WO2015001761A1 - Photosensor - Google Patents

Photosensor Download PDF

Info

Publication number
WO2015001761A1
WO2015001761A1 PCT/JP2014/003350 JP2014003350W WO2015001761A1 WO 2015001761 A1 WO2015001761 A1 WO 2015001761A1 JP 2014003350 W JP2014003350 W JP 2014003350W WO 2015001761 A1 WO2015001761 A1 WO 2015001761A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
light
infrared light
threshold value
signal
Prior art date
Application number
PCT/JP2014/003350
Other languages
French (fr)
Japanese (ja)
Inventor
道山 勝教
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112014003141.0T priority Critical patent/DE112014003141T5/en
Publication of WO2015001761A1 publication Critical patent/WO2015001761A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/02Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments
    • B60Q1/04Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights
    • B60Q1/14Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights having dimming means
    • B60Q1/1415Dimming circuits
    • B60Q1/1423Automatic dimming circuits, i.e. switching between high beam and low beam due to change of ambient light or light level in road traffic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0407Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings
    • G01J1/0411Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings using focussing or collimating elements, i.e. lenses or mirrors; Aberration correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0488Optical or mechanical part supplementary adjustable parts with spectral filtering
    • G01J1/0492Optical or mechanical part supplementary adjustable parts with spectral filtering using at least two different filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/4204Photometry, e.g. photographic exposure meter using electric radiation detectors with determination of ambient light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/4228Photometry, e.g. photographic exposure meter using electric radiation detectors arrangements with two or more detectors, e.g. for sensitivity compensation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q2300/00Indexing codes for automatically adjustable headlamps or automatically dimmable headlamps
    • B60Q2300/30Indexing codes relating to the vehicle environment
    • B60Q2300/31Atmospheric conditions
    • B60Q2300/314Ambient light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q2300/00Indexing codes for automatically adjustable headlamps or automatically dimmable headlamps
    • B60Q2300/30Indexing codes relating to the vehicle environment
    • B60Q2300/33Driving situation
    • B60Q2300/337Tunnels or bridges

Definitions

  • the present disclosure relates to an optical sensor that receives light from above or in front of a vehicle.
  • Patent Document 1 proposes a light receiving device that operates a light automatic turning-on / off device when a vehicle enters a tunnel. Specifically, a first light receiving sensor that is sensitive to both visible light and infrared light above the vehicle, a second light receiving sensor that is sensitive only to infrared light above the vehicle, a first light receiving sensor, A configuration including a gate circuit that processes signals from two light receiving sensors has been proposed.
  • the gate circuit does not operate the automatic light turn-off device that turns on the vehicle headlight, so the vehicle headlight is turned off.
  • the first light receiving sensor receives the visible light of the lamp in the tunnel.
  • the second light receiving sensor since the light from the lamp installed in the tunnel does not include infrared light, the second light receiving sensor does not receive infrared light.
  • the gate circuit operates the automatic light turning-on / off device, so that the headlight of the vehicle is turned on.
  • the first light receiving sensor and the second light receiving sensor include both visible light and infrared light from above the vehicle. Stops receiving natural light. That is, since the second light receiving sensor does not receive infrared light, the gate circuit operates the automatic light turn-on / off device. For this reason, the headlight of the vehicle turns on erroneously.
  • US Pat. No. 6,376,824 proposes an optical sensor including a first light receiving unit that detects visible light ahead of the vehicle and a second light receiving unit that detects visible light above the vehicle. Each light receiving unit turns on the headlight when the intensity of the detected visible light falls below a threshold value.
  • the first light receiving unit has a visible light intensity lower than a threshold before the second light receiving unit. Will not light up.
  • the present disclosure aims to provide an optical sensor capable of preventing erroneous lighting when passing under a building such as a bridge and preventing lighting delay after entering a tunnel. To do.
  • the optical sensor has a spectral sensitivity of visible light that is lower than a predetermined value of light irradiated from above the vehicle, and uses the intensity of the received light as a first intensity signal.
  • a first light receiving element for output is provided.
  • the optical sensor includes a second light receiving element that has a spectral sensitivity of visible light that is lower than a predetermined value of light irradiated from the front of the vehicle and outputs the intensity of the received light as a second intensity signal. I have.
  • the optical sensor has a first threshold value and a second threshold value for determining whether or not to turn on the headlight of the vehicle, and receives the first intensity signal from the first light receiving element and The second intensity signal is compared with the first threshold, the second intensity signal is input from the second light receiving element, the second intensity signal is compared with the second threshold, the first intensity signal exceeds the first threshold, and the second intensity
  • a determination circuit unit that outputs a lighting signal for lighting the headlight of the vehicle is provided.
  • the determination circuit unit does not erroneously turn on the headlight of the vehicle.
  • the intensity of the detection light exceeds the threshold value in both the first light receiving element and the second light receiving element immediately after the vehicle enters the tunnel. . For this reason, the lighting delay of the vehicle headlight by the determination circuit unit does not occur.
  • FIG. 10 is a diagram illustrating a circuit configuration of a determination circuit unit according to a third embodiment of the present disclosure.
  • 3rd Embodiment it is a figure for demonstrating operation
  • 3rd Embodiment it is a figure for demonstrating operation
  • the optical sensor according to the present embodiment is applied to an autolight system that automatically turns off a headlight and a taillight of a vehicle when entering a tunnel or under a building such as a bridge during the day.
  • the optical sensor 10 includes a case 11, a plurality of lenses 12 to 14, an upper visible light detecting element 15, an upper infrared light detecting element 16, a front infrared light detecting element 17, and a circuit board 18. It is configured with.
  • the case 11 is a bottomed cylindrical housing for housing the plurality of lenses 12 to 14, the detection elements 15 to 17, and the circuit board 18.
  • the case 11 is formed of a metal material or a resin material.
  • the case 11 is fixed to the inner surface 51 of the windshield 50 so that a space 52 is formed between the case 11 and the inner surface 51 of the windshield 50 of the vehicle.
  • the plurality of lenses 12 to 14, the detection elements 15 to 17, and the circuit board 18 are arranged on the inner surface 51 side of the windshield 50.
  • the plurality of lenses 12 to 14 are condensing means for condensing light incident from a predetermined direction among light incident on the windshield 50.
  • the lens 12 has a directivity characteristic that guides light incident from above the vehicle, that is, from the ceiling side, to the upper visible light detection element 15.
  • the lens 13 has a directivity characteristic that guides light incident from above the vehicle to the upper infrared light detection element 16.
  • the lens 14 has a directivity characteristic that guides light incident from the front of the vehicle to the front infrared light detection element 17.
  • Each lens 12 to 14 is fixed to the case 11 by a stay or the like (not shown).
  • the upper visible light detection element 15, the upper infrared light detection element 16, and the front infrared light detection element 17 are light receiving elements that detect light incident on the space 52 of the case 11 through the windshield 50.
  • each of the detection elements 15 to 17 includes a photodiode that detects the intensity of the received light, and a processing circuit (not shown) that amplifies the signal of the photodiode.
  • the detection elements 15 to 17 are mounted on the circuit board 18.
  • the upper visible light detecting element 15 is a light receiving element having spectral sensitivity characteristics including visible light out of light incident from above the vehicle via the lens 12. Specifically, the upper visible light detection element 15 has a spectral sensitivity characteristic capable of detecting both visible light and infrared light, as shown in FIG.
  • the upper visible light detection element 15 outputs the intensity of the received light as an upper visible light signal.
  • the intensity of light is, for example, a voltage value.
  • the upper visible light detection element 15 may be configured to detect only visible light.
  • the upper infrared light detection element 16 and the front infrared light detection element 17 have a spectral sensitivity characteristic capable of detecting infrared light by reducing the spectral sensitivity of visible light.
  • the upper infrared light detection element 16 and the front infrared light detection element 17 have a spectral sensitivity of visible light lower than a predetermined value.
  • the visible light spectral sensitivity of the upper infrared light detection element 16 and the front infrared light detection element 17 is lower than the visible light spectral sensitivity of the upper visible light detection element 15.
  • the upper infrared light detection element 16 outputs the intensity of light received from above the vehicle through the lens 13 as an upper infrared light signal.
  • the front infrared light detection element 17 outputs the intensity of light received from the front of the vehicle via the lens 14 as a front infrared light signal.
  • the upper infrared light detection element 16 and the front infrared light detection element 17 can be easily configured by providing a filter that blocks visible light in the light receiving element having the spectral sensitivity characteristic shown in FIG. Can do.
  • the circuit board 18 is a drive circuit (not shown) for driving the detection elements 15 to 17 and a determination for determining whether or not to turn on the vehicle headlight based on the detection results of the detection elements 15 to 17. It has a circuit part.
  • the circuit board 18 is fixed in the case 11.
  • the determination circuit unit 19 includes a plurality of comparators 20 to 22, AND circuits 23 and 24, and an OR circuit 25.
  • the comparator 20 is a comparison unit that receives the upper visible light signal from the upper visible light detection element 15 and compares the amplitude of the upper visible light signal with the upper visible light determination threshold value. In the present embodiment, the comparator 20 outputs a Hi signal when the amplitude of the upper visible light signal is lower than the upper visible light determination threshold, and is Lo when the amplitude of the upper visible light signal exceeds the upper visible light determination threshold. Output a signal.
  • the comparator 21 is a comparison means that receives the upper infrared light signal from the upper infrared light detection element 16 and compares the amplitude of the upper infrared light signal with the upper infrared light determination threshold.
  • the comparator 21 outputs a Hi signal when the amplitude of the upper infrared light signal is lower than the upper infrared light determination threshold value, and outputs a Lo signal when the amplitude of the upper infrared light signal exceeds the upper infrared light determination threshold value. Is output.
  • the comparator 22 is a comparison means that receives the front infrared light signal from the front infrared light detection element 17 and compares the amplitude of the front infrared light signal with the front infrared light determination threshold value.
  • the comparator 20 outputs a Hi signal when the amplitude of the front infrared light signal is lower than the front infrared light determination threshold value, and outputs a Lo signal when the amplitude of the front infrared light signal exceeds the front infrared light determination threshold value. Is output.
  • the upper visible light determination threshold, the upper infrared light determination threshold, and the front infrared light determination threshold are thresholds for determining whether to turn on the headlight of the vehicle.
  • Each threshold value is preset in a memory, a latch, or the like (not shown) so as to have a predetermined value.
  • the AND circuit 23 is connected to the comparator 20 and the comparator 1 so as to invert the output of the comparator 20 and to input the output of the comparator 21. Actually, the AND circuit 23 inputs the output of the comparator 20 via a NOT circuit (not shown). The AND circuit 23 outputs a Hi signal when the output of the comparator 20 is Lo and the output of the comparator 21 is Hi, and outputs a Lo signal otherwise.
  • the OR circuit 25 is connected to the comparator 20 and the AND circuit 23 so as to input the output of the comparator 20 and the output of the AND circuit 23.
  • the OR circuit 25 outputs a Hi signal when either the output of the comparator 20 or the output of the AND circuit 23 is Hi, and Lo when the output of the comparator 20 or the output of the AND circuit 23 is Lo. The signal is output.
  • the AND circuit 24 is connected to the OR circuit 25 and the comparator 22 so as to input the output of the OR circuit 25 and the output of the comparator 22.
  • the AND circuit 24 outputs a Hi signal when both the output of the OR circuit 25 and the output of the comparator 22 are Hi, and outputs a Lo signal otherwise.
  • the Hi signal output from the AND circuit 24 is a lighting signal for lighting the headlight of the vehicle.
  • the determination circuit unit 19 determines whether the upper visible light signal is lower than the upper visible light determination threshold or the upper infrared light signal is lower than the upper infrared light determination threshold, and the front infrared light signal is determined to be the front infrared light determination. When the value falls below the threshold value, a Hi lighting signal for lighting the headlight of the vehicle 53 is output.
  • the above is the overall configuration of the optical sensor 10 according to the present embodiment.
  • the lighting signal output from the determination circuit unit 19 is input to an external device that operates the headlight of the vehicle.
  • the external device turns on the headlight when the lighting signal is Hi, and turns off the headlight when the lighting signal is Lo.
  • the operation of the optical sensor 10 when the vehicle passes under a building such as a bridge during the day will be described.
  • the vehicle 53 is about to pass under the bridge 54.
  • the horizontal axis indicates the position of the vehicle 53
  • the vertical axis indicates the outputs of the detection elements 15 to 17 and the output of the determination circuit unit 19.
  • the vehicle 53 further approaches the bridge 54.
  • the outputs of the upper visible light detection element 15 and the upper infrared light detection element 16 that detect natural light from above the vehicle 53 are above the respective threshold values.
  • the output of the front infrared light detection element 17 that detects infrared light from the front of the vehicle 53 that is, the amplitude of the front infrared light signal starts to decrease.
  • the determination circuit unit 19 outputs a Lo lighting signal. For this reason, the headlight is not turned on.
  • the outputs of the upper visible light detection element 15 and the upper infrared light detection element 16 that detect light from above the vehicle 53 exceed the respective threshold values. ing. That is, since the outputs of the comparator 20 and the comparator 21 are Lo, the output of the OR circuit 25 is Lo.
  • the output of the front infrared light detection element 17 that detects light from the front of the vehicle 53 is lower than the front infrared light determination threshold value. For this reason, the output of the comparator 22 becomes Hi. In FIG. 5, the state where the output of the comparator is Hi is indicated by “ON”. However, since the Lo signal is input from the OR circuit 25 to the AND circuit 24, the lighting signal becomes the Lo signal. For this reason, the headlight is not turned on.
  • the vehicle 53 starts to enter the bridge 54. Thereby, since the intensity
  • the intensity of the natural light irradiated under the bridge 54 is weakened. For this reason, the output of the upper visible light detection element 15 that detects visible light from above the vehicle 53 falls below the upper visible light determination threshold. Similarly, the output of the upper infrared light detection element 16 that detects infrared light from above the vehicle 53 falls below the upper infrared light determination threshold. Therefore, since the comparator 20 and the comparator 21 each output a Hi signal, the OR circuit 25 outputs a Hi signal.
  • the intensity of natural light including infrared light emitted from the front of the vehicle 53 increases. Therefore, the output of the front infrared light detection element 17 is the front infrared light. The judgment threshold is exceeded. For this reason, since the comparator 22 outputs a Lo signal, the lighting signal output from the AND circuit 24 becomes Lo. Therefore, the headlight is not turned on.
  • each output of the upper visible light detection element 15 and the upper infrared light detection element 16 exceeds each threshold value.
  • the output of the front infrared light detection element 17 also exceeds the front infrared light determination threshold. That is, the output of the OR circuit 25 becomes Hi, but the output of the comparator 22 becomes Lo. Therefore, the lighting signal output from the AND circuit 24 is Lo, and the headlight is not lit.
  • each of the detection elements 15 to 17 detects natural light, so that the headlight is not turned on as in the point L10.
  • the headlight of the vehicle 53 is not turned on. This is because although the intensity of natural light including infrared light decreases under the bridge 54, the front infrared light detection element 17 detects natural light that has entered the bridge 54 from the exit side of the bridge 54. It is. That is, the upper infrared light detection element 16 and the front infrared light detection element 17 have different directions for detecting infrared light. In other words, when the vehicle 53 passes under the bridge 54, the upper infrared light detection element 16 and the front infrared light detection element 17 have different timings at which the intensity of the infrared light falls below the threshold value.
  • the front infrared light detection element 17 detects natural light including infrared light before the upper infrared light detection element 16. Accordingly, the outputs of both the upper infrared light detection element 16 and the front infrared light detection element 17 do not exceed the threshold at the same timing. For this reason, it is possible to prevent the determination circuit unit 19 from erroneously lighting the headlight of the vehicle 53.
  • a lamp used as tunnel illumination has a spectral luminance characteristic with a wavelength in the range of 550 nm to 600 nm.
  • the lamp emits light that does not contain infrared light.
  • a lamp is for example a low-pressure sodium lamp.
  • the vehicle 53 approaches the tunnel 56 at the point L20.
  • the outputs of the upper visible light detection element 15 and the upper infrared light detection element 16 that detect natural light from above the vehicle 53 are above the respective threshold values.
  • the output of the front infrared light detection element 17 that detects infrared light from the front of the vehicle 53 starts to decrease.
  • the determination circuit unit 19 outputs a Lo lighting signal, so the headlight is not turned on.
  • the vehicle 53 approaches to the vicinity of the entrance of the tunnel 56.
  • the outputs of the upper visible light detection element 15 and the upper infrared light detection element 16 exceed the respective threshold values, and the output of the front infrared light detection element 17 is the front infrared light determination threshold value.
  • the outputs of the comparator 20 and the comparator 21 are Lo
  • the output of the OR circuit 25 is Lo
  • the output of the OR circuit 25 is Lo
  • the output of the comparator 22 becomes Hi. Therefore, the lighting signal becomes a Lo signal, and the headlight is not lit.
  • the vehicle 53 starts entering the tunnel 56. Thereby, since the intensity
  • the intensity of visible light in the tunnel 56 decreases, so the output of the upper visible light detection element 15 also decreases. Further, since visible light is emitted from the lamp 55 installed in the tunnel 56, the output of the upper visible light detection element 15 increases every time the vehicle 53 passes under the lamp 55. Therefore, as shown in FIG. 7, the output of the upper visible light detection element 15 decreases in a wave shape.
  • the output of the upper visible light detection element 15 exceeds the upper visible light determination threshold, but the output of the upper infrared light detection element 16 falls below the upper infrared light determination threshold. For this reason, the output of the comparator 20 becomes Lo and the output of the comparator 21 becomes Hi, so that the output of the AND circuit 23 becomes Hi, and consequently the output of the OR circuit 25 becomes Hi. Further, the output of the front infrared light detection element 17 is kept below the front infrared light determination threshold. For this reason, the output of the comparator 22 maintains Hi. Therefore, the determination circuit unit 19 outputs a Hi lighting signal for lighting the headlight of the vehicle 53 from the AND circuit 24.
  • the output of the upper visible light detection element 15 falls below the upper visible light determination threshold. For this reason, the output of the comparator 20 becomes Hi. In this case, the output of the AND circuit 23 becomes Lo, but the output of the OR circuit 25 maintains Hi, so that the output of the AND circuit 24 maintains Hi. Therefore, the determination circuit unit 19 continues to output the Hi lighting signal.
  • the determination circuit unit 19 outputs the Lo lighting signal from the AND circuit 24, so that the headlight is turned off.
  • the headlight is turned on immediately. This is because when the vehicle 53 enters the tunnel 56, the light of the lamp 55 is irradiated from the front of the vehicle 53 without being irradiated with natural light including infrared light. That is, immediately after the vehicle 53 enters the tunnel 56, the outputs of the upper infrared light detection element 16 and the front infrared light detection element 17 are below the threshold values. For this reason, the determination circuit unit 19 can be prevented from causing a delay in lighting of the headlight of the vehicle 53.
  • the determination circuit unit 19 can prevent erroneous lighting when the vehicle 53 passes under a building such as 54 bridged, and lighting after entering the tunnel 56. Delay can be prevented.
  • visible light is detected by the upper visible light detection element 15. As a result, the determination can be made without being influenced by the weather, such as the difference between sunny and cloudy.
  • the upper visible light detection element 15 corresponds to a “third light receiving element”.
  • the upper infrared light detection element 16 corresponds to a “first light receiving element”
  • the front infrared light detection element 17 corresponds to a “second light receiving element”.
  • the upper visible light determination threshold corresponds to the “third threshold”, and the upper infrared light determination threshold corresponds to the “first threshold”. Further, the front infrared light determination threshold corresponds to the “second threshold”.
  • the upper visible light signal corresponds to the “third intensity signal”
  • the upper infrared light signal corresponds to the “first intensity signal”.
  • the front infrared light signal corresponds to the “second intensity signal”.
  • the determination circuit unit 19 includes a threshold change circuit unit 26.
  • the threshold value changing circuit unit 26 is a circuit unit that receives the output signal of the comparator 20 and changes the upper infrared light determination threshold value according to the output signal.
  • the threshold changing circuit unit 26 changes the upper infrared light determination threshold by increasing the upper infrared light determination threshold when the front infrared light signal falls below the front infrared light determination threshold. It has a function of advancing the timing when the upper infrared light signal falls below the upper infrared light determination threshold than before. In other words, when the intensity of infrared light from the front of the vehicle 53 decreases, the threshold value changing circuit unit 26 makes it easy to detect a decrease in the intensity of infrared light from above the vehicle 53.
  • the determination circuit unit 19 outputs a Lo lighting signal in the same manner as the point L10 described above.
  • the threshold value changing circuit unit 26 increases the upper infrared light determination threshold value.
  • the outputs of the upper visible light detection element 15 and the upper infrared light detection element 16 exceed the respective threshold values.
  • the respective outputs of the upper visible light detecting element 15 and the upper infrared light detecting element 16 begin to decrease in the same manner as the point L12. Further, the output of the front infrared light detection element 17 exceeds the front infrared light determination threshold. That is, the output of the comparator 22 becomes Lo. For this reason, the threshold value changing circuit unit 26 returns the upper infrared light determination threshold value to the original value.
  • the determination circuit unit 19 performs the same operation as the above-described point L14, point L15, and point L16.
  • the threshold value changing circuit unit 26 increases the upper infrared light determination threshold value.
  • the determination circuit unit 19 outputs a Hi lighting signal for lighting the headlight of the vehicle 53.
  • the determination circuit unit 19 operates in the same manner as the point L24 described above.
  • the threshold value changing circuit unit 26 returns the upper infrared light determination threshold value to the original value at a timing when the output of the front infrared light detection element 17 exceeds the front infrared light determination threshold value. Further, since the output of the comparator 22 becomes Lo, the headlight is turned off.
  • the outputs of both the upper infrared light detection element 16 and the front infrared light detection element 17 are the threshold values after the vehicle 53 enters the tunnel 56 rather than when the upper infrared light determination threshold value is a fixed value.
  • the timing of exceeding will be earlier. Therefore, the headlight can be turned on immediately after the vehicle 53 enters the tunnel 56.
  • the determination circuit unit 19 includes a headlight luminance conversion circuit unit 27 and a switch 28.
  • the headlight luminance conversion circuit unit 27 is connected to the upper visible light detection element 15 so as to input an upper visible light signal from the upper visible light detection element 15.
  • the headlight luminance conversion circuit unit 27 is configured as a differential amplifier circuit by resistors 29 and 30 and an operational amplifier 31. As a result, the headlight luminance conversion circuit unit 27 reduces the upper visible light signal until the upper visible light signal exceeds the upper visible light determination threshold when the Hi lighting signal is output from the AND circuit 24. Accordingly, it has a function of increasing the brightness of the headlight of the vehicle 53.
  • the switch 28 is configured to be turned on when the lighting signal is Hi.
  • the switch 28 is, for example, a semiconductor switch.
  • the switch 28 connects the headlight luminance conversion circuit unit 27 and an external headride driving device 57.
  • the headlight driving device 57 is a device that drives the headlight of the vehicle 53.
  • the operation of the determination circuit unit 19 when the vehicle 53 passes under the bridge 54 during the day in the above configuration will be described with reference to FIG.
  • the headlight is not turned on when the vehicle 53 passes under the bridge 54. Therefore, the luminance of the headlight does not change as shown in FIG.
  • the determination circuit unit 19 is the above-described point L10, point L11, point L12, point L13, point L14, point L15, And the operation
  • the determination circuit unit 19 when the vehicle 53 enters the tunnel 56 during the day will be described with reference to FIG. First, at the point L60, the point L61, and the point L62, the determination circuit unit 19 performs the same operation as the point L20, the point L21, and the point L22.
  • the determination circuit unit 19 outputs a Hi lighting signal from the AND circuit 24. As a result, the switch 28 is turned ON.
  • the headlight luminance conversion circuit unit 27 sends a luminance signal that increases as the amplitude of the upper visible light signal input from the upper visible light detection element 15 decreases from the operational amplifier 31 to the head. Output to the ride driving device 57. As a result, the head ride driving device 57 increases the luminance of the headlight of the vehicle 53 in accordance with the luminance signal.
  • the determination circuit unit 19 performs the same operation as that at the point L24. Further, since the output of the upper visible light detection element 15 is lower than the upper visible light determination threshold at the point L64, the headlight luminance conversion circuit unit 27 outputs the maximum value as the luminance signal. Thereby, the brightness of the headlight is a maximum value and a constant value.
  • the headlight luminance conversion circuit unit 27 adjusts the luminance of the headlight according to the illuminance of the lamp 55 installed near the entrance of the tunnel 56. For this reason, the user's uncomfortable feeling after entering the tunnel 56 can be reduced.
  • each of the detection elements 15 to 17 is formed on one semiconductor chip 32.
  • the semiconductor chip 32 has a circular light receiving region 33.
  • the light receiving region 33 is divided into a circular light receiving region 34, a ring-shaped light receiving region 35, and a ring-shaped light receiving region 36 from the center to the outside.
  • Each of the light receiving regions 34 to 36 is electrically insulated.
  • a circular p-type region 38 is formed on the surface layer portion of the n-type silicon substrate 37, and a ring-shaped p-type region 39 and a p-type region 40 are formed on the outer peripheral side thereof. Further, a cathode electrode 41 is formed on the back surface of the n-type silicon substrate 37, and anode electrodes 42, 43, 44 are provided in the p-type regions 38 to 40 on the surface side of the n-type silicon substrate 37.
  • Each of the light receiving regions 34 to 36 may be formed in a ring shape.
  • the circular light receiving region 34 is configured as the front infrared light detection element 17. Further, the ring-shaped light receiving region 35 is configured as the upper visible light detecting element 15, and the ring-shaped light receiving region 36 is configured as the upper infrared light detecting element 16. When light strikes each of the light receiving regions 34 to 36, an electrical signal corresponding to the amount of light received is output.
  • a slit plate 45 shown in FIG. .
  • the slit plate 45 is made of a light shielding material.
  • the slit plate 45 has a through hole 46 as a slit penetrating the slit plate 45.
  • the through hole 46 has a circular shape, for example.
  • the planar shape of the through hole 46 may be, for example, a polygonal shape, an L shape, an I shape, or the like.
  • the semiconductor chip 32 and the slit plate 45 are accommodated in the sensor housing 47.
  • the light guided into the sensor housing 47 via the optical lens 48 is received by any one of the light receiving regions 34 to 36 according to the incident angle with respect to the through hole 46 of the slit plate 45.
  • the direction of light received by each of the light receiving regions 34 to 36 can be selected by the slit plate 45.
  • the optical sensor 10 can be arranged not on the windshield 50 of the vehicle 53 but on, for example, a dashboard.
  • the configuration of the optical sensor 10 shown in each of the above embodiments is an example, and the configuration is not limited to the configuration shown above, and other configurations that can realize the present disclosure can be used.
  • the threshold value changing circuit unit 26 shown in the second embodiment may be employed in the determination circuit unit 19 according to the third embodiment.
  • the upper visible light detection element 15 provided in each of the above embodiments may be unnecessary.
  • the determination circuit unit 19 inputs the first intensity signal from the upper infrared light detection element 16 and compares the first intensity signal with the upper infrared light determination threshold value.
  • the second intensity signal is input and the second intensity signal is compared with the front infrared light determination threshold.
  • the determination circuit unit 19 outputs a lighting signal for lighting the headlight of the vehicle 53.
  • the upper infrared light detection element 16 and the front infrared light detection element 17 may be formed on one semiconductor chip 32.
  • each of the comparators 20 to 22 outputs a Hi signal when the signal falls below the threshold value.
  • the determination circuit unit 19 may be configured to detect that the signal exceeds the threshold value.
  • the circuit configuration of the determination circuit unit 19 shown in each of the above embodiments is merely an example, and may be configured by another circuit that can realize the function of the determination circuit unit 19.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)

Abstract

Provided is a photosensor with which erroneous lighting when passing under an architectural structure such as a bridge beam can be inhibited, and lighting delay after entering a tunnel can be inhibited. In this photosensor, a determination circuit (19) is provided with an upward visible light-determination threshold value, an upward infrared light-determination threshold value, and a forward infrared light-determination threshold value which are for determining whether headlights of a vehicle (53) are to be lit. The determination circuit (19) compares signals inputted from respective detection elements (15-17) with the threshold values corresponding to said signals. In cases when a forward-infrared-light signal exceeds the forward infrared light-determination threshold value, and either an upward-visible-light signal exceeds the upward visible light-determination threshold value or an upward-infrared-light signal exceeds the upward infrared light-determination threshold value, the determination circuit (19) outputs a lighting signal for causing the headlights of the vehicle (53) to be lit.

Description

光センサOptical sensor 関連出願の相互参照Cross-reference of related applications
 本開示は、2013年7月2日に出願された日本出願番号2013-138715号に基づくもので、ここにその記載内容を援用する。 This disclosure is based on Japanese Application No. 2013-138715 filed on July 2, 2013, the contents of which are incorporated herein.
 本開示は、車両の上方または前方からの光を受光する光センサに関する。 The present disclosure relates to an optical sensor that receives light from above or in front of a vehicle.
 従来より、車両がトンネルに侵入した際にライト自動点消灯装置を動作させる受光装置が、例えば特許文献1で提案されている。具体的には、車両上方の可視光と赤外光との両方の光線に感応する第1受光センサと、車両上方の赤外光にのみ感応する第2受光センサと、第1受光センサ及び第2受光センサからの信号を処理するゲート回路と、を備えた構成が提案されている。 Conventionally, for example, Patent Document 1 proposes a light receiving device that operates a light automatic turning-on / off device when a vehicle enters a tunnel. Specifically, a first light receiving sensor that is sensitive to both visible light and infrared light above the vehicle, a second light receiving sensor that is sensitive only to infrared light above the vehicle, a first light receiving sensor, A configuration including a gate circuit that processes signals from two light receiving sensors has been proposed.
 このような構成において、車両が日中に屋外を走行しているときには、第1受光センサ及び第2受光センサは可視光と赤外光との両方を含んだ自然光を受光する。これにより、ゲート回路は車両のヘッドライトを点灯させるライト自動点消灯装置を動作させないので、車両のヘッドライトは消灯した状態となる。 In such a configuration, when the vehicle travels outdoors during the day, the first light receiving sensor and the second light receiving sensor receive natural light including both visible light and infrared light. As a result, the gate circuit does not operate the automatic light turn-off device that turns on the vehicle headlight, so the vehicle headlight is turned off.
 一方、車両がトンネルに進入すると、第1受光センサはトンネル内のランプの可視光を受光する。また、トンネルに設置されているランプの光には赤外光が含まれていないので、第2受光センサは赤外光を受光しなくなる。これにより、ゲート回路はライト自動点消灯装置を動作させるので、車両のヘッドライトが点灯する。 On the other hand, when the vehicle enters the tunnel, the first light receiving sensor receives the visible light of the lamp in the tunnel. In addition, since the light from the lamp installed in the tunnel does not include infrared light, the second light receiving sensor does not receive infrared light. As a result, the gate circuit operates the automatic light turning-on / off device, so that the headlight of the vehicle is turned on.
特開平11-105618号公報Japanese Patent Laid-Open No. 11-105618
 しかしながら、上記従来の技術では、車両がトンネルではなく橋げた等の建築物の下を通過する場合、第1受光センサ及び第2受光センサは車両上方から可視光と赤外光との両方を含んだ自然光を受光しなくなる。すなわち、第2受光センサが赤外光を受光しないので、ゲート回路がライト自動点消灯装置を動作させてしまう。このため、車両のヘッドライトが誤点灯してしまう。 However, in the above conventional technique, when the vehicle passes under a building such as a bridge instead of a tunnel, the first light receiving sensor and the second light receiving sensor include both visible light and infrared light from above the vehicle. Stops receiving natural light. That is, since the second light receiving sensor does not receive infrared light, the gate circuit operates the automatic light turn-on / off device. For this reason, the headlight of the vehicle turns on erroneously.
 一方、米国特許第6376824号明細書では、車両前方の可視光を検出する第1受光部と車両上方の可視光を検出する第2受光部を備えた光センサが提案されている。各受光部は、検出した可視光の強度がそれぞれ閾値を下回ったときにヘッドライトを点灯させることとなる。このような光センサが設置された車両が橋げたの下を通過した場合、第1受光部が第2受光部よりも先に可視光の強度が閾値を下回るので、橋げたの下で車両のヘッドライトを点灯させてしまうことはない。 On the other hand, US Pat. No. 6,376,824 proposes an optical sensor including a first light receiving unit that detects visible light ahead of the vehicle and a second light receiving unit that detects visible light above the vehicle. Each light receiving unit turns on the headlight when the intensity of the detected visible light falls below a threshold value. When a vehicle in which such a light sensor is installed passes under a bridge, the first light receiving unit has a visible light intensity lower than a threshold before the second light receiving unit. Will not light up.
 しかし、日中において、トンネルの入り口付近においては、ユーザの眼を慣らすためにトンネル内の照明が明るめに設定されている。このため、車両がトンネルに進入したとしても、各受光部によって検出された可視光の強度はそれぞれ閾値に達しない。したがって、車両がトンネルに進入してしばらく走行した後にトンネル内が暗くなってからヘッドライトが点灯することになり、ヘッドライトの点灯遅れが生じてしまう。 However, in the daytime, in the vicinity of the entrance of the tunnel, lighting in the tunnel is set to be bright in order to accustom the user's eyes. For this reason, even if the vehicle enters the tunnel, the intensity of visible light detected by each light receiving unit does not reach the threshold value. Therefore, after the vehicle enters the tunnel and travels for a while, the headlight is turned on after the inside of the tunnel becomes dark, resulting in a delay in turning on the headlight.
 以上のことから、橋げた等の建築物の下を通過する際の誤点灯と、トンネルへの進入後の点灯遅れと、の両方を解決することが望まれている。 From the above, it is desired to solve both the erroneous lighting when passing under buildings such as bridges and the delay in lighting after entering the tunnel.
 本開示は上記点に鑑み、橋げた等の建築物の下を通過する際の誤点灯を防止すると共に、トンネルへの進入後の点灯遅れを防止することができる光センサを提供することを目的とする。 In view of the above points, the present disclosure aims to provide an optical sensor capable of preventing erroneous lighting when passing under a building such as a bridge and preventing lighting delay after entering a tunnel. To do.
 本開示の一態様によれば、光センサは、車両の上方から照射される光のうち可視光の分光感度が所定値よりも低くなっていると共に、受光した光の強度を第1強度信号として出力する第1受光素子を備えている。また、光センサは、車両の前方から照射される光のうち可視光の分光感度が所定値よりも低くなっていると共に、受光した光の強度を第2強度信号として出力する第2受光素子を備えている。 According to one aspect of the present disclosure, the optical sensor has a spectral sensitivity of visible light that is lower than a predetermined value of light irradiated from above the vehicle, and uses the intensity of the received light as a first intensity signal. A first light receiving element for output is provided. The optical sensor includes a second light receiving element that has a spectral sensitivity of visible light that is lower than a predetermined value of light irradiated from the front of the vehicle and outputs the intensity of the received light as a second intensity signal. I have.
 さらに、光センサは、車両のヘッドライトを点灯させるか否かを判定するための第1閾値及び第2閾値を有し、第1受光素子から第1強度信号を入力すると共に第1強度信号と第1閾値とを比較し、第2受光素子から第2強度信号を入力すると共に第2強度信号と第2閾値とを比較し、第1強度信号が第1閾値を超え、かつ、第2強度信号が第2閾値を超えた場合、車両のヘッドライトを点灯させるための点灯信号を出力する判定回路部を備えている。 Further, the optical sensor has a first threshold value and a second threshold value for determining whether or not to turn on the headlight of the vehicle, and receives the first intensity signal from the first light receiving element and The second intensity signal is compared with the first threshold, the second intensity signal is input from the second light receiving element, the second intensity signal is compared with the second threshold, the first intensity signal exceeds the first threshold, and the second intensity When the signal exceeds the second threshold, a determination circuit unit that outputs a lighting signal for lighting the headlight of the vehicle is provided.
 これによると、第1受光素子と第2受光素子とでは光のセンシングの方向が異なるので、車両が橋げた等の建築物の下を通過した場合は第1受光素子と第2受光素子とで光の強度が閾値を超えるタイミングが異なる。また、第2受光素子が第1受光素子よりも先に自然光を受光するので、第1受光素子及び第2受光素子の両方で検出光の強度が閾値を超えることはない。このため、判定回路部が車両のヘッドライトを誤点灯させることはない。 According to this, since the light sensing direction is different between the first light receiving element and the second light receiving element, when the vehicle passes under a building such as a bridge, light is transmitted between the first light receiving element and the second light receiving element. The timing at which the intensity exceeds the threshold is different. Further, since the second light receiving element receives the natural light before the first light receiving element, the intensity of the detection light does not exceed the threshold value in both the first light receiving element and the second light receiving element. For this reason, the determination circuit unit does not erroneously turn on the headlight of the vehicle.
 一方、車両がトンネルに進入した場合は車両の前方から自然光が照射されてこないので、車両のトンネルへの進入後に直ぐに第1受光素子及び第2受光素子の両方で検出光の強度が閾値を超える。このため、判定回路部による車両のヘッドライトの点灯遅れが生じることはない。 On the other hand, since the natural light is not irradiated from the front of the vehicle when the vehicle enters the tunnel, the intensity of the detection light exceeds the threshold value in both the first light receiving element and the second light receiving element immediately after the vehicle enters the tunnel. . For this reason, the lighting delay of the vehicle headlight by the determination circuit unit does not occur.
 したがって、車両が橋げた等の建築物の下を通過する際の誤点灯を防止することができると共に、トンネルへの進入後の点灯遅れを防止することができる。 Therefore, it is possible to prevent erroneous lighting when the vehicle passes under a building such as a bridge, and to prevent lighting delay after entering the tunnel.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。図面において、
本開示の第1実施形態に係る光センサの断面図である。 上方可視光検出素子の分光感度特性を示した図である。 上方赤外光検出素子及び前方赤外光検出素子の分光感度特性を示した図である。 判定回路部の回路構成を示した図である。 車両が橋げたの下を通過する際の判定回路部の動作を説明するための図である。 トンネルに設置される低圧ナトリウムランプの分光輝度特性を示した図である。 車両がトンネルに進入した際の判定回路部の動作を説明するための図である。 本開示の第2実施形態に係る判定回路部の回路構成を示した図である。 第2実施形態において、車両が橋げたの下を通過する際の判定回路部の動作を説明するための図である。 第2実施形態において、車両がトンネルに進入した際の判定回路部の動作を説明するための図である。 本開示の第3実施形態に係る判定回路部の回路構成を示した図である。 第3実施形態において、車両が橋げたの下を通過する際の判定回路部の動作を説明するための図である。 第3実施形態において、車両がトンネルに進入した際の判定回路部の動作を説明するための図である。 本開示の第4実施形態に係る半導体チップの一部断面を示した斜視図である。 第4実施形態で用いられるスリット板の平面図である。 第4実施形態において、半導体チップ及びスリット板がセンサハウジングに収容された構造の断面図である。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. In the drawing
It is sectional drawing of the optical sensor which concerns on 1st Embodiment of this indication. It is the figure which showed the spectral sensitivity characteristic of an upper visible light detection element. It is the figure which showed the spectral sensitivity characteristic of an upper infrared light detection element and a front infrared light detection element. It is the figure which showed the circuit structure of the determination circuit part. It is a figure for demonstrating operation | movement of the determination circuit part at the time of a vehicle passing under the bridge. It is the figure which showed the spectral-luminance characteristic of the low pressure sodium lamp installed in a tunnel. It is a figure for demonstrating operation | movement of the determination circuit part when a vehicle approachs a tunnel. It is a figure showing circuit composition of a judgment circuit part concerning a 2nd embodiment of this indication. In 2nd Embodiment, it is a figure for demonstrating operation | movement of the determination circuit part when a vehicle passes under the bridge. In 2nd Embodiment, it is a figure for demonstrating operation | movement of the determination circuit part when a vehicle approachs a tunnel. FIG. 10 is a diagram illustrating a circuit configuration of a determination circuit unit according to a third embodiment of the present disclosure. In 3rd Embodiment, it is a figure for demonstrating operation | movement of the determination circuit part when a vehicle passes under the bridge. In 3rd Embodiment, it is a figure for demonstrating operation | movement of the determination circuit part when a vehicle approachs a tunnel. It is the perspective view which showed the partial cross section of the semiconductor chip which concerns on 4th Embodiment of this indication. It is a top view of the slit board used in 4th Embodiment. In 4th Embodiment, it is sectional drawing of the structure where the semiconductor chip and the slit board were accommodated in the sensor housing.
 以下、本開示の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In the following embodiments, the same or equivalent parts are denoted by the same reference numerals in the drawings.
 (第1実施形態)
 以下、本開示の第1実施形態について図を参照して説明する。本実施形態に係る光センサは、例えば日中に橋げた等の建築物の下やトンネルに進入したときに車両のヘッドライト及びテールライトを自動点消灯させるオートライトシステムに適用されるものである。
(First embodiment)
Hereinafter, a first embodiment of the present disclosure will be described with reference to the drawings. The optical sensor according to the present embodiment is applied to an autolight system that automatically turns off a headlight and a taillight of a vehicle when entering a tunnel or under a building such as a bridge during the day.
 図1に示されるように、光センサ10は、ケース11、複数のレンズ12~14、上方可視光検出素子15、上方赤外光検出素子16、前方赤外光検出素子17、及び回路基板18を備えて構成されている。 As shown in FIG. 1, the optical sensor 10 includes a case 11, a plurality of lenses 12 to 14, an upper visible light detecting element 15, an upper infrared light detecting element 16, a front infrared light detecting element 17, and a circuit board 18. It is configured with.
 ケース11は、複数のレンズ12~14、各検出素子15~17、及び回路基板18を収容するための有底筒状の筐体である。ケース11は、金属材料または樹脂材料等で形成されている。また、ケース11は、当該ケース11と車両のフロントガラス50の内面51との間に空間部52を形成するように、フロントガラス50の内面51に固定されている。これにより、複数のレンズ12~14、各検出素子15~17、及び回路基板18はフロントガラス50の内面51側に配置される。 The case 11 is a bottomed cylindrical housing for housing the plurality of lenses 12 to 14, the detection elements 15 to 17, and the circuit board 18. The case 11 is formed of a metal material or a resin material. The case 11 is fixed to the inner surface 51 of the windshield 50 so that a space 52 is formed between the case 11 and the inner surface 51 of the windshield 50 of the vehicle. Thus, the plurality of lenses 12 to 14, the detection elements 15 to 17, and the circuit board 18 are arranged on the inner surface 51 side of the windshield 50.
 複数のレンズ12~14は、フロントガラス50に入射する光のうち所定の方向から入射する光を集光する集光手段である。レンズ12は、車両の上方すなわち天井側から入射した光を上方可視光検出素子15に導く指向特性を持っている。レンズ13は、車両の上方から入射した光を上方赤外光検出素子16に導く指向特性を持っている。レンズ14は、車両の前方から入射した光を前方赤外光検出素子17に導く指向特性を持っている。各レンズ12~14は、図示しないステー等によりケース11に固定されている。 The plurality of lenses 12 to 14 are condensing means for condensing light incident from a predetermined direction among light incident on the windshield 50. The lens 12 has a directivity characteristic that guides light incident from above the vehicle, that is, from the ceiling side, to the upper visible light detection element 15. The lens 13 has a directivity characteristic that guides light incident from above the vehicle to the upper infrared light detection element 16. The lens 14 has a directivity characteristic that guides light incident from the front of the vehicle to the front infrared light detection element 17. Each lens 12 to 14 is fixed to the case 11 by a stay or the like (not shown).
 上方可視光検出素子15、上方赤外光検出素子16、及び前方赤外光検出素子17は、フロントガラス50を介してケース11の空間部52に入射した光を検出する受光素子である。具体的に、各検出素子15~17は、受光した光の強度を検出するフォトダイオードと、このフォトダイオードの信号を増幅等する図示しない処理回路と、を有して構成されている。各検出素子15~17は、回路基板18に実装されている。 The upper visible light detection element 15, the upper infrared light detection element 16, and the front infrared light detection element 17 are light receiving elements that detect light incident on the space 52 of the case 11 through the windshield 50. Specifically, each of the detection elements 15 to 17 includes a photodiode that detects the intensity of the received light, and a processing circuit (not shown) that amplifies the signal of the photodiode. The detection elements 15 to 17 are mounted on the circuit board 18.
 上方可視光検出素子15は、レンズ12を介して車両の上方から入射される光のうち可視光を含む分光感度特性を持つ受光素子である。具体的には、上方可視光検出素子15は、図2に示されるように、可視光と赤外光の両方を検出することが可能な分光感度特性を有している。上方可視光検出素子15は、受光した光の強度を上方可視光信号として出力する。光の強度は例えば電圧値である。なお、上方可視光検出素子15は、可視光のみを検出するように構成されていても良い。 The upper visible light detecting element 15 is a light receiving element having spectral sensitivity characteristics including visible light out of light incident from above the vehicle via the lens 12. Specifically, the upper visible light detection element 15 has a spectral sensitivity characteristic capable of detecting both visible light and infrared light, as shown in FIG. The upper visible light detection element 15 outputs the intensity of the received light as an upper visible light signal. The intensity of light is, for example, a voltage value. The upper visible light detection element 15 may be configured to detect only visible light.
 一方、上方赤外光検出素子16及び前方赤外光検出素子17は、図3に示されるように、可視光の分光感度が下げられて赤外光を検出することが可能な分光感度特性を有している。言い換えれば、上方赤外光検出素子16及び前方赤外光検出素子17は、可視光の分光感度が所定値よりも低くなっている。例えば、上方赤外光検出素子16及び前方赤外光検出素子17の可視光の分光感度は、上方可視光検出素子15の可視光の分光感度よりも低くなっている。上方赤外光検出素子16は、レンズ13を介して車両の上方から受光した光の強度を上方赤外光信号として出力する。また、前方赤外光検出素子17は、レンズ14を介して車両の前方から受光した光の強度を前方赤外光信号として出力する。 On the other hand, as shown in FIG. 3, the upper infrared light detection element 16 and the front infrared light detection element 17 have a spectral sensitivity characteristic capable of detecting infrared light by reducing the spectral sensitivity of visible light. Have. In other words, the upper infrared light detection element 16 and the front infrared light detection element 17 have a spectral sensitivity of visible light lower than a predetermined value. For example, the visible light spectral sensitivity of the upper infrared light detection element 16 and the front infrared light detection element 17 is lower than the visible light spectral sensitivity of the upper visible light detection element 15. The upper infrared light detection element 16 outputs the intensity of light received from above the vehicle through the lens 13 as an upper infrared light signal. The front infrared light detection element 17 outputs the intensity of light received from the front of the vehicle via the lens 14 as a front infrared light signal.
 なお、例えば、図2に示された分光感度特性を持つ受光素子に可視光を遮光するフィルタを設けることにより、上方赤外光検出素子16及び前方赤外光検出素子17を容易に構成することができる。 For example, the upper infrared light detection element 16 and the front infrared light detection element 17 can be easily configured by providing a filter that blocks visible light in the light receiving element having the spectral sensitivity characteristic shown in FIG. Can do.
 回路基板18は、各検出素子15~17を駆動するための図示しない駆動回路や、各検出素子15~17の検出結果に基づいて車両のヘッドライトを点灯させるか否かを判定するための判定回路部を有している。回路基板18は、ケース11内に固定されている。 The circuit board 18 is a drive circuit (not shown) for driving the detection elements 15 to 17 and a determination for determining whether or not to turn on the vehicle headlight based on the detection results of the detection elements 15 to 17. It has a circuit part. The circuit board 18 is fixed in the case 11.
 図4に示されるように、判定回路部19は、複数のコンパレータ20~22、AND回路23、24、及びOR回路25を有している。コンパレータ20は、上方可視光検出素子15から上方可視光信号を入力し、上方可視光信号の振幅と上方可視光判定閾値とを比較する比較手段である。本実施形態では、コンパレータ20は、上方可視光信号の振幅が上方可視光判定閾値を下回る場合にHiの信号を出力し、上方可視光信号の振幅が上方可視光判定閾値を上回る場合にLoの信号を出力する。 As shown in FIG. 4, the determination circuit unit 19 includes a plurality of comparators 20 to 22, AND circuits 23 and 24, and an OR circuit 25. The comparator 20 is a comparison unit that receives the upper visible light signal from the upper visible light detection element 15 and compares the amplitude of the upper visible light signal with the upper visible light determination threshold value. In the present embodiment, the comparator 20 outputs a Hi signal when the amplitude of the upper visible light signal is lower than the upper visible light determination threshold, and is Lo when the amplitude of the upper visible light signal exceeds the upper visible light determination threshold. Output a signal.
 また、コンパレータ21は、上方赤外光検出素子16から上方赤外光信号を入力し、上方赤外光信号の振幅と上方赤外光判定閾値とを比較する比較手段である。コンパレータ21は、上方赤外光信号の振幅が上方赤外光判定閾値を下回る場合にHiの信号を出力し、上方赤外光信号の振幅が上方赤外光判定閾値を上回る場合にLoの信号を出力する。 The comparator 21 is a comparison means that receives the upper infrared light signal from the upper infrared light detection element 16 and compares the amplitude of the upper infrared light signal with the upper infrared light determination threshold. The comparator 21 outputs a Hi signal when the amplitude of the upper infrared light signal is lower than the upper infrared light determination threshold value, and outputs a Lo signal when the amplitude of the upper infrared light signal exceeds the upper infrared light determination threshold value. Is output.
 さらに、コンパレータ22は、前方赤外光検出素子17から前方赤外光信号を入力し、前方赤外光信号の振幅と前方赤外光判定閾値とを比較する比較手段である。コンパレータ20は、前方赤外光信号の振幅が前方赤外光判定閾値を下回る場合にHiの信号を出力し、前方赤外光信号の振幅が前方赤外光判定閾値を上回る場合にLoの信号を出力する。 Furthermore, the comparator 22 is a comparison means that receives the front infrared light signal from the front infrared light detection element 17 and compares the amplitude of the front infrared light signal with the front infrared light determination threshold value. The comparator 20 outputs a Hi signal when the amplitude of the front infrared light signal is lower than the front infrared light determination threshold value, and outputs a Lo signal when the amplitude of the front infrared light signal exceeds the front infrared light determination threshold value. Is output.
 上方可視光判定閾値、上方赤外光判定閾値、及び前方赤外光判定閾値は、車両のヘッドライトを点灯させるか否かを判定するための閾値である。各閾値は、それぞれ所定の値となるように図示しないメモリやラッチ等に予め設定されている。 The upper visible light determination threshold, the upper infrared light determination threshold, and the front infrared light determination threshold are thresholds for determining whether to turn on the headlight of the vehicle. Each threshold value is preset in a memory, a latch, or the like (not shown) so as to have a predetermined value.
 AND回路23は、コンパレータ20の出力を反転入力すると共にコンパレータ21の出力を入力するようにコンパレータ20及びコンパレータ1に接続されている。実際には、AND回路23は、図示しないNOT回路を介してコンパレータ20の出力を入力する。AND回路23は、コンパレータ20の出力がLo及びコンパレータ21の出力がHiの場合にHiの信号を出力し、その他の場合にはLoの信号を出力する。 The AND circuit 23 is connected to the comparator 20 and the comparator 1 so as to invert the output of the comparator 20 and to input the output of the comparator 21. Actually, the AND circuit 23 inputs the output of the comparator 20 via a NOT circuit (not shown). The AND circuit 23 outputs a Hi signal when the output of the comparator 20 is Lo and the output of the comparator 21 is Hi, and outputs a Lo signal otherwise.
 OR回路25は、コンパレータ20の出力を入力すると共にAND回路23の出力を入力するようにコンパレータ20及びAND回路23に接続されている。OR回路25は、コンパレータ20の出力及びAND回路23の出力のうちいずれか一方がHiの場合にHiの信号を出力し、コンパレータ20の出力及びAND回路23の出力の両方がLoの場合にLoの信号を出力する。 The OR circuit 25 is connected to the comparator 20 and the AND circuit 23 so as to input the output of the comparator 20 and the output of the AND circuit 23. The OR circuit 25 outputs a Hi signal when either the output of the comparator 20 or the output of the AND circuit 23 is Hi, and Lo when the output of the comparator 20 or the output of the AND circuit 23 is Lo. The signal is output.
 AND回路24は、OR回路25の出力を入力すると共にコンパレータ22の出力を入力するようにOR回路25及びコンパレータ22に接続されている。AND回路24は、OR回路25の出力及びコンパレータ22の出力の両方がHiの場合にHiの信号を出力し、その他の場合にはLoの信号を出力する。AND回路24から出力されるHiの信号は、車両のヘッドライトを点灯させるための点灯信号である。 The AND circuit 24 is connected to the OR circuit 25 and the comparator 22 so as to input the output of the OR circuit 25 and the output of the comparator 22. The AND circuit 24 outputs a Hi signal when both the output of the OR circuit 25 and the output of the comparator 22 are Hi, and outputs a Lo signal otherwise. The Hi signal output from the AND circuit 24 is a lighting signal for lighting the headlight of the vehicle.
 したがって、判定回路部19は、上方可視光信号が上方可視光判定閾値を下回るかまたは上方赤外光信号が上方赤外光判定閾値を下回り、かつ、前方赤外光信号が前方赤外光判定閾値を下回った場合、車両53のヘッドライトを点灯させるためのHiの点灯信号を出力するように構成されている。 Therefore, the determination circuit unit 19 determines whether the upper visible light signal is lower than the upper visible light determination threshold or the upper infrared light signal is lower than the upper infrared light determination threshold, and the front infrared light signal is determined to be the front infrared light determination. When the value falls below the threshold value, a Hi lighting signal for lighting the headlight of the vehicle 53 is output.
 以上が、本実施形態に係る光センサ10の全体構成である。判定回路部19から出力された点灯信号は、車両のヘッドライトを動作させる外部機器等に入力される。そして、外部機器は点灯信号がHiの場合にヘッドライトを点灯させ、点灯信号がLoの場合にヘッドライトを消灯する。 The above is the overall configuration of the optical sensor 10 according to the present embodiment. The lighting signal output from the determination circuit unit 19 is input to an external device that operates the headlight of the vehicle. The external device turns on the headlight when the lighting signal is Hi, and turns off the headlight when the lighting signal is Lo.
 次に、上記の光センサ10において、日中に車両が橋げた等の建築物の下を通過する際の作動について説明する。図5に示されるように、車両53が橋げた54の下を通過しようとしている。なお、図5の各グラフの横軸は車両53の位置を示し、縦軸は各検出素子15~17の出力や判定回路部19の出力を示している。 Next, the operation of the optical sensor 10 when the vehicle passes under a building such as a bridge during the day will be described. As shown in FIG. 5, the vehicle 53 is about to pass under the bridge 54. 5, the horizontal axis indicates the position of the vehicle 53, and the vertical axis indicates the outputs of the detection elements 15 to 17 and the output of the determination circuit unit 19.
 まず、車両53が橋げた54に進入する前では、車両53の上方及び前方には自然光を遮る建築物が無い。このため、各検出素子15~17の出力はそれぞれ各閾値を上回る値に保たれている。 First, before the vehicle 53 enters the bridge 54, there is no building that blocks natural light above and in front of the vehicle 53. For this reason, the output of each of the detection elements 15 to 17 is kept at a value exceeding each threshold value.
 地点L10では、車両53がさらに橋げた54に近づく。車両53の上方からの自然光を検出する上方可視光検出素子15及び上方赤外光検出素子16の出力はそれぞれ各閾値を上回っている。一方、車両53の前方からの赤外光を検出する前方赤外光検出素子17の出力すなわち前方赤外光信号の振幅が下がり始める。 At the point L10, the vehicle 53 further approaches the bridge 54. The outputs of the upper visible light detection element 15 and the upper infrared light detection element 16 that detect natural light from above the vehicle 53 are above the respective threshold values. On the other hand, the output of the front infrared light detection element 17 that detects infrared light from the front of the vehicle 53, that is, the amplitude of the front infrared light signal starts to decrease.
 この地点L10では、各コンパレータ20~22の各出力はLoとなるので、AND回路24の出力もLoとなる。したがって、判定回路部19はLoの点灯信号を出力する。このため、ヘッドライトは点灯しない。 At this point L10, since the outputs of the comparators 20 to 22 are Lo, the output of the AND circuit 24 is also Lo. Therefore, the determination circuit unit 19 outputs a Lo lighting signal. For this reason, the headlight is not turned on.
 地点L11では、車両53は橋げた54の手前に位置しているので、車両53の上方からの光を検出する上方可視光検出素子15及び上方赤外光検出素子16の各出力は各閾値を上回っている。すなわち、コンパレータ20及びコンパレータ21の各出力はそれぞれLoになるので、OR回路25の出力はLoとなる。 Since the vehicle 53 is located in front of the bridge 54 at the point L11, the outputs of the upper visible light detection element 15 and the upper infrared light detection element 16 that detect light from above the vehicle 53 exceed the respective threshold values. ing. That is, since the outputs of the comparator 20 and the comparator 21 are Lo, the output of the OR circuit 25 is Lo.
 一方、車両53の前方には橋げた54が位置しているので、車両53の前方からの光を検出する前方赤外光検出素子17の出力は前方赤外光判定閾値を下回る。このため、コンパレータ22の出力はHiとなる。図5ではコンパレータの出力がHiの状態を「ON」で示している。しかしながら、AND回路24にはOR回路25からLoの信号が入力されるので、点灯信号はLoの信号となる。このため、ヘッドライトは点灯しない。 On the other hand, since the bridge 54 is located in front of the vehicle 53, the output of the front infrared light detection element 17 that detects light from the front of the vehicle 53 is lower than the front infrared light determination threshold value. For this reason, the output of the comparator 22 becomes Hi. In FIG. 5, the state where the output of the comparator is Hi is indicated by “ON”. However, since the Lo signal is input from the OR circuit 25 to the AND circuit 24, the lighting signal becomes the Lo signal. For this reason, the headlight is not turned on.
 地点L12では、車両53が橋げた54に進入し始める。これにより、車両53の上方からの自然光の強度が低下するので、上方可視光検出素子15及び上方赤外光検出素子16の各出力が下がり始める。また、前方赤外光検出素子17の振幅も下がる。この地点L12では、判定回路部19は地点L11と同じ状態を維持しているので、Loの点灯信号を出力し続ける。 At the point L12, the vehicle 53 starts to enter the bridge 54. Thereby, since the intensity | strength of the natural light from the upper direction of the vehicle 53 falls, each output of the upper visible light detection element 15 and the upper infrared light detection element 16 begins to fall. Further, the amplitude of the front infrared light detection element 17 also decreases. At this point L12, since the determination circuit unit 19 maintains the same state as that at the point L11, it continues to output the Lo lighting signal.
 地点L13では、車両53がある程度橋げた54に進入するので、橋げた54の出口側から車両53側に赤外光を含んだ自然光が照射される。このため、車両53の前方からの赤外光を検出する前方赤外光検出素子17の出力が上昇して前方赤外光判定閾値を上回る。すなわち、コンパレータ22の出力がLoとなる。一方、上方可視光検出素子15及び上方赤外光検出素子16の各出力は各閾値を下回っていない。このため、OR回路25の出力はLoの状態が維持されている。したがって、AND回路24から出力される点灯信号はLoとなり、ヘッドライトは点灯しない。 At the point L13, since the vehicle 53 enters the bridge 54 to some extent, natural light including infrared light is irradiated from the exit side of the bridge 54 to the vehicle 53 side. For this reason, the output of the front infrared light detection element 17 which detects the infrared light from the front of the vehicle 53 rises and exceeds the front infrared light determination threshold. That is, the output of the comparator 22 becomes Lo. On the other hand, each output of the upper visible light detection element 15 and the upper infrared light detection element 16 does not fall below each threshold value. For this reason, the output of the OR circuit 25 is maintained in the Lo state. Therefore, the lighting signal output from the AND circuit 24 is Lo, and the headlight is not lit.
 地点L14では、車両53が橋げた54のうち出入口から最も遠い位置に近づくので、橋げた54の下に照射される自然光の強度は弱くなる。このため、車両53の上方からの可視光を検出する上方可視光検出素子15の出力が上方可視光判定閾値を下回る。同様に、車両53の上方からの赤外光を検出する上方赤外光検出素子16の出力が上方赤外光判定閾値を下回る。このため、コンパレータ20及びコンパレータ21はそれぞれHiの信号を出力するので、OR回路25はHiの信号を出力する。 At the point L14, since the vehicle 53 approaches the position farthest from the entrance / exit among the bridges 54, the intensity of the natural light irradiated under the bridge 54 is weakened. For this reason, the output of the upper visible light detection element 15 that detects visible light from above the vehicle 53 falls below the upper visible light determination threshold. Similarly, the output of the upper infrared light detection element 16 that detects infrared light from above the vehicle 53 falls below the upper infrared light determination threshold. Therefore, since the comparator 20 and the comparator 21 each output a Hi signal, the OR circuit 25 outputs a Hi signal.
 一方、車両53が橋げた54の出口に近づくほど、車両53の前方から照射されてくる赤外光を含んだ自然光の強度が上昇するので、前方赤外光検出素子17の出力は前方赤外光判定閾値を上回る。このため、コンパレータ22はLoの信号を出力するので、AND回路24から出力される点灯信号はLoとなる。したがって、ヘッドライトは点灯しない。 On the other hand, as the vehicle 53 approaches the exit of the bridge 54, the intensity of natural light including infrared light emitted from the front of the vehicle 53 increases. Therefore, the output of the front infrared light detection element 17 is the front infrared light. The judgment threshold is exceeded. For this reason, since the comparator 22 outputs a Lo signal, the lighting signal output from the AND circuit 24 becomes Lo. Therefore, the headlight is not turned on.
 地点L15では、車両53が橋げた54の出口に近づくので、橋げた54の下に照射される自然光の強度は強くなる。このため、上方可視光検出素子15及び上方赤外光検出素子16の各出力が各閾値を上回る。また、前方赤外光検出素子17の出力も前方赤外光判定閾値を上回る。つまり、OR回路25の出力はHiとなるが、コンパレータ22の出力はLoとなる。したがって、AND回路24から出力される点灯信号はLoとなり、ヘッドライトは点灯しない。 Since the vehicle 53 approaches the exit of the bridge 54 at the point L15, the intensity of natural light irradiated under the bridge 54 is increased. For this reason, each output of the upper visible light detection element 15 and the upper infrared light detection element 16 exceeds each threshold value. Further, the output of the front infrared light detection element 17 also exceeds the front infrared light determination threshold. That is, the output of the OR circuit 25 becomes Hi, but the output of the comparator 22 becomes Lo. Therefore, the lighting signal output from the AND circuit 24 is Lo, and the headlight is not lit.
 地点L16では、車両53が橋げた54の出口に位置する。この地点では各検出素子15~17はそれぞれ自然光を検出するので、地点L10と同様に、ヘッドライトは点灯しない。 At the point L16, the vehicle 53 is located at the exit of the bridge 54. At this point, each of the detection elements 15 to 17 detects natural light, so that the headlight is not turned on as in the point L10.
 以上のように、車両53が橋げた54の下を通過したとしても車両53のヘッドライトは点灯しない。これは、橋げた54の下では赤外光を含んだ自然光の強度が低下するものの、橋げた54の出口側から橋げた54の下に入り込んだ自然光を前方赤外光検出素子17で検出しているからである。すなわち、上方赤外光検出素子16と前方赤外光検出素子17とでは赤外光を検出する方向がそれぞれ異なっているからである。言い換えると、車両53が橋げた54の下を通過した場合は上方赤外光検出素子16と前方赤外光検出素子17とで赤外光の強度が閾値を下回るタイミングが異なっている。つまり、前方赤外光検出素子17が上方赤外光検出素子16よりも先に赤外光を含んだ自然光を検出する。したがって、上方赤外光検出素子16及び前方赤外光検出素子17の両方の出力が同じタイミングで閾値を超えることはない。このため、判定回路部19が車両53のヘッドライトを誤点灯させないようにすることができる。 As described above, even if the vehicle 53 passes under the bridge 54, the headlight of the vehicle 53 is not turned on. This is because although the intensity of natural light including infrared light decreases under the bridge 54, the front infrared light detection element 17 detects natural light that has entered the bridge 54 from the exit side of the bridge 54. It is. That is, the upper infrared light detection element 16 and the front infrared light detection element 17 have different directions for detecting infrared light. In other words, when the vehicle 53 passes under the bridge 54, the upper infrared light detection element 16 and the front infrared light detection element 17 have different timings at which the intensity of the infrared light falls below the threshold value. That is, the front infrared light detection element 17 detects natural light including infrared light before the upper infrared light detection element 16. Accordingly, the outputs of both the upper infrared light detection element 16 and the front infrared light detection element 17 do not exceed the threshold at the same timing. For this reason, it is possible to prevent the determination circuit unit 19 from erroneously lighting the headlight of the vehicle 53.
 続いて、上記の光センサ10において、日中に車両53がトンネルに進入した際の作動について説明する。まず、図6に示されるように、トンネルの照明として用いられるランプは550nmから600nmの範囲の波長の分光輝度特性を有するものである。言い換えると、赤外光が含まれていない光を発するランプである。このようなランプは例えば低圧ナトリウムランプである。 Next, the operation of the optical sensor 10 when the vehicle 53 enters the tunnel during the day will be described. First, as shown in FIG. 6, a lamp used as tunnel illumination has a spectral luminance characteristic with a wavelength in the range of 550 nm to 600 nm. In other words, the lamp emits light that does not contain infrared light. Such a lamp is for example a low-pressure sodium lamp.
 そして、図7に示されるように、赤外光が含まれていない人工光を発するランプ55が設置されたトンネル56に車両53が進入しようとしている。 And as FIG. 7 shows, the vehicle 53 is going to approach the tunnel 56 in which the lamp | ramp 55 which emits the artificial light which does not contain infrared light was installed.
 地点L20では、車両53がトンネル56に近づく。車両53の上方からの自然光を検出する上方可視光検出素子15及び上方赤外光検出素子16の出力はそれぞれ各閾値を上回っている。一方、車両53の前方からの赤外光を検出する前方赤外光検出素子17の出力が下がり始める。この地点L20では、上述の地点L10と同様に、判定回路部19はLoの点灯信号を出力するので、ヘッドライトは点灯しない。 The vehicle 53 approaches the tunnel 56 at the point L20. The outputs of the upper visible light detection element 15 and the upper infrared light detection element 16 that detect natural light from above the vehicle 53 are above the respective threshold values. On the other hand, the output of the front infrared light detection element 17 that detects infrared light from the front of the vehicle 53 starts to decrease. At this point L20, as in the above-described point L10, the determination circuit unit 19 outputs a Lo lighting signal, so the headlight is not turned on.
 地点L21では、車両53がトンネル56の入口付近まで近づく。この場合は上述の地点L11と同様に、上方可視光検出素子15及び上方赤外光検出素子16の各出力は各閾値を上回り、前方赤外光検出素子17の出力は前方赤外光判定閾値を下回る。このため、コンパレータ20及びコンパレータ21の各出力はそれぞれLoになるので、OR回路25の出力はLoとなるので、OR回路25の出力はLoとなる。また、コンパレータ22の出力はHiとなる。したがって、点灯信号はLoの信号となり、ヘッドライトは点灯しない。 At the point L21, the vehicle 53 approaches to the vicinity of the entrance of the tunnel 56. In this case, similarly to the point L11 described above, the outputs of the upper visible light detection element 15 and the upper infrared light detection element 16 exceed the respective threshold values, and the output of the front infrared light detection element 17 is the front infrared light determination threshold value. Below. For this reason, since the outputs of the comparator 20 and the comparator 21 are Lo, the output of the OR circuit 25 is Lo, so the output of the OR circuit 25 is Lo. Further, the output of the comparator 22 becomes Hi. Therefore, the lighting signal becomes a Lo signal, and the headlight is not lit.
 地点L22では、車両53がトンネル56に進入し始める。これにより、車両53の上方からの自然光の強度が低下するので、上方可視光検出素子15及び上方赤外光検出素子16の各出力が下がり始める。また、トンネル56の入口付近では車両53の走行先から赤外光を含んだ光が車両53側に照射されないので、前方赤外光検出素子17の出力も下がる。地点L22では、判定回路部19は地点L21と同じ状態を維持しているので、Loの点灯信号を出力し続ける。 At the point L22, the vehicle 53 starts entering the tunnel 56. Thereby, since the intensity | strength of the natural light from the upper direction of the vehicle 53 falls, each output of the upper visible light detection element 15 and the upper infrared light detection element 16 begins to fall. Further, near the entrance of the tunnel 56, the vehicle 53 side is not irradiated with light including infrared light from the destination of the vehicle 53, so the output of the front infrared light detection element 17 is also reduced. At the point L22, the determination circuit unit 19 maintains the same state as the point L21, and therefore continues to output the Lo lighting signal.
 ここで、地点L22から車両53がトンネル56の内部に進んでいくと、トンネル56内の可視光の強度は小さくなっていくので上方可視光検出素子15の出力も小さくなっていく。また、トンネル56に設置されたランプ55から可視光が照射されているので、車両53がランプ55の下を通過する度に上方可視光検出素子15の出力は大きくなる。したがって、図7に示されるように、上方可視光検出素子15の出力は波状に小さくなっていく。 Here, when the vehicle 53 advances from the point L22 to the inside of the tunnel 56, the intensity of visible light in the tunnel 56 decreases, so the output of the upper visible light detection element 15 also decreases. Further, since visible light is emitted from the lamp 55 installed in the tunnel 56, the output of the upper visible light detection element 15 increases every time the vehicle 53 passes under the lamp 55. Therefore, as shown in FIG. 7, the output of the upper visible light detection element 15 decreases in a wave shape.
 地点L23では、上方可視光検出素子15の出力は上方可視光判定閾値を上回るが、上方赤外光検出素子16の出力が上方赤外光判定閾値を下回る。このため、コンパレータ20の出力はLoとなり、コンパレータ21の出力はHiとなるので、AND回路23の出力がHiとなり、ひいてはOR回路25の出力がHiとなる。また、前方赤外光検出素子17の出力は前方赤外光判定閾値を下回った状態を維持している。このため、コンパレータ22の出力はHiを維持している。したがって、判定回路部19は、AND回路24から車両53のヘッドライトを点灯させるためのHiの点灯信号を出力する。 At point L23, the output of the upper visible light detection element 15 exceeds the upper visible light determination threshold, but the output of the upper infrared light detection element 16 falls below the upper infrared light determination threshold. For this reason, the output of the comparator 20 becomes Lo and the output of the comparator 21 becomes Hi, so that the output of the AND circuit 23 becomes Hi, and consequently the output of the OR circuit 25 becomes Hi. Further, the output of the front infrared light detection element 17 is kept below the front infrared light determination threshold. For this reason, the output of the comparator 22 maintains Hi. Therefore, the determination circuit unit 19 outputs a Hi lighting signal for lighting the headlight of the vehicle 53 from the AND circuit 24.
 地点L24では、上方可視光検出素子15の出力が上方可視光判定閾値を下回る。このため、コンパレータ20の出力がHiとなる。この場合、AND回路23の出力はLoとなるが、OR回路25の出力はHiが維持されるので、AND回路24の出力はHiが維持される。したがって、判定回路部19はHiの点灯信号を出力し続ける。 At point L24, the output of the upper visible light detection element 15 falls below the upper visible light determination threshold. For this reason, the output of the comparator 20 becomes Hi. In this case, the output of the AND circuit 23 becomes Lo, but the output of the OR circuit 25 maintains Hi, so that the output of the AND circuit 24 maintains Hi. Therefore, the determination circuit unit 19 continues to output the Hi lighting signal.
 なお、トンネル56の出口側では、赤外光を含んだ自然光が照射される。このため、前方赤外光検出素子17の出力が前方赤外光判定閾値を上回り、コンパレータ22の出力がLoとなる。これにより、判定回路部19はAND回路24からLoの点灯信号を出力するので、ヘッドライトは消灯させられる。 Note that natural light including infrared light is irradiated on the exit side of the tunnel 56. For this reason, the output of the front infrared light detection element 17 exceeds the front infrared light determination threshold value, and the output of the comparator 22 becomes Lo. As a result, the determination circuit unit 19 outputs the Lo lighting signal from the AND circuit 24, so that the headlight is turned off.
 以上のように、車両53がトンネル56に進入した場合は直ぐにヘッドライトが点灯する。これは、車両53がトンネル56に進入した場合は車両53の前方から赤外光を含んだ自然光が照射されずにランプ55の光が照射されるからである。すなわち、車両53のトンネル56への進入後に直ぐに上方赤外光検出素子16及び前方赤外光検出素子17の各出力が各閾値を下回る。このため、判定回路部19が車両53のヘッドライトの点灯遅れを生じさせないようにすることができる。 As described above, when the vehicle 53 enters the tunnel 56, the headlight is turned on immediately. This is because when the vehicle 53 enters the tunnel 56, the light of the lamp 55 is irradiated from the front of the vehicle 53 without being irradiated with natural light including infrared light. That is, immediately after the vehicle 53 enters the tunnel 56, the outputs of the upper infrared light detection element 16 and the front infrared light detection element 17 are below the threshold values. For this reason, the determination circuit unit 19 can be prevented from causing a delay in lighting of the headlight of the vehicle 53.
 以上説明したように、本実施形態では、判定回路部19によって車両53が橋げた54等の建築物の下を通過する際の誤点灯を防止することができると共に、トンネル56への進入後の点灯遅れを防止することができる。また、本実施形態では、上方可視光検出素子15によって可視光を検出する構成となっている。これにより、晴れと曇りとの違いのように、天候に左右されずに判定を行うことができる。 As described above, in the present embodiment, the determination circuit unit 19 can prevent erroneous lighting when the vehicle 53 passes under a building such as 54 bridged, and lighting after entering the tunnel 56. Delay can be prevented. In the present embodiment, visible light is detected by the upper visible light detection element 15. As a result, the determination can be made without being influenced by the weather, such as the difference between sunny and cloudy.
 なお、本実施形態において、上方可視光検出素子15が「第3受光素子」に対応する。また、上方赤外光検出素子16が「第1受光素子」に対応し、前方赤外光検出素子17が「第2受光素子」に対応する。 In the present embodiment, the upper visible light detection element 15 corresponds to a “third light receiving element”. The upper infrared light detection element 16 corresponds to a “first light receiving element”, and the front infrared light detection element 17 corresponds to a “second light receiving element”.
 上方可視光判定閾値が「第3閾値」に対応し、上方赤外光判定閾値が「第1閾値」に対応する。また、前方赤外光判定閾値が「第2閾値」に対応する。 The upper visible light determination threshold corresponds to the “third threshold”, and the upper infrared light determination threshold corresponds to the “first threshold”. Further, the front infrared light determination threshold corresponds to the “second threshold”.
 上方可視光信号が「第3強度信号」に対応し、上方赤外光信号が「第1強度信号」に対応する。また、前方赤外光信号が「第2強度信号」に対応する。 The upper visible light signal corresponds to the “third intensity signal”, and the upper infrared light signal corresponds to the “first intensity signal”. The front infrared light signal corresponds to the “second intensity signal”.
 (第2実施形態)
 本実施形態では、第1実施形態と異なる部分について説明する。図8に示されるように、判定回路部19は、閾値変更回路部26を備えている。閾値変更回路部26は、コンパレータ20の出力信号を入力し、その出力信号に応じて上方赤外光判定閾値を変更する回路部である。
(Second Embodiment)
In the present embodiment, parts different from the first embodiment will be described. As shown in FIG. 8, the determination circuit unit 19 includes a threshold change circuit unit 26. The threshold value changing circuit unit 26 is a circuit unit that receives the output signal of the comparator 20 and changes the upper infrared light determination threshold value according to the output signal.
 具体的には、閾値変更回路部26は、前方赤外光信号が前方赤外光判定閾値を下回った場合、上方赤外光判定閾値を大きくすることにより、上方赤外光判定閾値を変更する前よりも上方赤外光信号が上方赤外光判定閾値を下回るタイミングを早める機能を有している。言い換えると、閾値変更回路部26は、車両53の前方からの赤外光の強度が低下した場合は、車両53の上方からの赤外光の強度の低下を検出しやすくする。 Specifically, the threshold changing circuit unit 26 changes the upper infrared light determination threshold by increasing the upper infrared light determination threshold when the front infrared light signal falls below the front infrared light determination threshold. It has a function of advancing the timing when the upper infrared light signal falls below the upper infrared light determination threshold than before. In other words, when the intensity of infrared light from the front of the vehicle 53 decreases, the threshold value changing circuit unit 26 makes it easy to detect a decrease in the intensity of infrared light from above the vehicle 53.
 次に、日中に車両53が橋げた54の下を通過する際の判定回路部19の作動について、図9を参照して説明する。地点L30では、判定回路部19は上述の地点L10と同様にLoの点灯信号を出力する。 Next, the operation of the determination circuit unit 19 when the vehicle 53 passes under the bridge 54 during the day will be described with reference to FIG. At the point L30, the determination circuit unit 19 outputs a Lo lighting signal in the same manner as the point L10 described above.
 続いて、地点L31では、地点L11と同様に、コンパレータ22の出力がLoからHiになる。このため、閾値変更回路部26は上方赤外光判定閾値を大きくする。しかしながら、地点L31では上方可視光検出素子15及び上方赤外光検出素子16の各出力は各閾値を上回っている。 Subsequently, at the point L31, similarly to the point L11, the output of the comparator 22 changes from Lo to Hi. For this reason, the threshold value changing circuit unit 26 increases the upper infrared light determination threshold value. However, at the point L31, the outputs of the upper visible light detection element 15 and the upper infrared light detection element 16 exceed the respective threshold values.
 この後、地点L32では地点L12と同様に上方可視光検出素子15及び上方赤外光検出素子16の各出力が下がり始める。また、前方赤外光検出素子17の出力が前方赤外光判定閾値を上回る。すなわち、コンパレータ22の出力がLoとなる。このため、閾値変更回路部26は、上方赤外光判定閾値を元の値に戻す。 Thereafter, at the point L32, the respective outputs of the upper visible light detecting element 15 and the upper infrared light detecting element 16 begin to decrease in the same manner as the point L12. Further, the output of the front infrared light detection element 17 exceeds the front infrared light determination threshold. That is, the output of the comparator 22 becomes Lo. For this reason, the threshold value changing circuit unit 26 returns the upper infrared light determination threshold value to the original value.
 この後、地点L33、地点L34、及び地点L35では、判定回路部19は上述の地点L14、地点L15、地点L16と同様の動作を行う。 Thereafter, at the point L33, the point L34, and the point L35, the determination circuit unit 19 performs the same operation as the above-described point L14, point L15, and point L16.
 次に、日中に車両53がトンネル56に進入する際の判定回路部19の作動について、図10を参照して説明する。地点L40では、地点L20と同様に、前方赤外光検出素子17の出力が下がり始める。 Next, the operation of the determination circuit unit 19 when the vehicle 53 enters the tunnel 56 during the day will be described with reference to FIG. At the point L40, similarly to the point L20, the output of the front infrared light detection element 17 starts to decrease.
 続いて、地点L41では、地点L21と同様に、前方赤外光検出素子17の出力は前方赤外光判定閾値を下回るので、コンパレータ22の出力はHiとなる。これにより、閾値変更回路部26は上方赤外光判定閾値を大きくする。 Subsequently, at the point L41, similarly to the point L21, the output of the front infrared light detection element 17 is lower than the front infrared light determination threshold value, so the output of the comparator 22 becomes Hi. Thereby, the threshold value changing circuit unit 26 increases the upper infrared light determination threshold value.
 そして、地点L42から車両53がトンネル56に進入すると、地点L43では地点L23と同様に上方赤外光検出素子16の出力が変更後の上方赤外光判定閾値を下回る。上述のように、上方赤外光判定閾値が通常の値よりも大きくなっているので、上方赤外光検出素子16の出力が上方赤外光判定閾値を下回るタイミングが早くなる。そして、判定回路部19は、車両53のヘッドライトを点灯させるためのHiの点灯信号を出力する。 Then, when the vehicle 53 enters the tunnel 56 from the point L42, the output of the upper infrared light detection element 16 falls below the changed upper infrared light determination threshold at the point L43 similarly to the point L23. As described above, since the upper infrared light determination threshold is larger than the normal value, the timing at which the output of the upper infrared light detection element 16 falls below the upper infrared light determination threshold is advanced. Then, the determination circuit unit 19 outputs a Hi lighting signal for lighting the headlight of the vehicle 53.
 この後、地点L44では、判定回路部19は上述の地点L24と同様に動作する。なお、トンネル56の出口側では、閾値変更回路部26は前方赤外光検出素子17の出力が前方赤外光判定閾値を上回るタイミングで上方赤外光判定閾値を元の値に戻す。また、コンパレータ22の出力がLoとなるので、ヘッドライトは消灯させられる。 Thereafter, at the point L44, the determination circuit unit 19 operates in the same manner as the point L24 described above. At the exit side of the tunnel 56, the threshold value changing circuit unit 26 returns the upper infrared light determination threshold value to the original value at a timing when the output of the front infrared light detection element 17 exceeds the front infrared light determination threshold value. Further, since the output of the comparator 22 becomes Lo, the headlight is turned off.
 以上説明したように、上方赤外光判定閾値が固定値の場合よりも車両53のトンネル56への進入後に上方赤外光検出素子16及び前方赤外光検出素子17の両方の出力が各閾値を超えるタイミングが早くなる。したがって、車両53がトンネル56に進入した後に直ぐにヘッドライトを点灯させることができる。 As described above, the outputs of both the upper infrared light detection element 16 and the front infrared light detection element 17 are the threshold values after the vehicle 53 enters the tunnel 56 rather than when the upper infrared light determination threshold value is a fixed value. The timing of exceeding will be earlier. Therefore, the headlight can be turned on immediately after the vehicle 53 enters the tunnel 56.
 (第3実施形態)
 本実施形態では、第1実施形態と異なる部分について説明する。図11に示されるように、本実施形態では、判定回路部19は、ヘッドライト輝度変換回路部27と、スイッチ28と、を備えている。
(Third embodiment)
In the present embodiment, parts different from the first embodiment will be described. As shown in FIG. 11, in the present embodiment, the determination circuit unit 19 includes a headlight luminance conversion circuit unit 27 and a switch 28.
 ヘッドライト輝度変換回路部27は、上方可視光検出素子15から上方可視光信号を入力するように上方可視光検出素子15に接続されている。ヘッドライト輝度変換回路部27は、抵抗29、30、及びオペアンプ31によって差動増幅回路として構成されている。これにより、ヘッドライト輝度変換回路部27は、AND回路24からHiの点灯信号が出力されている際に、上方可視光信号が上方可視光判定閾値を超えるまで、上方可視光信号が小さくなるに伴って車両53のヘッドライトの輝度を高くする機能を有している。 The headlight luminance conversion circuit unit 27 is connected to the upper visible light detection element 15 so as to input an upper visible light signal from the upper visible light detection element 15. The headlight luminance conversion circuit unit 27 is configured as a differential amplifier circuit by resistors 29 and 30 and an operational amplifier 31. As a result, the headlight luminance conversion circuit unit 27 reduces the upper visible light signal until the upper visible light signal exceeds the upper visible light determination threshold when the Hi lighting signal is output from the AND circuit 24. Accordingly, it has a function of increasing the brightness of the headlight of the vehicle 53.
 スイッチ28は、点灯信号がHiの場合にONするように構成されている。スイッチ28は、例えば半導体スイッチである。また、スイッチ28はヘッドライト輝度変換回路部27と外部のヘッドライド駆動機器57とを接続している。ヘッドライト駆動機器57は、車両53のヘッドライトを駆動する機器である。 The switch 28 is configured to be turned on when the lighting signal is Hi. The switch 28 is, for example, a semiconductor switch. The switch 28 connects the headlight luminance conversion circuit unit 27 and an external headride driving device 57. The headlight driving device 57 is a device that drives the headlight of the vehicle 53.
 次に、上記の構成において、日中に車両53が橋げた54の下を通過する際の判定回路部19の作動について、図12を参照して説明する。上述のように、車両53が橋げた54の下を通過する際にはヘッドライトは点灯しない。したがって、図12に示されるように、ヘッドライトの輝度は変化しない。 Next, the operation of the determination circuit unit 19 when the vehicle 53 passes under the bridge 54 during the day in the above configuration will be described with reference to FIG. As described above, the headlight is not turned on when the vehicle 53 passes under the bridge 54. Therefore, the luminance of the headlight does not change as shown in FIG.
 なお、地点L50、地点L51、地点L52、地点L53、地点L54、地点L55、及び地点L55では、判定回路部19は上述の地点L10、地点L11、地点L12、地点L13、地点L14、地点L15、及び地点L15と同様の動作を行う。 In addition, at the point L50, the point L51, the point L52, the point L53, the point L54, the point L55, and the point L55, the determination circuit unit 19 is the above-described point L10, point L11, point L12, point L13, point L14, point L15, And the operation | movement similar to the point L15 is performed.
 続いて、日中に車両53がトンネル56に進入する際の判定回路部19の作動について、図13を参照して説明する。まず、地点L60、地点L61、及び地点L62では、判定回路部19は地点L20、地点L21、及び地点L22と同様の動作を行う。 Subsequently, the operation of the determination circuit unit 19 when the vehicle 53 enters the tunnel 56 during the day will be described with reference to FIG. First, at the point L60, the point L61, and the point L62, the determination circuit unit 19 performs the same operation as the point L20, the point L21, and the point L22.
 続いて、地点L63では、地点L23と同様に、上方赤外光検出素子16の出力が上方赤外光判定閾値を下回るので、コンパレータ21の出力はHiとなる。したがって、判定回路部19は、AND回路24からHiの点灯信号を出力する。これにより、スイッチ28がONする。 Subsequently, at the point L63, similarly to the point L23, the output of the upper infrared light detection element 16 falls below the upper infrared light determination threshold value, so the output of the comparator 21 becomes Hi. Therefore, the determination circuit unit 19 outputs a Hi lighting signal from the AND circuit 24. As a result, the switch 28 is turned ON.
 そして、車両53が地点L63からさらに進むと、ヘッドライト輝度変換回路部27は上方可視光検出素子15から入力した上方可視光信号の振幅が小さくなるに伴って大きくなる輝度信号をオペアンプ31からヘッドライド駆動機器57に出力する。これにより、ヘッドライド駆動機器57は輝度信号に応じて車両53のヘッドライトの輝度を高くしていく。 When the vehicle 53 further proceeds from the point L63, the headlight luminance conversion circuit unit 27 sends a luminance signal that increases as the amplitude of the upper visible light signal input from the upper visible light detection element 15 decreases from the operational amplifier 31 to the head. Output to the ride driving device 57. As a result, the head ride driving device 57 increases the luminance of the headlight of the vehicle 53 in accordance with the luminance signal.
 この後、地点L64では、判定回路部19は地点L24と同様の動作を行う。また、地点L64では上方可視光検出素子15の出力が上方可視光判定閾値を下回るので、ヘッドライト輝度変換回路部27は、輝度信号として最大値を出力する。これにより、ヘッドライトの輝度は最大値であると共に一定値となる。 Thereafter, at the point L64, the determination circuit unit 19 performs the same operation as that at the point L24. Further, since the output of the upper visible light detection element 15 is lower than the upper visible light determination threshold at the point L64, the headlight luminance conversion circuit unit 27 outputs the maximum value as the luminance signal. Thereby, the brightness of the headlight is a maximum value and a constant value.
 以上説明したように、ヘッドライト輝度変換回路部27によってトンネル56の入口付近に設置されたランプ55の照度に合わせてヘッドライトの輝度が調整される。このため、トンネル56に進入した後のユーザの違和感を低減することができる。 As described above, the headlight luminance conversion circuit unit 27 adjusts the luminance of the headlight according to the illuminance of the lamp 55 installed near the entrance of the tunnel 56. For this reason, the user's uncomfortable feeling after entering the tunnel 56 can be reduced.
 (第4実施形態)
 本実施形態では、第1~第3実施形態と異なる部分について説明する。図14に示されるように、本実施形態では、各検出素子15~17は1つの半導体チップ32に形成されている。
(Fourth embodiment)
In the present embodiment, parts different from the first to third embodiments will be described. As shown in FIG. 14, in this embodiment, each of the detection elements 15 to 17 is formed on one semiconductor chip 32.
 半導体チップ32は円形の受光領域33を有している。この受光領域33は、中心から外側に向かって円形受光領域34、リング状受光領域35、及びリング状受光領域36に区画されている。各受光領域34~36は電気的に絶縁されている。 The semiconductor chip 32 has a circular light receiving region 33. The light receiving region 33 is divided into a circular light receiving region 34, a ring-shaped light receiving region 35, and a ring-shaped light receiving region 36 from the center to the outside. Each of the light receiving regions 34 to 36 is electrically insulated.
 具体的には、n型シリコン基板37の表層部に円形のp型領域38が形成され、その外周側にリング状のp型領域39及びp型領域40がそれぞれ形成されている。また、n型シリコン基板37の裏面にはカソード電極41が形成されるとともに、n型シリコン基板37の表面側においてp型領域38~40にはアノード電極42、43、44が設けられている。なお、各受光領域34~36は全てリング状に形成されていても良い。 Specifically, a circular p-type region 38 is formed on the surface layer portion of the n-type silicon substrate 37, and a ring-shaped p-type region 39 and a p-type region 40 are formed on the outer peripheral side thereof. Further, a cathode electrode 41 is formed on the back surface of the n-type silicon substrate 37, and anode electrodes 42, 43, 44 are provided in the p-type regions 38 to 40 on the surface side of the n-type silicon substrate 37. Each of the light receiving regions 34 to 36 may be formed in a ring shape.
 そして、例えば円形受光領域34が前方赤外光検出素子17として構成されている。また、リング状受光領域35が上方可視光検出素子15として構成され、リング状受光領域36が上方赤外光検出素子16として構成されている。各受光領域34~36に光が当たるとそれぞれ受光量に応じた電気信号が出力される。 For example, the circular light receiving region 34 is configured as the front infrared light detection element 17. Further, the ring-shaped light receiving region 35 is configured as the upper visible light detecting element 15, and the ring-shaped light receiving region 36 is configured as the upper infrared light detecting element 16. When light strikes each of the light receiving regions 34 to 36, an electrical signal corresponding to the amount of light received is output.
 さらに、各受光領域34~36が車両53の上方または前方からの光を選択的に受光できるようにするため、半導体チップ32の真上には図15に示されたスリット板45が配置される。スリット板45は遮光材料で形成されている。スリット板45は当該スリット板45を貫通するスリットとして貫通孔46を有している。貫通孔46は例えば円形をなしている。なお、貫通孔46の平面形状は、例えば多角形状、L字状、I字状等でも良い。 Further, in order to allow each of the light receiving regions 34 to 36 to selectively receive light from above or in front of the vehicle 53, a slit plate 45 shown in FIG. . The slit plate 45 is made of a light shielding material. The slit plate 45 has a through hole 46 as a slit penetrating the slit plate 45. The through hole 46 has a circular shape, for example. The planar shape of the through hole 46 may be, for example, a polygonal shape, an L shape, an I shape, or the like.
 図16に示されるように、半導体チップ32及びスリット板45がセンサハウジング47に収容されている。そして、光学レンズ48を介してセンサハウジング47内に導かれた光は、スリット板45の貫通孔46に対する入射角度に応じて各受光領域34~36のいずれかで受光される。 As shown in FIG. 16, the semiconductor chip 32 and the slit plate 45 are accommodated in the sensor housing 47. The light guided into the sensor housing 47 via the optical lens 48 is received by any one of the light receiving regions 34 to 36 according to the incident angle with respect to the through hole 46 of the slit plate 45.
 以上のように、スリット板45によって各受光領域34~36で受光する光の方向を選択することができる。また、光センサ10を車両53のフロントガラス50ではなく、例えばダッシュボードに配置することもできる。 As described above, the direction of light received by each of the light receiving regions 34 to 36 can be selected by the slit plate 45. Further, the optical sensor 10 can be arranged not on the windshield 50 of the vehicle 53 but on, for example, a dashboard.
 (他の実施形態)
 上記各実施形態で示された光センサ10の構成は一例であり、上記で示した構成に限定されることなく、本開示を実現できる他の構成とすることもできる。例えば、第2実施形態で示された閾値変更回路部26を第3実施形態に係る判定回路部19に採用しても良い。
(Other embodiments)
The configuration of the optical sensor 10 shown in each of the above embodiments is an example, and the configuration is not limited to the configuration shown above, and other configurations that can realize the present disclosure can be used. For example, the threshold value changing circuit unit 26 shown in the second embodiment may be employed in the determination circuit unit 19 according to the third embodiment.
 また、上記各実施形態で備えられていた上方可視光検出素子15を不要としても良い。この場合、判定回路部19は、上方赤外光検出素子16から第1強度信号を入力すると共に第1強度信号と上方赤外光判定閾値とを比較し、前方赤外光検出素子17から第2強度信号を入力すると共に第2強度信号と前方赤外光判定閾値とを比較することとなる。そして、第1強度信号が第1閾値を超え、かつ、第2強度信号が前方赤外光判定閾値を超えた場合、判定回路部19は車両53のヘッドライトを点灯させるための点灯信号を出力する。このような構成としても良い。この場合、第4実施形態と同様に、上方赤外光検出素子16及び前方赤外光検出素子17を1つの半導体チップ32に形成しても良い。 Moreover, the upper visible light detection element 15 provided in each of the above embodiments may be unnecessary. In this case, the determination circuit unit 19 inputs the first intensity signal from the upper infrared light detection element 16 and compares the first intensity signal with the upper infrared light determination threshold value. The second intensity signal is input and the second intensity signal is compared with the front infrared light determination threshold. When the first intensity signal exceeds the first threshold value and the second intensity signal exceeds the front infrared light determination threshold value, the determination circuit unit 19 outputs a lighting signal for lighting the headlight of the vehicle 53. To do. Such a configuration may be adopted. In this case, as in the fourth embodiment, the upper infrared light detection element 16 and the front infrared light detection element 17 may be formed on one semiconductor chip 32.
 さらに、上記各実施形態では、各コンパレータ20~22は、信号が閾値を下回るとHiの信号を出力していたが、これは判定方法の一例である。したがって、判定回路部19は、信号が閾値を上回ることを検出するように構成されていても良い。もちろん、上記各実施形態で示された判定回路部19の回路構成は一例であり、当該判定回路部19の機能を実現できる他の回路で構成されていても良い。 Further, in each of the above embodiments, each of the comparators 20 to 22 outputs a Hi signal when the signal falls below the threshold value. This is an example of a determination method. Therefore, the determination circuit unit 19 may be configured to detect that the signal exceeds the threshold value. Of course, the circuit configuration of the determination circuit unit 19 shown in each of the above embodiments is merely an example, and may be configured by another circuit that can realize the function of the determination circuit unit 19.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described based on the embodiments, it is understood that the present disclosure is not limited to the embodiments and structures. The present disclosure includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.

Claims (6)

  1.  車両(53)の上方から照射される光のうち可視光の分光感度が所定値よりも低くなっていると共に、受光した光の強度を第1強度信号として出力する第1受光素子(16)と、
     前記車両(53)の前方から照射される光のうち可視光の分光感度が前記所定値よりも低くなっていると共に、受光した光の強度を第2強度信号として出力する第2受光素子(17)と、
     前記車両(53)のヘッドライトを点灯させるか否かを判定するための第1閾値及び第2閾値を有し、前記第1受光素子(16)から前記第1強度信号を入力すると共に前記第1強度信号と前記第1閾値とを比較し、前記第2受光素子(17)から前記第2強度信号を入力すると共に前記第2強度信号と前記第2閾値とを比較し、前記第1強度信号が前記第1閾値を超え、かつ、前記第2強度信号が前記第2閾値を超えた場合、前記車両(53)のヘッドライトを点灯させるための点灯信号を出力する判定回路部(19)と、
     を備える光センサ。
    A first light receiving element (16) for outputting visible light intensity as a first intensity signal, and having a spectral sensitivity of visible light lower than a predetermined value among light irradiated from above the vehicle (53); ,
    Of the light irradiated from the front of the vehicle (53), the spectral sensitivity of visible light is lower than the predetermined value, and the second light receiving element (17) outputs the intensity of the received light as a second intensity signal. )When,
    The vehicle has a first threshold value and a second threshold value for determining whether to turn on the headlight of the vehicle (53), and receives the first intensity signal from the first light receiving element (16) and the first threshold value. The first intensity signal is compared with the first threshold, the second intensity signal is input from the second light receiving element (17), the second intensity signal is compared with the second threshold, and the first intensity is compared. A determination circuit unit (19) that outputs a lighting signal for lighting a headlight of the vehicle (53) when a signal exceeds the first threshold value and the second intensity signal exceeds the second threshold value. When,
    An optical sensor comprising:
  2.  前記第1強度信号が前記第1閾値を超えた場合、前記第2閾値を変更することにより、前記第2閾値を変更する前よりも前記第2強度信号が前記第2閾値を超えるタイミングを早める閾値変更回路部(26)を備える請求項1に記載の光センサ。 When the first intensity signal exceeds the first threshold, the timing at which the second intensity signal exceeds the second threshold is advanced by changing the second threshold than before changing the second threshold. The optical sensor according to claim 1, further comprising a threshold value changing circuit section.
  3.  前記第1受光素子(16)及び前記第2受光素子(17)は1つの半導体チップ(32)に形成されている請求項1または2に記載の光センサ。 The optical sensor according to claim 1 or 2, wherein the first light receiving element (16) and the second light receiving element (17) are formed on one semiconductor chip (32).
  4.  前記車両(53)の上方から照射される光のうち可視光を含む分光感度特性を持つと共に、受光した光の強度を第3強度信号として出力する第3受光素子(15)を備え、
     前記判定回路部(19)は、前記車両(53)のヘッドライトを点灯させるか否かを判定するための第3閾値を有し、前記第3受光素子(15)から前記第3強度信号を入力すると共に前記第3強度信号と前記第3閾値とを比較し、前記第3強度信号が前記第3閾値を超えるかまたは前記第1強度信号が前記第1閾値を超え、かつ、前記第2強度信号が前記第2閾値を超えた場合、前記車両(53)のヘッドライトを点灯させるための点灯信号を出力する請求項1ないし3のいずれか1つに記載の光センサ。
    A third light receiving element (15) having a spectral sensitivity characteristic including visible light out of light emitted from above the vehicle (53) and outputting the intensity of the received light as a third intensity signal,
    The determination circuit unit (19) has a third threshold value for determining whether or not to turn on the headlight of the vehicle (53), and receives the third intensity signal from the third light receiving element (15). And comparing the third intensity signal with the third threshold, the third intensity signal exceeds the third threshold or the first intensity signal exceeds the first threshold, and the second The optical sensor according to any one of claims 1 to 3, wherein when the intensity signal exceeds the second threshold value, a lighting signal for lighting a headlight of the vehicle (53) is output.
  5.  前記第3受光素子(15)から前記第3強度信号を入力し、前記判定回路部(19)から前記点灯信号が出力されている際に、前記第3強度信号が前記第3閾値を超えるまで、前記第3強度信号が小さくなるに伴って前記車両(53)のヘッドライトの輝度を高くするヘッドライト輝度変換回路部(27)を備える請求項4に記載の光センサ。 Until the third intensity signal exceeds the third threshold value when the third intensity signal is input from the third light receiving element (15) and the lighting signal is output from the determination circuit section (19). The optical sensor according to claim 4, further comprising a headlight luminance conversion circuit section (27) that increases the luminance of the headlight of the vehicle (53) as the third intensity signal decreases.
  6.  前記第1受光素子(16)、前記第2受光素子(17)、及び前記第3受光素子(15)は1つの半導体チップ(32)に形成されている請求項4または5に記載の光センサ。 The optical sensor according to claim 4 or 5, wherein the first light receiving element (16), the second light receiving element (17), and the third light receiving element (15) are formed on one semiconductor chip (32). .
PCT/JP2014/003350 2013-07-02 2014-06-23 Photosensor WO2015001761A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112014003141.0T DE112014003141T5 (en) 2013-07-02 2014-06-23 Optical sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-138715 2013-07-02
JP2013138715A JP6102574B2 (en) 2013-07-02 2013-07-02 Optical sensor

Publications (1)

Publication Number Publication Date
WO2015001761A1 true WO2015001761A1 (en) 2015-01-08

Family

ID=52143364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/003350 WO2015001761A1 (en) 2013-07-02 2014-06-23 Photosensor

Country Status (3)

Country Link
JP (1) JP6102574B2 (en)
DE (1) DE112014003141T5 (en)
WO (1) WO2015001761A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7052216B2 (en) * 2017-05-15 2022-04-12 株式会社デンソー Light sensor
JP2019090662A (en) * 2017-11-14 2019-06-13 パナソニックIpマネジメント株式会社 Light detection device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010083409A (en) * 2008-10-01 2010-04-15 Denso Corp Light control device for vehicle
JP2013060071A (en) * 2011-09-13 2013-04-04 Niles Co Ltd Vehicle light automatic control device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4186364B2 (en) * 2000-01-24 2008-11-26 株式会社デンソー Automatic on / off control device for vehicle
JP2004243895A (en) * 2003-02-14 2004-09-02 Nissan Motor Co Ltd Automatic lighting device
JP2010163001A (en) * 2009-01-14 2010-07-29 Toyota Motor Corp Wiper control device, light source control device, wiper control method, light source control method
JP5737564B2 (en) * 2011-03-04 2015-06-17 株式会社デンソー Light turn-off device for vehicle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010083409A (en) * 2008-10-01 2010-04-15 Denso Corp Light control device for vehicle
JP2013060071A (en) * 2011-09-13 2013-04-04 Niles Co Ltd Vehicle light automatic control device

Also Published As

Publication number Publication date
JP6102574B2 (en) 2017-03-29
JP2015009762A (en) 2015-01-19
DE112014003141T5 (en) 2016-04-07

Similar Documents

Publication Publication Date Title
US9519841B2 (en) Attached matter detector and vehicle equipment control apparatus
CN103118900A (en) Headlamp device and luminance control method therefor
JP2014158262A (en) Vehicle illuminance environment recognition device and method therefor
JP2019028013A (en) Object detection device
KR100746159B1 (en) Device for automatically switching lamps of vehicles
WO2015001761A1 (en) Photosensor
JP2005233728A (en) Photosensor device
KR102009207B1 (en) Integrated system for controlling tunnel lighting based on different kinds data
JP7052216B2 (en) Light sensor
JP6142814B2 (en) Optical sensor
US6727653B2 (en) System for automatic switching of lighting devices in vehicles
JP2020147183A (en) Vehicular headlamp and method for controlling vehicular headlamp
US9234983B2 (en) Rain sensor
JP6075273B2 (en) Optical sensor
JPS6171242A (en) Car light controlling device
KR20090055768A (en) A control system of high beam light on the vehicles and method thereof
JP3149496B2 (en) Automatic lighting control device
JP4186364B2 (en) Automatic on / off control device for vehicle
WO2023181662A1 (en) Range-finding device and range-finding method
KR20180041506A (en) Improving device and method for road lane detection rate
JPH0295242A (en) Fog detector
WO2024069676A1 (en) Headlight control device and headlight control method
JPS6146734A (en) Car headlight controller
JP2018069750A (en) Vehicle headlight control device
JP6281434B2 (en) Auto light system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14820634

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112014003141

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14820634

Country of ref document: EP

Kind code of ref document: A1