WO2015001954A1 - Lens driving apparatus - Google Patents

Lens driving apparatus Download PDF

Info

Publication number
WO2015001954A1
WO2015001954A1 PCT/JP2014/066039 JP2014066039W WO2015001954A1 WO 2015001954 A1 WO2015001954 A1 WO 2015001954A1 JP 2014066039 W JP2014066039 W JP 2014066039W WO 2015001954 A1 WO2015001954 A1 WO 2015001954A1
Authority
WO
WIPO (PCT)
Prior art keywords
fixed
movable base
optical axis
base
magnet
Prior art date
Application number
PCT/JP2014/066039
Other languages
French (fr)
Japanese (ja)
Inventor
松尾 隆
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2015001954A1 publication Critical patent/WO2015001954A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/08Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted to co-operate with a remote control mechanism
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/64Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
    • G02B27/646Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B3/00Focusing arrangements of general interest for cameras, projectors or printers
    • G03B3/10Power-operated focusing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • H04N23/685Vibration or motion blur correction performed by mechanical compensation
    • H04N23/687Vibration or motion blur correction performed by mechanical compensation by shifting the lens or sensor position
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0007Movement of one or more optical elements for control of motion blur
    • G03B2205/0038Movement of one or more optical elements for control of motion blur by displacing the image plane with respect to the optical axis
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0053Driving means for the movement of one or more optical element
    • G03B2205/0061Driving means for the movement of one or more optical element using piezoelectric actuators
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0053Driving means for the movement of one or more optical element
    • G03B2205/0069Driving means for the movement of one or more optical element using electromagnetic actuators, e.g. voice coils

Definitions

  • the present invention relates to a lens driving device.
  • micro camera units mounted on mobile phones and the like have been increasingly demanded for functional enhancement, miniaturization, and low profile.
  • taking pictures with a mobile phone is often done with one hand compared to a digital camera, and there are more opportunities to take pictures in dark places such as indoors.
  • dark places such as indoors.
  • the image deteriorates.
  • EIS electronic camera shake correction
  • OIS optical camera shake correction
  • optical image stabilization mechanisms there are two types of optical image stabilization mechanisms: an overall camera tilt method that tilts the entire camera and a lens shift method that swings the autofocus unit including the lens in the direction perpendicular to the optical axis.
  • a lens shift method is desired.
  • the lens shift type optical camera shake correction mechanism can ensure a high camera shake correction capability if a VCM (voice coil motor: electromagnetic actuator) including a magnet and a coil is used as an actuator.
  • VCM voice coil motor: electromagnetic actuator
  • the autofocus unit uses an SIDM (Smooth Impact Drive Mechanism ... registered trademark ... piezoelectric actuator) including a piezoelectric element as an actuator, the autofocus unit shakes as the optical image stabilization mechanism is driven. Even in a moving state, it can have excellent straightness and lens holding ability.
  • SIDM Smooth Impact Drive Mechanism ... registered trademark ... piezoelectric actuator
  • the present invention has been made in view of the above circumstances, and its purpose is to reduce the camera unit while adopting an autofocus unit using a piezoelectric actuator and a camera shake correction mechanism using an electromagnetic actuator. To provide a lens driving device that can be turned upside down.
  • the lens driving device includes a fixed base on which an image sensor is fixed, a movable base supported to be swingable in a direction orthogonal to the optical axis with respect to the fixed base, and an anti-shake that swings the movable base. And an autofocus piezoelectric actuator that is fixed to the movable base and supports the lens holding frame and moves in the direction of the optical axis.
  • the piezoelectric actuator and the magnet of the electromagnetic actuator are fixed to the movable base in a state where at least a part thereof overlaps in the direction of the optical axis.
  • the height of the camera unit can be kept low while employing an autofocus unit using a piezoelectric actuator and a camera shake correction mechanism using an electromagnetic actuator.
  • FIG. 2 is a partial cross-sectional side view corresponding to the line AA shown in FIG. 1.
  • FIG. 3 is a cross-sectional view corresponding to the line BB shown in FIG. 2. It is a figure for demonstrating a piezoelectric actuator. It is explanatory drawing of the behavior of the lens holding frame at the time of camera shake correction drive.
  • FIG. 6 is a partial cross-sectional side view corresponding to the line AA of FIG.
  • FIG. 1 is a schematic plan view of a micro camera unit 1 mounted on, for example, a mobile phone or a digital camera.
  • FIG. 2 is a partial cross-sectional side view corresponding to the line AA shown in FIG. 3 is a cross-sectional view corresponding to the line BB shown in FIG.
  • FIG. 4 is a diagram for explaining the piezoelectric actuator.
  • FIG. 4A is a side view of the piezoelectric actuator
  • FIG. 4B is a waveform diagram of a sawtooth pulse.
  • the z direction means the vertical direction (direction of the optical axis C) in a side view
  • the x and y directions mean the vertical and horizontal directions orthogonal to each other in a plan view.
  • Each of the x and y directions is orthogonal to the direction of the optical axis C.
  • the image sensor 2 is, for example, a CCD (charge-coupled device) type or a CMOS (complementary metal-oxide-semiconductor) type image sensor.
  • the electric signal output from the image sensor 2 is transmitted to a processing circuit (not shown) and recorded as an image.
  • the movable table 4 is supported by the fixed table 3 via a suspension wire (support member) 5 so as to be swingable in a direction orthogonal to the optical axis C.
  • the movable base 4 is composed of an upper frame part 4a, an arm part 4b extending from the upper frame part 4a in the direction of the fixed base 3, and a lower base part 4c supported by the lower end of the arm part 4b. ing.
  • each of the four suspension wires 5 facing the z direction (the direction of the optical axis C) is fixed to the four corners of the fixed base 3, and the other end of each suspension wire 5 is movable.
  • the four corners of the upper frame portion 4a of the table 4 are joined and fixed with an adhesive.
  • the suspension wire 5 is bent in the x direction and the y direction, so that the movable table 4 is translated in the direction perpendicular to the optical axis C with respect to the fixed table 3.
  • elliptical coils 8 are respectively fixed to the four sides of the upper surface of the fixed base 3, and the upward concave portions 4 d formed on the four sides of the lower surface of the lower base part 4 c of the movable base 4 have a coil Magnets 9 facing 8 are respectively fitted and fixed.
  • the coil 8 and the magnet 9 constitute an electromagnetic actuator 7 of an optical camera shake correction mechanism.
  • the effect of reducing the height of the micro camera unit 1 can be obtained.
  • the coil 8 can be made thin originally, it is more reasonable to fix the magnet 9 whose performance is reduced when the coil 8 is thin to the movable base 4, and the effect of improving the camera shake correction function while reducing the height of the micro camera unit 1 is achieved. Also grows.
  • the base (weight member) 11 of the piezoelectric actuator 10 in the autofocus unit is fitted and fixed in a downward recess 4e formed at one corner of the upper surface of the lower base portion 4c of the movable base 4.
  • the magnet 9 fitted in the upward concave portion 4d and the base (and the piezoelectric element 12) fitted in the downward concave portion 4e are overlapped at a predetermined height T as shown in FIG.
  • the piezoelectric actuator 10 is a vibrator in which a base 11, a piezoelectric element (electromechanical conversion element) 12, and a drive shaft 13 are coupled in order from the bottom in the direction of the optical axis C.
  • the piezoelectric element 12 converts an electrical signal into a mechanical expansion / contraction motion.
  • the base 11 is a member for increasing the output of the piezoelectric actuator 10, and is not always necessary. In this case, the piezoelectric element 12 is fitted and fixed in the downward concave portion 4e.
  • the lens holding frame 16 of the lens 15 that guides the imaging light to the imaging element 2 is rubbed by the pressing spring (pressure member) 17 between the upper frame portion 4 a and the lower base portion 4 c of the movable base 4. are combined.
  • the base 11 is bonded and fixed to one end of the piezoelectric element 12, and the drive shaft 13 is bonded and fixed to the other end.
  • a reinforcing member 14 is fitted into an adhesive fixing portion between the piezoelectric element 12 and the drive shaft 13 and is fixedly bonded with an epoxy adhesive or the like.
  • the base 11 is fixed to the bottom of the downward recessed portion 4e of the lower base portion 4c with an elastic adhesive 18, and the drive shaft is inserted into the recessed portion 4e together with a portion of the piezoelectric element 12 as shown in FIG. 13 extends in the direction of the fixed base 3.
  • the drive shaft 13 is in a cantilever support state.
  • a slider block portion 16a is formed on the lens holding frame 16 of the lens 15, and the drive shaft 13 is passed through the slider block portion 16a.
  • a notch 16b is formed in the slider block 16a, and a pad 19 is fitted into the notch 16b.
  • the pad 19 is urged by a pressing spring 17 (see FIG. 1) in the direction of pressing the drive shaft 13. Is given.
  • the slider block 16 a including the pad 19 and the drive shaft 13 are frictionally coupled by the urging force of the pressing spring 17.
  • the slider block portion 16a is integrally formed with the lens holding frame 16, it may be connected as a separate body from the lens holding frame 16 with a separate part.
  • the piezoelectric element 12 is rapidly contracted (reversed) in the thickness direction, and the drive shaft 13 is also rapidly displaced in the same direction.
  • the slider block 16a frictionally coupled to the drive shaft 13 overcomes the frictional coupling force by the inertial force and stays at that position, and does not substantially move in the reverse direction.
  • the lens holding frame 16 can be gradually moved in the forward direction together with the slider block 16a.
  • the direction of the waveform of the sawtooth pulse applied to the piezoelectric element 12 may be changed.
  • the suspension wire 5 can serve as a transmission path of a sawtooth pulse applied to the piezoelectric element 12. That is, the sawtooth pulse generated by a drive circuit (autofocus drive IC) 20 mounted on a mobile phone or digital camera (not shown) transmits the conductive suspension wire 5 (see arrow a in FIG. 2). Thereafter, the piezoelectric element 12 can be supplied through the lead wire 20a. What is necessary is just to connect the earth
  • the lead wire 20a is arranged on the movable table 4 side so as to be away from the imaging device 2 on the fixed table 3 side.
  • This lead wire 20a is formed by insert-molding a conductive metal foil in a movable base 4 made of an insulating synthetic resin, one end is connected to the suspension wire 5 inside the movable base 4, and the other end is movable base 4 It is also possible to pull out from the piezoelectric element 12 and connect it to the piezoelectric element 12. In this way, as will be described later, it is possible to further reduce noise of the image sensor 2 due to the sawtooth pulse.
  • the lens 15 is automatically focused by driving the lens holding frame 16 forward or backward by the piezoelectric actuator 10.
  • a rotation prevention mechanism is provided to prevent rotation of the lens holding frame 16 that is cantilevered by the drive shaft 13.
  • the position detection magnet 23 is attached to the lens holding frame 16, and the Hall element 22 is attached to the movable base 4, so that the forward / backward (focus) position of the lens holding frame 16 is detected.
  • the micro camera unit 1 is configured.
  • the electromagnetic actuator 7 of the optical camera shake correction mechanism is driven, and the movable base 4 is translated in the direction orthogonal to the optical axis C, so that camera shake is corrected.
  • FIG. 5 is an explanatory diagram of the behavior of the lens holding frame during the camera shake correction drive.
  • FIG. 5A shows the non-driving time
  • FIG. 5B shows the driving time. Note that the lens holding frame 16 exhibits the same behavior in the x direction and the y direction.
  • the magnet 9 is assumed to be magnetized with an N pole on the upper surface and an S pole on the lower surface.
  • the direction and magnitude of the current flowing through the coil 8 change according to a predetermined control signal, and accordingly, the movable base 4 is ensured to be parallel to the image sensor 2 in the x direction. Shift driven in the state.
  • the movable base 4 supported by the four suspension wires 5 as in the present embodiment has a structure having no spring property, so that only the suspension wire 5 is deformed to secure the posture. Therefore, the image pickup device 2 is driven to shift in a state in which the parallelism in the x and y directions is ensured.
  • the movable base 4 is supported by the four suspension wires 5.
  • the present invention is not limited to this.
  • two pairs of parallel links disclosed in Japanese Patent Application Laid-Open No. 2007-114585 are used. It may be a support mechanism.
  • the right and upper magnets 9 and the coils 8 can be omitted.
  • the support mechanism using the suspension wire 5 may move around the optical axis and deteriorate image quality. Therefore, in the case of this configuration, for example, a support mechanism using two pairs of parallel links disclosed in Japanese Patent Application Laid-Open No. 2007-114585 is preferably employed.
  • the piezoelectric element 12 is arranged on the + z side or the -z side with respect to the drive shaft 13.
  • the drive shaft 13 is disposed on the + z side with respect to the piezoelectric element 12. This is because the pressing spring 17 that moves along the drive shaft 13 is located at the same height as the drive shaft 13, and therefore, in the reverse direction in which the drive shaft 13 is simply arranged on the ⁇ x side (see FIG. 6), the magnet This is because the volume of 9 cannot be increased.
  • the height of the micro camera unit 1 is increased. It can be lowered.
  • the piezoelectric element 12 is far from the image pickup element 2, noise of the image pickup element 2 due to a high-frequency sawtooth pulse of the piezoelectric actuator 10 can be reduced.
  • the magnet 9 fitted in the upward recess 4d and the downward drive shaft 13 overlap at a predetermined height T as shown in FIG.
  • the piezoelectric actuator 10 and the magnet 9 of the electromagnetic actuator 7 are at least partially overlapped with each other at a predetermined height T in the direction of the optical axis C. It is fixed to.
  • the present embodiment is an arrangement structure in an overlapping state. As a result, it is possible to secure a high camera shake correction capability while keeping the height of the entire micro camera unit 1 low, that is, while reducing the height.
  • the piezoelectric actuator 10 is fixed to one corner of the movable table 4, and the magnet 9 is two of the movable table 4 constituting one corner to which the piezoelectric actuator 10 is fixed. Fixed to the side. Thereby, since the magnet 9 should just be fixed to the two sides of the four sides of the movable stand 4, the number of parts can be reduced, the cost can be reduced, and the weight can be reduced.
  • the piezoelectric actuator 10 is fixed to one corner of the movable table 4, and the magnet 9 is fixed to the four sides of the movable table 4.
  • fixing the magnet 9 to the four sides of the movable table 4 stabilizes the drive during the shake correction.
  • the piezoelectric element 12 of the piezoelectric actuator 10 is coupled in the axial direction with a drive shaft 13 as a linear guide mechanism for accurately guiding the lens holding frame 16 in the direction of the optical axis C. Therefore, since the projected area viewed from the direction of the optical axis C is very small, the volume of the magnet 9 of the electromagnetic actuator 7 can be increased while the height of the micro camera unit 1 is reduced. Therefore, since the driving force of the electromagnetic actuator 7 can be increased, it is possible to improve the stroke and response of the camera shake correction driving. That is, the camera shake correction function can be enhanced and the image quality of the captured image can be improved.
  • the micro camera unit 1 includes a pressing spring (pressure member) 17 that generates a frictional force between the lens holding frame 16 and the drive shaft 13, and the drive shaft 13 is more image pickup element 2 than the piezoelectric element 12. It is arranged on the side far from As a result, the pressing spring 17 that generates a frictional force between the lens holding frame 16 and the drive shaft 13 can be disposed in a marginal area around the drive shaft 13, and thus the shape can be increased to adjust the frictional force. Easy to do.
  • a pressing spring (pressure member) 17 that generates a frictional force between the lens holding frame 16 and the drive shaft 13 can be disposed in a marginal area around the drive shaft 13, and thus the shape can be increased to adjust the frictional force. Easy to do.
  • the magnet 9 is fixed to the movable table 4 and the coil 8 is fixed to the fixed table 3. Thereby, it becomes advantageous in terms of space by fixing the magnet 9 having a large volume to the movable base 4.
  • a lens driving device is provided with a fixed base on which an image sensor is fixed, and a support member disposed in front of the fixed base in a direction of an optical axis and swingable in a direction orthogonal to the optical axis. Equipped with a movable platform.
  • the lens driving device includes an electromagnetic actuator for preventing camera shake in which a coil is fixed to one of the fixed base and the movable base and a magnet is fixed to the other, and the movable base is swung by electromagnetic force; A lens holding frame that holds a lens that guides imaging light to the imaging device; and an autofocus piezoelectric actuator that is fixed to the movable base and moves in the direction of the optical axis while supporting the lens holding frame. ing. And the said piezoelectric actuator and the said magnet are being fixed to the said movable stand in the state which at least one part overlaps in the direction of an optical axis.
  • the piezoelectric actuator for autofocus and the magnet of the electromagnetic actuator for preventing camera shake are fixed to the movable base in a state where at least a part thereof overlaps in the direction of the optical axis. . Therefore, unlike the arrangement structure in which the lens driving device is stacked in the direction of the optical axis as in Patent Document 1, the lens driving apparatus has an arrangement structure in an overlapping state, so that the overall height of the camera unit is reduced. It is possible to increase the volume of the magnet of the electromagnetic actuator for preventing shaking while suppressing, that is, reducing the height. Therefore, since the lens driving device can increase the driving force of the electromagnetic actuator, the stroke and response of the camera shake correction driving can be improved. That is, the lens driving device can improve the camera shake correction function and improve the image quality of the captured image.
  • the movable base is substantially rectangular
  • the piezoelectric actuator is fixed at one corner of the movable base
  • the magnet is fixed by the piezoelectric actuator. It is fixed to the two sides of the movable base that constitutes one corner.
  • the movable base is substantially rectangular
  • the piezoelectric actuator is fixed to one corner of the movable base
  • the magnets are four sides of the movable base. Fixed to.
  • Such a lens driving device stabilizes the driving at the time of camera shake correction by fixing magnets to the four sides of the movable base.
  • the piezoelectric actuator includes a driving shaft that guides the lens holding frame in the direction of the optical axis and a piezoelectric element that are coupled in the axial direction.
  • a driving shaft as a linear guide mechanism for accurately guiding the lens holding frame in the direction of the optical axis is coupled to the piezoelectric element of the piezoelectric actuator in the axial direction. Therefore, since the projected area viewed from the direction of the optical axis becomes very small, it is possible to increase the volume of the magnet of the electromagnetic actuator for preventing camera shake while reducing the height of the camera unit. For this reason, such a lens driving device can increase the driving force of the electromagnetic actuator, thereby improving the stroke and response of the camera shake correction driving. That is, the lens driving device can improve the camera shake correction function and improve the image quality of the captured image.
  • the lens driving device includes a pressing member that generates a frictional force between the lens holding frame and the driving shaft, and the driving shaft has the imaging element rather than the piezoelectric element. It is arranged on the far side.
  • the pressurizing member that generates a frictional force between the lens holding frame and the driving shaft can be disposed in a portion having a margin around the driving shaft. Adjustment is easy.
  • the magnet is fixed to the movable base, and the coil is fixed to the fixed base.
  • Such a lens driving device is advantageous in terms of space by fixing a large-volume magnet to the movable base.
  • a lens driving device can be provided.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Adjustment Of Camera Lenses (AREA)
  • Lens Barrels (AREA)
  • Studio Devices (AREA)

Abstract

 This lens driving apparatus is provided with: a fixing base on which an image-capturing element is fixed; a movable base supported so as to be able to shake relative to the fixing base in a direction orthogonal to an optical axis; a camera-shake-preventing electromagnetic actuator for causing the movable base to shake; and an auto-focusing piezoelectric actuator for supporting a lens-holding frame and moving the same in the direction of the optical axis, the auto-focusing piezoelectric actuator being fixed to the movable base. The piezoelectric actuator and a magnet of the electromagnetic actuator are fixed to the movable base so as to overlap, at least partly, in the direction of the optical axis.

Description

レンズ駆動装置Lens drive device
 本発明は、レンズ駆動装置に関する。 The present invention relates to a lens driving device.
 近年、携帯電話等に搭載されるマイクロカメラユニット(MCU)は、機能の高度化、小型化、低背化の要求が益々高まってきている。その中で、携帯電話での撮影は、デジタルカメラと比べて、片手で撮影することが多く、また、室内等の暗い場所での撮影機会も増えているため、撮影中に手振れが発生して画像が劣化する問題が生じている。 In recent years, micro camera units (MCUs) mounted on mobile phones and the like have been increasingly demanded for functional enhancement, miniaturization, and low profile. Among them, taking pictures with a mobile phone is often done with one hand compared to a digital camera, and there are more opportunities to take pictures in dark places such as indoors. There is a problem that the image deteriorates.
 このような手振れ補正として、電子式手振れ補正(EIS)と光学式手振れ補正(OIS)とが実用化されているが、より高画質が可能な光学式手振れ補正が望まれている。 As such camera shake correction, electronic camera shake correction (EIS) and optical camera shake correction (OIS) have been put into practical use, but optical camera shake correction capable of higher image quality is desired.
 また、光学式手振れ補正機構として、カメラ全体をチルトさせる全体振りの方式と、レンズを含むオートフォーカスユニットを光軸の直交方向に揺動させるレンズシフト方式とがあるが、より低背化が可能なレンズシフト方式が望まれている。 In addition, there are two types of optical image stabilization mechanisms: an overall camera tilt method that tilts the entire camera and a lens shift method that swings the autofocus unit including the lens in the direction perpendicular to the optical axis. A lens shift method is desired.
 レンズシフト方式の光学式手振れ補正機構は、アクチュエータとして、磁石とコイルとを備えるVCM(ボイスコイルモータ・・・電磁式アクチュエータ)を用いれば、高い手振れ補正能力を確保することができる。 The lens shift type optical camera shake correction mechanism can ensure a high camera shake correction capability if a VCM (voice coil motor: electromagnetic actuator) including a magnet and a coil is used as an actuator.
 また、オートフォーカスユニットは、アクチュエータとして、圧電素子を備えるSIDM(Smooth Impact Drive Mechanism・・・登録商標・・・圧電式アクチュエータ)を用いれば、光学式手振れ補正機構の駆動に伴うオートフォーカスユニットの揺動状態においても、優れた直進性およびレンズ保持能力を有することができる。 In addition, if the autofocus unit uses an SIDM (Smooth Impact Drive Mechanism ... registered trademark ... piezoelectric actuator) including a piezoelectric element as an actuator, the autofocus unit shakes as the optical image stabilization mechanism is driven. Even in a moving state, it can have excellent straightness and lens holding ability.
 そのため、圧電式アクチュエータを用いたオートフォーカスユニットと電磁式アクチュエータを用いた手振れ補正機構とを備えたレンズ駆動装置が提案されている(例えば特許文献1参照)。 Therefore, a lens driving device having an autofocus unit using a piezoelectric actuator and a camera shake correction mechanism using an electromagnetic actuator has been proposed (see, for example, Patent Document 1).
 しかしながら、この特許文献1では、圧電式アクチュエータと電磁式アクチュエータとは、それぞれ所定の対向面積が必要であることから、光軸の方向に積み上げたような配置構造となっているので、カメラユニットとしての高さが高くなってしまう。 However, in this Patent Document 1, since the piezoelectric actuator and the electromagnetic actuator each require a predetermined facing area, the arrangement is such that they are stacked in the direction of the optical axis. The height of will become high.
特開2011-227428号公報JP 2011-227428 A
 本発明は、上述の事情に鑑みて為された発明であり、その目的は、圧電式アクチュエータを用いたオートフォーカスユニットと電磁式アクチュエータを用いた手振れ補正機構とを採用しながら、カメラユニットを低背化できるレンズ駆動装置を提供することである。 The present invention has been made in view of the above circumstances, and its purpose is to reduce the camera unit while adopting an autofocus unit using a piezoelectric actuator and a camera shake correction mechanism using an electromagnetic actuator. To provide a lens driving device that can be turned upside down.
 本発明にかかるレンズ駆動装置は、撮像素子を固定した固定台と、前記固定台に対して光軸の直交方向に揺動可能に支持された可動台と、前記可動台を揺動させる手振れ防止用の電磁式アクチュエータと、前記可動台に固定され、レンズ保持枠を支持して前記光軸の方向に移動させるオートフォーカス用の圧電式アクチュエータとを備える。そして、前記圧電式アクチュエータと前記電磁式アクチュエータの磁石とは、少なくとも一部が前記光軸の方向にオーバーラップする状態で可動台に固定される。 The lens driving device according to the present invention includes a fixed base on which an image sensor is fixed, a movable base supported to be swingable in a direction orthogonal to the optical axis with respect to the fixed base, and an anti-shake that swings the movable base. And an autofocus piezoelectric actuator that is fixed to the movable base and supports the lens holding frame and moves in the direction of the optical axis. The piezoelectric actuator and the magnet of the electromagnetic actuator are fixed to the movable base in a state where at least a part thereof overlaps in the direction of the optical axis.
 本発明によれば、圧電式アクチュエータを用いたオートフォーカスユニットと電磁式アクチュエータを用いた手振れ補正機構とを採用しながら、カメラユニットの高さを低く抑えることできる。 According to the present invention, the height of the camera unit can be kept low while employing an autofocus unit using a piezoelectric actuator and a camera shake correction mechanism using an electromagnetic actuator.
 上記並びにその他の本発明の目的、特徴及び利点は、以下の詳細な記載と添付図面から明らかになるであろう。 The above and other objects, features and advantages of the present invention will become apparent from the following detailed description and the accompanying drawings.
本発明の一実施形態に係るマイクロカメラユニットの模式的平面図である。It is a typical top view of the micro camera unit concerning one embodiment of the present invention. 図1に示すA-A線に相当する一部断面側面図である。FIG. 2 is a partial cross-sectional side view corresponding to the line AA shown in FIG. 1. 図2に示すB-B線に相当する断面図である。FIG. 3 is a cross-sectional view corresponding to the line BB shown in FIG. 2. 圧電式アクチュエータを説明するための図である。It is a figure for demonstrating a piezoelectric actuator. 手振れ補正駆動時のレンズ保持枠の挙動の説明図である。It is explanatory drawing of the behavior of the lens holding frame at the time of camera shake correction drive. 変形例のマイクロカメラユニットであり、図1のA-A線に相当する一部断面側面図である。FIG. 6 is a partial cross-sectional side view corresponding to the line AA of FIG.
 以下、本発明にかかる実施の一形態を図面に基づいて説明する。なお、各図において同一の符号を付した構成は、同一の構成であることを示し、適宜、その説明を省略する。本明細書において、総称する場合には添え字を省略した参照符号で示し、個別の構成を指す場合には添え字を付した参照符号で示す。 Hereinafter, an embodiment according to the present invention will be described with reference to the drawings. In addition, the structure which attached | subjected the same code | symbol in each figure shows that it is the same structure, The description is abbreviate | omitted suitably. In this specification, when referring generically, it shows with the reference symbol which abbreviate | omitted the suffix, and when referring to an individual structure, it shows with the reference symbol which attached the suffix.
 図1は、例えば携帯電話やデジタルカメラに搭載されるマイクロカメラユニット1の模式的平面図である。図2は、図1に示すA-A線に相当する一部断面側面図である。図3は、図2に示すB-B線に相当する断面図である。図4は、圧電式アクチュエータを説明するための図である。図4Aは、圧電式アクチュエータの側面図であり、図4Bは、鋸歯状パルスの波形図である。 FIG. 1 is a schematic plan view of a micro camera unit 1 mounted on, for example, a mobile phone or a digital camera. FIG. 2 is a partial cross-sectional side view corresponding to the line AA shown in FIG. 3 is a cross-sectional view corresponding to the line BB shown in FIG. FIG. 4 is a diagram for explaining the piezoelectric actuator. FIG. 4A is a side view of the piezoelectric actuator, and FIG. 4B is a waveform diagram of a sawtooth pulse.
 各図において、z方向は、側面視で上下方向(光軸Cの方向)、x、y方向は、平面視で直交する上下左右方向の意味である。x、y方向それぞれは、光軸Cの方向に直交している。 In each figure, the z direction means the vertical direction (direction of the optical axis C) in a side view, and the x and y directions mean the vertical and horizontal directions orthogonal to each other in a plan view. Each of the x and y directions is orthogonal to the direction of the optical axis C.
 被写体像を電気信号に変換する撮像素子2が中央部に固定された略矩形状の固定台3が、配置され、この固定台3に対して、光軸Cの方向の前方(+z方向)に略矩形状の可動台4が配置されている。 A substantially rectangular fixed base 3 in which an image pickup device 2 for converting a subject image into an electrical signal is fixed at the center is arranged, and forward of the direction of the optical axis C (+ z direction) with respect to the fixed base 3. A movable base 4 having a substantially rectangular shape is arranged.
 撮像素子2は、例えばCCD(charge-coupled device)型やCMOS(complementary metal-oxide-semiconductor)型のイメージセンサである。撮像素子2から出力された電気信号は、処理回路(不図示)に伝送されて画像として記録される。 The image sensor 2 is, for example, a CCD (charge-coupled device) type or a CMOS (complementary metal-oxide-semiconductor) type image sensor. The electric signal output from the image sensor 2 is transmitted to a processing circuit (not shown) and recorded as an image.
 可動台4は、光軸Cの直交方向に揺動可能にサスペンションワイヤ(支持部材)5を介して固定台3で支持されている。可動台4は、上フレーム部4aと、この上フレーム部4aから固定台3の方向に延在されたアーム部4bと、このアーム部4bの下端で支持された下ベース部4cとで構成されている。 The movable table 4 is supported by the fixed table 3 via a suspension wire (support member) 5 so as to be swingable in a direction orthogonal to the optical axis C. The movable base 4 is composed of an upper frame part 4a, an arm part 4b extending from the upper frame part 4a in the direction of the fixed base 3, and a lower base part 4c supported by the lower end of the arm part 4b. ing.
 より具体的には、固定台3の四隅に、z方向(光軸Cの方向)を向いた計4本のサスペンションワイヤ5の一端がそれぞれ固定され、各サスペンションワイヤ5の他端には、可動台4の上フレーム部4aの四隅が接着剤で接合固定されている。そして、サスペンションワイヤ5がx方向とy方向に撓むことで、固定台3に対して可動台4が光軸Cの直交方向に平行移動されるようになる。 More specifically, one end of each of the four suspension wires 5 facing the z direction (the direction of the optical axis C) is fixed to the four corners of the fixed base 3, and the other end of each suspension wire 5 is movable. The four corners of the upper frame portion 4a of the table 4 are joined and fixed with an adhesive. The suspension wire 5 is bent in the x direction and the y direction, so that the movable table 4 is translated in the direction perpendicular to the optical axis C with respect to the fixed table 3.
 図3のように、固定台3の上面の四辺部には楕円状のコイル8がそれぞれ固定され、可動台4の下ベース部4cの下面の四辺部に形成された上向き凹部4dには、コイル8に対向する磁石9がそれぞれ嵌め込まれて固定されている。このコイル8と磁石9は、光学式手振れ補正機構の電磁式アクチュエータ7を構成する。 As shown in FIG. 3, elliptical coils 8 are respectively fixed to the four sides of the upper surface of the fixed base 3, and the upward concave portions 4 d formed on the four sides of the lower surface of the lower base part 4 c of the movable base 4 have a coil Magnets 9 facing 8 are respectively fitted and fixed. The coil 8 and the magnet 9 constitute an electromagnetic actuator 7 of an optical camera shake correction mechanism.
 なお、固定台3に磁石9を固定し、可動台4にコイル8を固定してもマイクロカメラユニット1を低背化する効果は、得られる。ただ、コイル8は、元々薄くできるため、薄くすると性能が低下する磁石9を可動台4に固定する方が合理的であって、マイクロカメラユニット1を低背化しながら、手振れ補正機能を上げる効果も大きくなる。 Even if the magnet 9 is fixed to the fixed base 3 and the coil 8 is fixed to the movable base 4, the effect of reducing the height of the micro camera unit 1 can be obtained. However, since the coil 8 can be made thin originally, it is more reasonable to fix the magnet 9 whose performance is reduced when the coil 8 is thin to the movable base 4, and the effect of improving the camera shake correction function while reducing the height of the micro camera unit 1 is achieved. Also grows.
 可動台4における下ベース部4cの上面の一隅部に形成された下向き凹部4eには、オートフォーカスユニットにおける圧電式アクチュエータ10の基体(錘部材)11が嵌め込まれて固定されている。 The base (weight member) 11 of the piezoelectric actuator 10 in the autofocus unit is fitted and fixed in a downward recess 4e formed at one corner of the upper surface of the lower base portion 4c of the movable base 4.
 ここで、上向き凹部4dに嵌め込まれた磁石9と下向き凹部4eに嵌め込まれた基体(および圧電素子12)とは、図2のように、所定高さTでオーバーラップしていることになる。 Here, the magnet 9 fitted in the upward concave portion 4d and the base (and the piezoelectric element 12) fitted in the downward concave portion 4e are overlapped at a predetermined height T as shown in FIG.
 圧電式アクチュエータ10は、光軸Cの方向に、下から順に、基体11と圧電素子(電気機械変換素子)12と駆動軸13とが結合された振動子である。圧電素子12は、電気信号を機械的な伸縮運動に変換するものである。なお、基体11は、圧電式アクチュエータ10の出力を大きくするための部材であって、必ずしも必要ではなく、その場合には、下向き凹部4eに圧電素子12を嵌め込んで固定することになる。 The piezoelectric actuator 10 is a vibrator in which a base 11, a piezoelectric element (electromechanical conversion element) 12, and a drive shaft 13 are coupled in order from the bottom in the direction of the optical axis C. The piezoelectric element 12 converts an electrical signal into a mechanical expansion / contraction motion. The base 11 is a member for increasing the output of the piezoelectric actuator 10, and is not always necessary. In this case, the piezoelectric element 12 is fitted and fixed in the downward concave portion 4e.
 駆動軸13には、可動台4の上フレーム部4aと下ベース部4cとの間で、撮像光を撮像素子2に導くレンズ15のレンズ保持枠16が押圧ばね(加圧部材)17で摩擦結合されている。 On the drive shaft 13, the lens holding frame 16 of the lens 15 that guides the imaging light to the imaging element 2 is rubbed by the pressing spring (pressure member) 17 between the upper frame portion 4 a and the lower base portion 4 c of the movable base 4. Are combined.
 より具体的には、図4Aに示すように、圧電素子12の一端に基体11が接着固定され、他端に駆動軸13が接着固定されている。圧電素子12と駆動軸13との接着固定部分には、補強部材14が嵌め込まれて、エポキシ系の接着剤等で接着固定されている。 More specifically, as shown in FIG. 4A, the base 11 is bonded and fixed to one end of the piezoelectric element 12, and the drive shaft 13 is bonded and fixed to the other end. A reinforcing member 14 is fitted into an adhesive fixing portion between the piezoelectric element 12 and the drive shaft 13 and is fixedly bonded with an epoxy adhesive or the like.
 基体11は、弾性接着剤18で下ベース部4cの下向き凹部4eの底に固定され、図2のように、基体11とともに圧電素子12の一部が凹部4eに嵌め込まれた状態で、駆動軸13が固定台3の方向に延在されている。駆動軸13は、片持ち支持状態となっている。 The base 11 is fixed to the bottom of the downward recessed portion 4e of the lower base portion 4c with an elastic adhesive 18, and the drive shaft is inserted into the recessed portion 4e together with a portion of the piezoelectric element 12 as shown in FIG. 13 extends in the direction of the fixed base 3. The drive shaft 13 is in a cantilever support state.
 レンズ15のレンズ保持枠16にはスライダブロック部16aが形成され、このスライダブロック部16aに駆動軸13が貫通されている。スライダブロック16aに切欠き部16bが形成され、この切欠き部16bにパッド19が嵌め込まれ、このパッド19は、押圧ばね17(図1参照)により、駆動軸13を押圧する方向の付勢力が与えられている。これにより、パッド19を含むスライダブロック16aと駆動軸13とは、押圧ばね17の付勢力で摩擦結合されることになる。なお、スライダブロック部16aは、レンズ保持枠16に一体形成しているが、レンズ保持枠16と別体として、別部品で連結してもよい。 A slider block portion 16a is formed on the lens holding frame 16 of the lens 15, and the drive shaft 13 is passed through the slider block portion 16a. A notch 16b is formed in the slider block 16a, and a pad 19 is fitted into the notch 16b. The pad 19 is urged by a pressing spring 17 (see FIG. 1) in the direction of pressing the drive shaft 13. Is given. As a result, the slider block 16 a including the pad 19 and the drive shaft 13 are frictionally coupled by the urging force of the pressing spring 17. Although the slider block portion 16a is integrally formed with the lens holding frame 16, it may be connected as a separate body from the lens holding frame 16 with a separate part.
 このような圧電式アクチュエータ10において、図4Bのような鋸歯状パルスが駆動回路20から圧電素子12に印加されると、鋸歯状パルスの緩やかな立ち上がり部分では、圧電素子12が厚み方向に緩やかに伸び(前進)変位し、駆動軸13も同方向に緩やかに変位する。このとき、駆動軸13に摩擦結合しているレンズ保持枠16のスライダブロック16aは、駆動軸13ととともに前進方向に移動する。 In such a piezoelectric actuator 10, when a sawtooth pulse as shown in FIG. 4B is applied from the drive circuit 20 to the piezoelectric element 12, the piezoelectric element 12 gently relaxes in the thickness direction at the gently rising portion of the sawtooth pulse. Elongation (advance) displacement occurs, and the drive shaft 13 is also gently displaced in the same direction. At this time, the slider block 16 a of the lens holding frame 16 that is frictionally coupled to the drive shaft 13 moves together with the drive shaft 13 in the forward direction.
 次に、鋸歯状パルスの急速な立ち下がり部では、圧電素子12が厚み方向に急速に縮み(後進)変位し、駆動軸13も同方向に急速に変位する。このとき、駆動軸13に摩擦結合しているスライダブロック16aは、慣性力で摩擦結合力に打ち勝ってその位置に留まり、実質的に後進方向に移動しない。 Next, at the rapid falling portion of the sawtooth pulse, the piezoelectric element 12 is rapidly contracted (reversed) in the thickness direction, and the drive shaft 13 is also rapidly displaced in the same direction. At this time, the slider block 16a frictionally coupled to the drive shaft 13 overcomes the frictional coupling force by the inertial force and stays at that position, and does not substantially move in the reverse direction.
 このように、圧電素子12に鋸歯状パルスを連続的に印加することで、スライダブロック16aとともにレンズ保持枠16を前進方向に徐々に移動させることができる。逆に、スライダブロック16aとともにレンズ保持枠16を後進方向に徐々に移動させるには、圧電素子12に印加する鋸歯状パルスの波形の向きを変えればよい。 In this way, by continuously applying the sawtooth pulse to the piezoelectric element 12, the lens holding frame 16 can be gradually moved in the forward direction together with the slider block 16a. Conversely, in order to gradually move the lens holding frame 16 together with the slider block 16a in the backward direction, the direction of the waveform of the sawtooth pulse applied to the piezoelectric element 12 may be changed.
 ここで、サスペンションワイヤ5には、圧電素子12に印加される鋸歯状パルスの伝送路の役割を担わせることができる。すなわち、不図示の携帯電話やデジタルカメラに搭載した駆動回路(オートフォーカス用ドライブIC)20で生成された鋸歯状パルスは、導電性のサスペンションワイヤ5を伝送させ(図2の矢印a参照)、その後、リード線20aを介して圧電素子12に供給することができる。圧電素子12のアース側は、アース線20bから別のサスペンションワイヤ5を介して駆動回路20のアース部に接続すればよい(図2の矢印b参照)。 Here, the suspension wire 5 can serve as a transmission path of a sawtooth pulse applied to the piezoelectric element 12. That is, the sawtooth pulse generated by a drive circuit (autofocus drive IC) 20 mounted on a mobile phone or digital camera (not shown) transmits the conductive suspension wire 5 (see arrow a in FIG. 2). Thereafter, the piezoelectric element 12 can be supplied through the lead wire 20a. What is necessary is just to connect the earth | ground side of the piezoelectric element 12 to the earth | ground part of the drive circuit 20 via the other suspension wire 5 from the earth wire 20b (refer arrow b of FIG. 2).
 リード線20aは、固定台3側の撮像素子2から離れるように、可動台4側に配置している。このリード線20aは、絶縁性合成樹脂製である可動台4内に導電性の金属箔をインサートモールドして、一端を可動台4の内部でサスペンションワイヤ5に接続し、他端を可動台4から引き出して圧電素子12に接続することもできる。このようにすれば、後述するように、鋸歯状パルスによる撮像素子2のノイズをより軽減することができる。 The lead wire 20a is arranged on the movable table 4 side so as to be away from the imaging device 2 on the fixed table 3 side. This lead wire 20a is formed by insert-molding a conductive metal foil in a movable base 4 made of an insulating synthetic resin, one end is connected to the suspension wire 5 inside the movable base 4, and the other end is movable base 4 It is also possible to pull out from the piezoelectric element 12 and connect it to the piezoelectric element 12. In this way, as will be described later, it is possible to further reduce noise of the image sensor 2 due to the sawtooth pulse.
 このようにして、圧電式アクチュエータ10によりレンズ保持枠16を前進駆動または後進駆動させることで、レンズ15がオートフォーカスされるようになる。なお、具体的に図示しないが、駆動軸13で片持ち支持されたレンズ保持枠16を回り止めする回り止め機構が設けられている。また、図1および図2のように、レンズ保持枠16に位置検出磁石23を取付け、可動台4にホール素子22を取付けることで、レンズ保持枠16の前後進(フォーカス)位置を検出するように、マイクロカメラユニット1は、構成されている。 In this way, the lens 15 is automatically focused by driving the lens holding frame 16 forward or backward by the piezoelectric actuator 10. Although not specifically shown, a rotation prevention mechanism is provided to prevent rotation of the lens holding frame 16 that is cantilevered by the drive shaft 13. Further, as shown in FIGS. 1 and 2, the position detection magnet 23 is attached to the lens holding frame 16, and the Hall element 22 is attached to the movable base 4, so that the forward / backward (focus) position of the lens holding frame 16 is detected. Moreover, the micro camera unit 1 is configured.
 このオートフォーカスと同時に、光学式手振れ補正機構の電磁式アクチュエータ7が駆動されて、可動台4が光軸Cの直交方向に平行移動されることで、手振れ補正がなされるようになる。 Simultaneously with this autofocus, the electromagnetic actuator 7 of the optical camera shake correction mechanism is driven, and the movable base 4 is translated in the direction orthogonal to the optical axis C, so that camera shake is corrected.
 ここで、図5により手振れ補正駆動時のレンズ保持枠16の挙動を説明する。図5は、手振れ補正駆動時のレンズ保持枠の挙動の説明図である。図5Aは、非駆動時を示し、図5Bは、駆動時を示す。なお、レンズ保持枠16は、x方向とy方向に同様の挙動を示すようになる。磁石9は、上面がN極、下面がS極に着磁されているものとする。 Here, the behavior of the lens holding frame 16 during the camera shake correction drive will be described with reference to FIG. FIG. 5 is an explanatory diagram of the behavior of the lens holding frame during the camera shake correction drive. FIG. 5A shows the non-driving time, and FIG. 5B shows the driving time. Note that the lens holding frame 16 exhibits the same behavior in the x direction and the y direction. The magnet 9 is assumed to be magnetized with an N pole on the upper surface and an S pole on the lower surface.
 図5Aのように、コイル8に電流が流れていない非駆動時には、磁石9とコイル8との間には電磁力が発生しないので、4本のサスペンションワイヤ5は、z方向と平行な状態を保ったままである。 As shown in FIG. 5A, when no current is flowing through the coil 8, no electromagnetic force is generated between the magnet 9 and the coil 8, so that the four suspension wires 5 are in a state parallel to the z direction. I keep it.
 次に、図5Bのように、コイル8に図2の矢印方向に電流を流すと、磁石9とコイル8の間には電磁力が発生するので、磁石9を搭載し、かつ4本のサスペンションワイヤ5で支持された可動台4は、-x方向に移動させられる。 Next, as shown in FIG. 5B, when a current is passed through the coil 8 in the direction of the arrow in FIG. 2, an electromagnetic force is generated between the magnet 9 and the coil 8, so that the magnet 9 is mounted and the four suspensions are mounted. The movable table 4 supported by the wire 5 is moved in the −x direction.
 実際の手振れ補正駆動時には、所定の制御信号に応じてコイル8に流れる電流の向きと大きさが変化し、それに伴って可動台4は、撮像素子2に対してx方向に平行が担保された状態でシフト駆動される。 At the time of actual camera shake correction driving, the direction and magnitude of the current flowing through the coil 8 change according to a predetermined control signal, and accordingly, the movable base 4 is ensured to be parallel to the image sensor 2 in the x direction. Shift driven in the state.
 本実施形態のように4本のサスペンションワイヤ5で支持された可動台4は、ばね性を有しない構造であるためサスペンションワイヤ5のみが変形することで姿勢が担保されている。したがって、撮像素子2に対してx,y方向に平行が担保された状態でシフト駆動されるようになる。 The movable base 4 supported by the four suspension wires 5 as in the present embodiment has a structure having no spring property, so that only the suspension wire 5 is deformed to secure the posture. Therefore, the image pickup device 2 is driven to shift in a state in which the parallelism in the x and y directions is ensured.
 本実施形態では、可動台4を4本のサスペンションワイヤ5で支持する構成としたが、これに限られるものではなく、例えば特開2007-114585号公報に示される二対の平行リンクを用いた支持機構であってもよい。 In this embodiment, the movable base 4 is supported by the four suspension wires 5. However, the present invention is not limited to this. For example, two pairs of parallel links disclosed in Japanese Patent Application Laid-Open No. 2007-114585 are used. It may be a support mechanism.
 また、図1において、右側と上側の磁石9とコイル8を省略することが可能である。ただし、駆動力のバランスが悪いためにサスペンションワイヤ5を用いた支持機構では、光軸回りに回転する動きが入って画質の劣化が考えられる。そこで、この構成とする場合は、例えば特開2007-114585号公報に示される二対の平行リンクを用いた支持機構を採用するのがよい。 Further, in FIG. 1, the right and upper magnets 9 and the coils 8 can be omitted. However, since the balance of the driving force is poor, the support mechanism using the suspension wire 5 may move around the optical axis and deteriorate image quality. Therefore, in the case of this configuration, for example, a support mechanism using two pairs of parallel links disclosed in Japanese Patent Application Laid-Open No. 2007-114585 is preferably employed.
 オートフォーカス用の圧電式アクチュエータ10をレイアウトするに際して、駆動軸13に対して圧電素子12を+z側に配置するか、-z側に配置するかの2通りのレイアウトが考えられる。本実施形態では、圧電素子12に対して駆動軸13を+z側に配置している。これは、駆動軸13と同じ高さには、駆動軸13に沿って移動する押圧ばね17が位置するため、駆動軸13を単に-x側に配置する逆向きでは(図6参照)、磁石9の体積を大きくとれないためである。 When laying out the piezoelectric actuator 10 for autofocusing, there are two possible layouts: the piezoelectric element 12 is arranged on the + z side or the -z side with respect to the drive shaft 13. In the present embodiment, the drive shaft 13 is disposed on the + z side with respect to the piezoelectric element 12. This is because the pressing spring 17 that moves along the drive shaft 13 is located at the same height as the drive shaft 13, and therefore, in the reverse direction in which the drive shaft 13 is simply arranged on the −x side (see FIG. 6), the magnet This is because the volume of 9 cannot be increased.
 しかしながら、図6のように、押圧ばね17の腕長さを短くし、磁石9と同一高さに配置し、押圧ばね17と磁石9のスペースをシェアすれば、マイクロカメラユニット1の高さを低くすることが可能となる。この場合には、圧電素子12が撮像素子2から遠くなるため、圧電式アクチュエータ10の高周波の鋸歯状パルスによる撮像素子2のノイズを軽減することができる。 However, as shown in FIG. 6, if the arm length of the pressing spring 17 is shortened and arranged at the same height as the magnet 9, and the space between the pressing spring 17 and the magnet 9 is shared, the height of the micro camera unit 1 is increased. It can be lowered. In this case, since the piezoelectric element 12 is far from the image pickup element 2, noise of the image pickup element 2 due to a high-frequency sawtooth pulse of the piezoelectric actuator 10 can be reduced.
 ここで、上向き凹部4dに嵌め込まれた磁石9と下向きの駆動軸13とは、図6のように、所定高さTでオーバーラップしていることになる。 Here, the magnet 9 fitted in the upward recess 4d and the downward drive shaft 13 overlap at a predetermined height T as shown in FIG.
 前記のようにレンズ駆動装置を構成すれば、圧電式アクチュエータ10と電磁式アクチュエータ7の磁石9とは、少なくとも一部が光軸Cの方向に所定高さTでオーバーラップする状態で可動台4に固定したものである。 If the lens driving device is configured as described above, the piezoelectric actuator 10 and the magnet 9 of the electromagnetic actuator 7 are at least partially overlapped with each other at a predetermined height T in the direction of the optical axis C. It is fixed to.
 したがって、特許文献1のような光軸の方向に積み上げたような配置構造とは異なり、本実施形態は、オーバーラップする状態での配置構造となる。これにより、マイクロカメラユニット1全体の高さを低く抑えながら、つまり、低背化を図りながら、高い手振れ補正能力を確保することができる。 Therefore, unlike the arrangement structure stacked in the direction of the optical axis as in Patent Document 1, the present embodiment is an arrangement structure in an overlapping state. As a result, it is possible to secure a high camera shake correction capability while keeping the height of the entire micro camera unit 1 low, that is, while reducing the height.
 また、可動台4が略矩形状である場合、圧電式アクチュエータ10は、可動台4の一隅部に固定され、磁石9は、圧電式アクチュエータ10を固定した一隅部を構成する可動台4の二辺部に固定される。これにより、可動台4の四辺部の内の二辺部に磁石9を固定すればよいため、部品点数を削減できてコスト安になるとともに、軽量化することができる。 When the movable table 4 is substantially rectangular, the piezoelectric actuator 10 is fixed to one corner of the movable table 4, and the magnet 9 is two of the movable table 4 constituting one corner to which the piezoelectric actuator 10 is fixed. Fixed to the side. Thereby, since the magnet 9 should just be fixed to the two sides of the four sides of the movable stand 4, the number of parts can be reduced, the cost can be reduced, and the weight can be reduced.
 さらに、可動台4が略矩形状である場合、圧電式アクチュエータ10は、可動台4の一隅部に固定され、磁石9は、可動台4の四辺部に固定される。これにより、可動台4の四辺部に磁石9を固定することで、手振れ補正時の駆動が安定するようになる。 Furthermore, when the movable table 4 has a substantially rectangular shape, the piezoelectric actuator 10 is fixed to one corner of the movable table 4, and the magnet 9 is fixed to the four sides of the movable table 4. As a result, fixing the magnet 9 to the four sides of the movable table 4 stabilizes the drive during the shake correction.
 また、圧電式アクチュエータ10の圧電素子12は、レンズ保持枠16を光軸Cの方向に精度良く案内する直進ガイド機構としての駆動軸13を軸方向に結合されている。したがって、光軸Cの方向から見た投影面積が非常に小さくなるから、マイクロカメラユニット1の高さを低くしながら、電磁式アクチュエータ7の磁石9の体積を大きくすることが可能となる。そのため、電磁式アクチュエータ7の駆動力を大きくすることができるので、手振れ補正駆動のストロークや応答性を向上させることができる。すなわち、手振れ補正機能を高めることができ、撮像画像の画質を向上させることができる。 Further, the piezoelectric element 12 of the piezoelectric actuator 10 is coupled in the axial direction with a drive shaft 13 as a linear guide mechanism for accurately guiding the lens holding frame 16 in the direction of the optical axis C. Therefore, since the projected area viewed from the direction of the optical axis C is very small, the volume of the magnet 9 of the electromagnetic actuator 7 can be increased while the height of the micro camera unit 1 is reduced. Therefore, since the driving force of the electromagnetic actuator 7 can be increased, it is possible to improve the stroke and response of the camera shake correction driving. That is, the camera shake correction function can be enhanced and the image quality of the captured image can be improved.
 さらに、マイクロカメラユニット1は、レンズ保持枠16と駆動軸13との間で摩擦力を発生させる押圧ばね(加圧部材)17を有し、駆動軸13は、圧電素子12よりも撮像素子2から遠い側に配置している。これにより、レンズ保持枠16と駆動軸13との間で摩擦力を発生させる押圧ばね17は、駆動軸13の回りに余裕のある部位に配置できるから、形状を大きくできることで摩擦力の調整が容易に行える。 Further, the micro camera unit 1 includes a pressing spring (pressure member) 17 that generates a frictional force between the lens holding frame 16 and the drive shaft 13, and the drive shaft 13 is more image pickup element 2 than the piezoelectric element 12. It is arranged on the side far from As a result, the pressing spring 17 that generates a frictional force between the lens holding frame 16 and the drive shaft 13 can be disposed in a marginal area around the drive shaft 13, and thus the shape can be increased to adjust the frictional force. Easy to do.
 また、可動台4に磁石9が固定され、固定台3にコイル8が固定される。これにより、体積が大きな磁石9を可動台4に固定することで、スペース的に有利になる。 Further, the magnet 9 is fixed to the movable table 4 and the coil 8 is fixed to the fixed table 3. Thereby, it becomes advantageous in terms of space by fixing the magnet 9 having a large volume to the movable base 4.
 本明細書は、上記のように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。 This specification discloses various modes of technology as described above, and the main technologies are summarized below.
 一態様にかかるレンズ駆動装置は、撮像素子が固定された固定台と、前記固定台に対して、光軸の方向の前方に配置され、光軸の直交方向に揺動可能に支持部材で支持された可動台を備えている。そして、上記レンズ駆動装置は、前記固定台と前記可動台の一方にコイルが固定され、他方に磁石が固定されて、前記可動台を電磁力で揺動させる手振れ防止用の電磁式アクチュエータと、撮像光を前記撮像素子に導くレンズを保持するレンズ保持枠と、前記可動台に固定され、前記レンズ保持枠を支持して光軸の方向に移動させるオートフォーカス用の圧電式アクチュエータとをさらに備えている。そして、前記圧電式アクチュエータと前記磁石とは、少なくとも一部が光軸の方向にオーバーラップする状態で前記可動台に固定されている。 A lens driving device according to an aspect is provided with a fixed base on which an image sensor is fixed, and a support member disposed in front of the fixed base in a direction of an optical axis and swingable in a direction orthogonal to the optical axis. Equipped with a movable platform. The lens driving device includes an electromagnetic actuator for preventing camera shake in which a coil is fixed to one of the fixed base and the movable base and a magnet is fixed to the other, and the movable base is swung by electromagnetic force; A lens holding frame that holds a lens that guides imaging light to the imaging device; and an autofocus piezoelectric actuator that is fixed to the movable base and moves in the direction of the optical axis while supporting the lens holding frame. ing. And the said piezoelectric actuator and the said magnet are being fixed to the said movable stand in the state which at least one part overlaps in the direction of an optical axis.
 このようなレンズ駆動装置では、オートフォーカス用の圧電式アクチュエータと手振れ防止用の電磁式アクチュエータの磁石とは、少なくとも一部が光軸の方向にオーバーラップする状態で可動台に固定したものである。したがって、上記レンズ駆動装置は、前記特許文献1のような光軸の方向に積み上げたような配置構造とは異なり、オーバーラップする状態での配置構造となるので、カメラユニット全体の高さを低く抑えながら、つまり、低背化を図りながら、手振れ防止用の電磁式アクチュエータの磁石の体積を大きくすることが可能となる。そのため、上記レンズ駆動装置は、電磁式アクチュエータの駆動力を大きくすることができるので、手振れ補正駆動のストロークや応答性を向上させることができる。すなわち、上記レンズ駆動装置は、手振れ補正機能を高めることができ、撮像画像の画質を向上させることができる。 In such a lens driving device, the piezoelectric actuator for autofocus and the magnet of the electromagnetic actuator for preventing camera shake are fixed to the movable base in a state where at least a part thereof overlaps in the direction of the optical axis. . Therefore, unlike the arrangement structure in which the lens driving device is stacked in the direction of the optical axis as in Patent Document 1, the lens driving apparatus has an arrangement structure in an overlapping state, so that the overall height of the camera unit is reduced. It is possible to increase the volume of the magnet of the electromagnetic actuator for preventing shaking while suppressing, that is, reducing the height. Therefore, since the lens driving device can increase the driving force of the electromagnetic actuator, the stroke and response of the camera shake correction driving can be improved. That is, the lens driving device can improve the camera shake correction function and improve the image quality of the captured image.
 他の一態様では、上述のレンズ駆動装置において、前記可動台は、略矩形状であり、前記圧電式アクチュエータは、前記可動台の一隅部に固定され、前記磁石は、前記圧電式アクチュエータが固定された一隅部を構成する前記可動台の二辺部に固定される。 In another aspect, in the lens driving device described above, the movable base is substantially rectangular, the piezoelectric actuator is fixed at one corner of the movable base, and the magnet is fixed by the piezoelectric actuator. It is fixed to the two sides of the movable base that constitutes one corner.
 このようなレンズ駆動装置は、可動台の四辺部の内の二辺部に磁石を固定すればよいため、部品点数を削減できてコスト安になるとともに、軽量化することができる。 Since such a lens driving device only needs to fix a magnet to two sides of the four sides of the movable base, the number of parts can be reduced, the cost can be reduced, and the weight can be reduced.
 他の一態様では、上述のレンズ駆動装置において、前記可動台は、略矩形状であり、前記圧電式アクチュエータは、前記可動台の一隅部に固定され、前記磁石は、前記可動台の四辺部に固定される。 In another aspect, in the above-described lens driving device, the movable base is substantially rectangular, the piezoelectric actuator is fixed to one corner of the movable base, and the magnets are four sides of the movable base. Fixed to.
 このようなレンズ駆動装置は、可動台の四辺部に磁石を固定することで、手振れ補正時の駆動が安定するようになる。 Such a lens driving device stabilizes the driving at the time of camera shake correction by fixing magnets to the four sides of the movable base.
 他の一態様では、これら上述のレンズ駆動装置において、前記圧電式アクチュエータは、前記レンズ保持枠を光軸の方向に案内する駆動軸と圧電素子とが軸方向に結合されている。 In another aspect, in these lens driving devices described above, the piezoelectric actuator includes a driving shaft that guides the lens holding frame in the direction of the optical axis and a piezoelectric element that are coupled in the axial direction.
 このようなレンズ駆動装置では、圧電式アクチュエータの圧電素子に、レンズ保持枠を光軸の方向に精度良く案内する直進ガイド機構としての駆動軸が軸方向に結合されている。したがって、光軸の方向から見た投影面積が非常に小さくなるから、カメラユニットの高さを低くしながら、手振れ防止用の電磁式アクチュエータの磁石の体積を大きくすることが可能となる。そのため、このようなレンズ駆動装置は、電磁式アクチュエータの駆動力を大きくすることができるので、手振れ補正駆動のストロークや応答性を向上させることができる。すなわち、上記レンズ駆動装置は、手振れ補正機能を高めることができ、撮像画像の画質を向上させることができる。 In such a lens driving device, a driving shaft as a linear guide mechanism for accurately guiding the lens holding frame in the direction of the optical axis is coupled to the piezoelectric element of the piezoelectric actuator in the axial direction. Therefore, since the projected area viewed from the direction of the optical axis becomes very small, it is possible to increase the volume of the magnet of the electromagnetic actuator for preventing camera shake while reducing the height of the camera unit. For this reason, such a lens driving device can increase the driving force of the electromagnetic actuator, thereby improving the stroke and response of the camera shake correction driving. That is, the lens driving device can improve the camera shake correction function and improve the image quality of the captured image.
 他の一態様では、上述のレンズ駆動装置において、前記レンズ保持枠と前記駆動軸との間で摩擦力を発生させる加圧部材を有し、前記駆動軸は、前記圧電素子よりも前記撮像素子から遠い側に配置される。 In another aspect, in the above-described lens driving device, the lens driving device includes a pressing member that generates a frictional force between the lens holding frame and the driving shaft, and the driving shaft has the imaging element rather than the piezoelectric element. It is arranged on the far side.
 このようなレンズ駆動装置では、レンズ保持枠と駆動軸との間で摩擦力を発生させる加圧部材は、駆動軸の回りに余裕のある部位に配置できるから、形状を大きくできることで摩擦力の調整が容易に行える。 In such a lens driving device, the pressurizing member that generates a frictional force between the lens holding frame and the driving shaft can be disposed in a portion having a margin around the driving shaft. Adjustment is easy.
 他の一態様では、これら上述のレンズ駆動装置において、前記可動台に前記磁石が固定され、前記固定台に前記コイルが固定されている。 In another aspect, in these lens driving devices described above, the magnet is fixed to the movable base, and the coil is fixed to the fixed base.
 このようなレンズ駆動装置は、体積が大きな磁石を可動台に固定することで、スペース的に有利になる。 Such a lens driving device is advantageous in terms of space by fixing a large-volume magnet to the movable base.
 この出願は、2013年7月4日に出願された日本国特許出願特願2013-140340を基礎とするものであり、その内容は、本願に含まれるものである。 This application is based on Japanese Patent Application No. 2013-140340 filed on July 4, 2013, the contents of which are included in the present application.
 本発明を表現するために、上述において図面を参照しながら実施形態を通して本発明を適切且つ十分に説明したが、当業者であれば上述の実施形態を変更および/または改良することは容易に為し得ることであると認識すべきである。したがって、当業者が実施する変更形態または改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態または当該改良形態は、当該請求項の権利範囲に包括されると解釈される。 In order to express the present invention, the present invention has been properly and fully described through the embodiments with reference to the drawings. However, those skilled in the art can easily change and / or improve the above-described embodiments. It should be recognized that this is possible. Therefore, unless the modifications or improvements implemented by those skilled in the art are at a level that departs from the scope of the claims recited in the claims, the modifications or improvements are not covered by the claims. To be construed as inclusive.
 本発明によれば、レンズ駆動装置を提供できる。 According to the present invention, a lens driving device can be provided.

Claims (6)

  1.  撮像素子が固定された固定台と、
     前記固定台に対して、光軸の方向の前方に配置され、光軸の直交方向に揺動可能に支持部材で支持された可動台と、
     前記固定台と前記可動台の一方にコイルが固定され、他方に磁石が固定されて、前記可動台を電磁力で揺動させる手振れ防止用の電磁式アクチュエータと、
     撮像光を前記撮像素子に導くレンズを保持するレンズ保持枠と、
     前記可動台に固定され、前記レンズ保持枠を支持して光軸の方向に移動させるオートフォーカス用の圧電式アクチュエータとを備え、
     前記圧電式アクチュエータと前記磁石とは、少なくとも一部が光軸の方向にオーバーラップする状態で前記可動台に固定されていること
     を特徴とするレンズ駆動装置。
    A fixed base to which the image sensor is fixed;
    A movable base that is disposed in front of the fixed base in the direction of the optical axis and supported by a support member so as to be swingable in a direction orthogonal to the optical axis;
    A coil is fixed to one of the fixed base and the movable base, and a magnet is fixed to the other, and an electromagnetic actuator for preventing camera shake that swings the movable base with electromagnetic force;
    A lens holding frame for holding a lens for guiding imaging light to the imaging device;
    A piezoelectric actuator for autofocus that is fixed to the movable base and moves in the direction of the optical axis while supporting the lens holding frame;
    The lens driving device, wherein the piezoelectric actuator and the magnet are fixed to the movable base in a state where at least a part thereof overlaps in the direction of the optical axis.
  2.  前記可動台は、略矩形状であり、
     前記圧電式アクチュエータは、前記可動台の一隅部に固定され、前記磁石は、前記圧電式アクチュエータが固定された一隅部を構成する前記可動台の二辺部に固定されること
     を特徴とする請求項1に記載のレンズ駆動装置。
    The movable base is substantially rectangular,
    The piezoelectric actuator is fixed to one corner of the movable base, and the magnet is fixed to two sides of the movable base constituting one corner to which the piezoelectric actuator is fixed. Item 4. The lens driving device according to Item 1.
  3.  前記可動台は、略矩形状であり、
     前記圧電式アクチュエータは、前記可動台の一隅部に固定され、前記磁石は、前記可動台の四辺部に固定されること
     を特徴とする請求項1に記載のレンズ駆動装置。
    The movable base is substantially rectangular,
    The lens driving device according to claim 1, wherein the piezoelectric actuator is fixed to one corner of the movable table, and the magnet is fixed to four sides of the movable table.
  4.  前記圧電式アクチュエータは、前記レンズ保持枠を光軸の方向に案内する駆動軸と圧電素子とが軸方向に結合されていること
     を特徴とする請求項1ないし請求項3のいずれか1項に記載のレンズ駆動装置。
    4. The piezoelectric actuator according to claim 1, wherein a drive shaft that guides the lens holding frame in an optical axis direction and a piezoelectric element are coupled in the axial direction. 5. The lens driving device described.
  5.  前記レンズ保持枠と前記駆動軸との間で摩擦力を発生させる加圧部材を有し、前記駆動軸は、前記圧電素子よりも前記撮像素子から遠い側に配置されること
     を特徴とする請求項4に記載のレンズ駆動装置。
    A pressure member that generates a frictional force between the lens holding frame and the drive shaft is provided, and the drive shaft is disposed on a side farther from the imaging element than the piezoelectric element. Item 5. The lens driving device according to Item 4.
  6.  前記可動台に前記磁石が固定され、前記固定台に前記コイルが固定されていること
     を特徴とする請求項1ないし請求項5のいずれか1項に記載のレンズ駆動装置。
     
    The lens driving device according to any one of claims 1 to 5, wherein the magnet is fixed to the movable base, and the coil is fixed to the fixed base.
PCT/JP2014/066039 2013-07-04 2014-06-17 Lens driving apparatus WO2015001954A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013140340 2013-07-04
JP2013-140340 2013-07-04

Publications (1)

Publication Number Publication Date
WO2015001954A1 true WO2015001954A1 (en) 2015-01-08

Family

ID=52143533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/066039 WO2015001954A1 (en) 2013-07-04 2014-06-17 Lens driving apparatus

Country Status (1)

Country Link
WO (1) WO2015001954A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105676568A (en) * 2014-12-08 2016-06-15 三星电机株式会社 Camera module
CN111474670A (en) * 2019-01-24 2020-07-31 格科微电子(上海)有限公司 Driving device of camera module
CN113589469A (en) * 2021-08-06 2021-11-02 新思考电机有限公司 Lens driving mechanism, driving device, image pickup device, and electronic apparatus
WO2022214084A1 (en) * 2021-04-09 2022-10-13 宁波舜宇光电信息有限公司 Periscopic photographing module and variable-focus photographing module
US11536930B2 (en) 2016-05-24 2022-12-27 Microsoft Licensing Technology, LLC. Suspended actuator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011227428A (en) * 2010-04-02 2011-11-10 Tdk Corp Lens drive device
JP2012005957A (en) * 2010-06-24 2012-01-12 Maxell Finetech Ltd Driving device, image acquiring device, and electronic equipment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011227428A (en) * 2010-04-02 2011-11-10 Tdk Corp Lens drive device
JP2012005957A (en) * 2010-06-24 2012-01-12 Maxell Finetech Ltd Driving device, image acquiring device, and electronic equipment

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105676568A (en) * 2014-12-08 2016-06-15 三星电机株式会社 Camera module
US11536930B2 (en) 2016-05-24 2022-12-27 Microsoft Licensing Technology, LLC. Suspended actuator
CN111474670A (en) * 2019-01-24 2020-07-31 格科微电子(上海)有限公司 Driving device of camera module
WO2022214084A1 (en) * 2021-04-09 2022-10-13 宁波舜宇光电信息有限公司 Periscopic photographing module and variable-focus photographing module
CN113589469A (en) * 2021-08-06 2021-11-02 新思考电机有限公司 Lens driving mechanism, driving device, image pickup device, and electronic apparatus
CN113589469B (en) * 2021-08-06 2023-08-15 新思考电机有限公司 Lens driving mechanism, driving device, imaging device, and electronic apparatus

Similar Documents

Publication Publication Date Title
JP6138969B2 (en) The camera module
KR102226299B1 (en) Lens Driving Device
KR102166262B1 (en) Camera lens assembly
US8982464B2 (en) Tilt-type anti-shake compensation structure for auto-focus module
JP5003008B2 (en) Camera shake correction device, lens unit, and imaging device
JP5031876B2 (en) Camera module and imaging device
JP5606819B2 (en) The camera module
EP2495604A1 (en) Suspension wire for compensating for hand vibration and image photographing device having the same
KR101681366B1 (en) Lens driving device and camera module including the same
US10018800B2 (en) Lens driving apparatus
WO2009142149A1 (en) Lens driving device
JP2021535443A (en) The camera module
KR20170020803A (en) Autofocus for folded optic array cameras
CN111897084A (en) Lens driving device, camera device and electronic equipment
JP2014126668A (en) Lens drive device, camera module and portable terminal with camera
WO2015001954A1 (en) Lens driving apparatus
KR101273793B1 (en) Camera module comprising the optical image stabilizer
JP2008089803A (en) Imaging apparatus
TWI477877B (en) Camera module
WO2015001952A1 (en) Lens driving apparatus
JP6008038B2 (en) Lens driving device, camera module and camera
JP2011176443A (en) Image taking apparatus
JP2017076135A (en) Lens driving apparatus, camera module, and mobile terminal with camera
KR101182775B1 (en) Camera module
JP5760116B2 (en) The camera module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14820054

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14820054

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP