WO2015001711A1 - Power source device - Google Patents

Power source device Download PDF

Info

Publication number
WO2015001711A1
WO2015001711A1 PCT/JP2014/003035 JP2014003035W WO2015001711A1 WO 2015001711 A1 WO2015001711 A1 WO 2015001711A1 JP 2014003035 W JP2014003035 W JP 2014003035W WO 2015001711 A1 WO2015001711 A1 WO 2015001711A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
negative electrode
battery
battery cells
power supply
Prior art date
Application number
PCT/JP2014/003035
Other languages
French (fr)
Japanese (ja)
Inventor
達人 堀内
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to JP2015525016A priority Critical patent/JPWO2015001711A1/en
Publication of WO2015001711A1 publication Critical patent/WO2015001711A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a power supply device including a battery cell.
  • a power supply device in which a plurality of battery cells are juxtaposed and these battery cells are connected in series, parallel or series-parallel to each other.
  • Such a power supply device has a large output and is used in a hybrid electric vehicle (HEV, PHEV), an electric vehicle (EV), a large stationary power storage device, and the like.
  • the battery cell expands when the internal pressure increases.
  • a protection mechanism such as a current interruption mechanism, a forced short-circuit mechanism, and a gas discharge valve that operate when the internal pressure increases.
  • a battery in which lithium carbonate is added to a positive electrode mixture layer is known in order to operate a protection mechanism more effectively (see Patent Document 1 below).
  • Lithium carbonate decomposes and generates carbon dioxide gas when the battery cell is overcharged and the battery voltage increases. As a result, the internal pressure of the battery cell is increased, and the protection mechanism is quickly activated.
  • Patent Document 2 discloses a power supply device having a battery stack including a plurality of rectangular battery cells each having a positive electrode terminal and a negative electrode terminal provided on an upper surface thereof, and a pack case that accommodates the battery stack.
  • Patent Document 3 discloses a power supply device having a battery block including a plurality of prismatic battery cells each having a positive electrode terminal and a negative electrode terminal on an upper surface, and an outer case that houses the battery block.
  • Patent Document 4 discloses a power supply device including a battery block including a plurality of cylindrical battery cells and a casing that accommodates the battery block.
  • the rectangular battery cell disclosed in Patent Documents 2 and 3 and the cylindrical battery cell disclosed in Patent Document 4 are both flattened in which a positive electrode and a negative electrode are wound in a mutually insulated state via a separator.
  • a spirally wound electrode body is provided.
  • the power supply devices disclosed in Patent Documents 2 to 4 are arranged so that the winding axis of the wound electrode body is in the horizontal direction regardless of whether it is a rectangular battery cell or a cylindrical battery cell. Has been.
  • the wound electrode body is tightly wound to ensure battery capacity.
  • the path (path) of the gas is limited. Therefore, the gas generated in the wound electrode body is likely to be trapped in a part of the wound electrode body, and the operation of the protection mechanism that is activated by the battery internal pressure is delayed.
  • the power supply device of one aspect of the present invention since the fluidity of the gas in the battery cell is good, a power supply device that can quickly activate the protection mechanism that is activated by the battery internal pressure is provided.
  • a power supply device includes: A positive electrode including a positive electrode mixture layer, a negative electrode including a negative electrode mixture layer, a wound electrode body wound in a state where the positive electrode and the negative electrode are insulated from each other via a separator, a battery exterior body, and an increase in internal pressure
  • a plurality of battery cells comprising a protection mechanism that operates and ensures safety
  • the positive electrode mixture layer includes lithium carbonate
  • the plurality of battery cells are juxtaposed such that the winding axis of the wound electrode body is substantially vertical.
  • the fluidity of the gas in the wound electrode body is improved, so that the internal pressure rises suddenly when gas is generated in the wound electrode body, and it operates according to the battery internal pressure.
  • the protection mechanism can be activated quickly.
  • FIG. 5A is a front view of a battery cell used in the power supply device of one embodiment of the present invention
  • FIG. 5B is a side view of the same.
  • 6A is a sectional view taken along line VIA-VIA in FIG. 5A
  • FIG. 6B is a sectional view taken along line VIB-VIB in FIG. 6A
  • FIG. 6C is a sectional view taken along line VIC-VIC in FIG.
  • the following embodiment shows an example for embodying the technical idea of the present invention, and is not intended to limit the present invention to any of these embodiments.
  • the present invention can be equally applied to various modifications without departing from the technical idea shown in the claims.
  • the directions of “front and rear, up and down, left and right” are shown for convenience of explanation, and are not limited to these directions.
  • the “substantially vertical direction” in this specification is preferably a direction perpendicular to the horizontal plane, but does not necessarily have to be completely perpendicular, and includes a range that is considered to be substantially perpendicular to the horizontal plane. It is used in.
  • the power supply device 2 includes an exterior case 102 as an exterior body, and a plurality of battery blocks 4 and a battery control device 6 are accommodated in the exterior case 102.
  • the exterior case 102 includes a base plate 104, a cover plate 106 disposed above the base plate 104, and two side plates 108 respectively provided on the sides (left and right) of the base plate 104.
  • the base plate 104 includes a base portion 104a on which the battery block 4 and the battery control device 6 are placed, and a first base plate 104 formed so as to extend upward from the front end of the base portion 104a.
  • the side wall portion 104b, the first connecting portion 104c formed so as to extend in the horizontal direction from the upper portion of the first side wall portion 104b, and formed so as to extend upward from the rear end of the base portion 104a. It has the 2nd side wall part 104d and the 2nd connection part 104e formed so that it might extend in the horizontal direction from the upper part of this 2nd side wall part 104d.
  • a fixing member 110 that fixes the battery block 4 is provided on the upper portion of the base portion 104a.
  • the base plate 104 is produced, for example, by pressing a metal plate into a groove shape.
  • the cover plate 106 includes a first cover portion 112 that covers the battery block 4 and a second cover portion 114 that covers the battery control device 6.
  • the first cover portion 112 has a length in the front-rear direction that is smaller than the base plate 104.
  • the first cover portion 112 covers the plurality of battery blocks 4 and divides a space in which these battery blocks 4 are arranged from a space in which the battery control device 6 is arranged.
  • the first cover portion 112 includes a top plate portion 112a disposed above the battery block 4, a side wall portion 112b formed to extend downward from the front end of the top plate portion 112a, and the side wall portion 112b. From the 1st connection part 112c formed so that it may extend in the horizontal direction from the lower part, the 2nd connection part 112d formed in the rear end of the top-plate part 112a, and the rear end of this 2nd connection part 112d The partition wall 112e is formed to extend toward the base plate 104. A fixing member 116 for fixing the battery block 4 is provided below the top plate portion 112a.
  • the first cover part 112 is produced, for example, by pressing a metal plate into a groove shape.
  • the second cover portion 114 has a length in the front-rear direction that is smaller than that of the base plate 104.
  • the second cover portion 114 includes a top plate portion 114a disposed above the battery control device 6, a side wall portion 114b formed to extend downward from the rear end of the top plate portion 114a, and the side wall portion.
  • the first connecting portion 114c is formed to extend in the horizontal direction from the lower portion of 114b, and the second connecting portion 114d is formed at the front end of the top plate portion 114a.
  • the second cover part 114 is produced, for example, by pressing a metal plate into an L shape.
  • the first connecting part 104 c of the base plate 104 and the first connecting part 112 c of the first cover part 112 are connected by a connecting member 122 through a sealing member 120.
  • the sealing member 120 maintains a sealing property between the first connecting portion 104c of the base plate 104 and the first connecting portion 112c of the first cover portion 112, and for example, packing is used.
  • the connecting member 122 for example, a bolt and a nut are used.
  • the second connecting portion 104 e of the base plate 104 and the first connecting portion 114 c of the second cover portion 112 are connected by a connecting member 122 through a sealing member 120.
  • the second connecting portion 112d of the first cover portion 112 and the second connecting portion 114d of the second cover portion 114 are arranged via the sealing member 120 so that the second connecting portion 114d is on the upper side. They are connected by a connecting member 122.
  • the base plate 104, the first cover part 112, and the second cover part 114 are formed of, for example, a metal plate such as iron, iron alloy, aluminum, or aluminum alloy whose surface is plated or painted.
  • the second cover portion 114 may be formed by aluminum die casting from the viewpoint of formability and heat dissipation.
  • the thickness of the base plate 104 may be the same as that of the first cover portion 112 or may be thicker than the first cover portion 112.
  • the side plate 108 is a plate-like member, and a groove 108a extending in the front-rear direction is formed in the lower part thereof.
  • the groove portion 108 a is provided with a sealing member 120, and the left and right end portions of the base plate 104 are fitted into the groove portion 108 a through the sealing member 120.
  • the left and right end portions of the cover plate 106 are arranged on the upper portion of the side plate 108 via the sealing member 120.
  • the side plate 108 is fixed by a fixing member 110 of the base plate 104, a fixing member 116 of the cover plate 106, and a connecting member 122.
  • the exterior case 102 has a sealed structure.
  • a first storage portion 124 that is surrounded by the base plate 104, the side plate 108, and the first cover portion 112 and stores the battery block 4, and the base plate 104, the side plate 108, and the second cover portion 114 are stored.
  • a second storage portion 126 for storing the battery control device 6 is formed.
  • the battery block 4 is fixed to the base plate 104, the first cover part 112, and the side plate 108.
  • a cooling duct 128 that cools the battery block 4 is provided in the first storage portion 124 so as to pass between the plurality of battery blocks 4.
  • the battery block 4 includes a plurality of rectangular battery cells 12, a plurality of spacers 14, two end spacers 16, two end plates 18, and a bind bar 20.
  • the plurality of prismatic battery cells 12 are juxtaposed (arranged in the left-right direction in FIG. 4), and the spacer 14 is disposed so as to be sandwiched between two adjacent prismatic battery cells 12.
  • the end spacer 16 is disposed outside the rectangular battery cell 12 disposed at the end in the juxtaposition direction.
  • the end plate 18 is disposed outside the end spacer 16 in the juxtaposition direction, and sandwiches the prismatic battery cell 12, the spacer 14, and the end spacer 16.
  • the bind bar 20 is connected to the end plate 18 to fix the prismatic battery cell 12, the spacer 14, and the end spacer 16 so as to pressurize them in the juxtaposition direction.
  • Adjacent rectangular battery cells 12 are electrically connected via a bus bar 22.
  • the spacer 14 insulates the plurality of prismatic battery cells 12 and prevents the prismatic battery cells 12 from short-circuiting.
  • the spacer 14 has an outer shape (surface aligned in the juxtaposition direction) of the same size as the prismatic battery cell 12.
  • the spacer 14 has an insulating property and is designed to have a strength that does not damage even if it is sandwiched between the rectangular battery cells 12 and the like.
  • the spacer 14 is formed of, for example, nylon resin, epoxy resin, plastic such as polyethylene terephthalate, or the like.
  • the end spacer 16 is configured in the same manner as the spacer 14.
  • the length (thickness) in the left-right direction of the end spacer 16 may be the same as that of the spacer 14 or may be changed as appropriate.
  • the end plate 18 has a rectangular parallelepiped shape whose outer shape (surface aligned in the juxtaposition direction) is about the same size as the prismatic battery cell 12, and is formed of a relatively high strength metal such as aluminum or aluminum alloy, or hard plastic. Has been.
  • the end plate 18 may have an outer shape larger than that of the square battery cell 12.
  • the bind bar 20 is formed of a relatively strong metal plate such as a stainless steel plate or a steel plate.
  • the bind bar 20 may have a shape in which an end portion in the left-right direction is bent. Thereby, compared with the case where this structure is not provided, fastening strength improves.
  • the battery control device 6 is electrically connected to the rectangular battery cell 12 of the battery block 4 and controls the operation of the rectangular battery cell 12. Specifically, the battery control device 6 detects the state of the voltage, current, remaining capacity, temperature, etc. of the rectangular battery cell 12, and controls charging / discharging of the rectangular battery cell 12 based on this.
  • the battery control device 6 performs charge / discharge control by detecting the voltage of the prismatic battery cell 12
  • the charging current is limited and discharged when the voltage of the prismatic battery cell 12 becomes higher than a predetermined maximum charging voltage during charging.
  • the discharge current is limited when the voltage of the rectangular battery cell 12 becomes lower than a predetermined minimum discharge voltage. In this way, overcharge and overdischarge of the rectangular battery cell 12 are prevented.
  • the battery control device 6 when the battery control device 6 performs charge / discharge control by detecting the charge / discharge current of the prismatic battery cell 12, the current is cut off when a current of a predetermined value or more flows through the prismatic battery cell 12.
  • the battery control device 6 detects the remaining capacity of the prismatic battery cell 12 and performs charge / discharge control, if the remaining capacity of the prismatic battery cell 12 exceeds a predetermined maximum value during charging, the charging current is limited and discharged. Sometimes the discharge current is limited when the remaining capacity of the rectangular battery cell 12 becomes smaller than a predetermined minimum value.
  • the battery control device 6 can also perform charge / discharge control by detecting the temperature of the rectangular battery cell 12.
  • the prismatic battery cell 12 is, for example, a prismatic nonaqueous electrolyte secondary battery, and includes a rectangular parallelepiped exterior body 30 and a sealing body 32.
  • the exterior body 30 has two wide surfaces facing in the left-right direction (hereinafter referred to as “wide surface 30a”) and two narrow surfaces facing in the vertical direction (hereinafter referred to as “narrow surface 30b”). And a side surface 30c located at the rear, and the front is open.
  • the sealing body 32 is arrange
  • the exterior body 30 and the sealing body 32 are laser welded, and the inside of the rectangular battery cell 12 is sealed.
  • a positive electrode terminal 34 is fixed to the sealing body 32 via an insulating member 36, and a negative electrode terminal 38 is fixed via an insulating member 40.
  • the bus bar 22 (see FIG. 4) is connected to the positive terminal 34 and the negative terminal 38.
  • the exterior body 30, the sealing body 32, and the positive electrode terminal 34 are each formed of aluminum or an aluminum alloy, and the negative electrode terminal 38 is formed of copper or a copper alloy.
  • the sealing body 32 is provided with a liquid injection port 42 for injecting an electrolytic solution and a gas discharge valve 44.
  • the gas discharge valve 44 discharges the gas in the prismatic battery cell 12 to the outside when the pressure in the prismatic battery cell 12 exceeds a predetermined pressure.
  • a sheet-like insulating sheet 46 made of resin is disposed inside the exterior body 30, and a flat wound electrode body 50 is disposed inside the insulating sheet 46.
  • the flat wound electrode body 50 includes a positive electrode plate 52, a negative electrode plate 54, and a separator 56.
  • the positive electrode plate 52 and the negative electrode plate 54 are wound in a flat shape in a state where they are insulated from each other via the separator 56. It has a rotated configuration.
  • the flat wound electrode body 50 is wound so that the outermost periphery is the separator 56 and the inner side is the negative electrode plate 54 and the inner side is the positive electrode plate 52 in that order.
  • As the separator 56 for example, a microporous film made of polyolefin is used.
  • Gas is easier to move in the vertical direction than in the horizontal direction due to its nature.
  • the flat spirally wound electrode body 50 When gas is generated in the flat spirally wound electrode body 50, if the winding axis of the flat spirally wound electrode body 50 is arranged in the horizontal direction, the flat spirally wound electrode body 50 has an inside. Gas tends to accumulate.
  • the winding axis of the flat wound electrode body 50 is arranged so as to be inclined with respect to the horizontal direction, compared to the case where the winding axis is arranged so as to be in the horizontal direction. The gas can easily escape to the outside of the flat wound electrode body 50.
  • the winding axis of the flat wound electrode body 50 is disposed so as to be substantially vertical from the horizontal direction, and is substantially the same as the surface of the sealing body 32 provided with the positive electrode terminal 34 and the negative electrode terminal 38. It is parallel.
  • the positive electrode terminal 34 and the negative electrode terminal 38 are arranged on one surface parallel to the winding axis of the flat wound electrode body 50 so as to be separated in the winding axis direction.
  • the rectangular battery cells 12 are arranged so that the sealing body 34 is on the front side. Thereby, the gas generated in the flat spirally wound electrode body 50 is likely to move outward (upward in FIGS. 5B and 6A).
  • the angle of the winding axis of the flat wound electrode body 50 with respect to the horizontal plane is about ⁇ 20 ° with respect to the vertical direction, preferably ⁇ 10 °, and more preferably ⁇ 5 °.
  • the positive electrode plate 52 is formed with a positive electrode mixture layer applied to both surfaces of the positive electrode core and a positive electrode core exposed portion 58.
  • the positive electrode core exposed portion 58 is a portion where the positive electrode mixture is not applied, and is a portion where the positive electrode core is exposed in a strip shape in the winding direction of the flat wound electrode body 50.
  • the positive electrode core is made of, for example, aluminum or an aluminum alloy and has a thickness of about 10 to 20 ⁇ m.
  • the negative electrode plate 54 is formed with a negative electrode mixture layer applied to both surfaces of the negative electrode core and a negative electrode core exposed portion 60.
  • the negative electrode core exposed portion 60 is a portion where the negative electrode mixture is not applied, and is a portion where the negative electrode core is exposed in a strip shape in the winding direction of the flat wound electrode body 50.
  • the formation range (width and length) of the negative electrode mixture layer is larger than the range of the positive electrode mixture layer.
  • the negative electrode core is made of, for example, copper or copper alloy, and has a thickness of about 5 to 15 ⁇ m.
  • the flat wound electrode body 50 is arranged so that a plurality of the positive electrode core exposed portions 58 overlap on one end side (upper side in FIG. 6A), and the negative electrode core exposed portion 60 on the other end side (same as the lower side). It is the structure arrange
  • the positive electrode plate 52 and the negative electrode plate 54 are arranged so that the positive electrode core exposed portion 58 does not overlap the layer coated with the negative electrode active material mixture, and the negative electrode core exposed portion 60 is coated with the positive electrode mixture. It is arranged so that it does not overlap with other layers.
  • a positive electrode current collector 62 made of aluminum or an aluminum alloy is provided outside the positive electrode core exposed portion 58.
  • the plurality of positive electrode core exposed portions 58 wound and laminated are converged at the center in the thickness direction and further divided into two, and the positive electrode core is centered on 1/4 of the thickness of the flat wound electrode body 50.
  • the body exposed portion 58 is converged, and the positive electrode intermediate member 64 is disposed therebetween.
  • the positive electrode intermediate member 64 holds a plurality of conductive positive electrode conductive members 66, here two, on a base made of a resin material.
  • the positive electrode conductive member 66 has a columnar shape, and a truncated cone-shaped protrusion 68 that acts as a projection is formed on the side facing each of the stacked positive electrode core exposed portions 58.
  • the positive electrode core exposed portion 58 is electrically connected to the positive electrode terminal 34 via the positive electrode current collector 62.
  • a current interruption mechanism 70 is provided between the positive electrode current collector 62 and the positive electrode terminal 34.
  • the current interruption mechanism 70 operates so as to cut off the current when the inside of the rectangular battery cell 12 becomes equal to or higher than a predetermined pressure.
  • the electric current interruption mechanism 70 operates at a pressure lower than the pressure at which the gas discharge valve 44 operates.
  • the current interrupt mechanism 70 and the gas discharge valve 44 function as a protection mechanism that operates by increasing the internal pressure and ensures the safety of the power supply device 10 and the like.
  • a negative electrode current collector 72 formed of copper or a copper alloy is provided outside the negative electrode core exposed portion 60.
  • the plurality of negative electrode core exposed portions 60 wound and laminated are converged and further divided on the center side in the thickness direction, and the negative electrode core body is centered on 1/4 of the thickness of the flat wound electrode body 50.
  • the exposed portion 60 is converged, and the negative electrode intermediate member 74 is disposed therebetween.
  • the negative electrode intermediate member 74 holds a plurality of, here two, negative electrode conductive members 76 on a base made of a resin material.
  • the negative electrode conductive member 76 has a columnar shape, and a truncated cone-shaped projection 78 that acts as a projection is formed on the side facing each of the laminated negative electrode core exposed portions.
  • the negative electrode core exposed portion 60 is electrically connected to the negative electrode terminal 38 via the negative electrode current collector 72.
  • the positive electrode plate 52 for example, one produced as follows is used.
  • a lithium nickel cobalt manganese composite oxide represented by LiNi 0.35 Co 0.35 Mn 0.30 O 2 is used.
  • Lithium nickel cobalt manganese composite oxide, carbon powder as a conductive agent, and polyvinylidene fluoride (PVd) as a binder The positive electrode mixture containing F) and lithium carbonate is mixed with N-methyl-2-pyrrolidone (NMP) as a dispersion medium to prepare a positive electrode slurry.
  • NMP N-methyl-2-pyrrolidone
  • the lithium nickel cobalt manganese composite oxide, carbon powder, and PVdF are contained so as to have a mass ratio of 88: 9: 3, respectively.
  • Lithium carbonate is preferably contained in an amount of 0.1 to 5.0% by mass with respect to the positive electrode mixture.
  • the content of lithium carbonate in the positive electrode mixture is less than 0.1% by mass, the generation of carbon dioxide from the lithium carbonate is small and it is difficult to quickly activate the protection mechanism.
  • the content of lithium carbonate in the positive electrode mixture exceeds 5.0% by mass, the proportion of lithium carbonate not involved in the electrode reaction is excessively increased, and the battery capacity is greatly reduced.
  • the positive electrode slurry is applied to both surfaces of the positive electrode core with a die coater to form a positive electrode mixture layer on both surfaces of the positive electrode core. Next, it is dried to remove NMP, and compressed to a predetermined thickness by a roll press. After cutting out to a predetermined dimension, a part of the positive electrode mixture layer is removed so as to form the positive electrode core body exposed portion 58 over the entire length direction (winding direction) on one end side in the width direction.
  • the negative electrode plate 54 for example, one produced as follows is used. A negative electrode slurry containing graphite powder, carboxymethyl cellulose (CMC) as a thickener, and styrene-butadiene rubber (SBR) as a binder is dispersed in water to prepare a negative electrode slurry.
  • the graphite powder, CMC, and SBR are contained so as to have a mass ratio of 98: 1: 1, respectively.
  • the negative electrode slurry is applied to both surfaces of the negative electrode core by a die coater, and a negative electrode mixture layer is formed on both surfaces of the negative electrode core. Subsequently, it compresses so that it may become predetermined thickness using a compression roller. After cutting out to a fixed dimension, a part of negative electrode mixture layer is removed so that the negative electrode core exposed part 60 covering the whole length direction (winding direction) may be formed in the one end side of the width direction.
  • non-aqueous electrolytic solution for example, one prepared as follows is used. LiPF 6 as an electrolyte salt is added to a mixed solvent in which ethylene carbonate (EC) and methyl ethyl carbonate (MEC) are mixed at a volume ratio (25 ° C., 1 atm) in a ratio of 3: 7 so as to be 1 mol / L. To do.
  • EC ethylene carbonate
  • MEC methyl ethyl carbonate
  • the square battery cell 12 is produced as follows, for example.
  • the positive electrode plate 52 and the negative electrode plate 54 are wound so that they are insulated from each other via the separator 56 so that the outermost surface becomes the negative electrode plate 54, and then are formed into a flat shape to form a flat wound electrode body. 50 is produced.
  • the sealing body 32 is fitted into the opening of the exterior body 30, and laser welding is performed between the exterior body 30 and the sealing body 32.
  • a predetermined amount of nonaqueous electrolytic solution is injected from the injection port 42. Then, the liquid injection port 42 is sealed with a blind rivet.
  • the rectangular battery cells 12 are arranged such that the winding axis of the flat wound electrode body 50 is in a substantially vertical direction. For this reason, since the fluidity of the gas in the flat wound electrode body 50 is improved, the gas generated in the flat wound electrode body 50 is suppressed from staying inside the flat wound electrode body 50. As a result, the internal pressure of the rectangular battery cell 12 increases suddenly, and the current interrupt mechanism 70 can be operated quickly.
  • the present invention has a predetermined effect as long as the winding axes of the plurality of wound electrode bodies are arranged in parallel so as to be in the substantially vertical direction. Therefore, the present invention can be equally applied to a cylindrical battery cell including a wound electrode body.
  • the power supply device 10 can be suitably used for an electric vehicle, a hybrid electric vehicle, a plug-in hybrid electric vehicle, and the like. Moreover, and backup power supply devices mounted on the computer server rack, mobile phones Bas Tsu up power supply for a radio base station, the power storage power supply device for home or factory, such as the power storage device in combination with a solar cell applications It can also be used.

Abstract

Provided is a power source device that can prevent a drop in the fluidity of gas inside a battery cell and that can cause a protection mechanism that operates in a case where the internal pressure of a battery cell rises to operate promptly. A power source device (2) of one embodiment of the present invention has an outer case, a gas exhaust valve that operates according to pressure to ensure safety, a current shutoff mechanism, a flat wound electrode, and triangular battery cells (12) contained inside the outer case. The triangular battery cells (12) inside the power source device (2) include lithium carbonate on a cathode mixture layer, and are arranged such that the winding axes of the flat wound electrodes are in an approximately vertical direction.

Description

電源装置Power supply
 本発明は、電池セルを備えた電源装置に関する。 The present invention relates to a power supply device including a battery cell.
 複数個の電池セルを並置し、これらの電池セルを互いに直列、並列又は直並列に接続した電源装置がある。このような電源装置は、出力が大きく、ハイブリッド電気自動車(HEV、PHEV)や電気自動車(EV)、大型の定置用蓄電装置等に用いられている。 There is a power supply device in which a plurality of battery cells are juxtaposed and these battery cells are connected in series, parallel or series-parallel to each other. Such a power supply device has a large output and is used in a hybrid electric vehicle (HEV, PHEV), an electric vehicle (EV), a large stationary power storage device, and the like.
 電池セルは、内圧が上昇すると膨張する。電池セルに異常が発生して内圧が大きく上昇した場合、電池セルが破損し、周囲を損傷する等の不具合を生じることが想定される。このような不具合に対処するために、電池セルには、内圧が上昇した場合に作動する電流遮断機構、強制短絡機構、ガス排出弁等の保護機構が設けられているものがある。特に非水電解質二次電池においては、保護機構をより効果的に作動させるようにするため、正極合剤層中に炭酸リチウムを添加したものが知られている(下記特許文献1参照)。
 炭酸リチウムは、電池セルが過充電状態となって電池電圧が高くなった場合に分解して炭酸ガスを発生させる。これにより電池セルの内圧を上昇させ、迅速に保護機構を作動させる。
The battery cell expands when the internal pressure increases. When an abnormality occurs in the battery cell and the internal pressure rises greatly, it is assumed that the battery cell is broken and a defect such as damage to the surroundings occurs. In order to deal with such a problem, some battery cells are provided with a protection mechanism such as a current interruption mechanism, a forced short-circuit mechanism, and a gas discharge valve that operate when the internal pressure increases. In particular, in a nonaqueous electrolyte secondary battery, a battery in which lithium carbonate is added to a positive electrode mixture layer is known in order to operate a protection mechanism more effectively (see Patent Document 1 below).
Lithium carbonate decomposes and generates carbon dioxide gas when the battery cell is overcharged and the battery voltage increases. As a result, the internal pressure of the battery cell is increased, and the protection mechanism is quickly activated.
 特許文献2には、上面に正極端子および負極端子が設けられている角形電池セルを複数個備える電池スタックと、この電池スタックを収容するパックケースとを有する電源装置が開示されている。特許文献3には、上面に正極端子および負極端子が設けられている角形電池セルを複数個備える電池ブロックと、この電池ブロックを収容するアウターケースとを有する電源装置が開示されている。特許文献4には、円筒形電池セルを複数個備える電池ブロックと、この電池ブロックを収容するケーシングとを備える電源装置が開示されている。 Patent Document 2 discloses a power supply device having a battery stack including a plurality of rectangular battery cells each having a positive electrode terminal and a negative electrode terminal provided on an upper surface thereof, and a pack case that accommodates the battery stack. Patent Document 3 discloses a power supply device having a battery block including a plurality of prismatic battery cells each having a positive electrode terminal and a negative electrode terminal on an upper surface, and an outer case that houses the battery block. Patent Document 4 discloses a power supply device including a battery block including a plurality of cylindrical battery cells and a casing that accommodates the battery block.
特開平04-328278号公報Japanese Patent Laid-Open No. 04-328278 特開2012-054052号公報JP 2012-054052 A 特開2013-025983号公報JP 2013-025983 A 特開2012-074350号公報JP 2012-074350 A
 特許文献2及び3に開示されている角形電池セル及び特許文献4に開示されている円筒形電池セルは、いずれも正極と負極とをセパレータを介して互いに絶縁された状態で巻回された偏平状の巻回電極体を備えている。特許文献2~4に開示されている電源装置では、角形電池セルの場合であっても円筒形電池セルの場合であっても、巻回電極体の巻回軸が水平方向となるように配置されている。 The rectangular battery cell disclosed in Patent Documents 2 and 3 and the cylindrical battery cell disclosed in Patent Document 4 are both flattened in which a positive electrode and a negative electrode are wound in a mutually insulated state via a separator. A spirally wound electrode body is provided. The power supply devices disclosed in Patent Documents 2 to 4 are arranged so that the winding axis of the wound electrode body is in the horizontal direction regardless of whether it is a rectangular battery cell or a cylindrical battery cell. Has been.
 巻回電極体は電池容量の確保のために密に巻回される。巻回電極体の巻回軸が水平方向となるように配置されている電池セルでは、ガスが発生した場合にそのガスの経路(通り道)が制限される。そのため、巻回電極体内で発生したガスがこの巻回電極体内の一部にこもり易くなり、電池内圧によって作動する保護機構の作動が遅延する。 The wound electrode body is tightly wound to ensure battery capacity. In the battery cell arranged so that the winding axis of the wound electrode body is in the horizontal direction, when gas is generated, the path (path) of the gas is limited. Therefore, the gas generated in the wound electrode body is likely to be trapped in a part of the wound electrode body, and the operation of the protection mechanism that is activated by the battery internal pressure is delayed.
 本発明の一局面の電源装置によれば、電池セル内でのガスの流動性が良好であるため、電池内圧によって作動する保護機構を迅速に作動させることができる電源装置が提供される。 According to the power supply device of one aspect of the present invention, since the fluidity of the gas in the battery cell is good, a power supply device that can quickly activate the protection mechanism that is activated by the battery internal pressure is provided.
 本発明の一局面の電源装置は、
 正極合剤層を含む正極と、負極合剤層を含む負極と、前記正極及び前記負極をセパレータを介して互いに絶縁した状態で巻回した巻回電極体と、電池外装体と、内圧の上昇によって作動して安全性を確保する保護機構と、を備える複数個の電池セルを有し、
 前記正極合剤層は、炭酸リチウムを含み、
 前記複数個の電池セルは、それぞれが前記巻回電極体の巻回軸が略鉛直方向となるように並置されている。
A power supply device according to one aspect of the present invention includes:
A positive electrode including a positive electrode mixture layer, a negative electrode including a negative electrode mixture layer, a wound electrode body wound in a state where the positive electrode and the negative electrode are insulated from each other via a separator, a battery exterior body, and an increase in internal pressure A plurality of battery cells comprising a protection mechanism that operates and ensures safety,
The positive electrode mixture layer includes lithium carbonate,
The plurality of battery cells are juxtaposed such that the winding axis of the wound electrode body is substantially vertical.
 本発明の一局面の電源装置によれば、巻回電極体内でのガスの流動性が良好になるので、巻回電極体内でガスが発生した場合の内圧上昇が急となり、電池内圧によって作動する保護機構を迅速に作動させることができる。 According to the power supply device of one aspect of the present invention, the fluidity of the gas in the wound electrode body is improved, so that the internal pressure rises suddenly when gas is generated in the wound electrode body, and it operates according to the battery internal pressure. The protection mechanism can be activated quickly.
本発明の一実施形態の電源装置の斜視図である。It is a perspective view of the power supply device of one Embodiment of this invention. 本発明の一実施形態の電源装置の平面図である。It is a top view of the power supply device of one embodiment of the present invention. 図3Aは図2のIIIA-IIIA線に沿った断面図であり、図3Bは図2のIIIB-IIIB線に沿った断面図である。3A is a cross-sectional view taken along line IIIA-IIIA in FIG. 2, and FIG. 3B is a cross-sectional view taken along line IIIB-IIIB in FIG. 本発明の一実施形態の電池ブロック、電池制御装置及びその周辺構造を斜視した概略図である。It is the schematic which looked at the battery block of one Embodiment of this invention, the battery control apparatus, and its periphery structure. 図5Aは本発明の一実施形態の電源装置で用いられる電池セルの正面図であり、図5Bは同じく側面図である。FIG. 5A is a front view of a battery cell used in the power supply device of one embodiment of the present invention, and FIG. 5B is a side view of the same. 図6Aは図5AのVIA-VIA線に沿った断面図であり、図6Bは図6AのVIB-VIB線に沿った断面図であり、図6Cは図6AのVIC-VIC線に沿った断面図である。6A is a sectional view taken along line VIA-VIA in FIG. 5A, FIG. 6B is a sectional view taken along line VIB-VIB in FIG. 6A, and FIG. 6C is a sectional view taken along line VIC-VIC in FIG. FIG.
 以下、本発明を実施するための形態について説明する。以下に示す実施形態は、本発明の技術思想を具体化するための一例を示すものであって、本発明をこれらの実施形態のいずれかに限定することを意図するものではない。本発明は、特許請求の範囲に示した技術思想を逸脱することなく種々の変更を行ったものにも均しく適用できるものである。
 また、以下の説明において、「前後上下左右」の方向は説明のために便宜的に示したものであり、その方向に限定されるものではない。この明細書における「略鉛直方向」とは、水平面に対して直角な方向が望ましいが、必ずしも完全に直角な方向である必要はなく、水平面に対して実質的に直角と見なされる範囲も含む意味で用いられている。
Hereinafter, modes for carrying out the present invention will be described. The following embodiment shows an example for embodying the technical idea of the present invention, and is not intended to limit the present invention to any of these embodiments. The present invention can be equally applied to various modifications without departing from the technical idea shown in the claims.
In the following description, the directions of “front and rear, up and down, left and right” are shown for convenience of explanation, and are not limited to these directions. The “substantially vertical direction” in this specification is preferably a direction perpendicular to the horizontal plane, but does not necessarily have to be completely perpendicular, and includes a range that is considered to be substantially perpendicular to the horizontal plane. It is used in.
 一実施形態に係る電源装置2について、図1~図3を用いて説明する。
 電源装置2は外装体としての外装ケース102を備え、この外装ケース102の内部に複数の電池ブロック4と、電池制御装置6とが収容されている。
A power supply device 2 according to an embodiment will be described with reference to FIGS.
The power supply device 2 includes an exterior case 102 as an exterior body, and a plurality of battery blocks 4 and a battery control device 6 are accommodated in the exterior case 102.
 外装ケース102は、ベースプレート104と、このベースプレート104の上方に配置されたカバープレート106と、ベースプレート104の側方(左右)にそれぞれ設けられた二つのサイドプレート108とを備える。 The exterior case 102 includes a base plate 104, a cover plate 106 disposed above the base plate 104, and two side plates 108 respectively provided on the sides (left and right) of the base plate 104.
 図3Aに示すように、ベースプレート104は、電池ブロック4及び電池制御装置6が載置される基台部104aと、この基台部104aの前端から上方に延びるようにして形成された第一の側壁部104bと、この第一の側壁部104bの上部から水平方向に延びるようにして形成された第一の連結部104cと、基台部104aの後端から上方に延びるようにして形成された第二の側壁部104dと、この第二の側壁部104dの上部から水平方向に延びるようにして形成された第二の連結部104eと、を有している。
 基台部104aの上部には、電池ブロック4を固定する固定部材110が設けられている。
 ベースプレート104は、例えば金属プレートを溝型にプレス加工することにより作製される。
As shown in FIG. 3A, the base plate 104 includes a base portion 104a on which the battery block 4 and the battery control device 6 are placed, and a first base plate 104 formed so as to extend upward from the front end of the base portion 104a. The side wall portion 104b, the first connecting portion 104c formed so as to extend in the horizontal direction from the upper portion of the first side wall portion 104b, and formed so as to extend upward from the rear end of the base portion 104a. It has the 2nd side wall part 104d and the 2nd connection part 104e formed so that it might extend in the horizontal direction from the upper part of this 2nd side wall part 104d.
A fixing member 110 that fixes the battery block 4 is provided on the upper portion of the base portion 104a.
The base plate 104 is produced, for example, by pressing a metal plate into a groove shape.
 カバープレート106は、電池ブロック4を覆う第一のカバー部112と、電池制御装置6を覆う第二のカバー部114とにより構成される。 The cover plate 106 includes a first cover portion 112 that covers the battery block 4 and a second cover portion 114 that covers the battery control device 6.
 第一のカバー部112は、前後方向の長さがベースプレート104よりも小さくなっている。第一のカバー部112は、複数の電池ブロック4を覆うとともに、これらの電池ブロック4が配置される空間と、電池制御装置6が配置される空間とを区切るようになっている。 The first cover portion 112 has a length in the front-rear direction that is smaller than the base plate 104. The first cover portion 112 covers the plurality of battery blocks 4 and divides a space in which these battery blocks 4 are arranged from a space in which the battery control device 6 is arranged.
 第一のカバー部112は、電池ブロック4の上方に配置される天板部112aと、この天板部112aの前端から下方に延びるようにして形成された側壁部112bと、この側壁部112bの下部から水平方向に延びるようにして形成された第一の連結部112cと、天板部112aの後端に形成された第二の連結部112dと、この第二の連結部112dの後端からベースプレート104に向けて延びるようにして形成された隔壁部112eとにより構成される。
 天板部112aの下部には、電池ブロック4を固定する固定部材116が設けられている。
 第一のカバー部112は、例えば金属プレートを溝型にプレス加工することにより作製される。
The first cover portion 112 includes a top plate portion 112a disposed above the battery block 4, a side wall portion 112b formed to extend downward from the front end of the top plate portion 112a, and the side wall portion 112b. From the 1st connection part 112c formed so that it may extend in the horizontal direction from the lower part, the 2nd connection part 112d formed in the rear end of the top-plate part 112a, and the rear end of this 2nd connection part 112d The partition wall 112e is formed to extend toward the base plate 104.
A fixing member 116 for fixing the battery block 4 is provided below the top plate portion 112a.
The first cover part 112 is produced, for example, by pressing a metal plate into a groove shape.
 第二のカバー部114は、前後方向の長さがベースプレート104よりも小さくなっている。
 第二のカバー部114は、電池制御装置6の上方に配置される天板部114aと、この天板部114aの後端から下方に延びるようにして形成された側壁部114bと、この側壁部114bの下部から水平方向に延びるようにして形成された第一の連結部114cと、天板部114aの前端に形成された第二の連結部114dとにより構成される。
 第二のカバー部114は、例えば金属プレートをL字状にプレス加工することにより作製される。
The second cover portion 114 has a length in the front-rear direction that is smaller than that of the base plate 104.
The second cover portion 114 includes a top plate portion 114a disposed above the battery control device 6, a side wall portion 114b formed to extend downward from the rear end of the top plate portion 114a, and the side wall portion. The first connecting portion 114c is formed to extend in the horizontal direction from the lower portion of 114b, and the second connecting portion 114d is formed at the front end of the top plate portion 114a.
The second cover part 114 is produced, for example, by pressing a metal plate into an L shape.
 ベースプレート104の第一の連結部104cと第一のカバー部112の第一の連結部112cとは、密閉部材120を介して連結部材122によって連結されている。密閉部材120は、ベースプレート104の第一の連結部104cと第一のカバー部112の第一の連結部112cとの間の密閉性を保つものであり、例えばパッキン等が用いられる。連結部材122としては、例えばボルト及びナット等が用いられる。 The first connecting part 104 c of the base plate 104 and the first connecting part 112 c of the first cover part 112 are connected by a connecting member 122 through a sealing member 120. The sealing member 120 maintains a sealing property between the first connecting portion 104c of the base plate 104 and the first connecting portion 112c of the first cover portion 112, and for example, packing is used. As the connecting member 122, for example, a bolt and a nut are used.
 ベースプレート104の第二の連結部104eと第二のカバー部112の第一の連結部114cとは、密閉部材120を介して連結部材122によって連結されている。
 第一のカバー部112の第二の連結部112dと第二のカバー部114の第二の連結部114dとは、この第二の連結部114dが上側になるようにして密閉部材120を介して連結部材122によって連結されている。
The second connecting portion 104 e of the base plate 104 and the first connecting portion 114 c of the second cover portion 112 are connected by a connecting member 122 through a sealing member 120.
The second connecting portion 112d of the first cover portion 112 and the second connecting portion 114d of the second cover portion 114 are arranged via the sealing member 120 so that the second connecting portion 114d is on the upper side. They are connected by a connecting member 122.
 ベースプレート104、第一のカバー部112及び第二のカバー部114は、例えば、表面をメッキ処理あるいは塗装した鉄や鉄合金、アルミニウム、アルミニウム合金等の金属板により形成される。第二のカバー部114は特に、成形性や放熱性の観点から、アルミダイカストにより形成するようにしてもよい。
 ベースプレート104の厚みは、第一のカバー部112と同程度としてもよいし、第一のカバー部112よりも厚くするようにしてもよい。
The base plate 104, the first cover part 112, and the second cover part 114 are formed of, for example, a metal plate such as iron, iron alloy, aluminum, or aluminum alloy whose surface is plated or painted. In particular, the second cover portion 114 may be formed by aluminum die casting from the viewpoint of formability and heat dissipation.
The thickness of the base plate 104 may be the same as that of the first cover portion 112 or may be thicker than the first cover portion 112.
 図3Bに示すように、サイドプレート108は板状の部材であり、その下部には前後方向に延びる溝部108aが形成されている。溝部108aには密閉部材120が設けられており、この密閉部材120を介して溝部108aにベースプレート104の左右の端部が嵌るようになっている。
 サイドプレート108の上部には、密閉部材120を介してカバープレート106の左右の端部が配置されるようになっている。
 サイドプレート108は、ベースプレート104の固定部材110及びカバープレート106の固定部材116と、連結部材122によって固定されている。
As shown in FIG. 3B, the side plate 108 is a plate-like member, and a groove 108a extending in the front-rear direction is formed in the lower part thereof. The groove portion 108 a is provided with a sealing member 120, and the left and right end portions of the base plate 104 are fitted into the groove portion 108 a through the sealing member 120.
The left and right end portions of the cover plate 106 are arranged on the upper portion of the side plate 108 via the sealing member 120.
The side plate 108 is fixed by a fixing member 110 of the base plate 104, a fixing member 116 of the cover plate 106, and a connecting member 122.
 外装ケース102は、内部が密閉された構造となっている。外装ケース102内には、ベースプレート104、サイドプレート108及び第一のカバー部112で囲まれ電池ブロック4を収納する第一の収納部124と、ベースプレート104、サイドプレート108及び第二のカバー部114で囲まれ電池制御装置6を収納する第二の収納部126とが形成される。 The exterior case 102 has a sealed structure. In the exterior case 102, a first storage portion 124 that is surrounded by the base plate 104, the side plate 108, and the first cover portion 112 and stores the battery block 4, and the base plate 104, the side plate 108, and the second cover portion 114 are stored. And a second storage portion 126 for storing the battery control device 6 is formed.
 第一の収納部124内において、電池ブロック4は、ベースプレート104、第一のカバー部112及びサイドプレート108に対して固定されている。第一の収納部124には、電池ブロック4を冷却する冷却ダクト128が複数の電池ブロック4の間を通過するようにして設けられている。 In the first storage part 124, the battery block 4 is fixed to the base plate 104, the first cover part 112, and the side plate 108. A cooling duct 128 that cools the battery block 4 is provided in the first storage portion 124 so as to pass between the plurality of battery blocks 4.
 次に、電池ブロック4及び電池制御装置6の詳細について、図4を用いて説明する。
(電池ブロック)
 本実施形態においては、電池ブロック4は四つ設けられており、直列に二つ並べられたものが二列に配置されている。電池ブロック4は、複数の角形電池セル12と、複数のスペーサ14と、二つのエンドスペーサ16と、二つのエンドプレート18と、バインドバー20とを備える。
Next, details of the battery block 4 and the battery control device 6 will be described with reference to FIG.
(Battery block)
In the present embodiment, four battery blocks 4 are provided, and two battery blocks arranged in series are arranged in two rows. The battery block 4 includes a plurality of rectangular battery cells 12, a plurality of spacers 14, two end spacers 16, two end plates 18, and a bind bar 20.
 複数の角形電池セル12は並置(図4中、左右方向に並ぶようにして配置)され、スペーサ14は隣り合う二つの角形電池セル12に挟まれるようにして配置されている。エンドスペーサ16は、並置方向の端に配置された角形電池セル12の外側に配置されている。エンドプレート18は、エンドスペーサ16の並置方向外側に配置され、角形電池セル12、スペーサ14及びエンドスペーサ16を挟むようになっている。バインドバー20はエンドプレート18に接続され、角形電池セル12、スペーサ14及びエンドスペーサ16を並置方向に加圧するようにして、これらを固定している。
 隣り合う角形電池セル12は、バスバー22を介して電気的に接続されている。
The plurality of prismatic battery cells 12 are juxtaposed (arranged in the left-right direction in FIG. 4), and the spacer 14 is disposed so as to be sandwiched between two adjacent prismatic battery cells 12. The end spacer 16 is disposed outside the rectangular battery cell 12 disposed at the end in the juxtaposition direction. The end plate 18 is disposed outside the end spacer 16 in the juxtaposition direction, and sandwiches the prismatic battery cell 12, the spacer 14, and the end spacer 16. The bind bar 20 is connected to the end plate 18 to fix the prismatic battery cell 12, the spacer 14, and the end spacer 16 so as to pressurize them in the juxtaposition direction.
Adjacent rectangular battery cells 12 are electrically connected via a bus bar 22.
 スペーサ14は、複数の角形電池セル12同士を絶縁し、角形電池セル12がショートするのを防止する。スペーサ14は、外形(並置方向に並ぶ面)が角形電池セル12と同程度の大きさとなっている。
 スペーサ14は絶縁性を有するとともに、角形電池セル12等により挟まれても損傷しない程度の強度に設計されている。スペーサ14は、例えばナイロン樹脂やエポキシ樹脂、ポリエチレンテレフタレート等のプラスチックなどにより形成される。
The spacer 14 insulates the plurality of prismatic battery cells 12 and prevents the prismatic battery cells 12 from short-circuiting. The spacer 14 has an outer shape (surface aligned in the juxtaposition direction) of the same size as the prismatic battery cell 12.
The spacer 14 has an insulating property and is designed to have a strength that does not damage even if it is sandwiched between the rectangular battery cells 12 and the like. The spacer 14 is formed of, for example, nylon resin, epoxy resin, plastic such as polyethylene terephthalate, or the like.
 エンドスペーサ16は、スペーサ14と同様に構成されている。エンドスペーサ16の左右方向の長さ(厚さ)は、スペーサ14と同程度であってもよいし、適宜変更するようにしてもよい。 The end spacer 16 is configured in the same manner as the spacer 14. The length (thickness) in the left-right direction of the end spacer 16 may be the same as that of the spacer 14 or may be changed as appropriate.
 エンドプレート18は、外形(並置方向に並ぶ面)が角形電池セル12と同程度の大きさの直方体形状であり、アルミニウムやアルミニウム合金等の比較的高い強度を有する金属や硬質のプラスチックなどで形成されている。エンドプレート18は、外形を角形電池セル12よりも大きくするようにしてもよい。 The end plate 18 has a rectangular parallelepiped shape whose outer shape (surface aligned in the juxtaposition direction) is about the same size as the prismatic battery cell 12, and is formed of a relatively high strength metal such as aluminum or aluminum alloy, or hard plastic. Has been. The end plate 18 may have an outer shape larger than that of the square battery cell 12.
 バインドバー20は、比較的強度の高い金属板、例えばステンレス板や鋼板等で形成されている。バインドバー20は、左右方向の端部を折り曲げた形状としてもよい。これにより、本構成を有さない場合と比較して、締結強度が向上する。 The bind bar 20 is formed of a relatively strong metal plate such as a stainless steel plate or a steel plate. The bind bar 20 may have a shape in which an end portion in the left-right direction is bent. Thereby, compared with the case where this structure is not provided, fastening strength improves.
(電池制御装置)
 電池制御装置6は、電池ブロック4の角形電池セル12に電気的に接続されており、角形電池セル12の動作を制御する。具体的には、電池制御装置6は、角形電池セル12の電圧や電流、残容量、温度等の状態を検出し、これに基づいて角形電池セル12の充放電を制御する。
(Battery control device)
The battery control device 6 is electrically connected to the rectangular battery cell 12 of the battery block 4 and controls the operation of the rectangular battery cell 12. Specifically, the battery control device 6 detects the state of the voltage, current, remaining capacity, temperature, etc. of the rectangular battery cell 12, and controls charging / discharging of the rectangular battery cell 12 based on this.
 例えば、電池制御装置6が角形電池セル12の電圧を検出して充放電制御を行う場合、充電時に角形電池セル12の電圧が予め定めた最高充電電圧よりも高くなると充電電流を制限し、放電時に角形電池セル12の電圧が予め定めた最低放電電圧よりも低くなると放電電流を制限する。このようにして、角形電池セル12の過充電及び過放電を防止する。 For example, when the battery control device 6 performs charge / discharge control by detecting the voltage of the prismatic battery cell 12, the charging current is limited and discharged when the voltage of the prismatic battery cell 12 becomes higher than a predetermined maximum charging voltage during charging. Sometimes the discharge current is limited when the voltage of the rectangular battery cell 12 becomes lower than a predetermined minimum discharge voltage. In this way, overcharge and overdischarge of the rectangular battery cell 12 are prevented.
 また、電池制御装置6が角形電池セル12の充放電電流を検出して充放電制御を行う場合、角形電池セル12に予め定められた値以上の電流が流れた場合に電流を遮断する。
 電池制御装置6が角形電池セル12の残容量を検出して充放電制御を行う場合、充電時に角形電池セル12の残容量が予め定められた最大値よりも大きくなると充電電流を制限し、放電時に角形電池セル12の残容量が予め定められた最小値よりも小さくなると放電電流を制限する。
 電池制御装置6は、角形電池セル12の温度を検出して充放電制御を行うことも可能である。
In addition, when the battery control device 6 performs charge / discharge control by detecting the charge / discharge current of the prismatic battery cell 12, the current is cut off when a current of a predetermined value or more flows through the prismatic battery cell 12.
When the battery control device 6 detects the remaining capacity of the prismatic battery cell 12 and performs charge / discharge control, if the remaining capacity of the prismatic battery cell 12 exceeds a predetermined maximum value during charging, the charging current is limited and discharged. Sometimes the discharge current is limited when the remaining capacity of the rectangular battery cell 12 becomes smaller than a predetermined minimum value.
The battery control device 6 can also perform charge / discharge control by detecting the temperature of the rectangular battery cell 12.
(電池セルの全体構造)
 次に、実施形態で用いた角形電池セル12の詳細について、図5及び図6を用いて説明する。
 角形電池セル12は、例えば角形非水電解質二次電池であり、直方体形状の外装体30と、封口体32とを備える。外装体30は、左右方向に対向する二つの幅の広い面(以下、「幅広面30a」という)と、上下方向に対向する二つの幅の狭い面(以下、「幅狭面30b」という)と、後方に位置する側面30cとで囲まれ、前方が開口した形状となっている。封口体32は、外装体30の開口を封じるように配置されている。外装体30と封口体32とはレーザ溶接されており、角形電池セル12の内部は密閉されている。
(Battery cell overall structure)
Next, details of the rectangular battery cell 12 used in the embodiment will be described with reference to FIGS. 5 and 6.
The prismatic battery cell 12 is, for example, a prismatic nonaqueous electrolyte secondary battery, and includes a rectangular parallelepiped exterior body 30 and a sealing body 32. The exterior body 30 has two wide surfaces facing in the left-right direction (hereinafter referred to as “wide surface 30a”) and two narrow surfaces facing in the vertical direction (hereinafter referred to as “narrow surface 30b”). And a side surface 30c located at the rear, and the front is open. The sealing body 32 is arrange | positioned so that the opening of the exterior body 30 may be sealed. The exterior body 30 and the sealing body 32 are laser welded, and the inside of the rectangular battery cell 12 is sealed.
 封口体32には、正極端子34が絶縁部材36を介して固定され、負極端子38が絶縁部材40を介して固定されている。これらの正極端子34及び負極端子38には、バスバー22(図4参照)が接続される。
 外装体30、封口体32、正極端子34はそれぞれアルミニウム又はアルミニウム合金により形成されており、負極端子38は銅又は銅合金により形成されている。
A positive electrode terminal 34 is fixed to the sealing body 32 via an insulating member 36, and a negative electrode terminal 38 is fixed via an insulating member 40. The bus bar 22 (see FIG. 4) is connected to the positive terminal 34 and the negative terminal 38.
The exterior body 30, the sealing body 32, and the positive electrode terminal 34 are each formed of aluminum or an aluminum alloy, and the negative electrode terminal 38 is formed of copper or a copper alloy.
 封口体32には、電解液を注入する注液口42と、ガス排出弁44とが設けられている。ガス排出弁44は、角形電池セル12内が予め定められた圧力以上となった場合にこの角形電池セル12内のガスを外部へ排出するようになっている。 The sealing body 32 is provided with a liquid injection port 42 for injecting an electrolytic solution and a gas discharge valve 44. The gas discharge valve 44 discharges the gas in the prismatic battery cell 12 to the outside when the pressure in the prismatic battery cell 12 exceeds a predetermined pressure.
 外装体30の内側には、樹脂で形成されたシート状の絶縁シート46が配設されており、この絶縁シート46の内側には、偏平状巻回電極体50が配置されている。偏平状巻回電極体50は、正極板52と、負極板54と、セパレータ56とを備え、これら正極板52と負極板54とがセパレータ56を介して互いに絶縁された状態で偏平状に巻回された構成を有している。
 偏平状巻回電極体50は、最外周がセパレータ56となりその内側が負極板54、さらにその内側が正極板52の順となるように巻かれている。セパレータ56としては、例えばポリオレフィンから形成される微多孔膜が用いられる。
A sheet-like insulating sheet 46 made of resin is disposed inside the exterior body 30, and a flat wound electrode body 50 is disposed inside the insulating sheet 46. The flat wound electrode body 50 includes a positive electrode plate 52, a negative electrode plate 54, and a separator 56. The positive electrode plate 52 and the negative electrode plate 54 are wound in a flat shape in a state where they are insulated from each other via the separator 56. It has a rotated configuration.
The flat wound electrode body 50 is wound so that the outermost periphery is the separator 56 and the inner side is the negative electrode plate 54 and the inner side is the positive electrode plate 52 in that order. As the separator 56, for example, a microporous film made of polyolefin is used.
 ガスはその性質上、水平方向よりも鉛直方向に移動し易い。偏平状巻回電極体50内でガスが発生した場合、この偏平状巻回電極体50の巻回軸が水平方向となるように配置されていると、偏平状巻回電極体50の内部にガスがたまり易い。これに対して、偏平状巻回電極体50の巻回軸が水平方向に対して傾くように配置されていると、巻回軸が水平方向となるように配置されている場合と比較して、この偏平状巻回電極体50の外部へガスが抜け易くなる。 Gas is easier to move in the vertical direction than in the horizontal direction due to its nature. When gas is generated in the flat spirally wound electrode body 50, if the winding axis of the flat spirally wound electrode body 50 is arranged in the horizontal direction, the flat spirally wound electrode body 50 has an inside. Gas tends to accumulate. On the other hand, when the winding axis of the flat wound electrode body 50 is arranged so as to be inclined with respect to the horizontal direction, compared to the case where the winding axis is arranged so as to be in the horizontal direction. The gas can easily escape to the outside of the flat wound electrode body 50.
 本実施形態においては、偏平状巻回電極体50の巻回軸は、水平方向から略鉛直方向となるように配置され、正極端子34及び負極端子38が設けられた封口体32の面と略平行となっている。正極端子34と負極端子38とは、偏平状巻回電極体50の巻回軸と平行な一面に、この巻回軸方向に離間するようにして配置されている。電源装置2においては、角形電池セル12は封口体34が前側となるように配置されている。これにより、偏平状巻回電極体50内で発生したガスは外部(図5B及び図6Aにおける上方)へ向けて移動し易くなる。
 偏平状巻回電極体50の巻回軸の水平面に対する角度は、鉛直方向に対して±20°程度であり、好ましくは±10°であり、より好ましくは±5°である。
In the present embodiment, the winding axis of the flat wound electrode body 50 is disposed so as to be substantially vertical from the horizontal direction, and is substantially the same as the surface of the sealing body 32 provided with the positive electrode terminal 34 and the negative electrode terminal 38. It is parallel. The positive electrode terminal 34 and the negative electrode terminal 38 are arranged on one surface parallel to the winding axis of the flat wound electrode body 50 so as to be separated in the winding axis direction. In the power supply device 2, the rectangular battery cells 12 are arranged so that the sealing body 34 is on the front side. Thereby, the gas generated in the flat spirally wound electrode body 50 is likely to move outward (upward in FIGS. 5B and 6A).
The angle of the winding axis of the flat wound electrode body 50 with respect to the horizontal plane is about ± 20 ° with respect to the vertical direction, preferably ± 10 °, and more preferably ± 5 °.
 正極板52には、正極芯体の両面に塗布された正極合剤層と、正極芯体露出部58とが形成されている。正極芯体露出部58は、正極合剤が塗布されていない部分であり、正極芯体が偏平状巻回電極体50の巻回方向に帯状に露出している部分である。
 正極芯体は、例えばアルミニウムやアルミニウム合金等から形成され、厚さが10~20μm程度のものが用いられる。
The positive electrode plate 52 is formed with a positive electrode mixture layer applied to both surfaces of the positive electrode core and a positive electrode core exposed portion 58. The positive electrode core exposed portion 58 is a portion where the positive electrode mixture is not applied, and is a portion where the positive electrode core is exposed in a strip shape in the winding direction of the flat wound electrode body 50.
The positive electrode core is made of, for example, aluminum or an aluminum alloy and has a thickness of about 10 to 20 μm.
 負極板54には、負極芯体の両面に塗布された負極合剤層と、負極芯体露出部60とが形成されている。負極芯体露出部60は、負極合剤が塗布されていない部分であり、負極芯体が偏平状巻回電極体50の巻回方向に帯状に露出している部分である。
 負極合剤層の形成範囲(幅及び長さ)は、正極合剤層の範囲よりも大きくなっている。
 負極芯体は、例えば銅や銅合金等から形成され、厚さが5~15μm程度のものが用いられる。
The negative electrode plate 54 is formed with a negative electrode mixture layer applied to both surfaces of the negative electrode core and a negative electrode core exposed portion 60. The negative electrode core exposed portion 60 is a portion where the negative electrode mixture is not applied, and is a portion where the negative electrode core is exposed in a strip shape in the winding direction of the flat wound electrode body 50.
The formation range (width and length) of the negative electrode mixture layer is larger than the range of the positive electrode mixture layer.
The negative electrode core is made of, for example, copper or copper alloy, and has a thickness of about 5 to 15 μm.
 偏平状巻回電極体50は、一端側(図6Aにおいて上側)に正極芯体露出部58が複数重なるようにして配置され、他端側(同、下側)に負極芯体露出部60が複数重なるように配置された構成となっている。正極板52と負極板54とは、正極芯体露出部58が負極活物質合剤の塗布された層と重ならないように配置されるとともに、負極芯体露出部60が正極合剤の塗布された層と重ならないように配置されている。 The flat wound electrode body 50 is arranged so that a plurality of the positive electrode core exposed portions 58 overlap on one end side (upper side in FIG. 6A), and the negative electrode core exposed portion 60 on the other end side (same as the lower side). It is the structure arrange | positioned so that two or more may overlap. The positive electrode plate 52 and the negative electrode plate 54 are arranged so that the positive electrode core exposed portion 58 does not overlap the layer coated with the negative electrode active material mixture, and the negative electrode core exposed portion 60 is coated with the positive electrode mixture. It is arranged so that it does not overlap with other layers.
 正極芯体露出部58の外側には、アルミニウム又はアルミニウム合金から形成される正極集電体62が設けられている。
 巻回されて積層された複数枚の正極芯体露出部58は、厚み方向の中央部に収束されてさらに二分割され、偏平状巻回電極体50の厚みの1/4を中心として正極芯体露出部58が収束され、その間に正極中間部材64が配置されている。
A positive electrode current collector 62 made of aluminum or an aluminum alloy is provided outside the positive electrode core exposed portion 58.
The plurality of positive electrode core exposed portions 58 wound and laminated are converged at the center in the thickness direction and further divided into two, and the positive electrode core is centered on 1/4 of the thickness of the flat wound electrode body 50. The body exposed portion 58 is converged, and the positive electrode intermediate member 64 is disposed therebetween.
 正極中間部材64は、樹脂材料からなる基体に導電性の正極導電部材66を複数個、ここでは二個保持している。正極導電部材66は、円柱状のものが用いられ、それぞれ積層された正極芯体露出部58と対向する側に、プロジェクションとして作用する円錐台状の突起68が形成されている。 The positive electrode intermediate member 64 holds a plurality of conductive positive electrode conductive members 66, here two, on a base made of a resin material. The positive electrode conductive member 66 has a columnar shape, and a truncated cone-shaped protrusion 68 that acts as a projection is formed on the side facing each of the stacked positive electrode core exposed portions 58.
 正極芯体露出部58は、正極集電体62を介して正極端子34に電気的に接続されている。正極集電体62と正極端子34との間には、電流遮断機構70が設けられている。電流遮断機構70は、角形電池セル12内が予め定められた圧力以上となった場合に、電流を遮断するように動作する。電流遮断機構70は、ガス排出弁44が作動する圧力よりも低い圧力で作動するようになっている。
 電流遮断機構70及びガス排出弁44は、内圧の上昇によって作動して電源装置10等の安全性を確保する保護機構として機能する。
The positive electrode core exposed portion 58 is electrically connected to the positive electrode terminal 34 via the positive electrode current collector 62. A current interruption mechanism 70 is provided between the positive electrode current collector 62 and the positive electrode terminal 34. The current interruption mechanism 70 operates so as to cut off the current when the inside of the rectangular battery cell 12 becomes equal to or higher than a predetermined pressure. The electric current interruption mechanism 70 operates at a pressure lower than the pressure at which the gas discharge valve 44 operates.
The current interrupt mechanism 70 and the gas discharge valve 44 function as a protection mechanism that operates by increasing the internal pressure and ensures the safety of the power supply device 10 and the like.
 負極芯体露出部60の外側には、銅又は銅合金から形成される負極集電体72が設けられている。巻回されて積層された複数枚の負極芯体露出部60は、厚み方向の中央側に収束されてさらに分割され、偏平状巻回電極体50の厚みの1/4を中心として負極芯体露出部60が収束され、その間に負極中間部材74が配置されている。 A negative electrode current collector 72 formed of copper or a copper alloy is provided outside the negative electrode core exposed portion 60. The plurality of negative electrode core exposed portions 60 wound and laminated are converged and further divided on the center side in the thickness direction, and the negative electrode core body is centered on 1/4 of the thickness of the flat wound electrode body 50. The exposed portion 60 is converged, and the negative electrode intermediate member 74 is disposed therebetween.
 負極中間部材74は、樹脂材料からなる基体に負極導電部材76を複数個、ここでは二個保持している。負極導電部材76は、円柱状のものが用いられ、それぞれ積層された負極芯体露出部と対向する側に、プロジェクションとして作用する円錐台状の突起78が形成されている。
 負極芯体露出部60は、負極集電体72を介して負極端子38に電気的に接続されている。
The negative electrode intermediate member 74 holds a plurality of, here two, negative electrode conductive members 76 on a base made of a resin material. The negative electrode conductive member 76 has a columnar shape, and a truncated cone-shaped projection 78 that acts as a projection is formed on the side facing each of the laminated negative electrode core exposed portions.
The negative electrode core exposed portion 60 is electrically connected to the negative electrode terminal 38 via the negative electrode current collector 72.
 これらの正極集電体62と、正極芯体露出部58と、正極中間部材64の正極導電部材66との間の抵抗溶接方法、及び、負極集電体72と、負極芯体露出部60と、負極中間部材74の負極導電部材76との間の抵抗溶接方法としては、周知の技術が用いられる。 Resistance welding method between the positive electrode current collector 62, the positive electrode core exposed portion 58, and the positive electrode conductive member 66 of the positive electrode intermediate member 64, and the negative electrode current collector 72, the negative electrode core exposed portion 60, As a resistance welding method between the negative electrode intermediate member 74 and the negative electrode conductive member 76, a well-known technique is used.
 次に、角形電池セル12の製造方法について詳細について説明する。 Next, the manufacturing method of the rectangular battery cell 12 will be described in detail.
(正極板の構成)
 正極板52としては、例えば以下のようにして作製されるものが用いられる。
 正極活物質として、LiNi0.35Co0.35Mn0.30で表されるリチウムニッケルコバルトマンガン複合酸化物を用いる。リチウムニッケルコバルトマンガン複合酸化物と、導電剤としての炭素粉末と、結着剤としてのポリフッ化ビニリデン(PVd
F)と、炭酸リチウムとを含む正極合剤に、分散媒としてのN-メチル-2-ピロリドン
(NMP)を混合して正極スラリーを調製する。
(Configuration of positive electrode plate)
As the positive electrode plate 52, for example, one produced as follows is used.
As the positive electrode active material, a lithium nickel cobalt manganese composite oxide represented by LiNi 0.35 Co 0.35 Mn 0.30 O 2 is used. Lithium nickel cobalt manganese composite oxide, carbon powder as a conductive agent, and polyvinylidene fluoride (PVd) as a binder
The positive electrode mixture containing F) and lithium carbonate is mixed with N-methyl-2-pyrrolidone (NMP) as a dispersion medium to prepare a positive electrode slurry.
 リチウムニッケルコバルトマンガン複合酸化物と、炭素粉末と、PVdFとは、それぞれ質量比で88:9:3となるように含有させる。炭酸リチウムは、正極合剤に対して、0.1~5.0質量%含有させることが好ましい。正極合剤における炭酸リチウムの含有量が0.1質量%未満であると、炭酸リチウムからの炭酸ガスの発生が少なく、保護機構を迅速に作動させ難くなる。正極合剤における炭酸リチウムの含有量が5.0質量%を超えると、電極反応に関与しない炭酸リチウムの割合が過度に多くなり、電池容量の低下が大きくなる。 The lithium nickel cobalt manganese composite oxide, carbon powder, and PVdF are contained so as to have a mass ratio of 88: 9: 3, respectively. Lithium carbonate is preferably contained in an amount of 0.1 to 5.0% by mass with respect to the positive electrode mixture. When the content of lithium carbonate in the positive electrode mixture is less than 0.1% by mass, the generation of carbon dioxide from the lithium carbonate is small and it is difficult to quickly activate the protection mechanism. When the content of lithium carbonate in the positive electrode mixture exceeds 5.0% by mass, the proportion of lithium carbonate not involved in the electrode reaction is excessively increased, and the battery capacity is greatly reduced.
 この正極スラリーを、正極芯体の両面にダイコーターによって塗布して、正極合剤層を正極芯体の両面に形成する。次いで、乾燥させてNMPを除去し、ロールプレスによって所定の厚さとなるように圧縮する。所定の寸法に切り出した後、幅方向の一端側に長さ方向(巻き方向)全体にわたる正極芯体露出部58を形成するように正極合剤層の一部を除去する。 The positive electrode slurry is applied to both surfaces of the positive electrode core with a die coater to form a positive electrode mixture layer on both surfaces of the positive electrode core. Next, it is dried to remove NMP, and compressed to a predetermined thickness by a roll press. After cutting out to a predetermined dimension, a part of the positive electrode mixture layer is removed so as to form the positive electrode core body exposed portion 58 over the entire length direction (winding direction) on one end side in the width direction.
(負極板の構成)
 負極板54としては、例えば以下のようにして作製されるものが用いられる。
 黒鉛粉末と、増粘剤としてのカルボキシメチルセルロース(CMC)と、結着剤としてのスチレン-ブタジエンゴム(SBR)とを含む負極合剤を、水に分散させて負極スラリーを調整する。黒鉛粉末と、CMCと、SBRとは、それぞれ質量比で98:1:1となるように含有させる。
(Configuration of negative electrode plate)
As the negative electrode plate 54, for example, one produced as follows is used.
A negative electrode slurry containing graphite powder, carboxymethyl cellulose (CMC) as a thickener, and styrene-butadiene rubber (SBR) as a binder is dispersed in water to prepare a negative electrode slurry. The graphite powder, CMC, and SBR are contained so as to have a mass ratio of 98: 1: 1, respectively.
 この負極スラリーを負極芯体の両面にダイコーターによって塗布して、負極合剤層を負極芯体の両面に形成する。次いで、圧縮ローラーを用いて所定の厚さとなるように圧縮する。定の寸法に切り出した後、幅方向の一端側に長さ方向(巻き方向)全体にわたる負極芯体露出部60を形成するように負極合剤層の一部を除去する。 The negative electrode slurry is applied to both surfaces of the negative electrode core by a die coater, and a negative electrode mixture layer is formed on both surfaces of the negative electrode core. Subsequently, it compresses so that it may become predetermined thickness using a compression roller. After cutting out to a fixed dimension, a part of negative electrode mixture layer is removed so that the negative electrode core exposed part 60 covering the whole length direction (winding direction) may be formed in the one end side of the width direction.
(非水電解液の調製)
 非水電解液としては、例えば以下のように調製されるものが用いられる。
 エチレンカーボネート(EC)とメチルエチルカーボネート(MEC)とを体積比(25℃、1気圧)で3:7の割合で混合した混合溶媒に、電解質塩としてLiPFを1mol/Lとなるように添加する。
(Preparation of non-aqueous electrolyte)
As the nonaqueous electrolytic solution, for example, one prepared as follows is used.
LiPF 6 as an electrolyte salt is added to a mixed solvent in which ethylene carbonate (EC) and methyl ethyl carbonate (MEC) are mixed at a volume ratio (25 ° C., 1 atm) in a ratio of 3: 7 so as to be 1 mol / L. To do.
(角形電池セルの作製)
 角形電池セル12は、例えば以下のようにして作製される。
 正極板52及び負極板54を、セパレータ56を介して互いに絶縁されるようにして最外面が負極板54となるように巻回した後、これを偏平状に成型して偏平状巻回電極体50を作製する。偏平状巻回電極体50を外装体30に収容した後、この外装体30の開口に封口体32を嵌合し、これら外装体30と封口体32との間をレーザ溶接する。次いで、注液口42から非水電解液を所定量注液する。そして、注液口42をブラインドリベットにより封止する。
(Preparation of prismatic battery cell)
The square battery cell 12 is produced as follows, for example.
The positive electrode plate 52 and the negative electrode plate 54 are wound so that they are insulated from each other via the separator 56 so that the outermost surface becomes the negative electrode plate 54, and then are formed into a flat shape to form a flat wound electrode body. 50 is produced. After the flat wound electrode body 50 is accommodated in the exterior body 30, the sealing body 32 is fitted into the opening of the exterior body 30, and laser welding is performed between the exterior body 30 and the sealing body 32. Next, a predetermined amount of nonaqueous electrolytic solution is injected from the injection port 42. Then, the liquid injection port 42 is sealed with a blind rivet.
 このようにして作製された角形電池セル12においては、過充電状態となって電池電圧が通常時よりも高くなると、正極合剤層中の炭酸リチウムが分解して炭酸ガスが発生する。実施形態の電源装置2においては、角形電池セル12は偏平状巻回電極体50の巻回軸が略垂直方向となるように配置されている。このため、偏平状巻回電極体50内でのガスの流動性が良好となるので、偏平状巻回電極体50で発生したガスが偏平状巻回電極体50の内部にとどまることが抑制される、これにより、角形電池セル12の内圧上昇が急となり、電流遮断機構70を迅速に作動させることができる。 In the rectangular battery cell 12 produced in this way, when the battery voltage becomes higher than usual during an overcharged state, the lithium carbonate in the positive electrode mixture layer is decomposed and carbon dioxide gas is generated. In the power supply device 2 of the embodiment, the rectangular battery cells 12 are arranged such that the winding axis of the flat wound electrode body 50 is in a substantially vertical direction. For this reason, since the fluidity of the gas in the flat wound electrode body 50 is improved, the gas generated in the flat wound electrode body 50 is suppressed from staying inside the flat wound electrode body 50. As a result, the internal pressure of the rectangular battery cell 12 increases suddenly, and the current interrupt mechanism 70 can be operated quickly.
 なお、実施形態では電池セルとして角形電池セルの場合を例にとり説明した。しかし、本発明は、複数の巻回電極体の巻回軸が略鉛直方向となるように並置されているものであれば所定の作用効果を奏する。そのため、本発明は、巻回電極体を備える円筒形電池セルに対しても等しく適用することができる。 In the embodiment, the case where the battery cell is a square battery cell has been described as an example. However, the present invention has a predetermined effect as long as the winding axes of the plurality of wound electrode bodies are arranged in parallel so as to be in the substantially vertical direction. Therefore, the present invention can be equally applied to a cylindrical battery cell including a wound electrode body.
 電源装置10は、電気自動車やハイブリッド式電気自動車、プラグイン式ハイブリッド電気自動車等に好適に利用できる。また、コンピュータサーバラックに搭載されるバックアップ電源装置や、携帯電話等の無線基地局用のバクアップ電源装置、家庭用又は工場用の蓄電用電源装置、太陽電池と組み合わせた蓄電装置などの用途にも利用できる。 The power supply device 10 can be suitably used for an electric vehicle, a hybrid electric vehicle, a plug-in hybrid electric vehicle, and the like. Moreover, and backup power supply devices mounted on the computer server rack, mobile phones Bas Tsu up power supply for a radio base station, the power storage power supply device for home or factory, such as the power storage device in combination with a solar cell applications It can also be used.
  2…電源装置       4…電池ブロック     6…電池制御装置
 12…角形電池セル    14…スペーサ      20…バインドバー
 22…バスバー      30…外装体       32…封口体
 34…正極端子      38…負極端子      42…注液口
 44…ガス排出弁     50…偏平状巻回電極体  52…正極板
 54…負極板       56…セパレータ     58…正極芯体露出部
 60…負極芯体露出部   62…正極集電体     70…電流遮断機構
 72…負極集電体     102…外装ケース    104…ベースプレート
 106…カバープレート  108…サイドプレート  112…第一のカバー部
 114…第二のカバー部  120…密閉部材     122…連結部材
 124…第一の収納部   126…第二の収納部   128…冷却ダクト
 
DESCRIPTION OF SYMBOLS 2 ... Power supply device 4 ... Battery block 6 ... Battery control apparatus 12 ... Square battery cell 14 ... Spacer 20 ... Bind bar 22 ... Bus bar 30 ... Exterior body 32 ... Sealing body 34 ... Positive electrode terminal 38 ... Negative electrode terminal 42 ... Injection port 44 DESCRIPTION OF SYMBOLS ... Gas discharge valve 50 ... Flat coiled electrode body 52 ... Positive electrode plate 54 ... Negative electrode plate 56 ... Separator 58 ... Positive electrode core exposed part 60 ... Negative electrode core exposed part 62 ... Positive electrode collector 70 ... Current interruption | blocking mechanism 72 ... Negative electrode current collector 102 ... exterior case 104 ... base plate 106 ... cover plate 108 ... side plate 112 ... first cover part 114 ... second cover part 120 ... sealing member 122 ... connecting member 124 ... first storage part 126 ... Second storage section 128 ... cooling duct

Claims (5)

  1.  正極合剤層を含む正極と、負極合剤層を含む負極と、前記正極及び前記負極をセパレータを介して互いに絶縁した状態で巻回した巻回電極体と、電池外装体と、内圧の上昇によって作動して安全性を確保する保護機構と、を備える複数個の電池セルを有し、
     前記正極合剤層は、炭酸リチウムを含み、
     前記複数個の電池セルは、それぞれが前記巻回電極体の巻回軸が略鉛直方向となるように並置されている、
    電源装置。
    A positive electrode including a positive electrode mixture layer, a negative electrode including a negative electrode mixture layer, a wound electrode body wound in a state where the positive electrode and the negative electrode are insulated from each other via a separator, a battery exterior body, and an increase in internal pressure A plurality of battery cells comprising a protection mechanism that operates and ensures safety,
    The positive electrode mixture layer includes lithium carbonate,
    The plurality of battery cells are juxtaposed such that the winding axis of the wound electrode body is in a substantially vertical direction,
    Power supply.
  2.  前記電池セルは非水電解質二次電池である、請求項1に記載の電源装置。 The power supply device according to claim 1, wherein the battery cell is a nonaqueous electrolyte secondary battery.
  3.  前記複数個の電池セルは角形電池セルであり、前記巻回電極体は偏平状巻回電極体であり、前記正極に電気的に接続されている正極端子及び前記負極に電気的に接続されている負極端子は、ともに前記巻回軸と平行な一面に、前記巻回軸方向に離間して設けられている、請求項1又は2に記載の電源装置。 The plurality of battery cells are rectangular battery cells, the wound electrode body is a flat wound electrode body, and is electrically connected to the positive electrode terminal and the negative electrode electrically connected to the positive electrode. 3. The power supply device according to claim 1, wherein both negative electrode terminals are provided on one surface parallel to the winding axis and spaced apart in the winding axis direction.
  4.  それぞれの前記角形電池セルの間にはスペーサが配置され、前記並置方向の両端にそれぞれ並置された前記角形電池セルの両方の外側にはそれぞれエンドスペーサが配置され、両方の前記エンドスペーサの外側にはそれぞれエンドプレートが配置され、前記電池セル、前記スペーサ及び前記エンドスペーサは、バインドバーによって並置方向に一体に加圧・固定されている、請求項3に記載の電源装置。 Spacers are arranged between the respective square battery cells, end spacers are respectively arranged on both outer sides of the square battery cells juxtaposed on both ends in the juxtaposition direction, and on both outer sides of the end spacers. 4. The power supply device according to claim 3, wherein end plates are respectively disposed, and the battery cell, the spacer, and the end spacer are integrally pressed and fixed in a juxtaposition direction by a bind bar.
  5.  前記複数個の電池セルは、互いにバスバーによって直列、並列又は直並列に接続されている、請求項3又は4に記載の電源装置。
     
    The power supply device according to claim 3 or 4, wherein the plurality of battery cells are connected in series, parallel, or series-parallel to each other by a bus bar.
PCT/JP2014/003035 2013-07-01 2014-06-06 Power source device WO2015001711A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015525016A JPWO2015001711A1 (en) 2013-07-01 2014-06-06 Power supply

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013137941 2013-07-01
JP2013-137941 2013-07-01

Publications (1)

Publication Number Publication Date
WO2015001711A1 true WO2015001711A1 (en) 2015-01-08

Family

ID=52143318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/003035 WO2015001711A1 (en) 2013-07-01 2014-06-06 Power source device

Country Status (2)

Country Link
JP (1) JPWO2015001711A1 (en)
WO (1) WO2015001711A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016152074A (en) * 2015-02-16 2016-08-22 株式会社豊田自動織機 Battery pack and fastening structure

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04328278A (en) * 1991-04-26 1992-11-17 Sony Corp Nonaqueous electrolyte secondary battery
JPH07296790A (en) * 1994-04-28 1995-11-10 Japan Storage Battery Co Ltd Square type sealed battery
JP2002245992A (en) * 2001-02-16 2002-08-30 Toyota Motor Corp Battery pack
JP2006351383A (en) * 2005-06-16 2006-12-28 Toyota Motor Corp Wound type power storage device
JP2008103268A (en) * 2006-10-20 2008-05-01 Toyota Motor Corp Battery pack and vehicle
JP2012033306A (en) * 2010-07-29 2012-02-16 Hitachi Vehicle Energy Ltd Power storage module and power storage device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04328278A (en) * 1991-04-26 1992-11-17 Sony Corp Nonaqueous electrolyte secondary battery
JPH07296790A (en) * 1994-04-28 1995-11-10 Japan Storage Battery Co Ltd Square type sealed battery
JP2002245992A (en) * 2001-02-16 2002-08-30 Toyota Motor Corp Battery pack
JP2006351383A (en) * 2005-06-16 2006-12-28 Toyota Motor Corp Wound type power storage device
JP2008103268A (en) * 2006-10-20 2008-05-01 Toyota Motor Corp Battery pack and vehicle
JP2012033306A (en) * 2010-07-29 2012-02-16 Hitachi Vehicle Energy Ltd Power storage module and power storage device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016152074A (en) * 2015-02-16 2016-08-22 株式会社豊田自動織機 Battery pack and fastening structure

Also Published As

Publication number Publication date
JPWO2015001711A1 (en) 2017-02-23

Similar Documents

Publication Publication Date Title
JP6250567B2 (en) Sealed battery
US9196895B2 (en) Sealed secondary battery
US10056577B2 (en) Battery cell of novel structure
US8663832B2 (en) Cell for reducing short circuit and battery incorporating the cell
JP6086240B2 (en) Non-aqueous electrolyte battery and manufacturing method thereof
WO2015045632A1 (en) Assembled cell
JP6254102B2 (en) Sealed battery
JP2015011919A (en) Power unit
JP2008300692A (en) Power storage device
JP6424426B2 (en) Assembled battery
JP6697685B2 (en) Sealed batteries and assembled batteries
JP2009048965A (en) Battery pack, and manufacturing method thereof
WO2008050604A1 (en) Sealed secondary battery
JP2008135374A (en) Sealed secondary battery
KR20130064465A (en) Pouch type secondary battery
JP2015011920A (en) Power unit
JP2011129299A (en) Lithium ion secondary battery, vehicle, and battery loading equipment
JP2011210549A (en) Nonaqueous electrolyte secondary battery, vehicle, and device using the battery
JP2017054739A (en) Secondary battery
KR20140032701A (en) Pouch type secondary battery
KR20140137603A (en) Pouch type battery case
WO2015001711A1 (en) Power source device
WO2014068740A1 (en) Cell unit
JP4789295B2 (en) Sealed battery
WO2011135684A1 (en) Non-aqueous electrolyte secondary battery, vehicle, and battery-use apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14820294

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015525016

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14820294

Country of ref document: EP

Kind code of ref document: A1