WO2015002141A1 - Turbine shaft and supercharger - Google Patents

Turbine shaft and supercharger Download PDF

Info

Publication number
WO2015002141A1
WO2015002141A1 PCT/JP2014/067377 JP2014067377W WO2015002141A1 WO 2015002141 A1 WO2015002141 A1 WO 2015002141A1 JP 2014067377 W JP2014067377 W JP 2014067377W WO 2015002141 A1 WO2015002141 A1 WO 2015002141A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
peripheral surface
press
turbine
outer peripheral
Prior art date
Application number
PCT/JP2014/067377
Other languages
French (fr)
Japanese (ja)
Inventor
和宏 鬼束
高広 小林
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Publication of WO2015002141A1 publication Critical patent/WO2015002141A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/04Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output
    • F02C6/10Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output supplying working fluid to a user, e.g. a chemical process, which returns working fluid to a turbine of the plant
    • F02C6/12Turbochargers, i.e. plants for augmenting mechanical power output of internal-combustion piston engines by increase of charge pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/025Fixing blade carrying members on shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/30Retaining components in desired mutual position
    • F05D2260/37Retaining components in desired mutual position by a press fit connection

Definitions

  • the present invention relates to a turbine shaft and a supercharger in which an impeller is joined to one end of a shaft.
  • a conventional turbocharger has a bearing housing that houses a turbine shaft and rotatably supports it.
  • the turbine shaft has a shaft and a turbine impeller joined to one end of the shaft.
  • a compressor impeller is fixed to the other end of the shaft by tightening a nut.
  • One of the shaft and the turbine impeller is provided with an insertion hole that is recessed in the axial direction of the turbine shaft.
  • the other of the shaft and the turbine impeller is provided with a protruding portion that protrudes in the axial direction of the turbine shaft and fits into the insertion hole.
  • an insertion hole is formed in the turbine impeller, and a protrusion is formed on the shaft. This protrusion is inserted into the insertion hole of the turbine impeller. And it welds with respect to the end surface in which the opening of an insertion hole is formed, and the site
  • the outer diameter of the protrusion is slightly larger than the inner diameter of the insertion hole, and the protrusion is press-fitted into the insertion hole, thereby suppressing misalignment between the shaft axis of the shaft and the axis of the turbine impeller. It is possible to do.
  • the material of the turbine impeller is hard and hardly elastically deformed. For this reason, even if the variation in the dimensions of the insertion hole and the protrusion is within the range of dimensional tolerance, the pressure input becomes excessive and the strength is lost, or the protrusion is caught on the inner peripheral surface of the insertion hole. May occur.
  • an object of the present invention is to provide a turbine shaft and a supercharger that enable press-fitting of the shaft and the impeller and easily adjust the balance by matching the positions of the shaft centers of the shaft and the impeller with high accuracy. is there.
  • 1st aspect of this invention is a turbine axis
  • the portion where the abutting portion abuts on the outer peripheral surface of the protruding portion or the inner peripheral surface of the press-fitting hole is longer in the axial direction of the shaft than the opposite portion of the outer peripheral surface of the protruding portion and the inner peripheral surface of the press-fitting hole.
  • the gist is short.
  • a second aspect of the present invention is a supercharger, in which a turbocharger main body, a turbine shaft rotatably accommodated in the supercharger main body, a turbine impeller joined to one end of the shaft, and a turbine shaft
  • a turbocharger including a compressor impeller provided at the other end of the shaft, wherein the turbine shaft is provided at one of the shaft and the turbine impeller and protrudes in the axial direction of the shaft; and the shaft And the other side of the turbine impeller, the press-fitted hole recessed in the axial direction of the shaft, the outer peripheral surface of the projecting portion and the inner peripheral surface of the press-fit hole, and projecting in the radial direction of the shaft, An abutting portion that abuts on the other of the outer peripheral surface of the protruding portion and the inner peripheral surface of the press-fitting hole, and a joint that joins the shaft and the turbine impeller in a state where the protruding portion is press-fitted into the press-fitting hole.
  • the portion where the abutting portion abuts on the outer peripheral surface of the protruding portion or the inner peripheral surface of the press-fitting hole is more axial than the opposite portion of the outer peripheral surface of the protruding portion and the inner peripheral surface of the press-fitting hole.
  • the gist is that the length is short.
  • the contact portion may be formed in an annular shape in the circumferential direction of the shaft.
  • the contact portion may be curved so as to protrude outward in the radial direction of the shaft.
  • the outer peripheral surface of the protrusion may have a tapered surface that is provided on a tip side of the protrusion and guides insertion of the shaft into the turbine impeller.
  • the outer peripheral surface of the protrusion may have a cylindrical surface that is provided on the proximal end side of the protrusion, extends in the axial direction of the shaft, and guides the insertion of the shaft into the turbine impeller.
  • the shaft and the impeller can be press-fitted, and the balance can be easily adjusted by matching the positions of the shaft centers of the shaft and the impeller with high accuracy.
  • FIG. 1 is a schematic cross-sectional view of a supercharger according to an embodiment of the present invention.
  • FIG. 2A, FIG. 2B, FIG. 2D, and FIG. 2E are explanatory diagrams for explaining a turbine shaft according to an embodiment of the present invention.
  • FIG.2 (c) is a figure which shows the comparative example with respect to one Embodiment of this invention.
  • FIG. 3A to FIG. 3F are explanatory diagrams for explaining a modification of one embodiment of the present invention.
  • FIG. 1 is a schematic sectional view of the supercharger C.
  • the arrow L direction shown in the figure is the left side of the supercharger C
  • the arrow R direction is the right side of the supercharger C.
  • the supercharger C includes a supercharger main body 1.
  • the turbocharger body 1 includes a bearing housing 2, a turbine housing 4 fixed to a left end surface of the bearing housing 2 by a fastening bolt 3, and a compressor fixed to a right end surface of the bearing housing 2 by a fastening bolt 5. And a housing 6.
  • the bearing housing 2 is formed with a bearing hole 2a that penetrates the supercharger C in the left-right direction.
  • a bearing 7 is provided in the bearing hole 2a.
  • the shaft 8 is rotatably supported by the bearing 7 in the bearing hole 2a.
  • a turbine impeller 9 (impeller) is integrally fixed to the left end (one end) of the shaft 8.
  • the turbine impeller 9 is rotatably accommodated in the turbine housing 4.
  • a compressor impeller 10 is integrally fixed to the right end (the other end) of the shaft 8.
  • the compressor impeller 10 is rotatably accommodated in the compressor housing 6.
  • An intake port 11 is formed in the compressor housing 6.
  • the intake port 11 opens to the right side of the supercharger C and is connected to an air cleaner (not shown). Further, the bearing housing 2 and the compressor housing 6 are connected by the fastening bolt 5. In this state, the facing surfaces of both the housings 2 and 6 form a diffuser flow path 12 that pressurizes air.
  • the diffuser flow path 12 is formed in an annular shape from the radially inner side to the outer side of the shaft 8 (compressor impeller 10). The diffuser flow path 12 communicates with the intake port 11 via the compressor impeller 10 on the radially inner side.
  • the compressor housing 6 is provided with a compressor scroll passage 13.
  • the compressor scroll passage 13 is located on the radially outer side of the shaft 8 with respect to the diffuser passage 12 and is formed in an annular shape.
  • the compressor scroll passage 13 communicates with an intake port (not shown) of the engine. Further, the compressor scroll passage 13 communicates with the diffuser passage 12.
  • a discharge port 14 is formed in the turbine housing 4.
  • the discharge port 14 opens on the left side of the supercharger C and is connected to an exhaust gas purification device (not shown).
  • the turbine housing 4 is provided with a flow path 15 and a turbine scroll flow path 16.
  • the turbine scroll passage 16 is located on the radially outer side of the shaft 8 (turbine impeller 9) with respect to the passage 15, and is formed in an annular shape.
  • the turbine scroll passage 16 communicates with a gas inlet (not shown) through which exhaust gas discharged from an engine exhaust manifold (not shown) is guided. Further, the turbine scroll flow path 16 communicates with the flow path 15.
  • the exhaust gas is guided from a gas inlet (not shown) to the turbine scroll flow path 16 and is guided to the discharge port 14 via the flow path 15 and the turbine impeller 9.
  • the exhaust gas rotates the turbine impeller 9.
  • the rotational force of the turbine impeller 9 is transmitted to the compressor impeller 10 via the shaft 8, and the air is boosted by the rotational force of the compressor impeller 10 and guided to the intake port of the engine.
  • the turbine shaft 17 includes a shaft 8 and a turbine impeller 9. One end of the shaft 8 (left end in FIG. 2A) is joined to the turbine impeller 9.
  • FIG. 2 (b) shows a cross-sectional structure including the axis of the shaft 8 at the broken line II (b) portion of FIG. 2 (a).
  • a press-fitting hole 9 b is formed in a surface (hereinafter referred to as an opposing surface) 9 a that faces the shaft 8 of the turbine impeller 9.
  • the press-fitting hole 9 b is recessed in the axial direction of the shaft 8.
  • the press-fitting hole 9b includes a large-diameter portion 18 that is continuous from the facing surface 9a, and a small-diameter portion 19 that is smaller in inner diameter than the large-diameter portion 18 and continues to the opposite side of the shaft 8 with respect to the large-diameter portion 18. Contains.
  • the bottom surface 9 c of the press-fitting hole 9 b (small diameter portion 19) has a planar shape perpendicular to the axial direction of the shaft 8.
  • the protrusion part 20 is formed in the surface (henceforth a opposing surface) 8a which opposes the turbine impeller 9 among the shafts 8.
  • the protruding portion 20 protrudes in the axial direction of the shaft 8.
  • the protrusion part 20 has the end surface 20a in the front end side.
  • the end surface 20 a is formed as a plane perpendicular to the axial direction of the shaft 8.
  • the axial length of the shaft 8 from the facing surface 8a to the end surface 20a (that is, the height of the protruding portion 20) is the axial length of the shaft 8 at the large diameter portion 18 (that is, the large diameter portion 18 and the small diameter). Shorter than the depth of the press-fitting hole 9 b up to the boundary of the portion 19.
  • FIG. 2C shows the shaft S and the turbine impeller T in the comparative example.
  • a cylindrical protrusion Sa is formed on the shaft S, and is inserted into an insertion hole Ta provided in the turbine impeller T.
  • the outer peripheral surface Sb of the protrusion Sa is opposed to the inner peripheral surface Tb of the insertion hole Ta.
  • the outer peripheral surface Sb of the protruding portion Sa is formed in parallel with the axial direction of the shaft S.
  • FIG. 2 (d) shows a broken line II (d) portion of FIG. 2 (b).
  • the contact portion 20 c is provided on the outer peripheral surface 20 b of the protruding portion 20.
  • the contact portion 20 c is formed in an annular shape over the circumferential direction of the shaft 8.
  • the outer peripheral surface 20 b of the protrusion 20 may have a tapered surface 20 f provided on the tip side of the protrusion 20.
  • the outer peripheral surface 20b is provided on the base end side of the projecting portion 20 (that is, between the contact portion 20c and the opposing surface 8a of the shaft 8), and extends in parallel with the axial direction of the shaft 8. You may have the surface 20e. Both the taper surface 20f and the cylindrical surface 20e guide the insertion of the shaft 8 into the turbine impeller 9, and suppress unnecessary inclination of the shaft 8 during press-fitting.
  • the abutting portion 20c is curved such that the axial center portion of the shaft 8 protrudes outward in the radial direction of the shaft 8 (upward in FIG. 2 (d)) from both ends thereof. That is, in the cross section including the shaft center of the shaft 8, the contact portion 20 c has a curved shape that swells outward in the radial direction of the shaft 8. Moreover, the outer diameter (maximum outer diameter) of the contact part 20c in the protrusion part 20 is slightly larger than the inner diameter of the inner peripheral surface 18a of the large diameter part 18 (press-fit hole 9b).
  • the configuration in which the outer peripheral surface 20b of the protruding portion 20 is formed with the contact portion 20c protruding outward in the radial direction of the shaft 8 is, in other words, the outer diameter of the outer peripheral surface 20b of the protruding portion 20 is set to the large diameter portion 18.
  • the groove 20d (see FIG. 2 (d)) that is recessed in the radial direction of the shaft 8 is formed on the outer peripheral surface 20b of the projecting portion 20 while being slightly larger than the inner diameter of the inner peripheral surface 18a.
  • the outer diameter of the groove 20 d of the protruding portion 20 is smaller than the inner diameter of the inner peripheral surface 18 a of the large diameter portion 18.
  • the protruding portion 20 of the shaft 8 When the protruding portion 20 of the shaft 8 is press-fitted into the press-fitting hole 9b, the protruding portion 20 comes into contact with the inner peripheral surface 18a of the large-diameter portion 18 (press-fit hole 9b). At this time, the length in the axial direction of the shaft 8 at the opposite portion of the outer peripheral surface 20b of the protruding portion 20 and the inner peripheral surface 18a of the press-fitting hole 9b is indicated by a length P in FIG. The length in the axial direction of the shaft 8 of the portion that contacts the inner peripheral surface 18a of the large diameter portion 18 in the contact portion 20c is shorter than this length P.
  • the area where the inner peripheral surface 18a of the large diameter portion 18 abuts on the outer peripheral surface 20b of the projecting portion 20 is suppressed to be small during press-fitting. Therefore, the deformation
  • the contact portion 20 c is formed in an annular shape in the circumferential direction of the shaft 8. Therefore, at the time of press-fitting, the contact portion 20c is in contact with the inner peripheral surface 18a of the large-diameter portion 18 over the entire circumference in the circumferential direction of the shaft 8, and from the inner peripheral surface 18a of the large-diameter portion 18 against pressure input. Receive reaction force. Accordingly, the relative positions of the shaft 8 and the turbine impeller 9 are difficult to shift in the radial direction of the shaft 8, and the positional shift of the shaft center is further suppressed.
  • the portion located on the center side of the contact portion 20c in the axial direction of the shaft 8 is curved so as to protrude outward in the radial direction. Therefore, the contact portion 20c and the inner peripheral surface 18a of the large diameter portion 18 are in line contact, and the contact area can be suppressed to be easily pressed. In addition, the contact portion between the contact portion 20c and the inner peripheral surface 18a of the large-diameter portion 18 can be made slippery to suppress the occurrence of galling.
  • the curved shape described here includes a spherical shape.
  • FIG. 3A shows a first modification.
  • the outer peripheral surface 30b of the protrusion 30 has a plurality of contact portions 30c.
  • Each contact portion 30 c is in contact with the inner peripheral surface 18 a of the large diameter portion 18. Note that the number of contact portions 30c is not limited to two as shown in FIG.
  • FIG. 3B shows a second modification.
  • the outer peripheral surface 40b of the protrusion 40 has a contact part 40c.
  • the contact portion 40 c is curved in the circumferential direction of the shaft 8, but extends parallel to the axial direction of the shaft 8.
  • the cross-sectional shape of the contact portion 40c including the axis of the shaft 8 is not limited to the curved shape such as the contact portions 20c and 30c, and may be a rectangle.
  • FIG. 3C shows a third modification.
  • the outer peripheral surface 50 b of the protrusion 50 extends parallel to the axial direction of the shaft 8.
  • a contact portion 58 b is formed on the inner peripheral surface 58 a of the large diameter portion 58.
  • the contact portion 58 b protrudes inward in the radial direction of the shaft 8 and contacts the outer peripheral surface 50 b of the protrusion 50.
  • the contact part 58b may be provided in the large diameter part 58.
  • FIG. 3D shows a fourth modification.
  • the shaft 68 has a surface (hereinafter referred to as a facing surface) 68 a that faces the turbine impeller 69.
  • a press-fitting hole 68b is formed in the facing surface 68a.
  • the press-fitting hole 68 b is recessed in the axial direction of the shaft 68.
  • the press-fit hole 68b includes a small-diameter portion 78 located on the bottom surface side of the press-fit hole 68b and a large-diameter portion 79 located on the facing surface 68a side.
  • the turbine impeller 69 has a surface (hereinafter referred to as an opposing surface) 69 a that faces the shaft 68.
  • a protrusion 80 is provided on the facing surface 69a. The protrusion 80 protrudes in the axial direction of the shaft 68.
  • FIG. 3 (e) shows a broken line III (e) portion of FIG. 3 (d).
  • a contact portion 80 c is formed on the outer peripheral surface 80 b of the protruding portion 80.
  • the contact portion 80c contacts the inner peripheral surface 79a of the large diameter portion 79 of the press-fit hole 68b.
  • the outer peripheral surface 80 b of the protruding portion 80 may have a tapered surface 80 f provided on the distal end side of the protruding portion 80.
  • the outer peripheral surface 80b is provided on the base end side of the projecting portion 80 (that is, between the contact portion 80c and the opposed surface 69a of the turbine impeller 69), and extends parallel to the axial direction of the turbine impeller 69.
  • a cylindrical surface 80e may be provided. Both the tapered surface 80f and the cylindrical surface 80e guide the insertion of the shaft 68 into the turbine impeller 69, and suppress unnecessary inclination of the shaft 68 during press-fitting.
  • the press-fitting hole 68b may be provided in the shaft 68
  • the protrusion 80 may be provided in the turbine impeller 69
  • the contact portion 80c may be formed on the outer peripheral surface 80b of the protrusion 80.
  • the outer peripheral surface 80b of the projecting portion 80 is formed parallel to the axial direction of the shaft 68, and the inner peripheral surface 79a of the large diameter portion 79 is in contact with the outer peripheral surface 80b of the projecting portion 80. A part may be provided.
  • the portion of the contact portion that contacts the outer peripheral surface 50b of the protruding portion 50 or the inner peripheral surfaces 18a and 79a of the large diameter portions 18 and 79 is the protruding portion.
  • the axial lengths of the shafts 8 and 68 are shorter than the opposing portions of the outer peripheral surfaces of the large-diameter portions 18 and 79 and the inner peripheral surfaces 18a and 79a. For this reason, as in the above-described embodiment, press-fitting is possible, displacement of the shaft centers of the shafts 8 and 68 and the turbine impellers 9 and 69 is suppressed, and balance adjustment of the turbine shaft 17 can be easily performed. .
  • the contact portions 30c, 40c, 58b, and 80c are annularly formed in the circumferential direction of the shafts 8 and 68 as in the above embodiment, the shaft centers of the shafts 8 and 68 and the turbine impellers 9 and 69 are formed. The positional deviation of the axis is further suppressed. Further, as in the above embodiment, the contact portions 30c, 58b, 80c are curved so that the axial center side of the shafts 8, 68 protrudes outward in the radial direction of the shafts 8, 68. This makes it easy to control the occurrence of galling.
  • the contact portion is formed in an annular shape over the circumferential direction of the shafts 8 and 68 .
  • the contact portion is formed in the circumferential direction of the shafts 8 and 68. While extending, there may be a notch partially, and the some contact part may be scattered in the circumferential direction of the shafts 8 and 68.
  • the present invention can be used for a turbine shaft and a supercharger in which an impeller is joined to one end of a shaft.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Supercharger (AREA)

Abstract

A turbine shaft (17) is provided with the following: a shaft (8); a turbine impeller (9) provided to one end side of the shaft; a projecting section (20) provided to either the shaft or the turbine impeller; a press-fit hole (9b) provided to the other out of the shaft and the turbine impeller; an abutting section (20c) that is provided to either an outer peripheral surface (20b) of the projecting section or an inner peripheral surface (18a) of the press-fit hole, projects out in the radial direction of the shaft, and abuts with the other out of the outer peripheral surface of the projecting section or the inner peripheral surface of the press-fit hole; and a joint section (21) at which the shaft and the turbine impeller are joined, the projecting section being press-fitted into the press-fit hole. The site at which the abutting section abuts with the outer peripheral surface of the projecting section or the inner peripheral surface of the press-fit hole is shorter in length in the axial direction of the shaft than a site of opposition between the outer peripheral surface of the projecting section and the inner peripheral surface of the press-fit hole.

Description

タービン軸および過給機Turbine shaft and turbocharger
 本発明は、シャフトの一端にインペラが接合されたタービン軸および過給機に関する。 The present invention relates to a turbine shaft and a supercharger in which an impeller is joined to one end of a shaft.
 従来の過給機は、タービン軸を収容し、且つ回転可能に支持するベアリングハウジングを有する。タービン軸はシャフトと、シャフトの一端に接合されたタービンインペラとを有する。シャフトの他端にはコンプレッサインペラがナット締めによって固定されている。エンジンから排出される排気ガスによってタービンインペラを回転すると、このタービンインペラの回転によって、シャフトを介してコンプレッサインペラが回転する。こうして、過給機は、コンプレッサインペラの回転に伴い空気を圧縮してエンジンに供給する。 A conventional turbocharger has a bearing housing that houses a turbine shaft and rotatably supports it. The turbine shaft has a shaft and a turbine impeller joined to one end of the shaft. A compressor impeller is fixed to the other end of the shaft by tightening a nut. When the turbine impeller is rotated by the exhaust gas discharged from the engine, the compressor impeller is rotated through the shaft by the rotation of the turbine impeller. Thus, the supercharger compresses air and supplies it to the engine as the compressor impeller rotates.
 シャフトとタービンインペラのうちの一方には、タービン軸の軸方向に窪んだ挿入穴が設けられている。また、シャフトとタービンインペラのうちの他方には、タービン軸の軸方向に突出し、挿入穴に嵌合する突出部が設けられている。特許文献1では、タービンインペラに挿入穴が形成され、シャフトに突出部が形成されている。この突出部が、タービンインペラの挿入穴に挿入される。そして、挿入穴の開口が形成される端面と、この端面に対向し、突出部の基端から径方向外側に延在する部位とに対して溶接が施される。 One of the shaft and the turbine impeller is provided with an insertion hole that is recessed in the axial direction of the turbine shaft. The other of the shaft and the turbine impeller is provided with a protruding portion that protrudes in the axial direction of the turbine shaft and fits into the insertion hole. In Patent Document 1, an insertion hole is formed in the turbine impeller, and a protrusion is formed on the shaft. This protrusion is inserted into the insertion hole of the turbine impeller. And it welds with respect to the end surface in which the opening of an insertion hole is formed, and the site | part which opposes this end surface and extends to the radial direction outer side from the base end of a protrusion part.
特開2002-235547号公報JP 2002-235547 A
 従来のタービン軸においては、寸法公差があったとしても突出部を挿入穴に確実に挿入できるように、挿入穴の内径に対して突出部の外径を小さく形成することで余裕を持たせている。その結果、突出部が挿入穴に挿入されたとしても、シャフトの径方向に隙間が生じ、シャフトの軸心とタービンインペラの軸心の位置がずれた状態で溶接される可能性がある。場合によっては、タービン軸のアンバランスが過大となって、バランス調整が困難となってしまう。すなわち、作業時間に多くの時間を要することがある。 In conventional turbine shafts, even if there is a dimensional tolerance, a margin is provided by forming the outer diameter of the protrusion smaller than the inner diameter of the insertion hole so that the protrusion can be reliably inserted into the insertion hole. Yes. As a result, even if the protruding portion is inserted into the insertion hole, a gap is generated in the radial direction of the shaft, and there is a possibility that welding is performed in a state where the shaft center of the shaft and the shaft center of the turbine impeller are displaced. In some cases, the turbine shaft unbalance becomes excessive, making balance adjustment difficult. That is, the work time may take a lot of time.
 この解決方法として、挿入穴の内径に対し、突出部の外径を僅かに大きく形成し、挿入穴に突出部を圧入することで、シャフトの軸心とタービンインペラの軸心の位置ずれを抑制することが考えられる。しかし、タービンインペラの材質は固く弾性変形し難い。そのため、挿入穴および突出部の寸法のバラつきが寸法公差の範囲内であっても、圧入力が過大となって強度を損ねたり、突出部が挿入穴の内周面に引っかかってしまう、所謂かじりが生じたりしてしまう可能性がある。 As a solution to this, the outer diameter of the protrusion is slightly larger than the inner diameter of the insertion hole, and the protrusion is press-fitted into the insertion hole, thereby suppressing misalignment between the shaft axis of the shaft and the axis of the turbine impeller. It is possible to do. However, the material of the turbine impeller is hard and hardly elastically deformed. For this reason, even if the variation in the dimensions of the insertion hole and the protrusion is within the range of dimensional tolerance, the pressure input becomes excessive and the strength is lost, or the protrusion is caught on the inner peripheral surface of the insertion hole. May occur.
 そこで、本発明の目的は、シャフトとインペラの圧入を可能とし、シャフトとインペラの軸心の位置を高精度に合わせることで、バランス調整が容易となるタービン軸および過給機を提供することである。 Accordingly, an object of the present invention is to provide a turbine shaft and a supercharger that enable press-fitting of the shaft and the impeller and easily adjust the balance by matching the positions of the shaft centers of the shaft and the impeller with high accuracy. is there.
 本発明の第1の態様はタービン軸であって、シャフトと、シャフトの一端側に設けられたインペラと、シャフトおよびインペラのいずれか一方に設けられた、シャフトの軸方向に突出する突出部と、シャフトおよびインペラのいずれか他方に設けられた、シャフトの軸方向に窪んだ圧入穴と、突出部の外周面および圧入穴の内周面のいずれか一方に設けられ、シャフトの径方向に突出し、突出部の外周面および圧入穴の内周面のいずれか他方に当接する当接部と、突出部が圧入穴に圧入された状態で、シャフトとインペラが接合される接合部と、を備え、当接部が、突出部の外周面または圧入穴の内周面に当接する部位は、突出部の外周面と圧入穴の内周面の対向部位よりも、シャフトの軸方向の長さが短いことを要旨とする。 1st aspect of this invention is a turbine axis | shaft, Comprising: The shaft, the impeller provided in the one end side of the shaft, and the protrusion part which protruded in the axial direction of the shaft provided in either one of the shaft and the impeller , Provided in one of the shaft and the impeller, which is recessed in the axial direction of the shaft, and in either one of the outer peripheral surface of the protruding portion and the inner peripheral surface of the press-fitting hole, and protrudes in the radial direction of the shaft. A contact portion that contacts one of the outer peripheral surface of the protruding portion and the inner peripheral surface of the press-fitting hole, and a joint portion that joins the shaft and the impeller in a state where the protruding portion is press-fitted into the press-fitting hole. The portion where the abutting portion abuts on the outer peripheral surface of the protruding portion or the inner peripheral surface of the press-fitting hole is longer in the axial direction of the shaft than the opposite portion of the outer peripheral surface of the protruding portion and the inner peripheral surface of the press-fitting hole. The gist is short.
 本発明の第2の態様は過給機であって、過給機本体と、過給機本体内に回転自在に収容され、シャフトの一端にタービンインペラが接合されたタービン軸と、タービン軸におけるシャフトの他端に設けられたコンプレッサインペラと、を備える過給機であって、タービン軸は、シャフトおよびタービンインペラのいずれか一方に設けられた、シャフトの軸方向に突出する突出部と、シャフトおよびタービンインペラのいずれか他方に設けられた、シャフトの軸方向に窪んだ圧入穴と、突出部の外周面および圧入穴の内周面のいずれか一方に設けられ、シャフトの径方向に突出し、突出部の外周面および圧入穴の内周面のいずれか他方に当接する当接部と、突出部が圧入穴に圧入された状態で、シャフトとタービンインペラが接合される接合部と、を備え、当接部が、突出部の外周面または圧入穴の内周面に当接する部位は、突出部の外周面と圧入穴の内周面の対向部位よりも、シャフトの軸方向の長さが短いことを要旨とする。 A second aspect of the present invention is a supercharger, in which a turbocharger main body, a turbine shaft rotatably accommodated in the supercharger main body, a turbine impeller joined to one end of the shaft, and a turbine shaft A turbocharger including a compressor impeller provided at the other end of the shaft, wherein the turbine shaft is provided at one of the shaft and the turbine impeller and protrudes in the axial direction of the shaft; and the shaft And the other side of the turbine impeller, the press-fitted hole recessed in the axial direction of the shaft, the outer peripheral surface of the projecting portion and the inner peripheral surface of the press-fit hole, and projecting in the radial direction of the shaft, An abutting portion that abuts on the other of the outer peripheral surface of the protruding portion and the inner peripheral surface of the press-fitting hole, and a joint that joins the shaft and the turbine impeller in a state where the protruding portion is press-fitted into the press-fitting hole. The portion where the abutting portion abuts on the outer peripheral surface of the protruding portion or the inner peripheral surface of the press-fitting hole is more axial than the opposite portion of the outer peripheral surface of the protruding portion and the inner peripheral surface of the press-fitting hole. The gist is that the length is short.
 前記当接部は、前記シャフトの周方向に環状に形成されてもよい。 The contact portion may be formed in an annular shape in the circumferential direction of the shaft.
 前記当接部は、前記シャフトの径方向外側に突出するように湾曲していてもよい。 The contact portion may be curved so as to protrude outward in the radial direction of the shaft.
 前記突出部の前記外周面は、前記突出部の先端側に設けられ、前記シャフトの前記タービンインペラへの挿入をガイドするテーパ面を有してもよい。 The outer peripheral surface of the protrusion may have a tapered surface that is provided on a tip side of the protrusion and guides insertion of the shaft into the turbine impeller.
 前記突出部の前記外周面は、前記突出部の基端側に設けられ、前記シャフトの軸方向に延伸し、前記シャフトの前記タービンインペラへの挿入をガイドする円筒面を有してもよい。 The outer peripheral surface of the protrusion may have a cylindrical surface that is provided on the proximal end side of the protrusion, extends in the axial direction of the shaft, and guides the insertion of the shaft into the turbine impeller.
 本発明によれば、シャフトとインペラの圧入を可能とし、シャフトとインペラの軸心の位置を高精度に合わせることで、バランス調整が容易となる。 According to the present invention, the shaft and the impeller can be press-fitted, and the balance can be easily adjusted by matching the positions of the shaft centers of the shaft and the impeller with high accuracy.
図1は、本発明の一実施形態に係る過給機の概略断面図である。FIG. 1 is a schematic cross-sectional view of a supercharger according to an embodiment of the present invention. 図2(a)、図2(b)、図2(d)、図2(e)は、本発明の一実施形態に係るタービン軸を説明するための説明図である。図2(c)は本発明の一実施形態に対する比較例を示す図である。FIG. 2A, FIG. 2B, FIG. 2D, and FIG. 2E are explanatory diagrams for explaining a turbine shaft according to an embodiment of the present invention. FIG.2 (c) is a figure which shows the comparative example with respect to one Embodiment of this invention. 図3(a)~図3(f)は、本発明の一実施形態の変形例を説明するための説明図である。FIG. 3A to FIG. 3F are explanatory diagrams for explaining a modification of one embodiment of the present invention.
 以下に添付図面を参照しながら、本発明の一実施形態について詳細に説明する。かかる実施形態に示す寸法、材料、その他具体的な数値等は、発明の理解を容易とするための例示にすぎず、特に断る場合を除き、本発明を限定するものではない。なお、本明細書および図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本発明に直接関係のない要素は図示を省略する。 Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings. The dimensions, materials, and other specific numerical values shown in the embodiments are merely examples for facilitating the understanding of the invention, and do not limit the present invention unless otherwise specified. In the present specification and drawings, elements having substantially the same function and configuration are denoted by the same reference numerals, and redundant description is omitted, and elements not directly related to the present invention are not illustrated. To do.
 図1は、過給機Cの概略断面図である。以下では、図に示す矢印L方向を過給機Cの左側とし、矢印R方向を過給機Cの右側として説明する。図1に示すように、過給機Cは、過給機本体1を備えている。過給機本体1は、ベアリングハウジング2と、ベアリングハウジング2の左側の一端面に締結ボルト3によって固定されるタービンハウジング4と、ベアリングハウジング2の右側の一端面に締結ボルト5によって固定されるコンプレッサハウジング6と、を備えている。 FIG. 1 is a schematic sectional view of the supercharger C. In the following description, the arrow L direction shown in the figure is the left side of the supercharger C, and the arrow R direction is the right side of the supercharger C. As shown in FIG. 1, the supercharger C includes a supercharger main body 1. The turbocharger body 1 includes a bearing housing 2, a turbine housing 4 fixed to a left end surface of the bearing housing 2 by a fastening bolt 3, and a compressor fixed to a right end surface of the bearing housing 2 by a fastening bolt 5. And a housing 6.
 ベアリングハウジング2には、過給機Cの左右方向に貫通する軸受孔2aが形成されている。軸受孔2aには軸受7が設けられる。シャフト8は、軸受7によって軸受孔2a内に回転自在に支持されている。シャフト8の左端部(一端)にはタービンインペラ9(インペラ)が一体的に固定されている。タービンインペラ9は、タービンハウジング4内に回転自在に収容されている。また、シャフト8の右端部(他端)にはコンプレッサインペラ10が一体的に固定されている。コンプレッサインペラ10は、コンプレッサハウジング6内に回転自在に収容されている。 The bearing housing 2 is formed with a bearing hole 2a that penetrates the supercharger C in the left-right direction. A bearing 7 is provided in the bearing hole 2a. The shaft 8 is rotatably supported by the bearing 7 in the bearing hole 2a. A turbine impeller 9 (impeller) is integrally fixed to the left end (one end) of the shaft 8. The turbine impeller 9 is rotatably accommodated in the turbine housing 4. A compressor impeller 10 is integrally fixed to the right end (the other end) of the shaft 8. The compressor impeller 10 is rotatably accommodated in the compressor housing 6.
 コンプレッサハウジング6には吸気口11が形成されている。吸気口11は、過給機Cの右側に開口し、エアクリーナ(図示せず)に接続する。また、締結ボルト5によってベアリングハウジング2とコンプレッサハウジング6とが連結される。この状態では、これら両ハウジング2、6の対向面が、空気を昇圧するディフューザ流路12を形成する。ディフューザ流路12は、シャフト8(コンプレッサインペラ10)の径方向内側から外側に向けて環状に形成されている。ディフューザ流路12は、上記の径方向内側において、コンプレッサインペラ10を介して吸気口11に連通している。 An intake port 11 is formed in the compressor housing 6. The intake port 11 opens to the right side of the supercharger C and is connected to an air cleaner (not shown). Further, the bearing housing 2 and the compressor housing 6 are connected by the fastening bolt 5. In this state, the facing surfaces of both the housings 2 and 6 form a diffuser flow path 12 that pressurizes air. The diffuser flow path 12 is formed in an annular shape from the radially inner side to the outer side of the shaft 8 (compressor impeller 10). The diffuser flow path 12 communicates with the intake port 11 via the compressor impeller 10 on the radially inner side.
 コンプレッサハウジング6にはコンプレッサスクロール流路13が設けられている。コンプレッサスクロール流路13は、ディフューザ流路12よりもシャフト8の径方向外側に位置し、環状に形成される。コンプレッサスクロール流路13は、エンジンの吸気口(図示せず)に連通する。また、コンプレッサスクロール流路13は、ディフューザ流路12にも連通している。コンプレッサインペラ10が回転すると、空気が吸気口11からコンプレッサハウジング6内に吸気され、コンプレッサインペラ10の翼間を流通する。この過程において空気の速度は遠心力の作用により増加し、ディフューザ流路12およびコンプレッサスクロール流路13で昇圧されてエンジンの吸気口(図示せず)に導かれる。 The compressor housing 6 is provided with a compressor scroll passage 13. The compressor scroll passage 13 is located on the radially outer side of the shaft 8 with respect to the diffuser passage 12 and is formed in an annular shape. The compressor scroll passage 13 communicates with an intake port (not shown) of the engine. Further, the compressor scroll passage 13 communicates with the diffuser passage 12. When the compressor impeller 10 rotates, air is sucked into the compressor housing 6 from the intake port 11 and flows between the blades of the compressor impeller 10. In this process, the speed of air increases due to the action of centrifugal force, and the pressure is increased in the diffuser flow path 12 and the compressor scroll flow path 13 and led to the intake port (not shown) of the engine.
 タービンハウジング4には吐出口14が形成されている。吐出口14は、過給機Cの左側に開口し、排気ガス浄化装置(図示せず)に接続する。タービンハウジング4には、流路15と、タービンスクロール流路16とが設けられている。タービンスクロール流路16は、流路15よりもシャフト8(タービンインペラ9)の径方向外側に位置し、環状に形成される。タービンスクロール流路16は、エンジンの排気マニホールド(図示せず)から排出された排気ガスが導かれるガス流入口(図示せず)に連通する。また、タービンスクロール流路16は、上記の流路15にも連通している。排気ガスは、ガス流入口(図示せず)からタービンスクロール流路16に導かれ、流路15およびタービンインペラ9を介して吐出口14に導かれる。この流通過程において排気ガスはタービンインペラ9を回転させる。そして、上記のタービンインペラ9の回転力は、シャフト8を介してコンプレッサインペラ10に伝達され、空気は、コンプレッサインペラ10の回転力によって、昇圧されてエンジンの吸気口に導かれる。 A discharge port 14 is formed in the turbine housing 4. The discharge port 14 opens on the left side of the supercharger C and is connected to an exhaust gas purification device (not shown). The turbine housing 4 is provided with a flow path 15 and a turbine scroll flow path 16. The turbine scroll passage 16 is located on the radially outer side of the shaft 8 (turbine impeller 9) with respect to the passage 15, and is formed in an annular shape. The turbine scroll passage 16 communicates with a gas inlet (not shown) through which exhaust gas discharged from an engine exhaust manifold (not shown) is guided. Further, the turbine scroll flow path 16 communicates with the flow path 15. The exhaust gas is guided from a gas inlet (not shown) to the turbine scroll flow path 16 and is guided to the discharge port 14 via the flow path 15 and the turbine impeller 9. In this distribution process, the exhaust gas rotates the turbine impeller 9. The rotational force of the turbine impeller 9 is transmitted to the compressor impeller 10 via the shaft 8, and the air is boosted by the rotational force of the compressor impeller 10 and guided to the intake port of the engine.
 図2(a)~図2(e)は、本実施形態のタービン軸17を説明するための説明図である。図2(a)に示すように、タービン軸17は、シャフト8とタービンインペラ9とを備える。シャフト8の一端(図2(a)中、左端部)は、タービンインペラ9に接合されている。 2 (a) to 2 (e) are explanatory views for explaining the turbine shaft 17 of the present embodiment. As shown in FIG. 2A, the turbine shaft 17 includes a shaft 8 and a turbine impeller 9. One end of the shaft 8 (left end in FIG. 2A) is joined to the turbine impeller 9.
 図2(b)は、図2(a)の破線II(b)部分におけるシャフト8の軸心を含む断面構造を示している。図2(b)に示すように、タービンインペラ9のうち、シャフト8に対向する面(以下、対向面と称する)9aには、圧入穴9bが形成されている。圧入穴9bはシャフト8の軸方向に窪んでいる。具体的には、圧入穴9bは、対向面9aから連続する大径部18と、大径部18より内径が小さく大径部18に対してシャフト8と反対側に連続する小径部19とを含んでいる。圧入穴9b(小径部19)の底面9cは、シャフト8の軸方向に垂直な平面形状を有する。 FIG. 2 (b) shows a cross-sectional structure including the axis of the shaft 8 at the broken line II (b) portion of FIG. 2 (a). As shown in FIG. 2B, a press-fitting hole 9 b is formed in a surface (hereinafter referred to as an opposing surface) 9 a that faces the shaft 8 of the turbine impeller 9. The press-fitting hole 9 b is recessed in the axial direction of the shaft 8. Specifically, the press-fitting hole 9b includes a large-diameter portion 18 that is continuous from the facing surface 9a, and a small-diameter portion 19 that is smaller in inner diameter than the large-diameter portion 18 and continues to the opposite side of the shaft 8 with respect to the large-diameter portion 18. Contains. The bottom surface 9 c of the press-fitting hole 9 b (small diameter portion 19) has a planar shape perpendicular to the axial direction of the shaft 8.
 シャフト8のうち、タービンインペラ9に対向する面(以下、対抗面と称する)8aには、突出部20が形成されている。突出部20は、シャフト8の軸方向に突出している。突出部20は、先端側に端面20aを有する。端面20aは、シャフト8の軸方向に垂直な平面として形成される。対向面8aから端面20aまでのシャフト8の軸方向の長さ(すなわち、突出部20の高さ)は、大径部18におけるシャフト8の軸方向の長さ(すなわち、大径部18と小径部19の境界までの圧入穴9bの深さ)よりも短い。 The protrusion part 20 is formed in the surface (henceforth a opposing surface) 8a which opposes the turbine impeller 9 among the shafts 8. The protruding portion 20 protrudes in the axial direction of the shaft 8. The protrusion part 20 has the end surface 20a in the front end side. The end surface 20 a is formed as a plane perpendicular to the axial direction of the shaft 8. The axial length of the shaft 8 from the facing surface 8a to the end surface 20a (that is, the height of the protruding portion 20) is the axial length of the shaft 8 at the large diameter portion 18 (that is, the large diameter portion 18 and the small diameter). Shorter than the depth of the press-fitting hole 9 b up to the boundary of the portion 19.
 そのため、突出部20が圧入穴9bに挿入され、シャフト8の対向面8aがタービンインペラ9の対向面9aに当接するまで押し込まれると、圧入穴9bの底面9cと突出部20の端面20aとの間に空隙が形成される。 Therefore, when the protruding portion 20 is inserted into the press-fitting hole 9b and pushed until the opposing surface 8a of the shaft 8 contacts the opposing surface 9a of the turbine impeller 9, the bottom surface 9c of the press-fitting hole 9b and the end surface 20a of the protruding portion 20 A gap is formed between them.
 この状態で、シャフト8の対向面8a、および、タービンインペラ9の対向面9aの当接部分に対し、シャフト8の径方向外側から、シャフト8の周方向に亘って電子ビームが照射されると、シャフト8の対向面8aとタービンインペラ9の対向面9aが溶接される。すなわち、シャフト8の対向面8aとタービンインペラ9の対向面9aは、シャフト8とタービンインペラ9を接合する接合部21となっている。なお、接合部21に対する接合処理は、電子ビーム溶接に限らず、レーザ溶接やろう付けなどの周知の技術を用いてもよい。 In this state, when an electron beam is irradiated over the circumferential direction of the shaft 8 from the radially outer side of the shaft 8 to the contact portion of the facing surface 8a of the shaft 8 and the facing surface 9a of the turbine impeller 9. The opposed surface 8a of the shaft 8 and the opposed surface 9a of the turbine impeller 9 are welded. That is, the facing surface 8 a of the shaft 8 and the facing surface 9 a of the turbine impeller 9 form a joint portion 21 that joins the shaft 8 and the turbine impeller 9. The joining process for the joining portion 21 is not limited to electron beam welding, and a known technique such as laser welding or brazing may be used.
 図2(c)は、比較例におけるシャフトSとタービンインペラTを示す。シャフトSには円柱状の突出部Saが形成され、タービンインペラTに設けられた挿入穴Taに挿入されている。突出部Saの外周面Sbは、挿入穴Taの内周面Tbに対向する。突出部Saの外周面SbはシャフトSの軸方向に平行に形成されている。そのため、突出部Saの外径が挿入穴Taの内径に対して僅かに大きく形成され、挿入穴Taに突出部Saが圧入される場合、突出部Saの外周面Sbと、挿入穴Taの内周面Tbとが面接触して圧入時に必要な圧力が過大となることから圧入は困難であった。 FIG. 2C shows the shaft S and the turbine impeller T in the comparative example. A cylindrical protrusion Sa is formed on the shaft S, and is inserted into an insertion hole Ta provided in the turbine impeller T. The outer peripheral surface Sb of the protrusion Sa is opposed to the inner peripheral surface Tb of the insertion hole Ta. The outer peripheral surface Sb of the protruding portion Sa is formed in parallel with the axial direction of the shaft S. Therefore, when the outer diameter of the protrusion Sa is slightly larger than the inner diameter of the insertion hole Ta and the protrusion Sa is press-fitted into the insertion hole Ta, the outer peripheral surface Sb of the protrusion Sa and the inner diameter of the insertion hole Ta The press-fit is difficult because the surface Tb contacts the surface Tb and the pressure required for press-fitting becomes excessive.
 図2(d)は、図2(b)の破線II(d)部分を示す。本実施形態では、図2(d)に示すように、突出部20の外周面20bに当接部20cが設けられている。当接部20cは、シャフト8の周方向に亘って環状に形成される。なお、図2(e)に示すように、突出部20の外周面20bは、突出部20の先端側に設けられるテーパ面20fを有してもよい。また、この外周面20bは、突出部20の基端側(即ち、当接部20cとシャフト8の対向面8aとの間)に設けられ、シャフト8の軸方向に対して平行に延伸する円筒面20eを有してもよい。テーパ面20fおよび円筒面20eは、何れもシャフト8のタービンインペラ9への挿入をガイドし、圧入時のシャフト8の不要な傾斜を抑制する。 FIG. 2 (d) shows a broken line II (d) portion of FIG. 2 (b). In the present embodiment, as shown in FIG. 2D, the contact portion 20 c is provided on the outer peripheral surface 20 b of the protruding portion 20. The contact portion 20 c is formed in an annular shape over the circumferential direction of the shaft 8. As shown in FIG. 2 (e), the outer peripheral surface 20 b of the protrusion 20 may have a tapered surface 20 f provided on the tip side of the protrusion 20. The outer peripheral surface 20b is provided on the base end side of the projecting portion 20 (that is, between the contact portion 20c and the opposing surface 8a of the shaft 8), and extends in parallel with the axial direction of the shaft 8. You may have the surface 20e. Both the taper surface 20f and the cylindrical surface 20e guide the insertion of the shaft 8 into the turbine impeller 9, and suppress unnecessary inclination of the shaft 8 during press-fitting.
 当接部20cは、シャフト8の軸方向の中心部がその両端側よりも、シャフト8の径方向外側(図2(d)中、上方向)に突出するように湾曲している。すなわち、シャフト8の軸心を含む断面において、当接部20cは、シャフト8の径方向外側に膨らんだ曲面形状を有する。また、突出部20における当接部20cの外径(最大外径)は、大径部18(圧入穴9b)の内周面18aの内径よりも僅かに大きい。 The abutting portion 20c is curved such that the axial center portion of the shaft 8 protrudes outward in the radial direction of the shaft 8 (upward in FIG. 2 (d)) from both ends thereof. That is, in the cross section including the shaft center of the shaft 8, the contact portion 20 c has a curved shape that swells outward in the radial direction of the shaft 8. Moreover, the outer diameter (maximum outer diameter) of the contact part 20c in the protrusion part 20 is slightly larger than the inner diameter of the inner peripheral surface 18a of the large diameter part 18 (press-fit hole 9b).
 なお、突出部20の外周面20bに、シャフト8の径方向外側に突出する当接部20cが形成される構成は、言い換えれば、突出部20の外周面20bの外径を、大径部18の内周面18aの内径よりも僅かに大きく形成しつつ、突出部20の外周面20bに、シャフト8の径方向に窪んだ溝20d(図2(d)参照)が形成される構成と実質的に同じである。突出部20の溝20dの外径は、大径部18の内周面18aの内径よりも小さい。 The configuration in which the outer peripheral surface 20b of the protruding portion 20 is formed with the contact portion 20c protruding outward in the radial direction of the shaft 8 is, in other words, the outer diameter of the outer peripheral surface 20b of the protruding portion 20 is set to the large diameter portion 18. The groove 20d (see FIG. 2 (d)) that is recessed in the radial direction of the shaft 8 is formed on the outer peripheral surface 20b of the projecting portion 20 while being slightly larger than the inner diameter of the inner peripheral surface 18a. Are the same. The outer diameter of the groove 20 d of the protruding portion 20 is smaller than the inner diameter of the inner peripheral surface 18 a of the large diameter portion 18.
 シャフト8の突出部20が圧入穴9bに圧入されると、突出部20が、大径部18(圧入穴9b)の内周面18aに当接する。このとき、突出部20の外周面20bと、圧入穴9bの内周面18aの対向部位のシャフト8の軸方向の長さを、図2(d)中、長さPで示す。当接部20cにおいて大径部18の内周面18aに当接する部位の、シャフト8の軸方向の長さは、この長さPよりも短い。 When the protruding portion 20 of the shaft 8 is press-fitted into the press-fitting hole 9b, the protruding portion 20 comes into contact with the inner peripheral surface 18a of the large-diameter portion 18 (press-fit hole 9b). At this time, the length in the axial direction of the shaft 8 at the opposite portion of the outer peripheral surface 20b of the protruding portion 20 and the inner peripheral surface 18a of the press-fitting hole 9b is indicated by a length P in FIG. The length in the axial direction of the shaft 8 of the portion that contacts the inner peripheral surface 18a of the large diameter portion 18 in the contact portion 20c is shorter than this length P.
 つまり、上記の比較例(図2(c))に対して、圧入時、大径部18の内周面18aが、突出部20の外周面20bに当接する面積が小さく抑えられる。従って、シャフト8やタービンインペラ9に生じる変形が抑えられ、圧入時に必要な荷重が抑制される。そのため、シャフト8とタービンインペラ9の強度への影響を抑制できる。また、突出部20が大径部18の内周面18aに引っかかってしまう、所謂かじりの発生を抑制できる。その結果、圧入時のシャフト8とタービンインペラ9の軸心の位置ずれが抑制され、タービン軸17のバランス調整を容易に遂行することが可能になる。 That is, compared to the above comparative example (FIG. 2C), the area where the inner peripheral surface 18a of the large diameter portion 18 abuts on the outer peripheral surface 20b of the projecting portion 20 is suppressed to be small during press-fitting. Therefore, the deformation | transformation which arises in the shaft 8 or the turbine impeller 9 is suppressed, and a load required at the time of press-fitting is suppressed. Therefore, the influence on the strength of the shaft 8 and the turbine impeller 9 can be suppressed. Further, it is possible to suppress the occurrence of so-called galling that the protruding portion 20 is caught on the inner peripheral surface 18a of the large diameter portion 18. As a result, the displacement of the shaft center between the shaft 8 and the turbine impeller 9 during press-fitting is suppressed, and the balance adjustment of the turbine shaft 17 can be easily performed.
 当接部20cは、シャフト8の周方向に環状に形成されている。そのため、圧入時において、当接部20cが大径部18の内周面18aに、シャフト8の周方向に全周に亘って接して、圧入力に対する大径部18の内周面18aからの反力を受ける。従って、シャフト8とタービンインペラ9の相対的な位置は、シャフト8の径方向にずれ難く、軸心の位置ずれがさらに抑制される。 The contact portion 20 c is formed in an annular shape in the circumferential direction of the shaft 8. Therefore, at the time of press-fitting, the contact portion 20c is in contact with the inner peripheral surface 18a of the large-diameter portion 18 over the entire circumference in the circumferential direction of the shaft 8, and from the inner peripheral surface 18a of the large-diameter portion 18 against pressure input. Receive reaction force. Accordingly, the relative positions of the shaft 8 and the turbine impeller 9 are difficult to shift in the radial direction of the shaft 8, and the positional shift of the shaft center is further suppressed.
 また、シャフト8の軸方向において当接部20cの中心側に位置する部分が、径方向外側に突出するように湾曲している。そのため、当接部20cと大径部18の内周面18aが線接触することとなり、接触面積を小さく抑えて圧入しやすくすることができる。その上、当接部20cと大径部18の内周面18aの接触部分を滑りやすくして、かじりの発生を抑制することが可能になる。なお、ここで説明をした湾曲形状は、球面形状を含まれる。 Further, the portion located on the center side of the contact portion 20c in the axial direction of the shaft 8 is curved so as to protrude outward in the radial direction. Therefore, the contact portion 20c and the inner peripheral surface 18a of the large diameter portion 18 are in line contact, and the contact area can be suppressed to be easily pressed. In addition, the contact portion between the contact portion 20c and the inner peripheral surface 18a of the large-diameter portion 18 can be made slippery to suppress the occurrence of galling. Note that the curved shape described here includes a spherical shape.
 図3(a)~図3(f)は、本実施形態の変形例を説明するための説明図である。図3(a)は第1変形例を示す。この図に示すように、突出部30の外周面30bは、複数の当接部30cを有する。それぞれの当接部30cは、大径部18の内周面18aに当接している。なお、当接部30cの個数は図3(a)に示す2個に限られない。 3 (a) to 3 (f) are explanatory diagrams for explaining a modification of the present embodiment. FIG. 3A shows a first modification. As shown in this figure, the outer peripheral surface 30b of the protrusion 30 has a plurality of contact portions 30c. Each contact portion 30 c is in contact with the inner peripheral surface 18 a of the large diameter portion 18. Note that the number of contact portions 30c is not limited to two as shown in FIG.
 また、図3(b)は第2変形例を示す。この図に示すように、突出部40の外周面40bは当接部40cを有する。当接部40cは、シャフト8の周方向に湾曲するものの、シャフト8の軸方向に対しては平行に延伸する。このように、シャフト8の軸心を含む、当接部40cの断面形状は、当接部20c、30cのような湾曲形状に限定されず、矩形であってもよい。 FIG. 3B shows a second modification. As shown in this figure, the outer peripheral surface 40b of the protrusion 40 has a contact part 40c. The contact portion 40 c is curved in the circumferential direction of the shaft 8, but extends parallel to the axial direction of the shaft 8. Thus, the cross-sectional shape of the contact portion 40c including the axis of the shaft 8 is not limited to the curved shape such as the contact portions 20c and 30c, and may be a rectangle.
 また、図3(c)は第3変形例を示す。この図に示すように、突出部50の外周面50bは、シャフト8の軸方向に対して平行に延伸する。大径部58の内周面58aには当接部58bが形成されている。当接部58bは、シャフト8の径方向内側に突出し、突出部50の外周面50bに当接する。このように、当接部58bが、大径部58に設けられていてもよい。 FIG. 3C shows a third modification. As shown in this figure, the outer peripheral surface 50 b of the protrusion 50 extends parallel to the axial direction of the shaft 8. A contact portion 58 b is formed on the inner peripheral surface 58 a of the large diameter portion 58. The contact portion 58 b protrudes inward in the radial direction of the shaft 8 and contacts the outer peripheral surface 50 b of the protrusion 50. Thus, the contact part 58b may be provided in the large diameter part 58. FIG.
 また、図3(d)は第4変形例を示す。この図に示すように、シャフト68は、タービンインペラ69に対向する面(以下、対抗面と称する)68aを有する。対抗面68aには圧入穴68bが形成されている。圧入穴68bは、シャフト68の軸方向に窪んでいる。具体的には、圧入穴68bは、圧入穴68bの底面側に位置する小径部78と、対抗面68a側に位置する大径部79とを含む。一方、タービンインペラ69は、シャフト68に対向する面(以下、対抗面と称する)69aを有する。対抗面69aには突出部80が設けられている。突出部80は、シャフト68の軸方向に突出している。 FIG. 3D shows a fourth modification. As shown in this figure, the shaft 68 has a surface (hereinafter referred to as a facing surface) 68 a that faces the turbine impeller 69. A press-fitting hole 68b is formed in the facing surface 68a. The press-fitting hole 68 b is recessed in the axial direction of the shaft 68. Specifically, the press-fit hole 68b includes a small-diameter portion 78 located on the bottom surface side of the press-fit hole 68b and a large-diameter portion 79 located on the facing surface 68a side. On the other hand, the turbine impeller 69 has a surface (hereinafter referred to as an opposing surface) 69 a that faces the shaft 68. A protrusion 80 is provided on the facing surface 69a. The protrusion 80 protrudes in the axial direction of the shaft 68.
 図3(e)は、図3(d)の破線III(e)部分を示す。図3(e)に示すように、突出部80の外周面80bには当接部80cが形成されている。当接部80cは、圧入穴68bの大径部79の内周面79aに当接する。なお、図3(f)に示すように、突出部80の外周面80bは、突出部80の先端側に設けられるテーパ面80fを有してもよい。また、この外周面80bは、突出部80の基端側(即ち、当接部80cとタービンインペラ69の対向面69aとの間)に設けられ、タービンインペラ69の軸方向に対して平行に延伸する円筒面80eを有してもよい。テーパ面80fおよび円筒面80eは、いずれもシャフト68のタービンインペラ69への挿入をガイドし、圧入時のシャフト68の不要な傾斜を抑制する。 FIG. 3 (e) shows a broken line III (e) portion of FIG. 3 (d). As shown in FIG. 3E, a contact portion 80 c is formed on the outer peripheral surface 80 b of the protruding portion 80. The contact portion 80c contacts the inner peripheral surface 79a of the large diameter portion 79 of the press-fit hole 68b. As shown in FIG. 3 (f), the outer peripheral surface 80 b of the protruding portion 80 may have a tapered surface 80 f provided on the distal end side of the protruding portion 80. The outer peripheral surface 80b is provided on the base end side of the projecting portion 80 (that is, between the contact portion 80c and the opposed surface 69a of the turbine impeller 69), and extends parallel to the axial direction of the turbine impeller 69. A cylindrical surface 80e may be provided. Both the tapered surface 80f and the cylindrical surface 80e guide the insertion of the shaft 68 into the turbine impeller 69, and suppress unnecessary inclination of the shaft 68 during press-fitting.
 このように、圧入穴68bをシャフト68に設け、突出部80をタービンインペラ69に設けて、突出部80の外周面80bに当接部80cを形成してもよい。また、第4変形例において、突出部80の外周面80bをシャフト68の軸方向に平行に形成し、大径部79の内周面79aに、突出部80の外周面80bに当接する当接部を設けてもよい。 As described above, the press-fitting hole 68b may be provided in the shaft 68, the protrusion 80 may be provided in the turbine impeller 69, and the contact portion 80c may be formed on the outer peripheral surface 80b of the protrusion 80. Further, in the fourth modified example, the outer peripheral surface 80b of the projecting portion 80 is formed parallel to the axial direction of the shaft 68, and the inner peripheral surface 79a of the large diameter portion 79 is in contact with the outer peripheral surface 80b of the projecting portion 80. A part may be provided.
 上記の第1~第4変形例のいずれにおいても、当接部において、突出部50の外周面50b、または、大径部18、79の内周面18a、79aに当接する部位は、突出部の外周面と大径部18、79の内周面18a、79aの対向部位よりも、シャフト8、68の軸方向の長さが短い。そのため、上記の実施形態と同様、圧入が可能となり、シャフト8、68とタービンインペラ9、69の軸心の位置ずれが抑制され、タービン軸17のバランス調整を容易に遂行することが可能になる。 In any of the first to fourth modifications described above, the portion of the contact portion that contacts the outer peripheral surface 50b of the protruding portion 50 or the inner peripheral surfaces 18a and 79a of the large diameter portions 18 and 79 is the protruding portion. The axial lengths of the shafts 8 and 68 are shorter than the opposing portions of the outer peripheral surfaces of the large- diameter portions 18 and 79 and the inner peripheral surfaces 18a and 79a. For this reason, as in the above-described embodiment, press-fitting is possible, displacement of the shaft centers of the shafts 8 and 68 and the turbine impellers 9 and 69 is suppressed, and balance adjustment of the turbine shaft 17 can be easily performed. .
 また、上記の実施形態と同様、当接部30c、40c、58b、80cは、シャフト8、68の周方向に環状に形成されているため、シャフト8、68の軸心とタービンインペラ9、69の軸心の位置ずれがさらに抑制される。また、上記の実施形態と同様、当接部30c、58b、80cは、シャフト8、68の軸方向の中心側が、シャフト8、68の径方向外側に突出するように湾曲しているため、圧入しやすく、かじりの発生を抑制することが可能になる。 Moreover, since the contact portions 30c, 40c, 58b, and 80c are annularly formed in the circumferential direction of the shafts 8 and 68 as in the above embodiment, the shaft centers of the shafts 8 and 68 and the turbine impellers 9 and 69 are formed. The positional deviation of the axis is further suppressed. Further, as in the above embodiment, the contact portions 30c, 58b, 80c are curved so that the axial center side of the shafts 8, 68 protrudes outward in the radial direction of the shafts 8, 68. This makes it easy to control the occurrence of galling.
 また、上述した実施形態および変形例においては、当接部がシャフト8、68の周方向に亘って環状に形成される場合について説明したが、当接部は、シャフト8、68の周方向に延在するとともに、部分的に切り欠きがあってもよいし、シャフト8、68の周方向に複数の当接部が点在していてもよい。 In the embodiment and the modification described above, the case where the contact portion is formed in an annular shape over the circumferential direction of the shafts 8 and 68 has been described. However, the contact portion is formed in the circumferential direction of the shafts 8 and 68. While extending, there may be a notch partially, and the some contact part may be scattered in the circumferential direction of the shafts 8 and 68. FIG.
 以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明はかかる実施形態に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。 The preferred embodiments of the present invention have been described above with reference to the accompanying drawings, but the present invention is not limited to such embodiments. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Is done.
 本発明は、シャフトの一端にインペラが接合されたタービン軸および過給機に利用することができる。 The present invention can be used for a turbine shaft and a supercharger in which an impeller is joined to one end of a shaft.

Claims (10)

  1.  シャフトと、
     前記シャフトの一端側に設けられたインペラと、
     前記シャフトおよび前記インペラのいずれか一方に設けられた、該シャフトの軸方向に突出する突出部と、
     前記シャフトおよび前記インペラのいずれか他方に設けられた、該シャフトの軸方向に窪んだ圧入穴と、
     前記突出部の外周面および前記圧入穴の内周面のいずれか一方に設けられ、前記シャフトの径方向に突出し、該突出部の外周面および該圧入穴の内周面のいずれか他方に当接する当接部と、
     前記突出部が前記圧入穴に圧入された状態で前記シャフトと前記インペラが接合される接合部と、
    を備え、
     前記当接部が、前記突出部の外周面または前記圧入穴の内周面に当接する部位は、該突出部の外周面と該圧入穴の内周面の対向部位よりも、前記シャフトの軸方向の長さが短いことを特徴とするタービン軸。
    A shaft,
    An impeller provided on one end side of the shaft;
    A projecting portion that is provided on one of the shaft and the impeller and projects in the axial direction of the shaft;
    A press-fitting hole provided in one of the shaft and the impeller and recessed in the axial direction of the shaft;
    Provided on one of the outer peripheral surface of the protrusion and the inner peripheral surface of the press-fitting hole, protrudes in the radial direction of the shaft, and contacts either the outer peripheral surface of the protrusion or the inner peripheral surface of the press-fitting hole. An abutting portion that contacts,
    A joint where the shaft and the impeller are joined in a state where the protrusion is press-fitted into the press-fitting hole;
    With
    The portion where the abutting portion abuts on the outer peripheral surface of the protruding portion or the inner peripheral surface of the press-fitting hole is larger than the opposite portion of the outer peripheral surface of the protruding portion and the inner peripheral surface of the press-fitting hole. A turbine shaft having a short direction length.
  2.  前記当接部は、前記シャフトの周方向に環状に形成されていることを特徴とする請求項1に記載のタービン軸。 The turbine shaft according to claim 1, wherein the contact portion is formed in an annular shape in a circumferential direction of the shaft.
  3.  前記当接部は、前記シャフトの径方向外側に突出するように湾曲していることを特徴とする請求項2に記載のタービン軸。 The turbine shaft according to claim 2, wherein the contact portion is curved so as to protrude outward in the radial direction of the shaft.
  4.  前記突出部の前記外周面は、前記突出部の先端側に設けられ、前記シャフトの前記タービンインペラへの挿入をガイドするテーパ面を有することを特徴とする請求項1に記載のタービン軸。 2. The turbine shaft according to claim 1, wherein the outer peripheral surface of the protrusion has a tapered surface that is provided on a distal end side of the protrusion and guides insertion of the shaft into the turbine impeller.
  5.  前記突出部の前記外周面は、前記突出部の基端側に設けられ、前記シャフトの軸方向に延伸し、前記シャフトの前記タービンインペラへの挿入をガイドする円筒面を有することを特徴とする請求項1に記載のタービン軸。 The outer peripheral surface of the protruding portion is provided on a proximal end side of the protruding portion, and has a cylindrical surface that extends in the axial direction of the shaft and guides insertion of the shaft into the turbine impeller. The turbine shaft according to claim 1.
  6.  過給機本体と、前記過給機本体内に回転自在に収容され、シャフトの一端にタービンインペラが接合されたタービン軸と、該タービン軸における該シャフトの他端に設けられたコンプレッサインペラと、を備える過給機であって、
     前記タービン軸は、
     前記シャフトおよび前記タービンインペラのいずれか一方に設けられた、該シャフトの軸方向に突出する突出部と、
     前記シャフトおよび前記タービンインペラのいずれか他方に設けられた、該シャフトの軸方向に窪んだ圧入穴と、
     前記突出部の外周面および前記圧入穴の内周面のいずれか一方に設けられ、前記シャフトの径方向に突出し、該突出部の外周面および該圧入穴の内周面のいずれか他方に当接する当接部と、
     前記突出部が前記圧入穴に圧入された状態で、前記シャフトと前記タービンインペラが接合される接合部と、
    を備え、
     前記当接部が、前記突出部の外周面または前記圧入穴の内周面に当接する部位は、該突出部の外周面と該圧入穴の内周面の対向部位よりも、前記シャフトの軸方向の長さが短いことを特徴とする過給機。
    A turbocharger main body, a turbine shaft rotatably accommodated in the supercharger main body, a turbine impeller joined to one end of a shaft, and a compressor impeller provided at the other end of the shaft in the turbine shaft; A turbocharger comprising:
    The turbine shaft is
    A protruding portion that is provided on one of the shaft and the turbine impeller and protrudes in the axial direction of the shaft;
    A press-fit hole provided in either one of the shaft and the turbine impeller and recessed in the axial direction of the shaft;
    Provided on one of the outer peripheral surface of the protrusion and the inner peripheral surface of the press-fitting hole, protrudes in the radial direction of the shaft, and contacts either the outer peripheral surface of the protrusion or the inner peripheral surface of the press-fitting hole. An abutting portion that contacts,
    In a state where the protruding portion is press-fitted into the press-fitting hole, a joint portion where the shaft and the turbine impeller are joined,
    With
    The portion where the abutting portion abuts on the outer peripheral surface of the protruding portion or the inner peripheral surface of the press-fitting hole is larger than the opposite portion of the outer peripheral surface of the protruding portion and the inner peripheral surface of the press-fitting hole. A turbocharger characterized by a short direction length.
  7.  前記当接部は、前記シャフトの周方向に環状に形成されていることを特徴とする請求項6に記載の過給機。 The supercharger according to claim 6, wherein the contact portion is formed in an annular shape in a circumferential direction of the shaft.
  8.  前記当接部は、前記シャフトの径方向外側に突出するように湾曲していることを特徴とする請求項7に記載の過給機。 The supercharger according to claim 7, wherein the contact portion is curved so as to protrude outward in the radial direction of the shaft.
  9.  前記突出部の前記外周面は、前記突出部の先端側に設けられ、前記シャフトの前記タービンインペラへの挿入をガイドするテーパ面を有することを特徴とする請求項6に記載の過給機。 The supercharger according to claim 6, wherein the outer peripheral surface of the projecting portion has a tapered surface that is provided on a front end side of the projecting portion and guides insertion of the shaft into the turbine impeller.
  10.  前記突出部の前記外周面は、前記突出部の基端側に設けられ、前記シャフトの軸方向に延伸し、前記シャフトの前記タービンインペラへの挿入をガイドする円筒面を有することを特徴とする請求項6に記載の過給機。
     
    The outer peripheral surface of the protruding portion is provided on a proximal end side of the protruding portion, and has a cylindrical surface that extends in the axial direction of the shaft and guides insertion of the shaft into the turbine impeller. The supercharger according to claim 6.
PCT/JP2014/067377 2013-07-05 2014-06-30 Turbine shaft and supercharger WO2015002141A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013141814A JP2016176332A (en) 2013-07-05 2013-07-05 Turbine shaft and supercharger
JP2013-141814 2013-07-05

Publications (1)

Publication Number Publication Date
WO2015002141A1 true WO2015002141A1 (en) 2015-01-08

Family

ID=52143716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/067377 WO2015002141A1 (en) 2013-07-05 2014-06-30 Turbine shaft and supercharger

Country Status (2)

Country Link
JP (1) JP2016176332A (en)
WO (1) WO2015002141A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106285787A (en) * 2016-08-29 2017-01-04 奕森科技(上海)有限公司 A kind of vehicle turbocharger turbine and the attachment structure of rotating shaft
US10753205B2 (en) 2016-04-14 2020-08-25 Ihi Corporation Turbine shaft and turbocharger

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018174104A1 (en) * 2017-03-22 2018-09-27 株式会社Ihi Rotating body and supercharger

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60132002A (en) * 1983-12-20 1985-07-13 Toyota Motor Corp Turbine assembly for turbo charger
JPS60114201U (en) * 1984-01-12 1985-08-02 トヨタ自動車株式会社 Exhaust turbine turbocharger with ceramic turbine wheel
JPS6210202U (en) * 1985-07-05 1987-01-22
JP2006037952A (en) * 2004-07-28 2006-02-09 Borgwarner Inc Titanium aluminide impeller and connection of steel shaft to the impeller

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60132002A (en) * 1983-12-20 1985-07-13 Toyota Motor Corp Turbine assembly for turbo charger
JPS60114201U (en) * 1984-01-12 1985-08-02 トヨタ自動車株式会社 Exhaust turbine turbocharger with ceramic turbine wheel
JPS6210202U (en) * 1985-07-05 1987-01-22
JP2006037952A (en) * 2004-07-28 2006-02-09 Borgwarner Inc Titanium aluminide impeller and connection of steel shaft to the impeller

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10753205B2 (en) 2016-04-14 2020-08-25 Ihi Corporation Turbine shaft and turbocharger
CN106285787A (en) * 2016-08-29 2017-01-04 奕森科技(上海)有限公司 A kind of vehicle turbocharger turbine and the attachment structure of rotating shaft

Also Published As

Publication number Publication date
JP2016176332A (en) 2016-10-06

Similar Documents

Publication Publication Date Title
US10024361B2 (en) Bearing structure and turbocharger
WO2012077422A1 (en) Rotary machine
US10641125B2 (en) Nozzle drive mechanism, turbocharger, and variable-capacity turbocharger
JP6206592B2 (en) Bearing structure and turbocharger
WO2015002141A1 (en) Turbine shaft and supercharger
US10704593B2 (en) Bearing structure and turbocharger
JP2013002466A (en) Thrust bearing structure and supercharger
JP5365411B2 (en) Nozzle vanes and turbochargers
WO2016129039A1 (en) Supercharger
WO2017203917A1 (en) Rotating body and supercharger
JP2009197772A (en) Thrust bearing device of exhaust gas turbocharger
WO2010079767A1 (en) Damper structure and rotating machine
WO2017073229A1 (en) Nozzle drive mechanism and supercharger
US20190107052A1 (en) Turbocharger
US10753367B2 (en) Mounting structure and turbocharger
US20190376524A1 (en) Rotating body, turbocharger, and rotating body manufacturing method
JP2016223404A (en) Compressor housing for supercharger and method of manufacturing the same
JP7097505B2 (en) Nozzle device and exhaust turbocharger
JP2016011714A (en) Thrust bearing and supercharger
WO2021152742A1 (en) Compressor device and turbocharger
WO2018174104A1 (en) Rotating body and supercharger
JP7222289B2 (en) Coupling structure of shaft members and fluid machinery
CN108699964B (en) Turbine shaft and supercharger
WO2022118606A1 (en) Bearing structure and supercharger
CN117460893A (en) Mounting structure of compressor impeller and supercharger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14820405

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14820405

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP