WO2015002397A1 - 가압부상장치 - Google Patents

가압부상장치 Download PDF

Info

Publication number
WO2015002397A1
WO2015002397A1 PCT/KR2014/005476 KR2014005476W WO2015002397A1 WO 2015002397 A1 WO2015002397 A1 WO 2015002397A1 KR 2014005476 W KR2014005476 W KR 2014005476W WO 2015002397 A1 WO2015002397 A1 WO 2015002397A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
separation tank
scum
separation
treated water
Prior art date
Application number
PCT/KR2014/005476
Other languages
English (en)
French (fr)
Inventor
양시천
Original Assignee
주식회사 한국아쿠오시스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 한국아쿠오시스 filed Critical 주식회사 한국아쿠오시스
Priority to BR112016000097-8A priority Critical patent/BR112016000097B1/pt
Priority to CN201480031000.6A priority patent/CN105263866B/zh
Priority to AU2014284885A priority patent/AU2014284885B2/en
Priority to EP14819380.8A priority patent/EP3018101B1/en
Priority to JP2016523635A priority patent/JP6309090B2/ja
Priority to ES14819380T priority patent/ES2880714T3/es
Priority to US14/781,620 priority patent/US10421669B2/en
Publication of WO2015002397A1 publication Critical patent/WO2015002397A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/24Treatment of water, waste water, or sewage by flotation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/14Flotation machines
    • B03D1/1418Flotation machines using centrifugal forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/14Flotation machines
    • B03D1/1431Dissolved air flotation machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/14Flotation machines
    • B03D1/1443Feed or discharge mechanisms for flotation tanks
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/38Treatment of water, waste water, or sewage by centrifugal separation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5281Installations for water purification using chemical agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • C02F1/5245Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents using basic salts, e.g. of aluminium and iron
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/002Construction details of the apparatus
    • C02F2201/003Coaxial constructions, e.g. a cartridge located coaxially within another
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/40Liquid flow rate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/42Liquid level
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/02Fluid flow conditions
    • C02F2301/026Spiral, helicoidal, radial

Definitions

  • the present invention relates to an apparatus used for solid-liquid separation in a water treatment process. Specifically, the present invention relates to separating suspended solids and surfactants from raw water containing suspended solids or surfactants in an emulsion or suspension state. It relates to a pressure flotation device for water treatment.
  • a device employing any one or more methods of sedimentation, flotation, and filtration is adopted and applied to the separation of suspended solids in water.
  • the sedimentation method is to separate the suspended solids and the treated water from the raw water by using the difference in specific gravity of the suspended solids and water contained in the raw water, which is introduced into the sedimentation tank and settles the suspended solids with a larger specific gravity than the water. Let the super water be treated water.
  • the sedimentation rate depends on the specific gravity and particle size of the suspended solids, and usually, a simple gravity sedimentation or flocculation sedimentation method using a flocculant is used.
  • this precipitation method has a disadvantage in that the separation rate is relatively slow, such as requiring a precipitation time of 3 to 6 hours in general water treatment, so that the volume of the precipitation tank is increased. Therefore, it is possible to improve the sedimentation speed by using an inclined tube or an inclined plate, which complicates the device and has a limitation in improving the sedimentation rate, which still requires a residence time of 1 hour or more, and increases the sedimentation rate.
  • By using a large amount of the magnetic flocculant there is a problem such that the total amount of the sediment is increased and the generation of sludge waste is excessive.
  • the filtration method is to remove suspended substances in water by passing water through a container filled with media such as sand, a dense mesh, a filter cloth, or a porous ceramic, which may be a useful separation method depending on the treatment target, There is a disadvantage in that the processing cost increases depending on the cumbersome or life of the filtration material.
  • Flotation separation method is to separate floating materials of relatively low weight by floating them on the surface of water. This method was first used in flotation method to separate minerals in US mining industry in 1920s, and then pulp separation in German paper industry. It began to be used for water treatment in South Africa in the 1960s and then spread to Scandinavia and Europe.
  • dissolved air flotation method which was developed as a result of steady research by division of flotation by dissolved air, increases the air dissolved amount in water by pressure of air and then decompresses it to generate fine bubbles. It became one of the separation technologies.
  • This pressurization method can float not only materials having a specific gravity lower than water but also substances having a specific gravity higher than water together with the microbubble particles. Do. However, there are many cases where a certain amount of suspended solids is reprecipitated to build up on the floor or move on to the next process, causing problems.
  • the current general pressure injury device installs a scraper equipped with a power unit at the bottom of the flotation tank to collect the suspended solids in one place and discharge them to the outside.
  • a separate device is provided.
  • such a scraper device not only raises the overall equipment cost and causes troubles in operating the device, but also passively removes unspoiled suspended matter already deposited on the floor. It does not help.
  • U.S. Patent No. 8,349,177 discloses that the raw water is rotated inside the flotation tank to speed up the separation of suspended solids, and two outlets are installed at the top and bottom of the separation tank to float the scum and flotation sludge.
  • the sludge is discharged separately, but an umbrella-shaped cover board is installed between the scum discharge pipe and the treated water discharge pipe to prevent the floating floating material from flowing into the discharge pipe.
  • the device described in this US patent has a scum discharge pipe, a shield plate, and a treated water discharge pipe, which smoothly floats the floating material by forming turbulences in various parts of the separation tank by hindering the smooth formation and flow of the swirl flow inside the cylindrical separation tank.
  • the pressure flotation method is capable of adsorption and removal of bubble particles by using the characteristics of collecting at the interface of bubbles or oil when surfactants such as synthetic detergents, fabric softeners, and proteins are present in water. Therefore, it can be an efficient treatment method for these.
  • Embodiments of the present invention in order to remove the contaminants such as suspended solids, surfactants, etc. in the water, to improve the floating efficiency of the floating contaminants, and at the same time to remove the precipitate easily (dissolved air flotation apparatus ) To provide
  • the water inlet provided with a deflection so that the raw water flowing from the raw water supply means configured to adjust the supply flow rate can be rotated and flows in a predetermined direction, the treated water outlet pipe inserted in the vertical direction
  • a separating body having a connected water discharge port for discharging the treated water to the outside and a settling sludge discharge port for discharging the sludge that sinks below;
  • Air supply means for injecting air into the water flowing into the water inlet to provide an air bubble inside the separation tank;
  • a treatment water flow rate adjusting means for controlling a flow rate of water discharged through the treatment water outlet to maintain a constant water level in the separation tank;
  • Sludge discharge control means for controlling the amount of sludge discharged through the settling sludge discharge port; It penetrates through the inside of the treated water outlet pipe and is inserted into the separation vessel body in the vertical direction and is dispersed in the water supplied to the separation vessel body.
  • a pressurized flotation device including a scum outlet pipe
  • the water inlet is connected to the mixed feed solution inlet in which the inlet side opening is tangentially open to the separation vessel body so that the incoming water forms a swirl flow in the separation vessel body, the settling sludge outlet
  • the sedimentation sludge discharge pipe is connected to the lower part of the separation tank body, and the treatment water outlet pipe may be connected to the treatment water discharge port provided in the separation tank body in the vertical direction.
  • the scum outflow pipe may be provided in the separation tank body in the vertical direction and penetrate the center of the treated water outlet pipe.
  • the separation tank body, the treated water outlet pipe and the scum outflow pipe may be provided in a shape of drawing a concentric circle about the center of the swirl flow generated inside the separation tank body so that the cross section is circular and has the same rotation axis.
  • the water inlet may be disposed at a position of 10 to 60% of the height from the settling sludge outlet to the top of the scum outlet pipe.
  • Pressurization apparatus may further include a rotary scraper for collecting the scum stacked on top of the scum outflow pipe.
  • the pressurization apparatus may further include a drug supply means for water treatment connected to the mixed stock solution injection pipe.
  • the mixture of raw water and bubbles introduced into the separation vessel body is to rise and form a swirl flow outside the inside of the separation vessel body, floating contaminants and bubbles are collected in the surface layer of water and then removed
  • the treated water forms a flow path that swings and descends from the inside of the separation vessel body so that the water flows out through the outflow pipe placed on the axis and the concentric circle of the swirl flow, and the high specific gravity materials which cannot be injured are lifted the swirl flow. It is possible to separate and remove the contaminants in the water with high efficiency by allowing it to settle outwardly from the pivotal central axis in both the vortex and the downturn flow, and then to remove it through the settling sludge discharge pipe.
  • FIG. 1 is a block diagram showing a pressure injured apparatus according to a first embodiment of the present invention.
  • Figure 2 is a perspective view of the separation tank of Figure 1 shown.
  • FIG. 3 is a plan view illustrating the separation tank of FIG. 2.
  • FIG. 4 is a perspective view of the flow path of the raw water introduced into the separation tank of FIG.
  • FIG. 5 is a front view of the behavior of the scum and sludge in the separation tank of FIG.
  • FIG. 6 is a block diagram showing a pressure injuries apparatus according to a second embodiment of the present invention.
  • Pressurized flotation apparatus is a purification treatment apparatus for removing suspended solids contained in water, such as water and seawater, wastewater, process water.
  • FIG. 1 is a block diagram showing a pressure injured apparatus according to a first embodiment of the present invention.
  • 2 and 3 are a perspective view and a plan view showing the separation tank of FIG.
  • the pressure flotation device is installed so that the water stored in the raw water reservoir (2) (hereinafter referred to as raw water) is installed to adjust the raw water supply amount
  • Raw water pump 21 including a means, separation tank 11 in which separation of suspended solids in raw water occurs, and raw water injection pipe 12 for transferring raw water pumped out by the raw water pump 21 to separation tank 11.
  • the raw water inlet pipe 12 is connected so that the inlet side opening is opened in a tangential direction to the separation tank 11 so that the incoming raw water can form a swirl flow in the separation tank 11.
  • the connection position of the raw water inlet pipe 12 is preferably installed at a height of 5 to 60% with respect to the depth of water to be contained in the separation vessel body 11 for the smooth formation of the upward swirl flow.
  • the settling sludge discharge pipe 15 is connected to the lower part 11-1 of the separation tank body, and the treated water outlet pipe 13 is provided in the separation tank body 11 in the vertical direction. In the treated water outlet pipe 13, the position of the upper surface into which the treated water is introduced is set such that the height of 5 to 50% with respect to the depth of the water contained in the separating tank 11 is smooth.
  • the scum outflow pipe 14 is provided in the separation tank body 11 in the vertical direction and penetrates through the center of the treated water outlet pipe 13.
  • the treated water outlet pipe 13 and the scum outlet pipe 14 have a double structure.
  • a space that functions as an outflow passage is formed between the treated water outlet pipe 13 and the scum outlet pipe 14.
  • the separation tank body 11, the treated water outlet pipe 13, and the scum outlet pipe 14 are each provided in a shape of drawing a concentric circle having a circular cross section and having the same rotation axis. (See FIG. 3).
  • the rear end 13-1 of the treated water outlet pipe is tangentially joined to the treated water outlet pipe 13 at the lower part of the separating tank body 11 to form a smooth swirl flow in the separating tank body 11, respectively. It is preferable to make it.
  • the raw water pump 21 is capable of natural flow when the water level of the raw water supply source such as the raw water storage tank 2 is sufficiently higher than the separation tank body 11, so that the installation of the raw water pump 21 is omitted and a simple raw liquid supply amount such as a control valve is controlled. Only means may be provided.
  • Bubble feeder (3) is to use a pressurized air of pressure 0.2 ⁇ 0.6MPa to make the air bubbles have a size of about 10 to 100 microns to supply about 5 to 40% of the amount of raw water, floating in raw water If the material content is higher than 1%, it is also necessary to further increase the feed rate of pressurized water.
  • a gas having a low solubility in water such as oxygen, nitrogen, carbon dioxide, and ozone may be used.
  • the raw water and the bubble water are continuously supplied to the separation tank 11 at the same time by using the raw water pump 21 and the bubble feeder 3, as shown in FIG.
  • the incoming water forms a swirling flow from the inside of the separating vessel body 11 to the outside (inner wall side of the separating vessel body) by its kinetic energy, and since the swirling flow includes bubbles, the specific gravity is relatively low.
  • the upstream flow is formed along the spiral feed flow path 121 of the spiral liquid.
  • the suspended solids are attached to the air bubbles and float to the water surface, and the center portion of the swirl flow along the floating scum flow path 141 is formed. After gathering into the scum outflow pipe 14 is separated and removed from the raw water.
  • the scum that is raised inside the separation tank body 11 is continuously held by bubbles newly generated from the bottom, the scum that has once risen has an advantage of not sinking again.
  • the treated water that loses bubbles has a higher specific gravity, so that the raw water descending flow path 131 is formed along the outside of the scum outflow pipe 14 in the center of the separation tank 11 so as to turn and descend, and then the treated water outflow pipe 13 ) Is released to the outside through the inlet.
  • the scum (M1) adsorbed in the air bubble receives the buoyancy by the gravity and rotation centrifugal force received by the raw water as a medium, respectively, the separation tank body 11 by the buoyancy of the vector sum Sludge particles (M2) which are floated toward the center and upward direction of the air bubbles are not adsorbed by the air bubble and are subjected to gravity and centrifugal force to the magnitude of the force except buoyancy caused by the raw water.
  • sinking separation by flotation and sedimentation occurs at a faster rate than conventional pressurization apparatuses in which flow occurs only in parallel.
  • the separated scum and sludge are collected in the scum reservoir 4 and the sludge reservoir 5, respectively.
  • the concentration of sludge discharged during the operation as described above can be adjusted by changing the opening degree of the sludge discharge control plate 15-1 such as a gate valve. It may be.
  • the scum discharged can be adjusted by changing the opening degree of the treated water discharge control plate 13-2 to adjust the water level in the separation vessel 11.
  • the concentration of scum formed in the upper portion of the separation tank 11 is driven high, the viscosity of the floating scum layer 141b becomes high and fluidity deteriorates so that the scum cannot voluntarily move into the scum outlet pipe 14. Can be.
  • the rotary scum scraper 7 with the wing 71 as shown in FIG.
  • the separation tank body 11 may be provided at the upper end of the separation tank body 11 and forcibly pushed into the scum outflow pipe 14.
  • a level gauge in the separation tank body 11 may be provided at the upper end of the separation tank body 11 and to automatically adjust the appropriate level by interlocking electronically with the treated water flow rate control plate 13-2.
  • dispersion materials in water having good adsorption to microbubble particles such as activated sludge, oil, surfactant, cyanobacteria, oil algae, protein, etc.
  • the time required for separation of the residence time is about 5 to 10 minutes.
  • FIG. 6 is a block diagram showing a pressure injuries apparatus according to a second embodiment of the present invention.
  • the pressurization apparatus has a different configuration and its actions are the same as those of the first embodiment described above. 11) is different from the point that further includes a chemical liquid supply pump 61 and the chemical liquid storage tank (6) which can supply a predetermined amount of drugs such as flocculant in the process of transferring to.
  • the chemical liquid supply pump 61 and the chemical liquid storage tank 6 supply means for supplying a drug which can raise floating substances or increase the sedimentation efficiency by flocculating suspended solids in raw water or by modifying the surface of bubbles supplied in water.
  • a drug which can raise floating substances or increase the sedimentation efficiency by flocculating suspended solids in raw water or by modifying the surface of bubbles supplied in water.
  • inorganic chemicals such as polyaluminum chloride, aluminum sulfate, and sodium hydroxide
  • polymer coagulants such as a polyamide-type and polyDADMAC, or anionic, such as alkylsulfonic acid sodium, polyoxyethylene oleyl ether, and fatty acid ammonium sulfate, etc.
  • anionic such as alkylsulfonic acid sodium, polyoxyethylene oleyl ether, and fatty acid ammonium sulfate, etc.
  • nonionic, cationic surfactants may be used.
  • each of these drugs may be supplied by a separate chemical solution pump 61 or may be supplied in the form of a mixed drug, and when the aggregation or adsorption reaction rate by the chemical solution is slow, the raw water to be treated and the chemical solution are mixed and then separated. It is also possible to increase the separation efficiency by having a separate reaction aging space (aggregation reaction tank) in the step before being injected into the bath body (11).
  • the second embodiment is mainly applied to the separation and removal of inorganic dispersions such as muddy water, stone polishing waste liquor, metal salt precipitates, or the like, and water dispersions having low adsorptivity with microbubble particles such as microalgae. It is desirable to select the type of chemical and the method of use according to the chemical and electrical properties.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Analytical Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physical Water Treatments (AREA)
  • Removal Of Floating Material (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

본 발명은, 선회식 부상분리조를 갖추고, 처리수 회수관과 부상된 스컴의 회수관을 부상분리조 내 선회류의 중심선에 대하여 동심원상으로 배치, 부상분리조의 내부에 상승수류와 함께 하강수류를 형성시킴으로써, 원수 중의 침강성 부유물질과 부상성 부유물질을 동시에 향상된 효율로 분리시킬 수 있는 가압부상장치를 제공한다.

Description

가압부상장치
본 발명은 수처리 공정에서 고액 분리에 사용되는 장치에 관한 것으로, 구체적으로는 유액(emulsion)이나 현탁(suspension) 상태의 부유물질 또는 계면활성 성분이 함유된 원수로부터 부유물질 및 계면활성 성분을 분리하는 수처리용 가압부상장치에 관한 것이다.
일반적으로, 수처리 공정에 있어서, 수중의 부유물질의 분리에는 침전, 부상분리, 여과 방식 중 어느 한 가지 이상의 방식을 응용한 장치가 채택, 적용된다.
여기에서, 침전 방식은 원수에 포함된 부유물질과 물의 비중차이를 이용하여 원수로부터 부유물질과 처리수를 분리하는 것으로, 이는 침전조에 원수를 유입시키고 비중이 물에 비하여 큰 부유물질을 침강시킨 후에 웃물을 처리수로 한다. 이 경우, 침강속도는 부유물질의 비중이나 입자 크기에 따라 달라지며, 통상적으로는 단순한 중력침전이나 응집제를 활용하는 응집침전 방식을 많이 이용한다.
그러나, 이 같은 침전 방식은 일반적인 수처리에 3 ~ 6시간의 침전시간을 필요로 하는 등 분리속도가 비교적 느려 침전조의 용적을 크게 만들어야 하는 단점이 있다. 이에 따라, 경사관이나 경사판을 이용하여 침강속도의 향상을 도모하기도 하는데, 이는 장치가 복잡해지고, 침전속도의 향상에도 한계가 있어 여전히 1시간 이상의 체류시간을 필요로 하게 되며, 침전속도를 보다 높이고자 응집제를 다량 사용함으로써 침전물의 총량이 늘어나서 슬러지상 폐기물의 발생이 과다해지는 등의 문제점이 있다.
여과 방식은 모래와 같은 여재가 채워진 용기, 촘촘한 그물망, 여과포, 다공성 세라믹 등에 물을 통과시켜 수중의 부유물질을 제거하는 것으로, 이는 처리대상에 따라 유용한 분리 방식이 될 수 있으나, 역세 등 재생작업이 번거롭거나 여과용 재료의 수명에 따라 처리비용이 높아지는 단점이 있다.
부상분리 방식은 비교적 비중이 낮은 수중의 부유물질을 수표면으로 띄워 올려 분리시키는 것으로, 이 방식은 1920년대 미국 광산업에서 광물질을 분리하기 위한 부유선광법에 처음 이용되었고, 이후 독일 제지업에서 펄프를 분리하는 데 응용되기 시작하였으며, 1960년대에 남아프리카공화국에서 상수처리에 이용되기 시작된 후 스칸디나비아를 비롯한 유럽으로 확산되었다.
이후, 용존공기에 의한 부상분리법의 부문별 꾸준한 연구 진행결과로서 개발된, 공기의 가압으로 수중의 공기 용존량을 높인 후 감압시켜 미세기포를 생성시키는 소위 가압부상법(dissolved air flotation)은 대표적인 고액분리기술 중 하나가 되었다. 이 가압부상법은 물보다 비중이 낮은 물질 뿐만 아니라, 물보다 비중이 큰 물질도 미세기포 입자와 함께 부상시킬 수 있고, 통상적으로 처리에 0.5 ~ 1시간이 걸리므로 침전장치에 비하여 설비 크기 등에서 유리하다. 그러나, 일정량의 부유물질이 재침강하여 바닥에 쌓이거나 다음의 공정으로 넘어가서 문제를 유발하는 경우가 많았다.
이와 같은 가압부상법의 문제를 해소하기 위하여, 현재의 일반적인 가압부상장치는 부상분리조의 바닥에 동력장치가 구비된 스크래퍼(scrapper)를 설치하여 침전되는 부유물질을 한 곳으로 모은 후 외부로 방출하는 별도의 장치를 구비하고 있다. 그러나, 이러한 스크래퍼 장치는 전체 설비비를 상승시키고, 장치의 운전을 번거롭게 하는 문제점을 발생시킬 뿐만 아니라, 바닥에 이미 침전된 미부상 부유물질을 소극적으로 제거하는 정도이므로 미처 침전되지 않은 부유물질의 처리에는 도움이 되지 못하는 실정이다.
미국 등록특허 제8,349,177호는 처리원수를 부상분리조의 내부에서 선회시킴으로써 부유물질의 분리속도를 빠르게 하고, 분리조의 상부와 하부에 2개의 배출구를 설치하여 부상된 스컴(scum, froth)과 하부 침전물 슬러지(sludge)를 각각 배출시키되, 스컴 배출관과 처리수 배출관 사이에 우산 형상의 차폐판(cover board)을 설치하여 부상된 부유물질이 배출관으로 유입되는 것을 방지하는 방법으로 부유물질 분리성능과 침전물 제거효율의 향상을 도모하고 있다. 그러나, 이 미국 등록특허에 제시된 장치는 스컴 배출관과 차폐판 및 처리수 배출관 등이 원통형 분리조의 내부에서 선회류의 원활한 형성과 유동을 방해하여 분리조 내부 곳곳에 난류를 형성시킴으로써 부유물질의 원활한 부상 또는 침전을 저해하는 문제점이 있다. 또한, 분리조의 내부에서 물이 유동할 때 상하 교차 흐름을 불가능하게 하고 단지 하향류만이 가능하게 함으로써 부유물질의 부상속도를 잠식하고, 가압부상 분리 과정에서 나타나는 부유물질과 기포 간의 부착과 탈착이 반복적으로 일어나는 부유물질-기포 흡착체에서 기포의 작용효율을 높일 기회를 얻기 힘들게 한다.
이상과는 별개로 가압부상법은 합성세제나 섬유 유연화제, 단백질 등과 같은 계면활성 성분들이 수중에 존재할 때 기포나 유분(oil) 등의 경계면에 모이는 특성을 이용하여 기포 입자에 흡착 제거하는 것이 가능하므로 이들에 대한 효율적인 처리방법이 될 수 있다.
본 발명의 실시예는, 수중의 부유물질, 계면활성 성분 등의 오염물질을 제거하는 데 있어서, 부상 가능한 오염물질의 부상효율을 높이는 동시에 침전물을 손쉽게 제거할 수 있는 가압부상장치(dissolved air flotation apparatus)를 제공하는 데 목적이 있다.
본 발명의 실시예에 따르면, 공급 유량의 조절이 가능하도록 구성된 원수 공급수단으로부터 유입되는 원수가 일정한 방향으로 선회ㆍ유동할 수 있게 편향 구비된 물 유입구, 내부에 상하방향으로 삽입된 처리수 유출관이 연결되며 처리된 물을 외부로 배출하기 위한 처리수 유출구, 하부로 가라앉는 슬러지를 배출하기 위한 침강 슬러지 배출구를 갖는 분리조 동체(separating body)와; 상기 물 유입구로 유입되는 물에 공기를 주입하여 상기 분리조 동체의 내부에 공기포를 제공하는 공기 공급수단과; 상기 처리수 유출구를 통하여 배출되는 물의 유량을 조절하여 상기 분리조 동체 내부의 수위를 일정하게 유지시키는 처리수 유출량 조절수단과; 상기 침강 슬러지 배출구를 통하여 배출되는 슬러지액의 양을 조절하는 슬러지 배출량 조절수단과; 상기 처리수 유출관의 내부를 관통하여 상기 분리조 동체의 내부에 상하방향으로 삽입되며 상기 분리조 동체 내부에 공급되는 물속에 분산되어 있다가 공기 포말과 함께 부상하여 상기 분리조 동체 내의 수면과 선회류의 중심이 만나는 방향을 향하여 일정한 높이에 모이는 스컴을 분리조 동체의 외부로 유도하여 방출하는 스컴 유출관을 포함하는 가압부상장치가 제공될 수 있다.
여기에서, 상기 물 유입구에는 유입되는 원수가 상기 분리조 동체 내에서 선회류를 형성할 수 있도록 유입 측 개구부가 상기 분리조 동체에 접선방향으로 열려 있는 혼합원액 주입관이 연결되고, 상기 침강 슬러지 배출구에는 상기 분리조 동체 하부에서 침강 슬러지 배출관이 연결되며, 상기 처리수 배출구에는 상기 분리조 동체 내에 상하 수직방향으로 구비된 상기 처리수 유출관이 연결될 수 있다. 상기 스컴 유출관은 상기 분리조 동체 내에서 상하 수직방향으로 구비되어 상기 처리수 유출관 중심부에 관통될 수 있다. 상기 분리조 동체, 상기 처리수 유출관 및 상기 스컴 유출관은 공히 횡단면이 원형이고 동일 회전축을 갖도록 상기 분리조 동체 내부에 생성되는 선회류 중심에 대하여 동심원을 그리는 형상으로 구비될 수 있다.
상기 물 유입구는, 상기 침강 슬러지 배출구로부터 상기 스컴 유출관 상단까지 높이의 10 ~ 60% 위치에 배치될 수 있다.
본 발명의 실시예에 따른 가압부상장치는, 상기 스컴 유출관의 상부에 적층되는 스컴을 수집하기 위한 회전식 스크래퍼를 더 포함할 수 있다.
또한, 본 발명의 실시예에 따른 가압부상장치는, 상기 혼합원액 주입관에 연결된 수처리용 약제 공급수단을 더 포함할 수 있다.
본 발명의 실시예는, 분리조 동체 내로 유입된 원수와 기포의 혼합액은 분리조 동체 내부의 바깥쪽에서 선회류를 형성하며 상승되게 하고, 부상 가능한 오염물질과 기포는 물의 표층에 모은 후 제거되게 하며, 처리된 물은 분리조 동체 내부의 안쪽에서 선회ㆍ하강하는 유로를 형성시켜서 선회류의 축과 동심원상에 놓인 유출관을 통하여 외부로 유출되도록 하고, 부상이 불가능한 고비중 물질들은 상기 상승 선회류와 하강 선회류에서 공히 선회 중심축에서 바깥쪽을 향하여 침강되게 한 후, 침강 슬러지 배출관을 통하여 제거되도록 함으로써, 높은 효율로 수중의 오염물질을 분리ㆍ제거하는 것이 가능하게 된다.
도 1은 본 발명의 제1실시예에 따른 가압부상장치가 도시된 구성도이다.
도 2는 도 1의 분리조가 도시된 사시도이다.
도 3은 도 2의 분리조가 도시된 평면도이다.
도 4는 도 2의 분리조에 유입된 원수의 유동경로가 표현된 사시도이다.
도 5는 도 2의 분리조에서 스컴과 슬러지의 거동이 표현된 정면도이다.
도 6은 본 발명의 제2실시예에 따른 가압부상장치가 도시된 구성도이다.
도 7은 도 2의 분리조에 스컴 스크래퍼가 적용된 상태를 나타낸다.
이하에서는 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 설명한다.
본 발명에 따른 가압부상장치는 용수 및 해수, 폐수, 공정수와 같은 물에 포함된 부유물질을 제거하는 정제처리장치이다.
도 1은 본 발명의 제1실시예에 따른 가압부상장치가 도시된 구성도이다. 그리고, 도 2 및 도 3은 도 1의 분리조가 도시된 사시도 및 평면도이다.
도 1 내지 도 3에 도시된 바와 같이, 본 발명의 제1실시예에 따른 가압부상장치는, 원수 저장조(2)에 저장된 물(이하, 원수라 한다.)을 퍼낼 수 있게 설치되며 원수 공급량 조절수단을 포함하는 원수 펌프(21), 원수 중의 부유물질의 분리가 일어나는 분리조 동체(11), 원수 펌프(21)가 퍼내는 원수를 분리조 동체(11)로 이송하는 원수 주입관(12), 원수 주입관(12)을 따라 흐르는 원수에 공기를 주입하는 기포 공급기(3), 부유물이 분리된 처리수를 외부로 배출하는 처리수 유출관(13)과 처리수 유출량 조절판(13-2), 하부로 가라앉는 슬러지를 배출하는 침강 슬러지 배출관(15)과 슬러지 배출량 조절판(15-1)과 슬러지 저장조(5), 부상된 스컴을 분리조 동체(11)의 외부로 유도ㆍ방출하는 스컴 유출관(14)과 스컴 저장조(4) 등으로 이루어진다.
원수 주입관(12)은 유입되는 원수가 분리조 동체(11) 내에서 선회류를 형성할 수 있도록 유입 측 개구부가 분리조 동체(11)에 접선방향으로 열리도록 연결된다. 원수 주입관(12)의 연결위치는 분리조 동체(11) 내부에 담기게 되는 물의 수심에 대하여 5 ~ 60% 높이에 설치되는 것이 상승 선회류의 원활한 형성을 위하여 바람직하다. 침강 슬러지 배출관(15)은 분리조 동체의 하부(11-1)에 연결되고, 처리수 유출관(13)은 분리조 동체(11) 내에 상하 수직방향으로 구비된다. 처리수 유출관(13)에 있어서, 처리수가 인입되는 상단면의 위치는 분리조 동체(11) 내부에 담기게 되는 물의 수심에 대하여 5 ~ 50%의 높이가 되도록 하는 것이 하강 선회류의 원활한 작용 및 침강 슬러지의 월류 방지를 위하여 바람직하다. 스컴 유출관(14)은 분리조 동체(11) 내에서 상하 수직방향으로 구비되어 처리수 유출관(13)의 중심부를 관통한다. 이에, 처리수 유출관(13)과 스컴 유출관(14)은 이중 구조를 갖는다. 물론, 처리수 유출관(13)과 스컴 유출관(14) 사이에는 유출통로로 기능하는 공간이 형성된다. 분리조 동체(11)와 처리수 유출관(13) 및 스컴 유출관(14)은 공히 횡단면이 원형이고 동일 회전축을 가지는 동심원을 그리는 형상으로 구비된다.(도 3 참조) 침강 슬러지 배출관(15)과 처리수 유출관 후단부(13-1)는 분리조 동체(11) 내에서의 원활한 선회류 형성을 위하여 분리조 동체(11)의 하부에서 처리수 유출관(13)에 각각 접선 방향으로 접합시키는 것이 바람직하다. 원수 펌프(21)는 원수 저장조(2) 등 원수 공급처의 수위가 분리조 동체(11)보다 충분히 높은 경우 자연유하가 가능하므로 원수 펌프(21)의 설치가 생략되고 조절밸브와 같은 단순한 원액 공급량 조절수단만을 구비할 수도 있다.
분리조 동체(11)는, 상부는 원통 모양, 중간부는 뒤집힌 원뿔대 모양(둘레가 하측으로 갈수록 축소되는 모양), 하부는 크기가 상부에 비하여 작은 원통 모양을 가지도록 하는 것이 분리조 내부에서의 원활한 선회류 형성 및 침전물의 수거 면에서 바람직하다. 기포 공급기(3)는 압력 0.2 ~ 0.6MPa의 공기 가압수를 이용하여 공기포가 10 ~ 100마이크론 정도의 크기를 가지게 하여 원수량 대비 5 ~ 40% 정도를 공급할 수 있게 하는 것이 바람직한데, 원수 중의 부유물질 함량이 1% 이상으로 높은 경우에는 가압수의 공급비율을 더욱 높이는 경우도 필요해진다. 물론, 공급되는 기포로는 공기뿐만이 아니라 산소, 질소, 이산화탄소, 오존 등 물에 대한 용해도가 그리 크지 않은 기체는 모두 사용될 수 있다.
이상과 같이 구성되는 제1실시예에 있어서, 원수 펌프(21)와 기포 공급기(3)를 이용하여 분리조 동체(11)에 원수와 기포수를 동시에 연속적으로 공급하면, 도 4에서와 같이, 인입수가 자신의 운동에너지에 의하여 분리조 동체(11) 내부에서 바깥쪽(분리조 동체의 내벽 측)을 타고 도는 선회류를 형성하게 되는데, 이 선회류는 기포를 포함하므로 비중이 상대적으로 낮아 선회와 동시에 나선형의 원액 상승 유동경로(121)를 따라 상승류를 형성하게 되고, 이 과정에서 수중의 부유물질들은 기포에 부착되어 수표면으로 떠오르고 부상 스컴 유동경로(141)를 따라 선회류의 중심 부위로 모인 후 스컴 유출관(14)의 내부로 월류하여 원수로부터 분리 제거된다.
여기에서, 분리조 동체(11)의 내부에서 상승되는 스컴은 아래쪽으로부터 지속적으로 새로이 생성되어 올라오는 기포들에 의하여 계속 떠받혀지므로, 한 번 떠오른 스컴은 다시 가라앉지 않는 이점이 있다. 한편, 기포를 잃은 처리수는 비중이 커져서 분리조 동체(11) 내 중심부에서 스컴 유출관(14)의 외부를 따라 원액 하강 유동경로(131)를 형성하며 선회ㆍ하강하다가 처리수 유출관(13)의 인입구를 통하여 외부로 방출된다. 이 때, 도 5에서와 같이, 공기포에 흡착된 스컴(M1)은 매질인 원수가 받는 중력 및 회전에 따른 원심력에 의한 부력을 각각 받아 그 벡터 합만큼의 부력에 의하여 분리조 동체(11)의 중심 및 상방향을 향하여 떠오르게 되고, 공기포에 흡착되지 않은 슬러지 입자(M2)는 원수에 의한 부력을 제외한 힘의 크기로 중력 및 원심력을 받아 분리조 동체(11)의 벽면 및 하방향을 향하여 가라앉게 됨으로써, 평행방향으로만 유동이 생기는 기존의 가압부상장치에 비하여 더욱 빠른 속도로 부상 및 침전에 의한 분리가 일어나게 된다. 분리된 스컴과 슬러지는 스컴 저장조(4)와 슬러지 저장조(5)에 각각 수집된다.
상기와 같은 운전 중 배출되는 슬러지의 농도는 게이트 밸브 등과 같은 슬러지 배출량 조절판(15-1)의 개도를 변화시켜 조절하는 것이 가능한바, U자형 관을 이용하는 등 임의의 처리수 유출량 조절수단을 적용할 수도 있다. 배출되는 스컴은 처리수 유출량 조절판(13-2)의 개도를 변화시켜 분리조 동체(11) 내 수위를 조정함으로써 농도를 조절하는 것이 가능하다. 분리조 동체(11)의 상층부에 형성되는 스컴의 농도를 높게 운전하면, 부상 스컴층(141b)의 점도가 높아지고 유동성이 나빠져서 스컴이 자발적으로 스컴 유출관(14) 내부로 이동할 수 없는 경우가 발생할 수 있다. 이 때에는 분리조 동체(11)의 상단부에 도 7과 같은 날개(71)가 달린 회전식 스컴 스크래퍼(7)를 설치하여 강제로 스컴 유출관(14)의 내부로 밀어 넣을 수도 있다. 도시된 바 없으나, 분리조 동체(11) 내에 수위계를 구비시키고 상기 처리수 유출량 조절판(13-2)과 전자적으로 서로 연동시켜 적정 수위를 자동으로 조절하는 방법도 물론 가능하다.
이상과 같은 제1실시예는 활성슬러지, 오일, 계면활성 성분, 남조류, 오일 조류, 단백질 등 미세기포 입자와의 흡착성이 좋은 수중의 분산물질들을 주요 처리대상으로 적용하는 것이 바람직한데, 이 때 부유물의 분리에 소요되는 시간(분리조 동체(11) 내 체류시간)은 대체적으로 5 ~ 10분 정도가 된다.
도 6은 본 발명의 제2실시예에 따른 가압부상장치가 도시된 구성도이다.
도 6에 도시된 바와 같이, 본 발명의 제2실시예에 따른 가압부상장치는 앞서 설명한 제1실시예와 비교하여 볼 때, 기타 구성 및 그 작용은 모두 동일한 것에 대하여, 원수를 분리조 동체(11)로 이송하는 과정에서 응집제 등의 약품을 정해진 양으로 공급할 수 있는 약액 공급펌프(61)와 약액 저장조(6)를 더 포함하는 점 등이 상이하다.
약액 공급펌프(61)와 약액 저장조(6)로는 원수 중의 부유물질을 응집시키거나 수중에 공급되는 기포의 표면을 개질(modification)시킴으로써 부유물질의 부상 또는 침전효율을 높일 수가 있는 약제를 공급하는 수단이 적용될 수 있다. 예를 들면, 약제로는 폴리알루미늄클로라이드, 황산알루미늄, 가성소다 등의 무기성 약품이나 폴리아마이드계나 폴리DADMAC 등의 고분자 응집제 또는 알킬술폰산소다나 폴리옥시에틸렌올레일에테르, 지방산암모늄설페이트 등의 음이온성, 비이온성, 양이온성 계면활성제가 한 가지 이상 이용될 수 있다. 물론, 이들 약제는 각각 별도의 약액 공급펌프(61)에 의하여 공급되거나 혼합약제의 형태로 공급될 수도 있고, 약액에 의한 응집 또는 흡착반응 속도가 느릴 경우에는 처리대상 원수와 약액이 혼합된 다음 분리조 동체(11)에 주입되기 전 단계에 별도의 반응숙성공간(응집반응조)을 구비하여 분리효율을 높일 수도 있다.
이상과 같은 제2실시예는 흙탕물이나 석재 연마 폐액, 금속염의 침전물 등의 무기성 미립자 또는 미세조류 등과 같은 미세기포 입자와의 흡착성이 크지 않은 수중 분산물질들의 분리 제거에 주로 적용하되 제거 대상물질의 화학적, 전기적 특성에 맞추어 약액의 종류와 사용방법을 선정하는 것이 바람직하다.
이상, 본 발명을 설명하였으나, 본 발명은 이 명세서에 개시된 실시예 및 첨부된 도면에 의하여 한정되지 않으며 본 발명의 기술적 사상을 벗어나지 않는 범위 이내에서 통상의 기술자에 의하여 다양하게 변형될 수 있다.

Claims (5)

  1. 공급 유량의 조절이 가능한 원수 공급수단과;
    상기 원수 공급수단으로부터 유입되는 원수가 일정한 방향으로 선회ㆍ유동하도록 편향 구비되는 원액 주입관이 연결된 원액 유입구, 내부에 상하방향으로 삽입되는 처리수 유출관이 연결된 처리수 유출구 및 하부로 가라앉는 슬러지를 배출하는 침강 슬러지 배출구를 갖는 분리조 동체와;
    상기 처리수 유출관의 내부를 관통하여 상기 분리조 동체의 내부에 상하방향으로 삽입된 스컴 유출관과;
    상기 분리조 동체의 내부에 공기포를 주입하는 공기 공급수단을 포함하고,
    상기 분리조 동체 및 상기 분리조 동체 내부의 처리수 유출관과 스컴 유출관은 모두 횡단면이 원형이고 상기 분리조 동체의 내부에 생성되는 선회류 중심에 대하여 동심원을 그리도록 위치된 것을 특징으로 하는 가압부상장치.
  2. 청구항 1에 있어서,
    상기 스컴 유출관의 상단이 상기 분리조 동체 내의 수면 측 하부에 위치하도록 상기 분리조 동체로부터 외부로 배출되는 처리수 및 침강 슬러지의 양을 조절하는 처리수 유출량 조절수단 및 슬러지 배출량 조절수단을 더 포함하는 것을 특징으로 하는 가압부상장치.
  3. 청구항 1에 있어서,
    상기 원액 주입구는 상기 침강 슬러지 배출구로부터 상기 스컴 유출관 상단까지 높이의 10 ~ 60% 위치에 배치된 것을 특징으로 하는 가압부상장치.
  4. 청구항 1에 있어서,
    상기 스컴 유출관의 상부에 적층되는 스컴을 수집하기 위한 회전식 스크래퍼를 더 포함하는 것을 특징으로 하는 가압부상장치.
  5. 청구항 1에 있어서,
    상기 원액 주입관에 연결된 수처리용 약제 공급수단을 더 포함하는 것을 특징으로 하는 가압부상장치.
PCT/KR2014/005476 2013-07-04 2014-06-20 가압부상장치 WO2015002397A1 (ko)

Priority Applications (7)

Application Number Priority Date Filing Date Title
BR112016000097-8A BR112016000097B1 (pt) 2013-07-04 2014-06-20 Dispositivo de flotação de ar dissolvido para tratamento de água
CN201480031000.6A CN105263866B (zh) 2013-07-04 2014-06-20 加压漂浮装置
AU2014284885A AU2014284885B2 (en) 2013-07-04 2014-06-20 Dissolved air floatation device
EP14819380.8A EP3018101B1 (en) 2013-07-04 2014-06-20 Dissolved air floatation device
JP2016523635A JP6309090B2 (ja) 2013-07-04 2014-06-20 加圧浮上装置
ES14819380T ES2880714T3 (es) 2013-07-04 2014-06-20 Dispositivo de flotación de aire disuelto
US14/781,620 US10421669B2 (en) 2013-07-04 2014-06-20 Dissolved air flotation device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130078561A KR101639414B1 (ko) 2013-07-04 2013-07-04 가압부상장치
KR10-2013-0078561 2013-07-04

Publications (1)

Publication Number Publication Date
WO2015002397A1 true WO2015002397A1 (ko) 2015-01-08

Family

ID=52143942

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/005476 WO2015002397A1 (ko) 2013-07-04 2014-06-20 가압부상장치

Country Status (10)

Country Link
US (1) US10421669B2 (ko)
EP (1) EP3018101B1 (ko)
JP (1) JP6309090B2 (ko)
KR (1) KR101639414B1 (ko)
CN (1) CN105263866B (ko)
AU (1) AU2014284885B2 (ko)
BR (1) BR112016000097B1 (ko)
ES (1) ES2880714T3 (ko)
SA (1) SA516370346B1 (ko)
WO (1) WO2015002397A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108423735A (zh) * 2018-03-28 2018-08-21 广州博芳环保科技股份有限公司 一种加压溶气罐
CN110078252A (zh) * 2019-04-16 2019-08-02 无锡泽邦环保科技有限公司 一种高效气浮沉淀一体装置

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITUA20163784A1 (it) * 2016-05-25 2017-11-25 Acqua&Co S R L Unità per il trattamento di acqua
CN109942063A (zh) * 2016-08-16 2019-06-28 涂瑞强 一种处理选矿废水的反应器
KR101720115B1 (ko) * 2016-11-02 2017-03-27 주식회사 부강테크 선회식 기액용해장치
WO2018085763A1 (en) 2016-11-06 2018-05-11 Nap Kyle System and method for liquid processing
CN106587244A (zh) * 2017-02-23 2017-04-26 上海水合环境工程有限公司 一种自动控制运行的圆形高效气浮装置
CN107324432A (zh) * 2017-06-01 2017-11-07 浙江金龙自控设备有限公司 溶气气浮罐
CN107162239A (zh) * 2017-06-01 2017-09-15 浙江金龙自控设备有限公司 旋流聚结气浮除油柱
WO2019226725A1 (en) 2018-05-24 2019-11-28 Nap Kyle Portable modular filter system
KR102054499B1 (ko) * 2018-05-31 2019-12-11 주식회사 한국아쿠오시스 수처리용 응집반응장치
KR102145037B1 (ko) * 2018-10-16 2020-08-18 주식회사 우성테크 급속 부상 여과장치
JP7184342B2 (ja) * 2019-02-28 2022-12-06 国立研究開発法人理化学研究所 ビーム標的およびビーム標的システム
KR20200127747A (ko) 2019-05-03 2020-11-11 주식회사에이비테크 침전 및 가압부상을 이용한 고액분리장치
US11008227B2 (en) 2019-07-29 2021-05-18 Eco Water Technologies Corp Wastewater purification system
CN111039432B (zh) * 2019-12-12 2022-02-18 中国石油大学(华东) 一种便于旋流气浮工艺集成化的油水分离装置
CN112960792B (zh) * 2021-04-17 2022-06-24 河北环境工程学院 一种低碳环保的污水处理装置
CN113213582B (zh) * 2021-06-22 2022-11-04 中国石油大学(华东) 一种多管式微旋流-气浮耦合工艺装置
KR102530352B1 (ko) 2022-01-10 2023-05-09 한석진 부상분리에 의한 수처리장치
CN114380412A (zh) * 2022-01-14 2022-04-22 程胜利 一种污水预处理装置
CN115477406B (zh) * 2022-09-01 2023-07-11 江西省科学院能源研究所 一种污水用微纳米气泡处理设备
NO20220965A1 (en) 2022-09-09 2024-03-11 Stauper Env As Flotation device
KR102634621B1 (ko) 2023-02-17 2024-02-07 주식회사 그린기술 난류형성 및 기액접촉 성능이 개선되는 충전재 유니트와 이를 포함하는 기체정화장치와 수질정화장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08108173A (ja) * 1994-10-13 1996-04-30 Risui Plant Service Kk 旋回流式浮上分離装置
US20040035799A1 (en) * 2002-08-26 2004-02-26 Smith Jeffrey J. Method and apparatus for removing hydrocarbons from water
KR20050019343A (ko) * 2003-08-18 2005-03-03 한국건설기술연구원 2차 하수처리장치 및 처리방법
WO2009148265A2 (ko) * 2008-06-03 2009-12-10 주식회사 한국아쿠오시스 하이드로사이클론 부상분리장치 및 이것을 포함하는 수질오염 방지시스템
KR100990913B1 (ko) * 2007-09-03 2010-11-01 가부시끼가이샤 도시바 고액 분리 장치

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4043912A (en) * 1971-06-28 1977-08-23 Burmah Oil And Gas Company Clarification tank
WO1991001276A1 (de) * 1989-07-17 1991-02-07 Zander Aufbereitungstechnik Gmbh Schmutzwasseraufbereitungsanlage nach dem flotations-verfahren
DE4312540C1 (de) 1993-04-17 1994-10-13 Escher Wyss Gmbh Verfahren zur Abtrennung von Feststoffen aus einer Suspension sowie Vorrichtung zu seiner Durchführung
JPH11651A (ja) 1997-06-12 1999-01-06 Hitachi Ltd 懸濁物除去装置
JP2001009446A (ja) * 1999-06-29 2001-01-16 Meidensha Corp 加圧浮上分離処理方法及びその装置
KR100737416B1 (ko) * 2001-09-27 2007-07-09 주식회사 포스코 폐수 가압부상조의 부유물 제거장치
KR100493646B1 (ko) 2002-06-27 2005-06-23 주식회사 에스디알앤디 대심도 생물막법과 대심도 가압부상공법을 병행한오수ㆍ하수ㆍ폐수처리방법 및 장치
JP4834713B2 (ja) 2008-10-15 2011-12-14 株式会社東芝 固液分離装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08108173A (ja) * 1994-10-13 1996-04-30 Risui Plant Service Kk 旋回流式浮上分離装置
US20040035799A1 (en) * 2002-08-26 2004-02-26 Smith Jeffrey J. Method and apparatus for removing hydrocarbons from water
KR20050019343A (ko) * 2003-08-18 2005-03-03 한국건설기술연구원 2차 하수처리장치 및 처리방법
KR100990913B1 (ko) * 2007-09-03 2010-11-01 가부시끼가이샤 도시바 고액 분리 장치
US8349177B2 (en) 2007-09-03 2013-01-08 Kabushiki Kaisha Toshiba Solid-liquid separator
WO2009148265A2 (ko) * 2008-06-03 2009-12-10 주식회사 한국아쿠오시스 하이드로사이클론 부상분리장치 및 이것을 포함하는 수질오염 방지시스템

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3018101A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108423735A (zh) * 2018-03-28 2018-08-21 广州博芳环保科技股份有限公司 一种加压溶气罐
CN110078252A (zh) * 2019-04-16 2019-08-02 无锡泽邦环保科技有限公司 一种高效气浮沉淀一体装置

Also Published As

Publication number Publication date
KR20150005154A (ko) 2015-01-14
JP6309090B2 (ja) 2018-04-11
EP3018101B1 (en) 2021-04-28
AU2014284885A1 (en) 2015-10-01
BR112016000097B1 (pt) 2021-09-28
KR101639414B1 (ko) 2016-07-15
JP2016526482A (ja) 2016-09-05
AU2014284885B2 (en) 2018-11-15
US20160060137A1 (en) 2016-03-03
EP3018101A4 (en) 2017-01-25
CN105263866B (zh) 2018-08-14
SA516370346B1 (ar) 2018-04-15
US10421669B2 (en) 2019-09-24
BR112016000097A2 (ko) 2017-07-25
EP3018101A1 (en) 2016-05-11
CN105263866A (zh) 2016-01-20
ES2880714T3 (es) 2021-11-25

Similar Documents

Publication Publication Date Title
WO2015002397A1 (ko) 가압부상장치
KR100990913B1 (ko) 고액 분리 장치
CN107082506B (zh) 一种油田采出水的处理方法及工艺流程
KR101336169B1 (ko) 침전과 부상을 연계한 고도정수처리장치
KR101961299B1 (ko) 가중응집적 고속회수량 멀티스테이지 하이드로 사이클론
CN105936531A (zh) 一种诱导结晶沉淀水处理设备
KR100882200B1 (ko) 하이드로사이클론 및 이것을 포함하는 수질오염 방지장치
CN101648086A (zh) 快速沉淀方法及快速沉淀分离装置
CN103787527A (zh) 一种含油污水气浮悬浮层过滤装置
KR20200054473A (ko) 미세기포 기반의 응집부상분리 폐수처리시스템
KR101773379B1 (ko) 사이클론을 포함하는 수평형 유도가스 부상분리를 이용한 유수처리 장치 및 그 방법
JP4834713B2 (ja) 固液分離装置
CN203820565U (zh) 一种含油污水气浮悬浮层过滤装置
KR101077248B1 (ko) 저진공 믹싱에 의한 미세기포 부상 고액분리장치
KR20200127747A (ko) 침전 및 가압부상을 이용한 고액분리장치
JP2017159213A (ja) 凝集処理方法および装置
KR101892942B1 (ko) 수처리용 침전조
JP2003265905A (ja) 凝集沈殿装置
CN108726734A (zh) 含油污水悬浮污泥过滤净化装置及其污水处理工艺
EP0625074A4 (en) Vortex flocculation of floating solids from one liquid.
CN209128183U (zh) 一种新型固液分离装置
CN210215012U (zh) 一种孢子转移一体机
KR101894792B1 (ko) 가압부상장치
CN207418429U (zh) 一种高效节能一体化采出水处理装置
RU2307075C2 (ru) Устройство для очистки воды

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480031000.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14819380

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014284885

Country of ref document: AU

Date of ref document: 20140620

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14781620

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016523635

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014819380

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016000097

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112016000097

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160104