MMPCSD million cubic feet per day
  • the method object of the present invention comprises four stages, as shown in Figure 1: a) removing impurities from natural gas to obtain pretreated natural gas; b) sweeten the pretreated natural gas by means of a separation using a plurality of membranes to obtain fresh gas and acid gases; c) ionize the acid gases to dissociate them into sulfur and synthetic gas with remnants of acid gases; and d) neutralize the synthetic gas with acid gas remnants to generate synthetic gas, these steps are detailed below together with reference to Figures 1 to 5: a) Remove impurities from natural gas to obtain pretreated natural gas
  • natural gas (1) Before entering this first stage, natural gas (1) is conditioned at a temperature of 35 ° C to 50 ° C, and at a pressure of 65 kg / cm 2 at 100 kg / cm 2 .
  • the natural gas (1) comprises at least one gaseous hydrocarbon, C0 2 and H 2 S.
  • This gaseous hydrocarbon is at least one of the group comprising: methane, propane, ethylene, ethane, propylene, pentanes, n-butane and s- Butane and its combinations.
  • Natural gas requires a pretreatment before entering stage b), since the gas contains contaminants that can affect the membrane system such as water, heavy hydrocarbons and solid particles.
  • a separator (2) is preferably used, said separator can be horizontal, vertical or spherical; with the appropriate dimensions for maximum separation of liquids and solids present in natural gas; The separation is carried out by centrifugal force, gravity, shock and their combinations.
  • the separator consists of at least one of the following sections: a primary separation section, a secondary separation section, a fog extraction section, a liquid storage section and combinations thereof; subsequently a filtration occurs, preferably said filtering is carried out by means of a coalescing filter (3) to completely eliminate liquid and solid contaminants (4) and obtain pretreated natural gas (5).
  • a coalescing filter is a metal container, generally cylindrical, subject to high pressure, which is sectioned in at least two stages; inside it contains a filter element that traps solid particles and allows the coalescence of the water particles contained in natural gas to subsequently dislodge them through a drain.
  • said coalescing filter the process is carried out in which two phase domains of identical composition come into contact to form a major phase domain, such that the small particles of water present in the natural gas are grouped together forming drops in such a way. that can be easily separated from natural gas.
  • the pretreated natural gas (5) obtained in step a) is sweetened by means of a separation in fresh gas (6) and acid gases (7) using a plurality of membranes (8), the separation occurs through a diffusion of the natural gas pretreated (5) through said membranes, which separate it into two effluents; a stream of retained non-permeated gas and a stream of permeated gas, which constitute the sweet gas (6) and acid gases (7), respectively.
  • Sweet gas (6) It contains at least 80% CH 4 , less than 4 ppm of H 2 S and other gases, which include C0 2 , N 2 and gaseous hydrocarbons.
  • the acid gases (7) comprise at least 50% of H 2 S, at least 20% of C0 2 , and the rest of the percentage is mainly completed by N 2 and other hydrocarbons, mainly CH 4 .
  • the non-permeated retained gas stream (fresh gas (6)) goes through a second stage of separation by a plurality of secondary membranes (9) when the amount of C0 2 is greater than or equal to 1000 ppm.
  • sweet gas (6) and acid gases (7) are obtained, the sweet gas (6) is sent for final disposal.
  • the acid gases (7) that were separated in step b) are ionized to generate a hybrid plasma where sulfur (10) and synthetic gas are obtained with remnants of acid gases (11), said synthetic gas is a mixture of H 2 and CO whose percentages will depend on the amount of acid gases (7) obtained in step b) and the level of ionization achieved with the plasma power supply. Sulfur (10) is sent for final disposal.
  • the ionization is preferably carried out within a hybrid plasma reactor (12), which generates a thermodynamic regime that depends on the power supply and the electrodes used therein, said source preferably provides 1 kW to 2 kW of power in a high frequency pulsed configuration in a range of 20 kHz to 60 kHz to generate within the hybrid plasma reactor (12) a temperature greater than or equal to 5000 K in thermodynamic equilibrium, the plasma slides and expands generating a temperature gradient inside the hybrid plasma reactor (12), decreasing uniformly until reaching a regime outside the thermodynamic equilibrium thus obtaining a hybrid plasma that dissociates the acid gases (7) into sulfur (10) and synthetic gas with remnants of acid gases (eleven). d) Neutralize synthetic gas with remnants of acid gases to generate synthetic gas.
  • the system for obtaining sweet gas, synthetic gas and sulfur from natural gas comprises: a separator (2) connected to a coalescing filter (3), which is connected to a module formed by a plurality of membranes (8) and (9) followed by at least one hybrid plasma reactor (12) and a plurality of bubble columns (13), as shown in Figure 2.
  • the coalescing filter (3) provides an additional purification of natural gas (1) by removing the liquid and solid contaminant traps that are still carried by natural gas (1).
  • Said coalescent filter (3) removes the liquid and solid contaminants removed that are subsequently mixed in the same line with the liquid and solid contaminants removed by the separator (2).
  • the pretreated natural gas (5) obtained from the coalescing filter (3) follows a pipe line to a valve where the pressure is again reduced in a range of 3 kg / cm 2 to 40 kg / cm 2 .
  • the separator (2) and the coalescing filter (3) are followed by the plurality of membranes (8) and (9) of the system, which preferably consists of tubular modules that are constituted by films called membranes of a polymeric type material that may be supported or only in the form of film without pores or in conjunction with other materials.
  • This material can be selected from any of a variety of polymeric materials, which can be rigid or elastomeric, preferably for those that have a greater permeability of gases such as H 2 S and C0 2 , compared to other gases contained in the currents of natural gas such as methane, propane, butane (as in this case, polyimide, polybenzimidazole, polyamides, polyethers, polyurethanes, polyureas and combinations of polyurethane ureas or polyamide ether).
  • the film or membrane to be used will be selected from those that have a separation ratio of H 2 S from CH 4 from 20: 1 to 60: 1 and with permeability of H 2 S from 50 Sweep to 150 Sweep.
  • the films or membranes of these materials can be prepared by various methods such as deposit from solvents or by heating and compression or any other used specifically in the medium for the formation of films or membranes.
  • the plurality of membranes (8) and (9) can be formed in various arrangements or geometries; in arrangements of flat or spirally wound membranes, preferably in a tubular packing, and with various types of supports of materials that can be ceramic, metallic, polymeric, composite or woven.
  • the separation of the acid gases (7) is provided by the film or membrane of the various named above that meet the flow characteristics and separation ratio of H 2 S.
  • the membranes must have a separation ratio of C0 2 with respect to CH 4 from 10: 1 to 30: 1 in a natural gas stream with the same process and geometry used for the separation of H 2 S with permeabilities of C0 2 from 30 Sweep to 130 Sweep.
  • the arrangement of these membranes depends on the minimum capacity established and the geometry that provides the best flow and separation performance of C0 2 and H 2 S gases.
  • the non-permeated retained gas stream which constitutes the sweet gas (6) formed mainly of CH 4
  • the permeate gas stream containing mostly acidic gases (7) such as C0 2 , H 2 S in addition to N 2 and traces of CH 4 .
  • the module of the plurality of membranes (8) and (9) is followed by at least one hybrid plasma reactor (12) which was designed taking into consideration the varied operating characteristics under which the method object of the present invention works.
  • the design was made with a system of interchangeable parts and easy installation.
  • a proposed power supply (16) is based on a direct current converter at a pulsed signal of high voltage and high frequency which consists of a control section (17) and a power section ( 18).
  • the control section (17) is integrated by a central microprocessor (19) that allows programming the operating frequency.
  • floating signal impellers (20) polarize and switch the gates of three MOS power transistors (21).
  • the power section is configured by the three MOS transistors (21) that They feed three voltage booster transformers (22) with a primary and a secondary (23), the equivalent inductance being the primary of each voltage booster transformer, armed on a ferrite core (22) to work at high frequencies.
  • the secondary (23) of each transformer is connected directly to the electrodes of the hybrid plasma reactor (12), the adjustment of impedances has also been established in the design to achieve both the initial discharge and the support discharge.
  • the connection of the three secondary (23) is of the star type.
  • the power consumption for the plasma prototype laboratory version is 1.2 kW, while the power required for the hybrid plasma reactor (12) industrial prototype version can vary from 5 to 50 kW.
  • Said hybrid plasma reactor (12), shown in Figure 5, is followed by a plurality of bubble columns (13) in continuous operation, which comprises at least two columns, preferably three stainless steel columns.
  • Each bubble column (13) has a synthetic gas inlet with acid gas remnants (24) located in its lower part and a synthetic gas outlet with acid gas remnants (25) located in its upper part, by which the flow of controlled gas passes from 0.1 to 0.5 L / min-cm 2 (cm 2 refers to the cross-sectional area of the column), preferably 0.3 L / min-cm 2 so that efficient contact of the neutralizing agent is achieved (14) with the synthetic gas with remnants of acid gases (11) from the outlet of the hybrid plasma reactor (12).
  • each bubble column (13) there is located a bubble distribution means (26) which is preferably a duct in whose surface a series of consecutive and equidistant perforations is located, said duct is wound in spiral and cover the entire base of the bubble column (13).
  • each bubble column (13) has a neutralizing agent inlet (27) located at the opposite end of the synthetic gas inlet with remnants of acid gases (24) and has a neutralizing agent outlet (28 ) located in the opposite end of the synthetic gas outlet with remnants of acid gases (25).
  • the bubble columns (13) have different geometries at their base, being able to be cylindrical, square or polygonal and assembled vertically and closed, with a diameter-length ratio of 1: 1 to 1: 30 and preferably 1: 25 and are connected in series as shown in Figure 2, the bubble columns (13) contain inside a neutralizing agent (14) in a concentration of 10% to 30% by weight, preferably 15%, which recirculates thanks to the presence of at least one pump (29) connected to the neutralizing agent inlet (27) and neutralizing agent outlet (28), said neutralizing agent (14) is selected from the group comprising NaOH, LiOH, KOH, Mg (OH ) 2 , Ba (OH) 2 , Mn (OH) 2 , Ca (OH) 2 and combinations thereof, preferably Ca (OH) 2 .
  • said neutralizing agent (14) Prior to the passage of the synthetic gas with remnants of acid gases (11) said neutralizing agent (14) has a pH of 8 to 14. At least one of the bubble columns (13) that form the plurality thereof, is intended for storing the neutralizing agent (14), now called inoperative column, which will be activated if the neutralizing agent (14) of any of the remaining bubble columns (13) is depleted due to the neutralization of the flow of synthetic gas With acid gas remnants (11), this storage is carried out so that the system continues to operate uninterruptedly.
  • Neutralizing is chosen from the group comprising Ca (OH) 2, NaOH, LiOH, KOH, Mg (OH) 2, Ba (OH) 2, Mn (OH) 2 and combinations thereof, preferably Ca (OH) 2, according to the following chemical reactions:
  • M is Ca, Na, L ⁇ , K, Mg, Ba, Mn, preferably Ca.
  • reaction products (30) such as nitrites and sulphites, respectively.
  • reaction products (30) remain in recirculation within the plurality of bubble columns (13).
  • the neutralizing agent (14) is depleted, the contents of the bubble column (13) are discharged into a container.
  • the reaction products (30) are insoluble, they are filtered and washed if necessary. If they are soluble it is necessary to concentrate them to the saturation and precipitation of solids that are subsequently filtered and washed, if necessary. If they are insoluble such as CaC0 3 or Li 2 C0 3, they are filtered and washed with hot water to separate CaC0 3 or Li 2 C0 3 in solid state while in Caca0 or Li 2 S. the CaC0 remains in the filtration liquors 3 o Li 2 C0 3 dries and is available for final use.
  • the synthetic gas (15) (mixture of H 2 and CO) is recovered and can be used as fuel for power generation within the method of the present invention.
  • EXAMPLE 1 Preferred embodiment of the method object of the present invention through the system to obtain sweet gas, synthetic gas and sulfur from natural gas
  • the method for obtaining sweet gas, synthetic gas and sulfur from natural gas shown in Figure 1, which is the subject of the present invention, comprises the following steps for carrying out the sweetening of natural gas through membrane systems polymeric and the conversion of the resulting acid gases into products with high added value such as synthetic gas (mixture of H 2 and CO) and sulfur.
  • synthetic gas mixture of H 2 and CO
  • the steps of the method and their interaction with the system proposed below are detailed: a) Remove impurities from natural gas to obtain pretreated natural gas
  • the natural gas stream previously conditioned at a temperature of 35 ° C to 50 ° C and a pressure of 65 kg / cm 2 to 100 kg / cm 2 is fed to a separator. With this separator all those liquid and solid polluting substances that are contained in natural gas such as water and heavy hydrocarbons are extracted, so that two phases are obtained.
  • the liquid phase comprising the liquid and solid contaminants exits the bottom of the separator tank.
  • the phase gas flows from the top of the separator and passes through a valve that reduces pressure in a range of 40 kg / cm to 65 kg 2 / cm 2 and then go to the coalescing filter.
  • the coalescing filter provides an additional purification of natural gas by removing the irrigators of liquid and solid contaminants that are still carried away by natural gas.
  • Natural gas is fed by the upper side of the coalescing filter, having two outlets; the liquid and solid contaminants removed are subsequently dislodged, which are subsequently mixed in the same line with the liquid and solid contaminants removed by the separator tank.
  • the pretreated natural gas outlet is located at the top of the coalescing filter and follows the pipeline to a valve where the pressure is reduced in a range of 3 kg / cm 2 to 40 kg / cm 2 and then sweeten the pretreated gas.
  • the pretreated natural gas from the coalescing filter enters the plurality of polymeric membranes that can be of the polyimide, polybenzimidazole, polyamides, polyethers, polyurethanes, polyureas and combinations of polyurethane ureas or polyamide ether ether.
  • the plurality of membranes consists of tubular modules capable of processing, but not limited to, from 1 to 40 million cubic feet per day (MMPCSD) of natural gas preferably 20 PCSD.
  • MMPCSD million cubic feet per day
  • the pretreated natural gas can be fed to the plurality of membranes at a temperature of 35 ° C.
  • the plurality of membranes operates at a supply pressure from 3.5 kg / cm 2 to 35 kg / cm 2 and preferably at 27.1 kg / cm 2 .
  • the molar composition of the pretreated natural gas is 70% to 95% by weight of CH 4 , 1% to 20% by weight of N 2 , 1% to 20% by weight of C0 2 , from 1% to 10% by weight of H 2 S preferably 83% by weight of CH, 9% by weight of N 2 , 5% by weight of C0 2 , 3% by weight of H 2 S, in addition to other minor hydrocarbons.
  • the process of separation of Gases by means of a plurality of membranes are performed following a solution-diffusion mechanism.
  • the gases first dissolve and then diffuse through the polymeric membrane selectively permeating those gases that have greater affinity for the plurality of membranes, which are C0 2 and H 2 S acid gases, and leave a non-permeated residual current enriched with CH 4 .
  • the non-permeated retained gas stream which constitutes the sweet gas formed mainly of CH 4
  • the permeated gas stream containing mostly C0 2i H 2 S acid gases in addition to N 2 and traces of CH 4 is transferred to a hybrid plasma reactor.
  • the permeate gas stream containing mostly C0 2 , H 2 S acid gases in addition to N 2 and traces of CH 4 is treated to convert them into products with higher added value.
  • the acid gases that were separated in step b) are ionized to generate a hybrid plasma where sulfur and synthetic gas are obtained with remnants of acid gases.
  • the synthetic gas with remnants of acid gases resulting from step c) enters a plurality of bubble columns to neutralize the remaining acidic gases C0 2 and H 2 S.
  • Synthetic gas with acid gas remnants can also contain small amounts of NO x and SO x in the gaseous state.
  • neutralization of the acid gases is carried out using a plurality of bubble columns in continuous operation.
  • the plurality of bubble columns contains a neutralizing agent that can be Ca (OH) 2 , NaOH, LiOH, KOH, Mg (OH) 2 , Ba (OH) 2 , Mn (OH) 2 and combinations thereof, preferably Ca (OH ) 2 .
  • the plurality of bubble columns in continuous operation comprises at least two columns, preferably three stainless steel columns.
  • the neutralizing agent is recirculated in the downward direction by suctioning it from the bottom and discharging it from the top of the column.
  • the synthetic gas with acid gas remnants is passed through a plurality of series bubble columns in the following manner: first the synthetic gas with acid gas remnants enters the first column (A ) and subsequently enters the second column (B), its income being at the bottom of each column; while the third column (C) goes into operation whenever the neutralizing agent in column (A) is depleted, discharged and has to be recharged with new neutralizing agent.
  • the synthetic gas with acid gas remnants is redirected to enter the column (B) that is still in operation and then goes to the column (C).
  • the neutralizing agent of the column (B) is exhausted, it is discharged and the synthetic gas with remnants of acid gases is redirected to the column (C), then enters the recharged column (A) with new neutralizing agent, the column (B) being able to be recharged with new neutralizing agent.
  • the neutralizing agent in column (C) is used up, the operating cycle is restarted.
  • the C0 2 and H 2 S acid gases are converted into the corresponding carbonate and sulphide according to the type of neutralizing agent chosen from the group comprising Ca (OH) 2 , NaOH, LiOH, KOH , Mg (OH) 2 , Ba (OH) 2 , Mn (OH) 2 and their combinations, preferably Ca (OH) 2 , according to the following chemical reactions:
  • M is Ca, Na, Li, K, Mg, Ba, Mn, preferably Ca.
  • gaseous NO x such as nitrous oxide (N 2 0), nitric oxide (NO) and nitrogen dioxide (N0 2 ) and gaseous SO x , such as sulfur dioxide (S0 2 ), these react with the neutralizing agent forming reaction products such as nitrites and sulphites, respectively.
  • reaction products remain in recirculation within the plurality of bubble columns.
  • the neutralizing agent is depleted, the contents of the column are discharged into a container.
  • the reaction products are insoluble, they are filtered and washed if necessary. If they are soluble it is necessary to concentrate them to the saturation and precipitation of solids that are subsequently filtered and washed, if necessary. If they are insoluble such as CaC0 3 or Li 2 C0 3, they are filtered and washed with hot water to separate CaC0 3 or Li 2 C0 3 in solid state while that the CaS or Li 2 S remains in the filtration liquors.
  • the CaC0 3 or Li 2 C0 3 is dried and made available for final use. Synthetic gas (mixture of H 2 and CO) is recovered and can be used as fuel for power generation within the process of the present invention.
  • Polyurethane urea is synthesized by the two-step method.
  • an amount of ethylene polyoxide (between 1000 and 2000 g / mol of preferably intermediate molecular weight about 1200 to 1600 g is placed in a flask of the type used for chemical reactions in the laboratory and 3 mouths) / mol (1500 g / mol)), previously dried for the necessary time, which is reacted in a 1: 2 ratio with a cycloaliphatic or aromatic di-isocyanate such as (4,4'-methylene-biscyclohexyl isocyanate (HMDI ) or 2,4-tolylene diisocyanate, dissolved in a suitable solvent medium with a boiling point greater than 110 ° C, (as dimethylsulfoxide (DMSO)), this solution is vigorously mixed for 5 to 10 min and then incubated at 110 ° C for 3 h under a nitrogen atmosphere After the time, the macroisocyanate prepolymer solution is allowed to cool to room
  • the polymerization reaction is carried out by heating the solution between 80 ° C and 130 ° C, preferably at 110 ° C for a period of time from 15 to 20 h, preferably 18 h under nitrogen and magnetic stirring. Subsequently, the polymer solution is allowed to cool to room temperature and poured into 2 L of cold distilled water, kept under stirring, to precipitate the polymeric material. Then, the polymeric material, in the form of fibers, is recovered by filtration and washed with distilled water at room temperature. Finally, the polyurethane urea fibers are dried at room temperature for 24 hours and then at 80 ° C under vacuum until a constant weight is obtained.
  • the polyurethane urea membrane is made using the solvent evaporation technique.
  • a 12.5% (w / v) polymer solution is prepared using polyurethane urea in an appropriate solvent of the chloroform type, 1,2 dichloroethane or tetrahydrofuran, THF.
  • the polymer solution is filtered using a funnel with sintered filter to remove suspended particles.
  • the filtered solution is placed in a Teflon coated box, which is covered to prevent contamination with dust particles, and slow evaporation of the solvent is allowed. Evaporation of the solvent is carried out at room temperature for 12 h; subsequently, the membrane is placed in a vacuum oven at 60 ° C for 48 h, in order to completely remove THF.
  • the dense polyurethane urea membrane is shown in Figure 3 and its dimensions are 58 cm 2 of area with an average thickness of 258 pm.
  • supported membranes are prepared on a porous surface where the surface layer of polyurethane-urea is deposited from the solution by a suitable method to obtain a homogeneous distribution of the membrane once the solvent is removed, for this various methods can be used as, by immersion of the support in the solution, or using a method of mechanical deposit with subsequent drying on the surface of the support that may be constituted by porous polymers, fibers or fabrics.
  • EXAMPLE 3 Characterization by Scanning Electron Microscopy (MEB) of polyurethane-urea type membranes used for the separation of C0 2 and H 2 S in gas mixture CH 4 / CO 2 / H 2 S / N2-
  • the MEB micrograph corresponding to the cross-section of a polyurethane-urea type membrane is presented in Figure 4. This image was obtained with a JEOL model microscope model JSM-7401 F. The average thickness measured by MEB for this membrane is 101.7 ⁇ . In this micrograph a dense membrane free of defects and / or porosities that could interfere with the assays for the separation of C0 2 and H 2 S in CH 4 gas mixture / C0 2 / H 2 S / N 2 is observed.
  • EXAMPLE 4 Permeability and selectivity of polyurethane urea type membranes in gas mixture CH 4 / H2S / CO 2 / N 2
  • the permeability and selectivity properties of the polyurethane-urea type polymer membranes were determined with a gas permeation device coupled to a gas chromatograph.
  • a gas permeation device coupled to a gas chromatograph.
  • a quaternary gas mixture was used at a molar concentration of 83% CH 4 ; 3% H 2 S; 5% C0 2 ; and 9% N 2 .
  • These tests were performed at 35 ° C by applying progressive increases in pressure in the feed chamber from 3.5 kg / cm 2 to 27.1 kg / cm 2 .
  • the results of the permeability and selectivity tests are presented in Table 1.
  • polyurethane-urea type membranes have a high permeability to C0 2 and H 2 S of 33.8 and 143.4 Sweep, respectively, while the CH 4 and N 2 are practically retained by showing a permeability of 2.7 and 2 Sweep, respectively. Therefore, polyurethane-urea type membranes are quite selective because they mostly allow permeation of acid gases. Gases Permeability (Sweep) Selectivity
  • the ionization process of the gas mixture CH 4 / H 2 S / C0 2 / N 2 requires for its operation a source of electrical power of 1.2 kW to treat a gas flow of up to 50 LPM at atmospheric pressure. It is worth mentioning that the process is continuous and does not require additional compression systems or vacuum systems. According to the studies carried out, with this energy density temperature profiles are achieved ranging from 5000 K to 400 K, thereby eliminating the effects of thermal inertia of the treated species and their possible recombination. The degradation rates achieved under these operating conditions are for H 2 S> 90% and for C0 2 > 58%.
  • the tests performed to evaluate the neutralization efficiency of the acid gases of step d) were carried out via bubble neutralization in acrylic and PVC columns of 7.2 cm in diameter and 186 cm in height using a volume of neutralizing agent of 7 at 10 L.
  • the concentration of the neutralizing agent ranges from 10% to 30% by weight, preferably 15% in the case of Ca (OH) 2 .
  • the neutralizing agent is at a pH of 13, as the neutralization reaction proceeds, the pH decreases until a pH of 7, when the neutralizing agent Ca (OH) 2 has been completely consumed, as see in Table 2. ii) Temperature measurement:
  • the pressure in the bubble column is zero or negligible while the neutralization reaction is carried out.
  • the pressure is increased once the neutralizing agent is depleted, this being an indication that acid gases, in this case C0 2 , are no longer consumed.
  • Table 2 Time (min) Temperature (° C) Pressure (psig) pH
  • elastomeric rubber type membranes with high contents of amine, amide, urea and / or urethane type groups will be developed and used.
  • which interact favorably with C0 2 particularly appropriate would be those containing intermediate chain polyethers (ethylene oxides) between 1000 and 2000 units of molecular mass, which increases the interaction with C0 2 , and decreases by chain size the possibility of crystallizing achieving greater gas flows, these must be connected with aromatic chain extenders instead of aliphatic to avoid the attack of the acid and maintain its properties as those presented by polyurethane-urea copolymers with fluorinated aromatic chain extenders in the section corresponding to urea, specifically developed in the present invention.
  • intermediate chain polyethers ethylene oxides
  • aromatic chain extenders instead of aliphatic to avoid the attack of the acid and maintain its properties as those presented by polyurethane-urea copolymers with fluorinated aromatic chain extenders in the section corresponding to urea, specifically developed in the present invention.
  • the acid gas stream contains below 30 mol% CH 4 making the sweetening process more efficient.
  • the process described in the present invention provides the possibility of transforming the acid gas stream into a stream of synthetic gas and sulfur.
  • the present invention includes the removal of both acid gases with highly selective membranes for C0 2 and H 2 S; with the additional advantage that sweet gas, synthetic gas and sulfur are generated which prevents environmental pollution due to the release of C0 2 and S0 2 into the atmosphere, produced by other existing processes.
  • the present invention not only allows the sweetening of natural gas but also offers the conversion of acid gases into value-added products, using a hybrid plasma reactor.
  • Plasma offers at least three fundamental properties that make it attractive for different applications: (i) The temperature and energy density far exceeds those of conventional techniques, (ii) Ability to produce active species with reaction times much shorter than conventional techniques ; (iii) In the In case of thermal equilibrium (NETL) plasmas, active species have high concentrations of energy, even when the plasma volume remains at room temperature.
  • the thermal inertia of the plasma inside a reactor is practically zero, there is a uniform heating of the material, the electromagnetic forces push the plasma to the center of the reactor and there is a use of radiation energy.
  • the energy transfer capacity is greatly multiplied depending on the plasma gas used, which allows accelerating chemical reactions that cannot occur at lower temperatures.
  • plasma is presented as an alternative for application in different degradation processes, such as in the treatment of solvents used in industry and in paints, used oils, dielectric oils containing PCBs (biphenylpolyclorates) and their containers (capacitors and transformers), halogenated chemical compounds, CFCs (chlorofluorocarbons), pesticides, resins, adhesives, among others.
  • acid gases such as C0 2 and H 2 S.
  • inert solids such as sulfur and carbon.
  • this invention also includes the integration of hybrid plasma to natural gas sweetening modules by membranes, which represents advantages over existing technologies concerning the treatment of H 2 S and C0 2 with different plasma discharges.

Abstract

A method for obtaining sweet gas, synthesis gas and sulphur from natural gas, the method including the steps of removing impurities from the natural gas so as to obtain pretreated natural gas; sweetening the pretreated natural gas by means of separation using a plurality of membranes so as to obtain sweet gas and acid gases; ionizing the acid gases to separate them into sulphur and synthesis gas with remnants of acid gases; and neutralizing the synthesis gas with remnants of acid gases so as to generate synthesis gas. A system for implementing the method is also proposed.

Description

MÉTODO Y SISTEMA PARA OBTENER GAS DULCE, GAS SINTÉTICO Y AZUFRE A  METHOD AND SYSTEM FOR OBTAINING SWEET GAS, SYNTHETIC GAS AND SULFUR A
PARTIR DE GAS NATURAL FROM NATURAL GAS
CAMPO TÉCNICO DE LA INVENCIÓN TECHNICAL FIELD OF THE INVENTION
La presente invención se relaciona a técnicas de obtención de gases y productos derivados de gas natural, más particularmente se refiere a un método y sistema para obtener gas dulce, gas sintético y azufre a partir de gas natural. The present invention relates to techniques for obtaining gases and products derived from natural gas, more particularly it relates to a method and system for obtaining sweet gas, synthetic gas and sulfur from natural gas.
ANTECEDENTES DE LA INVENCIÓN BACKGROUND OF THE INVENTION
El endulzamiento es el proceso primordial al que se someten las corrientes de gas natural con la finalidad de remover los gases ácidos que contiene. La remoción de estos gases es indispensable por múltiples razones, una de las cuales es que disminuyen la capacidad calorífica del CH . El C02 y el H2S son gases ácidos altamente corrosivos; además el C02 es considerado como uno de los principales gases de efecto invernadero que contribuyen al calentamiento global. Por su parte, el H2S es extremadamente tóxico e incluso mortal a bajas concentraciones. El proceso convencionalmente conocido para la remoción de los gases ácidos implica la adsorción química con aminas, sin embargo, este proceso requiere posteriormente de la desorción para liberar los gases removidos que luego son quemados o llevados al proceso Claus para la recuperación de azufre elemental y agua. La tecnología de separación selectiva de gases ácidos con membranas es actualmente una opción atractiva para llevar a cabo el endulzamiento del gas natural. Sweetening is the primary process to which natural gas streams are subjected in order to remove the acidic gases it contains. The removal of these gases is indispensable for multiple reasons, one of which is that they decrease the heat capacity of CH. C0 2 and H 2 S are highly corrosive acid gases; In addition, C0 2 is considered one of the main greenhouse gases that contribute to global warming. For its part, H 2 S is extremely toxic and even fatal at low concentrations. The conventionally known process for the removal of acid gases involves chemical adsorption with amines, however, this process subsequently requires desorption to release the removed gases that are then burned or taken to the Claus process for the recovery of elemental sulfur and water . The technology of selective separation of acid gases with membranes is currently an attractive option to carry out the sweetening of natural gas.
En el caso de la separación de H2S de corrientes de gas natural por medio de membranas, la literatura es escasa. Sin embargo, se encuentran ciertas referencias para esta separación usando copolímeros de poliéter-uretano y poliéter-uretano-urea por Chattarjee y col. [Chatterjee G., Houde A. A., Stern S. A., (1997), Poly(ether urethane) and Poly(ether urethane urea) Membranes with High H2S/CH4 Selectivity, Journal of Membrane Science, 135, 99-106] quienes prepararon las membranas con diferentes poliéteres y encontraron que es posible alcanzar factores de separación cercanos a 100 para H2S/CH4 en mezclas conteniendo diferentes concentraciones de CH4:C02: H2S. Este factor indica que fluirían a través de la membrana alrededor de 100 moléculas de H2S por cada molécula de CH4, efectivamente concentrando el CH4 en la sección de inyección del gas y recibiendo en la parte inferior de la membrana una mezcla con una concentración muy alta de H2S. En otro reporte sobre separación de los mismos gases utilizando una membrana de polifosfaceno, los resultados de permeabilidad reportan factores de separación para H2S/CH4 del orden de 75 [CJ. Orme, F. F. Stewa, (2005) Mixed gas hydrogen sulfide permeability and separation using supported polyphosphazene membranes, Journal of Membrane Science, 253, 1-2, 243-249], In the case of the separation of H 2 S from natural gas streams by means of membranes, the literature is scarce. However, certain references are found for this separation using polyether-urethane and polyether-urethane-urea copolymers by Chattarjee et al. [Chatterjee G., Houde AA, Stern SA, (1997), Poly (ether urethane) and Poly (ether urethane urea) Membranes with High H 2 S / CH 4 Selectivity, Journal of Membrane Science, 135, 99-106] who they prepared the membranes with different polyethers and found that it is possible to achieve separation factors close to 100 for H 2 S / CH 4 in mixtures containing different concentrations of CH 4 : C0 2 : H 2 S. This factor indicates that they would flow through the membrane around 100 molecules of H 2 S per molecule of CH 4, CH 4 effectively concentrating the gas injection section and receiving at the bottom of the membrane a mixture with a very high concentration of H 2 S. another report on separation of the same gases using a polyphosphazene membrane, the permeability results report separation factors for H 2 S / CH 4 of the order of 75 [CJ. Orme, FF Stewa, (2005) Mixed gas hydrogen sulfide permeability and separation using supported polyphosphazene membranes, Journal of Membrane Science, 253, 1-2, 243-249],
Otros estudios, se han centrado en procesos de transporte ayudado, en los cuales las membranas se forman por ejemplo a partir de un polímero iónico sulfonado que contiene una alcohol amina disuelta en el material que actúa como acarreador dentro de la membrana para tomar los gases ácidos C02 y H2S y transportarlos a través de la membrana [J.D. Way, R. D. Noble, (1989) Competitive facilitated transport of acid gases in perfluorosulfonic acid membranes, Journal of Membrane Science, 46, 2-3, 309-324]. Recientemente, Huang J. y col. [Huang J., Zoé J., Winston Hoe W.S., (2008), Carbón Dioxide Capture Using C02-Selective Facilitated Transport Membrane, Ind. Eng. Chem. Res., 47, 1261-1267] describen el transporte ayudado de C02 por medio de aminas en una matriz entrecruzada de polialcohol vinílico, PVA, con grupos amino unidos a la cadena del polímero y aminas libres dentro de la matriz. Estas membranas presentan una buena selectividad para la separación del H2S de corrientes de gas natural; sin embargo, dada la naturaleza del transporte ayudado, los flujos a través de ellas toman largos tiempos, lo que hace inviabie su uso para la separación en corrientes de gran volumen de gas natural. Por estas razones dentro de las posibles membranas se deben incluir las que tienen flujos de gas altos y son capaces de separar en razón de al menos 30 a 1 el H2S del CH4. Other studies have focused on assisted transport processes, in which the membranes are formed, for example, from a sulfonated ionic polymer containing an amine alcohol dissolved in the material that acts as a carrier within the membrane to take acid gases C0 2 and H 2 S and transport them through the membrane [JD Way, RD Noble, (1989) Competitive facilitated transport of acid gases in perfluorosulfonic acid membranes, Journal of Membrane Science, 46, 2-3, 309-324]. Recently, Huang J. et al. [Huang J., Zoé J., Winston Hoe WS, (2008), Carbon Dioxide Capture Using C0 2 -Selective Facilitated Transport Membrane, Ind. Eng. Chem. Res., 47, 1261-1267] describe the assisted transport of C0 2 by means of amines in a crosslinked matrix of vinyl polyol, PVA, with amino groups attached to the polymer chain and free amines within the matrix. These membranes have a good selectivity for the separation of H 2 S from currents natural gas; However, given the nature of the transport helped, the flows through them take long periods of time, which makes their use unviable for the separation of large natural gas streams. For these reasons the possible membranes should include those that have high gas flows and are capable of separating the H 2 S from CH 4 at least 30 to 1.
En el caso de la separación de C02 de corrientes de gas natural existe un mayor número de trabajos reportados. Recientemente, Lin H. y col. [Lin H., Freeman B.D. (2005) Materials selection guidelines for membranes that remove C02 from gas mixtures. Journal of Molecular Structure 739:57-74], publicaron una revisión acerca de la selección de materiales poliméricos con capacidad para formar membranas para la separación del C02 de mezclas de gases. Ellos sugieren que para mejorar las propiedades de permeabilidad y selectividad de las membranas poliméricas, se debe aumentar las interacciones entre el C02 y el polímero, por medio de la incorporación de varios grupos polares; sugiriendo que las unidades de óxido de etileno (EO) pueden ser grupos útiles para llevar a cabo este objetivo. Sin embargo, el poli(óxido de etileno) (PEO) presenta una fuerte tendencia a cristalizar, y por consiguiente, presenta baja permeabilidad a gases [Lin H., Freeman B.D. (2004) Gas solubility, diffusivity and permeability in poly(ethylene oxide). Journal of Membrane Science 239: 105-117]. In the case of the separation of C0 2 from natural gas streams there is a greater number of jobs reported. Recently, Lin H. et al. [Lin H., Freeman BD (2005) Materials selection guidelines for membranes that remove C0 2 from gas mixtures. Journal of Molecular Structure 739: 57-74], published a review on the selection of polymeric materials capable of forming membranes for the separation of C0 2 from gas mixtures. They suggest that to improve the properties of permeability and selectivity of polymeric membranes, should increase the interactions between the C0 2 and the polymer, by incorporating more polar groups; suggesting that ethylene oxide (EO) units may be useful groups to accomplish this objective. However, poly (ethylene oxide) (PEO) has a strong tendency to crystallize, and therefore has low gas permeability [Lin H., Freeman BD (2004) Gas solubility, diffusivity and permeability in poly (ethylene oxide ). Journal of Membrane Science 239: 105-117].
Algunos copolímeros en bloque que contienen segmentos de poliéter (unidades de EO) han sido estudiados como materiales alternativos para mejorar las propiedades de transporte del C02 [Car A., Stropnik C, Yave W. , Peinemann K-V. (2008) PEG modified poly(amide-b-ethylene oxide) membranes for C02 separation. Journal of Membrane Science 307:88-95. ; Chen J.C., Feng X., Penlidis A. (2004) Gas permeation through poly(ether-b-amide) (PEBAX 2533) block copolymer membranes. Separation Science and Technology 39: 149-164; Liu L, Chakma A., Feng X. (2004) Preparation of hollow fiber poly(ether block amide)/polysulfone composite membranes for separation of carbón dioxide from nitrogen. Chemical Engineering Journal 105 :43-51.; Barbi B., Furani S.S., Gehrke R., Schamagl N., Stribeck N. (2003) SAXS and the gas transport in polyether-block-polyamide copolymer membranes. Macromolecules 36: 749-758. ; Kim J.H., Ha S.Y., Lee Y.M. (2001) Gas permeation of poly(amide-6-b-ethylen oxide) copolymer. Journal of embrane Science 190: 179-193. ; Bondar V.I., Freeman B.D. Pinnau I. (2000) Gas transport properties of poly(ether-b-amide) segmented block copolymers. Journal of Polymer Science. Part B: Polymer Physics 38: 2051-2062]. En los copolímeros conocidos como PEBAX®, que contienen una poliamida alifática como segmento rígido (ej : Nylon-6, Nylon-12, PA) y como segmento suave un poliéter (ej : poli(óxido de etileno, PEO, o poli(óxido de tetrametileno, PTMO)). Se ha reportado que los segmentos de PA proporcionan las propiedades mecánicas, mientras que el transporte de gas ocurre a través del segmento de PEO [Bondar V.I., Freeman B.D. Pinnau I. (2000) Gas transport properties of poly(ether-b-amide) segmented block copolymers. Journal of Polymer Science. Part B: Polymer Physics 38: 2051-2062]. Some block copolymers containing polyether segments (EO units) have been studied as alternative materials to improve the transport properties of C0 2 [Car A., Stropnik C, Yave W., Peinemann KV. (2008) PEG modified poly (amide-b-ethylene oxide) membranes for C0 2 separation. Journal of Membrane Science 307: 88-95. ; Chen JC, Feng X., Penlidis A. (2004) Gas permeation through poly (ether-b-amide) (PEBAX 2533) block copolymer membranes. Separation Science and Technology 39: 149-164; Liu L, Chakma A., Feng X. (2004) Preparation of hollow fiber poly (ether block amide) / polysulfone composite membranes for separation of carbon dioxide from nitrogen. Chemical Engineering Journal 105: 43-51 .; Barbi B., Furani SS, Gehrke R., Schamagl N., Stribeck N. (2003) SAXS and the gas transport in polyether-block-polyamide copolymer membranes. Macromolecules 36: 749-758. ; Kim JH, Ha SY, Lee YM (2001) Gas permeation of poly (amide-6-b-ethylen oxide) copolymer. Journal of embrane Science 190: 179-193. ; Bondar VI, Freeman BD Pinnau I. (2000) Gas transport properties of poly (ether-b-amide) segmented block copolymers. Journal of Polymer Science. Part B: Polymer Physics 38: 2051-2062]. In copolymers known as PEBAX ® , which contain an aliphatic polyamide as a rigid segment (eg Nylon-6, Nylon-12, PA) and as a soft segment a polyether (eg: poly (ethylene oxide, PEO, or poly (oxide) of tetramethylene, PTMO)). PA segments have been reported to provide mechanical properties, while gas transport occurs through the PEO segment [Bondar VI, Freeman BD Pinnau I. (2000) Gas transport properties of poly (ether-b-amide) segmented block copolymers, Journal of Polymer Science, Part B: Polymer Physics 38: 2051-2062].
En vista de los resultados obtenidos al incorporar unidades de EO en poliamidas alifáticas, otros investigadores han reportado las propiedades de transporte de C02 en membranas a base de segmentos de poliéter (PEO) que son copolimerizados con otros sistemas poliméricos [Muñoz D.M., Maya E.M., de Abajo J., de la Campa J.G., Lozano A.E. (2008) Thermal treatment of poly(ethylene oxide)-segmented copolyimide based membranes: An effective way to ¡mprove the gas separation properties. Journal of Membrane Science 323: 53-59; Yoshino M., Ito K., Kita H., Okamoto K-I. (2000) Effects of hard-segment polymers on C02/N2 gas-separation properties of poly(ethylene oxide)-segmented copolymers. Journal of Polymer Science: Part B: Polymer Physics 38: 1707-1715]. In view of the results obtained by incorporating EO units in aliphatic polyamides, other researchers have reported the transport properties of C0 2 on membranes based on polyether segments (PEO) that are copolymerized with other polymer systems [Muñoz DM, Maya EM , from Below J., from Campa JG, Lozano AE (2008) Thermal treatment of poly (ethylene oxide) -segmented copolyimide based membranes: An effective way to ¡mprove the gas separation properties. Journal of Membrane Science 323: 53-59; Yoshino M., Ito K., Kita H., Okamoto KI. (2000) Effects of hard-segment polymers on C0 2 / N 2 gas-separation properties of poly (ethylene oxide) Copolymers -segmented. Journal of Polymer Science: Part B: Polymer Physics 38: 1707-1715].
En algunos procesos, como el descrito en la patente europea EP2234697, es requerida una configuración que involucra al menos una secuencia de dos etapas de separación en unidades de membranas para producir una corriente de gas metano relativamente pura, con menor contenido de contaminantes que el gas de entrada. En estos casos, la separación multi-etapa se justifica en la idea de tener la menor pérdida de hidrocarburos en la corriente permeada según lo descrito en la publicación de solicitud de patente internacional WO2012012129. En la publicación de la solicitud de patente estadounidense US 20060042463, a pesar de que el gas permeado se recicla por un segundo sistema de membranas, se sigue obteniendo una corriente ácida con un contenido de metano relativamente alto, alrededor de 30 % a 50 % molar, que es utilizada como combustible para un generador de electricidad. In some processes, such as that described in European patent EP2234697, a configuration is required that involves at least a two-stage sequence of separation into membrane units to produce a stream of relatively pure methane gas, with lower pollutant content than the inlet gas. In these cases, the multi-stage separation is justified by the idea of having the least loss of hydrocarbons in the permeate stream as described in the international patent application publication WO2012012129. In the publication of the US patent application US 20060042463, although the permeate gas is recycled by a second membrane system, an acidic stream with a relatively high methane content is still obtained, about 30% to 50% molar , which is used as fuel for an electricity generator.
Por otra parte, en la publicación de solicitud de patente estadounidense US20070272079, las membranas usadas en las etapas de separación del gas natural son selectivas al paso del C02 mostrando altas permeabilidades sobre el CH , al menos en una relación 10/1 GPU lo que da pie a la recuperación de gas metano hasta en un 90 %. No obstante, es bien sabido que las corrientes de gas natural están contaminadas tanto con C02 como H2S y por tanto es vital que se considere también la remoción del H2S para obtener una corriente de CH4 en las condiciones de uso comercial. Moreover, in the publication of US patent application US20070272079, the membranes used in the separation steps of the natural gas are selective to the passage of C0 2 showing high permeabilities on CH, at least in a relationship which GPU 01.10 gives rise to the recovery of methane gas by up to 90%. However, it is well known that natural gas streams are contaminated with both C0 2 and H 2 S and therefore it is vital that the removal of H 2 S is also considered to obtain a stream of CH 4 under the conditions of commercial use .
Por otro lado, el uso del plasma para la producción de hidrógeno a partir de la descomposición de H2S ya ha sido implementado a nivel semi-industrial por Balebanov y col. en Orenburg, Rusia [Balebanov A.V., Givitov V. K., Krasheninnikok E. G., Nester S. A., Potapkin B. V., Rusanov V. D., Samarin A. E., Fridman A., Shulakova E. V., (1989), High Energy Chemistry (Khimia Vysokikh Energij). Sov. Phys., 5, 440], usando sistemas que constan de 4 puertos de descarga de microondas cuya potencia es de 250 kW dando un total de 1 MW de potencia neta. Después de la zona de descarga, el reactor tiene acoplado un condensador donde se separa el azufre en estado elemental, el H2 gaseoso y el H2S residual. Su funcionamiento depende del acoplamiento al proceso de purificación del gas natural con aminas e incluso puede ligarse con el proceso Claus. On the other hand, the use of plasma for the production of hydrogen from the decomposition of H 2 S has already been implemented at a semi-industrial level by Balebanov et al. in Orenburg, Russia [Balebanov AV, Givitov VK, Krasheninnikok EG, Nester SA, Potapkin BV, Rusanov VD, Samarin AE, Fridman A., Shulakova EV, (1989), High Energy Chemistry (Khimia Vysokikh Energij). Sov. Phys., 5, 440], using systems consisting of 4 microwave discharge ports whose power is 250 kW giving a total of 1 MW of net power. After the discharge zone, the reactor has a condenser in which the sulfur is separated in the elemental state, the gaseous H 2 and the residual H 2 S. Its operation depends on the coupling to Natural gas purification process with amines and can even be linked to the Claus process.
De igual forma, la descarga corona pulsada reportada por Zhaoa G. y col. i [Zhaoa G. B., Sanil J., Ji-Jun Z., Hamannb J. C, Muknahallipatnab S. S., Stanislaw L, Ackermana J. F., Argyle . D., (2007), Production of hydrogen and sulfur from hydrogen sulfide in a nonthermal-plasma pulsed corona discharge reactor, Chemical Engineering Science, 62, 2216-2227] y Sanil J. y col. [Sanil J., Hamann J., Suresh S., Legowski S., Ackerman J. F., Argyle . D., (2009), Energy Efficiency of hydrogenSimilarly, the pulsed corona discharge reported by Zhaoa G. et al. i [Zhaoa G. B., Sanil J., Ji-Jun Z., Hamannb J. C, Muknahallipatnab S. S., Stanislaw L, Ackermana J. F., Argyle. D., (2007), Production of hydrogen and sulfur from hydrogen sulfide in a nonthermal-plasma pulsed corona discharge reactor, Chemical Engineering Science, 62, 2216-2227] and Sanil J. et al. [Sanil J., Hamann J., Suresh S., Legowski S., Ackerman J. F., Argyle. D., (2009), Energy Efficiency of hydrogen
> sulfide decomposition in a pulsed corona discharge reactor, Chemical Engineering Science, 64, 4826-4834], se ha utilizado para el tratamiento de H2S. Este tratamiento consiste básicamente en un reactor de cuarzo al cual se le agrega una mezcla de Argón-Nitrógeno para la descomposición del H2S con una eficiencia moderada. Este método tiene sus limitaciones en cuanto a la baja concentración del H2S (< 2 %mol), alto consumo de energía (> 100 eV/H2S) y a la necesidad de agregar mezclas con otros gases (Helio, Nitrógeno, Hidrógeno y Argón) para elevar su eficiencia energética. > sulfide decomposition in a pulsed corona discharge reactor, Chemical Engineering Science, 64, 4826-4834], has been used for the treatment of H 2 S. This treatment basically consists of a quartz reactor to which a mixture of Argon is added -Nitrogen for the decomposition of H 2 S with moderate efficiency. This method has its limitations in terms of low concentration of H 2 S (<2% mol), high energy consumption (> 100 eV / H 2 S) and the need to add mixtures with other gases (Helium, Nitrogen, Hydrogen and Argon) to increase its energy efficiency.
Otro método utilizado para el tratamiento del H2S por tecnología de plasma es la descarga por radio frecuencia (R.F.), la cual consiste en generar una señal de alta frecuencia (MHz) a muy bajas presiones (de 10 a 50 kPa) para alcanzar condiciones de no equilibrio. Algunos desarrollos reportados por Potapkin y col. [Potapkin B. V., Strelkova M. I., Fridman A. A., Harkness J. B. L, Doctor R. D., (1995), Mechanism and kinetics of H2S-C02 mixture dissociation ¡n plasma of a microwave discharge, in : J. V. Heberlein, d. W. Ernie, J. T. Roberts, (Eds.), Proceeding of the 12th International Symposium on Plasma Chemistry, 1737-1742] sobre la descomposición de una mezcla de H2S-C02 en un plasma de R.F. magnéticamente acoplado, muestran una tasa de disociación teórica del 91%, aplicando una energía especifica de 2.3 kWh/m3. Las desventajas de esta tecnología es tener que emplear presión reducida y que no permite trabajar con flujos continuos de gases. Another method used for the treatment of H 2 S by plasma technology is the radio frequency (RF) discharge, which consists in generating a high frequency (MHz) signal at very low pressures (from 10 to 50 kPa) to reach non-equilibrium conditions Some developments reported by Potapkin et al. [Potapkin BV, Strelkova MI, Fridman AA, Harkness JB L, Doctor RD, (1995), Mechanism and kinetics of H 2 S-C0 2 mixture dissociation in plasma of a microwave discharge, in: JV Heberlein, d. W. Ernie, JT Roberts, (Eds.), Proceeding of the 12th International Symposium on Plasma Chemistry, 1737-1742] on the decomposition of a mixture of H 2 S-C0 2 in a magnetically coupled RF plasma, show a rate of theoretical dissociation of 91%, applying a specific energy of 2.3 kWh / m 3 . The disadvantages of this technology is having to use reduced pressure that does not allow Work with continuous gas flows.
Por otra parte, la patente estadounidense US5211923 enfoca una descarga de plasma a la producción de H2 y azufre a partir de gas ácido conteniendo residuos de H2S y uno o más de COS, CS2 y S02. El tipo de plasma empleado en su proceso es de R.F. operando en el rango de micro-ondas y trabajando en un rango de presión de 0.5 a 2 atm. El rango de temperatura que se alcanza con este tipo de plasma es de 150 a 450 °C. Cabe mencionar, que el sistema de esta patente requiere un sistema de entrada de gas Argón pre-ionizado y un sistema de calentamiento previo del gas a tratar. Además, el sistema tiene acoplado un sistema de enfriamiento a base de agua, el cual no es reciclado sino que liberan vapor al ambiente. On the other hand, US Patent US5211923 focuses a plasma discharge on the production of H 2 and sulfur from acid gas containing residues of H 2 S and one or more of COS, CS 2 and S0 2 . The type of plasma used in its process is RF operating in the range of microwaves and working in a pressure range of 0.5 to 2 atm. The temperature range reached with this type of plasma is 150 to 450 ° C. It should be mentioned that the system of this patent requires a pre-ionized Argon gas inlet system and a preheating system for the gas to be treated. In addition, the system has a water-based cooling system attached, which is not recycled but instead releases steam into the environment.
En lo referente al C02, las tecnologías de vanguardia para su degradación se enfocan a las desarrolladas por plasma frío por sus excelentes resultados de disociación. Como por ejemplo: la reducción de C02 por descarga de plasma de barrera dieléctrica reportada por Zheng y col. [Zheng G., Jiang J., Wu Y., Zhang R., Hou H., (2003), The Mutal conversión of C02 and CO in Dielectric Barrier Discharge (DBD), Plasma Chemistry and Plasma Processing, 23, 59-68], y sobre todo la reducción de C02 utilizando plasma de arco deslizante en su estado de no equilibrio reportada por Idarto A. [Indarto A., (2007), Kinetics of C02 Reduction by Gliding are Plasma, Asían Journal of Water Environment and Pollution, 4, 191-194]. With regard to C0 2 , cutting-edge technologies for degradation are focused on those developed by cold plasma due to their excellent dissociation results. Such as: the reduction of C0 2 plasma discharge dielectric barrier reported by Zheng et al. [Zheng G., Jiang J., Wu Y., Zhang R., Hou H., (2003), The Mutal conversion of C0 2 and CO in Dielectric Barrier Discharge (DBD), Plasma Chemistry and Plasma Processing, 23, 59 -68], and especially the reduction of C0 2 using sliding arc plasma in its non-equilibrium state reported by Idarto A. [Indarto A., (2007), Kinetics of C0 2 Reduction by Gliding are Plasma, Asían Journal of Water Environment and Pollution, 4, 191-194].
Es precisamente la descarga de arco deslizante la que aporta mayores ventajas para descomponer gases peligrosos y tóxicos que tienen una fuerte estructura química. Un ejemplo de una descarga de arco deslizante aplicada para tratamiento del H2S, es la realizada por Czernichowski A. [Czernichowski A., (1998), Plasma pour valorization totale ou partiele des gaz contenant de L ' H2S, Revue de L ' Institut Fra<jais du Pétrole, 53, 163-179], quien logró una eficiencia en la degradación para el H2S alrededor del 36 % utilizando una fuente de alimentación basada en un transformador trifásico de 8 kV a 50 Hz y con un consumo de potencia de aproximadamente de 2.4 kW. It is precisely the discharge of the sliding arc that provides greater advantages to decompose dangerous and toxic gases that have a strong chemical structure. An example of a sliding arc discharge applied to the treatment of H 2 S is that carried out by Czernichowski A. [Czernichowski A., (1998), Plasma pour valorization totale ou partiele des gaz contenant de L ' H 2 S, Revue de L 'Institut Fra <jais du Pétrole, 53, 163-179] who achieved an efficiency degradation for H 2 S about 36 % using a power supply based on a three-phase transformer of 8 kV at 50 Hz and with a power consumption of approximately 2.4 kW.
En vista de lo anterior, es por tanto necesario proporcionar un método y sistema para obtener gas dulce, gas sintético y azufre a partir de gas natural, mediante el empleo de membranas altamente selectivas para C02 y H2S para generar gas dulce, gas sintético y azufre, evitando la contaminación ambiental debido a la liberación de C02 y S02 a la atmósfera, que a la vez brinde la posibilidad de transformar una corriente de gases ácidos en una corriente de gas sintético y azufre, y que no solamente permite el endulzamiento del gas natural sino que adicionalmente ofrezca la conversión de los gases ácidos en productos de valor agregado, empleando para ello un reactor de plasma híbrido. In view of the above, it is therefore necessary to provide a method and system to obtain fresh gas, synthetic gas and sulfur from natural gas, by using highly selective membranes for C0 2 and H 2 S to generate fresh gas, gas synthetic and sulfur, preventing environmental pollution due to the release of C0 2 and S0 2 into the atmosphere, which in turn provides the possibility to transform a stream of acid gases in a stream of syngas and sulfur, and which not only allows the sweetening of natural gas but also offers the conversion of acid gases into value-added products, using a hybrid plasma reactor.
OBJETO DE LA INVENCIÓN OBJECT OF THE INVENTION
En vista de lo antes descrito y con el propósito de dar solución a las limitantes encontradas, es objeto de la invención proporcionar un método para obtener gas dulce, gas sintético y azufre a partir de gas natural, el método incluye los pasos de eliminar impurezas del gas natural para obtener gas natural pretratado; endulzar el gas natural pretratado por medio de una separación utilizando una pluralidad de membranas para obtener gas dulce y gases ácidos; ionizar los gases ácidos para disociarlos en azufre y gas sintético con remanentes de gases ácidos; y neutralizar el gas sintético con remanentes de gases ácidos para generar gas sintético. In view of the foregoing and for the purpose of solving the limitations found, it is the object of the invention to provide a method for obtaining sweet gas, synthetic gas and sulfur from natural gas, the method includes the steps of removing impurities from the natural gas to obtain pretreated natural gas; sweeten the pretreated natural gas by means of a separation using a plurality of membranes to obtain sweet gas and acid gases; ionize acid gases to dissociate them into sulfur and synthetic gas with remnants of acid gases; and neutralize the synthetic gas with remnants of acid gases to generate synthetic gas.
Es también objeto de la presente invención, proporcionar un sistema para obtener gas dulce, gas sintético y azufre a partir de gas natural conformado por un separador; un filtro coalescente conectado en paralelo al separador; una pluralidad de membranas conectadas al filtro coalescente que permiten una relación de separación de H2S y CH4 de al menos 20: 1, una permeabilidad de H2S de al menos 50 Barrer, una relación de separación de C02 y CH4 de al menos 10: 1 y una permeabilidad de C02 de al menos 30 Barrer, las membranas están elaboradas a base de polímeros seleccionados de poliimida, polibenzimidazol, poliamidas, poliéteres, poliuretanos, poliureas y sus combinaciones; al menos un reactor de plasma híbrido de doble pared conectado a la pluralidad de membranas, tal que el reactor de plasma híbrido está formado por una primera cámara con un acoplamiento de electrodos, una segunda cámara conectada en serie a la primera cámara, y una fuente de alimentación de alto voltaje pulsado a alta frecuencia conectada a los electrodos; y una pluralidad de columnas de burbujeo conectadas al reactor de plasma híbrido, la pluralidad de columnas de burbujeo está formada por al menos dos columnas, cada columna cuenta con una entrada de gas ubicada en su parte inferior una salida de gas ubicada en su parte superior, una entrada de un agente neutralizante ubicada en extremo opuesto a la entrada de gas y una salida de un agente neutralizante ubicada en extremo opuesto de la salida de gas. It is also the object of the present invention to provide a system for obtaining sweet gas, synthetic gas and sulfur from natural gas formed by a separator; a coalescing filter connected in parallel to the separator; a plurality of membranes connected to the coalescing filter that allow a separation ratio of H 2 S and CH 4 of at least 20: 1, a permeability of H 2 S of at least 50 Sweep, a separation ratio of C0 2 and CH 4 of at least 10: 1 and a permeability of C0 2 of at least 30 Sweeps, the membranes are made from polymers selected from polyimide, polybenzimidazole, polyamides, polyethers, polyurethanes, polyureas and combinations thereof; at least one double wall hybrid plasma reactor connected to the plurality of membranes, such that the hybrid plasma reactor is formed by a first chamber with an electrode coupling, a second chamber connected in series to the first chamber, and a source high voltage pulsed high frequency power connected to the electrodes; and a plurality of bubble columns connected to the hybrid plasma reactor, the plurality of bubble columns is formed by at least two columns, each column has a gas inlet located in its lower part a gas outlet located in its upper part , an inlet of a neutralizing agent located at the opposite end of the gas inlet and an outlet of a neutralizing agent located at the opposite end of the gas outlet.
En este método y sistema de la presente invención, el endulzamiento del gas natural se lleva a cabo mediante membranas siguiendo un mecanismo de solución- difusión, en donde los gases ácidos permean selectivamente a través de las membranas. Como resultado de esta separación se obtienen dos efluentes: una corriente de gas dulce enriquecida con CH4 y una corriente de gases ácidos, la cual posteriormente se trata en un reactor de plasma híbrido para obtener productos con alto valor agregado como el azufre y el gas sintético. Éste último es purificado en columnas de burbujeo que contienen un agente neutralizante, lo que permite obtener el gas sintético en condiciones de uso para generar energía dentro del mismo método. DESCRIPCIÓN BREVE DE LAS FIGURAS In this method and system of the present invention, the sweetening of the natural gas is carried out by means of membranes following a solution-diffusion mechanism, wherein the acid gases selectively permeate through the membranes. A stream of fresh gas enriched with CH 4 and a stream of acid gas, which is then treated in a reactor hybrid plasma to obtain products with high added value such as sulfur and gas: as a result of this separation two effluents are obtained synthetic. The latter is purified in bubble columns containing a neutralizing agent, which allows to obtain the synthetic gas in conditions of use to generate energy within the same method. BRIEF DESCRIPTION OF THE FIGURES
Los detalles característicos de la invención se describen en los siguientes párrafos en conjunto con las figuras que lo acompañan, los cuales son con el propósito de definir la invención pero sin limitar el alcance de ésta. The characteristic details of the invention are described in the following paragraphs in conjunction with the accompanying figures, which are for the purpose of defining the invention but without limiting its scope.
Figura 1 muestra un método para obtener gas dulce, gas sintético y azufre a partir de gas natural de acuerdo a la presente invención. Figure 1 shows a method for obtaining sweet gas, synthetic gas and sulfur from natural gas according to the present invention.
Figura 2 muestra un sistema para obtener gas dulce, gas sintético y azufre a partir de gas natural de acuerdo a la presente invención. Figure 2 shows a system for obtaining sweet gas, synthetic gas and sulfur from natural gas according to the present invention.
Figura 3 muestra una fotografía de microscopía óptica de una realización de membranas de poliuretano-urea traslúcida de acuerdo a la presente invención. Figure 3 shows an optical microscopy photograph of an embodiment of translucent polyurethane-urea membranes according to the present invention.
Figura 4 muestra una micrografía obtenida por microscopía electrónica de barrido (MEB) del área transversal de una membrana de tipo poliuretano-urea de acuerdo a la presente invención. Figure 4 shows a micrograph obtained by scanning electron microscopy (SEM) of the cross-sectional area of a polyurethane-urea type membrane according to the present invention.
Figura 5 muestra un esquema de una fuente de alimentación y su conexión con los electrodos de un reactor de plasma híbrido acuerdo a la presente invención. Figure 5 shows a diagram of a power supply and its connection with the electrodes of a hybrid plasma reactor according to the present invention.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN DETAILED DESCRIPTION OF THE INVENTION
MÉTODO PARA OBTENER GAS DULCE, GAS SINTÉTICO Y AZUFRE A PARTIR DE GAS NATURAL En la presente invención se describe un método y sistema para obtener gas dulce, gas sintético y azufre a partir de gas natural . Con este método se puede llevar a cabo el enduizamiento de corrientes de gas natural con una composición molar de 70 % a 95 % de CH4, de 1 % a 20 % de N2, de 1% a 20 % de C02, de 1 % a 10 % de H2S, además de contar con otros hidrocarburos minoritarios. El sistema descrito cuando es aplicado industrialmente y bajo las condiciones probadas hasta el momento es capaz de procesar, pero no limitándose, desde 1 hasta 40 millones de pies cúbicos diarios (MMPCSD) de gas natural, preferentemente 20 M PCSD. El método objeto de la presente invención comprende cuatro etapas, como se muestra en la figura 1 : a) eliminar impurezas del gas natural para obtener gas natural pretratado; b) endulzar el gas natural pretratado por medio de una separación utilizando una pluralidad de membranas para obtener gas dulce y gases ácidos; c) ionizar los gases ácidos para disociarlos en azufre y gas sintético con remanentes de gases ácidos; y d) neutralizar el gas sintético con remanentes de gases ácidos para generar gas sintético, estas etapas se detallan a continuación en conjunto y con referencia a las Figuras 1 a 5 : a) Eliminar impurezas del gas natural para obtener gas natural pretratado METHOD FOR OBTAINING SWEET GAS, SYNTHETIC GAS AND SULFUR FROM NATURAL GAS In the present invention a method and system for obtaining sweet gas, synthetic gas and sulfur from natural gas is described. With this method, the natural gas streams can be carried out with a 70% to 95% molar composition of CH 4 , 1% to 20% of N 2 , 1% to 20% of C0 2 , of 1% to 10% H 2 S, in addition to other minority hydrocarbons. The system described when applied industrially and under the conditions tested so far is capable of processing, but not limited to, from 1 to 40 million cubic feet per day (MMPCSD) of natural gas, preferably 20 M PCSD. The method object of the present invention comprises four stages, as shown in Figure 1: a) removing impurities from natural gas to obtain pretreated natural gas; b) sweeten the pretreated natural gas by means of a separation using a plurality of membranes to obtain fresh gas and acid gases; c) ionize the acid gases to dissociate them into sulfur and synthetic gas with remnants of acid gases; and d) neutralize the synthetic gas with acid gas remnants to generate synthetic gas, these steps are detailed below together with reference to Figures 1 to 5: a) Remove impurities from natural gas to obtain pretreated natural gas
Antes de ingresar a esta primera etapa, el gas natural (1) se acondiciona a una temperatura de 35 °C a 50 °C, y a una presión de 65 kg/cm2 a 100 kg/cm2. El gas natural (1) comprende al menos un hidrocarburo gaseoso, C02 y H2S. Este hidrocarburo gaseoso es al menos uno del grupo que comprende: metano, propano, etileno, etano, propileno, pentanos, n-butano y s-butano y sus combinaciones. El gas natural requiere un pretratamiento previo a su entrada a la etapa b), puesto que el gas contiene contaminantes que pueden afectar el sistema de membranas como son agua, hidrocarburos pesados y partículas sólidas. Para eliminar las impurezas del gas natural se separan los líquidos y sólidos presentes en el mismo, para lo cual preferentemente se emplea un separador (2), dicho separador puede ser de forma horizontal, vertical o esférica; con las dimensiones adecuadas para realizar la máxima separación de líquidos y sólidos presentes en el gas natural; la separación se lleva a cabo por fuerza centrífuga, por gravedad, por choque y sus combinaciones. El separador consta de al menos una de las siguientes secciones: una sección de separación primaria, una sección de separación secundaria, una sección de extracción de niebla, una sección de almacenamiento de líquido y sus combinaciones; posteriormente ocurre un filtrado, preferentemente dicho filtrado se realiza mediante un filtro coalescente (3) para eliminar por completo los contaminantes líquidos y sólidos (4) y obtener gas natural pretratado (5). Un filtro coalescente es un recipiente metálico, generalmente cilindrico, sujeto a alta presión, el cual está seccionado en al menos dos etapas; en su interior contiene un elemento filtrante que atrapa partículas sólidas y permite la coalescencia de las partículas de agua contenidas en el gas natural para posteriormente desalojarlas a través de un drenaje. En dicho filtro coalescente se lleva a cabo el proceso en el que dos dominios de fase de composición idéntica entran en contacto para formar un dominio de fase mayor, tal que las partículas pequeñas de agua presentes en el gas natural se agrupan formando gotas de tal manera que puedan ser separadas del gas natural con facilidad. Before entering this first stage, natural gas (1) is conditioned at a temperature of 35 ° C to 50 ° C, and at a pressure of 65 kg / cm 2 at 100 kg / cm 2 . The natural gas (1) comprises at least one gaseous hydrocarbon, C0 2 and H 2 S. This gaseous hydrocarbon is at least one of the group comprising: methane, propane, ethylene, ethane, propylene, pentanes, n-butane and s- Butane and its combinations. Natural gas requires a pretreatment before entering stage b), since the gas contains contaminants that can affect the membrane system such as water, heavy hydrocarbons and solid particles. To remove impurities from natural gas, liquids and solids present therein are separated, for which a separator (2) is preferably used, said separator can be horizontal, vertical or spherical; with the appropriate dimensions for maximum separation of liquids and solids present in natural gas; The separation is carried out by centrifugal force, gravity, shock and their combinations. The separator consists of at least one of the following sections: a primary separation section, a secondary separation section, a fog extraction section, a liquid storage section and combinations thereof; subsequently a filtration occurs, preferably said filtering is carried out by means of a coalescing filter (3) to completely eliminate liquid and solid contaminants (4) and obtain pretreated natural gas (5). A coalescing filter is a metal container, generally cylindrical, subject to high pressure, which is sectioned in at least two stages; inside it contains a filter element that traps solid particles and allows the coalescence of the water particles contained in natural gas to subsequently dislodge them through a drain. In said coalescing filter the process is carried out in which two phase domains of identical composition come into contact to form a major phase domain, such that the small particles of water present in the natural gas are grouped together forming drops in such a way. that can be easily separated from natural gas.
b) Endulzar el gas natural pretratado por medio de una separación utilizando una pluralidad de membranas para obtener gas dulce y gases ácidos b) Sweeten the pretreated natural gas by means of a separation using a plurality of membranes to obtain sweet gas and acid gases
El gas natural pretratado (5) obtenido en la etapa a) se endulza por medio de una separación en gas dulce (6) y gases ácidos (7) utilizando una pluralidad de membranas (8), la separación ocurre mediante una difusión del gas natural pretratado (5) a través de dichas membranas, las cuales lo separan en dos efluentes; una corriente de gas retenido no permeado y una corriente de gas permeado, que constituyen el gas dulce (6) y los gases ácidos (7), respectivamente. El gas dulce (6) contiene al menos 80 % de CH4, menos de 4 ppm de H2S y otros gases, los cuales incluyen C02, N2 e hidrocarburos gaseosos. Los gases ácidos (7) comprende al menos 50 % de H2S, al menos 20 % de C02, y el resto del porcentaje lo completan principalmente N2 y otros hidrocarburos, principalmente CH4. Opcionalmente, la corriente de gas retenido no permeado (gas dulce (6)) pasa por una segunda etapa de separación mediante una pluralidad de membranas secundarla (9) cuando la cantidad de C02 es mayor o igual a 1000 ppm . Al final de esta etapa se obtiene gas dulce (6) y gases ácidos (7) , el gas dulce (6) es enviado para su disposición final. c) Ionizar los gases ácidos para disociarlos en azufre y gas sintético con remanentes de gases ácidos. The pretreated natural gas (5) obtained in step a) is sweetened by means of a separation in fresh gas (6) and acid gases (7) using a plurality of membranes (8), the separation occurs through a diffusion of the natural gas pretreated (5) through said membranes, which separate it into two effluents; a stream of retained non-permeated gas and a stream of permeated gas, which constitute the sweet gas (6) and acid gases (7), respectively. Sweet gas (6) It contains at least 80% CH 4 , less than 4 ppm of H 2 S and other gases, which include C0 2 , N 2 and gaseous hydrocarbons. The acid gases (7) comprise at least 50% of H 2 S, at least 20% of C0 2 , and the rest of the percentage is mainly completed by N 2 and other hydrocarbons, mainly CH 4 . Optionally, the non-permeated retained gas stream (fresh gas (6)) goes through a second stage of separation by a plurality of secondary membranes (9) when the amount of C0 2 is greater than or equal to 1000 ppm. At the end of this stage, sweet gas (6) and acid gases (7) are obtained, the sweet gas (6) is sent for final disposal. c) Ionize acid gases to dissociate them into sulfur and synthetic gas with remnants of acid gases.
Los gases ácidos (7) que fueron separados en la etapa b) son ionizados para generar así un plasma híbrido en donde se obtienen azufre (10) y gas sintético con remanentes de gases ácidos ( 11), dicho gas sintético es una mezcla de H2 y CO cuyos porcentajes dependerán de la cantidad de los gases ácidos (7) obtenidos en la etapa b) y al nivel de ionización que se logre con el suministro de potencia en el plasma. El azufre (10) es enviado para su disposición final. La ionización preferentemente se realiza dentro de un reactor de plasma híbrido ( 12), el cual genera un régimen termodinámico que depende de la fuente de alimentación de energía y de los electrodos utilizados en el mismo, dicha fuente preferentemente provee de 1 kW a 2 kW de potencia en una configuración pulsada a alta frecuencia en un rango de 20 kHz a 60 kHz para generar dentro del reactor de plasma híbrido (12) una temperatura mayor o igual a 5000 K en equilibro termodinámico, el plasma se desliza y se expande generando un gradiente de temperatura dentro del reactor de plasma híbrido (12), disminuyendo uniformemente hasta llegar a un régimen fuera del equilibrio termodinámico obteniéndose así un plasma híbrido que disocia los gases ácidos (7) en azufre ( 10) y gas sintético con remanentes de gases ácidos (11). d) Neutralizar el gas sintético con remanentes de gases ácidos para generar gas sintético. The acid gases (7) that were separated in step b) are ionized to generate a hybrid plasma where sulfur (10) and synthetic gas are obtained with remnants of acid gases (11), said synthetic gas is a mixture of H 2 and CO whose percentages will depend on the amount of acid gases (7) obtained in step b) and the level of ionization achieved with the plasma power supply. Sulfur (10) is sent for final disposal. The ionization is preferably carried out within a hybrid plasma reactor (12), which generates a thermodynamic regime that depends on the power supply and the electrodes used therein, said source preferably provides 1 kW to 2 kW of power in a high frequency pulsed configuration in a range of 20 kHz to 60 kHz to generate within the hybrid plasma reactor (12) a temperature greater than or equal to 5000 K in thermodynamic equilibrium, the plasma slides and expands generating a temperature gradient inside the hybrid plasma reactor (12), decreasing uniformly until reaching a regime outside the thermodynamic equilibrium thus obtaining a hybrid plasma that dissociates the acid gases (7) into sulfur (10) and synthetic gas with remnants of acid gases (eleven). d) Neutralize synthetic gas with remnants of acid gases to generate synthetic gas.
El gas sintético con remanentes de gases ácidos (11) obtenido en la etapa c), incluye aún remanentes de C02 y H2S, además de algunos NOx y SOx gaseosos producidos en el reactor de plasma híbrido (12), por lo que se realiza una etapa de neutralización en una pluralidad de columnas de burbujeo (13), dichas columnas contienen un agente neutralizante (14) a través del cual pasa el gas sintético con remanentes de gases ácidos (11). Previo al paso del gas sintético con remanentes de gases ácidos (11) dicho agente neutralizante (14) tiene un pH de 8 a 14. Después de esta etapa de neutralización se obtiene el gas sintético (15) en condiciones para ser aprovechado para la generación de energía. The synthetic gas with acid gas remnants (11) obtained in step c), still includes C0 2 and H 2 S remnants, in addition to some gaseous NO x and SO x produced in the hybrid plasma reactor (12), by What is done is a neutralization step in a plurality of bubble columns (13), said columns contain a neutralizing agent (14) through which the synthetic gas passes with acid gas remnants (11). Prior to the passage of the synthetic gas with remnants of acid gases (11) said neutralizing agent (14) has a pH of 8 to 14. After this neutralization step the synthetic gas (15) is obtained in conditions to be used for the generation of energy
SISTEMA PARA OBTENER GAS DULCE, GAS SINTÉTICO Y AZUFRE A PARTIR DE GAS NATURAL SYSTEM FOR OBTAINING SWEET GAS, SYNTHETIC GAS AND SULFUR FROM NATURAL GAS
El sistema para obtener gas dulce, gas sintético y azufre a partir de gas natural de acuerdo a la presente invención comprende: un separador (2) conectado a un filtro coalescente (3), el cual está unido a un módulo formado por una pluralidad de membranas (8) y (9) seguido de al menos un reactor de plasma híbrido (12) y una pluralidad de columnas de burbujeo (13), como se muestra en la Figura 2. The system for obtaining sweet gas, synthetic gas and sulfur from natural gas according to the present invention comprises: a separator (2) connected to a coalescing filter (3), which is connected to a module formed by a plurality of membranes (8) and (9) followed by at least one hybrid plasma reactor (12) and a plurality of bubble columns (13), as shown in Figure 2.
La corriente de gas natural (1) previamente acondicionada a una temperatura de 35 °C a 50 °C y a una presión de 65 kg/cm2 a 100 kg/cm2 entra a un separador (2) para extraer todas aquellas sustancias líquidas y sólidas contaminantes que están contenidas en el gas natural (1) como pueden ser agua e hidrocarburos pesados, de tal manera que se obtienen dos fases, una fase líquida que comprende los contaminantes líquidos y sólidos y una fase gaseosa que pasa a través de una válvula que reduce la presión en un rango de 40 kg/cm2 a 65 kg/cm2 para luego dirigirla al filtro coalescente (3). El filtro coalescente (3) proporciona una purificación adicional del gas natural (1) al remover los remantes de contaminantes líquidos y sólidos que aún son arrastradas por el gas natural (1) . De dicho filtro coalescente (3) se desalojan los contaminantes líquidos y sólidos removidos que posteriormente se mezclan en la misma línea con los contaminantes líquidos y sólidos extraídos por el separador (2). El gas natural pretratado (5) obtenido del filtro coalescente (3) sigue una línea de tubería hasta una válvula donde se reduce nuevamente la presión en un rango de 3 kg/cm2 a 40 kg/cm2. The natural gas stream (1) previously conditioned at a temperature of 35 ° C to 50 ° C and a pressure of 65 kg / cm 2 to 100 kg / cm 2 enters a separator (2) to extract all those liquid substances and solid pollutants that are contained in natural gas (1) such as water and heavy hydrocarbons, such that two phases are obtained, a liquid phase comprising the pollutants liquids and solids and a gas phase that passes through a valve that reduces the pressure in a range of 40 kg / cm 2 to 65 kg / cm 2 and then directs it to the coalescing filter (3). The coalescing filter (3) provides an additional purification of natural gas (1) by removing the liquid and solid contaminant traps that are still carried by natural gas (1). Said coalescent filter (3) removes the liquid and solid contaminants removed that are subsequently mixed in the same line with the liquid and solid contaminants removed by the separator (2). The pretreated natural gas (5) obtained from the coalescing filter (3) follows a pipe line to a valve where the pressure is again reduced in a range of 3 kg / cm 2 to 40 kg / cm 2 .
Al separador (2) y al filtro coalescente (3) le sigue la pluralidad de membranas (8) y (9) del sistema que preferentemente consta de unos módulos tubulares que están constituidos por películas denominadas membranas de un material de tipo polimérico que puede estar soportado o solo en forma de película sin poros o en conjunto con otros materiales. Este material puede ser seleccionado entre alguno de una variedad de materiales poliméricos, que pueden ser rígidos o elastoméricos, con preferencia por aquellos que presenten una mayor permeabilidad de gases como H2S y C02, en comparación con otros gases contenidos en las corrientes de gas natural como metano, propano, butano (como por ejemplo, en este caso poliimida, polibenzimidazol, poliamidas, poliéteres, poliuretanos, poliureas y combinaciones entre ellos de poliuretano-ureas o poliamida-éter) . La película o membrana a usar se seleccionará de entre aquellas que presenten una relación de separación de H2S de CH4 de 20: 1 a 60: 1 y con permeabilidad de H2S de 50 Barrer a 150 Barrer. Las películas o membranas de estos materiales pueden prepararse por métodos diversos como depósito a partir de disolventes o por medio de calentamiento y compresión o algún otro de los usados específicamente en el medio para la formación de películas o membranas. La pluralidad de membranas (8) y (9) pueden ser formadas en diversos acomodos o geometrías; en arreglos de membranas planas o enrolladas en forma de espiral, preferentemente en un empaquetamiento tubular, y con diversos tipos de soportes de materiales que pueden ser cerámicos, metálicos, poliméricos, compuestos o tejidos. En todos los casos la separación de los gases ácidos (7) es proporcionada por la película o membrana de las diversas nombradas anteriormente que cumplan las características de flujo y relación de separación del H2S . Adicionalmente, las membranas deben presentar una relación de separación del C02 respecto al CH4 de 10 : 1 a 30 : 1 en una corriente de gas natural con el mismo proceso y geometría usados para la separación del H2S con permeabilidades de C02 de 30 Barrer a 130 Barrer. El acomodo de estas membranas depende de la capacidad mínima establecida y de la geometría que brinde las mejores prestaciones de flujo y separación de los gases C02 y H2S. De la pluralidad de membranas (8) y (9) que consta de módulos tubulares salen dos líneas de gas; la corriente de gas retenido no permeado, que constituye el gas dulce (6) conformada principalmente de CH4, mientras que la corriente de gas permeado que contiene mayoritariamente los gases ácidos (7) como el C02, H2S además de N2 y trazas de CH4. The separator (2) and the coalescing filter (3) are followed by the plurality of membranes (8) and (9) of the system, which preferably consists of tubular modules that are constituted by films called membranes of a polymeric type material that may be supported or only in the form of film without pores or in conjunction with other materials. This material can be selected from any of a variety of polymeric materials, which can be rigid or elastomeric, preferably for those that have a greater permeability of gases such as H 2 S and C0 2 , compared to other gases contained in the currents of natural gas such as methane, propane, butane (as in this case, polyimide, polybenzimidazole, polyamides, polyethers, polyurethanes, polyureas and combinations of polyurethane ureas or polyamide ether). The film or membrane to be used will be selected from those that have a separation ratio of H 2 S from CH 4 from 20: 1 to 60: 1 and with permeability of H 2 S from 50 Sweep to 150 Sweep. The films or membranes of these materials can be prepared by various methods such as deposit from solvents or by heating and compression or any other used specifically in the medium for the formation of films or membranes. The plurality of membranes (8) and (9) can be formed in various arrangements or geometries; in arrangements of flat or spirally wound membranes, preferably in a tubular packing, and with various types of supports of materials that can be ceramic, metallic, polymeric, composite or woven. In all cases the separation of the acid gases (7) is provided by the film or membrane of the various named above that meet the flow characteristics and separation ratio of H 2 S. Additionally, the membranes must have a separation ratio of C0 2 with respect to CH 4 from 10: 1 to 30: 1 in a natural gas stream with the same process and geometry used for the separation of H 2 S with permeabilities of C0 2 from 30 Sweep to 130 Sweep. The arrangement of these membranes depends on the minimum capacity established and the geometry that provides the best flow and separation performance of C0 2 and H 2 S gases. On the plurality of membranes (8) and (9) consisting of modules tubular two gas lines come out; the non-permeated retained gas stream, which constitutes the sweet gas (6) formed mainly of CH 4 , while the permeate gas stream containing mostly acidic gases (7) such as C0 2 , H 2 S in addition to N 2 and traces of CH 4 .
Al módulo de la pluralidad de membranas (8) y (9) le sigue al menos un reactor de plasma híbrido (12) el cual se diseñó tomando en consideración las características variadas de operación bajo las cuales trabaja el método objeto de la presente invención. El diseño se realizó con un sistema de piezas intercambiables y de fácil instalación . The module of the plurality of membranes (8) and (9) is followed by at least one hybrid plasma reactor (12) which was designed taking into consideration the varied operating characteristics under which the method object of the present invention works. The design was made with a system of interchangeable parts and easy installation.
Como se ilustra en la Figura 5, una fuente de alimentación (16) propuesta está basada en un convertidor de corriente continua a una señal pulsada de alto voltaje y alta frecuencia el cual consiste de una sección de control (17) y una de potencia (18). La sección de control (17) está integrada por un microprocesador central (19) que permite programar la frecuencia de operación. Posteriormente unos impulsores de señal flotante (20) polarizan y conmutan las compuertas de tres transistores MOS de potencia (21). La sección de potencia la configuran los tres transistores MOS (21) que alimentan a tres transformadores elevadores de voltaje (22) con un primario y un secundario (23), siendo la inductancia equivalente el primario de cada transformador elevador de tensión, armado sobre un núcleo de ferrita (22) para trabajar a altas frecuencias. El secundario (23) de cada transformador va conectado directamente a los electrodos del reactor de plasma híbrido (12), el ajuste de ímpedancias también se ha establecido en el diseño para lograr tanto la descarga inicial como la de sostenimiento. La conexión de los tres secundarios (23) es de tipo estrella. El consumo de potencia para el plasma versión prototipo de laboratorio es de 1.2 kW, en tanto que la potencia requerida para el reactor de plasma híbrido (12) versión prototipo industrial puede variar de 5 a 50 kW. As illustrated in Figure 5, a proposed power supply (16) is based on a direct current converter at a pulsed signal of high voltage and high frequency which consists of a control section (17) and a power section ( 18). The control section (17) is integrated by a central microprocessor (19) that allows programming the operating frequency. Subsequently, floating signal impellers (20) polarize and switch the gates of three MOS power transistors (21). The power section is configured by the three MOS transistors (21) that They feed three voltage booster transformers (22) with a primary and a secondary (23), the equivalent inductance being the primary of each voltage booster transformer, armed on a ferrite core (22) to work at high frequencies. The secondary (23) of each transformer is connected directly to the electrodes of the hybrid plasma reactor (12), the adjustment of impedances has also been established in the design to achieve both the initial discharge and the support discharge. The connection of the three secondary (23) is of the star type. The power consumption for the plasma prototype laboratory version is 1.2 kW, while the power required for the hybrid plasma reactor (12) industrial prototype version can vary from 5 to 50 kW.
Dicho reactor de plasma híbrido (12), mostrado en la figura 5, va seguido de una pluralidad de columnas de burbujeo (13) en operación continua, la cual comprende al menos dos columnas, preferentemente tres columnas de acero inoxidable. Cada columna de burbujeo ( 13) cuenta con una entrada de gas sintético con remanentes de gases ácidos (24) ubicada en su parte inferior y una salida de gas sintético con remanentes de gases ácidos (25) ubicada en su parte superior, por las cuales pasa el flujo de gas controlado de 0.1 a 0.5 L/min-cm2 (los cm2 se refieren al área transversal de columna), preferentemente 0.3 L/min -cm2 para que se logre un contacto eficiente del agente neutralizante (14) con el gas sintético con remanentes de gases ácidos (11) proveniente de la salida del reactor de plasma híbrido (12) . Así mismo, en la parte inferior de cada columna de burbujeo (13) se ubica un medio de distribución de burbujeo (26) el cual preferentemente es un ducto en cuya superficie se ubica una serie de perforaciones consecutivas y equidistantes, dicho ducto está enrollado en espiral y cubre la totalidad de la base de la columna de burbujeo ( 13). De la misma forma cada columna de burbujeo (13) cuenta con una entrada de agente neutralizante (27) ubicada en el extremo opuesto a la entrada de gas sintético con remanentes de gases ácidos (24) y cuenta con una salida de agente neutralizante (28) ubicada en el extremo opuesto de la salida de gas sintético con remanentes de gases ácidos (25). Las columnas de burbujeo (13) cuentan con diferentes geometrías en su base, pudiendo ser cilindricas, cuadradas o poligonales y se ensamblan verticalmente y son cerradas, con una relación diámetro-longitud de 1 : 1 a 1 : 30 y preferentemente 1 : 25 y están conectadas en serie como se muestra en la Figura 2, las columnas de burbujeo (13) contienen en su interior un agente neutralizante (14) en una concentración de 10 % a 30% en peso, preferentemente 15 %, el cual recircula gracias a la presencia de al menos una bomba (29) conectada a la entrada de agente neutralizante (27) y salida de agente neutralizante (28), dicho agente neutralizante (14) se elige del grupo que comprende NaOH, LiOH, KOH, Mg(OH)2, Ba(OH)2, Mn(OH)2, Ca(OH)2 y sus combinaciones, preferentemente Ca(OH)2. Previo al paso del gas sintético con remanentes de gases ácidos (11) dicho agente neutralizante (14) tiene un pH de 8 a 14. Al menos una de las columnas de burbujeo (13) que forman la pluralidad de las mismas, se destina a almacenar' el agente neutralizante (14), ahora denominada columna inoperante, la cual se activará en caso de que el agente neutralizante (14) de alguna de las columnas de burbujeo (13) restantes se agote debido a la neutralización del flujo de gas sintético con remanentes de gases ácidos (11), este almacenaje se realiza con el fin de que el sistema continúe funcionando de manera ininterrumpida . En caso de que se agote el agente neutralizante ( 14) de una de las columnas de burbujeo (13), se detiene el flujo de gas sintético con remanentes de gases ácidos (11) y se redirige el mismo a la columna inoperante por medio de una pluralidad de válvulas (29) ubicadas a las entradas de agente neutralizante (27) y salidas de agente neutralizante (28), dicha columna inoperante entrará en operación sustituyendo a la columna cuyo agente neutralizante (14) se ha agotado. Said hybrid plasma reactor (12), shown in Figure 5, is followed by a plurality of bubble columns (13) in continuous operation, which comprises at least two columns, preferably three stainless steel columns. Each bubble column (13) has a synthetic gas inlet with acid gas remnants (24) located in its lower part and a synthetic gas outlet with acid gas remnants (25) located in its upper part, by which the flow of controlled gas passes from 0.1 to 0.5 L / min-cm 2 (cm 2 refers to the cross-sectional area of the column), preferably 0.3 L / min-cm 2 so that efficient contact of the neutralizing agent is achieved (14) with the synthetic gas with remnants of acid gases (11) from the outlet of the hybrid plasma reactor (12). Likewise, in the lower part of each bubble column (13) there is located a bubble distribution means (26) which is preferably a duct in whose surface a series of consecutive and equidistant perforations is located, said duct is wound in spiral and cover the entire base of the bubble column (13). In the same way, each bubble column (13) has a neutralizing agent inlet (27) located at the opposite end of the synthetic gas inlet with remnants of acid gases (24) and has a neutralizing agent outlet (28 ) located in the opposite end of the synthetic gas outlet with remnants of acid gases (25). The bubble columns (13) have different geometries at their base, being able to be cylindrical, square or polygonal and assembled vertically and closed, with a diameter-length ratio of 1: 1 to 1: 30 and preferably 1: 25 and are connected in series as shown in Figure 2, the bubble columns (13) contain inside a neutralizing agent (14) in a concentration of 10% to 30% by weight, preferably 15%, which recirculates thanks to the presence of at least one pump (29) connected to the neutralizing agent inlet (27) and neutralizing agent outlet (28), said neutralizing agent (14) is selected from the group comprising NaOH, LiOH, KOH, Mg (OH ) 2 , Ba (OH) 2 , Mn (OH) 2 , Ca (OH) 2 and combinations thereof, preferably Ca (OH) 2 . Prior to the passage of the synthetic gas with remnants of acid gases (11) said neutralizing agent (14) has a pH of 8 to 14. At least one of the bubble columns (13) that form the plurality thereof, is intended for storing the neutralizing agent (14), now called inoperative column, which will be activated if the neutralizing agent (14) of any of the remaining bubble columns (13) is depleted due to the neutralization of the flow of synthetic gas With acid gas remnants (11), this storage is carried out so that the system continues to operate uninterruptedly. In case the neutralizing agent (14) of one of the bubble columns (13) is exhausted, the flow of synthetic gas with acid gas remnants (11) is stopped and it is redirected to the inoperative column by means of a plurality of valves (29) located at the neutralizing agent inlets (27) and neutralizing agent outlets (28), said inoperative column will become operational replacing the column whose neutralizing agent (14) has been exhausted.
Al entrar en contacto el agente neutralizante (14) con el gas sintético con remanentes de gases ácidos (11), los gases ácidos remanentes C02 y H2S son convertidos en el correspondiente carbonato y sulfuro según el tipo de agente neutralizante que se elija del grupo que comprende Ca(OH)2, NaOH, LiOH, KOH, Mg(OH)2, Ba(OH)2, Mn(OH)2 y sus combinaciones, preferentemente Ca(OH)2, de acuerdo a las reacciones químicas siguientes: When the neutralizing agent (14) comes into contact with the synthetic gas with acid gas remnants (11), the remaining C0 2 and H 2 S acid gases are converted into the corresponding carbonate and sulphide according to the type of agent Neutralizing is chosen from the group comprising Ca (OH) 2, NaOH, LiOH, KOH, Mg (OH) 2, Ba (OH) 2, Mn (OH) 2 and combinations thereof, preferably Ca (OH) 2, according to the following chemical reactions:
C02 + MOH→ C03 + nH20 C0 2 + MOH → C0 3 + nH 2 0
H2S + MOH→ MS + nH20 H 2 S + MOH → MS + nH 2 0
Donde M es Ca, Na, L¡, K, Mg, Ba, Mn, preferentemente Ca. Where M is Ca, Na, L¡, K, Mg, Ba, Mn, preferably Ca.
En caso de generarse pequeñas cantidades de NOx gaseosos, tales como óxido nitroso (N20), óxido nítrico (NO) y dióxido de nitrógeno (N02) y SOx gaseosos, tales como dióxido de azufre (S02), éstos reaccionan con el agente neutralizante (14) formando productos de reacción (30) tales como nitritos y sulfitos, respectivamente. In case of generating small amounts of gaseous NO x , such as nitrous oxide (N 2 0), nitric oxide (NO) and nitrogen dioxide (N0 2 ) and gaseous SO x , such as sulfur dioxide (S0 2 ), these they react with the neutralizing agent (14) forming reaction products (30) such as nitrites and sulphites, respectively.
Estos productos de reacción (30) permanecen en recirculación dentro de la pluralidad de columnas de burbujeo (13). Cuando el agente neutralizante (14) se agota, el contenido de la columna de burbujeo (13) se descarga hacia un contenedor. Opcionalmente, si los productos de reacción (30) son insolubles se filtran y se lavan s¡ es necesario. Si son solubles es necesario concentrarlos hasta la saturación y precipitación de sólidos que posteriormente se filtran y lavan, de ser necesario. En caso de ser insolubles como el CaC03 o Li2C03 se filtran y lavan con agua caliente para separar CaC03 o Li2C03 en estado sólido mientras que en los licores de filtración permanece el CaS o Li2S. El CaC03 o Li2C03 se seca y queda a disposición para su uso final. El gas sintético (15) (mezcla de H2 y CO) se recupera y puede ser utilizado como combustible para generación de energía dentro del método de la presente invención. EJEMPLOS DE REALIZACIÓN DE LA INVENCIÓN These reaction products (30) remain in recirculation within the plurality of bubble columns (13). When the neutralizing agent (14) is depleted, the contents of the bubble column (13) are discharged into a container. Optionally, if the reaction products (30) are insoluble, they are filtered and washed if necessary. If they are soluble it is necessary to concentrate them to the saturation and precipitation of solids that are subsequently filtered and washed, if necessary. If they are insoluble such as CaC0 3 or Li 2 C0 3, they are filtered and washed with hot water to separate CaC0 3 or Li 2 C0 3 in solid state while in Caca0 or Li 2 S. the CaC0 remains in the filtration liquors 3 o Li 2 C0 3 dries and is available for final use. The synthetic gas (15) (mixture of H 2 and CO) is recovered and can be used as fuel for power generation within the method of the present invention. EXAMPLES OF EMBODIMENT OF THE INVENTION
La invención ahora será descrita con respecto a los ejemplos siguientes, los cuales son únicamente con el propósito de representar la manera de llevar a cabo la ¡mplementación de los principios de la invención. Los ejemplos siguientes no intentan ser una representación exhaustiva de la invención, ni intentan limitar el alcance de ésta. The invention will now be described with respect to the following examples, which are solely for the purpose of representing how to implement the implementation of the principles of the invention. The following examples are not intended to be an exhaustive representation of the invention, nor are they intended to limit its scope.
EJEMPLO 1: Realización preferente del método objeto de la presente invención a través del sistema para obtener gas dulce, gas sintético y azufre a partir de gas natural EXAMPLE 1: Preferred embodiment of the method object of the present invention through the system to obtain sweet gas, synthetic gas and sulfur from natural gas
El método para obtener gas dulce, gas sintético y azufre a partir de gas natural mostrado en la Figura 1, el cual es objeto de la presente invención, comprende las siguientes etapas para llevar a cabo el endulzamiento del gas natural a través de sistemas de membranas poliméricas y la conversión de los gases ácidos resultantes en productos de alto valor agregado como son el gas sintético (mezcla de H2 y CO) y el azufre. En el presente ejemplo se detallan las etapas del método y la interacción de las mismas con el sistema propuesto a continuación : a) Eliminar impurezas del gas natural para obtener gas natural pretratado The method for obtaining sweet gas, synthetic gas and sulfur from natural gas shown in Figure 1, which is the subject of the present invention, comprises the following steps for carrying out the sweetening of natural gas through membrane systems polymeric and the conversion of the resulting acid gases into products with high added value such as synthetic gas (mixture of H 2 and CO) and sulfur. In the present example, the steps of the method and their interaction with the system proposed below are detailed: a) Remove impurities from natural gas to obtain pretreated natural gas
La corriente de gas natural previamente acondicionada a una temperatura de 35 °C a 50°C y a una presión de 65 kg/cm2 a 100 kg/cm2 se alimenta a un separador. Con este separador se extraen todas aquellas sustancias líquidas y sólidas contaminantes que están contenidas en el gas natural como pueden ser agua e hidrocarburos pesados, de tal manera que se obtienen dos fases. La fase líquida que comprende los contaminantes líquidos y sólidos sale por la parte inferior del tanque separador. La fase gaseosa fluye por la parte superior del separador y pasa a través de una válvula que reduce la presión en un rango de 40 kg/cm2 a 65 kg/cm2 para luego dirigirse al filtro coalescente. El filtro coalescente proporciona una purificación adicional del gas natural al remover los remantes de contaminantes líquidos y sólidos que aún son arrastradas por el gas natural. El gas natural se alimenta por la parte lateral superior del filtro coalescente, teniendo dos salidas; por la parte inferior se desalojan los contaminantes líquidos y sólidos removidos que posteriormente se mezclan en la misma línea con los contaminantes líquidos y sólidos extraídos por el tanque separador. La salida del gas natural pretratado se localiza en el tope del filtro coalescente y sigue la línea de tubería hasta una válvula donde se reduce la presión en un rango de 3 kg/cm2 a 40 kg/cm2 para luego endulzar el gas pretratado. b) Endulzar el gas natural pretratado por medio de una separación utilizando una pluralidad de membranas para obtener gas dulce y gases ácidos The natural gas stream previously conditioned at a temperature of 35 ° C to 50 ° C and a pressure of 65 kg / cm 2 to 100 kg / cm 2 is fed to a separator. With this separator all those liquid and solid polluting substances that are contained in natural gas such as water and heavy hydrocarbons are extracted, so that two phases are obtained. The liquid phase comprising the liquid and solid contaminants exits the bottom of the separator tank. The phase gas flows from the top of the separator and passes through a valve that reduces pressure in a range of 40 kg / cm to 65 kg 2 / cm 2 and then go to the coalescing filter. The coalescing filter provides an additional purification of natural gas by removing the irrigators of liquid and solid contaminants that are still carried away by natural gas. Natural gas is fed by the upper side of the coalescing filter, having two outlets; the liquid and solid contaminants removed are subsequently dislodged, which are subsequently mixed in the same line with the liquid and solid contaminants removed by the separator tank. The pretreated natural gas outlet is located at the top of the coalescing filter and follows the pipeline to a valve where the pressure is reduced in a range of 3 kg / cm 2 to 40 kg / cm 2 and then sweeten the pretreated gas. b) Sweeten the pretreated natural gas by means of a separation using a plurality of membranes to obtain sweet gas and acid gases
El gas natural pretratado proveniente del filtro coalescente entra a la pluralidad de membranas poliméricas que pueden ser del tipo poliimida, polibenzimidazol, poliamidas, poliéteres, poliuretanos, poliureas y combinaciones entre ellos de poliuretano-ureas o poliamida-éter. La pluralidad de membranas consta de módulos tubulares capaces de procesar, pero no limitándose, desde 1 hasta 40 millones de pies cúbicos diarios (MMPCSD) de gas natural preferentemente 20 PCSD. El gas natural pretratado puede ser alimentado a la pluralidad de membranas a una temperatura de 35 °C. La pluralidad de membranas opera a una presión de alimentación desde 3.5 kg/cm2 hasta 35 kg/cm2 y preferentemente a 27.1 kg/cm2. La composición molar del gas natural pretratado es de 70 % a 95 % en peso de CH4, de 1 % a 20 % en peso de N2, de 1 % a 20 % en peso de C02, de 1 % a 10% en peso de H2S preferentemente 83 % en peso de CH , 9 % en peso de N2, 5 % en peso de C02, 3 % en peso de H2S, además de contar con otros hidrocarburos minoritarios. El proceso de separación de los gases por medio de una pluralidad de membranas se realiza siguiendo un mecanismo de solución-difusión. Los gases primeramente se disuelven y luego se difunden a través de la membrana polimérica permeando selectivamente aquellos gases que tienen mayor afinidad por la pluralidad de membranas, que son los gases ácidos C02 y H2S, y deja una corriente residual no permeada enriquecida con CH4. De la pluralidad de membranas que consta de módulos tubulares y de la cual salen dos líneas de gas; la corriente de gas retenido no permeado, que constituye el gas dulce conformada principalmente de CH4, mientras que la corriente de gas permeado que contiene mayoritariamente los gases ácidos C0 H2S además de N2 y trazas de CH4, es transferida a un reactor de plasma híbrido. c) Ionizar los gases ácidos para disociarlos en azufre y gas sintético con remanentes de gases ácidos. The pretreated natural gas from the coalescing filter enters the plurality of polymeric membranes that can be of the polyimide, polybenzimidazole, polyamides, polyethers, polyurethanes, polyureas and combinations of polyurethane ureas or polyamide ether ether. The plurality of membranes consists of tubular modules capable of processing, but not limited to, from 1 to 40 million cubic feet per day (MMPCSD) of natural gas preferably 20 PCSD. The pretreated natural gas can be fed to the plurality of membranes at a temperature of 35 ° C. The plurality of membranes operates at a supply pressure from 3.5 kg / cm 2 to 35 kg / cm 2 and preferably at 27.1 kg / cm 2 . The molar composition of the pretreated natural gas is 70% to 95% by weight of CH 4 , 1% to 20% by weight of N 2 , 1% to 20% by weight of C0 2 , from 1% to 10% by weight of H 2 S preferably 83% by weight of CH, 9% by weight of N 2 , 5% by weight of C0 2 , 3% by weight of H 2 S, in addition to other minor hydrocarbons. The process of separation of Gases by means of a plurality of membranes are performed following a solution-diffusion mechanism. The gases first dissolve and then diffuse through the polymeric membrane selectively permeating those gases that have greater affinity for the plurality of membranes, which are C0 2 and H 2 S acid gases, and leave a non-permeated residual current enriched with CH 4 . From the plurality of membranes consisting of tubular modules and from which two gas lines leave; the non-permeated retained gas stream, which constitutes the sweet gas formed mainly of CH 4 , while the permeated gas stream containing mostly C0 2i H 2 S acid gases in addition to N 2 and traces of CH 4 , is transferred to a hybrid plasma reactor. c) Ionize acid gases to dissociate them into sulfur and synthetic gas with remnants of acid gases.
La corriente de gas permeado que contiene mayoritariamente los gases ácidos C02, H2S además de N2 y trazas de CH4 se lleva a tratamiento a fin de convertirlos en productos de mayor valor agregado. Los gases ácidos que fueron separados en la etapa b) son ionizados para generar así un plasma híbrido en donde se obtienen azufre y gas sintético con remanentes de gases ácidos. The permeate gas stream containing mostly C0 2 , H 2 S acid gases in addition to N 2 and traces of CH 4 is treated to convert them into products with higher added value. The acid gases that were separated in step b) are ionized to generate a hybrid plasma where sulfur and synthetic gas are obtained with remnants of acid gases.
Los gases ácidos entran a contraflujo a través de la pared del reactor de plasma híbrido donde los gases adquieren una temperatura de 100 °C a 200 °C. Posteriormente, este efluente entra al reactor de plasma híbrido donde los gases son disociados en sus elementos constitutivos obteniéndose productos con alto valor agregado como el azufre y el gas sintético (mezcla de H2 y CO) con remanentes de gases ácidos. El azufre se retira del reactor de plasma híbrido en forma líquida por la parte inferior del mismo. El gas sintético (mezcla de H2 y CO) con remanentes de gases ácidos sale por la parte inferior del reactor de plasma híbrido, el cual es transferido a una pluralidad de columnas de burbujeo. d) Neutralizar el gas sintético con remanentes de gases ácidos para generar gas sintético. Acid gases backflow through the wall of the hybrid plasma reactor where the gases acquire a temperature of 100 ° C to 200 ° C. Subsequently, this effluent enters the hybrid plasma reactor where the gases are dissociated in their constituent elements obtaining products with high added value such as sulfur and synthetic gas (mixture of H 2 and CO) with remnants of acid gases. Sulfur is removed from the hybrid plasma reactor in liquid form from the bottom of it. The syngas (mixture of CO and H 2) with remaining acid gas exiting the reactor bottom hybrid plasma, which is transferred to a plurality of bubble columns. d) Neutralize synthetic gas with remnants of acid gases to generate synthetic gas.
El gas sintético con remanentes de gases ácidos resultante de la etapa c) entra a una pluralidad de columnas de burbujeo para neutralizar los gases ácidos remanentes C02 y H2S. The synthetic gas with remnants of acid gases resulting from step c) enters a plurality of bubble columns to neutralize the remaining acidic gases C0 2 and H 2 S.
El gas sintético con remanentes de gases ácidos también puede contener pequeñas cantidades de NOx y SOx en estado gaseoso. Para completar el tratamiento y disponer del gas sintético en los niveles permisibles, se realiza la neutralización de los gases ácidos haciendo uso de una pluralidad de columnas de burbujeo en operación continua. La pluralidad de columnas de burbujeo contiene un agente neutralizante que puede ser Ca(OH)2, NaOH, LiOH, KOH, Mg(OH)2, Ba(OH)2, Mn(OH)2 y sus combinaciones, preferentemente Ca(OH)2. Synthetic gas with acid gas remnants can also contain small amounts of NO x and SO x in the gaseous state. To complete the treatment and dispose of the synthetic gas at the permissible levels, neutralization of the acid gases is carried out using a plurality of bubble columns in continuous operation. The plurality of bubble columns contains a neutralizing agent that can be Ca (OH) 2 , NaOH, LiOH, KOH, Mg (OH) 2 , Ba (OH) 2 , Mn (OH) 2 and combinations thereof, preferably Ca (OH ) 2 .
La pluralidad de columnas de burbujeo en operación continua comprende al menos dos columnas, preferentemente tres columnas de acero inoxidable. El agente neutralizante se recircula en dirección descendente succionándola por el fondo y descargándola por la parte superior de la columna . Con base en la Figura 2, el gas sintético con remanentes de gases ácidos se hace pasar a través de una pluralidad de columnas de burbujeo en serie de la siguiente manera : primeramente el gas sintético con remanentes de gases ácidos entra a la primera columna (A) y subsecuentemente entra a la segunda columna (B), siendo su ingreso por la parte inferior de cada columna ; mientras que la tercer columna (C) entra en operación toda vez que el agente neutralizante de la columna (A) se agote, se descargue y tenga que ser recargada con agente neutralizante nuevo. En este caso, el gas sintético con remanentes de gases ácidos es redirigido para entrar por la columna (B) que aún se encuentra en operación y luego pasa a la columna (C). Al agotarse el agente neutralizante de la columna (B), éste se descarga y el gas sintético con remanentes de gases ácidos es redirigido a la columna (C), luego entra a la columna (A) recargada con agente neutralizante nuevo, quedando la columna (B) en condiciones para ser recargada con agente neutralizante nuevo. Cuando se agota el agente neutralizante de la columna (C), el ciclo de operación se reinicia . The plurality of bubble columns in continuous operation comprises at least two columns, preferably three stainless steel columns. The neutralizing agent is recirculated in the downward direction by suctioning it from the bottom and discharging it from the top of the column. Based on Figure 2, the synthetic gas with acid gas remnants is passed through a plurality of series bubble columns in the following manner: first the synthetic gas with acid gas remnants enters the first column (A ) and subsequently enters the second column (B), its income being at the bottom of each column; while the third column (C) goes into operation whenever the neutralizing agent in column (A) is depleted, discharged and has to be recharged with new neutralizing agent. In this case, the synthetic gas with acid gas remnants is redirected to enter the column (B) that is still in operation and then goes to the column (C). When the neutralizing agent of the column (B) is exhausted, it is discharged and the synthetic gas with remnants of acid gases is redirected to the column (C), then enters the recharged column (A) with new neutralizing agent, the column (B) being able to be recharged with new neutralizing agent. When the neutralizing agent in column (C) is used up, the operating cycle is restarted.
Al entrar en contacto con el agente neutralizante, los gases ácidos C02 y H2S son convertidos en el correspondiente carbonato y sulfuro según el tipo de agente neutralizante que se elija del grupo que comprende Ca(OH)2, NaOH, LiOH, KOH, Mg(OH)2, Ba(OH)2, Mn(OH)2 y sus combinaciones, preferentemente Ca(OH)2, de acuerdo a las reacciones químicas siguientes : Upon contact with the neutralizing agent, the C0 2 and H 2 S acid gases are converted into the corresponding carbonate and sulphide according to the type of neutralizing agent chosen from the group comprising Ca (OH) 2 , NaOH, LiOH, KOH , Mg (OH) 2 , Ba (OH) 2 , Mn (OH) 2 and their combinations, preferably Ca (OH) 2 , according to the following chemical reactions:
C02 + MOH→ MC03 + nH20 C0 2 + MOH → MC0 3 + nH 2 0
H2S + MOH→ MS + nH20 H 2 S + MOH → MS + nH 2 0
Donde M es Ca, Na, Li, K, Mg, Ba, Mn, preferentemente Ca . Where M is Ca, Na, Li, K, Mg, Ba, Mn, preferably Ca.
En caso de que generarse pequeñas cantidades de NOx gaseosos, tales como óxido nitroso (N20), óxido nítrico (NO) y dióxido de nitrógeno (N02) y SOx gaseosos, tales como dióxido de azufre (S02), éstos reaccionan con el agente neutralizante formando productos de reacción tales como nitritos y sulfitos, respectivamente. If small amounts of gaseous NO x are generated, such as nitrous oxide (N 2 0), nitric oxide (NO) and nitrogen dioxide (N0 2 ) and gaseous SO x , such as sulfur dioxide (S0 2 ), these react with the neutralizing agent forming reaction products such as nitrites and sulphites, respectively.
Estos productos de reacción permanecen en recirculación dentro de la pluralidad de columnas de burbujeo. Cuando el agente neutralizante se agota, el contenido de la columna se descarga hacia un contenedor. Opcionalmente, si los productos de reacción son insolubles se filtran y se lavan si es necesario. Si son solubles es necesario concentrarlos hasta la saturación y precipitación de sólidos que posteriormente se filtran y lavan, de ser necesario. En caso de ser insolubles como el CaC03 o Li2C03 se filtran y lavan con agua caliente para separar CaC03 o Li2C03 en estado sólido mientras que en los licores de filtración permanece el CaS o Li2S. El CaC03 o Li2C03 se seca y queda a disposición para su uso final. El gas sintético (mezcla de H2 y CO) se recupera y puede ser utilizado como combustible para generación de energía dentro del proceso de la presente invención. These reaction products remain in recirculation within the plurality of bubble columns. When the neutralizing agent is depleted, the contents of the column are discharged into a container. Optionally, if the reaction products are insoluble, they are filtered and washed if necessary. If they are soluble it is necessary to concentrate them to the saturation and precipitation of solids that are subsequently filtered and washed, if necessary. If they are insoluble such as CaC0 3 or Li 2 C0 3, they are filtered and washed with hot water to separate CaC0 3 or Li 2 C0 3 in solid state while that the CaS or Li 2 S remains in the filtration liquors. The CaC0 3 or Li 2 C0 3 is dried and made available for final use. Synthetic gas (mixture of H 2 and CO) is recovered and can be used as fuel for power generation within the process of the present invention.
EJEMPLO 2: Síntesis de poliuretano-urea y elaboración de membranas EXAMPLE 2: Synthesis of polyurethane-urea and membrane preparation
El poliuretano-urea es sintetizado por el método denominado de dos pasos. En el primer paso, se colocan en un matraz del tipo usado para reacciones químicas en el laboratorio de forma esférica y 3 bocas una cantidad de polióxido de etileno (entre 1000 y 2000 g/mol de peso molecular preferentemente intermedia alrededor de 1200 a 1600 g/mol (1500 g/mol)), previamente secado por el tiempo necesario, que se hace reaccionar en una relación 1 :2 con un di-isocianato cicloalifático o aromático como son de (4,4'-metilen-bisciclohexil isocianato (HMDI) o 2,4 tolilen diisocianato, disuelto en un medio de disolvente adecuado con un punto de ebullición mayor a 110 °C, (como dimetilsulfoxido (DMSO)), esta solución es mezclada vigorosamente durante 5 a 10 min y, posteriormente es incubada a 110 °C durante 3 h en atmósfera de nitrógeno. Pasado el tiempo, la solución del prepolímero macroisocianato se deja enfriar hasta temperatura ambiente. A continuación, como segundo paso se adiciona una solución conteniendo un extendedor de cadena que contiene grupos amino terminales del tipo aromático con un porcentaje de al menos 30 % de flúor en peso como la (4,4- (hexafluoroisopropyllidene) dianilina (HFA)) en una relación molar 1 : 1 con respecto al polióxido de etileno disueltos en 5 mL de dimetilsulfoxido anhidro (DMSO). La reacción de polimerización se lleva a cabo calentando la solución entre 80 °C y 130 °C, preferentemente a 110 °C durante un periodo de tiempo de 15 a 20 h, preferentemente 18 h en atmósfera de nitrógeno y en agitación magnética. Posteriormente, la solución polimérica se deja enfriar a temperatura ambiente y se vierte en 2 L de agua destilada fría, mantenida en agitación, para precipitar el material polimérico. Después, el material polimérico, en forma de fibras, se recupera por filtración y se lava con agua destilada a temperatura ambiente. Finalmente, las fibras del poliuretano-urea se secan a temperatura ambiente durante 24 h y luego a 80 °C en vacío hasta obtener un peso constante. Polyurethane urea is synthesized by the two-step method. In the first step, an amount of ethylene polyoxide (between 1000 and 2000 g / mol of preferably intermediate molecular weight about 1200 to 1600 g is placed in a flask of the type used for chemical reactions in the laboratory and 3 mouths) / mol (1500 g / mol)), previously dried for the necessary time, which is reacted in a 1: 2 ratio with a cycloaliphatic or aromatic di-isocyanate such as (4,4'-methylene-biscyclohexyl isocyanate (HMDI ) or 2,4-tolylene diisocyanate, dissolved in a suitable solvent medium with a boiling point greater than 110 ° C, (as dimethylsulfoxide (DMSO)), this solution is vigorously mixed for 5 to 10 min and then incubated at 110 ° C for 3 h under a nitrogen atmosphere After the time, the macroisocyanate prepolymer solution is allowed to cool to room temperature, then as a second step a solution containing a chain extender containing ami groups is added non-terminal aromatic type with a percentage of at least 30% fluorine by weight such as (4,4- (hexafluoroisopropyllidene) dianiline (HFA)) in a 1: 1 molar ratio with respect to ethylene polyoxide dissolved in 5 mL of anhydrous dimethylsulfoxide (DMSO). The polymerization reaction is carried out by heating the solution between 80 ° C and 130 ° C, preferably at 110 ° C for a period of time from 15 to 20 h, preferably 18 h under nitrogen and magnetic stirring. Subsequently, the polymer solution is allowed to cool to room temperature and poured into 2 L of cold distilled water, kept under stirring, to precipitate the polymeric material. Then, the polymeric material, in the form of fibers, is recovered by filtration and washed with distilled water at room temperature. Finally, the polyurethane urea fibers are dried at room temperature for 24 hours and then at 80 ° C under vacuum until a constant weight is obtained.
La membrana de poliuretano-urea se elabora utilizando la técnica de evaporación de disolvente. Se prepara una solución polimérica al 12.5 % (p/v) utilizando el poliuretano-urea en un solvente apropiado del tipo de cloroformo, 1,2 dicloroetano o tetrahidrofurano, THF. La solución polimérica se filtra utilizando un embudo con filtro sinterizado para eliminar partículas en suspensión . La solución filtrada se coloca en una caja recubierta de teflón, la cual se cubre para evitar la contaminación con partículas de polvo, y se permite la evaporación lenta del solvente. La evaporación del disolvente se lleva a cabo a temperatura ambiente durante 12 h ; posteriormente, la membrana se coloca en una estufa de vacío a 60 °C durante 48 h, con el fin de eliminar por completo el THF. La membrana densa de poliuretano-urea se muestra en la figura 3 y sus dimensiones son 58 cm2 de área con un grosor promedio de 258 pm. Alternativamente, se preparan membranas soportadas en una superficie porosa donde la capa superficial de poliuretano-urea se deposita desde la solución mediante un método adecuado para obtener una distribución homogénea de la membrana una vez que se elimine el disolvente, para esto se pueden usar métodos diversos como, por inmersión del soporte en la solución, o utilizando un método de depósito mecánico con posterior secado sobre la superficie del soporte que puede estar constituido por polímeros porosos, fibras o tejidos. The polyurethane urea membrane is made using the solvent evaporation technique. A 12.5% (w / v) polymer solution is prepared using polyurethane urea in an appropriate solvent of the chloroform type, 1,2 dichloroethane or tetrahydrofuran, THF. The polymer solution is filtered using a funnel with sintered filter to remove suspended particles. The filtered solution is placed in a Teflon coated box, which is covered to prevent contamination with dust particles, and slow evaporation of the solvent is allowed. Evaporation of the solvent is carried out at room temperature for 12 h; subsequently, the membrane is placed in a vacuum oven at 60 ° C for 48 h, in order to completely remove THF. The dense polyurethane urea membrane is shown in Figure 3 and its dimensions are 58 cm 2 of area with an average thickness of 258 pm. Alternatively, supported membranes are prepared on a porous surface where the surface layer of polyurethane-urea is deposited from the solution by a suitable method to obtain a homogeneous distribution of the membrane once the solvent is removed, for this various methods can be used as, by immersion of the support in the solution, or using a method of mechanical deposit with subsequent drying on the surface of the support that may be constituted by porous polymers, fibers or fabrics.
EJEMPLO 3: Caracterización por Microscopía Electrónica de Barrido (MEB) de membranas de tipo poliuretano-urea usada para la separación de C02 y H2S en mezcla de gases CH4/CO2/H2S/N2- EXAMPLE 3: Characterization by Scanning Electron Microscopy (MEB) of polyurethane-urea type membranes used for the separation of C0 2 and H 2 S in gas mixture CH 4 / CO 2 / H 2 S / N2-
La micrografía de MEB correspondiente al corte transversal de una membrana de tipo poliuretano-urea se presenta en la Figura 4. Esta imagen se obtuvo con un microscopio marca JEOL modelo JSM-7401 F. El espesor promedio medido por MEB para esta membrana es de 101.7 μιη . En esta micrografía se observa una membrana densa libre de defectos y/o porosidades que pudieran interferir en los ensayos para la separación de C02 y H2S en mezcla de gases CH4/C02/H2S/N2. The MEB micrograph corresponding to the cross-section of a polyurethane-urea type membrane is presented in Figure 4. This image was obtained with a JEOL model microscope model JSM-7401 F. The average thickness measured by MEB for this membrane is 101.7 μιη. In this micrograph a dense membrane free of defects and / or porosities that could interfere with the assays for the separation of C0 2 and H 2 S in CH 4 gas mixture / C0 2 / H 2 S / N 2 is observed.
EJEMPLO 4: Permeabilidad y selectividad de membranas de tipo poliuretano- urea en mezcla de gases CH4/H2S/CO2/N2 EXAMPLE 4: Permeability and selectivity of polyurethane urea type membranes in gas mixture CH 4 / H2S / CO 2 / N 2
Las propiedades de permeabilidad y selectividad que presentan las membranas poliméricas de tipo poliuretano-urea se determinaron con un dispositivo de permeación de gas acoplado a un cromatógrafo de gases. Para las mediciones se empleó una mezcla de gases cuaternaria a una concentración molar de 83 % CH4; 3 % H2S ; 5 % C02; y 9 % N2. Estos ensayos se realizaron a 35 °C aplicando incrementos progresivos de presión en la cámara de alimentación desde 3.5 kg/cm2 hasta alcanzar 27.1 kg/cm2. Los resultados de las pruebas de permeabilidad y selectividad se presentan en la Tabla 1. Estos resultados indican que las membranas de tipo poliuretano-urea presentan una permeabilidad alta al C02 y al H2S de 33.8 y 143.4 Barrer, respectivamente, mientras que el CH4 y el N2 prácticamente son retenidos al mostrar una permeabilidad de 2.7 y 2 Barrer, respectivamente. Por lo tanto, las membranas de tipo poliuretano-urea son bastante selectivas al permitir mayoritariamente la permeación de los gases ácidos. Gases Permeabilidad (Barrer) Selectividad The permeability and selectivity properties of the polyurethane-urea type polymer membranes were determined with a gas permeation device coupled to a gas chromatograph. For the measurements, a quaternary gas mixture was used at a molar concentration of 83% CH 4 ; 3% H 2 S; 5% C0 2 ; and 9% N 2 . These tests were performed at 35 ° C by applying progressive increases in pressure in the feed chamber from 3.5 kg / cm 2 to 27.1 kg / cm 2 . The results of the permeability and selectivity tests are presented in Table 1. These results indicate that the polyurethane-urea type membranes have a high permeability to C0 2 and H 2 S of 33.8 and 143.4 Sweep, respectively, while the CH 4 and N 2 are practically retained by showing a permeability of 2.7 and 2 Sweep, respectively. Therefore, polyurethane-urea type membranes are quite selective because they mostly allow permeation of acid gases. Gases Permeability (Sweep) Selectivity
C02 33.8 12.5 C0 2 33.8 12.5
H2S 143.4 52.7 H 2 S 143.4 52.7
N2 2.0 0.8 N 2 2.0 0.8
CH4 2.7 1 CH 4 2.7 1
Tabla 1. Table 1.
EJEMPLO 5. Ionización de mezcla de gases CH4/H2S/CO2/N2 por plasma híbrido EXAMPLE 5. Ionization of CH 4 / H 2 S / CO 2 / N 2 gas mixture by hybrid plasma
El proceso de ionización de la mezcla de gases CH4/H2S/C02/N2 requiere para su funcionamiento una fuente de energía eléctrica de 1.2 kW para tratar un flujo de gas hasta de 50 LPM a presión atmosférica. Cabe mencionar, que el proceso es continuo y no requiere sistemas adicionales de compresión o sistemas de vacío. De acuerdo a los estudios realizados, con esta densidad energética se logran perfiles de temperatura que van de 5000 K a 400 K, permitiendo con ello eliminar los efectos de inercia térmica de las especies tratadas y su posible recombinación. Los porcentajes de degradación logrados bajo estas condiciones de operación son para H2S > 90 % y para C02 > 58 %. The ionization process of the gas mixture CH 4 / H 2 S / C0 2 / N 2 requires for its operation a source of electrical power of 1.2 kW to treat a gas flow of up to 50 LPM at atmospheric pressure. It is worth mentioning that the process is continuous and does not require additional compression systems or vacuum systems. According to the studies carried out, with this energy density temperature profiles are achieved ranging from 5000 K to 400 K, thereby eliminating the effects of thermal inertia of the treated species and their possible recombination. The degradation rates achieved under these operating conditions are for H 2 S> 90% and for C0 2 > 58%.
EJEMPLO 6. Evaluación de la neutralización de C02 en columna de burbujeo con agente neutralizante de Ca(OH)2 EXAMPLE 6. Evaluation of the neutralization of C0 2 in bubble column with neutralizing agent of Ca (OH) 2
Los ensayos realizados para evaluar la eficiencia de neutralización de los gases ácidos de la etapa d) se llevaron a cabo vía neutralización por burbujeo en columnas de acrílico y PVC de 7.2 cm de diámetro y 186 cm de altura usando un volumen de agente neutralizante de 7 a 10 L. La concentración del agente neutralizante varía de 10 % a 30 % en peso, preferentemente 15 % para el caso de Ca(OH)2. The tests performed to evaluate the neutralization efficiency of the acid gases of step d) were carried out via bubble neutralization in acrylic and PVC columns of 7.2 cm in diameter and 186 cm in height using a volume of neutralizing agent of 7 at 10 L. The concentration of the neutralizing agent ranges from 10% to 30% by weight, preferably 15% in the case of Ca (OH) 2 .
Se operó en sistemas de columnas cerradas, ajustándose un flujo controlado preferentemente de 18 L/m¡n de agente neutralizante y 1 L/min en la corriente de C02, para promover el mayor contacto entre el líquido y el gas, y por tanto, hacer más eficiente la neutralización. Dentro de cada columna existe un volumen de aire, que se recircula durante el proceso, y a esta corriente de aire se le inyecta una corriente de 1 L/min de C02 lo que hace que se diluya con el aire en una relación volumétrica C02/aire entre 1/10 y 1/12, ya que el aire se recirculó a 10-12 L/min a través de la columna. Se seleccionaron tres procedimientos para monitorear la reacción de neutralización del C02 con agente neutralizante de Ca(OH2) : i) medición del pH, ii) medición de la temperatura y iii) medición de la presión de la columna de burbujeo. i) Medición del pH: It was operated in closed column systems, adjusting a controlled flow preferably 18 L / min of neutralizing agent and 1 L / min in the C0 2 stream, to promote greater contact between the liquid and the gas, and therefore, make neutralization more efficient. Within each column there is a volume of air, which is recirculated during the process, and this current of air is injected with a current of 1 L / min of C0 2 which causes it to be diluted with the air in a volumetric ratio C0 2 / air between 1/10 and 1/12, since the air was recirculated at 10-12 L / min through the column. Three procedures were selected to monitor the neutralization reaction of C0 2 with neutralizing agent Ca (OH 2): i) pH measurement, ii) measuring temperature and iii) measuring the pressure of the bubble column. i) pH measurement:
Inicialmente, el agente neutralizante se encuentra a un pH de 13, conforme avanza la reacción de neutralización, el pH va disminuyendo hasta llegar a un pH de 7, cuando el agente neutralizante de Ca(OH)2 se ha consumido por completo, como se aprecia en la Tabla 2. ii) Medición de la temperatura: Initially, the neutralizing agent is at a pH of 13, as the neutralization reaction proceeds, the pH decreases until a pH of 7, when the neutralizing agent Ca (OH) 2 has been completely consumed, as see in Table 2. ii) Temperature measurement:
Durante la reacción de neutralización se registra un aumento de temperatura desde 23.9 °C hasta 30.6 °C en función del tiempo de reacción, por lo que al detectar que la temperatura se mantiene constante o comienza a disminuir se evidencia que el agente neutralizante se ha agotado (Tabla 2). iii) Medición de la presión de la columna de burbujeo:  During the neutralization reaction an increase in temperature is recorded from 23.9 ° C to 30.6 ° C depending on the reaction time, so when detecting that the temperature remains constant or begins to decrease it is evidenced that the neutralizing agent has run out (Table 2). iii) Bubble column pressure measurement:
La presión en la columna de burbujeo es nula o despreciable mientras se lleva a cabo la reacción de neutralización. La presión se incrementa una vez que el agente neutralizante se agota siendo esto un indicativo de que los gases ácidos, en este caso el C02, ya no se consumen. (Tabla 2). Tiempo (min) Temperatura (°C) Presión (psig) pH The pressure in the bubble column is zero or negligible while the neutralization reaction is carried out. The pressure is increased once the neutralizing agent is depleted, this being an indication that acid gases, in this case C0 2 , are no longer consumed. (Table 2). Time (min) Temperature (° C) Pressure (psig) pH
0 23.9 0 13  0 23.9 0 13
16 24.5 0 13  16 24.5 0 13
31 25.6 0.3 13  31 25.6 0.3 13
45 26.8 0.5 13  45 26.8 0.5 13
60 27.4 0.5 13  60 27.4 0.5 13
75 28.3 0.5 13 75 28.3 0.5 13
90 28.9 0.5 1390 28.9 0.5 13
105 29.3 1.5 13105 29.3 1.5 13
120 29.7 1.5 13120 29.7 1.5 13
135 30.1 1.5 13135 30.1 1.5 13
150 30.3 3 10.5 150 30.3 3 10.5
157 30.6 5 7.5 157 30.6 5 7.5
160 30.7 7 7 160 30.7 7 7
Tabla 2 Table 2
Adicionalmente, se observa que el incremento en la presión de alimentación del C02 favorece la velocidad de la reacción de neutralización, evidenciándose en una reducción de los tiempos de agotamiento del agente neutralizante (Tabla 3). Additionally, it is observed that the increase in the supply pressure of C0 2 favors the speed of the neutralization reaction, evidencing a reduction in the depletion times of the neutralizing agent (Table 3).
Figure imgf000032_0001
Figure imgf000032_0001
Tabla 3 Table 3
VENTAJAS DE LA INVENCIÓN ADVANTAGES OF THE INVENTION
En la presente invención se desarrollarán y utilizarán membranas del tipo hule elastomérico con altos contenidos de grupos del tipo amina, amida, urea y/o uretano que interaccionan favorablemente con el C02, particularmente apropiadas serían las que contengan poliéteres (óxidos de etileno) de cadena intermedia entre 1000 y 2000 unidades de masa molecular, lo que aumenta la interacción con el C02, y disminuye por el tamaño de la cadena la posibilidad de cristalizar logrando mayores flujos de gas, estos deberán estar conectados con extendedores de cadena aromáticos en lugar de alifático para evitar el ataque del ácido y mantener sus propiedades como las que presentan los copolímeros de poliuretano-urea con extendedores de cadena aromáticos fluorado en la sección correspondiente a la urea, desarrollados específicamente en la presente invención. In the present invention, elastomeric rubber type membranes with high contents of amine, amide, urea and / or urethane type groups will be developed and used. which interact favorably with C0 2 , particularly appropriate would be those containing intermediate chain polyethers (ethylene oxides) between 1000 and 2000 units of molecular mass, which increases the interaction with C0 2 , and decreases by chain size the possibility of crystallizing achieving greater gas flows, these must be connected with aromatic chain extenders instead of aliphatic to avoid the attack of the acid and maintain its properties as those presented by polyurethane-urea copolymers with fluorinated aromatic chain extenders in the section corresponding to urea, specifically developed in the present invention.
En la presente invención, la corriente de gases ácidos contiene por debajo de un 30% molar de CH4 haciendo más eficiente el proceso de endulzamiento. Así mismo, el proceso descrito en la presente invención brinda la posibilidad de transformar la corriente de gases ácidos en una corriente de gas sintético y azufre. In the present invention, the acid gas stream contains below 30 mol% CH 4 making the sweetening process more efficient. Likewise, the process described in the present invention provides the possibility of transforming the acid gas stream into a stream of synthetic gas and sulfur.
La presente invención incluye la remoción de ambos gases ácidos con membranas altamente selectivas para C02 y H2S; con la ventaja adicional de que se generan gas dulce, gas sintético y azufre lo cual evita la contaminación ambiental debido a la liberación de C02 y S02 a la atmósfera, producidos por otros procesos existentes. The present invention includes the removal of both acid gases with highly selective membranes for C0 2 and H 2 S; with the additional advantage that sweet gas, synthetic gas and sulfur are generated which prevents environmental pollution due to the release of C0 2 and S0 2 into the atmosphere, produced by other existing processes.
Es importante mencionar, que la presente invención no solamente permite el endulzamiento del gas natural sino que adicionalmente ofrece la conversión de los gases ácidos en productos de valor agregado, empleando un reactor de plasma híbrido. El plasma ofrece por lo menos tres propiedades fundamentales que lo hacen atractivo para diferentes aplicaciones: (i) La temperatura y densidad energética excede ampliamente las de técnicas convencionales, (ii) Capacidad de producir especies activas con tiempos de reacción muy inferiores a las técnicas convencionales; (iii) En el caso de plasmas fuera de equilibrio térmico (NETL) las especies activas tienen altas concentraciones de energía, aun cuando el volumen de plasma permanece a temperatura ambiente. Es importante mencionar que, la inercia térmica del plasma dentro de un reactor es prácticamente nula, existe un calentamiento uniforme del material, las fuerzas electromagnéticas empujan el plasma al centro del reactor y existe un aprovechamiento de la energía de radiación . Al superar la temperatura de 3000 °C, la capacidad de transferencia de energía se multiplica enormemente en función del gas plasmágeno utilizado, lo que permite acelerar reacciones químicas que a temperaturas menores no pueden ocurrir. It is important to mention that the present invention not only allows the sweetening of natural gas but also offers the conversion of acid gases into value-added products, using a hybrid plasma reactor. Plasma offers at least three fundamental properties that make it attractive for different applications: (i) The temperature and energy density far exceeds those of conventional techniques, (ii) Ability to produce active species with reaction times much shorter than conventional techniques ; (iii) In the In case of thermal equilibrium (NETL) plasmas, active species have high concentrations of energy, even when the plasma volume remains at room temperature. It is important to mention that, the thermal inertia of the plasma inside a reactor is practically zero, there is a uniform heating of the material, the electromagnetic forces push the plasma to the center of the reactor and there is a use of radiation energy. Upon exceeding the temperature of 3000 ° C, the energy transfer capacity is greatly multiplied depending on the plasma gas used, which allows accelerating chemical reactions that cannot occur at lower temperatures.
En función de lo antes expuesto, el plasma se presenta como una alternativa de aplicación en diferentes procesos de degradación, como lo es en el tratamiento de disolventes usados en la industria y en pinturas, aceites usados, aceites dieléctricos conteniendo PCBs (bifenilpoliclorados) y sus contenedores (capacitores y transformadores), compuestos químicos halogenados, CFCs (clorofluorocarbonos), pesticidas, resinas, adhesivos, entre otros. Recientemente y con la presente invención, el plasma es aplicado en el tratamiento de gases ácidos como el C02 y H2S. La elevada densidad de energía y la baja inercia del plasma pueden ser usadas para romper los enlaces moleculares de los gases ácidos obteniendo como producto final partículas constitutivas elementales como hidrógeno, gases energéticos como gas sintético (syngas = H2 + CO) y sólidos inertes como azufre y carbono. Based on the above, plasma is presented as an alternative for application in different degradation processes, such as in the treatment of solvents used in industry and in paints, used oils, dielectric oils containing PCBs (biphenylpolyclorates) and their containers (capacitors and transformers), halogenated chemical compounds, CFCs (chlorofluorocarbons), pesticides, resins, adhesives, among others. Recently and with the present invention, plasma is applied in the treatment of acid gases such as C0 2 and H 2 S. The high energy density and low inertia of the plasma can be used to break the molecular bonds of acid gases obtaining as final product elementary constituent particles such as hydrogen, energy gases such as synthetic gas (syngas = H 2 + CO) and inert solids such as sulfur and carbon.
Así como la presente invención produce azufre y gas sintético a partir de la mezcla de gases ácidos C02/H2S vía plasma híbrido, esta invención incluye también la integración del plasma híbrido a módulos de endulzamiento de gas natural por membranas, lo cual representa ventajas sobre las tecnologías ya existentes referentes al tratamiento de H2S y C02 con diferentes descargas de plasma . Aunque la invención ha sido descrita con referencia a descripciones específicas, estas descripciones no están destinadas a ser interpretadas en un sentido limitativo. Diversas modificaciones a los elementos descritos, así como elementos alternativos de la invención, se harán evidentes para las personas expertas en la técnica con referencia a la descripción de la invención . Se debe apreciar por los expertos en la técnica que la concepción y realización especifica descrita podría utilizarse fácilmente como base para modificar o diseñar otras estructuras para llevar a cabo los mismos propósitos de la presente invención. También debe tenerse en cuenta por los expertos en la técnica que tales configuraciones equivalentes no se apartan del espíritu y alcance de la invención como se establece en las reivindicaciones adjuntas. Just as the present invention produces sulfur and synthetic gas from the mixture of C0 2 / H 2 S acid gases via hybrid plasma, this invention also includes the integration of hybrid plasma to natural gas sweetening modules by membranes, which represents advantages over existing technologies concerning the treatment of H 2 S and C0 2 with different plasma discharges. Although the invention has been described with reference to specific descriptions, these descriptions are not intended to be interpreted in a limiting sense. Various modifications to the elements described, as well as alternative elements of the invention, will become apparent to persons skilled in the art with reference to the description of the invention. It should be appreciated by those skilled in the art that the specific conception and embodiment described could easily be used as a basis for modifying or designing other structures to carry out the same purposes of the present invention. It should also be taken into account by those skilled in the art that such equivalent configurations do not depart from the spirit and scope of the invention as set forth in the appended claims.
Por consiguiente, se contempla que las reivindicaciones cubren cualquiera de tales modificaciones o configuraciones que caen dentro del verdadero alcance de la invención. Accordingly, it is contemplated that the claims cover any such modifications or configurations that fall within the true scope of the invention.

Claims

REIVINDICACIONES
1. Un método para obtener gas dulce, gas sintético y azufre a partir de gas natural, el método comprende los pasos de : 1. A method for obtaining sweet gas, synthetic gas and sulfur from natural gas, the method comprises the steps of:
eliminar impurezas de dicho gas natural para obtener gas natural pretratado;  remove impurities from said natural gas to obtain pretreated natural gas;
endulzar el gas natural pretratado por medio de una separación utilizando una pluralidad de membranas para obtener gas dulce y gases ácidos; ionizar dichos gases ácidos para disociarlos en azufre y gas sintético con remanentes de gases ácidos; y  sweeten the pretreated natural gas by means of a separation using a plurality of membranes to obtain sweet gas and acid gases; ionize said acid gases to dissociate them into sulfur and synthetic gas with remnants of acid gases; Y
neutralizar dicho gas sintético con remanentes de gases ácidos para generar gas sintético.  neutralize said synthetic gas with remnants of acid gases to generate synthetic gas.
2. El método de la reivindicación 1, en donde previo a dicho paso de eliminar impurezas de dicho gas natural para obtener gas natural pretratado, dicho gas natural se acondiciona a una temperatura de 35 °C a 50 °C y a una presión de 65 kg/cm2 a 100 kg/cm2.. 2. The method of claim 1, wherein prior to said step of removing impurities from said natural gas to obtain pretreated natural gas, said natural gas is conditioned at a temperature of 35 ° C to 50 ° C and a pressure of 65 kg / cm 2 to 100 kg / cm 2 ..
3. El método de la reivindicación 1, en donde dicho paso de eliminar impurezas de dicho gas natural para obtener gas natural pretratado comprende los pasos de : separar líquidos y sólidos presentes en dicho gas natural mediante un separador; y 3. The method of claim 1, wherein said step of removing impurities from said natural gas to obtain pretreated natural gas comprises the steps of: separating liquids and solids present in said natural gas by means of a separator; Y
eliminar por completo contaminantes líquidos y sólidos de dicho gas natural mediante un filtrado por filtro coalescente para obtener gas natural pretratado.  Completely remove liquid and solid contaminants from said natural gas by coalescing filter filtration to obtain pretreated natural gas.
4. El método de la reivindicación 1, en donde dicho gas natural comprende al menos un hidrocarburo gaseoso, C02 y H2S; dicho hidrocarburo gaseoso es al menos uno del grupo que comprende metano, propano, etileno, etano, propileno, pentanos, n- butano y s-butano. 4. The method of claim 1, wherein said natural gas comprises at least one gaseous hydrocarbon, C0 2 and H 2 S; said gaseous hydrocarbon is at least one from the group comprising methane, propane, ethylene, ethane, propylene, pentanes, n-butane and s-butane.
5. El método de la reivindicación 1, en donde dicho paso de endulzar el gas natural pretratado por medio de una separación utilizando una pluralidad de membranas para obtener gas dulce y gases ácidos comprende el paso de: 5. The method of claim 1, wherein said step of sweetening the pretreated natural gas by means of a separation using a plurality of membranes to obtain fresh gas and acid gases comprises the step of:
difundir dicho gas natural pretratado a través de dichas membranas para obtener una corriente de gas retenido no permeado y una corriente de gas permeado, que constituyen dicho gas dulce y dichos gases ácidos, respectivamente.  diffusing said pretreated natural gas through said membranes to obtain a stream of non-permeated retained gas and a permeate gas stream, constituting said sweet gas and said acid gases, respectively.
6. El método de la reivindicación 1, en donde dicho gas dulce comprende : 6. The method of claim 1, wherein said sweet gas comprises:
al menos 80% de CH4; y at least 80% CH 4 ; Y
menos de 4 ppm de H2S y gases seleccionados de un grupo que consiste de CO2, N2, hidrocarburos y sus combinaciones. less than 4 ppm of H 2 S and gases selected from a group consisting of CO2, N 2 , hydrocarbons and their combinations.
7. El método de la reivindicación 1, en donde dichos gases ácidos comprenden : 7. The method of claim 1, wherein said acid gases comprise:
al menos 50% de H2S ; at least 50% of H 2 S;
al menos 20% de C02; y at least 20% of C0 2 ; Y
al menos 30 % de N2 y CH4. at least 30% of N 2 and CH 4 .
8. El método la reivindicación 5, en donde además incluye el paso de pasar a dicho gas dulce por una segunda separación cuando dicho gas dulce comprenda una cantidad de C02 mayor o igual a 1000 ppm . The method of claim 5, wherein it also includes the step of passing said sweet gas through a second separation when said sweet gas comprises an amount of C0 2 greater than or equal to 1000 ppm.
9. El método de la reivindicación 1, en donde dicho paso de ionizar dichos gases ácidos para disociarlos en azufre y gas sintético con remanentes de gases ácidos comprende los pasos de : 9. The method of claim 1, wherein said step of ionizing said acid gases to dissociate them into sulfur and synthetic gas with remnants of acid gases comprises the steps of:
disociar dichos gases ácidos en un reactor de plasma híbrido, obtener azufre y gas sintético; y dissociate said acid gases in a hybrid plasma reactor, obtain sulfur and synthetic gas; Y
enviar dicho azufre para su disposición final .  send said sulfur for final disposal.
10. El método de la reivindicación 1, en donde dicho gas sintético comprende una mezcla de H2 y CO. 10. The method of claim 1, wherein said synthetic gas comprises a mixture of H 2 and CO.
11. El método de la reivindicación 1, en donde dicho paso de neutralizar dicho gas sintético con remanentes de gases ácidos para generar gas sintético comprende el paso de : 11. The method of claim 1, wherein said step of neutralizing said synthetic gas with remnants of acid gases to generate synthetic gas comprises the step of:
pasar dicho gas sintético con remanentes de gases ácidos por una pluralidad de columnas de burbujeo que contienen un agente neutralizante con un pH de 8 a 14, una concentración de 10 % a 30 % en peso y seleccionado de un grupo que consiste de KOH, NaOH, LiOH, Mg(OH)2, Ba(OH)2, n(OH)2, Ca(OH )2 y sus combinaciones; y en donde dicho gas sintético con remanentes de gases ácidos pasa a través de dichas columnas de burbujeo en contra del flujo de dicho agente neutralizante. passing said synthetic gas with remnants of acid gases through a plurality of bubble columns containing a neutralizing agent with a pH of 8 to 14, a concentration of 10% to 30% by weight and selected from a group consisting of KOH, NaOH , LiOH, Mg (OH) 2 , Ba (OH) 2 , n (OH) 2 , Ca (OH) 2 and combinations thereof; and wherein said synthetic gas with acid gas remnants passes through said bubble columns against the flow of said neutralizing agent.
12. El método de la reivindicación 11, en donde además comprende los pasos de: 12. The method of claim 11, wherein it further comprises the steps of:
filtrar y lavar con agua caliente productos de reacción insolubles en estado sólido generados por la reacción de dicho gas sintético con remanentes de gases ácidos y dicho agente neutralizante; y  filter and wash with solid water insoluble reaction products in solid state generated by the reaction of said synthetic gas with remnants of acid gases and said neutralizing agent; Y
secar dichos productos de reacción insolubles para su disposición final.  Dry said insoluble reaction products for final disposal.
13. El método de la reivindicación 1, en donde dicho gas sintético con remanentes de gases ácidos contiene además remanentes de C02, H2S, NOx y SOx. 13. The method of claim 1, wherein said synthetic gas with acid gas remnants further contains C0 2 , H 2 S, NO x and SO x remnants.
14. Un sistema para obtener gas dulce, gas sintético y azufre a partir de gas natural en donde se lleva a cabo el proceso de las reivindicaciones 1 a 13, que comprende: un separador; 14. A system for obtaining sweet gas, synthetic gas and sulfur from natural gas wherein the process of claims 1 to 13 is carried out, comprising: a separator;
un filtro coalescente conectado en paralelo a dicho separador;  a coalescing filter connected in parallel to said separator;
una pluralidad de membranas conectadas a dicho filtro coalescente, dichas membranas están elaboradas a base de polímeros seleccionados de un grupo que consiste de poliimida, polibenzimidazol, poliamidas, poliéteres, poliuretanos, poliureas y sus combinaciones;  a plurality of membranes connected to said coalescing filter, said membranes are made from polymers selected from a group consisting of polyimide, polybenzimidazole, polyamides, polyethers, polyurethanes, polyureas and combinations thereof;
al menos un reactor de plasma híbrido de doble pared conectado a dicha pluralidad de membranas; y  at least one double wall hybrid plasma reactor connected to said plurality of membranes; Y
una pluralidad de columnas de burbujeo conectadas a dicho reactor de plasma híbrido y conteniendo un agente neutralizante.  a plurality of bubble columns connected to said hybrid plasma reactor and containing a neutralizing agent.
15. El sistema de la reivindicación 14, en donde dicha pluralidad de membranas tienen una relación de separación de H2S y CH4 de al menos 20 : 1, una permeabilidad de H2S de al menos 50 Barrer, una relación de separación de C02 y CH4 de al menos 10 : 1 y una permeabilidad de C02 de al menos 30 Barrer. 15. The system of claim 14, wherein said plurality of membranes have a separation ratio of H 2 S and CH 4 of at least 20: 1, a permeability of H 2 S of at least 50 Sweep, a separation ratio of C0 2 and CH 4 of at least 10: 1 and a permeability of C0 2 of at least 30 Sweep.
16. El sistema de la reivindicación 15, en donde dicha relación de separación de H2S y CH4 es de 20 : 1 a 60 : 1. 16. The system of claim 15, wherein said separation ratio of H 2 S and CH 4 is from 20: 1 to 60: 1.
17. El sistema de la reivindicación 15, en donde dicha permeabilidad de H2S es de 50 Barrer a 150 Barrer. 17. The system of claim 15, wherein said permeability of H 2 S is 50 Sweep to 150 Sweep.
18. El sistema de la reivindicación 15, en donde dicha relación de separación C02 y CH4 es de 10 : 1 a 30 : 1. 18. The system of claim 15, wherein said separation ratio C0 2 and CH 4 is from 10: 1 to 30: 1.
19. El sistema de la reivindicación 15, en donde dicha permeabilidad de C02 es de 30 Barrer a 130 Barrer. 19. The system of claim 15, wherein said C0 2 permeability is 30 Sweep to 130 Sweep.
20. El sistema de la reivindicación 14, en donde dicha pluralidad de membranas tiene una acomodo seleccionado de un grupo que consiste de acomodo tubular, enrolladas en espiral, fibras huecas y sus combinaciones. 20. The system of claim 14, wherein said plurality of membranes has an arrangement selected from a group consisting of tubular, spirally wound, hollow fibers and combinations thereof.
21. El sistema de la reivindicación 14, en donde además dicha pluralidad de membranas incluye un soporte ultraporoso seleccionado de un grupo que consiste de soporte cerámico, soporte metálico, soporte polimérico, soporte compuesto, tejido y sus combinaciones. 21. The system of claim 14, wherein said plurality of membranes further includes an ultraporous support selected from a group consisting of ceramic support, metal support, polymeric support, composite support, tissue and combinations thereof.
22. El sistema de la reivindicación 14, en donde dichas membranas son elastoméricas de poliuretano-urea con extendedores de cadena tipo amina que contiene grupos aromáticos y flúor con una relación poliuretano-urea de 1 : 1 a 1 : 3. 22. The system of claim 14, wherein said membranes are elastomeric polyurethane-urea with amine chain extenders containing aromatic and fluorine groups with a polyurethane-urea ratio of 1: 1 to 1: 3.
23. El sistema de la reivindicación 14, en donde reactor de plasma híbrido comprende : 23. The system of claim 14, wherein the hybrid plasma reactor comprises:
una primera cámara con un acoplamiento de electrodos;  a first chamber with an electrode coupling;
una segunda cámara conectada en serie a dicha primera cámara; y una fuente de alimentación de alto voltaje pulsado a alta frecuencia conectada a dichos electrodos.  a second camera connected in series to said first camera; and a high voltage pulsed high frequency power supply connected to said electrodes.
24. El sistema de la reivindicación 23, en donde dicha fuente de alimentación de dicho reactor de plasma híbrido comprende una sección de control con un microprocesador central conectado a uno o más impulsores de señal flotante que polarizan y conmutan una o más compuertas de tres transistores MOS de potencia las cuales alimentan a uno o más transformadores elevadores de voltaje armados sobre un núcleo de ferrita. 24. The system of claim 23, wherein said power source of said hybrid plasma reactor comprises a control section with a central microprocessor connected to one or more floating signal impellers that polarize and switch one or more gates of three transistors MOS of power which feed one or more voltage booster transformers armed on a ferrite core.
25. El sistema de la reivindicación 14, en donde dicho reactor de plasma híbrido opera a presión atmosférica, con un perfil de temperatura de 5000 K a 400 K para alcanzar un porcentaje de degradación mayor a 90 % para H2S y mayor a 58 % para C02. 25. The system of claim 14, wherein said hybrid plasma reactor operates at atmospheric pressure, with a temperature profile of 5000 K to 400 K for achieve a degradation percentage greater than 90% for H 2 S and greater than 58% for C0 2 .
26. El sistema de la reivindicación 14, en donde cada columna de burbujeo comprende: 26. The system of claim 14, wherein each bubble column comprises:
al menos dos columnas, cada columna cuenta con una entrada de gas ubicada en su parte inferior una salida de gas ubicada en su parte superior, una entrada de un agente neutralizante ubicada en extremo opuesto a dicha entrada de gas y una salida de un agente neutralizante ubicada en extremo opuesto de dicha salida de gas.  at least two columns, each column has a gas inlet located in its lower part a gas outlet located in its upper part, an inlet of a neutralizing agent located at the opposite end of said gas inlet and an outlet of a neutralizing agent located at the opposite end of said gas outlet.
27. El sistema de la reivindicación 26, en donde en dicha parte inferior de cada columna de burbujeo se ubica un medio de distribución de burbujeo el cual es un ducto en cuya superficie se ubica una serie de perforaciones consecutivas y equidistantes, el cual está enrollado en espiral y cubre la totalidad de la base de la columna. 27. The system of claim 26, wherein in said lower part of each bubble column a bubble distribution means is located which is a duct on whose surface a series of consecutive and equidistant perforations is located, which is wound coiled and covers the entire base of the column.
28. El sistema de la reivindicación 14, en donde dicha pluralidad de columnas de burbujeo comprende tres columnas de acero inoxidable. 28. The system of claim 14, wherein said plurality of bubble columns comprises three stainless steel columns.
29. El sistema de la reivindicación 14, en donde dicha pluralidad de columnas de burbujeo están conectadas en serie, ensambladas verticalmente y cerradas con una relación diámetro-longitud de 1 : 1 a 1 : 30, preferentemente 1 :25. 29. The system of claim 14, wherein said plurality of bubble columns are connected in series, assembled vertically and closed with a diameter-length ratio of 1: 1 to 1: 30, preferably 1: 25.
30. El sistema de la reivindicación 14, en donde dicha pluralidad de columnas de burbujeo tiene una geometría en su base cilindrica, cuadrada o poligonal. 30. The system of claim 14, wherein said plurality of bubble columns has a cylindrical, square or polygonal base geometry.
31. El sistema de la reivindicación 14, en donde dicha pluralidad de columnas de burbujeo tiene un control de flujo de gas que pasa a través de dichas columnas de 0.1 a 0.5 L/min-cm2, preferentemente 0.3 L/min^cm2. 31. The system of claim 14, wherein said plurality of bubble columns has a gas flow control that passes through said columns of 0.1 to 0.5 L / min-cm 2 , preferably 0.3 L / min ^ cm 2 .
32. El sistema de la reivindicación 14, en donde dicho agente neutralizante es seleccionado de un grupo que consiste de NaOH, KOH, LiOH, KOH, Ca(OH)2, Mg(OH)2, Ba(OH)2, n(OH)2 y sus combinaciones. 32. The system of claim 14, wherein said neutralizing agent is selected from a group consisting of NaOH, KOH, LiOH, KOH, Ca (OH) 2 , Mg (OH) 2 , Ba (OH) 2 , n ( OH) 2 and its combinations.
33. El sistema de la reivindicación 32, en donde dicho agente neutralizante es Ca(OH)2. 33. The system of claim 32, wherein said neutralizing agent is Ca (OH) 2 .
34. El sistema de la reivindicación 14, en donde dicho agente neutralizante tiene una concentración de 10 % a 30 % en peso y preferentemente de 15 % a 25 % en peso. 34. The system of claim 14, wherein said neutralizing agent has a concentration of 10% to 30% by weight and preferably 15% to 25% by weight.
35. El sistema de la reivindicación 14, en donde además dicha pluralidad de columnas de burbujeo incluye una columna inoperante que se activará en caso de que dicho agente neutralizante de alguna de las columnas restantes se agote. 35. The system of claim 14, wherein said plurality of bubble columns further includes an inoperative column that will be activated in case said neutralizing agent of any of the remaining columns is depleted.
PCT/MX2013/000080 2013-07-04 2013-07-04 Method and system for obtaining sweet gas, synthesis gas and sulphur from natural gas WO2015002523A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MXMX/A/2013/007820 2013-07-04
MX2013007820A MX365082B (en) 2013-07-04 2013-07-04 Method and system for obtaining sweet gas, synthetic gas and sulphur from natural gas.

Publications (1)

Publication Number Publication Date
WO2015002523A1 true WO2015002523A1 (en) 2015-01-08

Family

ID=52144023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2013/000080 WO2015002523A1 (en) 2013-07-04 2013-07-04 Method and system for obtaining sweet gas, synthesis gas and sulphur from natural gas

Country Status (2)

Country Link
MX (1) MX365082B (en)
WO (1) WO2015002523A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023114142A1 (en) * 2021-12-13 2023-06-22 Saudi Arabian Oil Company Treatment of sour natural gas

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992020431A1 (en) * 1991-05-21 1992-11-26 Exxon Chemical Patents Inc. Treatment of acid gas using hybrid membrane separation systems
WO2000056441A1 (en) * 1999-03-24 2000-09-28 University Of Wyoming System for recovery of sulfur and hydrogen from sour gas
WO2007022595A1 (en) * 2005-08-25 2007-03-01 Agriforce Pty Ltd Adsorbent for gases

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992020431A1 (en) * 1991-05-21 1992-11-26 Exxon Chemical Patents Inc. Treatment of acid gas using hybrid membrane separation systems
WO2000056441A1 (en) * 1999-03-24 2000-09-28 University Of Wyoming System for recovery of sulfur and hydrogen from sour gas
WO2007022595A1 (en) * 2005-08-25 2007-03-01 Agriforce Pty Ltd Adsorbent for gases

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023114142A1 (en) * 2021-12-13 2023-06-22 Saudi Arabian Oil Company Treatment of sour natural gas

Also Published As

Publication number Publication date
MX365082B (en) 2019-04-03
MX2013007820A (en) 2015-01-05

Similar Documents

Publication Publication Date Title
CN107106969B (en) Separating impurities from a fluid stream using multiple co-current contactors
Mansourizadeh et al. CO2 stripping from water through porous PVDF hollow fiber membrane contactor
ES2368868T3 (en) PROCEDURE AND DEVICE FOR SEPARATION OF METHANE AND CARBON DIOXIDE OF BIOGAS.
Aschenbrenner et al. Comparative study of solvent properties for carbon dioxide absorption
US9044711B2 (en) Osmotically driven membrane processes and systems and methods for draw solute recovery
Wongchitphimon et al. Polymer-fluorinated silica composite hollow fiber membranes for the recovery of biogas dissolved in anaerobic effluent
Mansourizadeh et al. Blend polyvinylidene fluoride/surface modifying macromolecule hollow fiber membrane contactors for CO2 absorption
Ghobadi et al. CO2 separation performance of different diameter polytetrafluoroethylene hollow fiber membranes using gas-liquid membrane contacting system
CA2872873C (en) Plant and process for treating methane-containing gas from natural sources
KR101572384B1 (en) Method of production nitrogen oxide solubility water
AU2011305488B2 (en) Osmotically driven membrane processes and systems and methods for draw solute recovery
BR112018003086B1 (en) PROCESS FOR CAPTURING CARBON DIOXIDE AND DESALINATION
WO2017004712A1 (en) Improved membrane-based exhaust gas scrubbing method and system
Lee et al. Temperature and pressure dependence of the CO2 absorption through a ceramic hollow fiber membrane contactor module
Tara et al. Simultaneous increase in CO2 permeability and selectivity by BIT-72 and modified BIT-72 based mixed matrix membranes
CN114222621A (en) Purification system, purification method, membrane separation device, and method for producing solvent
Chau et al. Polyamidoamine-facilitated poly (ethylene glycol)/ionic liquid based pressure swing membrane absorption process for CO2 removal from shifted syngas
BR112019011246A2 (en) carbon dioxide capture device and method
WO2015002523A1 (en) Method and system for obtaining sweet gas, synthesis gas and sulphur from natural gas
US9533260B2 (en) Method and system for obtaining sweet gas, synthetic gas and sulphur from natural gas
CA2820698C (en) Method and system for obtaining sweet gas, synthetic gas and sulphur from natural gas
Akhmetshina et al. Effect of temperature on gas transport properties of supported ionic liquid membranes
WO2011150899A2 (en) A process for enriching biogas from sewerage plants or agricultural basic industries in methane and an apparatus for carrying out the same.
KR101420767B1 (en) Appratus for enriching and recovering fluorinated gas using membrane, and the method for enriching and recoverying of fluorinated gas thereby
US9782719B1 (en) Solvents and methods for gas separation from gas streams

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13888805

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13888805

Country of ref document: EP

Kind code of ref document: A1