WO2014208582A1 - Synchronous rotor for rotary electrical machine and method for manufacturing synchronous rotor for rotary electrical machine - Google Patents

Synchronous rotor for rotary electrical machine and method for manufacturing synchronous rotor for rotary electrical machine Download PDF

Info

Publication number
WO2014208582A1
WO2014208582A1 PCT/JP2014/066802 JP2014066802W WO2014208582A1 WO 2014208582 A1 WO2014208582 A1 WO 2014208582A1 JP 2014066802 W JP2014066802 W JP 2014066802W WO 2014208582 A1 WO2014208582 A1 WO 2014208582A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
core
hole
magnet
electrical machine
Prior art date
Application number
PCT/JP2014/066802
Other languages
French (fr)
Japanese (ja)
Inventor
真臣 森下
靖 荒川
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to JP2015524071A priority Critical patent/JP5971418B2/en
Publication of WO2014208582A1 publication Critical patent/WO2014208582A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/15Sectional machines

Definitions

  • the present invention relates to a synchronous rotor for a rotating electrical machine having a cylindrical rotor core formed by stacking a plurality of arc-shaped core plates and a permanent magnet embedded in the rotor core.
  • a rotor core formed by laminating a plurality of divided core plates arranged in a ring shape, a shaft fitted into the rotor core, and a magnet insertion hole formed in the divided core plate And an inserted magnet.
  • a synchronous rotor a plurality of convex portions are provided on the inner peripheral side of the divided core plate, and the rotor core has uneven side edges of the convex portions alternately along the axial direction of the rotor core.
  • the rotor shaft is laminated, and the rotor shaft is fitted to the rotor core. That is, a structure in which the divided core plates are coupled by a caulking structure is known (see, for example, Patent Document 1).
  • the conventional synchronous rotor for rotating electrical machines has a configuration in which the anti-centrifugal strength of the rotor core, that is, the core annular rigidity is maintained mainly by the shear strength of the magnet (and the adhesive, etc.) in the circumferential direction of the rotor core. ing. For this reason, the holding
  • the present invention has been made by paying attention to the above-mentioned problem.
  • the rotating electrical machine synchronous rotor and the rotating electrical machine synchronous rotor capable of improving the durability reliability of the permanent magnet are provided.
  • An object is to provide a manufacturing method.
  • a synchronous rotor for a rotating electrical machine includes a cylindrical rotor core formed by stacking a plurality of arc-shaped core plates, and a permanent magnet embedded in the rotor core.
  • the arc-shaped core plate includes a magnet hole for inserting the permanent magnet opened on the outer peripheral side of the plate, a weld portion formed on the inner peripheral end of the plate, and the magnet hole. A through hole opened at a position between the welded portion and the radial direction.
  • a weld joint is formed on the inner peripheral surface of the rotor core by welding and joining a linear continuous weld formed continuously by the weld between the plurality of core plates stacked in the rotor axial direction.
  • the weld joint and the through hole are arranged on the same axis of a radial axis that connects the magnet hole and the center point of the rotor core in the radial direction.
  • the synchronous rotor for rotating electrical machines is configured by arranging the weld joint and the through hole on the same axis of the radial axis connecting the magnet hole and the center point of the rotor core in the radial direction. That is, in the synchronous rotor for rotating electrical machines, in addition to inserting a permanent magnet into the magnet hole, the continuous weld is joined by welding. At this time, by having a through hole, it is possible to reduce the diffusion (conduction) of heat generated in the welded portion, and to suppress the thermal strain deformation of the magnet hole and the outer diameter portion of the core plate. Even if welding is used, a synchronous rotor assembly having good dimensional accuracy, roundness, and magnet hole shape accuracy can be formed.
  • centrifugal rotor strength can be secured with a single synchronous rotor assembly by welding between the core plates, damage due to load input to the permanent magnets can be prevented. As a result, the durability reliability of the permanent magnet can be improved by ensuring the centrifugal strength of the rotor core.
  • FIG. 1 is an exploded perspective view of a synchronous rotor for a rotating electrical machine according to Embodiment 1.
  • FIG. 3 is a schematic plan view of an arc-shaped core plate that forms the rotor core according to the first embodiment. 3 is a schematic enlarged plan view of a welded portion of Example 1.
  • FIG. It is an assembly block diagram which has arrange
  • FIG. 6 is a process diagram for inserting a permanent magnet into the magnet hole of the first embodiment. 6 is a schematic enlarged plan view of a welded portion of Example 2. FIG. 6 is a schematic enlarged plan view of a welded portion of Example 3. FIG.
  • FIG. 1 is an exploded perspective view of a synchronous rotor for a rotating electrical machine according to a first embodiment.
  • the overall configuration will be described with reference to FIG. 1
  • the synchronous rotor 1 for a rotating electrical machine constitutes a motor together with a stator, and is applied, for example, as a travel drive source for an electric vehicle or a hybrid vehicle.
  • the rotating electrical machine synchronous rotor 1 has a cylindrical rotor core 2, a permanent magnet 3 embedded in the rotor core 2, and a rotor shaft 4 fitted into the rotor core 2.
  • the rotor core 2 is formed in a cylindrical shape having a plurality of arc-shaped core plates 2a (see FIGS. 2 and 3) arranged in an annular shape and by laminating the annularly arranged core plates 2a. Is formed.
  • the arc-shaped core plate 2a is made of an electromagnetic steel plate, and as shown in FIG. 2, the arc angle ⁇ 1 is 120 °, and has a magnet hole 3a, a welded portion 5, and a through hole 6. is doing. As shown in FIG. 2, four magnet holes 3a, welds 5, and through holes 6 are formed in the core plate 2a at regular intervals.
  • the magnet hole 3a is a hole for inserting the permanent magnet 3 opened on the outer peripheral side of the plate.
  • the shape of the magnet hole 3a is formed in a rectangular shape spreading in the circumferential direction.
  • the weld 5 is formed at the inner peripheral edge of the plate.
  • the welded part 5 has a concave surface 5a and a convex part 5b.
  • the concave surface 5a is formed to be recessed in the outer diameter direction from the inner peripheral surface 2IP of the core plate 2a.
  • the shape of the concave surface 5a is a curved surface as shown by the solid line and the broken line.
  • the convex portion 5b is formed on a part of the concave surface 5a so as to protrude from the concave surface 5a to the inner peripheral surface 2IP of the core plate 2a.
  • the shape of the convex part 5b is formed in a triangular shape.
  • the through hole 6 is opened at a position between the magnet hole 3a and the welded portion 5 in the radial direction, as shown in FIG.
  • the through hole 6 has a circular shape.
  • the welded portion 5 and the through hole 6 are arranged on the same axis line of the radial axis CL that connects the center point O of the core plate 2a and the center position in the circumferential direction of the magnet hole 3a in the radial direction. is doing. That is, the circumferential center positions of the magnet hole 3a, the welded portion 5, and the through hole 6 are arranged on the same axis line of the radial axis line CL. Similarly, the circumferential center positions of the concave surface 5a and the convex portion 5b are also arranged on the same axis line of the radial axis line CL.
  • the center point O of the core plate 2a is the same as the center point when the plurality of arc-shaped core plates 2a are annularly arranged. That is, since the rotor core 2 is formed by laminating the annularly arranged core plates 2a, the center point O of the core plate 2a is the same as the center point of the rotor core 2.
  • the inner peripheral surface 2IP of the core plate 2a and the inner peripheral surface 2IP of the rotor core 2 are the same for the same reason.
  • a plurality of such arc-shaped core plates 2 a are stacked to form a cylindrical rotor core 2.
  • a linear continuous welded portion 10 is formed which is continuous by the welded portions 5 between the plurality of core plates 2a stacked in the rotor axis Ax direction.
  • a weld bead 11 is formed by welding the continuous weld 10.
  • This welding joining may be performed by melting the base material, that is, the convex portion 5b of the welded portion 5 in the continuous welded portion 10, or may be performed by melting the convex portion 5b and the welding wire.
  • the amount of melting of the welding wire is such that it is within the concave surface 5a of the weld portion 5, that is, within the range from the concave surface 5a to the inner peripheral surface 2IP of the core plate 2a.
  • the rotor shaft 4 is formed in a cylindrical shape having a space inside. A rotation shaft (not shown) or the like is inserted into this inner space. The rotor shaft 4 is press-fitted into the rotor core 2 so that the rotor shaft 4 is fitted to the rotor core 2.
  • the operation of the rotating electrical machine synchronous rotor 1 according to the first embodiment will be described by dividing it into “a manufacturing operation of the rotating electrical machine synchronous rotor” and “a characteristic operation of the rotating electrical machine synchronous rotor”.
  • a method for manufacturing a synchronous rotor 1 for a rotating electrical machine including a synchronous rotor 1 having a cylindrical rotor core 2 formed by laminating a plurality of arc-shaped core plates 2a and a permanent magnet 3 embedded in the rotor core 2 is as follows.
  • each step will be described.
  • a magnet hole 3a for inserting the permanent magnet 3 opened on the outer peripheral side of the plate and an inner peripheral end of the plate are formed in the arc-shaped core plate 2a.
  • the welded portion 5 and the through-hole 6 opened at a position between the magnet hole 3a and the welded portion 5 in the radial direction are formed.
  • a plurality of arc-shaped core plates 2a are arranged in an annular shape. That is, as shown in FIG. 2, about three core plates 2a having an arc angle ⁇ 1 of 120 ° are used and arranged in an annular shape.
  • the cylindrical rotor core 2 is assembled by stacking the annular core plates 2a. That is, as shown in FIG. 5, the second layer core plate 2b is laminated on the first layer core plate 2a with the angle ⁇ 2 shifted by 30 ° clockwise relative to the first layer core plate 2a.
  • the third layer core plate 2c is laminated on the second layer core plate 2b while being shifted by 30 ° clockwise relative to the second layer core plate 2b.
  • the cylindrical rotor core 2 is formed by laminating the next layer so as to be shifted clockwise by 30 ° with respect to the previous layer, that is, straddling the joint between the core plates 2a of the previous layer. Is assembled.
  • this cylindrical rotor core for example, about 54 core plates 2a are used, and about 18 layers are laminated.
  • the continuous welded portion 10 and the through hole are formed on the same axis line of the radial axis CL that connects the center position in the circumferential direction of the magnet hole 3a and the center point of the rotor core 2 (center point of the core plate 2a) O in the radial direction.
  • the continuous welding part 10 is welded. Thereby, as shown in FIG. 7, the weld bead 11 is formed.
  • the synchronous rotor 1 for rotary electric machines can be manufactured by welding the welding part 5 between the several core plates 2a. .
  • a magnet insertion hole for inserting a magnet is formed, and a rotor core is formed by laminating a plurality of divided core plates provided with a plurality of convex portions on the inner peripheral side in a ring shape, and the magnet
  • a synchronous rotor in which a magnet is inserted into the insertion hole and the rotor shaft is fitted to the rotor core, that is, the divided core plates are coupled by a caulking structure is used as a comparative example.
  • the centrifugal strength of the rotor core is mainly held by the shear strength of the magnet (and the adhesive, etc.) in the circumferential direction of the rotor core.
  • the magnet holding strength is not sufficiently secured, and the durability reliability is lowered.
  • a plurality of laminated core plates are welded. In this case, the split core plates undergo thermal strain deformation due to heat generated by welding. For this reason, the rotor core as designed is not formed, and the rotor shaft cannot be fitted into the rotor core.
  • Example 1 since the convex part 5b can be welded intensively, the penetration width and depth of the weld bead 11 are constant (stable) and easy while minimizing the heat input during welding.
  • the joint strength of the rotor core 2 can be increased.
  • the anti-centrifugal strength can be ensured by welding joint between the core plates 2a by a single piece of the synchronous rotor 1 assembly, damage due to load input to the permanent magnet 3 is prevented. As a result, the durability reliability of the permanent magnet 3 can be improved by ensuring the centrifugal strength of the rotor core 2.
  • the heat generated in the continuous welded portion 10 is transferred to the magnet hole 3a and the outer diameter portion of the rotor core 2 through the through-hole 6 opened at a position between the magnet hole 3a and the welded portion 5 in the radial direction.
  • Heat diffusion conduction
  • thermal strain deformation of the magnet hole 3a and the outer diameter portion of the rotor core 2 can be suppressed.
  • the synchronous rotor 1 assembly having good dimensional accuracy, roundness, and magnet hole 3a shape accuracy can be formed.
  • the surface of the rotor shaft 4 may be a simple cylindrical shape as shown in FIG.
  • the arc-shaped core plate 2 a has the magnet hole 3 a, the welded portion 5, and the through hole 6, and the linear continuous welded portion 10 is welded to the inner peripheral surface 2 IP of the rotor core 2.
  • a joined weld bead 11 was formed, and a configuration in which the weld bead 11 and the through hole 6 were arranged on the same axis of the radial axis CL was adopted.
  • the continuous weld 10 is joined by welding.
  • the through-hole 6 it is possible to reduce the diffusion (conduction) of heat generated in the welded portion 5, and to suppress the thermal strain deformation of the magnet hole 3a and the outer diameter portion of the core plate 2a. Even if the core plates 2a are welded together, the synchronous rotor 1 assembly having good dimensional accuracy, roundness, and magnet hole shape accuracy can be formed. Further, since the centrifugal rotor 1 assembly can be secured by welding and joining between the core plates 2a, the damage due to the load input to the permanent magnet 3 can be prevented.
  • the durability reliability of the permanent magnet can be improved by securing the centrifugal strength of the rotor core 2.
  • a synchronous rotor 1 for a rotating electrical machine having a cylindrical rotor core 2 formed by laminating a plurality of arc-shaped core plates 2a, and a permanent magnet 3 embedded in the rotor core 2.
  • the arc-shaped core plate 2a includes a magnet hole 3a for inserting the permanent magnet 3 opened on the outer peripheral side of the plate, a welded portion 5 formed on the inner peripheral end of the plate, the magnet hole 3a and the welded portion.
  • a weld joint in which a linear continuous weld 10 formed continuously by the weld 5 between the plurality of core plates 2a laminated in the rotor axis Ax direction is welded to the inner peripheral surface 2IP of the rotor core 2. (Weld bead 11) is formed,
  • the weld joint (weld bead 11) and the through hole 6 are arranged on the same axis of a radial axis CL that connects the magnet hole 3a and the center point O of the rotor core 2 in the radial direction. For this reason, the durability reliability of a permanent magnet can be improved by ensuring the centrifugal strength of the rotor core 2.
  • the welded portion 5 includes a concave surface 5a formed to be recessed from the inner peripheral surface 2IP of the core plate 2a in the outer diameter direction, a part of the concave surface 5a, and the inner surface of the core plate 2a from the concave surface 5a. It was formed by the convex part 5b which protrudes in the range to the surrounding surface 2IP. For this reason, even if it welds between several core plates 2a, since the rotor core 2 with a sufficient dimensional accuracy, roundness, and magnet hole shape accuracy can be formed, a synchronous rotor 1 assembly can be formed. it can.
  • a synchronous rotor 1 for a rotating electrical machine which includes a cylindrical rotor core 2 formed by laminating a plurality of arc-shaped core plates 2a, and a permanent magnet 3 embedded in the rotor core 2.
  • a linear continuous welded portion 10 is formed on the peripheral surface 2IP by the welded portion 5 between the plurality of core plates 2a stacked in the rotor axis Ax direction, and the magnet hole 3a and the center point of the rotor core 2 are formed.
  • the synchronous rotor 1 assembly having good dimensional accuracy, roundness, and magnet hole 3a shape accuracy can be formed.
  • the manufacturing method of the synchronous rotor 1 for rotary electric machines which can achieve these two things can be provided.
  • the second embodiment is a modification of the convex portion 5 b and the through hole 6 of the welded portion 5. Based on FIG. 8, the configuration of the main part of the second embodiment will be described below.
  • the shape of the convex part 5b of the welding part 5 is formed in the rectangular shape as shown in FIG.
  • the through hole 6 is opened at a position between the magnet hole 3 a and the welded portion 5 in the radial direction.
  • Two holes are formed in series.
  • the two through holes 6 are both formed in a circular shape.
  • the hole diameters of the two through holes 6 are smaller than the hole diameters of the through holes 6 of the first embodiment.
  • the center positions in the circumferential direction of the convex portion 5b and the two through holes 6 are arranged on the same axis line of the radial axis line CL. Since other configurations are the same as those of the first embodiment, the corresponding components are denoted by the same reference numerals and description thereof is omitted.
  • the heat generated when the through-hole 6 is one by the two through-holes 6 that are opened at positions between the magnet hole 3a and the weld 5 in the radial direction.
  • the diffusion (conduction) of heat to the magnet hole 3a and the outer diameter part of the rotor core 2 can be suppressed more than (Example 1), and the thermal strain deformation of the magnet hole 3a and the outer diameter part of the rotor core 2 can be suppressed. .
  • the synchronous rotor 1 assembly having better dimensional accuracy, roundness and magnet hole 3a shape accuracy than in the first embodiment can be formed.
  • the hole diameter can be made smaller than in the case of a single through hole 6, so that the magnetic flux path can be secured.
  • the influence at the time of magnetic circuit formation can be made smaller than Example 1.
  • the third embodiment is a modification of the concave surface 5 a and the through hole 6 of the welded portion 5.
  • the configuration of the main part of the third embodiment will be described below based on FIG.
  • the concave surface 5a of the welded portion 5 has a flat shape as indicated by a solid line and a broken line.
  • the through-hole 6 is opened at a position between the magnet hole 3 a and the welded portion 5 in the radial direction.
  • Three holes are formed so as to cover the welded portion 5.
  • the three through holes 6 are formed in a circular shape. Further, the diameters of the three through holes 6 are smaller than the diameters of the through holes 6 of the first embodiment.
  • the center position in the circumferential direction of the central through hole 6a among the convex portion 5b and the three through holes 6 is arranged on the same axis line as the radial axis CL. Since other configurations are the same as those of the first embodiment, the corresponding components are denoted by the same reference numerals and description thereof is omitted.
  • the heat generated when the continuous welded portion 10 is welded joins the three through holes 6 at positions between the magnet hole 3a and the welded portion 5 in the radial direction, and the three through holes 6 are welded. Since the hole is formed so as to cover the portion 5, the diffusion (conduction) of heat to the outer diameter portion of the magnet hole 3a and the rotor core 2 can be suppressed as compared with the case where there are two through holes 6 (Example 2). The thermal strain deformation of the magnet hole 3a and the outer diameter portion of the rotor core 2 can be suppressed.
  • the synchronous rotor 1 assembly can be formed with better dimensional accuracy, roundness and magnet hole 3a shape accuracy than in the second embodiment.
  • the hole diameter can be made smaller than in the case where there is one through hole 6, so that the magnetic flux path can be secured. Thereby, the influence at the time of magnetic circuit formation can be made smaller than Example 1. It should be noted that only the operation of the through-holes of the first embodiment and the third embodiment is different, and the other operations are the same as those of the first embodiment, and thus description thereof is omitted.
  • Example 1 to 3 four magnet holes 3a, welds 5 and through holes 6 were formed at equal intervals in the configuration of one core plate 2a.
  • the configuration of the single core plate 2a is not limited to the configurations shown in the first to third embodiments, and the magnet hole 3a, the welded portion 5, and the through hole 6 may be formed at equal intervals. Since it is good, less than four or more may be formed respectively.
  • the number of core plates 2a constituting each layer is three.
  • the number of core plates 2a constituting each layer is not limited to the configuration shown in the first to third embodiments, and may be smaller or larger than three.
  • the angle ⁇ 1 and the angle ⁇ 2 of the arc are changed according to the number of core plates 2a constituting each layer.
  • the angle ⁇ 2 was set to 30 ° and shifted clockwise.
  • the angle ⁇ 2 is not limited to the configuration shown in the first to third embodiments, and the next layer may be laminated so as to straddle the joint between the core plates 2a of the previous layer. It does not have to be °.
  • the welded portion 5 and the through-hole 6 are arranged on the same axis line of the radial axis CL at the center position in the circumferential direction thereof.
  • the arrangement of the welded portion 5 and the through hole 6 is not limited to the configuration shown in the first to third embodiments. That is, since the welded part 5 and the through-hole 6 should just be arrange
  • the shape of the magnet hole 3a was formed in a rectangular shape that expanded in the circumferential direction, and the number thereof was one on the same axis line of the radial axis CL.
  • the shape and number of the magnet holes 3a are not limited to the configurations shown in the first to third embodiments.
  • the shape may be an elliptical shape, a rhombus shape, a trapezoidal shape, or the like, and the number thereof may be two or more holes per one radial axis CL.
  • the concave surface 5a of the welded portion 5 was formed into a curved surface or a flat surface, and the shape of the convex portion 5b was formed into a triangular shape or a rectangular shape.
  • the shapes of the concave surface 5a and the convex portion 5b of the welded portion 5 are not limited to the configurations shown in the first to third embodiments.
  • the concave surface 5a may have a shape that combines a curved surface and a flat surface
  • the convex portion 5b may have a circular shape, an elliptical shape, a rhombus shape, a trapezoidal shape, or the like.
  • the shape of the through hole 6 was formed in a circular shape, and the number of the through holes 6 was 1 to 3 at a position between the magnet hole 3a and the welded portion 5 in the radial direction.
  • the shape and number of the through holes 6 are not limited to the configurations shown in the first to third embodiments.
  • the shape and number of the through holes 6 may be formed so that the magnetic flux path can be secured most with respect to the permanent magnets 3 and the magnet holes 3a to be applied.
  • the size of the through hole 6 (shown as the hole diameter in Examples 1 to 3) may be changed according to the shape and number of the through holes 6.
  • the shape may be a rectangular shape, an elliptical shape, a rhombus shape, a trapezoidal shape, or the like, and the number thereof is four or more (plural) holes at a position between the magnet hole 3a and the welded portion 5 in the radial direction. It may be perforated.
  • the circumferential center position of at least one through hole 6 is arranged to coincide with the radial axis CL.
  • the rotor shaft 4 was fitted into the rotor core 2 by press-fitting the rotor shaft 4 into the rotor core 2.
  • the configuration is not limited to those shown in the first to third embodiments.
  • general key engagement may be used in addition to press-fitting. That is, one or several key grooves may be formed on the inner peripheral surface 2IP of the rotor core 2 and the outer peripheral surface of the rotor shaft 4, and a key may be inserted into the key groove to prevent rotation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

 To provide a synchronous rotor for a rotary electrical machine, and a method for manufacturing a synchronous rotor for a rotary electrical machine, in which sufficient resistance to centrifugal force is imparted to a rotor core, whereby the endurance reliability of a permanent magnet can be improved. A synchronous rotor (1) for a rotary electrical machine in which a permanent magnet (3) is embedded in a cylindrical rotor core (2) formed by stacking a plurality of arc-shaped core plates (2a), wherein each of the core plates (2a) has: a magnet hole (3a), formed on the outer circumference side of the plate, for inserting the permanent magnet (3); a weld part (5) formed on the inner circumferential edge of the plate; and a through hole (6) formed at a position radially between the magnet hole (3a) and the weld part (5). A weld bead (11), obtained by welding together a linear continuous weld part (10) formed continuously by the weld parts (5) between the plurality of core plates (2a) stacked in the rotor axis (Ax) direction, is formed on the inner circumferential surface (2IP) of the rotor core (2). The weld bead (11) and the through hole (6) are disposed on a radial axial line (CL) radially joining the magnet hole (3a) and the center point (O) of the rotor core (2).

Description

回転電機用同期ロータと回転電機用同期ロータの製造方法Synchronous rotor for rotating electrical machine and method for manufacturing synchronized rotor for rotating electrical machine
 本発明は、複数の円弧状のコアプレートを積層することにより形成した円筒状のロータコアと、このロータコアに埋め込む永久磁石と、を有する回転電機用同期ロータに関する。 The present invention relates to a synchronous rotor for a rotating electrical machine having a cylindrical rotor core formed by stacking a plurality of arc-shaped core plates and a permanent magnet embedded in the rotor core.
 回転電機の同期ロータとしては、複数の分割コアプレートをリング状に配置しながら積層して成形されるロータコアと、このロータコアに嵌挿されるシャフトと、その分割コアプレートに形成された磁石挿入孔に挿入された磁石と、を備えている。そして、従来、同期ロータとしては、分割コアプレートの内周側には複数の凸部が設けられ、ロータコアは、該ロータコアの軸方向に沿ってその凸部の側端部が交互に凹凸して積層され、そのロータコアにロータシャフトが嵌合されている。すなわち、かしめ構造により、分割コアプレート間が結合されているものが知られている(例えば、特許文献1参照)。 As a synchronous rotor of a rotating electrical machine, a rotor core formed by laminating a plurality of divided core plates arranged in a ring shape, a shaft fitted into the rotor core, and a magnet insertion hole formed in the divided core plate And an inserted magnet. Conventionally, as a synchronous rotor, a plurality of convex portions are provided on the inner peripheral side of the divided core plate, and the rotor core has uneven side edges of the convex portions alternately along the axial direction of the rotor core. The rotor shaft is laminated, and the rotor shaft is fitted to the rotor core. That is, a structure in which the divided core plates are coupled by a caulking structure is known (see, for example, Patent Document 1).
特開2009-060738号公報JP 2009-0660738
 しかしながら、従来の回転電機用同期ロータにあっては、ロータコアの耐遠心強度、すなわちコア円環剛性を、主にロータコアの周方向における磁石(と接着剤等)のせん断強度で保持する構成となっている。このため、磁石の保持強度が十分に確保されず、耐久信頼性が低下する、という問題が生じていた。 However, the conventional synchronous rotor for rotating electrical machines has a configuration in which the anti-centrifugal strength of the rotor core, that is, the core annular rigidity is maintained mainly by the shear strength of the magnet (and the adhesive, etc.) in the circumferential direction of the rotor core. ing. For this reason, the holding | maintenance intensity | strength of a magnet was not fully ensured but the problem that durability reliability fell occurred.
 本発明は、上記問題に着目してなされたもので、ロータコアの耐遠心強度を確保することで、永久磁石の耐久信頼性を向上することができる回転電機用同期ロータと回転電機用同期ロータの製造方法を提供することを目的とする。 The present invention has been made by paying attention to the above-mentioned problem. By ensuring the anti-centrifugal strength of the rotor core, the rotating electrical machine synchronous rotor and the rotating electrical machine synchronous rotor capable of improving the durability reliability of the permanent magnet are provided. An object is to provide a manufacturing method.
 上記目的を達成するため、本発明の回転電機用同期ロータは、複数の円弧状のコアプレートを積層することにより形成した円筒状のロータコアと、前記ロータコアに埋め込む永久磁石と、を有している。
この回転電機用同期ロータにおいて、前記円弧状のコアプレートは、プレート外周側に開穴した前記永久磁石を挿入するための磁石穴と、プレート内周端に形成した溶接部と、前記磁石穴と前記溶接部との径方向の間の位置に開穴した貫通穴と、を有する。
前記ロータコアの内周面に、ロータ軸方向に積層した前記複数のコアプレート間の前記溶接部により連続して形成される直線状の連続溶接部を溶接接合した溶接接合部を形成する。
前記磁石穴と前記ロータコアの中心点とを径方向に結ぶ径方向軸線の同一軸線上に、前記溶接接合部及び前記貫通穴を配置した。
In order to achieve the above object, a synchronous rotor for a rotating electrical machine according to the present invention includes a cylindrical rotor core formed by stacking a plurality of arc-shaped core plates, and a permanent magnet embedded in the rotor core. .
In the synchronous rotor for a rotating electrical machine, the arc-shaped core plate includes a magnet hole for inserting the permanent magnet opened on the outer peripheral side of the plate, a weld portion formed on the inner peripheral end of the plate, and the magnet hole. A through hole opened at a position between the welded portion and the radial direction.
A weld joint is formed on the inner peripheral surface of the rotor core by welding and joining a linear continuous weld formed continuously by the weld between the plurality of core plates stacked in the rotor axial direction.
The weld joint and the through hole are arranged on the same axis of a radial axis that connects the magnet hole and the center point of the rotor core in the radial direction.
 よって、磁石穴とロータコアの中心点とを径方向に結ぶ径方向軸線の同一軸線上に、溶接接合部及び貫通穴を配置して回転電機用同期ロータが構成されている。
すなわち、回転電機用同期ロータにおいて、磁石穴に永久磁石を挿入することに加え、連続溶接部が溶接により接合される。このとき、貫通穴を有することで、溶接部で発生する熱の拡散(伝導)を小さくし、コアプレートの磁石穴及び外径部の熱歪変形を抑制することができるため、コアプレート間を溶接接合しても、径寸法精度や真円度、磁石穴形状精度が良好な同期ロータ組立体を形成することができる。また、コアプレート間は溶接接合により同期ロータ組立体単品で耐遠心強度を確保することができるため、永久磁石への荷重入力による破損等が防止される。
この結果、ロータコアの耐遠心強度を確保することで、永久磁石の耐久信頼性を向上することができる。
Therefore, the synchronous rotor for rotating electrical machines is configured by arranging the weld joint and the through hole on the same axis of the radial axis connecting the magnet hole and the center point of the rotor core in the radial direction.
That is, in the synchronous rotor for rotating electrical machines, in addition to inserting a permanent magnet into the magnet hole, the continuous weld is joined by welding. At this time, by having a through hole, it is possible to reduce the diffusion (conduction) of heat generated in the welded portion, and to suppress the thermal strain deformation of the magnet hole and the outer diameter portion of the core plate. Even if welding is used, a synchronous rotor assembly having good dimensional accuracy, roundness, and magnet hole shape accuracy can be formed. Further, since the centrifugal rotor strength can be secured with a single synchronous rotor assembly by welding between the core plates, damage due to load input to the permanent magnets can be prevented.
As a result, the durability reliability of the permanent magnet can be improved by ensuring the centrifugal strength of the rotor core.
実施例1の回転電機用同期ロータの分解斜視図である。1 is an exploded perspective view of a synchronous rotor for a rotating electrical machine according to Embodiment 1. FIG. 実施例1のロータコアを形成する円弧状のコアプレートの概略平面図である。FIG. 3 is a schematic plan view of an arc-shaped core plate that forms the rotor core according to the first embodiment. 実施例1の溶接部の概略拡大平面図である。3 is a schematic enlarged plan view of a welded portion of Example 1. FIG. 実施例1の複数の円弧上のコアプレートを環状に配置した組み立て構成図である。It is an assembly block diagram which has arrange | positioned the core plate on the some circular arc of Example 1 cyclically | annularly. 実施例1の複数の円弧上のコアプレートを積層してロータコアを組み立てる構成図である。It is a block diagram which laminates | stacks the core plate on the some circular arc of Example 1, and assembles a rotor core. 実施例1の連続溶接部を形成したロータ溶接接合工程図である。It is a rotor welding joining process figure in which the continuous welding part of Example 1 was formed. 実施例1の磁石穴に永久磁石を挿入する工程図である。FIG. 6 is a process diagram for inserting a permanent magnet into the magnet hole of the first embodiment. 実施例2の溶接部の概略拡大平面図である。6 is a schematic enlarged plan view of a welded portion of Example 2. FIG. 実施例3の溶接部の概略拡大平面図である。6 is a schematic enlarged plan view of a welded portion of Example 3. FIG.
 以下、本発明の回転電機用同期ロータを実現する最良の形態を、図面に示す実施例1~実施例3に基づいて説明する。 Hereinafter, the best mode for realizing a synchronous rotor for a rotating electrical machine according to the present invention will be described based on Examples 1 to 3 shown in the drawings.
 まず、構成を説明する。
図1は、実施例1の回転電機用同期ロータの分解斜視図であって、以下、図1に基づき全体構成を説明する。
First, the configuration will be described.
FIG. 1 is an exploded perspective view of a synchronous rotor for a rotating electrical machine according to a first embodiment. Hereinafter, the overall configuration will be described with reference to FIG.
 実施例1の回転電機用同期ロータ1は、ステータと共にモータを構成するものであり、例えば電気自動車やハイブリッド車両の走行駆動源として適用されるものである。 The synchronous rotor 1 for a rotating electrical machine according to the first embodiment constitutes a motor together with a stator, and is applied, for example, as a travel drive source for an electric vehicle or a hybrid vehicle.
 前記回転電機用同期ロータ1は、円筒状のロータコア2と、ロータコア2に埋め込む永久磁石3と、ロータコア2に嵌合するロータシャフト4と、を有している。 The rotating electrical machine synchronous rotor 1 has a cylindrical rotor core 2, a permanent magnet 3 embedded in the rotor core 2, and a rotor shaft 4 fitted into the rotor core 2.
 前記ロータコア2は、複数の円弧状のコアプレート2a(図2及び図3参照)を環状に配置すると共に、環状に配置した該コアプレート2aを積層することにより、内側に空間を持つ円筒状に形成されている。 The rotor core 2 is formed in a cylindrical shape having a plurality of arc-shaped core plates 2a (see FIGS. 2 and 3) arranged in an annular shape and by laminating the annularly arranged core plates 2a. Is formed.
 前記円弧状のコアプレート2aは、電磁鋼板からなり、図2に示すように、円弧の角度θ1が120°となっていて、磁石穴3aと、溶接部5と、貫通穴6と、を有している。このコアプレート2aには、図2に示すように、磁石穴3a、溶接部5及び貫通穴6のそれぞれが、等間隔に4つずつ形成されている。 The arc-shaped core plate 2a is made of an electromagnetic steel plate, and as shown in FIG. 2, the arc angle θ1 is 120 °, and has a magnet hole 3a, a welded portion 5, and a through hole 6. is doing. As shown in FIG. 2, four magnet holes 3a, welds 5, and through holes 6 are formed in the core plate 2a at regular intervals.
 前記磁石穴3aは、図2に示すように、プレート外周側に開穴した永久磁石3を挿入するための穴となっている。この磁石穴3aの形状は、周方向に広がった矩形形状に形成されている。 As shown in FIG. 2, the magnet hole 3a is a hole for inserting the permanent magnet 3 opened on the outer peripheral side of the plate. The shape of the magnet hole 3a is formed in a rectangular shape spreading in the circumferential direction.
 前記溶接部5は、図3に示すように、プレート内周端に形成されている。この溶接部5は、凹面5aと、凸部5bと、を有している。
前記凹面5aは、コアプレート2aの内周面2IPから外径方向に凹んで形成されている。凹面5aの形状は、実線と破線にて示したように曲面形状に形成されている。
前記凸部5bは、凹面5aの一部に、凹面5aからコアプレート2aの内周面2IPまでの範囲にて突出するように形成されている。凸部5bの形状は、三角形状に形成されている。
As shown in FIG. 3, the weld 5 is formed at the inner peripheral edge of the plate. The welded part 5 has a concave surface 5a and a convex part 5b.
The concave surface 5a is formed to be recessed in the outer diameter direction from the inner peripheral surface 2IP of the core plate 2a. The shape of the concave surface 5a is a curved surface as shown by the solid line and the broken line.
The convex portion 5b is formed on a part of the concave surface 5a so as to protrude from the concave surface 5a to the inner peripheral surface 2IP of the core plate 2a. The shape of the convex part 5b is formed in a triangular shape.
 前記貫通穴6は、図3に示すように、磁石穴3aと溶接部5との径方向の間の位置に開穴されている。この貫通穴6の形状は、円形状に形成されている。 The through hole 6 is opened at a position between the magnet hole 3a and the welded portion 5 in the radial direction, as shown in FIG. The through hole 6 has a circular shape.
 図2に示すように、コアプレート2aの中心点Oと、磁石穴3aの周方向の中心位置とを径方向に結ぶ径方向軸線CLの同一軸線上に、溶接部5及び貫通穴6を配置している。すなわち、磁石穴3a、溶接部5及び貫通穴6のそれぞれの周方向の中心位置を、径方向軸線CLの同一軸線上に配置している。同様に、凹面5a及び凸部5bのそれぞれの周方向の中心位置も、径方向軸線CLの同一軸線上に配置している。
ここで、コアプレート2aの中心点Oは、複数の円弧状のコアプレート2aを環状に配置したときの中心点と同一となる。すなわち、この環状に配置した該コアプレート2aを積層することによりロータコア2が形成されるので、コアプレート2aの中心点Oは、ロータコア2の中心点と同一となる。なお、コアプレート2aの内周面2IP及びロータコア2の内周面2IPも同様の理由により同一となる。
As shown in FIG. 2, the welded portion 5 and the through hole 6 are arranged on the same axis line of the radial axis CL that connects the center point O of the core plate 2a and the center position in the circumferential direction of the magnet hole 3a in the radial direction. is doing. That is, the circumferential center positions of the magnet hole 3a, the welded portion 5, and the through hole 6 are arranged on the same axis line of the radial axis line CL. Similarly, the circumferential center positions of the concave surface 5a and the convex portion 5b are also arranged on the same axis line of the radial axis line CL.
Here, the center point O of the core plate 2a is the same as the center point when the plurality of arc-shaped core plates 2a are annularly arranged. That is, since the rotor core 2 is formed by laminating the annularly arranged core plates 2a, the center point O of the core plate 2a is the same as the center point of the rotor core 2. The inner peripheral surface 2IP of the core plate 2a and the inner peripheral surface 2IP of the rotor core 2 are the same for the same reason.
 このような円弧状のコアプレート2aを複数積層して、円筒状のロータコア2が形成されている。
この形成されたロータコア2の内周面2IPに、ロータ軸Ax方向に積層した複数のコアプレート2a間の溶接部5により連続する直線状の連続溶接部10が形成される。
A plurality of such arc-shaped core plates 2 a are stacked to form a cylindrical rotor core 2.
On the inner peripheral surface 2IP of the rotor core 2 thus formed, a linear continuous welded portion 10 is formed which is continuous by the welded portions 5 between the plurality of core plates 2a stacked in the rotor axis Ax direction.
 この連続溶接部10を、溶接接合することにより、溶接ビード11(溶接接合部)が形成される。
この溶接接合は、母材、すなわち、連続溶接部10における溶接部5の凸部5bを溶融することにより行ってもよいし、その凸部5bと溶接ワイヤを溶融することにより行ってもよい。この溶接ワイヤの溶融量は、溶接部5の凹面5a内、すなわち、凹面5aからコアプレート2aの内周面2IPまでの範囲に収まる程度の量となっている。
A weld bead 11 (weld joint) is formed by welding the continuous weld 10.
This welding joining may be performed by melting the base material, that is, the convex portion 5b of the welded portion 5 in the continuous welded portion 10, or may be performed by melting the convex portion 5b and the welding wire. The amount of melting of the welding wire is such that it is within the concave surface 5a of the weld portion 5, that is, within the range from the concave surface 5a to the inner peripheral surface 2IP of the core plate 2a.
 前記ロータシャフト4は、内側に空間を持つ円筒状に形成されている。この内側の空間には、不図示の回転軸などが挿入される。このロータシャフト4は、ロータコア2に対して圧入されることにより、ロータコア2にロータシャフト4が嵌合される。 The rotor shaft 4 is formed in a cylindrical shape having a space inside. A rotation shaft (not shown) or the like is inserted into this inner space. The rotor shaft 4 is press-fitted into the rotor core 2 so that the rotor shaft 4 is fitted to the rotor core 2.
 次に、作用を説明する。
  実施例1の回転電機用同期ロータ1における作用を、「回転電機用同期ロータの製造作用」、「回転電機用同期ロータの特徴的作用」に分けて説明する。
Next, the operation will be described.
The operation of the rotating electrical machine synchronous rotor 1 according to the first embodiment will be described by dividing it into “a manufacturing operation of the rotating electrical machine synchronous rotor” and “a characteristic operation of the rotating electrical machine synchronous rotor”.
 [回転電機用同期ロータの製造作用]
  図2、図4~図7に基づき、本発明の回転電機用同期ロータの製造作用を説明する。
複数の円弧状のコアプレート2aを積層することにより形成した円筒状のロータコア2と、ロータコア2に埋め込む永久磁石3と、を有する同期ロータ1を備えた回転電機用同期ロータ1の製造方法は、コアプレート成形工程と、ロータコア組み立て工程と、ロータ溶接接合工程と、永久磁石挿入工程と、を有している。以下、各工程について説明する。
[Manufacturing action of synchronous rotor for rotating electrical machine]
Based on FIG. 2 and FIG. 4 to FIG. 7, the operation of manufacturing the synchronous rotor for a rotating electrical machine according to the present invention will be described.
A method for manufacturing a synchronous rotor 1 for a rotating electrical machine including a synchronous rotor 1 having a cylindrical rotor core 2 formed by laminating a plurality of arc-shaped core plates 2a and a permanent magnet 3 embedded in the rotor core 2 is as follows. A core plate forming step, a rotor core assembling step, a rotor welding joining step, and a permanent magnet insertion step; Hereinafter, each step will be described.
 (コアプレート成形工程)
  前記コアプレート成形工程では、図2に示すように、円弧状のコアプレート2aに、プレート外周側に開穴された永久磁石3を挿入するための磁石穴3aと、プレート内周端に形成された溶接部5と、磁石穴3aと溶接部5との径方向の間の位置に開穴された貫通穴6と、が成形される。
(Core plate forming process)
In the core plate forming step, as shown in FIG. 2, a magnet hole 3a for inserting the permanent magnet 3 opened on the outer peripheral side of the plate and an inner peripheral end of the plate are formed in the arc-shaped core plate 2a. The welded portion 5 and the through-hole 6 opened at a position between the magnet hole 3a and the welded portion 5 in the radial direction are formed.
 (ロータコア組み立て工程)
  前記ロータコア組み立て工程では、図4に示すように、複数の円弧状のコアプレート2aを、環状に配置される。すなわち、図2に示すように、円弧の角度θ1が120°のコアプレート2aを3枚ほど使用して、環状に配置される。なお、図5において、この環状に配置されたコアプレート2aを第1層とする。
この環状に配置したコアプレート2aを積層して円筒状のロータコア2が組み立てられる。すなわち、図5に示すように、第1層コアプレート2aの上に、第1層コアプレート2aに対し右回りに角度θ2を30°ずらして、第2層コアプレート2bが積層される。
続いて、図5に示すように、第2層コアプレート2bの上に、第2層コアプレート2bに対し右回りに30°ずらして、第3層コアプレート2cが積層される。
このように、前の層に対し右回りに30°ずらして、つまり、前の層のコアプレート2a間の継ぎ目をまたぐように、次の層が積層されていくことにより、円筒状のロータコア2が組み立てられる。この円筒状のロータコア2を組み立てるのに、例えば、コアプレート2aを54枚ほど用いて、18層ほど積層される。
(Rotor core assembly process)
In the rotor core assembling step, as shown in FIG. 4, a plurality of arc-shaped core plates 2a are arranged in an annular shape. That is, as shown in FIG. 2, about three core plates 2a having an arc angle θ1 of 120 ° are used and arranged in an annular shape. In addition, in FIG. 5, let this core plate 2a arrange | positioned annularly be a 1st layer.
The cylindrical rotor core 2 is assembled by stacking the annular core plates 2a. That is, as shown in FIG. 5, the second layer core plate 2b is laminated on the first layer core plate 2a with the angle θ2 shifted by 30 ° clockwise relative to the first layer core plate 2a.
Subsequently, as shown in FIG. 5, the third layer core plate 2c is laminated on the second layer core plate 2b while being shifted by 30 ° clockwise relative to the second layer core plate 2b.
As described above, the cylindrical rotor core 2 is formed by laminating the next layer so as to be shifted clockwise by 30 ° with respect to the previous layer, that is, straddling the joint between the core plates 2a of the previous layer. Is assembled. For assembling this cylindrical rotor core 2, for example, about 54 core plates 2a are used, and about 18 layers are laminated.
 (ロータ溶接接合工程)
  前記ロータ溶接接合工程では、ロータコア2のロータ軸Ax方向に積層した複数のコアプレート2a間の磁石穴3aが、ロータ軸Ax方向に連通するように位置合わせが行われる。すなわち、連通している磁石穴3aに永久磁石3を挿入することができるように、位置合わせが行われる(図6参照)。なお、この位置合わせは、治具を用いて行われる。
この位置合わせが行われたロータコア2の内周面2IPに、図6に示すように、ロータ軸Ax方向に積層した複数のコアプレート2a間の溶接部5により連続する直線状の連続溶接部10が形成される。
次に、磁石穴3aの周方向の中心位置とロータコア2の中心点(コアプレート2aの中心点)Oとを径方向に結ぶ径方向軸線CLの同一軸線上に、連続溶接部10及び貫通穴6が配置された状態にて、連続溶接部10が溶接接合される。これにより、図7に示すように、溶接ビード11が形成される。
(Rotor welding joining process)
In the rotor welding joining process, alignment is performed so that the magnet holes 3a between the plurality of core plates 2a stacked in the rotor axis Ax direction of the rotor core 2 communicate with each other in the rotor axis Ax direction. That is, alignment is performed so that the permanent magnet 3 can be inserted into the communicating magnet hole 3a (see FIG. 6). This alignment is performed using a jig.
As shown in FIG. 6, the linear continuous welded portion 10 that is continuous by the welded portions 5 between the plurality of core plates 2 a stacked in the rotor axis Ax direction on the inner peripheral surface 2IP of the rotor core 2 that has been aligned. Is formed.
Next, the continuous welded portion 10 and the through hole are formed on the same axis line of the radial axis CL that connects the center position in the circumferential direction of the magnet hole 3a and the center point of the rotor core 2 (center point of the core plate 2a) O in the radial direction. In the state where 6 is arranged, the continuous welding part 10 is welded. Thereby, as shown in FIG. 7, the weld bead 11 is formed.
 (永久磁石挿入工程)
  前記永久磁石挿入工程では、位置合わせが行われ、溶接接合された後、図7に示すように、その連通している磁石穴3aに永久磁石3が挿入されていく。
このように製造されたロータコア2に対して、ロータシャフト4が圧入されることにより、ロータコア2にロータシャフト4が嵌合される。
(Permanent magnet insertion process)
In the permanent magnet insertion step, after alignment and welding and joining, as shown in FIG. 7, the permanent magnet 3 is inserted into the communicating magnet hole 3a.
The rotor shaft 4 is fitted into the rotor core 2 by press-fitting the rotor shaft 4 into the rotor core 2 thus manufactured.
 以上の工程を経過し、磁石穴3aに永久磁石3を挿入することに加え、複数のコアプレート2a間の溶接部5を溶接接合することにより、回転電機用同期ロータ1を製造することができる。 After passing through the above process, in addition to inserting the permanent magnet 3 into the magnet hole 3a, the synchronous rotor 1 for rotary electric machines can be manufactured by welding the welding part 5 between the several core plates 2a. .
 例えば、磁石を挿入する磁石挿入孔が形成され、内周側に複数の凸部が設けられた複数の分割コアプレートをリング状に配置しながら積層して成形されるロータコアを形成し、その磁石挿入孔に磁石を挿入し、そのロータコアにロータシャフトが嵌合された、すなわち、かしめ構造により、分割コアプレート間が結合された同期ロータを比較例とする。この比較例の同期ロータによれば、ロータコアの耐遠心強度は、主にロータコアの周方向における磁石(と接着剤等)のせん断強度で保持する構成となっている。 For example, a magnet insertion hole for inserting a magnet is formed, and a rotor core is formed by laminating a plurality of divided core plates provided with a plurality of convex portions on the inner peripheral side in a ring shape, and the magnet A synchronous rotor in which a magnet is inserted into the insertion hole and the rotor shaft is fitted to the rotor core, that is, the divided core plates are coupled by a caulking structure is used as a comparative example. According to the synchronous rotor of this comparative example, the centrifugal strength of the rotor core is mainly held by the shear strength of the magnet (and the adhesive, etc.) in the circumferential direction of the rotor core.
 しかし、磁石のせん断強度のみでは、磁石の保持強度が十分に確保されず、耐久信頼性が低下する。また、一般的に、ロータコアの耐遠心強度を向上させるためには、積層した複数の分割コアプレートを溶接するが、これでは、溶接にて発生する熱により、分割コアプレートが熱歪変形する。このため、設計通りのロータコアが形成されないばかりか、ロータコアにロータシャフトを嵌合することができない。 However, only with the shear strength of the magnet, the magnet holding strength is not sufficiently secured, and the durability reliability is lowered. In general, in order to improve the centrifugal strength of the rotor core, a plurality of laminated core plates are welded. In this case, the split core plates undergo thermal strain deformation due to heat generated by welding. For this reason, the rotor core as designed is not formed, and the rotor shaft cannot be fitted into the rotor core.
 このように、磁石の保持強度が十分に確保されず、耐久信頼性が低下するという課題があった。また、耐久信頼性の低下とともに、部品精度(ロータコア積層精度)の低下による組立性及び歩留りも悪化するという課題もあった。 As described above, there is a problem that the holding strength of the magnet is not sufficiently secured and the durability reliability is lowered. Further, there is a problem that assembling property and yield are deteriorated due to a decrease in component accuracy (rotor core stacking accuracy) along with a decrease in durability reliability.
 これに対し、実施例1では、凸部5bを集中的に溶接することができるので、溶接時の入熱量を最小限としながら、溶接ビード11の溶け込み幅及び深さを一定(安定)且つ容易に調整することができ、ロータコア2の接合強度を高めることができる。加えて、コアプレート2a間は溶接接合により同期ロータ1組立体単品で耐遠心強度を確保することができるため、永久磁石3への荷重入力による破損等が防止される。
この結果、ロータコア2の耐遠心強度を確保することで、永久磁石3の耐久信頼性を向上することができる。
On the other hand, in Example 1, since the convex part 5b can be welded intensively, the penetration width and depth of the weld bead 11 are constant (stable) and easy while minimizing the heat input during welding. The joint strength of the rotor core 2 can be increased. In addition, since the anti-centrifugal strength can be ensured by welding joint between the core plates 2a by a single piece of the synchronous rotor 1 assembly, damage due to load input to the permanent magnet 3 is prevented.
As a result, the durability reliability of the permanent magnet 3 can be improved by ensuring the centrifugal strength of the rotor core 2.
 しかも、連続溶接部10にて発生する熱は、磁石穴3aと溶接部5との径方向の間の位置に開穴されている貫通穴6により、磁石穴3a及びロータコア2の外径部への熱の拡散(伝導)が抑えられ、磁石穴3a及びロータコア2の外径部の熱歪変形を抑制することができる。 Moreover, the heat generated in the continuous welded portion 10 is transferred to the magnet hole 3a and the outer diameter portion of the rotor core 2 through the through-hole 6 opened at a position between the magnet hole 3a and the welded portion 5 in the radial direction. Heat diffusion (conduction) is suppressed, and thermal strain deformation of the magnet hole 3a and the outer diameter portion of the rotor core 2 can be suppressed.
 この結果、複数のコアプレート2a間を溶接しても、径寸法精度、真円度及び磁石穴3a形状精度が良好な同期ロータ1組立体を形成することができる。 As a result, even if the plurality of core plates 2a are welded, the synchronous rotor 1 assembly having good dimensional accuracy, roundness, and magnet hole 3a shape accuracy can be formed.
 加えて、溶接ビード11は、溶接部5の凹面5a内に収まるので、ロータコア2に合わせてロータシャフト4を加工する手間が不要となる。すなわち、ロータシャフト4面は、図1に示すように、単純な円筒形状で良い。 In addition, since the weld bead 11 is accommodated in the concave surface 5a of the welded portion 5, there is no need to process the rotor shaft 4 according to the rotor core 2. That is, the surface of the rotor shaft 4 may be a simple cylindrical shape as shown in FIG.
 [回転電機用同期ロータの特徴的作用]
  実施例1では、円弧状のコアプレート2aに、磁石穴3aと、溶接部5と、貫通穴6と、を有し、ロータコア2の内周面2IPに、直線状の連続溶接部10を溶接接合した溶接ビード11を形成し、径方向軸線CLの同一軸線上に溶接ビード11及び貫通穴6が配置した構成を採用した。
[Characteristic action of synchronous rotor for rotating electrical machines]
In the first embodiment, the arc-shaped core plate 2 a has the magnet hole 3 a, the welded portion 5, and the through hole 6, and the linear continuous welded portion 10 is welded to the inner peripheral surface 2 IP of the rotor core 2. A joined weld bead 11 was formed, and a configuration in which the weld bead 11 and the through hole 6 were arranged on the same axis of the radial axis CL was adopted.
 すなわち、回転電機用同期ロータ1において、磁石穴3aに永久磁石3を挿入することに加え、連続溶接部10が溶接により接合される。このとき、貫通穴6を有することで、溶接部5で発生する熱の拡散(伝導)を小さくし、コアプレート2aの磁石穴3a及び外径部の熱歪変形を抑制することができるため、コアプレート2a間を溶接接合しても、径寸法精度や真円度、磁石穴形状精度が良好な同期ロータ1組立体を形成することができる。また、コアプレート2a間は溶接接合により同期ロータ1組立体単品で耐遠心強度を確保することができるため、永久磁石3への荷重入力による破損等が防止される。 That is, in the synchronous rotor 1 for a rotating electrical machine, in addition to inserting the permanent magnet 3 into the magnet hole 3a, the continuous weld 10 is joined by welding. At this time, by having the through-hole 6, it is possible to reduce the diffusion (conduction) of heat generated in the welded portion 5, and to suppress the thermal strain deformation of the magnet hole 3a and the outer diameter portion of the core plate 2a. Even if the core plates 2a are welded together, the synchronous rotor 1 assembly having good dimensional accuracy, roundness, and magnet hole shape accuracy can be formed. Further, since the centrifugal rotor 1 assembly can be secured by welding and joining between the core plates 2a, the damage due to the load input to the permanent magnet 3 can be prevented.
 この結果、ロータコア2の耐遠心強度を確保することで、永久磁石の耐久信頼性を向上することができる。 As a result, the durability reliability of the permanent magnet can be improved by securing the centrifugal strength of the rotor core 2.
 次に、効果を説明する。
  実施例1の回転電機用同期ロータ1及び回転電機用同期ロータ1の製造方法にあっては、下記に列挙する効果を得ることができる。
Next, the effect will be described.
The effects listed below can be obtained in the rotary electric machine synchronous rotor 1 and the method of manufacturing the rotary electric machine synchronous rotor 1 of the first embodiment.
 (1) 複数の円弧状のコアプレート2aを積層することにより形成した円筒状のロータコア2と、前記ロータコア2に埋め込む永久磁石3と、を有する回転電機用同期ロータ1において、
  前記円弧状のコアプレート2aは、プレート外周側に開穴した前記永久磁石3を挿入するための磁石穴3aと、プレート内周端に形成した溶接部5と、前記磁石穴3aと前記溶接部5との径方向の間の位置に開穴した貫通穴6と、を有し、
  前記ロータコア2の内周面2IPに、ロータ軸Ax方向に積層した前記複数のコアプレート2a間の前記溶接部5により連続して形成される直線状の連続溶接部10を溶接接合した溶接接合部(溶接ビード11)を形成し、
  前記磁石穴3aと前記ロータコア2の中心点Oとを径方向に結ぶ径方向軸線CLの同一軸線上に、前記溶接接合部(溶接ビード11)及び前記貫通穴6を配置した。
  このため、ロータコア2の耐遠心強度を確保することで、永久磁石の耐久信頼性を向上することができる。
(1) In a synchronous rotor 1 for a rotating electrical machine having a cylindrical rotor core 2 formed by laminating a plurality of arc-shaped core plates 2a, and a permanent magnet 3 embedded in the rotor core 2.
The arc-shaped core plate 2a includes a magnet hole 3a for inserting the permanent magnet 3 opened on the outer peripheral side of the plate, a welded portion 5 formed on the inner peripheral end of the plate, the magnet hole 3a and the welded portion. And a through hole 6 opened at a position between 5 and the radial direction,
A weld joint in which a linear continuous weld 10 formed continuously by the weld 5 between the plurality of core plates 2a laminated in the rotor axis Ax direction is welded to the inner peripheral surface 2IP of the rotor core 2. (Weld bead 11) is formed,
The weld joint (weld bead 11) and the through hole 6 are arranged on the same axis of a radial axis CL that connects the magnet hole 3a and the center point O of the rotor core 2 in the radial direction.
For this reason, the durability reliability of a permanent magnet can be improved by ensuring the centrifugal strength of the rotor core 2.
 (2) 前記溶接部5は、前記コアプレート2aの内周面2IPから外径方向に凹んで形成された凹面5aと、前記凹面5aの一部に、前記凹面5aから前記コアプレート2aの内周面2IPまでの範囲にて突出する凸部5bと、により形成した。
  このため、複数のコアプレート2a間を溶接しても、径寸法精度、真円度及び磁石穴形状精度が良好なロータコア2を形成することができるので、同期ロータ1組立体を形成することができる。
(2) The welded portion 5 includes a concave surface 5a formed to be recessed from the inner peripheral surface 2IP of the core plate 2a in the outer diameter direction, a part of the concave surface 5a, and the inner surface of the core plate 2a from the concave surface 5a. It was formed by the convex part 5b which protrudes in the range to the surrounding surface 2IP.
For this reason, even if it welds between several core plates 2a, since the rotor core 2 with a sufficient dimensional accuracy, roundness, and magnet hole shape accuracy can be formed, a synchronous rotor 1 assembly can be formed. it can.
 (3) 複数の円弧状のコアプレート2aを積層することにより形成した円筒状のロータコア2と、前記ロータコア2に埋め込む永久磁石3と、を有する回転電機用同期ロータ1の製造方法において、
  前記円弧状のコアプレート2aに、プレート外周側に開穴した前記永久磁石3を挿入するための磁石穴3aと、プレート内周端に形成した溶接部5と、前記磁石穴3aと前記溶接部5との径方向の間の位置に開穴した貫通穴6と、を成形するコアプレート成形工程と、
  前記複数の円弧状のコアプレート2aを、環状に配置すると共に、環状に配置した前記コアプレート2aを積層して前記円筒状のロータコア2を組み立てるロータコア組み立て工程と、
  前記ロータコア2のロータ軸Ax方向に積層した前記複数のコアプレート2a間の前記磁石穴3aが、ロータ軸Ax方向に連通するように位置合わせを行い、該位置合わせを行った前記ロータコア2の内周面2IPに、前記ロータ軸Ax方向に積層した前記複数のコアプレート2a間の前記溶接部5により連続する直線状の連続溶接部10を形成し、前記磁石穴3aと前記ロータコア2の中心点Oとを径方向に結ぶ径方向軸線CLの同一軸線上に、前記連続溶接部10及び前記貫通穴6を配置した状態にて、前記連続溶接部10を溶接接合するロータ溶接接合工程と、
  を有する。
  このため、ロータコア2の耐遠心強度を確保することで、永久磁石3の耐久信頼性を向上することができる。加えて、複数のコアプレート2a間を溶接しても、径寸法精度、真円度及び磁石穴3a形状精度が良好な同期ロータ1組立体を形成することができる。この2つのことを達成することができる回転電機用同期ロータ1の製造方法を提供することができる。
(3) In the method of manufacturing a synchronous rotor 1 for a rotating electrical machine, which includes a cylindrical rotor core 2 formed by laminating a plurality of arc-shaped core plates 2a, and a permanent magnet 3 embedded in the rotor core 2.
A magnet hole 3a for inserting the permanent magnet 3 opened on the outer peripheral side of the plate into the arc-shaped core plate 2a, a welded part 5 formed on the inner peripheral end of the plate, the magnet hole 3a and the welded part A core plate forming step for forming a through hole 6 opened at a position between 5 and the radial direction;
A rotor core assembling step of arranging the plurality of arc-shaped core plates 2a in an annular shape and stacking the annularly arranged core plates 2a to assemble the cylindrical rotor core 2;
Positioning is performed so that the magnet holes 3a between the plurality of core plates 2a stacked in the rotor axis Ax direction of the rotor core 2 communicate with each other in the rotor axis Ax direction. A linear continuous welded portion 10 is formed on the peripheral surface 2IP by the welded portion 5 between the plurality of core plates 2a stacked in the rotor axis Ax direction, and the magnet hole 3a and the center point of the rotor core 2 are formed. A rotor welding joining step of welding the continuous welded portion 10 in a state where the continuous welded portion 10 and the through hole 6 are arranged on the same axis line of the radial axis CL that connects O and the radial direction;
Have
For this reason, the durability reliability of the permanent magnet 3 can be improved by ensuring the centrifugal strength of the rotor core 2. In addition, even if the plurality of core plates 2a are welded, the synchronous rotor 1 assembly having good dimensional accuracy, roundness, and magnet hole 3a shape accuracy can be formed. The manufacturing method of the synchronous rotor 1 for rotary electric machines which can achieve these two things can be provided.
 実施例2は、溶接部5の凸部5b及び貫通穴6の変形例である。
図8に基づき実施例2の要部構成を以下に説明する。
The second embodiment is a modification of the convex portion 5 b and the through hole 6 of the welded portion 5.
Based on FIG. 8, the configuration of the main part of the second embodiment will be described below.
 溶接部5の凸部5bの形状は、図8に示すように、矩形形状に形成されている。 The shape of the convex part 5b of the welding part 5 is formed in the rectangular shape as shown in FIG.
 貫通穴6は、図8に示すように、磁石穴3aと溶接部5との径方向の間の位置に開穴されている。その穴は、直列に2つ形成されている。この2つの貫通穴6の形状は、共に円形状に形成されている。また、この2つの貫通穴6の穴径は、実施例1の貫通穴6の穴径よりも小さくなっている。 As shown in FIG. 8, the through hole 6 is opened at a position between the magnet hole 3 a and the welded portion 5 in the radial direction. Two holes are formed in series. The two through holes 6 are both formed in a circular shape. Moreover, the hole diameters of the two through holes 6 are smaller than the hole diameters of the through holes 6 of the first embodiment.
 凸部5b及び2つの貫通穴6のそれぞれの周方向の中心位置を、図8に示すように、径方向軸線CLの同一軸線上に配置している。
なお、他の構成は、実施例1と同様であるので、対応する構成に同一符号を付して説明を省略する。
As shown in FIG. 8, the center positions in the circumferential direction of the convex portion 5b and the two through holes 6 are arranged on the same axis line of the radial axis line CL.
Since other configurations are the same as those of the first embodiment, the corresponding components are denoted by the same reference numerals and description thereof is omitted.
 次に、実施例2の回転電機用同期ロータ1における「貫通穴の作用」について、図8に基づいて説明する。 Next, “the action of the through hole” in the synchronous rotor 1 for the rotating electrical machine according to the second embodiment will be described with reference to FIG.
 連続溶接部10を溶接接合した場合に発生する熱は、磁石穴3aと溶接部5との径方向の間の位置に開穴されている2つの貫通穴6により、貫通穴6が1つの場合(実施例1)よりも、磁石穴3a及びロータコア2の外径部への熱の拡散(伝導)が抑えられ、磁石穴3a及びロータコア2の外径部の熱歪変形を抑制することができる。 When the continuous weld 10 is welded, the heat generated when the through-hole 6 is one by the two through-holes 6 that are opened at positions between the magnet hole 3a and the weld 5 in the radial direction. The diffusion (conduction) of heat to the magnet hole 3a and the outer diameter part of the rotor core 2 can be suppressed more than (Example 1), and the thermal strain deformation of the magnet hole 3a and the outer diameter part of the rotor core 2 can be suppressed. .
 この結果、複数のコアプレート2a間を溶接しても、実施例1よりも、径寸法精度、真円度及び磁石穴3a形状精度が良好な同期ロータ1組立体を形成することができる。 As a result, even when the plurality of core plates 2a are welded, the synchronous rotor 1 assembly having better dimensional accuracy, roundness and magnet hole 3a shape accuracy than in the first embodiment can be formed.
 加えて、貫通穴6を2つにすることで、貫通穴6が1つの場合よりもその穴径を小さくすることができるため、磁束経路の確保性が高まる。これにより、実施例1よりも磁気回路形成時の影響を小さくすることができる。
なお、実施例1及び実施例2の貫通穴の作用が異なるのみで、他の作用は、実施例1と同様であるので、説明を省略する。
In addition, by using two through holes 6, the hole diameter can be made smaller than in the case of a single through hole 6, so that the magnetic flux path can be secured. Thereby, the influence at the time of magnetic circuit formation can be made smaller than Example 1.
It should be noted that only the operation of the through holes of the first embodiment and the second embodiment is different, and the other operations are the same as those of the first embodiment, and thus the description thereof is omitted.
 次に、効果を説明する。
  実施例2の回転電機用同期ロータ1にあっては、実施例1の(1)~(3)の効果に加え、下記の効果を得ることができる。
Next, the effect will be described.
In the synchronous rotor 1 for the rotating electrical machine according to the second embodiment, in addition to the effects (1) to (3) of the first embodiment, the following effects can be obtained.
 (4) 前記貫通穴6を2つ(複数)開穴し、前記複数の貫通穴6のうち少なくとも1つの貫通穴6の周方向の中心位置を、前記径方向軸線CLに一致させて配置した。
  このため、複数のコアプレート2a間を溶接しても、実施例1よりも、径寸法精度、真円度及び磁石穴3a形状精度が良好な同期ロータ1組立体を形成することができる。加えて、実施例1よりも磁束経路の確保性が高まることにより、実施例1よりも磁気回路形成時の影響を小さくすることができる。
(4) Two (a plurality) of the through holes 6 are opened, and the center position in the circumferential direction of at least one of the plurality of through holes 6 is arranged so as to coincide with the radial axis CL. .
For this reason, even if it welds between the several core plates 2a, the synchronous rotor 1 assembly with a sufficient dimensional accuracy, roundness, and magnet hole 3a shape precision can be formed rather than Example 1. FIG. In addition, since the securing of the magnetic flux path is improved as compared with the first embodiment, the influence at the time of forming the magnetic circuit can be reduced as compared with the first embodiment.
 実施例3は、溶接部5の凹面5a及び貫通穴6の変形例である。
図9に基づき実施例3の要部構成を以下に説明する。
The third embodiment is a modification of the concave surface 5 a and the through hole 6 of the welded portion 5.
The configuration of the main part of the third embodiment will be described below based on FIG.
 溶接部5の凹面5aは、図9に示すように、実線と破線にて示したように平面の形状となっている。 As shown in FIG. 9, the concave surface 5a of the welded portion 5 has a flat shape as indicated by a solid line and a broken line.
 貫通穴6は、図9に示すように、磁石穴3aと溶接部5との径方向の間の位置に開穴されている。その穴は、溶接部5を覆うように3つ形成されている。この3つの貫通穴6の形状は、共に円形状に形成されている。また、この3つの貫通穴6の穴径は、実施例1の貫通穴6の穴径よりも小さくなっている。 As shown in FIG. 9, the through-hole 6 is opened at a position between the magnet hole 3 a and the welded portion 5 in the radial direction. Three holes are formed so as to cover the welded portion 5. The three through holes 6 are formed in a circular shape. Further, the diameters of the three through holes 6 are smaller than the diameters of the through holes 6 of the first embodiment.
 凸部5b及び3つの貫通穴6のうち中央の貫通穴6aのそれぞれの周方向の中心位置は、図9に示すように、径方向軸線CLの同一軸線上に配置している。
なお、他の構成は、実施例1と同様であるので、対応する構成に同一符号を付して説明を省略する。
As shown in FIG. 9, the center position in the circumferential direction of the central through hole 6a among the convex portion 5b and the three through holes 6 is arranged on the same axis line as the radial axis CL.
Since other configurations are the same as those of the first embodiment, the corresponding components are denoted by the same reference numerals and description thereof is omitted.
 次に、実施例3の回転電機用同期ロータ1における「貫通穴の作用」について、図9に基づいて説明する。 Next, “the action of the through hole” in the synchronous rotor 1 for the rotating electrical machine of the third embodiment will be described with reference to FIG.
 連続溶接部10を溶接接合した場合に発生する熱は、磁石穴3aと溶接部5との径方向の間の位置に3つの貫通穴6が開穴され、しかもその3つの貫通穴6は溶接部5を覆うように開穴されていることにより、貫通穴6が2つの場合(実施例2)よりも、磁石穴3a及びロータコア2の外径部への熱の拡散(伝導)が抑えられ、磁石穴3a及びロータコア2の外径部の熱歪変形を抑制することができる。 The heat generated when the continuous welded portion 10 is welded joins the three through holes 6 at positions between the magnet hole 3a and the welded portion 5 in the radial direction, and the three through holes 6 are welded. Since the hole is formed so as to cover the portion 5, the diffusion (conduction) of heat to the outer diameter portion of the magnet hole 3a and the rotor core 2 can be suppressed as compared with the case where there are two through holes 6 (Example 2). The thermal strain deformation of the magnet hole 3a and the outer diameter portion of the rotor core 2 can be suppressed.
 この結果、複数のコアプレート2a間を溶接しても、実施例2よりも、径寸法精度、真円度及び磁石穴3a形状精度が良好な同期ロータ1組立体を形成することができる。 As a result, even if the plurality of core plates 2a are welded, the synchronous rotor 1 assembly can be formed with better dimensional accuracy, roundness and magnet hole 3a shape accuracy than in the second embodiment.
 加えて、貫通穴6を3つにすることで、貫通穴6が1つの場合よりもその穴径を小さくすることができるため、磁束経路の確保性が高まる。これにより、実施例1よりも磁気回路形成時の影響を小さくすることができる。
なお、実施例1及び実施例3の貫通穴の作用が異なるのみで、他の作用は、実施例1と同様であるので、説明を省略する。
In addition, by using three through holes 6, the hole diameter can be made smaller than in the case where there is one through hole 6, so that the magnetic flux path can be secured. Thereby, the influence at the time of magnetic circuit formation can be made smaller than Example 1.
It should be noted that only the operation of the through-holes of the first embodiment and the third embodiment is different, and the other operations are the same as those of the first embodiment, and thus description thereof is omitted.
 次に、効果を説明する。
  実施例3の回転電機用同期ロータ1にあっては、実施例1の(1)~(3)の効果に加え、下記の効果を得ることができる。
Next, the effect will be described.
In the synchronous rotor 1 for the rotating electrical machine of the third embodiment, the following effects can be obtained in addition to the effects (1) to (3) of the first embodiment.
 (5) 前記貫通穴6を3つ(複数)開穴し、前記複数の貫通穴6のうち少なくとも1つの貫通穴6の周方向の中心位置を、前記径方向軸線CLに一致させて配置した。
  このため、複数のコアプレート2a間を溶接しても、実施例2よりも、径寸法精度、真円度及び磁石穴3a形状精度が良好な同期ロータ1組立体を形成することができる。加えて、実施例1よりも磁束経路の確保性が高まることにより、実施例1よりも磁気回路形成時の影響を小さくすることができる。
(5) Three (a plurality) of the through holes 6 are opened, and the center position in the circumferential direction of at least one of the plurality of through holes 6 is arranged so as to coincide with the radial axis CL. .
For this reason, even if it welds between the several core plates 2a, the synchronous rotor 1 assembly with a favorable dimensional accuracy, roundness, and magnet hole 3a shape precision can be formed rather than Example 2. FIG. In addition, since the securing of the magnetic flux path is improved as compared with the first embodiment, the influence at the time of forming the magnetic circuit can be reduced as compared with the first embodiment.
 以上、本発明の回転電機用同期ロータと回転電機用同期ロータの製造方法を実施例1~実施例3に基づき説明してきたが、具体的な構成については、これらの実施例に限られるものではなく、請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。 As described above, the synchronous rotor for a rotating electrical machine and the method for manufacturing the synchronous rotor for a rotating electrical machine of the present invention have been described based on the first to third embodiments. However, the specific configuration is not limited to these examples. However, design changes and additions are allowed without departing from the spirit of the invention according to each claim of the claims.
 実施例1~3では、1枚のコアプレート2aの構成に、磁石穴3a、溶接部5及び貫通穴6のそれぞれを、等間隔に4つずつ形成した。しかしながら、1枚のコアプレート2aの構成は、実施例1~3に示した構成に限られるものではなく、磁石穴3a、溶接部5及び貫通穴6のそれぞれは等間隔に形成されていればよいので、それぞれ4つよりも少なく形成しても多く形成してもよい。 In Examples 1 to 3, four magnet holes 3a, welds 5 and through holes 6 were formed at equal intervals in the configuration of one core plate 2a. However, the configuration of the single core plate 2a is not limited to the configurations shown in the first to third embodiments, and the magnet hole 3a, the welded portion 5, and the through hole 6 may be formed at equal intervals. Since it is good, less than four or more may be formed respectively.
 実施例1~3では、各層を構成するコアプレート2a枚数を3枚とした。しかしながら、各層を構成するコアプレート2a枚数は、実施例1~3に示した構成に限られるものではなく、3枚よりも少なくしても多くしてもよい。ただし、各層を構成するコアプレート2aの枚数を変更した場合には、円弧の角度θ1及び角度θ2を、各層を構成するコアプレート2aの枚数に合わせて変更する。 In Examples 1 to 3, the number of core plates 2a constituting each layer is three. However, the number of core plates 2a constituting each layer is not limited to the configuration shown in the first to third embodiments, and may be smaller or larger than three. However, when the number of core plates 2a constituting each layer is changed, the angle θ1 and the angle θ2 of the arc are changed according to the number of core plates 2a constituting each layer.
 実施例1~3では、角度θ2を30°とし、右回りにずらした。しかしながら、角度θ2は、実施例1~3に示した構成に限られるものではなく、前の層のコアプレート2a間の継ぎ目をまたぐように、次の層が積層されていけばよいので、30°でなくてもよい。また、右回りにずらしたが、左回りにずらしてもよい。 In Examples 1 to 3, the angle θ2 was set to 30 ° and shifted clockwise. However, the angle θ2 is not limited to the configuration shown in the first to third embodiments, and the next layer may be laminated so as to straddle the joint between the core plates 2a of the previous layer. It does not have to be °. Moreover, although it shifted clockwise, you may shift counterclockwise.
 実施例1~3では、溶接部5及び貫通穴6の配置を、径方向軸線CLの同一軸線上に、それらの周方向の中心位置に配置した。しかしながら、溶接部5及び貫通穴6の配置は、実施例1~3に示した構成に限られるものではない。すなわち、溶接部5及び貫通穴6は、中心点Oと磁石穴3aとを径方向に結ぶ径方向軸線CLの同一軸線上に配置されていればよいので、それらの周方向の中心位置を、径方向軸線CLの同一軸線上に配置しなくてもよい。 In Examples 1 to 3, the welded portion 5 and the through-hole 6 are arranged on the same axis line of the radial axis CL at the center position in the circumferential direction thereof. However, the arrangement of the welded portion 5 and the through hole 6 is not limited to the configuration shown in the first to third embodiments. That is, since the welded part 5 and the through-hole 6 should just be arrange | positioned on the same axis line of the radial direction axis line CL which connects the center point O and the magnet hole 3a to radial direction, those center positions of the circumferential direction are It is not necessary to arrange | position on the same axis line of radial direction axis line CL.
 実施例1~3では、磁石穴3aの形状を周方向に広がった矩形形状に形成し、その数を径方向軸線CLの同一軸線上に1つとした。しかしながら、磁石穴3aの形状及び数は、実施例1~3に示した構成に限られるものではない。例えば、その形状は、楕円形状、ひし形形状又は台形形状等でもよいし、その数は、1つの径方向軸線CLに対して2つ以上の穴が開穴していてもよい。 In Examples 1 to 3, the shape of the magnet hole 3a was formed in a rectangular shape that expanded in the circumferential direction, and the number thereof was one on the same axis line of the radial axis CL. However, the shape and number of the magnet holes 3a are not limited to the configurations shown in the first to third embodiments. For example, the shape may be an elliptical shape, a rhombus shape, a trapezoidal shape, or the like, and the number thereof may be two or more holes per one radial axis CL.
 実施例1~3では、溶接部5の凹面5aを曲面又は平面に形成し、その凸部5bの形状を三角形状又は矩形形状に形成した。しかしながら、溶接部5の凹面5a及び凸部5bの形状は、実施例1~3に示した構成に限られるものではない。例えば、その凹面5aは、曲面及び平面を併せた形状等でもよいし、その凸部5bは、円形状、楕円形状、ひし形形状又は台形形状等でもよい。 In Examples 1 to 3, the concave surface 5a of the welded portion 5 was formed into a curved surface or a flat surface, and the shape of the convex portion 5b was formed into a triangular shape or a rectangular shape. However, the shapes of the concave surface 5a and the convex portion 5b of the welded portion 5 are not limited to the configurations shown in the first to third embodiments. For example, the concave surface 5a may have a shape that combines a curved surface and a flat surface, and the convex portion 5b may have a circular shape, an elliptical shape, a rhombus shape, a trapezoidal shape, or the like.
 実施例1~3では、貫通穴6の形状を円形状に形成し、その数は、磁石穴3aと溶接部5との径方向の間の位置に1~3つ開穴した。しかしながら、貫通穴6の形状及び数は、実施例1~3に示した構成に限られるものではない。例えば、適用する永久磁石3及び磁石穴3aに対して、最も磁束経路の確保性が高まるように、貫通穴6の形状及び数を形成してもよい。なお、貫通穴6の大きさ(実施例1~3では穴径と示した)は、その貫通穴6の形状及び数に合わせて変更してもよい。また、その形状は、矩形形状、楕円形状、ひし形形状又は台形形状等でもよいし、その数は磁石穴3aと溶接部5との径方向の間の位置に4つ以上(複数)の穴が開穴していてもよい。貫通穴6を複数開穴した場合には、少なくとも1つの貫通穴6の周方向の中心位置を、径方向軸線CLに一致させて配置する。 In Examples 1 to 3, the shape of the through hole 6 was formed in a circular shape, and the number of the through holes 6 was 1 to 3 at a position between the magnet hole 3a and the welded portion 5 in the radial direction. However, the shape and number of the through holes 6 are not limited to the configurations shown in the first to third embodiments. For example, the shape and number of the through holes 6 may be formed so that the magnetic flux path can be secured most with respect to the permanent magnets 3 and the magnet holes 3a to be applied. The size of the through hole 6 (shown as the hole diameter in Examples 1 to 3) may be changed according to the shape and number of the through holes 6. Further, the shape may be a rectangular shape, an elliptical shape, a rhombus shape, a trapezoidal shape, or the like, and the number thereof is four or more (plural) holes at a position between the magnet hole 3a and the welded portion 5 in the radial direction. It may be perforated. When a plurality of through holes 6 are opened, the circumferential center position of at least one through hole 6 is arranged to coincide with the radial axis CL.
 実施例1~3では、ロータシャフト4はロータコア2に対して圧入されることにより、ロータコア2にロータシャフト4が嵌合された。しかしながら、実施例1~3に示した構成に限られるものではない。例えば、圧入の他に、一般的なキー係合を用いてもよい。すなわち、ロータコア2の内周面2IP及びロータシャフト4の外周面に、各1箇所あるいは数か所のキー溝を形成し、このキー溝にキーを挿入して回り止めしてもよい。 In Examples 1 to 3, the rotor shaft 4 was fitted into the rotor core 2 by press-fitting the rotor shaft 4 into the rotor core 2. However, the configuration is not limited to those shown in the first to third embodiments. For example, general key engagement may be used in addition to press-fitting. That is, one or several key grooves may be formed on the inner peripheral surface 2IP of the rotor core 2 and the outer peripheral surface of the rotor shaft 4, and a key may be inserted into the key groove to prevent rotation.
関連出願の相互参照Cross-reference of related applications
 本出願は、2013年6月26日に日本国特許庁に出願された特願2013-134172に基づいて優先権を主張し、その全ての開示は完全に本明細書で参照により組み込まれる。 This application claims priority based on Japanese Patent Application No. 2013-134172 filed with the Japan Patent Office on June 26, 2013, the entire disclosure of which is fully incorporated herein by reference.

Claims (4)

  1.  複数の円弧状のコアプレートを積層することにより形成した円筒状のロータコアと、前記ロータコアに埋め込む永久磁石と、を有する回転電機用同期ロータにおいて、
     前記円弧状のコアプレートは、プレート外周側に開穴した前記永久磁石を挿入するための磁石穴と、プレート内周端に形成した溶接部と、前記磁石穴と前記溶接部との径方向の間の位置に開穴した貫通穴と、を有し、
     前記ロータコアの内周面に、ロータ軸方向に積層した前記複数のコアプレート間の前記溶接部により連続して形成される直線状の連続溶接部を溶接接合した溶接接合部を形成し、
     前記磁石穴と前記ロータコアの中心点とを径方向に結ぶ径方向軸線の同一軸線上に、前記溶接接合部及び前記貫通穴を配置した
     ことを特徴とする回転電機用同期ロータ。
    In a synchronous rotor for a rotating electrical machine having a cylindrical rotor core formed by laminating a plurality of arc-shaped core plates, and a permanent magnet embedded in the rotor core,
    The arc-shaped core plate includes a magnet hole for inserting the permanent magnet opened on the outer peripheral side of the plate, a weld portion formed on the inner peripheral end of the plate, and a radial direction between the magnet hole and the weld portion. A through hole opened in a position between,
    Forming a welded joint on the inner circumferential surface of the rotor core by welding and joining a linear continuous weld formed continuously by the weld between the plurality of core plates stacked in the rotor axial direction;
    The synchronous rotor for a rotating electrical machine, wherein the weld joint and the through hole are arranged on the same axis of a radial axis connecting the magnet hole and the center point of the rotor core in the radial direction.
  2.  請求項1に記載された回転電機用同期ロータにおいて、
     前記溶接部は、前記コアプレートの内周面から外径方向に凹んで形成された凹面と、前記凹面の一部に、前記凹面から前記コアプレートの内周面までの範囲にて突出する凸部と、により形成した
     ことを特徴とする回転電機用同期ロータ。
    In the synchronous rotor for a rotating electrical machine according to claim 1,
    The welded portion has a concave surface that is recessed from the inner peripheral surface of the core plate in the outer diameter direction, and a convex that protrudes in a part of the concave surface from the concave surface to the inner peripheral surface of the core plate. And a synchronous rotor for a rotating electrical machine.
  3.  請求項1または請求項2に記載された回転電機用同期ロータにおいて、
     前記貫通穴を複数開穴し、前記複数の貫通穴のうち少なくとも1つの貫通穴の周方向の中心位置を、前記径方向軸線に一致させて配置した
     ことを特徴とする回転電機用同期ロータ。
    In the synchronous rotor for a rotating electrical machine according to claim 1 or 2,
    A synchronous rotor for a rotating electrical machine, wherein a plurality of the through holes are opened, and a center position in the circumferential direction of at least one through hole among the plurality of through holes is arranged to coincide with the radial axis.
  4.  複数の円弧状のコアプレートを積層することにより形成した円筒状のロータコアと、前記ロータコアに埋め込む永久磁石と、を有する回転電機用同期ロータの製造方法において、
     前記円弧状のコアプレートに、プレート外周側に開穴した前記永久磁石を挿入するための磁石穴と、プレート内周端に形成した溶接部と、前記磁石穴と前記溶接部との径方向の間の位置に開穴した貫通穴と、を成形するコアプレート成形工程と、
     前記複数の円弧状のコアプレートを、環状に配置すると共に、環状に配置した前記コアプレートを積層して前記円筒状のロータコアを組み立てるロータコア組み立て工程と、
     前記ロータコアのロータ軸方向に積層した前記複数のコアプレート間の前記磁石穴が、ロータ軸方向に連通するように位置合わせを行い、該位置合わせを行った前記ロータコアの内周面に、前記ロータ軸方向に積層した前記複数のコアプレート間の前記溶接部により連続する直線状の連続溶接部を形成し、前記磁石穴と前記ロータコアの中心点とを径方向に結ぶ径方向軸線の同一軸線上に、前記連続溶接部及び前記貫通穴を配置した状態にて、前記連続溶接部を溶接接合するロータ溶接接合工程と、
     を有することを特徴とする回転電機用同期ロータの製造方法。
    In a method for manufacturing a synchronous rotor for a rotating electrical machine, comprising: a cylindrical rotor core formed by stacking a plurality of arc-shaped core plates; and a permanent magnet embedded in the rotor core.
    A magnet hole for inserting the permanent magnet opened on the outer peripheral side of the plate into the arc-shaped core plate, a welded portion formed at the inner peripheral end of the plate, and a radial direction between the magnet hole and the welded portion A core plate molding process for molding a through hole opened in a position between,
    A rotor core assembling step of assembling the cylindrical rotor core by laminating the plurality of arc-shaped core plates in an annular shape and stacking the annularly arranged core plates;
    Alignment is performed such that the magnet holes between the plurality of core plates stacked in the rotor axial direction of the rotor core communicate with each other in the rotor axial direction, and the rotor core is disposed on the inner peripheral surface of the rotor core subjected to the alignment. A linear continuous weld is formed by the welds between the plurality of core plates laminated in the axial direction, and is on the same axis as the radial axis connecting the magnet hole and the center point of the rotor core in the radial direction. In the state where the continuous weld and the through hole are arranged, a rotor welding joint process for welding the continuous weld,
    The manufacturing method of the synchronous rotor for rotary electric machines characterized by having.
PCT/JP2014/066802 2013-06-26 2014-06-25 Synchronous rotor for rotary electrical machine and method for manufacturing synchronous rotor for rotary electrical machine WO2014208582A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015524071A JP5971418B2 (en) 2013-06-26 2014-06-25 Synchronous rotor for rotating electrical machine and method for manufacturing synchronized rotor for rotating electrical machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-134172 2013-06-26
JP2013134172 2013-06-26

Publications (1)

Publication Number Publication Date
WO2014208582A1 true WO2014208582A1 (en) 2014-12-31

Family

ID=52141914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/066802 WO2014208582A1 (en) 2013-06-26 2014-06-25 Synchronous rotor for rotary electrical machine and method for manufacturing synchronous rotor for rotary electrical machine

Country Status (2)

Country Link
JP (1) JP5971418B2 (en)
WO (1) WO2014208582A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104767306A (en) * 2015-04-29 2015-07-08 南车株洲电力机车研究所有限公司 Motor rotor and iron core thereof
JP2016163395A (en) * 2015-02-27 2016-09-05 アイシン・エィ・ダブリュ株式会社 Rotary electric machine rotor
WO2019088156A1 (en) * 2017-10-31 2019-05-09 日本電産株式会社 Rotor and motor
WO2019087338A1 (en) * 2017-11-01 2019-05-09 三菱電機株式会社 Core-block coupled body and manufacturing method for armature core of rotary electric machine
WO2019176543A1 (en) * 2018-03-16 2019-09-19 株式会社三井ハイテック Method for manufacturing iron core product, iron core product, and method for manufacturing rotor
JP2020022272A (en) * 2018-07-31 2020-02-06 株式会社三井ハイテック Iron core product manufacturing method and iron core product
CN111052547A (en) * 2017-08-30 2020-04-21 日本电产株式会社 Rotor, motor, and electric power steering device
JP6793888B1 (en) * 2020-02-07 2020-12-02 三菱電機株式会社 Rotating electric machine
EP3905492A4 (en) * 2018-12-28 2022-10-05 NHK Spring Co., Ltd. Laminated iron core and production method for laminated iron core

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0880013A (en) * 1994-09-05 1996-03-22 Mitsubishi Electric Corp Iron core comprising iron core plate with projected portion, its manufacture, punching die, apparatus for manufacturing the iron core plate, and device and method of manufacturing the iron core plate
JPH08331784A (en) * 1995-03-24 1996-12-13 Hitachi Metals Ltd Permanent-magnet type rotary electric machine
JP2007116886A (en) * 2005-10-18 2007-05-10 Chuan Yao Machinery & Electric Corp Core for rotary electric machine, and its assembling method
JP2010154589A (en) * 2008-12-24 2010-07-08 Toyota Motor Corp Motor core
WO2011114414A1 (en) * 2010-03-15 2011-09-22 トヨタ自動車株式会社 Rotor and process for production thereof
JP2011259689A (en) * 2010-05-13 2011-12-22 Denso Corp Rotor core and fastening method of rotor core and rotation shaft
JP2012161126A (en) * 2011-01-31 2012-08-23 Panasonic Corp Electric motor, compressor, and apparatus
JP2012205446A (en) * 2011-03-28 2012-10-22 Daikin Ind Ltd Rotor core, method for manufacturing the same, and motor
JP2013143872A (en) * 2012-01-11 2013-07-22 Aisin Aw Co Ltd Rotor core of rotary electric machine and manufacturing method of the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0880013A (en) * 1994-09-05 1996-03-22 Mitsubishi Electric Corp Iron core comprising iron core plate with projected portion, its manufacture, punching die, apparatus for manufacturing the iron core plate, and device and method of manufacturing the iron core plate
JPH08331784A (en) * 1995-03-24 1996-12-13 Hitachi Metals Ltd Permanent-magnet type rotary electric machine
JP2007116886A (en) * 2005-10-18 2007-05-10 Chuan Yao Machinery & Electric Corp Core for rotary electric machine, and its assembling method
JP2010154589A (en) * 2008-12-24 2010-07-08 Toyota Motor Corp Motor core
WO2011114414A1 (en) * 2010-03-15 2011-09-22 トヨタ自動車株式会社 Rotor and process for production thereof
JP2011259689A (en) * 2010-05-13 2011-12-22 Denso Corp Rotor core and fastening method of rotor core and rotation shaft
JP2012161126A (en) * 2011-01-31 2012-08-23 Panasonic Corp Electric motor, compressor, and apparatus
JP2012205446A (en) * 2011-03-28 2012-10-22 Daikin Ind Ltd Rotor core, method for manufacturing the same, and motor
JP2013143872A (en) * 2012-01-11 2013-07-22 Aisin Aw Co Ltd Rotor core of rotary electric machine and manufacturing method of the same

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016163395A (en) * 2015-02-27 2016-09-05 アイシン・エィ・ダブリュ株式会社 Rotary electric machine rotor
CN104767306A (en) * 2015-04-29 2015-07-08 南车株洲电力机车研究所有限公司 Motor rotor and iron core thereof
US11289963B2 (en) 2017-08-30 2022-03-29 Nidec Corporation Rotor, motor, and electric power steering device
CN111052547A (en) * 2017-08-30 2020-04-21 日本电产株式会社 Rotor, motor, and electric power steering device
JPWO2019088156A1 (en) * 2017-10-31 2020-11-12 日本電産株式会社 Rotor and motor
WO2019088156A1 (en) * 2017-10-31 2019-05-09 日本電産株式会社 Rotor and motor
CN111295816A (en) * 2017-10-31 2020-06-16 日本电产株式会社 Rotor and motor
US11233433B2 (en) 2017-10-31 2022-01-25 Nidec Corporation Rotor and motor
WO2019087338A1 (en) * 2017-11-01 2019-05-09 三菱電機株式会社 Core-block coupled body and manufacturing method for armature core of rotary electric machine
JPWO2019087338A1 (en) * 2017-11-01 2020-05-28 三菱電機株式会社 Core block connection body and method for manufacturing armature core of rotating electric machine
WO2019176543A1 (en) * 2018-03-16 2019-09-19 株式会社三井ハイテック Method for manufacturing iron core product, iron core product, and method for manufacturing rotor
CN111869063A (en) * 2018-03-16 2020-10-30 株式会社三井高科技 Method for manufacturing iron core product, and method for manufacturing rotating body
US11374474B2 (en) 2018-03-16 2022-06-28 Mitsui High-Tec, Inc. Method of manufacturing core product, and core product
US11469653B2 (en) 2018-03-16 2022-10-11 Mitsui High-Tec, Inc. Method of manufacturing rotating body
JP2020022272A (en) * 2018-07-31 2020-02-06 株式会社三井ハイテック Iron core product manufacturing method and iron core product
EP3905492A4 (en) * 2018-12-28 2022-10-05 NHK Spring Co., Ltd. Laminated iron core and production method for laminated iron core
JP6793888B1 (en) * 2020-02-07 2020-12-02 三菱電機株式会社 Rotating electric machine
WO2021157061A1 (en) * 2020-02-07 2021-08-12 三菱電機株式会社 Rotary electric machine

Also Published As

Publication number Publication date
JP5971418B2 (en) 2016-08-17
JPWO2014208582A1 (en) 2017-02-23

Similar Documents

Publication Publication Date Title
JP5971418B2 (en) Synchronous rotor for rotating electrical machine and method for manufacturing synchronized rotor for rotating electrical machine
US8970085B2 (en) Rotor for electric rotating machine and method of manufacturing the same
JP5736861B2 (en) Rotating electrical machine rotor
JP5657085B1 (en) Rotating electric machine and method for manufacturing stator for rotating electric machine
JP5971114B2 (en) Permanent magnet embedded rotary electric machine
US7915780B2 (en) Laminated spiral core, dynamo-electric-machine rotor provided therewith, and dynamo-electric machine
JP2012217283A (en) Rotor of rotary electric machine and method of manufacturing the same
JP5257038B2 (en) Rotating electric machine
US20150061443A1 (en) Rotor and rotary electric machine having the same
JP2013099047A (en) Rotor of permanent magnet rotary electric machine and permanent magnet rotary electric machine
US9899885B2 (en) Rotor and rotating electric machine
JP2012110161A (en) Rotor core for rotary electric machine
CN112119572B (en) Rotor of rotating electrical machine and rotor core support structure of rotating electrical machine
JP2019126102A (en) Rotor and rotary electric machine
WO2015198382A1 (en) Rotating electric machine synchronous rotor
US20230208215A1 (en) Rotating electrical machine
JP2013070494A (en) Stator core and motor
JP2015119516A (en) Stator core, stator, and motor
JP2005312153A (en) Permanent magnet type rotor and its manufacturing method
JP2012249354A (en) Rotor for rotary electric machine
CN111064294B (en) Stator core and motor
EP3723241B1 (en) Rotor core for rotating electric machine and method for manufacturing rotor core for rotating electric machine
JP2012125111A (en) Rotor of outer rotor type rotary machine
JP6745212B2 (en) Rotor and reluctance rotating electric machine
US20190245416A1 (en) Stator core of rotary electric machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14817615

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2015524071

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14817615

Country of ref document: EP

Kind code of ref document: A1